DNA Topoisomerase IIα contributes to the early steps of adipogenesis in 3T3-L1 cells

Rhīn G. Jacobsen a, Fatemeh Mazloumi Gavgani a, Gunnar Mellgren b, Aurélia E. Lewis a,⁎

a NucReg Research Program, Department of Molecular biology, University of Bergen, Norway
b Hormone Laboratory, Haukeland University Hospital, KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway

A R T I C L E I N F O

Article history:
Received 20 May 2016
Accepted 7 July 2016
Available online 9 July 2016

Keywords:
DNA Topoisomerase II
Class I PI3K
Adipogenesis
PPARγ

A B S T R A C T

DNA topoisomerases (Topo) are multifunctional enzymes resolving DNA topological problems such as those arising during DNA replication, transcription and mitosis. Mammalian cells express 2 class II isoforms; Topoisomerases IIα (Topo IIα) and IIβ (Topo IIβ), which have similar enzymatic properties but are differentially expressed, in dividing and pluripotent cells, and in post-mitotic and differentiated cells respectively. Pre-adipocytes re-enter the cell cycle prior to committing to their differentiation and we hypothesised that Topo II could contribute to these processes. We show that Topo IIα expression in 3T3-L1 cells is induced within 16 h after the initiation of the differentiation programme, peaks at 24 h and rapidly declines thereafter. In contrast Topo IIβ was present both in pre-adipocytes and throughout differentiation. Inhibition of PI3K with LY294002, known to prevent adipocyte differentiation, consistently reduced the expression of Topo IIα, whereas a clear effect on Topo IIβ was not apparent. In addition, inhibition of mTOR with rapamycin also reduced the protein levels of Topo IIα. Using specific class IA PI3K catalytic subunit inhibitors, we show that p110α inhibition with A66 has the greatest reduction of Topo IIα expression and of differentiation, as measured by triglyceride storage. The timing of Topo IIα expression coincides with the mitotic clonal expansion (MCE) phase of differentiation and inhibition of Topo II with ICRF-187 during this stage decreased PPARγ and 2 protein levels and triglyceride storage, whereas inhibition later on has little impact. Moreover, the addition of ICRF-187 had no effect on the incorporation of EdU during S-phase at day 1 but lowered the relative cell numbers on day 2. ICRF-187 also induced an increase in the centri/pericentromeric heterochromatin localisation of Topo IIα, indicating a role for Topo IIα at these locations during MCE. In summary, we present evidence that Topo IIα plays an important role in adipogenesis during MCE and in a PI3K/mTOR-dependent manner. Considering that Topoisomerases II are targets in cancer chemotherapy, our results highlight that treatment of cancer with Topo II inhibitors may alter metabolic processes in the adipose tissue.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Obesity, a disorder characterised by an increase in white adipose tissue mass, is a major risk for the development of type II diabetes, cardiovascular diseases, and some cancers [1]. Increased white adipose tissue mass is believed to be due to, not only adipocyte hypertrophy, but also hyperplasia [2]. Although extensively studied, the molecular mechanisms regulating these processes are however not fully understood and warrant further research efforts.

The 3T3-L1 pre-adipocyte cell line has provided much of our knowledge in the adipocyte differentiation processes [3]. Following cell cycle arrest, these cells respond to the combined treatment of differentiation inducers, consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone and insulin, re-enter the cell cycle for about 2 rounds of mitosis, before the induction of terminal differentiation [4]. Cell cycle re-entry, a process also called mitotic clonal expansion (MCE), followed by cell cycle arrest, is thought to be required for terminal differentiation of adipocytes [4,5]. DNA replication is thought to permit the re-organisation of the chromatin landscape necessary for the initiation of adipogenic gene expression orchestrated by the nuclear receptors CCAAT/enhancer-binding protein (C/EBP) β and peroxisome proliferator-activated receptor γ (PPARγ) [6,7]. This implies a link between cell cycle regulation and metabolic processes [8]. Indeed the following cell cycle regulators, such as the transcription factor E2Fs and the G1 factors p21, p27, cyclin D3 and cyclin dependent kinase 4 have been shown to regulate MCE and to contribute to adipogenesis by inducing

http://dx.doi.org/10.1016/j.cellsig.2016.07.002
0898-6568/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
the transcription or by facilitating the transcriptional activity of PPARγ [9–11]. Consistently, inhibition of DNA synthesis blocks both MCE and adipogenesis [4] by preventing the production of a PPARγ ligand prior to the optimal transcriptional activation of PPARγ [12]. Although numerous studies have clearly shown that MCE is required for adipogenesis, the underlying molecular mechanisms triggering MCE are however not fully understood.

Adipocytes respond to insulin by activating the insulin receptor (IR), the phosphorylation of IR substrates and the activation of the class I phosphoinositide 3-kinase (PI3K) signalling pathway, which ultimately leads to the transcription of specific insulin responsive gene products and regulation of glucose and lipid homeostasis [13–15]. Activation of class I PI3K generates the polyphosphoinositide lipid product phosphatidylinositol(3,4,5) triphosphate (PtdIns(3,4,5))P3, which is responsible for the activation of protein kinase B (PKB)/Akt in 3T3-L1 cells [16]. PKB/Akt is activated by sequential phosphorylation on Thr308 and Ser473 by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and mammalian target of rapamycin (mTOR) complex 2 respectively [17,18]. Activated Akt can translocate to different intracellular sites where it phosphorylates a myriad of substrates. When in the nucleus, PKB/Akt phosphorylates and inactivates the transcription factor FoxO1 by nuclear exclusion, thus permitting adipogenic gene transcription [19]. The PI3K-PKB/Akt pathway is known to be essential for adipogenesis [20–24] and PI3K inhibition was shown to prevent MCE in 3T3-L1 cells [21,25], but the underlying molecular mechanisms linking the activation of the PI3K pathway and the induction of MCE are unclear.

DNA topoisomerases are a family of enzymes that resolve DNA topological features such as catenation and supercoiling, arising during DNA replication, transcription and sister chromatid entanglement during mitosis [26,27]. DNA topoisomerases consist of two classes, type I and type II which catalyse single and double strand breaks respectively. Mammalian cells express two type II isoforms (Topo IIα and β) that are encoded by different genes. They both have the same catalytic activity but have different expression patterns during cell division and distinct cellular functions [26,28]. Topo IIα is expressed in dividing and pluripotent cells while Topo IIβ is found in post-mitotic and differentiating cells. Topo IIα is highly expressed in actively dividing cells whereas Topo IIβ is more abundant in terminally differentiated cells [29–32]. The level of Topo IIα expression varies during cell-cycle progression with lowest levels observed in G1 followed by a steady increase peaking at the G2 and M phases of the cell cycle [33–35]. Topo IIβ expression levels vary less than Topo IIα throughout the cell cycle and either remain constant or decrease [33,35]. In light of this, we hypothesised that Topo II, in particular Topo IIα, may participate in MCE and adipocyte differentiation. We have now shown that Topo IIα levels are up-regulated in the early steps of adipocyte differentiation in a PI3K/mTOR-dependent manner. The precise increase of Topo IIα coincides with the time frame of occurrence of MCE and that its activity contributes to MCE and is thus required for adipocyte differentiation.

2. Materials and methods

2.1. Reagents

Calf serum, dexamethasone, dexamoxone (ICRF-187), Dulbecco’s Modified Eagles Medium (DMEM), dimethylsulfoxide (DMSO), fetal bovine serum (FBS), penicillin/streptomycin, and isopropanol were from Sigma-Aldrich. Cytosine arabinoside was from Merck Millipore. The PI3K selective inhibitors targeting p110α (AB66) and p110γ (TGX-221) were from Selleck Chemicals and p110α (PI3065) from Cayman Chemical respectively. The following antibodies were used: anti-PI3K p110α (4249), anti-Poly(ADP-ribose) Polymerase (PARP) (9542), anti-ribosomal protein S6 (2217) and anti-phospho-S240/S244 ribosomal protein S6 (5364) from Cell Signaling Technology; anti-DNA Topoisomerase IIα (ab52934) from Abcam; anti-PPARγ (MA5-14889) from ThermoFisher; anti-DNA Topoisomerase IIβ (HPA024120) from Sigma-Aldrich and anti-β-Actin (sc-69879), anti-PI3K p110γ (IgM, sc-376492), anti-PI3K p110α (sc-7176), anti-cyclin A (sc-596) from Santa Cruz Biotechnology, Hoechst, goat anti-mouse/rabbit conjugated with horseradish peroxidase (HRP) and Alexa 488-conjugated secondary antibodies were from Life Technologies. HRP-conjugated goat anti-mouse IgM was from Abcam. TO-PRO-3 nucleic acid stain (T3605) and Prolong Gold antifade reagent (p36930) for mounting were from Thermo Fisher Scientific.

2.2. Cell culture and differentiation of 3T3-L1 cells

3T3-L1 fibroblasts were kindly provided by Lise Madsen (University of Copenhagen, Denmark) cultured in high-glucose DMEM supplemented with 10% calf serum and 100 units/ml penicillin and 100 μg/ml streptomycin and maintained at about 70% confluence. To induce differentiation, cells were grown to confluence. At two-three days post confluency (day 0), 3T3-L1 cells were incubated with a differentiation cocktail (abbreviated MDI) containing 500 μM IBMX, 250 nM dexamethasone and 5 μg/ml insulin in DMEM with 10% FBS and antibiotics for 2 days. After 2 days (day 2), the differentiation medium was removed and the cells were incubated in DMEM–10% FBS and antibiotics containing 5 μg/ml insulin (insulin medium) for 2 more days. At day 4 and 6 the medium was changed to DMEM–10% FBS and antibiotics. Adipocyte differentiation was verified for each thawed batch of cells by Oil Red O staining at day 0 and day 7. For PI3K and rapamycin inhibitor experiments, 3T3-L1 cells were pre-incubated on day 0 for 1 h with inhibitors or DMSO before the addition of the MDI medium containing inhibitors or DMSO as well as before the addition of the insulin medium on day 2. Inhibitors were not added onwards from day 4. Cells were then either lysed on day 1 or stained with Oil Red O on day 7. For Topoisomerase II inhibitor treatments, 50 μg/ml of ICRF-187 or equal volume of DMSO was added to the MDI medium on day 0 and with the insulin medium on day 2 and not thereafter. Cells were either lysed for Western immunoblotting on day 3 or stained with Oil Red O on day 7. For treatments from days 0–2 or 3–5, 50 μg/ml of ICRF-187 or equal volume of DMSO was added either with the MDI medium on day 0 or directly into insulin medium on day 3. Insulin medium was then changed to DMEM–10% FBS and antibiotics on day 5 rather than day 4 and no ICRF-187 was added from this point onwards. This gave a total of 2 days of exposure to the inhibitor or DMSO (days 0–2 or 3–5). Cells were then either lysed for Western immunoblotting on day 5 or stained with Oil Red O on day 7.

2.3. Oil Red O staining

On day 0 or 7 the cells were washed twice with PBS and fixed with 3.7% paraformaldehyde (PFA) for 15 min at room temperature. Cells were stained with 0.3% Oil Red O in 60% isopropanol working solution for 1 h at room temperature and washed 5 times with MilliQ H2O. The plates were left to dry at room temperature and stored at 4°C. For quantification, Oil Red O was dissolved with isopropanol and the absorbance was measured at 500 nm.

2.4. SDS-PAGE and Western immunoblotting

Cells were washed with cold PBS and lysed in RIPA lysis buffer (50 mM Tris pH 8.0, 0.5% deoxycholic acid, 150 mM NaCl, 1% NP-40, 0.1% SDS) supplemented with 5 mM NaF, 2 mM Na3VO4 and 1× Protease Inhibitor Cocktail and sonicated in an ultrasonic bath for 1 min. Equivalent inhibitors targeting p110α/β (A66) and p110γ (TXG-221) were from Selleck Chemicals and p110α (PI3065) from Cayman Chemical respectively. The following antibodies were used: anti-PI3K p110α (4249), anti-Poly(ADP-ribose) Polymerase (PARP) (9542), anti-ribosomal protein S6 (2217) and anti-phospho-S240/S244 ribosomal protein S6 (5364) from Cell Signaling Technology; anti-DNA Topoisomerase IIα (ab52934) from Abcam; anti-PPARγ (MA5-14889) from ThermoFisher; anti-DNA Topoisomerase IIβ (HPA024120) from Sigma-Aldrich and anti-β-Actin (sc-69879), anti-PI3K p110γ (IgM, sc-376492), anti-PI3K p110α (sc-7176), anti-cyclin A (sc-596) from Santa Cruz Biotechnology, Hoechst, goat anti-mouse/rabbit conjugated with horseradish peroxidase (HRP) and Alexa 488-conjugated secondary antibodies were from Life Technologies. HRP-conjugated goat anti-mouse IgM was from Abcam. TO-PRO-3 nucleic acid stain (T3605) and Prolong Gold antifade reagent (p36930) for mounting were from Thermo Fisher Scientific.
room temperature and incubated overnight at 4 °C with primary antibodies and subsequently with secondary antibodies conjugated to HRP for 1 h at room temperature. Protein detection was performed by enhanced chemiluminescence (ECL) using the SuperSignal West Pico or Femto Chemiluminescent Substrate (Pierce) and detected with a BioRad ChemiDoc™ Xrs +. The membranes were stripped for 20 min at RT in Restore™ Western Blot Stripping Buffer (Pierce), washed in TBS-T, blocked again and probed with the corresponding secondary antibody to detect any remaining signal prior to further immunoblotting when required. Equal protein loading was confirmed by immunodetection of β-actin. Protein bands were quantified using ImageJ and normalised to β-actin and then to control.

2.5. Immunofluorescence staining

3T3-L1 cells, seeded on 12 mm coverslips, were incubated with the MDI medium at day 0. Cells were fixed with 3.7% paraformaldehyde for 10 min at room temperature, washed twice with PBS, permeabilised with 0.25% Triton X-100 in PBS for 10 min and blocked for 1 h with blocking buffer (3% fatty-acid free BSA in PBS-T). The cells were incubated overnight at room temperature with anti-Topo IIα or anti-Topo IIβ antibodies diluted at 1:100 in blocking buffer, followed by incubation with anti-rabbit IgG antibody conjugated to Alexa-488 diluted in blocking buffer (1:200) for 1 h at room temperature. Washes were performed with 0.05% PBS-T after antibody incubations. The coverslips were stained for 20 min at room temperature with TO-PRO-3 nucleic acid stain before mounting. Control staining with secondary antibody alone under the same staining and exposure conditions showed no staining. Images were acquired with a Leica TCS SP5 confocal laser scanning microscope equipped with a 63 ×/1.4 oil immersion lens and using 488 nm and 633 nm laser lines. Images were processed with the Leica application suite version 4.4.

2.6. EdU staining

EdU staining was performed according to the Invitrogen’s Click-it EdU imaging kit (C10339). 3T3-L1 cells were seeded on 12 mm coverslips. 2–3 days after reaching confluence, cells were incubated with MDI medium containing either 50 μg/ml ICRF-187 or DMSO for 1 or 2 days. Cells were incubated with 10 μM EdU for the last 2 h prior fixation. Cells were fixed for 15 min at room temperature in 3.7% PFA on days 0, 1 and 2. EdU was stained for 30 min with Alex-594 according to the kit protocols (except buffer reaction additive was prepared as 10 × 500 mM ascorbic acid in H2O). Cells were then blocked for 1 h at room temperature in 3% BSA, 0.1% Triton X-100 in PBS before incubation with anti-Topo IIα (1:100) and subsequently with anti-mouse IgG secondary antibody conjugated to Alexa-488 (1:200) in blocking buffer for 1 h at room temperature. Washes were performed with 0.05% PBS-T after each antibody incubation. DNA staining was then done using Hoechst for 30 min at room temperature before mounting. Images were acquired with a Leica DMI6000B fluorescence microscope using a 40 × objective.

3. Results

3.1. DNA Topoisomerase IIα is transiently expressed during 3T3-L1 preadipocyte differentiation in a PI3K-dependent manner

To investigate whether Topo IIα and/or β play a role in the mitotic clonal expansion occurring during the early stages of adipocyte differentiation, we first evaluated the expression levels of each isoform upon stimulation of 3T3-L1 cells with the differentiation cocktail for the first 3 days and up to 7 days (Fig. 1A). The expression levels of both isoforms were distinct throughout the time course. Topo IIα was undetectable in post-confluent cells (day 0), but its expression increased within 16 h of stimulation and peaked at day 1, which correlated with an increase in expression of cyclin A. The expression levels of Topo IIβ then declined from day 2. The decrease in Topo IIα coincided with an increase in PPARγ2 expression. In contrast, Topo IIβ was present in post-confluent cells as well as throughout adipogenesis. The levels of Topo IIβ varied between experiments showing either an increase from day 0 to day 1 (Fig. 1A) or constant levels throughout the time course (Fig. 1E and Supplementary Fig. S1). The pattern of protein expression of both isoforms is consistent with the reported transcript levels by Mikkelsen et al. [36] (Supplementary Fig. S2) and for Topo IIβ by Soukas et al. [37]. In immunostaining analyses, we showed that, similarly to Western analyses, a great increase in cells stained for Topo IIβ at day 1 compared to day 0, whereas the majority of cells in both day 0 and day 1 stained for Topo IIβ (Fig. 1B). In addition, Topo IIβ exhibited two different patterns of localisation, either diffuse throughout the nucleus or in foci strongly stained by the DNA dye TO-PRO-3 and known as centric/pericentric heterochromatin (PCH) [38]. The localisation pattern of Topo IIβ was mostly diffuse with occasional cells with a punctate pattern but it did not change overall between day 0 and 1 (Fig. 1B). Since the differentiation of 3T3-L1 cells has been shown to be dependent on the PI3K pathway [21,23,25,39], we investigated the effect of the pan-PI3K inhibitor, LY294002, on the protein levels of Topo IIα and β upon differentiation at day 1. Consistent with other studies, inhibition of PI3K with LY294002 greatly reduced the storage of triglycerides (Fig. 1C–D). Interestingly, the protein levels of Topo IIα detected at day 1 were also consistently reduced by the addition of LY294002 (Fig. 1E–F). However, the effects of PI3K inhibition on Topo IIβ expression were a lot more variable with the addition of LY294002 (Fig. 1E–F), depending on the level detected in day 1. We monitored the activity of the PI3K pathway by analysing the levels of phospho-S244/246 of the 40S ribosomal protein S6 (pRS6). As expected, the levels of pRS6 were elevated at day 1 and were then decreased following PI3K inhibition while total RS6 levels remained unchanged (Fig. 1E).

3.2. All class IA PI3K catalytic isoforms are expressed in 3T3-L1 cells during differentiation but selective inhibition of p110α reduces differentiation and DNA Topoisomerase IIα

The PI3K class IA family of enzymes consists of the catalytic subunits p110α, p110β and p110δ and the expression pattern of each isoform was investigated upon adipocyte differentiation. p110α, β and δ were all expressed and their levels remained relatively stable throughout the time course (Fig. 2A). We therefore sought to determine which PI3K isoforms contribute to adipogenesis as well as the regulation of the levels of Topo IIα using the selective inhibitors A66 (p110α), TGX-221 (p110β) and PI3065 (p110δ). Addition of A66 reduced the storage of triglycerides dose-dependently reaching the same levels obtained by LY294002 addition at the highest concentration of A66 (10 μM) (Fig. 2B–C). PI3065 had little effect at 0.1 or 1 μM but greatly decreased triglyceride storage at the highest concentration of 10 μM. In contrast, TGX-221 had the least effect of all 3 inhibitors. The levels of Topo IIα were also affected by the addition of these PI3K inhibitors with most effect seen at higher doses of A66 (1 and 10 μM), TGX (10 μM) and PI3065 (10 μM) reflecting the results obtained for the effects of inhibitors on storage of triglycerides (Fig. 2D–E).

3.3. mTOR regulates the protein levels of DNA Topoisomerase IIα

mTOR, which is known to control protein synthesis, is also reported to contribute to adipogenesis [39,40] and we therefore evaluated the effect of rapamycin, an inhibitor of mTOR, on triglyceride storage and Topo IIα protein expression (Fig. 3). Rapamycin dramatically lowered the deposition of triglycerides at concentrations as low as 1 nM (Fig. 3A–B). Accordingly, the expression levels of Topo IIα also decreased with the addition of rapamycin (Fig. 3C–D), showing therefore a role for the PI3K/mTOR pathway in regulation Topo IIα protein synthesis.
3.4. DNA Topoisomerase II activity is required for adipocyte differentiation and PPARγ1/2 up-regulation

Topoisomerase II inhibition with merbarone has previously been shown to reduce the transcription of PPARγ2 and several PPARγ2-dependent genes in 3T3-L1 cells at later stages of differentiation via the inhibition of PARP1 (ARTD1) [41,42]. To further evaluate Topoisomerase II activity requirement in adipocyte differentiation, post-confluent 3T3-L1 cells were incubated with the Topoisomerase II inhibitor, ICRF-187. Inhibition of topoisomerase II resulted in a decrease in both stored triglycerides (Fig. 4A–B) and PPARγ1 and 2 protein levels (Fig. 4C–D).

Considering that the levels of Topo IIα decrease from day 2 of stimulation but Topo IIβ remains present throughout the time course (Fig. 1A), 3T3-L1 cells were differentiated in the presence of ICRF-187 either for the first 2 days or days 3–5 to elucidate the requirement of Topo II in early or late differentiation phases. Addition of ICRF-187 at the start of differentiation for days 0–2 resulted in a greater decrease in the amount of stored triglycerides than when added later at days 3–5 (Fig. 4E–F). This was reflected with a greater decrease in the levels of PPARγ1 and 2 when cells were treated early at days 0 and 2, compared to later treatments at days 3–5 (Fig. 4G–H) when the levels of Topo IIα have greatly declined (Fig. 1A). To verify that the effect of topoisomerase inhibition...
was not due to an induction of cell death, we monitored PARP cleavage under the same conditions. The PARP levels were increased at day 3 (Fig. 4C) and day 5 (Fig. 4G) but we could not detect any PARP cleavage.

3.5. DNA Topoisomerase II α activity contributes to cell proliferation, but not DNA synthesis, during MCE

Since Topo II inhibition has a greatest effect on adipocyte differentiation when used during the first 2 days (Fig. 4E–H) and since Topo IIα is transiently expressed in the early stages of differentiation (Fig. 1A), we wondered if Topo IIα played a role in the MCE phase. We first assessed the effect of ICRF-187 on DNA synthesis using EdU staining. A large increase in the number of Topo IIα-positive cells was seen at day 1 compared to day 0 (from 2.0 ± 1.4 to 47.8 ± 5.4%), and on average about half of these cells at day 1 were also labelled with EdU (Fig. 5A–B). In all conditions, most cells labelled with EdU were also Topo IIα-positive and on average less than 1% of cells were both EdU-positive and Topo IIα-negative. At day 2, the number of Topo IIα-positive cells decreased slightly and only a small proportion of these cells were also EdU-positive (4.0 ± 2.1%), compared to day 1. Addition of ICRF-187 to 3T3-L1 cells did not significantly affect the number of EdU-positive cells at day 2 but a slight decrease was apparent at day 2 of differentiation (Fig. 5A–B). Moreover, the number of Topo IIα-positive cells remained elevated in ICRF-187-treated cells at day 2, perhaps owing to the mode of action of the inhibitor clamping Topo IIα to DNA and thus maybe preventing its release from DNA and its degradation [43–45] (Fig. 5A–B). We have shown that Topo IIα has two different distribution patterns in the nucleus at day 1, i.e. either diffuse or concentrated in

![Fig. 2. Expression levels of class IA PI3K catalytic isoforms during differentiation and effect of their selective inhibition on differentiation and Topo IIα expression. A. Representative Western blots of whole cell extracts from 3T3-L1 cells, day 0 (D0) and up to 7 days (D7) of differentiation, blots probed with anti-PI3K p110α, β, δ and anti-β-actin as a loading control. B. Representative photos of 3T3-L1 cells fixed and stained with Oil Red O on day 0 (D0) or day 7 (D7) of differentiation after incubation for the first 4 days with the selective PI3K inhibitors for p110α (A66), p110δ (TGX-221) or p110β (PI3065), LY294002 or DMSO (photos of plates on top, microscope 10× magnification on bottom). C. Quantification of Oil Red O staining from day 7 (D7) plates normalised to DMSO. D. Representative Western blots of 3T3-L1 whole cell extracts obtained at day 0 (D0) or day 1 (D1) of differentiation in the presence of PI3K inhibitors or DMSO, probed with anti-Topo IIα, anti-ribosomal protein S6 (S6), anti-phospho-S240/S244-ribosomal protein S6 (pS6) and β-actin as loading control. E. Quantification of Topo IIα protein band densitometry from day 1 (D1) normalised to β-actin and then to DMSO. All quantifications were from a minimum of 2–3 independent experiments, shown as means ± SDs. Bands of interest on Western blots are highlighted with * if multiple.](image-url)
DNA-stain rich foci known as PCH (Fig. 1B). The PCH/diffuse staining ratio was of 0.76 on day 1 and of 0.89 on day 2 (Fig. 5C). ICRF-187 treatment caused the ratio to increase on both day 1 and 2 compared to untreated cells to 6.6 and 3.1 respectively (Fig. 5C). The increase in the proportion of cells stained with Topo IIα at PCH may again most likely be due to the mode of action of the inhibitor and may suggest that Topo IIα is particularly active at PCH at the very early stages of adipocyte differentiation (Fig. 5C). In addition Topo IIα co-stains often with EdU at these sites (Fig. 5A), which may indicate that Topo IIα participates in DNA synthesis of PCH. In sum, Topo II inhibition had no effect or very little on DNA synthesis on both day 1 and 2 of differentiation. We therefore analysed the relative cell numbers under the same conditions and showed a decrease in the relative cell number in ICRF-187-treated cells on day 2 compared to DMSO-treated cells (Fig. 5D).

4. Discussion

Cell division, also specifically known as MCE, is thought to be a prerequisite for adipocyte differentiation [4,5]. Entry into S phase and DNA synthesis have been shown to be particularly important [46]. In this report, we provide evidence that Topo II activity is required for pre-adipocyte differentiation, acting notably at the early steps during MCE. This is supported by the following results. Firstly, when Topo II is inhibited prior to the onset of MCE, i.e. from days 0 to 2, the effect on differentiation was greatest compared to later inhibition at days 3–5. Secondly, the levels of Topo IIα are transiently induced during differentiation and peak at day 1 when DNA synthesis and cyclin A, an S phase indicator, are highest. Finally, cells that are in S phase at day 1 almost all stain for Topo IIα. More specifically, Topo IIα localises to sites of DNA replication at day 1. In contrast, the expression and localisation of Topo IIβ does not tend to correlate with S phase. Our findings would hence point to a role for Topo IIα at this stage of differentiation. The contribution of Topo IIβ to MCE cannot be excluded however as it is expressed throughout differentiation and peak at day 1 when DNA synthesis and cyclin A, an S phase indicator, are highest. Moreover, ICRF-187, which was used in this study, is thought to target both Topo IIα and Topo IIβ [43], although another study showed that the activity of Topo IIα may be more affected than Topo IIβ by ICRF-187 in HeLa cells due to increased retention to DNA [47].

In this study, we have observed that Topo IIα localises to intense DNA-stained areas at day 1, also known as chromocenters, consisting of centromeric and pericentromeric heterochromatin, which are particularly prominent in murine cells [38,48]. Similarly, the transcription factor CCAAT/enhancer-binding proteins (β and δ (C/EBPβ and δ) were reported to show the same pattern by interacting with satellite DNA...
in centromeric heterochromatin from 12 to 16 h of induction of differentiation and concomitantly with DNA synthesis [48]. Tang and Lane [48] suggest that the association of C/EBPβ and δ with centromeric heterochromatin is functionally important for the regulation of MCE as this may delay their acquisition of DNA binding activity and hence the transcription of C/EBPα and PPARγ. Considering that C/EBPα is a mitotic repressor, the delayed expression of C/EBPα is hence thought to ensure the completion of MCE [49]. In addition, C/EBPβ has been shown to induce the transient expression of the methyl transferase G9a during MCE, which leads to histone H3K9 dimethylation on the promoters of C/EBPα and PPARγ and their repression [50]. In our study, we show that Topo II inhibition with the addition of ICRF-187 caused a higher
percentage of cells displaying this pattern, perhaps due to the mode of action of the inhibitor. ICRF-187 is a member of the bisdioxopiperazines class of Topo II catalytic inhibitors, which are known to trap Topo II on DNA as a protein-DNA clamp [43–45]. DNA-trapped Topo IIα may indicate the sites of Topo IIα activity, which are particularly noticeable in heterochromatin, consistent with a study in human cells by Agostinho et al. [47]. Topo IIα may therefore have a role in the replication of heterochromatin. However our study did not uncover a role for

Fig. 5. Topo IIα activity during mitotic clonal expansion phase of adipogenesis. A. EdU labelling and Topo IIα immunostaining of 3T3-L1 cells on days 0 (D0), 1 (D1) and 2 (D2) of differentiation in the presence of 50 μg/ml of ICRF-187 (+) or DMSO (−), nuclear counterstained with Hoechst. Side panels are magnified examples of Topo IIα and EdU staining from day 1 with DMSO control, scale bar indicates 10 μm (40×). B. Quantification of 3T3-L1 cells positive for Topo IIα and EdU (Topo IIα + EdU+, orange), Topo IIα only (Topo IIα + EdU−, green), EdU only (Topo IIα− EdU+, red) or neither Topo IIα nor EdU (Topo IIα− EdU−, blue) on day 0 (D0), 1 (D1) and 2 (D2) in the presence of 50 μg/ml of ICRF-187 (+) or DMSO (−). At least 300 3T3-L1 cells were counted from a minimum of 5 different 40× fields per experiment. C. Quantification of staining patterns of Topo IIα, categorised as either pericentromeric heterochromatin (PCH) or diffuse. The percentages are calculated from total number of Topo IIα positive cells for each condition per experiment. D. Quantification of relative nuclei numbers on day 1 (D1) and 2 (D2) of 3T3-L1 cells treated with 50 μg/ml of ICRF-187 (+) or DMSO (−). Nuclei were counted from a minimum of 5 different 40× fields per experiment and the average number of Hoechst-stained nuclei per field was normalised to day 0 (D0). All quantifications calculated from 3 independent experiments, graphs shown as mean ± SD.
Topo II in DNA synthesis since its inhibition with ICRF-187 led to a small increase in EdU labelling at day 1 rather than a decrease, which was mirrored by a slight increase in cyclin A (data not shown). These results may instead be indicative of a delay in the progression of DNA replication. Consistently, Topo IIα inhibition with another bisdioxopiperazine Topo II catalytic inhibitor, ICRF-193, in Xenopus sperm nuclei did not alter entry into S phase and DNA synthesis but delayed the completion of DNA replication [51] due to the perturbation of chromatin structure [52]. The localisation of Topo IIα to chromocenters or centromeric chromatin has previously been reported [47,53] and shown to play a role correlated to the accurate segregation of chromatids in anaphase [54]. In line with this, Topo inhibition with ICRF-187 has been shown to cause the incomplete segregation of chromosomes [55]. These reports would hence support a role for Topo IIα at the centromeres during mitosis of 3T3-L1 pre-adipocytes. Consistently, we showed that ICRF-187 induced a decrease in the average number of cells at day 2. In addition, DNA-trapped Topo IIα may be stable and may prevent its degradation, as shown in other studies using ICRF-193 [56,57], and this might explain why the number of Topo IIα positive cells remains high in day 2 with ICRF-187 compared to the overall decreased protein levels detected by immunoblotting at day 2 without the inhibitor.

Previous studies in 3T3-L1 cells showed that Topo II activity is necessary for PARP1 (alias ARTD1) activation and the recruitment of PARP1 to PPARγ response elements (PPREs) of PPARγ-dependent adipogenic genes and therefore for their subsequent expression and adipocyte differentiation [41,42]. However, these studies showed a later contribution for Topo II-dependent PARP1 activity and PARP1 recruitment to PPREs which were demonstrated at day 7 (equivalent to day 5 in our study) in cells treated with an inhibitor of Topo II at days 4/5–6 (equivalent to days 2/3–4 in our study). In light of our results, inhibition of Topo II at these time points would more likely target Topo IIβ rather than Topo IIα, since its expression is still detectable, and points therefore to a role for Topo IIβ in the regulation of PARP1 mediated adipogenic gene expression at these time points. Topo IIα and PARP1 have indeed been shown to be part of the same protein complex and to be important in activating transcription via the local formation of dsDNA breaks in a number of other studies [58–60]. Consistently, a role for Topo IIβ in transcription linked to cell differentiation is supported in another study showing the recruitment of Topo IIβ along with PARP1 on the fatty acid synthase (FAS) promoter in hepatocytes responding to insulin during lipogenesis [61]. Therefore, Topo IIβ may also contribute since it is expressed continually throughout differentiation. Both isoforms may hence operate catalytically similarly but on different genomic sites and times of differentiation since they appear to be targeted to different nuclear sites, as detected by immunostaining.

It is well known that the addition of pan PI3K inhibitors such as LY294002 or wortmannin inhibits adipogenesis in 3T3-L1 cells [21,23,25,39,62]. Rapamycin, an inhibitor of mTOR, has also been shown to inhibit the differentiation of 3T3-L1 cells by inhibiting MCE [39,40] and Rb protein phosphorylation [39]. Our studies confirmed the effect of PI3K and mTOR inhibition on adipogenesis using LY294002 and rapamycin. We also showed that this was accompanied by reduced expression of Topo IIα, indicating that the PI3K/mTOR pathway regulates the expression of Topo IIα during MCE in these cells. The expression of Topo IIα exhibited a lot of variations but did not seem to be regulated by the PI3K pathway.

Since LY294002 is a pan-PI3K inhibitor we wondered if the effect seen on differentiation and expression of Topo IIα could be attributed to a particular PI3K class IA catalytic subunit isoform. We found that 3T3-L1 cells express all class IA PI3K catalytic isoforms, i.e. p110α, β and δ, and that their expression levels remain relatively constant during the differentiation time course. Previous reports showed some slight variations in the levels of these isoforms in 3T3-L1 cells during differentiation, i.e. showing an increase in p110α [63], or an increase in p110α levels and a decrease in p110β [23]. These slight differences may be longer differentiation protocol for up to 9 days [23]. Using selective inhibitors, our study shows that p110α and p110δ, to a lesser extent, are required for adipocyte differentiation. The major contribution of p110α in adipogenesis is in agreement with the study of Kim, Shepherd and Chaussade [23] using a different selective inhibitor. Moreover, other studies have shown p110α to be the main isoform involved in mediating insulin signalling in 3T3-L1 cells [64,65]. These results correlated well with the effects seen on Topo IIα expression, which was strongly regulated by p110α. We also observed a reduction in the expression of Topo IIα following the inhibition of p110β and p110δ but high concentrations of the inhibitors were required, i.e. 10 μM. Therefore, p110α seems to be the major regulator of adipogenesis and expression of Topo IIα, while p110δ and 6 may have some more minor contributions since high concentrations of the inhibitors may not be reliable and lead to unspecific effects. However, the p110β inhibitor, TGX-221, has been reported to be selective and without off-target effects when used at 10 μM, although it is reported to cross-react with p110α [66].

5. Conclusions
In summary, we have shown that Topo IIα expression peaks at the early stages of 3T3-L1 differentiation into adipocytes in a PI3K/mTOR-dependent manner and that it is essential for adipogenesis. All isoforms of the catalytic class IA PI3K seem to contribute, although p110α is the most dominant. The timing of Topo IIα expression coincides with the MCE phase where Topo IIα seems to have a role maybe in the replication of the heterochromatin regions, and perhaps in chromatin structure. Inhibiting Topo II after MCE and therefore when the expression of Topo IIα has declined has less effect on differentiation and expression of PPARγ, hence pointing to an important role in the replication of the heterochromatin regions. Inhibiting Topo II enzymes are targets of chemotherapy agents [67]. Thus, inhibition of Topo II in the course of cancer chemotherapy may have deleterious effects on the integrity of the adipose tissue which may have implications in the treatment of cancer in diabetic patients. Indeed, the chemotherapeutic Doxorubicin, which inhibits Topo II, has side effects with great loss of adipose tissue and muscle mass, was shown in a recent study to induce hyperglycemia and insulin resistance in rat [68].

Conflict of interest
The authors declare no conflict of interest.

Acknowledgments
This project was supported by grants from Helse Bergen Vest (project number 911682), The Norwegian Diabetes Foundation and the Meltzer Foundation.

Appendix A. Supplementary data
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cellsig.2016.07.002.

References

A. Abella, P. Dubus, M. Malumbres, S.G. Rane, H. Kiyokawa, A. Sarda, F. Vignon, D. Langin, M. Barbadic, L. Fajas, Cd44 promotes adipogenesis through PPARgamma activation, Cell Metab. 2 (4) (2005) 239–249.

