A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media

Florin Adrian Radu, Jan Martin Nordbotten, Iuliu Sorin Pop, Kundan Kumar

1. Introduction

Water and soil pollution, CO₂ storage, enhanced oil recovery and nuclear waste management are typical examples of two-phase porous media flows with obvious high societal relevance. A crucial role in understanding two-phase flow in porous media is played by numerical simulations, including mathematical modeling and numerical methods.

Mathematical models of two-phase flow in porous media consist of coupled, nonlinear and possibly degenerate partial differential equations. This makes the design and implementation of efficient numerical schemes for two-phase flow in porous media a challenging task. Locally conservative discretizations such as finite volume [1–5] and mixed finite element [6,7] methods are popular spatial discretization as they alleviate many stability issues. Furthermore, often long time-scales are of interest in applications, so fully implicit temporal discretizations are, in general, preferred.

At each time step, the spatial and temporal discretizations thus lead to a large system of nonlinear equations. This system is usually solved by either Picard’s method [8] or Newton’s method [9,10–13]. The former is linearly convergent while the latter is quadratically convergent. The quadratic convergence of Newton’s method comes at the price of only local convergence in solution space, however it remains a very powerful tool when applied to systems arising from discretization of parabolic equations. This is because, in this case, the starting iteration is chosen as the solution at the last time step and the

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
initial error can be controlled. In this way, by adjusting the time step size one ensures that the starting iteration is in the convergence region of the method. In order to apply Newton’s method to degenerate problems one needs a further regularization step [11–13], which may alter the quality of the solution (in particular the mass balance). Moreover, the time-step restriction depends on the mesh diameter and on the size of the regularization step, which may be relatively restrictive in practice (see [12,13] for a priori derived convergence conditions for the Newton method when applied to transport equations). Thus, we identify two main concerns of Newton’s method: the need of regularization for degenerate problems, as well as the time-step constraint implicitly imposed by the convergence region.

A possible improvement to Newton’s method for degenerate problems is the semismooth Newton method [14]. This method is of a higher algorithmic complexity and requires additional reformulation of the model by adding so called complementary conditions. The semismooth Newton method can be applied to two-phase flow or multicomponent transport with much better results compared to Newton’s method (see [14–16]).

In this work we propose and analyze a new linearization scheme for finite volume discretization schemes for two-phase flow. The proposed scheme is a monotone fixed point iteration [17,18]. We show the linear convergence and robustness of the scheme, subject to a relatively mild restriction on the time step size but independent of grid size. Moreover, the scheme does not involve the calculation of derivatives, which is an advantage over both Picard and Newton methods. Both analysis and numerical experiments indicate that the new scheme is a valuable alternative to Picard or Newton-type methods for solving two-phase flow in porous media.

The paper is structured as follows. In Section 2, we present the two-phase model considered here, describe the linearization scheme and show its convergence. The numerical results are given in Section 3, which show the applicability of the method. The paper ends with some concluding remarks in Section 4.

2. Mathematical model and discretization

We consider a simplified mathematical model for two-phase flow in porous media. The fluids are immiscible and incompressible and the solid matrix is non-deformable. The formulation adopted here uses the global pressure and a complementary pressure (obtained by using the Kirchhoff transformation) as primary unknowns (see [19–21]). For simplicity of exposition, we assume spatially homogeneous relative permeability and capillary pressure functions, and no gravity.

Throughout this paper we use common notations from functional analysis. The domain \(\Omega \subset \mathbb{R}^d \), \(d \) being the dimension of the space, is open, bounded and with a Lipschitz continuous boundary. By \(C \) we mean a positive constant, not depending on the unknowns or the discretization parameters.

2.1. Governing equations

Mass (volume) balance:

\[
\frac{\partial s}{\partial t} + \nabla \cdot \vec{q}_w = f_1(s). \tag{1}
\]

Fractional phase flux

\[
\vec{q}_w = -k\nabla \theta + f_w(s)\vec{q}. \tag{2}
\]

Conservation of total phase volumes

\[
\nabla \cdot \vec{q} = f_2(s). \tag{3}
\]

Darcy’s law for total flow

\[
\vec{q} = -\lambda(s)k\nabla p. \tag{4}
\]

The equations hold true in \(\Omega \times [0, T] \), with \(T \) denoting the final time. The system is closed by an invertible relationship between the saturation \(s \) and the complementary pressure \(\theta \), i.e. \(s = s(\theta) \) and constitutive laws for the various functions \(f_\alpha, \alpha \in \{1, 2, w\} \). The model is a reformulation of the two-phase system

\[
\frac{\partial (\phi \rho_\alpha s_\alpha)}{\partial t} + \nabla \cdot (\rho_\alpha \vec{q}_\alpha) = \Psi_\alpha, \quad \alpha = w, n, \tag{5}
\]

\[
\vec{q}_\alpha = -\frac{k_{r,\alpha}}{\mu_\alpha} k\nabla p_\alpha, \quad \alpha = w, n, \tag{6}
\]

\[
s_w + s_n = 1, \tag{7}
\]

\[
p_n - p_w = p_{\text{cap}}(s_w). \tag{8}
\]

We denoted by \(w \) and \(n \) the wetting and the non-wetting phase, respectively. Here: the porosity \(\phi \), the densities \(\rho_w, \rho_n \) and the viscosities \(\mu_w, \mu_n \) are constants. Furthermore, there are no exchange terms between the phases, and the capillary pressure \(p_{\text{cap}} \) and the relative permeabilities \(k_{r,\alpha} \) are assumed known, monotone and Lipschitz continuous functions of the wetting phase saturation \(s_w \). To transform the system (5)–(8) into the system (1)–(4) one introduces the global pressure
where \(L \) point out that the addition of the term (14)–(15) can be solved sequentially. Thus, only one global (elliptic or parabolic) system need be solved at a time. We use the mesh tessellation and faces \([22]\):

\[
D = \{ \mathcal{T}, \mathcal{F} \}
\]

Here, in contrast, we consider a finite volumes setting. We introduce a finite volume duplex \(D = (\mathcal{T}, \mathcal{F}) \), representing the mesh Tessellation and Faces \([22]\):

2.5. Spatial discretization

The standard approach to solving the coupled equations resulting after applying the backward Euler time discretization to (1)–(4) is to apply Newton’s method. As mentioned in the introduction, this has several drawbacks. First, the Jacobian matrix of the system needs to be assembled, and secondly, the convergence of the algorithm is not guaranteed when the initial guess is not close enough to the solution, which implies a restriction on the time step size. We consider therefore the applicability of a fixed point linearization method. Let \(L > 0 \) be a constant such that

\[
L \geq \sup_{\theta} \frac{d}{d\theta} s(\theta).
\]

At time \(t_n \) and for given \(\theta^{n,i-1}, \theta^{n-1} \), the iterate \(i \) is obtained by solving the following system of equations:

\[
L(\theta^{n,i} - \theta^{n,i-1}) + s^{n,i-1} + \Delta t (\nabla \cdot \hat{q}^{n,i} - f_1(s^{n,i-1})) = s^{n-1},
\]

\[
\hat{q}^{n,i} = -k \nabla \theta^{n,i} + f_w(s^{n,i-1})\hat{q}^{n,i},
\]

\[
\nabla \cdot \hat{q}^{n,i} = f_2(s^{n,i-1}),
\]

\[
\hat{q}^{n,i} = -\lambda(s^{n,i-1})k \nabla p^{n,i},
\]

where \(s^{n,i-1} = s(\theta^{n,i-1}) \) and \(s^{n-1} = s(\theta^{n-1}) \). Note that this system is decoupled, in the sense that Eqs. (16)–(17) and (14)–(15) can be solved sequentially. Thus, only one global (elliptic or parabolic) system needs to be solved at a time. We point out that the addition of the term \(L(\theta^{n,i} - \theta^{n,i-1}) \) is necessary to overcome the degeneracy of the problem. This term is essential for obtaining a robust, linear convergent numerical scheme.

2.4. Iterative approach

The assumptions on the data

Throughout this paper we consider the following physically reasonable assumptions on the data.

(A1) \(s(\cdot) \) is monotone increasing and Lipschitz continuous.

(A2) The permeability \(k \) is strictly positive, the total mobility \(\lambda(\cdot) \) is Lipschitz continuous and there exists \(a_*, a^* \in \mathbb{R} \) such that for all \(y \in \mathbb{R} \)

\[
0 < a_* \leq \lambda(y) \leq a^* < \infty.
\]

(A3) \(f_1(\cdot), f_2(\cdot) \) and \(f_w(\cdot) \) are Lipschitz continuous and bounded functions.

2.3. Temporal discretization

Let \(N \geq 1 \) be an integer giving the time step \(\Delta t = T/N \), and let \(t_i = n \Delta t \), for \(n = 1, \ldots, N \) the discrete time points. For the time discretization of (1) we use the backward Euler method. This leads to a nonlinear system of equations. The variables in (2)–(4) are evaluated at the current time \(t^n \), while (1) becomes

\[
s^n + \Delta t (\nabla \cdot \hat{q}^n - f_1(s^n)) = s^{n-1}.
\]

Eqs. (14)–(17) have previously been solved in the context of mixed finite element approximations to the spatial derivatives. Here, in contrast, we consider a finite volume setting. We introduce a finite volume duplex \(D = (\mathcal{T}, \mathcal{F}) \), representing the mesh Tessellation and Faces \([22]\):

- \(\mathcal{T} \) is a non-overlapping partition of the domain \(\Omega \). Furthermore, let \(m_K \) denote the \(d \)-dimensional measure of \(K \in \mathcal{T} \).
- \(\mathcal{F} \) is a set of faces of the partitioning \(\mathcal{T} \). Naturally, the faces must be compatible with the mesh, such that for all \(K \in \mathcal{T} \) there exists a subset \(\mathcal{F}_K \subset \mathcal{F} \) such that \(\partial K = \bigcup_{\sigma \in \mathcal{F}_K} \sigma \).

and a complementary pressure, defined by

\[
p(x, s) := p_n(x) - \int_0^s f_w(x, \xi) \frac{\partial p_{\text{cap}}}{\partial \xi}(x, \xi) d \xi,
\]

\[
\theta(x, s) := -\int_0^s f_w(x, \xi) \lambda_n(x, \xi) \frac{\partial p_{\text{cap}}}{\partial \xi}(x, \xi) d \xi,
\]

where \(s := s_n \). The phase mobilities \(\lambda_n := \frac{k_n}{\mu_n}, \alpha = w, n \) and the fractional flow function \(f_w := \frac{\lambda_w}{\lambda_w + \lambda_n} \) are given, Lipschitz continuous functions of \(s \). For the details of the transformation please see [19–21].
Additionally, we define the following useful subset of the mesh duplex:

- For each face \(\sigma \in \mathcal{F} \), we denote the neighboring cells \(\mathcal{T}_\sigma \). Note that for all internal faces \(\mathcal{T}_\sigma \) will contain exactly two elements, while it contains a single element when \(\sigma \subset \partial \Omega \).

This is sufficient to provide an abstract definition of a finite volume method for Eqs. (14)–(17). With respect to Eqs. (14)–(17), we identify \(p \) and \(\theta \) as cell variables and \(q_{w,\sigma}^n = \bar{q}_w \cdot \bar{v}, \bar{q}_\sigma = \bar{q} \cdot \bar{v} \), as face variables, and denote the corresponding discrete spaces as \(\mathcal{H}_\mathcal{T} \) and \(\mathcal{H}_F \). We denoted by \(\bar{v} \) the outer unit normal.

A finite volume method is characterized by the existence of a discrete operator \(\bar{\nabla} \cdot : \mathcal{H}_\mathcal{T} \rightarrow \mathcal{H}_F \). For \(\bar{q} \in \mathcal{H}_F \) and for each \(E \in \mathcal{T} \), it is defined as

\[
(\bar{\nabla} \cdot \bar{q})_E = \frac{1}{m_E} \sum_{E \in \mathcal{T}_E} \pm m_\sigma q_\sigma.
\]

(18)

The choice of sign in Eq. (18) is determined by the convention on normal vectors for faces.

Various finite volume methods differ in their definition and construction of discrete operators representing Eq. (4), which we denote by \(F(p, s) : (\mathcal{H}_\mathcal{T} \times \mathcal{H}_F) \rightarrow \mathcal{H}_F \). It is typical to consider this mapping as a product \(F = F_1(p)F_2(s; F_1(p)) \) where \(F_1 : \mathcal{H}_\mathcal{T} \rightarrow \mathcal{H}_F \) and \(F_2 : (\mathcal{H}_\mathcal{T} \times \mathcal{H}_F) \rightarrow \mathcal{H}_F \). Classically, \(F_1 \) is a discrete representation of a Darcy flux (in this work we consider only linear finite volume methods, therefore \(F_1 \) is a linear function), while \(F_2 \) is a (potentially smoothed) upstream value of the function \(\lambda(s) \). Standard formulations for upstream weighting used in porous media follow those for hyperbolic conservation laws [23], or their multi-dimensional generalizations [24].

We denote by \(\| \cdot \| \) the discrete \(L_2 \) norm

\[
\|f\|^2 := \sum_{K \in \mathcal{T}} m_K |f_K|^2,
\]

and by \(\langle \cdot, \cdot \rangle \) the associated scalar product

\[
\langle f, g \rangle := \sum_{K \in \mathcal{T}} m_K f_K g_K.
\]

We further assume:

- (A4) The finite volume method is stable: if \(u \) is the solution vector of the Laplace equation, and \(\bar{q} \) denotes its discrete gradient, there exist two constants \(C, C' > 0 \) such that

\[
\langle F_1 u, u \rangle \geq C\|\bar{q}\|^2 \quad \text{and} \quad \langle F_1 u, u \rangle \geq C \|u\|^2.
\]

(21)

Remark 2.1. The assumption (A4) is satisfied for most finite volume methods. One usually has \(\langle F_1 u, u \rangle = C\|\bar{q}\|^2 \), while \(\langle F_1 u, u \rangle \geq C'\|u\|^2 \) follows from the discrete Poincaré inequality.

Let now \(n \in \mathbb{N}, n \geq 1 \) denote the time index, \(t_n \) being the actual time step. The fully discrete (nonlinear) scheme reads: Having computed \(\theta^{n-1} \), find \((\theta^n, p^n, \bar{q}_w^n, \bar{q}_T^n) \in \mathcal{H}_\mathcal{T} \times \mathcal{H}_\mathcal{T} \times \mathcal{H}_F \times \mathcal{H}_F \) such that

\[
s^n + \Delta t (\bar{\nabla} \cdot \bar{q}_w^n - f_1(s^n)) = s^{n-1},
\]

(22)

\[
\bar{q}_w^n = F_1(\theta^n) + f_w(F_2(s^n; F_1(\theta^n)))\bar{q}_w^n,
\]

(23)

\[
\bar{\nabla} \cdot \bar{q}_T^n = f_2(s^n),
\]

(24)

\[
\bar{q}_T^n = F_1(p^n)F_2(s^n; F_1(p^n)),
\]

(25)

where \(s^n = s(\theta^n) \) and \(s^{n-1} = s(\theta^{n-1}) \). Eqs. (22) and (24) are understood elementwise for each \(E \in \mathcal{T} \), while Eqs. (23) and (25) hold for each face \(\sigma \in \mathcal{F} \). Furthermore, note that Eqs. (24)–(25) are a nonlinear elliptic system, which is decoupled from (22)–(23) (itself also a nonlinear system). The unknowns \(\theta^n, p^n \) are cellwise constant (implicitly the same holds for \(s^n = s(\theta^n) \)).

In line with (14)–(17), the linearization of (22)–(25) reads \((i \geq 1 \text{ being the iteration step})\):

Given \(\theta^{n,i-1} \), find \((\theta^{n,i}, p^{n,i}, \bar{q}_w^{n,i}, \bar{q}_T^{n,i}) \in \mathcal{H}_\mathcal{T} \times \mathcal{H}_\mathcal{T} \times \mathcal{H}_F \times \mathcal{H}_F \) such that

\[
L(\theta^{n,i} - \theta^{n,i-1}) + s^{n,i-1} + \Delta t (\bar{\nabla} \cdot \bar{q}_w^{n,i} - f_1(s^{n,i-1})) = s^{n-1},
\]

(26)

\[
\bar{q}_w^{n,i} = F_1(\theta^{n,i}) + f_w(F_2(s^{n,i-1}; F_1(\theta^{n,i-1})))\bar{q}_w^{n,i},
\]

(27)

\[
\bar{\nabla} \cdot \bar{q}_T^{n,i} = f_2(s^{n,i-1}),
\]

(28)

\[
\bar{q}_T^{n,i} = F_1(p^{n,i})F_2(s^{n,i-1}; F_1(p^{n,i-1})),
\]

(29)

where \(s^{n,i-1} = s(\theta^{n,i-1}) \) and \(s^{n-1} = s(\theta^{n-1}) \). We start the iterations by taking \(\theta^{n,0} = \theta^{n-1} \). Eqs. (28)–(29) now form a linear elliptic system, which is decoupled from (26)–(27) (itself also a linear system).
2.6. Convergence of the iterative method

We introduce now the errors at the iteration step i:

$e_{θ}^{i} = θ^{n,i} - θ^n$, \quad $e_{p}^{i} = p^{n,i} - p^n$, \quad $e_{s}^{i} = s^{n,i} - s = s(θ^{n,i}) - s(θ^n)$.

In order to show the convergence of the scheme (26)–(29) we will prove that

$$\|e_{θ}^{n,i}\| \rightarrow 0 \quad \text{when} \quad i \rightarrow ∞,$$

where $\| \cdot \|$ is the L_2 discrete norm (introduced in (19)). From $\|e_{θ}^{n,i}\| \rightarrow 0$, obviously it follows that also $\|e_{p}^{n,i}\| \rightarrow 0$.

The convergence of the proposed scheme is proved in the theorem below.

Theorem 2.1. Assuming (A1)–(A4), the linearization scheme (26)–(29) is (at least) linearly convergent if the time step $Δt$ is small enough.

Proof. We give the main idea of the proof, pointing out only what is peculiar for the convergence of the new scheme and assuming that the standard estimates can be obtained for the considered finite volume method. By subtracting (26)–(29) from (22)–(25) one gets

$$L(e_{θ}^{n,i} - e_{θ}^{n,i-1}) + e_{s}^{n,i-1} + ΔtG_1(θ^{n,i}, θ^n, p^{n,i}, p^n, s^{n,i-1}, s^n) = 0,$$

and

$$∇ ∙ G_2(p^{n,i}, p^n, s^{n,i-1}, s^n) = 0,$$

with the expressions G_1 and G_2 depending on the considered finite volume scheme. By standard techniques and using (A2)–(A4), (31) implies

$$\|e_{p}^{n,i}\| + \|q^{n,i} - q^n\| ≤ C_0\|e_{θ}^{n,i-1}\|,$$

with C_0 not depending on the discretization parameters. Multiplying (30) with $e_{θ}^{n,i}$ (the multiplication is done element wise), weighing by the cell volume mC and then summing up the resulting gives

$$L(e_{θ}^{n,i} - e_{θ}^{n,i-1}) + L(e_{s}^{n,i-1}, s^n) + ΔtG_1(θ^{n,i}, θ^n, p^{n,i}, p^n, s^{n,i-1}, s^n), e_{θ}^{n,i}) = 0.$$

Using Young’s inequality, i.e. $|ab| ≤ \frac{1}{2}|a|^2 + \frac{1}{2ε}|b|^2$ for all $ε > 0$ and (A4) leads to

$$(G_1(θ^{n,i}, θ^n, p^{n,i}, p^n, s^{n,i-1}, s^n), e_{θ}^{n,i}) ≥ C_1\|e_{θ}^{n,i}\|^2 - C_2\|e_{s}^{n,i-1}\|^2 - C_3\|e_{θ}^{n,i}\|^2,$$

where the constants $C_1 > 0, C_2 ≥ 0, C_3 ≥ 0$ are not depending on the time step size $Δt$ or mesh diameter h. Putting together now (32)–(34), after some algebraic manipulations we obtain

$$\left(\frac{L}{2} + C_1 Δt\right)\|e_{θ}^{n,i}\|^2 + \frac{1}{L}\|e_{θ}^{n,i} - e_{θ}^{n,i-1}\|^2 + \|L(e_{s}^{n,i-1}, s^n)\| ≤ \left(\frac{L}{2} + C_1 Δt\right)\|e_{θ}^{n,i}\|^2 + Δt(C_2 + C_3C_0^2)\|e_{θ}^{n,i-1}\|^2,$$

which can be further written as

$$\left(\frac{L}{2} + C_1 Δt\right)\|e_{θ}^{n,i}\|^2 + \frac{1}{L}\|e_{θ}^{n,i} - e_{θ}^{n,i-1}\|^2 + \|L(e_{s}^{n,i-1}, s^n)\| ≤ \left(\frac{L}{2} + C_1 Δt\right)\|e_{θ}^{n,i}\|^2 + Δt(C_2 + C_3C_0^2)\|e_{θ}^{n,i-1}\|^2 + \|e_{θ}^{n,i-1}\|^2,$$

By using (13), i.e. that the constant L is bigger than or equal to the Lipschitz constant of $s(\cdot)$, the monotonicity of $s(\cdot)$ and Young’s inequality, the above implies

$$\left(\frac{L}{2} + C_1 Δt\right)\|e_{θ}^{n,i}\|^2 + \frac{1}{L}\|e_{s}^{n,i-1}\|^2 ≤ \frac{L}{2}\|e_{θ}^{n,i}\|^2 + Δt(C_2 + C_3C_0^2)\|e_{θ}^{n,i-1}\|^2 + \frac{L}{2}\|e_{θ}^{n,i-1}\|^2.$$

From (37) we immediately obtain

$$\left(\frac{L}{2} + C_1 Δt\right)\|e_{θ}^{n,i}\|^2 + \left(\frac{1}{L} - Δt(C_2 + C_3C_0^2)\right)\|e_{s}^{n,i-1}\|^2 ≤ \frac{L}{2}\|e_{θ}^{n,i}\|^2.$$

Under the mild restriction on the time step size

$$Δt ≤ \frac{1}{2L(C_2 + C_3C_0^2)},$$

the convergence of the scheme follows. The time step restriction does not depend on the grid size, which is by far not that restrictive as a stability condition of an explicit scheme. \[\square\]
2.7. An appropriate finite volume method

For concreteness, we consider MPFA-type discretizations to obtain the linear operator F_1 (see [1] for an introduction). These are constructed such that the support of q_j is local (in terms of connectivity of \mathcal{D}). Furthermore, the MPFA discretizations have been shown to be robust and convergent for a range of relevant parameters and grids [25–29]. While any of the established MPFA methods are applicable, our particular interest is the MPFA method recently proposed in [30], which is the scalar counter-part of the finite volume method for elasticity given in [31]. This MPFA method retains the finite volume structure of Eq. (18) exactly, and uses a stabilization of the so-called O-method [1] to approximate the discrete flux F_1. The convergence of the method is established in [30]. In particular, this implies also that (A4) holds true.

3. Numerical results

Using the scheme as described above, we consider the 2D and 3D domains as given respectively by the unit square and unit cube with Dirichlet boundary conditions. Our main aim is to provide a numerical verification of the results of Theorem 2.1. Motivated by coarse-scale models for CO$_2$ storage [32], linear relative permeability functions are considered. More exactly, we take $\lambda_w(s) = \lambda_b s$ and $\lambda_n(s) = \lambda_c (1 - s)$ (with $\lambda_b < \lambda_c$). The fractional flow function f_w thus becomes

$$f_w(s) = \frac{s}{s + \frac{\lambda_c}{\lambda_b} (1 - s)}.$$

Furthermore, we consider a capillary pressure function of the form

$$p^{\text{cap}}(s) = c(s + (\lambda_b/\lambda_c - 1)^{-1} \ln(s)).$$

This choice ensures that the complementary pressure function is also nonlinear, yet still analytically tractable (cf. (10)):

$$s(\theta) = 1 - \left(1 + \frac{2(\lambda_b - \lambda_c)\theta}{c\lambda_c \lambda_b} \right)^{1/2}.$$

The derivative of $s(\cdot)$ is unbounded, as $s(\cdot)$ is only Hölder continuous at the endpoint $s = 1$ (i.e. $\theta = \frac{c\lambda_c \lambda_b}{2(\lambda_b - \lambda_c)}$). Nevertheless, we take $s = 0$ as initial and boundary data, and a (time limited) source term at the center of the domain such that the saturation remains uniformly bounded below $s = 0.2$. In this case $s(\cdot)$ becomes Lipschitz continuous, with the Lipschitz constant $L = \frac{\lambda_c - \lambda_b}{c\lambda_c \lambda_b}$. A typical simulation on various unstructured and structured grids is depicted in Fig. 1. All simulations were conducted on a standard laptop using the Matlab implementation environment, and the total run-time for the test suite amounts to less than 10 min.

We consider grids varying from 400 to 10,000 cells in 2D and 3D. In all cases, we use a constant time-step of 0.1 (dimensionless units). For all simulations, we give a tolerance in absolute residual error of 10^{-3} for the nonlinear system. Throughout all numerical experiments we observe that the linear error reduction factor is stable between 3 and 8.5, independent of grid type, grid resolution, or dimensionality of the problem, as illustrated by the results shown in Fig. 2. This implies that in no instance more than a maximum of 7 iterations was needed. Furthermore, the experiments support the assertion that no grid-dependent time-step restriction is introduced by the solution of the nonlinear system. This verifies the robustness and generality of the iterative scheme, and the suitability of the finite volume discretization for complex geometries.

4. Conclusions

We presented a robust linearization scheme for FV discretizations of two-phase flow in porous media. The scheme is linearly convergent with a mild mesh independent restriction on the time step size. The restriction is very mild compared to the stability condition for explicit temporal discretizations or with typical restrictions for Newton’s method. In these cases, the time step restriction depends on the mesh diameter, this not being the case for the new scheme. Another advantage of the presented scheme is that it does not involve the calculations of derivatives. Numerical examples (both 2D and 3D) sustain the theoretical results. We especially remark that there is almost no difference in terms of number of iterations between the 2D and 3D computations, which is an argument for the efficiency of the scheme. The new numerical scheme is relatively simple to implement and is a valuable alternative to Picard or Newton methods.

Acknowledgments

The authors are members of the International Research Training Group NUPUS funded by the German Research Foundation DFG (GRK 1398), the Netherlands Organisation for Scientific Research NWO (DN 81–754) and by the Research Council of Norway (215627). F.A. Radu and I.S. Pop acknowledge the support of Statoil through the Akademia agreement. JMN has benefited from the support of grants 215641, 228832 and 233736 from the Research Council of Norway, of the Dutch Research Council NWO Visitors Grant 040.11.351, and is currently associated with the Norwegian Academy of Science and Letters through VISTA — a basic research program funded by Statoil. We also want to thank the anonymous referees for helping us to substantially improve the paper.
Figure 1. Saturation s from example simulation results after 4 time steps on various grids. The use of MPFA spatial discretizations yields very little grid orientation effects, while the combination of implicit time integration allows for long time steps.

Figure 2. Convergence history of relative saturation error for the first time-step for various grids. Illustrated are 100×100 quadrilateral grid (solid line), triangular grid with 800 cells (dashed line), and a 3D unstructured grid with 3840 cells (dotted lines).

References

