Linking internal and external bacterial community control gives mechanistic framework for pelagic virus-to-bacteria ratios

Selina Våge,* Bernadette Pree and T. Frede Thingstad
Department of Biology, University of Bergen and Hjort Centre for Marine Ecosystem Dynamics, N-5020 Bergen, Norway.

Summary
For more than 25 years, virus-to-bacteria ratios (VBR) have been measured and interpreted as indicators of the importance of viruses in aquatic ecosystems, yet a generally accepted theory for understanding mechanisms controlling VBR is still lacking. Assuming that the denominator (total bacterial abundance) is primarily predator controlled, while viral lysis compensates for host growth rates exceeding this grazing loss, the numerator (viral abundance) reflects activity differences between prokaryotic hosts. VBR is then a ratio between mechanisms generating structure within the bacterial community and interactions between different plankton functional types controlling bacterial community size. We here show how these arguments can be formalized by combining a recently published model for co-evolutionary host-virus interactions, with a previously published “minimum” model for the microbial food web. The result is a framework where viral lysis links bacterial diversity to microbial food web structure and function, creating relationships between different levels of organization that are strongly modified by organism-level properties such as cost of resistance.

Introduction
Rooted in substantial theoretical and experimental evidence, there is a general acknowledgement of viruses exerting a significant top-down control on the biodiversity inside the heterotrophic prokaryote community [henceforth termed bacterial community] (Thingstad, 2000; Brussaard, 2004; Weinbauer, 2004; Suttle, 2007; Winter et al., 2010), presumably in interaction with bottom-up mechanisms related to substrate diversity and generalist versus specialist strategies (e.g., Mou et al., 2008) in the hosts’ use of complex substrates available in most natural environments. Viral lysis also diverts the transfer of energy and material up the predatory food chain towards higher trophic levels; shunting it instead back to detritus and dissolved material (Fuhrman, 1999; Wilhelm and Suttle, 1999; Weinbauer, 2004; Suttle, 2007) with reduced food chain transfer efficiency as an important ecosystem consequence. Viral lysis is therefore an obvious candidate for a mechanism generating biodiversity-ecosystem function (BEF) relationships in the microbial part of the pelagic food web.

As a measure of viral influence in aquatic environments, virus-to-bacteria ratios (VBR) have been reported for more than 25 years (Ogunseitan et al., 1990; Womack and Colwell, 2000; Wigington et al., 2016). While viruses are typically considered to be tenfold more abundant than their microbial hosts, data actually show that ratios vary substantially on regional and global scales (Wigington et al., 2016). However, a generally accepted theoretical framework within which these values could be understood and analyzed has been missing. Partly this may be rooted in a segregation of directions within aquatic microbial ecology: Following the introduction of the concept of a “microbial loop” (Azam et al., 1983), many studies fruitfully treated the community of heterotrophic bacteria as one plankton functional type (PFT), without resolving its internal structure. In contrast, the development from around 1990 of molecular techniques powerful enough to analyze samples from complex systems (Giovannoni et al., 1990; Øvreås et al., 1997) led to a new focus, where resolving internal structure and diversity of aquatic bacterial communities became a primary research goal. The next step of linking internal structure and function of the bacterial community to the outer level of microbial food web dynamics remains, however, a major challenge in aquatic microbial ecology.

The obvious need for tools that can serve as a theoretical analysis of these relationships led us to explore the consequences of combining two published models: (1)
The “minimum” food web model used, for example, by Larsen et al. (2015) to synthesize results from mesocosms with seemingly different responses (Fig. 1A) and (2) the host-virus interaction model based on conceived arms-race dynamics discussed by Thingstad et al. (2014) resolving both “species” and “strains” in the community (Fig. 1B and C). This gives, to the best of our knowledge, the first study that combines virus-host interactions and resulting species and strain diversity within the bacterial community, with mechanisms controlling food web structure on the level of PFTs.

The dynamic perspectives of such a combined model are intriguing since it implies the blending of evolutionary and ecological processes occurring on overlapping time scales (days-weeks). Here, however, we analyze only the steady state solutions of this combined model, assuming both that the evolutionary arms races between hosts and viruses have reached maturation (Thingstad et al., 2014).
and that the ecological processes of growth and loss are in balance.

The result is a hypothesis for how VBR may be linked to cost of viral defense, biodiversity and ecosystem function. In particular, the framework allows us to analyze how trade-offs between competitive and defensive abilities of host strains and diversity inside the bacterial community may be linked to viral abundance, while mechanisms acting between different PFTs may regulate total bacterial community size (Fig. 2).

In the following, we summarize the theory and describe the methods to derive the discussed relationships. The biologically relevant details of the model are presented and discussed in the Results and Discussion section. For ease of reading, most of the technical mathematical derivations of the relationships and the Matlab code used for the calculations are moved to the Supporting Information (Model Equations and Code 1 and 2).

Theory and methods

Combined model

We obtained the desired framework by combining two previously published models that use different levels of trophic resolution: One “minimum” food web model (Fig. 1A) that resolves PFTs to the community level (Thingstad et al., 2007), including a bacterial community; and one host-virus interaction model (Fig. 1B and C) that resolves the bacterial community to the species and strains (Thingstad et al., 2014).

Briefly, the “minimum” PFT model represents a phosphorous cycle driven by the trophic interactions between six PFTs: bacteria, autotrophic and heterotrophic flagellates, ciliates, diatoms and mesozooplankton (Fig. 1A). This creates three pathways for mineral nutrients into the food web: through bacteria, autotrophic flagellates and diatoms, respectively. The actual flow in a given situation depends on the competitive and predatory trophic interactions between the six PFTs, modified by a possible limitation by lack of degradable organic substrates (such as DOC) for bacterial growth and/or a lack of silicate required for diatom growth. For bacteria, this model thus allows for two states: mineral nutrient limited (M-limited) or limited by organic substrates (C-limited).

The PFT food web model has the power to explain seemingly conflicting results from mesocosm experiments, such as different response patterns of PFTs following identical treatments, depending on the initial state of the system (Larsen et al., 2015). Comparing population dynamics in mesocosm experiments in different environments, Larsen et al. (2015) found that ciliate abundance plays a key role in the food-web control of bacterial abundance and growth. Briefly, ciliate grazing on flagellates creates two trophic cascades (Fig. 1A): one via heterotrophic flagellates to bacterial abundance (top-down control of bacteria) and one via autotrophic flagellates to the concentration of growth rate limiting mineral nutrients (assumed to be phosphate in this model, bottom-up control of bacteria). In the case of mineral nutrient-limited bacterial growth, ciliate abundance thus controls both bacterial abundance and bacterial growth rate. Based on the
observed connection between ciliate abundance and bacteria-virus community structures, we use ciliate abundance as the independent variable that sets the carrying capacity of the bacterial community, that is, we calculate how the combined model's steady state solutions depend on ciliate abundance.

Assuming food uptake to be proportional to food concentration linearizes the steady state equations and allows analytical solutions that relate the steady state values for the PFTs (Thingstad et al., 2007). Hence, this linearization is used in the subsequent analysis. We note that the linear approximation can be justified biologically in the oligotrophic pelagic, where uptake rates are limited by external resources rather than internal handling time.

For ease of reference, the equations describing steady state for the microbial communities in the PFT food web model used here and properties of this steady state are reproduced from Thingstad et al. (2007) in the Supporting Information 1. For completeness, the dynamic equations from which the steady-states are derived are given in Supporting Information 8.

The host-virus interaction model (Fig. 1B) was analyzed in detail for an idealized chemostat environment in Thingstad et al. (2014). The steady-state structure in the virus-host community is conceived to have arrived from co-evolutionary arms-race dynamics (Martiny et al., 2014). Briefly, new host strains evolve that have increased resistance against viral strains, while new viral strains evolve that have expanded host-range. These strain-specific arms-race dynamics are conceived to take place within multiple species. A new virus-resistant strain within a particular species experiences a cost of resistance (COR) in the form of reduced maximum growth rate. The virus associated with that species can evolve a new viral strain that re-infects the resistance-acquired strain at the cost of a reduction both in its effective adsorption coefficient to the resistance-acquired strain and in its adsorption coefficient to the previously established strains. Such co-evolutionary arms-race dynamics lead to nested infection (Flores et al., 2011, Jover et al., 2013), where some viruses (the ones present since the beginning of the arms race) are specialists, infecting the host strains that where present from early on only, whereas other viruses (the ones that evolved later on in the arms-race) are generalists, able to infect all previously evolved host strains (Fig. 1C).

The host-virus interaction model contains two mechanisms generating differences in single-cell growth rates: the reductions in maximum growth rates in strains within a species due to the acquired resistance mutations, as discussed above, and inherent differences in maximum growth potential and nutrient affinities for different species.

Given a seeding community of potential host species with particular maximum growth potential and nutrient affinities, one can calculate the number of strains and the abundance and activity for each strain that can establish at steady-state. In the chemostat (Thingstad et al., 2014), this is done as a function of the reservoir concentration of limiting nutrient and the dilution rate, together representing the idealized chemostat environment. In the food web setting of the combined model used here, the abundances are calculated as a function of the limiting resource (either mineral-nutrient or organic carbon) and the grazing loss. The limiting resource in its dissolved form in the food web setting corresponds to the reservoir concentration of the limiting resource in the chemostat, while the grazing loss corresponds to the dilution rate in the chemostat. Simulating the conceived evolutionary dynamics for the virus-host interaction model goes beyond the scope of this study.

We subsequently refer to the combination of these two models (Fig. 1) as the coupled model. As a first approximation to understanding microbial ecosystem structure, the analysis is a derivation of the steady state relationships of this coupled model. Steady states by definition have no time dependence and therefore contain no cause-effect chains. They do, however, express links between the state variables, which generally depend on the environmental drivers and the model parameters describing biological properties and interactions. We subsequently use the term “control” to mean that a state variable is linked to other variables, parameters or external drivers through these steady state relationships.

Deriving relationships in the M-limited case

Central equations describing the control in the coupled model are summarized in Box 1. The discussed relationships are obtained step-wise (details follow below; Supporting Information code 1):

1. Derive outer constrains on bacterial community (i.e., total size B_T and limiting resource concentration) from the “minimum” PFT model.
2. Calculate growth curves for bacterial strains of different species based on arms-race considerations.
3. Identify established bacterial strains in the seeding community through criteria from (1) to obtain characteristics of established bacterial community and derive flagellate grazer abundance.
4. Based on established bacterial community, calculate bacterial production (BP), virus abundance, partitioning of BP and finally VBR.

Step 1: Outer constrains on bacterial community. Analytical solutions for the bacterial side of the minimum food web model (PFTs connected by bold arrows in Fig. 1A) are obtained by assuming food consumption to be proportional to food concentration. In the M-limited situation, this
Box 1. Central equations of control of the coupled system at steady-state. Symbols and parameter values are summarized in Table 1. Derivations of the equations are given in the Supporting Information – Model Equations. For a description of the model see Theory and Methods.

Ciliates proportional to bacterial abundance and limiting mineral nutrient (used in step 1).

In the M-limited situation, total bacterial abundance (\(B_T \)) and concentration of limiting mineral nutrient (\(S_m \)) can both be related to ciliate abundance (\(C \)) through the two relationships (Supporting Information 1): \(B_T(C) = \frac{2C}{Y_H H} \) (1a) and \(S_m(C) = \frac{2C}{x_A} \) (1b) where \(x_C \) is the clearance rate of ciliates for flagellates, \(x_H \) is the clearance rate of heterotrophic flagellates for bacteria, \(x_A \) is the affinity of autotrophic flagellates for the limiting mineral nutrient and \(Y_H \) is the yield of heterotrophic flagellates grazing on bacteria.

Viral resistance reduces maximum growth rates (used in step 2).

Starting with a parent strain in species \(x \) that has a maximum growth rate \(\mu_0^{\text{max}} \), there are \(i \) new strains after \(i \) successive resistance mutations in species \(x \). The strain with index \(i \), which is characterized by having the last \((i-\text{th}) \) resistance mutation plus all previous resistance mutations, has a reduced maximum growth rate \(\mu_i^{\text{max}} = \mu_0^{\text{max}} v^i \) (2) where \(v \ (0 < v \leq 1) \) is the fractional decrease in \(\mu^{\text{max}} \) for each resistance mutation.

Uniform grazing gives grazing loss equal to slowest bacterial growth (used in step 3).

Assuming grazing from heterotrophic flagellates (\(H \)) to be non-selective and proportional to food concentration, all bacterial strains will have a grazing loss rate \(\delta_B \): \(\delta_B = x_H H = \mu_{\text{min}} \) (3) where \(x_H \) is the clearance rate of \(H \) es for bacteria and \(\mu_{\text{min}} \) is the minimum growth rate balancing the grazing loss. \(\mu_{\text{min}} \) is the growth rate of the last evolved strain that grows just as fast as it is lost to grazing, and can thus not support any viruses. Strains established earlier in the arms-race are infected by at least one virus and thus experience loss to both viral lysis and grazing. In order to balance the additional loss to viral lysis at steady-state, strains established earlier in the arms-race require faster growth rates than \(\mu_{\text{min}} \) of the last established strain (see text).

Total abundance of bacterial species \(x \) and associated virus species \(x \) (used in step 4).

We use trade-offs between host range and effective adsorption in the viral population allowing for coexistence of specialist and generalist viruses in nested infection networks (Jover et al. 2013). With the resulting modifications in effective adsorption coefficients for pairs of mutated hosts and viruses (Supporting Information 5), the number of individuals in each strain and the total abundance of each bacterial species \(x B_T \) for a given abundance of \(C \) and \(H \) is calculated as (Supporting Information 6): \(x B_T(C, H) = x B_0 \left[1 + \frac{1 - x^\sigma x^\rho}{1 - x^\rho} \cdot \left(x^\rho^{-\langle n-1 \rangle} - 1 \right) \right] \) (4) where \(x B_0 \) is the virus-controlled abundance of the nonmutant parent strain of species \(x \), \(x^\sigma \) is the memory in viruses of species \(x \) to infect earlier evolved host strains and \(x^\rho \) is the fractional decrease in effective viral adsorption for each step in extended host range of viruses in species \(x \). Following Thingstad et al. (2014), the abundance of viruses belonging to each species \(x \) can be calculated from summing viral abundances over strains of species \(x \) as (Supporting Information 7):
\[xV_T = xB_0^{-1} \left\{ xC_0(S_m) + (1-x\sigma_0) \sum_{k=1}^{n-1} xC_k(S_m)x \right\}, \]

where \(\beta_0 \) is the viral adsorption coefficient of the original virus on the parent strain in species \(x \) and \(\sigma_0 \) is the specific loss rate of the parent strain to viral lysis (see text).

Balance of bacterial carbon demand and supply rate of carbon (used in C-limited case).

With the supply rate of carbon being less than the bacterial carbon demand under M-limitation \((\forall < BCD_m) \), the pool of biodegradable organic-C in Fig. 1A is depleted and the system state changes to C-limitation. Equation 1b is then no longer valid. Instead, the steady state bacterial carbon demand under C-limitation, \(BCD_c(S_c) \) must balance the supply rate \(\forall '\): \[
BCD_c(S_c) = \forall ' \]

where \(S_c \) is the concentration of the limiting C-substrate.

gives a total bacterial abundance \((B_T) \) and concentration of limiting mineral nutrient \((S_m) \) both proportional to ciliate abundance \((\text{Eq. 1a and 1b; symbols and parameter values are summarized in Table 1}) \). Ciliates thus set the carrying capacity of the bacterial community in the M-limited case.

Step 2: Growth curves of seeding community.

We assume a seeding community of bacterial species with specific growth rates following Michaelis-Menten kinetics, parameterized with a species-specific maximum growth rate \(\mu^\text{max} \) and nutrient affinity \(\alpha \) (Table 2 summarizes seeding community). Following Thingstad et al. (2014), host mutations give new, additional strains within a species. The mutations are conceived from a host-virus arms race and are associated with a COR in the form of a reduction in \(\mu^\text{max} \) by a factor \(\nu \) \((0 < \nu \leq 1)\) for each resistance mutation (Fig. 1C, Eq. 2). For each species, this gives a set of growth curves for its strains (Fig. 3A). For the purpose of illustration we use a seeding community of only five host species and assume a trade-off between \(\mu^{\text{max}}_0 \) and \(\alpha \) defining the species such that high \(\mu^{\text{max}}_0 \) gives low \(\alpha \) and vice versa, following optimal uptake kinetics (Smith and Yamanaka, 2007; Smith et al., 2009), other species properties being identical. This gives a set of growth curves for the undefended parent strains of the five seeding species as illustrated in Fig. 3B. For visual clarity, the families of curves for the mutant strains in each species (as shown in Fig. 3A for species #3) are omitted in Fig. 3B. The competitive abilities of a species is thus described by the three parameters \(\alpha \) (nutrient affinity), \(\mu^{\text{max}}_0 \) (maximum growth rate of parent strain) and \(\nu \) (where \(1 - \nu \) is the COR).

Step 3: Criteria for established strains and derivation of grazer abundance.

The vertical line in Fig. 3A and B represents the steady state concentration \(S_m \) of the limiting nutrient, which, in the M-limited case, is proportional to ciliate abundance \(C \) (Eq. 1b). Summing up strains from fastest strains (i.e., parent strains present since the beginning of the arms-race) to slow growing strains (i.e., strains established ways into the arms-race through resistance-mutations) downward along the vertical line until total bacterial abundance \((B_T) \), given by \(C \), is reached, gives the minimum growth rate \((\mu^{\text{min}}) \) established in the community. This \(\mu^{\text{min}} \) is represented by the horizontal line in the growth curve figures (Fig. 3A and B).

Assuming grazing from heterotrophic flagellates \((H) \) to be nonselective (although see Supporting Information 3), all bacterial strains have an equal grazing loss rate \(\delta_B \) that is proportional to \(H \) (Eq. 3) and the horizontal line \((\mu^{\text{max}}) \) in Fig. 3A and B must also equal the grazing loss rate \(\delta_B \). This follows from considering the virus-host arms-race dynamics under uniform grazing: An infection of a strain by a virus implies that some of the biomass otherwise bound in the strain’s biomass gets shunted back to the dissolved limiting resource pool. This dissolved resource pool, made available by viruses, represents a niche for a mutant, virus-resistant strain to evolve in the arms-race (at a resistance cost of reduced growth rate compared to the previously established, susceptible strains). This new resistant host then represents an available resource for a new virus to evolve, which has a broader host range to infect this most recently added host strain. These steps of adding new strains can only be repeated as long as the growth rates of the resistance-acquired host strains do not underscore the minimum growth rate set by the uniform grazing loss. Hence, the last strain that can establish is the strain that grows just as fast as the grazing loss rate. At this growth rate, it can only compensate for grazing loss but not viral loss. The last established strain in the system can thus not support any viruses and remains virus free.

It follows from this that the horizontal line in Fig. 3 represents both the minimum growth rate \(\mu^{\text{min}} \) established in the community and the grazing loss rate \(\delta_B \). Strains with
Table 1. Symbols and parameter values used in the model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value, unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_T)</td>
<td>Total bacterial abundance</td>
<td>(\text{ml}^{-1})</td>
</tr>
<tr>
<td>(\sigma B_0)</td>
<td>Number of individuals of undefended parental bacterial strain (B_0) of species (x)</td>
<td>(\text{ml}^{-1})</td>
</tr>
<tr>
<td>(\sigma B_i)</td>
<td>Number of individuals of mutant strain (i) of bacterial species (x)</td>
<td>(\text{ml}^{-1})</td>
</tr>
<tr>
<td>(\sigma B_T)</td>
<td>Total abundance of bacterial species (x)</td>
<td>(\text{ml}^{-1})</td>
</tr>
<tr>
<td>(V_T)</td>
<td>Total virus abundance</td>
<td>(\text{ml}^{-1})</td>
</tr>
<tr>
<td>(x V_T)</td>
<td>Abundance of viruses infecting species (x)</td>
<td>(\text{ml}^{-1})</td>
</tr>
<tr>
<td>(C)</td>
<td>Total ciliate abundance</td>
<td>Varied to test for sensitivity, (\text{ml}^{-1})</td>
</tr>
<tr>
<td>(C_{\text{lim}})</td>
<td>Total heterotrophic flagellates abundance</td>
<td>(\text{ml}^{-1})</td>
</tr>
<tr>
<td>(S_m)</td>
<td>Concentration of limiting mineral nutrient</td>
<td>(\text{nM P})</td>
</tr>
<tr>
<td>(S_c)</td>
<td>Concentration of carbon source</td>
<td>(\text{nM C})</td>
</tr>
<tr>
<td>(x (H, C)^{xx})</td>
<td>Number of established strains of bacterial species (x) for given abundance of flagellates and ciliates</td>
<td>d.l.</td>
</tr>
</tbody>
</table>

Affinities and clearance rates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value, unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_C)</td>
<td>Clearance rate of ciliates for flagellates (autotrophic and heterotrophic)</td>
<td>0.0005 (\text{lnmol-P}^{-1} \text{h}^{-1} = 5 \times 10^{-6} \text{L h}^{-1} \text{ind}^{-1})</td>
</tr>
<tr>
<td>(x_{H})</td>
<td>Clearance rate of heterotrophic flagellates for bacteria</td>
<td>0.0015 (\text{nmol-P}^{-1} \text{h}^{-1})</td>
</tr>
<tr>
<td>(x_A)</td>
<td>Affinity of autotrophic flagellates for (S_m)</td>
<td>0.04 (\text{nmol-P}^{-1} \text{h}^{-1})</td>
</tr>
<tr>
<td>(x_{0})</td>
<td>Affinity of parental strain of bacterial species (x) for (S_m) or (S_c)</td>
<td>(\text{lnmol-P}^{-1} \text{h}^{-1})</td>
</tr>
<tr>
<td>(x_{i})</td>
<td>Affinity of mutant strain (i) of bacterial species (x) for (S_m) or (S_c)</td>
<td>(\text{lnmol-P}^{-1} \text{h}^{-1})</td>
</tr>
<tr>
<td>(BCD_{m})</td>
<td>Bacterial carbon demand in (M)-limited case</td>
<td>(\text{nM C h}^{-1})</td>
</tr>
<tr>
<td>(BCD_{c})</td>
<td>Bacterial carbon demand in (C)-limited case</td>
<td>(\text{nM C h}^{-1})</td>
</tr>
<tr>
<td>(\psi)</td>
<td>Supply rate of carbon</td>
<td>Varied to test for sensitivity, (\text{nM C h}^{-1})</td>
</tr>
</tbody>
</table>

Maximum growth rates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value, unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_{0}^{\text{max}})</td>
<td>Maximum specific growth rate of parental bacterial strain of species (x)</td>
<td>(\text{h}^{-1})</td>
</tr>
<tr>
<td>(\mu_{i}^{\text{max}})</td>
<td>Maximum specific growth rate of bacterial strain (i) of species (x)</td>
<td>(\text{h}^{-1})</td>
</tr>
</tbody>
</table>

Properties of grazing interactions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value, unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^{c})</td>
<td>Fractional decrease in (\mu_{i}^{\text{max}}) for each mutation giving new strain in species (x)</td>
<td>d.l.</td>
</tr>
<tr>
<td>(\text{COR} = 1 - x^{c})</td>
<td>COR of species (x)</td>
<td>d.l.</td>
</tr>
<tr>
<td>(\delta_{B})</td>
<td>Specific grazing loss rate of bacteria</td>
<td>(\text{h}^{-1})</td>
</tr>
<tr>
<td>(Y_{BC})</td>
<td>Yield from bacterial carbon consumption</td>
<td>0.4</td>
</tr>
<tr>
<td>(Y_{H})</td>
<td>Yield from heterotrophic flagellate predation</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Properties of host-virus interactions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value, unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{p}^{\text{max}})</td>
<td>Fractional decrease in effective viral adsorption coefficient (j) for each step in increased host range in species (x)</td>
<td>0.9 (\text{d.l.})</td>
</tr>
<tr>
<td>(x_{i}^{j})</td>
<td>"Memory" in viruses describing the ability to infect previous host strains in species (x)</td>
<td>0.9 (\text{d.l.})</td>
</tr>
<tr>
<td>(x_{0}^{j})</td>
<td>Effective adsorption coefficient for the interaction between parental bacterial strain of species (x) and its virus</td>
<td>(1.5 \times 10^{-10} \text{L h}^{-1})</td>
</tr>
<tr>
<td>(x_{i}^{j})</td>
<td>Effective adsorption coefficient for the interaction between bacterial strain (i) of species (x) and its virus</td>
<td>(\text{L h}^{-1})</td>
</tr>
<tr>
<td>(x_{C}^{j})</td>
<td>Specific loss rate of strain (i) of species (x) to viral lysis</td>
<td>(\text{h}^{-1})</td>
</tr>
</tbody>
</table>

Conversion factors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value, unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>per bacterial cell (PperB)</td>
<td>(3.33 \times 10^{-8} \text{nmol P cell}^{-1})</td>
</tr>
<tr>
<td>(P)</td>
<td>per heterotrophic nanoflagellate cell (PperH)</td>
<td>(1.67 \times 10^{-5}\text{nmol P cell}^{-1})</td>
</tr>
<tr>
<td>(P)</td>
<td>per ciliate cell (PperC)</td>
<td>(1 \times 10^{-2} \text{nmol P cell}^{-1})</td>
</tr>
<tr>
<td>Molar C:P ratio in bacterial biomass (CtoPperB)</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Parameter values are adapted from Thingstad et al. (2007) and viral adsorption coefficient corresponds to Weitz (2015).

Table 2. Parameter values used for parental strains in seeding community consisting of five bacterial species (for parameter description, see Table 1).

<table>
<thead>
<tr>
<th>Bacterial species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_0) (ml(^{-1}))</td>
<td>(5.00 \times 10^{3})</td>
</tr>
<tr>
<td>(\mu_{0}^{\text{max}}) (h(^{-1}))</td>
<td>1.00</td>
<td>0.60</td>
<td>0.36</td>
<td>0.22</td>
<td>0.13</td>
</tr>
<tr>
<td>(x_{0}^{j}) (lnmol-P(^{-1})h(^{-1})ind(^{-1}))</td>
<td>(0.01/3.33 \times 10^{-10})</td>
<td>(0.02/6.67 \times 10^{-10})</td>
<td>(0.04/1.33 \times 10^{-9})</td>
<td>(0.08/2.67 \times 10^{-9})</td>
<td>(0.16/5.33 \times 10^{-9})</td>
</tr>
<tr>
<td>(x^{c})</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>(x_{i}^{j})</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>(x_{p}^{\text{max}})</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

© 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 18, 3932–3948
growth curves passing below the crossing point between the horizontal line (minimum growth rate) and vertical line (limiting nutrient concentration) are unable to compensate for predatory loss and cannot establish. With \(H \) determining the minimum growth rate and \(C \) determining total bacterial abundance, Fig. 3 thus links the structure of the microzooplankton community to the criteria a bacterial strain has to fulfill to successfully compete in the M-limited case.

Regarding the steady state solution for \(H \), we observe that the total bacterial abundance for a given ciliate abundance \(C \), \(B_T(C) \), is given by (Eq. 1a), but it is also the sum of abundances over all established strains of all species. Summing up abundances over established strains downwards along the vertical line in Fig. 3 until an arbitrary minimum value \(\mu_{\text{min}} = \delta H \) (from Eq. 3) is reached gives a community abundance \(B_T(C, H) \), determined both by \(C \) and \(H \) (curves in Fig. 4A). The steady state solution for \(H \) is found where \(B_T(C) \), given by (Eq. 1a), equals \(B_T(C, H) \), given by summing up over all established strains. \(\mu_{\text{min}} \) from the intersection of \(B_T(C, H) \) and \(B_T(C) \) (illustrated in Fig. 4A) then gives \(H \), using the proportionality of \(H \) with \(\mu_{\text{min}} \) (Eq. 3).

To calculate the curve for \(B_T(C, H) \) in Fig. 4A, both the number of established strains and the abundance of individuals in each of these strains is needed. For M-limited growth, the number \(n(C, H) \) of strains that a bacterial species \(x \) can establish at an abundance \(H \) for a given abundance \(C \) is determined by the competitive properties of the hosts, that is, their nutrient affinities, maximum growth rates and COR (Supporting Information 4, Thingstad et al., 2014). To find the abundance of individuals for each strain, we follow Thingstad et al. (2014) and assume nested infection (Flores et al., 2011; Jover et al., 2013) as shown in Fig. 1C. Nested infection leads to an upper triangular host-virus interaction matrix \(\beta \) for each species (Supporting Information 5). The elements in \(\beta \) for each host-virus pair are defined by the effective adsorption coefficient \(\beta_0 \) of the original virus on the undefended parent strain and two attenuation coefficients \(\rho \) and \(\sigma \). \(\rho \) defines the decrease in effective adsorption of infective viruses for newly established strains due to the increased resistance of the mutated strains and \(\sigma \) is the viral memory coefficient describing the ability of mutant viruses to infect previously established host strains (Thingstad et al., 2014). \(\rho \) and \(\sigma \) fulfill the general trade-off conditions for coexistence in a nested infection network (Jover et al., 2013; Korytowski and Smith, 2015). Knowing these modifications in effective adsorption coefficients for pairs of mutated hosts and viruses allows calculation of the number of individuals in
Step 4: Properties of established bacterial and viral community. The difference between the growth rate of a virus infected strain i from bacterial species x at substrate concentration $S_m(x_{\mu}(S_m))$ and its loss to predation (δ_B) is the specific loss rate $x_C(S_m)$ of the strain to viral lysis $x_C(S_m)=x_{\mu}(S_m)-\delta_B$. Multiplying this specific loss rate with strain abundance B_x and summing up established strains and species gives the loss of bacterial production to viral lysis and thus allows calculation of the partitioning of production between lysis and predation (Fig. 5C, top). Following Thingstad et al. (2014), the abundance of viruses belonging to each species x can be calculated from summing viral abundances over strains of species x (Eq. 5). Summation over all species gives the total viral abundance V_T (Fig. 5B, top). From this and knowing B_T as a function of C (Eq. 1a), VBR is calculated as a function of C (Fig. 6, top).

Deriving relationships in the C-limited case

The bacterial community in the M-limited case has, for a given ciliate abundance, a bacterial carbon demand $BCD_m(C)$, which corresponds to the BP in carbon units (Supporting Information code 2). The supply rate Ψ of degradable organic-C from autochthonous and/or allochthonous sources in the system has to balance or exceed this carbon demand for the M-limited state to be sustained. With $\Psi > BCD_m$, the excess supply of organic-C can theoretically accumulate (Thingstad et al., 1997), while with $\Psi < BCD_m$, the pool of biodegradable organic-C in Fig. 1A is depleted and the system state changes to C-limitation. Ciliates then no longer control the limiting nutrient (Eq. 1b). Instead, the steady state bacterial carbon demand (BCD) under C-limitation, $BCD_c(S_c)$ must balance the supply rate Ψ (Eq. 6). It is then the supply rate Ψ that determines the position of the vertical line demarking the limiting substrate concentration in the analogs to Fig. 3A and B. Instead of S_m (which is proportional to the ciliate abundance), these analogs have the concentration S_c of the limiting substrate on the x-axis. For a given S_c, one can now calculate the total community carbon demand $BCD_c(S_c)$ [curves in Fig. 4B], corresponding to the production in carbon units of the total bacterial community as follows: Summation up production of strains from fastest to slowest growing strains as a function of S_c [BCD$_c(S_c)$]. High growth rates at high S_c lead to high $BCD_c(S_c)$.

Each strain and total abundance of each bacterial species x_B for a given abundance of C and H (Eq. 4). Summation up the abundance of individuals over all species x gives $B_T(C,H)$ (curves in Fig. 4A). With H determined for a given value of C through $B_T(C) = B_T(C,H)$ using the proportionality of H and μ_{min} (done in Fig. 4A), one can calculate H as a function of C (Fig. 5A, top).
function of \(S_c \) (Eq. 5) and using the relationship of \(S_c \) and \(BCD_c(\psi) \), we get \(\psi \) (Fig. 4B), we get \(V_T \) (Fig. 5B, bottom), the fraction of BP lost to viral lysis (Fig. 5D, bottom) and \(VBR \) (Fig. 6, bottom) as a function of \(\psi \). The maximum value of \(\psi' \) before the system switches from \(C \)-limitation to \(M \)-limitation is given by the carbon demand under \(M \)-limitation \([BCD_m(\psi), \text{ horizontal lines in Fig. 4B}] \). Curves under \(C \)-limitation are hence only shown for values of \(\psi = BCD_c(S_c) < BCD_m(\psi) \). \(H \) is calculated from \(\mu_{\min} \) that is established in the community as shown in Fig. 4A (see text). Total virus abundance is calculated from summing up viruses over all established strains of all species, where virus abundance of strain \(i \) is proportional to strain \(i \)'s growth rate and \(\mu_{\min} \) (Eq. 4 and Supporting Information S30).

Results and discussion

The presented framework is a conceptual tool that shows how internal (e.g., strain- and species competition and defense against strain-specific viruses with associated COR) and external control mechanisms of the bacterial community (nonselective grazing and competition between different PFT) may regulate VBR in pelagic environments. Rather than quantitatively predicting community dynamics using fine-tuned parameters, we show how internal and external control factors may be linked in intricate ways. This should appeal microbial ecologists to increasingly consider different scales in this complex system simultaneously. At this stage, the framework represents a hypothesis that needs to be tested with data.

A theoretical framework for VBR

VBR has been measured in pelagic environments for over 25 years and although VBR is frequently referred to as 10:1, VBR is highly variable in aquatic systems, spanning over four orders of magnitude in size (Proctor and Fuhrman, 1990; Tapper and Hicks, 1998; Danovaro and Serresi, 2000; Clasen et al., 2008; Wigington et al., 2016). A clear understanding of mechanisms regulating this number is still lacking. Our modeling work suggests that this lack may in part be due to a segregation in microbial ecology where different scales have traditionally been studied separately. The analysis made here, where we link mechanisms controlling diversity inside the bacterial community with external control shows a possible theoretical foundation for VBR, and thus suggests a potential for improved analysis of existing data. Essentially, our framework predicts that VBR emerges as the ratio between mechanisms acting internally to the bacterial community, such as competition between strains and resistance against strain-specific viruses and trade-offs between organism traits,
which regulate strain- and species level diversity and mechanisms acting externally, such as competition and grazing between different PFTs (Figs. 2 and 6).

Specifically, our combined model assumes a predator control of total bacterial abundance \(B_T \) (the denominator of VBR). This is in line with expected impacts of grazing on total bacterial biomass (Gonzales et al., 1990; Sherr et al., 1992; Hansen et al., 1997; Pasulka et al., 2015), where rapid response of flagellate grazing seems consistent with the relatively stable abundance of \(10^6 \) bacterial cells m\(^{-1}\) in marine environments (Azam et al., 1983). Although we note that grazing can be important to mediate phenotypic diversity in the BCD (Gasol et al., 1999), our assumption is in line with grazers having weaker effects on genotypic BCD composition (Baltar et al., 2015) than lytic viruses have (Brussaard, 2004; Weinbauer, 2004; Bouvier and del Giorgio, 2007; Lima-Mendez et al., 2015). Viral lysis is the only loss mechanism included in our model to compensate for differences in host growth rates. Total viral abundance \(V_T \) (the numerator of VBR) is therefore determined by the steady state requirement that any growth of a strain exceeding the uniform grazing loss must be balanced by viral lysis. As discussed above, this implies that the last established strain growing at \(\mu^{\text{min}} = \delta_B \) does not support any viruses, while virus-infected strains support more and more viruses the earlier they were established (i.e., the faster their growth rates are relative to \(\mu^{\text{max}} \)). Hence, central to this model is that total virus abundance increases for increasing host growth rate spectra.

Despite being conceptually relatively simple, these assumptions link diversity and function in a somewhat intricate and circular manner: it is viruses that allow host groups with different growth rates to co-exist, while it is the magnitude of these differences between growth rates that determine how many viruses are needed for coexistence (Thingstad, 2000). Since COR generates such differences in growth rate, this links COR to viral abundance (Fig. 5B) and thus VBR (Fig. 6).

To scrutinize the presented theory, the prediction that \(V_T \) is tightly coupled to the width of the host community growth rate spectrum needs to be tested. Using the incorporation of a fluorescent amino-acid analog, Samo et al. (2014) recently reported host growth rate spectra to follow a power-law distribution with slow growing hosts dominating, but with slopes of the distribution varying between samples. With low slopes allowing for larger host growth rate differences in the sample, this suggests that correlating VBR values in a given environment with the slope of such spectra may be a way to experimentally challenge the theoretical framework.

Strong sensitivity of diversity, food web structure and ecosystem function to COR

A conspicuous result in our analysis is that species diversity and food web structure on the level of PFT, as well as biodiversity-ecosystem function (Figs. 4–7), are highly sensitive to the trade-off between competitive and viral defense abilities (COR) inside the bacterial community. Although COR can be difficult to measure and may depend on the environments (Bohannan et al., 2002), it has been experimentally verified in chemostats and natural communities (Lenski and Levin, 1985; Bohannan et al., 2002; Middelboe et al., 2009; Avrani et al., 2011). Regardless, rather than suggesting a particular magnitude of COR for a specific microbial system, our model illustrates how sensitive a microbial community appears to be in terms of its structure and function given any particular value of COR.

In this analysis, we assume two slightly different values of COR, where high COR (i.e., \(\nu = 0.85 \) corresponding to a 15% reduction of \(\mu^{\text{max}} \) for acquired resistance mutations) implies larger reductions in \(\mu^{\text{max}} \) (COR = 1 – \(\nu \)). This larger reduction in \(\mu^{\text{max}} \) compared with lower COR increases the spacing between the growth rate curves in Fig. 3A, leading...
species richness, five repeated experiments were done drawing 3B (i.e., high a
implies low lmax and vice versa). Ciliate abundance
to a lower position of the horizontal line and thus a lower
minimum growth rate lmin established in the system (illus-
trated graphically in Fig. 4A). Due to the smaller lmin and a
subsequently higher proportion of slow growing strains
established in the bacterial community, whose total size is
given independently of COR by ciliates (Eq. 1a), total BP is
reduced for high COR. As a consequence, total bacterial
carbon demand is lower for high COR relative to low COR
(Fig. 4B). Hence, both viral and grazer community abundan-
ces are reduced for high COR under M-limitation [comparing blue curves in Fig. 5A and B (top) relative to red
curves], which is also reflected in the lower VBR for high
COR (Fig. 6, top). In addition, since high COR leads to a
reduction of lmin and since heterotrophic flagellates H are
proportional to lmin through (Eq. 2), the abundance of H is
reduced for high COR. As a consequence, the partitioning
of BP is in favor of the viral community and more of the BP
is lost to lysis. Critical for biogeochemical functioning, food
web transfer efficiency is hence reduced for high COR
(Fig. 5C, top).

Analogous to ciliates determining the limiting mineral
nutrient concentration Sc in the M-limited case (Eq. 1b),
the carbon supply rate (ψ) determines the BCD and hence
sets the growth constraint under C-limitation [BCDc(Sc)].
The limiting carbon concentration Sc is found from
BCDc(Sc) as discussed for Fig. 4B. Analogous to ciliates
under M-limitation, ψ is therefore chosen as an independ-
ent variable for C-limitation (Fig. 5, bottom). Under C-
limitation, the highest maximum abundances of H and
viruses can be reached at low COR (red curves go beyond
blue curves in Fig. 5A and B, bottom), since low COR can
supply higher supply rates ψ before the system switches
from C- to M-limitation (horizontal line for low COR is
higher in Fig. 4B than for high COR). However, for any
given supply rate ψ corresponding to BCDc(Sc), a high
COR (blue curve in Fig. 5B, bottom) gives higher virus
abundances than low COR (red curve in Fig. 5B, bottom).
This is explicable by the viruses’ role as compensators for
growth rate differences in the host strains when assuming
nonselective grazing (Eq. 5 and Supporting Information 7).

Since high COR reduces lmin, growth rate differences
between the fastest and slowest growing strains in the
BCD increase and hence more viruses are supported for
high COR (Fig. 5B, bottom). This is opposite to the abun-
dance of H, which is lower at high COR for any given ψ
(corresponding to BCDc(Sc) (Fig. 5A, bottom) due to the
reduction of lmin at high COR (Fig. 4A) and the proportion-
ality of H with lmin (Eq. 3). As in the M-limited case, high
COR thus implies reduced transfer efficiency and a larger
fraction of BP begin lost to lysis (blue curve in Fig. 5C, bot-
nom). Understanding biogeochemical functioning of the
pelagic microbial community is thus in our framework pre-
dicted to strongly rely on an increased understanding of
trade-offs between organism traits.

Strong sensitivity of biodiversity, food web structure and
ecosystem function on seeding community

We only included one trade-off between the nutrient affinity
parameters x and maximum uptake rates lmax describing
the seeding community (Table 2). This trade-off has been
explained physiologically in optimal uptake kinetics (Smith
et al., 2009) and seems supported by data compilations
(Litchman et al., 2007), although Fiksen et al. (2013) dis-
cuss how this trade-off may not be valid under diffusion
limitation. Regardless, the set of trade-offs linking param-
eters in the seeding community must in reality be complex.
One can, for example, speculate that CRISPR defense
systems are expensive to run (lowering a species’ lmax),
but adding a new recognition sequence is cheap (Kang
et al., 2013), such that the reduction in lmax from one
resistance mutation to the next may be small (such that ν
would be close to 1 in our model), creating a trade-off
between COR and lmax. Again, our future level of under-
standing of the system depends on unraveling these trade-
offs (Litchman et al., 2015).

Our choice of seeding community and trade-off is crucial
for how community composition varies, as is evident from
inspecting Fig. 3B: High Sm (or Sc) tend to favor species
with high lmax, while low Sm or Sc favor species with high
x_m or x_c in the M- and C-limited cases, respectively. This
has interesting consequences for species diversity in terms

© 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd,
Environmental Microbiology, 18, 3932–3948
of ciliate abundance (Supporting Information – Ciliate Effects).

In addition, affinity for mineral nutrient S_m (α_m) and affinity for carbon S_c (α_c) are proportional in our seeding community. The consequence is that a shift between the C- and M-limited states is not expected to affect BCD. An alternative assumption could be that there is a trade-off between being a C-specialist and an M-specialist. This would give a re-shuffling of the growth curves in Fig. 3B as the type of limitation changes, accompanied by shifts in BCD. *Vibrio splendidus* growing into large, carbon storing cells dominating the bacterial community after excess glucose addition in a mesocosm system (Thingstad et al., in press) are an interesting example where α_m varied as a function of the available carbon concentration.

Emerging biodiversity-ecosystem functioning relationships fits generic theory

Biodiversity-ecosystem functioning (BEF) is a pressing issue in ecological research in general and a field where microbial research has been suggested to have a special potential to contribute (Krause et al., 2014). With the mechanistic descriptions used in both the PFT and host-virus component of the coupled model, the form of these relationships can be traced back to organism properties and interactions in a more direct manner than in generalized BEF models (Connolly et al., 2013), although at the expense of narrowing the relevance to the planktonic ecosystem.

Experimentally, an effect of species richness on ecosystem function has been shown by combining bacterial isolates and measuring respiration rates as the ecosystem response (Bell et al., 2005). Our coupled model allows *in silico* experiments of this kind as demonstrated by an exploration of the effect of species richness on bacterial carbon consumption, BCD$_m$(C) (Fig. 7). Within the range investigated here, the effect of the COR parameter ν on BCD$_m$(C) persists also at high richness. The shape of the curve in Fig. 7 derived from our mechanistic model resembles the generalized response to richness derived by Connolly et al. (Fig. 6 in Connolly et al., 2013) for values of their Θ-parameter between 0.5 and 1, where Θ describes interaction strength between species. The saturation in Fig. 7 illustrates some redundancy of species effects on the ecosystem function (Bell et al., 2005).

Finally, we note that steady-state implies that the assumed host-virus arms races have developed to maturation (Thingstad et al., 2014). This linking of evolutionary to ecological time scales may be relevant to our assumption of all species being substrate generalists, as it has been shown experimentally (Gravel et al., 2011) that adapting species to generalist versus specialist strategies prior to combining them affected BEF-relationships.

Experimental support for the theoretical framework

Despite its simplicity, the PFT model used in this study (Fig. 1A) is able to quantitatively reproduce successions of dominant PFTs in stimulated bloom dynamics in mesocosm experiments; both in differently perturbed mesocosms started from the same initial water mass (Thingstad et al., 2007) and in similarly treated mesocosms started from different initial water masses (Larsen et al., 2015).

Finding strong experimental support (or refutation) for the "Killing-the-winner" models resolving the internal bacterial community structure has proven more difficult (Winter et al., 2010) despite them being frequently cited in experimental work. Thingstad et al. (2014) recently suggested that one of the reasons for this may be in the way models and data are compared: The “Killing-the-Winner” models operate with “host-groups,” the sizes of which are top-down controlled by lytic viruses. Data on bacterial diversity are typically in the form of 16S rDNA sequences and therefore refer to “species”-level (rather than “strain”-level) diversity. Theory-data comparisons therefore usually imply an assumption of the model’s host-groups to correspond to a “species”-level in the data. When assuming more realistically that the model’s host groups correspond to strains, however, the number of individuals belonging to a species becomes the number of individuals per strain, summed over the strains that this species manages to establish in competition with other species in the given environment (Thingstad et al., 2014). In this case, individuals per species and diversity are both top-down controlled by viruses, which affects the richness component (number of different strains) and bottom-up controlled through competition, which affects the evenness component (abundance of each strain). A logic consequence from this is that by indirectly controlling the amount of available resources through trophic cascades (Eq. 1a), grazers should have a direct effect on internal bacterial community diversity, even when assuming nonselective grazing. This strain-based host-virus model (Fig. 1B and C) fits with different aspects of microbial ecology, such as coexistence of less competitive and better defended strains with more competitive strains (Suttle and Chan, 1993; Waterbury and Valois, 1993; Holmfeldt et al., 2007) and a dominance of slow growing types (Malmstrom et al., 2004; Campbell et al., 2011; Samo et al., 2014), as well as postulated inverse rank-abundance distributions of hosts and their associated viruses (Suttle, 2007; Våge et al., 2013a; Thingstad et al., 2014). Specifically, it suggests that the widespread slow growth in natural populations (e.g., Samo et al., 2014) is due to a dominance of defensive strains that have reduced growth rates due to COR (Thingstad et al., in press). Host abundance on the species level emerges in the model from a combination of competitive and defensive abilities.
(Våge et al., 2013b), unifying the two previously opposing lines of argument that the success of SAR11 is based on either its defensive or on its competitive superiority (Zhao et al., 2013). The “King of the Mountain” (Giovannoni et al., 2013) hypothesis alternatively explains success of SAR11 based on horizontal transfer of resistance genes, allowing highly competitive strains to simultaneously be strong in defense as well. In contrast to our model, the “King of the Mountain” hypothesis does not explicitly account for the wide range in activity spectra of strains observed in SAR11 (Malmstrom et al., 2004). More data on relative abundance and activity of bacterial strains and their associated viruses are required to evaluate the alternative hypotheses.

Interestingly, VBR stabilizes or decreases in our model as a function of increasing ciliate (and hence total bacterial) abundance (Fig. 6, top), which is consistent with a compilation of data from marine surveys that revealed a typical decrease of virus to microbe ratios with microbial cell density (Wigington et al., 2016). For a discussion on this ciliate effect, see Supporting Information – Ciliate Effects.

Extending the scope of previous studies

Several experimental and theoretical studies have stressed the importance of the systems productivity on the extent of which top-down (grazing by heterotrophic nanoflagellates and viral lysis) and bottom-up control (mineral nutrient and organic carbon limitations) determine bacterial growth, abundance and community structure (Billen et al., 1990; Gasol, 1994; Pace and Cole, 1994; Pernthaler, 2005). In a recent analysis of the role of viruses in the pelagic food web, Weitz et al. (2015) used a model with a “one virus – one community” structure representing the opposite extreme to the resolution used here, where virus specificity is at strain level. While this black-box approach in the Weitz et al. model allows for a thorough analysis of food web level effects, it does not address diversity within the host communities.

However, interesting results regarding diversity and infection network constraints within the BCD have recently been derived in a theoretical study, where coevolution of virus-host community was considered (Haerter et al., 2014). Furthermore, Jover et al. (2013) and Korytowski and Smith (2015) derived general and chemostat-specific conditions for coexistence under nested infection, respectively. However, similar to the black-box approach, focusing on the internal resolution of the host community alone (Jover et al., 2013; Haerter et al., 2014; Thingstad et al., 2014; Korytowski and Smith, 2015) does not allow to link organism properties and internal community structure to external food web structure and ecosystem functioning, which was a major goal of this study.

The model is strongly simplified, both in terms of resolution of the different groups, nutritional modes and virus representations. Virus-host interactions are complex and even when considering virus-host interactions in a single (bacterial) community only, intricate effects became apparent on the food web level. We argue that understanding mechanisms in a constrained setting first is a fruitful way towards complete understanding of a system with fully expressed dynamics and interactions. Since bacteria and their associated viruses numerically dominate pelagic microorganisms (Suttle, 2007), the present model focuses on an important part of the whole. Extending the model to include viruses for the nonbacterial communities will add a level of complexity that needs to be treated in a follow-up study. We note that while our model resolves varying host ranges, with presumed trade-offs in virulence and two levels of virus-host specificity (bacterial strains vs. species), resolving some of the important characteristics of complex virus-host interactions, other factors such as variation in virus life style (lysogenic vs. lytic) and decay rates surely influence VBR too. This calls for future model refinements also within the bacterial community.

Summary

- Internal and external bacterial community control factors are intricately linked.
 - Advancing microbial ecology crucially depends on simultaneously study multiple levels of resolutions.
- Species level diversity, food web structure on the level of PFT and ecosystem function strongly depend on COR and choice of seeding community, which are based on molecular properties of virus-host interactions and growth processes.
 - For example, food web transfer efficiency is reduced for high COR
 - Quantifying trade-offs in microbial strategies is fundamental to understand microbial ecology.
- VBR depends on a combination of internal and external community control mechanisms.
 - Total virus abundance is predicted to be positively correlated with the width in host growth rate spectrum, while total bacterial abundance is controlled by the external food web structure.
 - Data linking host growth rate spectra to total virus abundance are needed to test this theory.

Conclusions

By integrating the nested virus-host infection model in a microbial food web model that resolves different PFTs, our framework considers biological mechanisms for general
conditions for coexistence (Jover et al., 2013). Without aiming to develop a model with fine-tuned parameters, the result is a mechanistic theory for VBR in the pelagic ecosystem (Figs. 2 and 6). It suggests how molecular properties of virus-host interactions, which are manifested, for example, in COR, may be intricately linked to the structure of the grazer community (Fig. 5A), the virus abundance and partitioning of BP (Figs. 5B and C), VBR (Fig. 6) and bacterial diversity (Fig. 7). The grazer community, in turn, sets in this framework the carrying capacity of the bacterial community (the denominator of VBR) through the central role that ciliates play in bacterial community control (Larsen et al 2014), both through top-down effects (grazer food chain) and bottom-up effects (control of autotrophic competitors for limiting mineral nutrient). In other words, ciliates calibrate the bacterial and virus abundances to ecologically realistic values. In a world where viruses and bacteria would be the only entities regulating each others community size through direct virus-host interactions, the relative abundance of hosts and viruses may remain unchanged, but they would end up monopolizing all resources and reach ecologically unrealistic carrying capacities.

Central to the relationships derived here is the set of species-level properties defined in the seeding community (Table 2). This five-member seeding community was chosen primarily for illustrative purposes. One could imagine expanding the proposed framework by introducing (approximations to) real species in such a list. An intellectually intriguing, but not necessarily easier alternative would be to focus on trade-offs between multiple traits and generating seeding communities with Monte-Carlo techniques (Follows et al., 2007) as illustrated by our in-silico experiment (Fig. 7). Large differences found in our analysis with respect to community structure and efficiency by which BP is transferred through the food web based on small differences in COR illustrate how our future level of understanding of this system will depend on our ability to unravel such trade-offs.

Acknowledgements

This work was financed by the European Union FP7 through the European Research Council Advanced Grant 250254 Microbial Network Organization and by the Department of Biology, University of Bergen.

Conflict of Interest

The authors declare no conflict of interest.

References

3948 S. Våge, B. Pree and T. F. Thingstad

Supporting information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Fig. S1. Bacterial species composition of 5 seeding species (Fig 3B, Table 2) in different shades of gray, and Shannon index (black curve with small dots) as a function of C in the M-limited case. Species abundance is calculated as the sum of abundances over all established strains (SI 6). The trade-off between μ_{max} and α in the seeding species gives a dominance of species with strong α at low Sm (i.e. low C, Eq. 1b) and a dominance of species with high μ_{max} at high Sm (i.e. high C). Intermediate C (around 20 mL-1) gives highest Shannon diversity.