Centrality dependence of the pseudorapidity density distribution for charged particles in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration*

Abstract

We present the charged-particle pseudorapidity density in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from -3.5 to 5, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0–5%) collisions we find 21400 ± 1300, while for the most peripheral (80–90%) we find 230 ± 38. This corresponds to an increase of $(27 \pm 4)\%$ over the results at $\sqrt{s_{NN}} = 2.76$ TeV previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations — none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

In ultra-relativistic heavy-ion collisions a dense and hot phase of nuclear matter is created [1–4]. This phase of QCD matter is considered to be a plasma of strongly interacting quarks and gluons and is therefore labelled the sQGP [5]. The multiplicity of primary, charged particles produced in heavy-ion collisions is a key observable to characterise the properties of the matter created in these collisions [6]. The study of the primary charged-particle pseudorapidity density ($dN_{ch}/d\eta$) over a wide pseudorapidity (η) range and its dependence on colliding system, centre-of-mass energy, and collision geometry is important to understand the relative contributions to particle production from hard scatterings and soft processes, and may provide insight into the partonic structure of the interacting nuclei.

We have previously reported measurements on primary charged-particle pseudorapidity densities over a wide pseudorapidity range in Pb–Pb collisions at the centre-of-mass energy per nucleon pair $\sqrt{s_{NN}} = 2.76$ TeV [7]. In this Letter, we study these distributions in the pseudorapidity interval from -3.5 to 5 at a collision energy of $\sqrt{s_{NN}} = 5.02$ TeV as a function of the centrality. Pseudorapidity is defined as $\eta = -\log(\tan(\vartheta/2))$, where ϑ is the angle between the charged-particle trajectory and the beam axis (z-axis). Nuclei are extended objects, and their collisions can be characterised by centrality — the experimental proxy for the un-measurable distance between the centres of the colliding nuclei (impact parameter). A primary particle is a particle with a mean proper lifetime τ larger than 1 cm/c, which is either a) produced directly in the interaction, or b) from decays of particles with τ smaller than 1 cm/c, restricted to decay chains leading to the interaction [8]. In this Letter, all quantities reported are for primary charged particles, though we will omit “primary” for brevity.

With the large pseudorapidity coverage available in ALICE, we can reliably estimate, for all centrality classes, the total number of charged particles produced in the collisions. We therefore also present the first measurement of the total charged-particle multiplicity in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV as a function of the number of nucleons participating in the collisions (N_{part}).

Finally, we transform the measured $dN_{ch}/d\eta$ distribution for the 5% most central collisions into charged-particle rapidity density (dN_{ch}/dy), and we examine the centre-of-mass energy dependence of the width of that distribution. The rapidity (y) of a particle with energy E and momentum component p_z along the beam axis is defined as $y = \frac{1}{2} \log((E + p_z)/(E - p_z))$. The comparison of the width of the dN_{ch}/dy at different collision energies provides an insight into the constraints on the overall production mechanism of charged particles.

2. Experimental setup

A detailed description of ALICE and its performance can be found elsewhere [9,10]. In the following, we briefly describe the detectors relevant to this analysis.

* E-mail address: alice-publications@cern.ch.

http://dx.doi.org/10.1016/j.physletb.2017.07.017 0370-2693/© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

CrossMark
The Silicon Pixel Detector (SPD), the innermost part of the Inner Tracking System (ITS), consists of two cylindrical layers of hybrid silicon pixel assemblies covering $|\eta| < 1.2$ for the inner and outer layers, respectively. Combinations of hits on each of the two layers consistent with tracks originating from the interaction point form tracklets.

The Forward Multiplicity Detector (FMD) is a silicon strip detector which records the energy deposited by particles traversing the it. The detector covers the pseudorapidity regions $-3.5 < \eta < -1.8$ and $1.8 < \eta < 5$, and has almost full coverage in azimuth (ϕ), and high granularity in the radial (r) direction.

The third detector system used in this analysis is the V0. It consists of two sub-detectors: V0-A and V0-C covering the pseudorapidity regions $2.8 < \eta < 5.1$ and $-3.7 < \eta < -1.7$, respectively, each made up of scintillator tiles with a timing resolution < 1 ns. The fast signals from either V0-A or V0-C are combined in a programmable logic to form a trigger signal and to reject background events. Furthermore, the combined pulse height signal of both sub-detectors forms the basis for the classification of events into different centrality classes [11].

The Zero-Degree Calorimeter (ZDC) measures the energy of spectator (non-interacting) nucleons with two components: one measures protons and the other measures neutrons. The ZDC is located at about 112.5 m from the interaction point on both sides of the experiment [9]. The ZDC also provides timing information used to select collisions in the off-line data processing.

3. Data sample and analysis method

The results presented here are based on data collected by ALICE in 2015 during the Pb–Pb collision run of the LHC at $\sqrt{s_{NN}} = 5.02$ TeV. About 100 000 events with a minimum bias trigger requirement [12] were analysed in the centrality range from 0% to 90%. The minimum bias trigger for Pb–Pb collisions in ALICE, which defines the so-called visible cross-section, is defined as a coincidence between the A (z > 0) and C (z < 0) sides of the V0 detector.

The standard ALICE event selection [13] and centrality estimator based on the V0-amplitude [11] are used in this analysis. The event selection consists of: exclusion of background events using the timing information from the ZDC and V0 detectors; verification of the trigger conditions; and a reconstructed position of the collision. As discussed elsewhere [11], the 90–100% centrality class has substantial contributions from QED processes and is therefore not included in the results presented here.

The measurement of the charged-particle pseudorapidity density at mid-rapidity ($|\eta| < 2$) is obtained from a tracklet analysis using the two layers of the SPD. The analysis method used is identical to what has previously been presented [12,14,15]. Note that no attempt is made to correct for known deficiencies, such as deviations in the number of strange particles or transverse momentum (p_T) distributions compared to experimental measurements [11,16,17], in the event generators used to obtain the corrections from simulations (e.g., HIJING). It is found, through simulation studies, that tracklet reconstruction first and foremost depends on the local hit density and only weakly on particle mix and transverse momentum. For example, the deficit of strange particles in the event generator effects the result by less than 2%. Since the event generators generally, after detector simulation, produce a local hit density that is consistent with what is observed in data, we observe a correspondence between the tracklet samples of both simulations and data. On the other hand, changing the number of tracklets corresponding to strange particles a posteriori to match the measured relative yields dramatically biases the simulated tracklet sample away from the measured, thus entailing systematic uncertainties that are beyond the effect of the known event generator deficiencies, and as such do not improve the accuracy of the measurements. Instead, variations on the event generators are used to estimate the systematic uncertainties as detailed elsewhere [12,14,15].

In the forward regions ($-3.5 < \eta < -1.8$ and $1.8 < \eta < 5$), the measurement is provided by the analysis of the deposited energy signal in the FMD. The analysis method used is identical to what has previously been presented [7,14]: a statistical approach to calculate the inclusive number of charged particles; and a data-driven correction — derived from previous satellite-main collisions — to remove the large background from secondary particles.

4. Systematic uncertainties

For the measurements at mid-rapidity the sources and dependencies of the systematic uncertainties are detailed elsewhere [7,12,15]. The magnitude of the systematic uncertainties is unchanged with respect to previous results, and amounts to 2.6% at $\eta = 0$ and 2.9% at $\eta = 2$, most of which is correlated over $|\eta| < 2$, and largely independent of centrality.

The systematic uncertainty on the forward analysis is evaluated using the same technique as for previous results [7]. We find that the uncertainty is uncorrelated at $|\eta| > 2$ and amounts to 6.9% for $|\eta| > 3.5$ and 6.4% elsewhere within the forward regions.

The systematic uncertainty on $dN_{ch}/d\eta$ due to the centrality class definition is estimated as 0.6% for the most central and 9.5% for the most peripheral class [15]. The uncertainty is estimated by using alternative centrality definitions based on SPD hit multiplicities and by varying the fraction of the visible hadronic cross-section. The 80–90% centrality class has some residual contamination from electromagnetic processes detailed elsewhere [11], which gives rise to a 4% additional systematic uncertainty on the measurements.

In summary, the total systematic uncertainty varies from 2.6% at mid-rapidity in the most central collisions to 12.4% at the very forward rapidities for the most peripheral collisions.

5. Results

Fig. 1 presents the charged-particle pseudorapidity density as a function of pseudorapidity for ten centrality classes. The measurements from the SPD and FMD are combined in regions of overlap ($1.8 < |\eta| < 2$) between the two detectors by taking the weighted average using the non-shared uncertainties as weights. Finally, based on the symmetry of the collision system, the result is symmetrised around $\eta = 0$, and extended into the non-measured ranges.
region $-5 < \eta < -3.5$ by reflecting the $3.5 < \eta < 5$ values around $\eta = 0$. Complementing result previously reported at mid-rapidity [15], we find $dN_{ch}/d|\eta|_{|\eta|<0.5} = 17.52 \pm 0.05^{\text{stat}} \pm 1.84^{\text{sys}}(\text{sys})$ and $N_{\text{part}} = 7.3 \pm 0.1$ in the 80–90% centrality class.

The measured distributions are fitted with four functions f_G, f_F, f_T, and f_B [7], which are the difference of two Gaussian distributions centred at $\eta = 0$; a parametrisation proposed by PHOBOS [18]; a trapezoidal form; and a plateau connected to Gaussian tails, respectively. To extract the total number of charged particles, we calculate the integral and uncertainty from the data in the measured region and use the integrals of the fitted functions in the unmeasured regions up to the beam rapidity $\pm \sqrt{s_{NN}}/8.6$. As for the previous measurements at $\sqrt{s_{NN}} = 5.02$ TeV, the central value in the unmeasured regions ($-8.6 < \eta < -3.5$ and $5 < \eta < 8.6$) is taken from the fit of the function f_T, while the uncertainty is evaluated as the largest difference between the fitted functions scaled by $1/\sqrt{5}$ [7,14]. The total charged-particle multiplicity is shown in Fig. 2 versus the mean number of participating nucleons $⟨N_{\text{part}}⟩$ estimated from a Glauber calculation [11,15]. After removing correlated systematic uncertainties, we observe an increase in the total number of charged particles of $(27 \pm 4)%$ with respect to the measurements at $\sqrt{s_{NN}} = 2.76$ TeV [7] for all centrality classes. The line shown in Fig. 2 corresponds to a fit of a function inspired by factorisation [18]. The function illustrates scaling by number of participant pairs, with a small perturbation proportional to the cubic root of the number of participants. As the number of nucleon–nucleon collisions (N_{coll}) scales roughly like the square of the number of participants $N_{\text{coll}} \approx N_{\text{part}}^2$ [19], we see no indication of scaling by number of nucleon–nucleon collisions. The observed total N_{ch} dependence on $⟨N_{\text{part}}⟩$ provides no evidence of any significant increase in the number of hard scatterings between the participating nucleons and partons.

In Fig. 3, we compare the charged-particle pseudorapidity density for the 0–5% most central collisions to three models: HIJING [20]; EPOS–LHC [21]; and KLN [22,23], also for the 0–5% most central, except for KLN which is shown for the 0–6% centrality class. Two versions of HIJING are used: version 1.383, with jet quenching disabled, shadowing enabled, and a hard p_T cut-off of 2.3 GeV; and the newer version 2.1 [24]. Both are two-component models with a soft and hard sector defined by a p_T cut-off separating the two. In the 2.1 implementation, HIJING uses an upgraded parametrisation of the nuclear partron distribution functions. This results in a larger cross section for soft processes and a smaller cross section for jet production. The KLN model is based on Colour-Glass-Condensate initial conditions, while EPOS-LHC uses so-called parton-ladders which hadronise in a medium. While none of the three models describe the measured charged-particle pseudorapidity density over the full pseudorapidity range, we observe some differences: HIJING 1.383 over-predicts the charged-particle production especially away from $\eta \approx 0$; EPOS–LHC and HIJING 2.1 consistently under-predict the charge-particle production; whereas KLN, EPOS–LHC, and HIJING 2.1 give a shape reasonably close to the observed distribution. Not shown in Fig. 3, for both HIJING 1.383 and EPOS–LHC, these observations hold over all centrality classes i.e., HIJING 1.383 consistently produces far too many particles away from mid-rapidity and EPOS–LHC consistently under-predicts the charged-particle yield over the full η range. These trends become increasingly more pronounced for more peripheral collisions.

Fig. 4 shows the total number of charged particles produced in the most central heavy-ion collisions as a function of the collision energy, ranging from $\sqrt{s_{NN}} = 2.6$ GeV to 5.02 TeV [14]. The dotted, dashed, and full-drawn lines in the figure represent extrapolations from lower energy results to the current top LHC energy of $\sqrt{s_{NN}} = 5.02$ TeV. None of these predictions fully describe the data. A fit of the simple model of a logarithmic-damped power-law in the square collision energy (s) including from the lowest to the highest energy results, shown as the dash-dotted line, does accurately describe the total number of charged particles at all available energies.
the rapidity-density distribution in Landau hydrodynamics scales as \(\sigma_{\text{NN}} / d\eta \propto 1/(1 - c_{\text{NN}}^2) \), where \(c_{\text{NN}} \) is the speed of sound in the matter. The lifetime of the scale systems inversely with \(c_{\text{NN}} \), and given that the measured width is larger than the predicted by Landau hydrodynamics, it is an indication that, given the considerations above, the lifetime is shorter than suggested.

In the bottom part of Fig. 6 we compare the width of the \(dN_{\text{ch}} / d\eta \) distribution to the available rapidity range \((2y_{\text{beam}}) \). We observe no dependence of this ratio from \(\sqrt{S_{\text{NN}}} = 17.3 \) GeV and upward, indicating that the available phase-space constrains the width of that distribution. The charged-hadron measurements at RHIC (crosses) from the BRAHMS [30] and PHOBOS [34] measurements of \(dN_{\text{ch}} / d\eta \) are converted to \(dN_{\text{ch}} / dy \) using the same method as applied to the ALICE data. Previously, charged-pion measurements from BRAHMS have been reported [33]. These data are not included because a re-evaluation using RHIC Run-4 Au–Au data has not been finalised [36].

From the observed \(s^2 \) scaling of the charged-particle pseudorapidity density at mid-rapidity [15] we expect a 20% increase over \(\sqrt{S_{\text{NN}}} = 2.76 \) TeV in the level of \(dN_{\text{ch}} / d|y|_{0.5} \) and from the extended width of \(dN_{\text{ch}} / d\eta \) we observe an additional 7%, consistent with the increase of 27% over \(\sqrt{S_{\text{NN}}} = 2.76 \) TeV in the total number of charged particles produced in \(\sqrt{S_{\text{NN}}} = 5.02 \) TeV collisions.

6. Conclusions

The charged-particle pseudorapidity density is measured in Pb–Pb collisions at \(\sqrt{S_{\text{NN}}} = 5.02 \) TeV over the pseudorapidity range \(-3.5 < \eta < 5\). The total number of charged particles produced is determined owing to the large pseudorapidity acceptance of ALICE. The latter increases by two orders of magnitude from the most peripheral to the most central collisions and scales approximately with the number of participating nucleons. The increase in the total number of charged particles relative to \(\sqrt{S_{\text{NN}}} = 2.76 \) TeV is estimated to be \((27 \pm 4)\%\). The charged-particle rapidity density for the most central collisions is extracted, and the width of that distribution is compared to predictions from the Landau–Carruthers and Landau–Wong hydrodynamic models. It is found that the measured charged-particle rapidity density becomes increasingly wider as a function of collision energy than predicted by Landau hydrodynamics. The width of the charged-particle rapidity density is seen to scale with the beam rapidity, which implies that the available phase space determines the longitudinal extend of the charged-particle production. The phase space dominance starts at the top SPS energy and persist for two orders of magnitude up to the top LHC energy.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alıkhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado
References

ALICE Collaboration

1 A.I. Alkhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, CA, United States
7 Central China Normal University, Wuhan, China
8 Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
9 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
10 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
11 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
12 Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
13 Chicago State University, Chicago, IL, United States
14 China Institute of Atomic Energy, Beijing, China
15 COMSATS Institute of Information Technology (CITT), Islamabad, Pakistan
16 Departamento de Física de Partículas y CIFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
17 Department of Physics, Aligarh Muslim University, Aligarh, India
18 Department of Physics, Ohio State University, Columbus, OH, United States
19 Department of Physics, Sejong University, Seoul, South Korea
20 Department of Physics, University of Oslo, Oslo, Norway
21 Department of Physics and Technology, University of Bergen, Bergen, Norway
22 Dipartimento di Fisica dell’Università “La Sapienza” and Sezione INFN, Rome, Italy
23 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
25 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
26 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
29 Dipartimento di Fisica “E.R. Caianiello” dell’Università and Gruppo Collegato INFN, Salerno, Italy
30 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
31 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
32 Dipartimento Interateneo di Fisica “M. Merlin” and Sezione INFN, Bari, Italy
33 Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
34 European Organization for Nuclear Research (CERN), Geneva, Switzerland
35 Excellence Cluster Universe, Technische Universität München, Munich, Germany
36 Faculty of Engineering, Bergen University College, Bergen, Norway
37 Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
38 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
39 Faculty of Science, P.J. Šafárik University, Košice, Slovakia
40 Faculty of Technology, Buskerud and Vestfold University College, Tonsberg, Norway
41 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
42 Gangneung-Wonju National University, Gangneung, South Korea
43 Gauhati University, Department of Physics, Guwahati, India
44 Heimholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
45 Helsinki Institute of Physics (HIP), Helsinki, Finland
46 Hiroshima University, Hiroshima, Japan
47 Indian Institute of Technology Bombay (IIT), Mumbai, India
48 Indian Institute of Technology Indore, Indore, India
49 Indonesian Institute of Sciences, Jakarta, Indonesia
50 Inha University, Incheon, South Korea
51 Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France
52 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
53 Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
54 Institute for Theoretical and Experimental Physics, Moscow, Russia
55 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
56 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
57 Institute of Physics, Bhubaneswar, India
58 Institute of Space Science (ISS), Bucharest, Romania
59 Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
60 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
61 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
62 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
63 Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
64 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
65 IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France, Saclay, France
66 iThemba LABS, National Research Foundation, Somerset West, South Africa
1 Deceased.

ii Also at: Georgia State University, Atlanta, Georgia, United States.
iii Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
iv Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow, Russia.