Simulating spatial and temporal varying CO\textsubscript{2} signals from sources at the seafloor to help designing risk-based monitoring programs

Alfatih Ali1, Håvard G. Frøysa1, Helge Avlesen2, and Guttorm Alendal1

1Department of Mathematics, University of Bergen, Bergen, Norway, 2Uni Research Computing, Bergen, Norway

Abstract
Risk-based monitoring requires quantification of the probability of the design to detect the potentially adverse events. A component in designing the monitoring program will be to predict the varying signal caused by an event, here detection of a gas seep through the seafloor from an unknown location. The Bergen Ocean Model (BOM) is used to simulate dispersion of CO\textsubscript{2} leaking from different locations in the North Sea, focusing on temporal and spatial variability of the CO\textsubscript{2} concentration. It is shown that the statistical footprint depends on seep location and that this will have to be accounted for in designing a network of sensors with highest probability of detecting a seep. As a consequence, heterogeneous probabilistic predictions of CO\textsubscript{2} footprints should be available to subsea geological CO\textsubscript{2} storage projects in order to meet regulations.

1. Introduction

The legal regulations for geological storage, e.g., the EU directive 2009/31/EC, establishes a legal framework for geological storage of CO\textsubscript{2}, eliminating as far as possible negative effects and environmental risks. Offshore these regulations are aligned with the amendments to the 1996 London Protocol and to the OSPAR Convention. An intrinsic part of the imposed requirements is an adequate monitoring program.

With proper selection and operational procedures, CO\textsubscript{2} geological storage projects will be designed not to leak. A number of different trapping mechanisms will keep the injected and buoyant CO\textsubscript{2} inside the intended formation [Rutqvist, 2012], with the injection well as the most probable leakage pathway. However, transport of the CO\textsubscript{2} within the formation might cause other pathways to the surface to become probable, or the CO\textsubscript{2} might create new pathways, possibly far away from the injection well [Oldenburg and Lewicki, 2006].

Even if the formation and the overburden are monitored, there will be uncertainties in the quantification of CO\textsubscript{2} contained within the formation. And, what is the detection limit of CO\textsubscript{2} migrating toward the surface possibly through unknown pathways to the surface? These questions can only be answered within a certain degree of certainty.

Due to this, there is a need and requirement for a surface monitoring program with three main objectives; (1) assure that a leak will most likely be detected, (2) continue to build an accurate baseline to capture trends and natural variability, and (3) to prevent unjustified accusations of adverse effects from the storage project. The 2011 incident at the Weyburn project is an example of the latter [Boyd et al., 2013].

For offshore storage projects such a monitoring program will be costly and the marine environment is hostile for instrumentations. We therefore suggest that the monitoring program has three levels of modus operandi; (1) detection modus, (2) location modus, and (3) quantification modus. The three modes will have different needs with regard to instrumentation and data; for instance location modus will require current predictions in real time to be able to move upstream from any signal, as opposed to the statistical current conditions that is sufficient for the detection modus.

Varying tracer signals influence on monitoring design

Two main building blocks are necessary in order to build a monitoring program that optimize the probability of detecting a leak [Hvidevold et al., 2015]: (1) a map of probable leak locations, preferably quantifying the internal relative probability between the different sites. Only a thorough site characterization of the
underburden can accomplish this. (2) Probable footprints of a seep to the water column, which have to be achieved through modeling.

CO$_2$ entering the water column will rise either as liquid droplets deeper than \sim500 m, or gas bubbles shallower than \sim500 m [Alendal and Drange, 2001]. In the shallow regime, a seep will create individual bubbles, bubble trains, or bubble plumes if the flux rate is high enough. The dynamics of these regimes are different, with the plume dynamics being the most challenging to model due to the two-way dynamic coupling between bubble movement and dissolution and the resulting dense plume water [Alendal and Drange, 2001; Sato and Sato, 2002; Chen et al., 2003; Dewar et al., 2013, 2015].

Detection of bubbles can be made from sonars [Brewer et al., 2006; Noble et al., 2012]. It will be necessary to distinguish between natural occurring seeps and seeps originating from the storage site. Another indication of a leak might be environmental impact caused by elevated CO$_2$ concentration in the vicinity of the source [Blackford et al., 2010], especially through changes in bottom fauna such as new occurrences of bacterial mats [Wegener et al., 2008].

The purpose here is to simulate spatial and temporal signals of elevated CO$_2$ concentration away from the seep location and illustrate which impact this variability will have on the design of a monitoring program using chemical sensors. The footprints are mainly governed by the varying, both spatially and temporally, current conditions. The direction and amplitude of the current follows the tidal signal [Davies and Furnes, 1980], and atmospheric forcing and local topography might cause the expected anisotropic footprint of a CO$_2$ leak [Alendal et al., 2005].

A statistical baseline of important environmental parameters, e.g., currents, natural gas seeps, and biogeochemical parameters, is required for designing a comprehensive monitoring program. Historical data are important in combination with new data collected during site characterization. Long-time series are important in order to capture natural variability, such as seasonal changes and long-term trends. In particular it will be important to capture the expected increase of CO$_2$ concentration caused by the acidification of marine waters [Caldeira and Wickett, 2003].

In a recent EU FP7 project, ECO2, a number of leak scenarios in the central North Sea were defined [Blackford et al., 2012]. Two of these scenarios, the chimney reactivation and seeps through a fault or fracture, were studied further with focus on processes and transport of the CO$_2$ once it reached the water column [Alendal et al., 2014]. The estimated maximum CO$_2$ flux rates through the seafloor were, respectively, 150 ton/d and 15 ton/d for these two scenarios.

Among the models used was the high-resolution Heriot-Watt University (HWU) two-fluid bubble plume model [Dewar et al., 2013, 2015]. The bubble plumes were simulated with different, but constant, characteristics background currents speeds characteristic for the central North Sea. These simulations showed that a constant vertical profile of the dissolved CO$_2$ is a reasonable assumption, i.e., independent of background current speed [Alendal et al., 2014].

On a larger scale, i.e., when the CO$_2$ concentration becomes diluted and hence a dynamically passive tracer, transport of the seeped CO$_2$ was simulated by an 800 m resolution North Sea set up of the Bergen Ocean Model (BOM). Based on the vertical profiles obtained by the high-resolution bubble plume model, the seep was implemented as source terms distributing the CO$_2$ in a single vertical array.

Hvidevold et al. [2015] used one of the scenarios and a simplified map of the North Sea, identifying wells and formations, to optimize locations of chemical sensors. It was shown that placing the sensors successively at the location of highest probability is not necessarily the best option. One sensor might detect seeps at several potential leak locations. The need for a proper baseline to reduce the threshold for a statistically significant signal was demonstrated by comparing the threshold obtained after applying the stoichiometric approach described in Botnen et al. [2015] with natural variability. The design framework presented in Hvidevold et al. [2015] allows to quantify the uncertainty when claiming no leakage occurs.

In a follow-up study Hvidevold et al. [2015] used time series from the same GCM predictions accounting for temporal variability. There is no reason to wait until the temporal average concentration is statistically significant to sound an alarm, but rather when events of higher concentration becomes frequent enough and with high enough amplitude. This changed approach increased the area covered by an individual sensor.
remarkably. These time series also opened for calculating the probability of the concentration to be above a threshold value at any given time and time from leak start to detection [Greenwood et al., 2015]. As a consequence cruise-based monitoring, i.e., a series of individual measurements taken at different locations was also demonstrated. Including optimal routing of such cruises.

The natural next step is to study how the footprint characteristics changes with seep location, which is the purpose of the present study. The 800 m grid resolution North Sea setup of the three-dimensional terrain-following Bergen Ocean Model (BOM) is used to transport and disperse CO$_2$ from nine different locations, predicting spatial concentration time series for each of the seeps individually. How footprint predictions dependency on leak location influence monitor design is demonstrated through a simplified scenario.

2. Setup and Forcing of Bergen Ocean Model

The Bergen Ocean Model (BOM) is a three-dimensional terrain-following nonhydrostatic ocean model with capabilities of resolving mesoscale to large-scale processes. The model code is implemented in modern Fortran, with freely available source from http://www.mi.uib.no/BOM/. For further information on BOM, see the user’s guide [Berntsen, 2004]. The governing equations are the Reynolds momentum equations with the Boussinesq approximation. In this study, the hydrostatic version of the model is used.

A number of studies have been conducted to evaluate BOM. Berntsen and Svendsen [1999] compared simulations with the SKAGEX North Sea data set and in Berntsen et al. [2006, 2008, 2009] properties of internal waves at sills in Loch Etive were studied, including comparisons with measurements. On laboratory scale, Berntsen et al. [2006] and Thiem et al. [2011] compared simulations to experiments for the lock release problem and for solitary internal waves. Rygg et al. [2011] compared BOM with theory and the MITgcm for flow over backward facing step.

The model area in this study covers the North Sea as shown in Figure 1. The horizontal grid resolution is 800 m and 41 σ-coordinate layers are used in the vertical, with a vertical resolution of less than 1 m in the
shallow areas, and up to tens of meters in the middle of the water column in deeper areas. This discretization gives 1595 and 1530 grid points in x and y direction, respectively. The model forcing data consist of wind, atmospheric pressure, harmonic tides, rivers, and initial fields for salinity and temperature. Water elevation and velocities are spun up from zero. Initial values and lateral boundary conditions of temperature and salinity are taken from the UK Metoffice FOAM 7 km model published by MyOCEAN service at http://www.myocean.eu.org/, and interpolated into the model grid. So the model is close to being a one way nested submodel of FOAM.

Figure 2. (top) Wind speed, and (bottom) wind direction time series at Sleipner A in the period 1–15 January 2012. Blue line is the observation from eklima www.met.no and red line is the data from erai reanalysis, while black line is interpolated wind forcing in BOM from erai2012.
The boundary conditions are implemented using the Flow Relaxation Scheme (FRS) described in Martinsen and Engedahl [1987], using 31 grid cells wide flow relaxation zones at open boundaries. The atmospheric forcing data are collected and interpolated from The European Centre for Medium-Range Weather Forecasts (ECMWF), ERA Interim reanalysis data set. The wind forcing is updated at intervals of 6 simulated hours. A time series of the wind speed and direction at Sleipner A compared with data from Eklima project www.met.no is shown in Figure 2.

The tidal forcing applied on the open boundaries is taken from harmonic analysis and includes four tidal constituents; M_2, S_2, K_1, and N_2. Nodal factors and equilibrium arguments needed to get the phase and amplitude right for a given date comes from the ADCIRC model (http://www.adcirc.org/).

Fresh water runoff from 32 rivers around the North Sea and Norwegian coast originates from the Institute of Marine Research (IMR) and is the monthly mean discharge of the most significant rivers averaged over several years.

A full validation of the model set-up against in situ data has not been performed. The purpose here is not to do predictions of currents, or CO2 concentrations, at a specific time or location, but to obtain heterogeneous statistics and probability fields. The model captures the well-known circulation patterns in the North Sea. Figure 3 shows transport of a passive tracer released in the central North Sea [Rodhe, 1998; Otto et al., 1990; Winther and Johannessen, 2006].

The time series of the current speed near bottom and surface at Sleipner A are presented in Figure 4. The current is dominated by the semi diurnal tidal signal with an average speed close to 10 cm/s, and an amplitude less than 10 cm/s. This corresponds well to published measurements in Tryggestad et al. [1983] reporting an average current speed around 10 cm/s with amplitudes between 10 and 20 cm/s.

Figure 5 presents a comparison between the observed and modeled mean salinity and temperature at Ytre Utsira measurement station and the nearest grid point. The observed salinity and temperature data are collected from the Institute of Marine Research website http://www.imr.no. As the forcing does not include surface heat flux, the modeled temperature near the surface has a zero gradient.
Having confidence that the model includes current variability believed to be representative for the area, the model setup is used to predict how a CO2 signal varies in time and space. The month of January is used to spin up the model, and the CO2 sources are introduced at the first day of February until the end of March. Under the assumption that the CO2 signal is diluted enough to not have influence on the seawater density, the concentration can be simulated as a passive tracer. Therefore, the transport of CO2 concentration, \(C \), is modeled by an in-line advection-diffusion equation:

\[
\frac{\partial C}{\partial t} + \vec{U} \cdot \nabla C = \frac{\partial}{\partial z} \left(K_h \frac{\partial C}{\partial z} \right) + \frac{\partial}{\partial x} \left(A_H \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_H \frac{\partial C}{\partial y} \right) + Q \tag{1}
\]

where \(Q \) represents leakage source. \(\vec{U} = (U, V, W) \) is the velocity field, where \(U, V \), and \(W \) represent the velocities in \(x, y \), and \(z \) directions. The horizontal diffusivity \(A_H \) is computed following Smagorinsky [1963], while

3. Seep Simulations

Figure 4. Current speed (m/s) at Sleipner A at depths of 5 m (red line) and 93 m (blue line).

Figure 5. Vertical profiles of (left) salinity and (right) temperature representing January mean at Ytre Utsira station. Red line indicates the observed data and the blue line indicates BOM output.
The vertical diffusivity coefficient is estimated using a turbulent closure described by Mellor and Yamada [1982].

As source term one of the scenarios from [Alendal et al., 2014] with a CO$_2$ flux $Q \sim 150$ T/d, representing the chimney reactivation, has been used. The CO$_2$ is vertically distributed according to the results from the HWU model [Dewar et al., 2013, 2015] as shown in Figure 6.

Nine independent seep locations are simulated, labeled C1, C2, C3, ..., C9, in Figure 7, with C1 being at the center and located at Sleipner A with a global coordinate 1°:94°E 58°:36°N. The distance between each seep and its nearest neighbor is 10 grid cells, equivalent to 8 km. Each of these seeps uses the source profile given in Figure 6, implying that a leak in any of these locations will result in the same flux and vertical profile of dissolved CO$_2$. Each of the seeps is treated as a separate tracer, hence nine tracers are being advected through individual versions of equation (1). For each of these tracer fields time series are collected in a grid consisting of 53×51 neighboring grid cells, centered in the respective source point.

Figure 7 shows the average and standard deviation of the nine concentration fields at the seafloor. It is clear that there is a spatial dependency both in the average signal and the variability of the signal. The temporal variability is also high, as illustrated in Figure 8 showing snapshots of the C1 concentration field. This figure also reveals how topography influences in current conditions, and hence tracer transport.

The concentration time series for C1 in the grid cells adjacent to the seep location (centre) are shown in Figure 9, the red line marking the threshold concentration given by $C = 5$ μmol/kg$_{SW}$ [Botnen et al., 2015]. A sensor located at the leak location will detect the seep when the concentration always is over the threshold. The differences between the time series in the upper and lower row are significant and the anisotropy is evident. Notice that the upper middle plot is not straight north of the seep. The model grid is rotated relative to latitude and longitude as can be seen in Figure 7.

![Figure 6](image1.png)
Figure 6. Vertical profile of the normalized mass distribution (kg/kg total), for the Chimney reactivation scenario used as input to the BOM simulations. The profile is collected from Alendal et al. [2014] and represent results from the Heriot-Watt bubble plume model Dewar et al. [2013, 2015].

![Figure 7](image2.png)
Figure 7. Contour plot of the (left) mean and (right) standard deviation of CO$_2$ concentration along the bottom for Chimney scenario released at nine locations labeled C1, C2, C3, ..., C9.
As a further illustration, the cumulative probability distributions of CO2 concentration are shown in Figure 10. At the source (middle plot), the concentration stays above $10 \, \text{mol/kg}_{SW}$ almost 100% of the time, while it stays above $40 \, \text{mol/kg}_{SW}$ 20% of the time. Moving away from this source, these values decrease quickly in the neighboring grid cells (Figure 10), but it still reaches $10 \, \text{mol/kg}_{SW}$ 10% of the time in the first column and last row.

The heterogeneity of the signal is even more evident in Figure 11 showing contour lines as boundaries to the areas in which the concentration stays above the threshold value $C_t = 5 \, \text{mol/kg}_{SW}$ [Botnen et al., 2015] for a given percentage of the time. As can be seen, the size and shape of such areas for C1,C2...C9 seeps are highly dependent on current and local topography. These fields represent the input needed in the monitor design framework presented in Hvidevold et al. [2015] and Frøysa [2015].

Figure 8. Temporal snapshots of the instant CO2 concentration footprint along the seabed at different times for a seep at location C1. The CO2 flux is continuous and starts at 12:00 on 1 February 2012. The unit for the colorbar is $\mu\text{mol/kg}_{SW}$.

Figure 8. Temporal snapshots of the instant CO2 concentration footprint along the seabed at different times for a seep at location C1. The CO2 flux is continuous and starts at 12:00 on 1 February 2012. The unit for the colorbar is $\mu\text{mol/kg}_{SW}$.

As a further illustration, the cumulative probability distributions of CO2 concentration are shown in Figure 10. At the source (middle plot), the concentration stays above $10 \, \text{mol/kg}_{SW}$ almost 100% of the time, while it stays above $40 \, \text{mol/kg}_{SW}$ 20% of the time. Moving away from this source, these values decrease quickly in the neighboring grid cells (Figure 10), but it still reaches $10 \, \text{mol/kg}_{SW}$ 10% of the time in the first column and last row.

The heterogeneity of the signal is even more evident in Figure 11 showing contour lines as boundaries to the areas in which the concentration stays above the threshold value $C_t = 5 \, \text{mol/kg}_{SW}$ [Botnen et al., 2015] for a given percentage of the time. As can be seen, the size and shape of such areas for C1,C2...C9 seeps are highly dependent on current and local topography. These fields represent the input needed in the monitor design framework presented in Hvidevold et al. [2015] and Frøysa [2015].
4. Consequences for Designing a Monitoring Program

To illustrate how the heterogeneous footprint characteristics influence on monitoring design the framework described in Hvidevold et al. [2015] and Frøysa [2015] is used to design a monitoring program consisting of an array of chemical sensors at fixed locations.

It is assumed that there is an ongoing seep from an unknown location within the area shown in Figure 7. For simplicity, it is also assumed that the vicinity of each Ci has the same 10%, chance of being the seep location with a local probability leveling off toward a general background probability of 10% chance of the seep coming from another location. The resulting normalized probability map is shown in Figure 12 (top left plot).

A sensor is assumed to detect a seep if the seep results in a CO$_2$ concentration above $C_t = 5 \mu$mol/kg$_{sw}$ [Botnen et al., 2015].

Figure 9. Time series of the CO$_2$ concentration along the seafloor at the (center panel) leak grid cell and the eight neighboring grid cells. The red line indicates the threshold value $C_t = 5 \mu$mol/kg$_{sw}$. [Botnen et al., 2015].

ALI ET AL. VARYING TRACER SIGNALS 753
Figure 10. For all plots, the y axis represents the time percentage during which the CO₂ concentration stays above the value in the x axis, at the (center panel) leak grid cell and the eight neighboring grid cells. The red line indicates the threshold value $C_t = 5 \, \mu\text{mol/kg}_{sw}$ [Botnen et al., 2015].

Figure 11. The contour lines indicate the area in which the CO₂ concentration stays above the threshold value $C_t = 5 \, \mu\text{mol/kg}_{sw}$ for 1% (black line), 5% (magenta line), 10% (blue line), and 20% (red line) of the total time. The background color represents the bathymetry in meters.
the detectable region, inverting the footprints in Figure 11 through a 180 degrees rotation. The probability of detecting the seep will hence be the sum of the seep locations within the monitored region weighted with the individual location’s likelihood of being the seep location.

The optimal spatial layout of sensors, i.e., location of individual sensors, will be interdependent. If for instance two sensors have overlapping detection areas, the efficiency of the layout might not be optimal. This leads to the optimization problem of finding the optimal sensor layout maximizing the detection probability [Hvidevold et al., 2015; Frøysa, 2015].

Results using Genetic Algorithm to find the optimal placements of two (top right), four (bottom left), and six (bottom right) sensors are shown in Figure 12. The white outlines represent boundaries of area monitored by

Figure 12. Designing a monitoring program. Each location (top left) has 10% probability of being the location of the leak, with a general background probability of 10%. The area monitored by the individual sensor located is indicated by the white outline for (top right) two, (bottom left) 4, and (bottom right) 6 sensors.

Figure 13. The resulting detection probability as function of number of sensors.
the respective sensors located at the white crosses. Notice how these change for the different sensor locations, especially evident in the bottom right plot.

Focusing on two sensors, Figure 12 (top right plot), each of them are placed to cover two high probability seep locations without being placed at the location of either of them. The lower right sensor covers two locations fully, while the upper is not able to rule out a leak in the vicinity of the two locations being monitored. The same is seen when increasing the number of sensors to four in Figure 12 (bottom left plot).

Also notice how the positioning of the uppermost sensor changes location and form of the monitored area as the number of sensor increases from four (bottom left) to six (bottom right) sensors.

Figure 13 shows the detection probability of the optimal sensor layout as function of the number of sensors. With all the assumptions and simplifications made, the numbers should be used with care. However, using a single footprint prediction independently of seep location will cause less accurate predictions and less confidence in the monitoring design.

5. Discussion

In this study, the same vertical profile of dissolved CO$_2$ has been used for the nine locations. In reality current conditions will have some influence on bubble plume behavior. Further, only one flux rate has been studied. When designing a real monitoring program, the different leak scenarios have to be incorporated, including the internal probability ratios between them. Also the flux rates will be different at an open well compared with a diffusive seep through sediments. Hence, also the source terms used will have spatial and temporal variability.

Only 2 months, using 2012 forcing, have been simulated. This is evidently not enough to build proper current and probable footprint statistics. In addition to longer and more thorough numerical simulations, the predictions will have to rely on in situ environmental statistics. Again stressing the need for a proper environmental baseline and site characterization.

With proper incorporation of spatial variability of leak characteristics, monitor programs allow for more reliable monitoring design, potentially also less costly. Higher confidence in the program, and quantification of degree of certainty when it indicates that a leak occurs, might reduce the amount of false alarms. An indication of a leak will trigger the next level of activity, locating the leak. This will include mobilizing extra resources, including costly surveys to the area. On the other hand, it is necessary to act on indications of leaks in order to identify and mitigate impacts.

References

