Atmosphere-driven ice sheet mass loss paced by topography: Insights from modelling the south-western Scandinavian Ice Sheet

Henning Åkesson a, *, Mathieu Morlighem b, Kerim H. Nisancioglu a, c, John Inge Svendsen a, Jan Mangerud a

a Department of Earth Science, University of Bergen and Bjerknes Centre for Climate Research, Allégaten 70, 5007, Bergen, Norway
b University of California, Irvine, Department of Earth System Science, 3218 Croul Hall, Irvine, CA, 92697-3100, USA
c Centre for Earth Evolution and Dynamics, University of Oslo, Postbox 1028 Blindern, 0315, Oslo, Norway

A R T I C L E I N F O

Article history:
Received 20 December 2017
Received in revised form 16 April 2018
Accepted 4 July 2018
Available online 17 July 2018

Keywords:
Ice sheet modelling
Grounding line dynamics
Marine-terminating glaciers
Deglaciation
Ice-ocean interactions
Surface mass balance
Younger dryas
Norway
Eurasian ice sheet
Scandinavian ice sheet

A B S T R A C T

Marine-terminating glaciers and ice streams are important controls of ice sheet mass balance. However, understanding of their long-term response to external forcing is limited by relatively short observational records of present-day glaciers and sparse geologic evidence for paleo-glaciers. Here we use a high-resolution ice sheet model with an accurate representation of grounding line dynamics to study the deglaciation of the marine-based south-western Norwegian sector of the Scandinavian Ice Sheet and its sensitivity to ocean and atmosphere forcing. We find that the regional response to a uniform climate change is highly dependent on the local bedrock topography, consistent with ice sheet reconstructions. Our simulations suggest that ocean warming is able to trigger initial retreat in several fjords, but is not sufficient to explain retreat everywhere. Widespread retreat requires additional ice thinning driven by surface melt. Once retreat is triggered, the underlying bedrock topography and fjord width control the rate and extent of retreat, while multi-millennial changes over the course of deglaciation are modulated by surface melt. We suggest that fjord geometry, ice-ocean interactions and grounding line dynamics are vital controls of decadal-to-centennial scale ice sheet mass loss. However, we postulate that atmospheric changes are the most important drivers of widespread ice sheet demise, and will likely trump oceanic influence on future ice sheet mass loss and resulting sea level rise over centennial and longer time scales.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ice streams and marine-terminating glaciers are capable of rapidly discharging significant amounts of ice into the ocean. Their response to the current climate warming trend remains a major uncertainty in projections of future ice sheet mass loss and sea level rise (Nick et al., 2013; Nowicki et al., 2013; Ritz et al., 2015). Outlet glaciers and ice shelves in Greenland and Antarctica are retreating (e.g. Moon and Joughin, 2008; Murray et al., 2015), accelerating (Moon et al., 2012; Joughin et al., 2014), thinning (Pritchard et al., 2009; Paolo et al., 2015), and weakening (Borstad et al., 2013; Fürst et al., 2016). The bed topography of most major outlet glaciers remains below sea level far inland (Morlighem et al., 2014; Fretwell et al., 2013; An et al., 2017; Millan et al., 2017), making present day glaciers vulnerable to warm ocean waters as grounding lines retreat. Moreover, some beds deepen inland, a configuration associated with a potential marine ice sheet instability (e.g. Weertman, 1974; Feldmann and Levermann, 2015; Golledge et al., 2015). The latter conditions suggest that dynamic mass loss, once triggered, may continue largely decoupled from future changes to external forcing and associated efforts to decrease anthropogenic emissions. For marine margins buttressed by ice shelves, or for glaciers terminating in fjords, it is uncertain to what extent such accelerated mass loss will take place, given the additional support provided by ice shelves and trough walls (Schoof et al., 2017; Haseloff and Sergienko, 2018; Åkesson et al., 2018).

It is unclear for how long accelerated ice discharge can be sustained, and it is therefore crucial to assess the relative importance of the drivers of mass loss over centennial-to-millennial-scales. A leading hypothesis explaining contemporary changes to marine terminating glaciers and ice shelves is the intrusion of warm sub-surface waters reaching ice shelf drafts and glacier grounding lines (Holland et al., 2008; Straneo and Heimbach, 2013). However,
reconstructions and model studies are inconclusive with regards to whether high surface melt or ocean-driven dynamic mass loss control long term ice sheet stability and sea level rise (Golledge et al., 2015; Stokes et al., 2016).

Another source of uncertainty is which glaciers are most vulnerable, and whether their responses are non-linear (Reyes et al., 2014; Dutton et al., 2015; Mengel and Levermann, 2014; Mengel et al., 2016). Both empirical ice sheet reconstructions (Mangerud et al., 2013, 2016; Stokes et al., 2014) and modern observations (Moon et al., 2012; Bartholomaus et al., 2016; Felikson et al., 2017) show that responses vary even within regions experiencing similar external forcings. This behaviour, apparently out-of-phase with contemporary climate, complicates interpretation of observations and excludes marine-terminating glaciers as past climate indicators without additional knowledge of site-specific controls.

Our ability to model past ice sheet change provides an important metric to evaluate the accuracy of numerical models used for future predictions. To test the accuracy of these models, geologic evidence can be used. However, sedimentary and geomorphic data provide only mean rates of change, constrained by dating accuracy. Short-term variations may thus be masked out and interpretations hampered. For example, glacier moraines may be deposited several hundreds or thousand years apart. Cosmogenically dated erratics, though useful to map ice-free surfaces, have uncertainties in the centennial to millennial range (e.g. Briner et al., 2005). These types of evidence provide only snapshots in time. Sedimentary sequences, in contrast, are inherently continuous. Yet, their spatial coverage is sparse: to elucidate whether they represent a regional ice sheet margin or a local anomalous feature requires many samples and extensive field studies.

While certainly having limitations, numerical ice sheet models give a continuous and spatially complete picture, and can resolve ephemeral behaviour. Models can also help disentangle the extent to which external forcing or site-specific factors dominate glacier behaviour. Numerous large-scale, transient simulations of the deglaciation of past ice sheets have been carried out. Studies of the Antarctic (Golledge et al., 2012; Pollard et al., 2015), Greenland (Robinson et al., 2011; Applegate et al., 2012), British-Irish (Hubbard et al., 2009), Laurentide (Marshall et al., 2000; Tarasov et al., 2012), and Eurasian Ice Sheets (Arnold and Sharp, 2002; Kleman et al., 2002; Patton et al., 2017) have all improved our understanding of long-term ice sheet change. However, marine-terminating glaciers, distributed all around the coasts of Greenland, Norway, Svalbard, Patagonia, Alaska, and parts of Antarctica, are often too small to be resolved accurately in such coarsely resolved large-scale ice sheet models. This issue limits model accuracy and our understanding of past behaviour. Many paleo-ice sheet models rely solely on the computationally-efficient Shallow Ice Approximation (Hutter, 1983; Morland, 1984), which is unable to capture interactions between fast-flowing ice streams and the interior ice sheet.

One of the most important physical processes that needs to be correctly captured by models is grounding line dynamics (e.g. Schoof, 2007), for which accurate representation requires spatial scales of ~1 km or better (Viel and Payne, 2003; Durand et al., 2011; Seroussi et al., 2014; Gagliardini et al., 2016). Currently, computational constraints prevent continental-scale, high-resolution, transient paleo-simulations, i.e. several thousand years and longer at a resolution of ~1 km. Most work to date has therefore been on (i) coarse spatial and long temporal scales; or (ii) fine spatial and short temporal scales.

Flowline models remain an exception, as they can finely track grounding line motion over long time scales. These models have been used to study Antarctic ice streams (Jamieson et al., 2012, 2014), Greenlandic outlet glaciers (Nick et al., 2009, 2013; Vieli and Nick, 2011; Lea et al., 2014; Steiger et al., 2018), as well as idealised glaciers (e.g. Vieli et al., 2001; Nick et al., 2010; Enderlin et al., 2013; Åkesson et al., 2018). While useful to better understand physical processes, including calving dynamics, flowline models are not suitable for complex geometries, nor can they capture interactions between neighbouring drainage basins. These models are also width-averaged by definition, which precludes accurate representation of across-flow topographic features such as local pinning points.

Here, we use an alternative approach to simulate the deglaciation of south-western Norway by applying a high resolution, regional ice sheet model to assess this area’s sensitivity to ocean and atmospheric warming. We resolve individual fjords and their interactions, and provide a spatially complete, transient picture from 18 to 11 ka before present (BP). South-western Norway was the marine-based western Norwegian sector of the Scandinavian Ice Sheet and is exceptionally data-rich (e.g. Hughes et al., 2016; Mangerud et al., 2017), yet the ice sheet behaviour has not been studied in a detailed model framework before.

This paper is structured as follows. First, we briefly describe relevant ice sheet changes in south-western Norway over the modelled period 18–11 ka BP (Sect. 2). Details of the ice sheet model and implementation of atmosphere and ocean forcing are given in Sect. 3, followed by a description of experimental design and empirical constraints (Sect. 4). Our results are divided into sensitivity experiments to forcing from the ocean (Sect. 5.2) and the atmosphere (Sect. 5.3), as well as simulations of the deglaciation 18–11 ka BP (Sect. 5.4). We discuss the relative influence of the forcing (Sect. 6.1), topography (Sect. 6.2), as well as model limitations (Sect. 6.3), and finally highlight implications for past and future stability of ice sheets in Sect. 6.4.

2. Deglacial history of south-western Norway

During the Last Glacial Maximum (LGM) c. 21–20 ka BP, the Scandinavian Ice Sheet was connected with the British-Irish Ice Sheet (e.g. Hughes et al., 2016). Subsequently, the major Norwegian Channel Ice Stream was activated in the Norwegian Channel. This ice stream flowed northwards along the west coast of Norway before collapsing 19–18 ka BP (Svenssen et al., 2015; Sejrup et al., 2016). Here we do not model these early phases, instead we examine the triggers and drivers of deglaciation of south-western Norway over the period 18–11 ka BP. Once the Norwegian Channel Ice Stream collapsed, a new stable ice margin roughly parallel with the Norwegian coast was established (Mangerud et al., 2017) (see Fig. 1). Our simulations start from this period, when western Norway resembled present-day Greenland, with marine-terminating glaciers and deeply incised subglacial valleys draining the interior ice sheet (Morlighem et al., 2014, 2017).

Deglaciation of western Norway started around 18 ka BP with the southernmost offshore islands and coastal areas becoming ice-free first (Fig. 2). In contrast, coastal areas farther north remained ice-covered until 15 ka BP, during which time sea surface temperatures (SSTs) remained relatively stable in the Norwegian Sea (Elsdæl et al., 2014; Dokken et al., 2015). Widespread retreat in western Norway only occurred after 15 ka BP. The paleoclimate record suggests an asynchronous retreat history across different outlet glaciers, despite similar changes to the maritime climate. Stratigraphic evidence from lakes and bogs, as well as cosmogenically dated erratics, suggest that retreat of the Boknafjorden outlet glacier and Jæren regions (Fig. 2) to the south commenced 17–16 ka (Briner et al., 2014; Svenssen et al., 2015; Lunnan, 2016; Johnsen, 2017; Gump et al., 2017). In contrast, Hardangerfjorden glacier,
only 50 km north, started to retreat 1–2000 years later, at the transition into the warm Bølling inderstadial c. 14.8 ka BP (Mangerud et al., 2013, 2016).

During the Bølling-Allerød c. 14.8–12.7 ka BP, ice sheet retreat was extensive (Fig. 2), with margins in some areas retreating c. 40–50 km inland of their subsequent Younger Dryas (YD) positions. Readvance during the following YD cold reversal c. 12.7–11.6 ka BP produced prominent moraines that can be traced from sea level to the high uplands (Andersen, 1954; Follestad, 1972). This YD readvance overran any Allerød deposits, erasing evidence of the ice configuration prior to the YD, for which knowledge is limited to stratigraphic records (Mangerud et al., 2016).

Reconstructions thus imply that retreat during deglaciation in western Norway differed between outlet glaciers (Mangerud et al., 2013, 2016; Briner et al., 2014; Gump et al., 2017). Similarly, Stokes et al. (2014) suggested that retreat of marine-terminating glaciers in northern Norway during deglaciation 15–10 ka BP was out-of-phase with contemporary climate changes. These lines of evidence suggest that glacier-specific factors such as local topography alter the expected response to the climate forcing. Nevertheless, quantitative explanations of these intraregional differences are yet to be established.

3. Ice sheet model

3.1. Ice dynamics and model mesh

We use the two-dimensional Shelfy Stream Approximation (SSA, MacAyeal, 1989) within the Ice Sheet System Model (ISSM, Larour et al., 2012). This stress balance approximation is well suited to model fast ice streams and regions experiencing significant sliding at the bed. In contrast to the Shallow Ice Approximation (Hutter, 1983; Morland, 1984), commonly used in paleoclimate studies, the SSA includes a non-local stress balance, accounting for membrane stresses. The SSA also significantly reduces the computational cost compared to higher-order ice flow physics.

Note, however, that SSA is less suited for land-based flow, where internal deformation is important.

We construct a non-uniform model mesh with resolution varying from 1 km in areas of high basal relief, to 10 km in areas with smoother topography. In addition, we enforce 1 km resolution in all areas below sea level, consistent with requirements to accurately simulate grounding line dynamics (Durand et al., 2011; Seroussi et al., 2014). In practice, a resolution of 1 km is enough to accurately capture grounding line dynamics when using a sub-element hydrostatic scheme (Seroussi et al., 2014) developed for this purpose.

Ice is assumed isothermal with a viscosity equivalent to an ice temperature of -5°C (Cuffey and Paterson, 2010, p.73; rate factor listed in Table 1), consistent with what is used in model studies for the western and eastern Greenland Ice Sheet (e.g. Nick et al., 2013).

Our model domain is restricted to south-western Norway, and we assume a fixed ice divide corresponding to present-day water divides (Fig. 2) with no influx into our domain. In contrast to our model, the ice divide likely migrated over the course of deglaciation. However, we make this assumption for simplicity and technical reasons, avoiding unphysical model behaviour associated with an imposed migration of the ice divide. We assess this approach by comparing with large-scale model output of the Eurasian Ice Sheet (L. Tarasov, unpubl. data). This assumption is reasonable for the later part of the deglaciation, and less accurate for the earlier part, when the ice divide is likely to have been located further east. However, since this is far from the ice sheet margin in the early part of our deglaciation simulation (18–15 ka), and modelled ice flow in the interior is slow, we find this bias acceptable.

While we accurately model grounding line migration, we deliberately neglect migration of the floating ice front as we do not have sufficient data to calibrate a calving model. Note, however, that the floating tongue is affected by oceanic melt and will impact the stability of the glacier.
velocity and south: F. Ko Bo Bf Boknafjorden, Kv-Kvitsøy, S-Stavanger, J Jæren. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

3.2. Basal conditions for grounded ice

Basal motion is modelled using a linearly viscous sliding law (Budd et al., 1984):

$$\tau_b = -\alpha^2 N_e v_b,$$

where τ_b is the basal drag, α is a friction parameter, v_b is the basal velocity and N_e the effective pressure. We assume that the subglacial hydrological system is a uniform sheet of water connected to the ocean, and the effective pressure is taken as the difference between the weight of ice and the hydrostatic height: $N_e = \rho_g H - \rho_{fw} g z_b$, where ρ_i, g, H, ρ_{fw}, and z_b are ice density, gravitational acceleration, ice thickness, freshwater density and bed elevation, respectively. We construct a spatially variable basal drag coefficient α proportional to bed elevation z_b:

$$\alpha = 120 \min(\max(0, 0.2b + 800), 2000) / 2000$$

Using this simple approach, we capture the expected fast flow (low drag) in the fjords, and simulate slow flow (high drag) on uplands and in the ice sheet interior. No friction ($\alpha = 0$) is applied for floating ice. In some areas in the interior, thin-ice areas might have been frozen to the bed (e.g. Kleman and Hättestrand, 1999). This is implicitly accounted for by introducing a very high basal drag at high elevations, where we expect ice to be thin.

3.3. Surface mass balance

For simplicity, we represent changes in surface mass balance by imposing variations in the equilibrium line altitude (ELA). The strength of this approach is that the ELA implicitly accounts for changes in summer and winter surface mass balance, for which knowledge of a number of near-surface processes is not available. We thereby avoid tuning a suite of poorly constrained parameters required for a surface energy balance (Hock, 2005) or insolation-temperature model (e.g. Robinson et al., 2010). An alternative would have been to use a simple positive-degree day (PDD) model (e.g. Reeh, 1989; Hock, 2003). However, they require calibration of melt factors for snow and ice, which are not known for this region in the past.

Temperature and precipitation records are also poorly constrained during deglaciation. This is especially true for the first few thousand years, when most of south-western Norway was ice-covered, preventing formation of terrestrial records.

Observed ELAs in western Norway follow an E-W gradient gradually falling towards the coast (Østrem and Liestøl, 1964). We define a spatially variable initial reference $ELA(x, y)_{ref}$ based on present-day ELAs (Lie et al., 2003a; Andreassen et al., 2005; Giesen and Oerlemans, 2010). The ice surface is oriented approximately parallel to this E-W gradient. We therefore represent the gradient by constructing an $ELA(x, y)_{ref}$ as a function of the initial (pre-spinup) surface elevation z_s (see Sect. 4.1):

$$ELA(x, y)_{ref} = 300 + 0.42z_s.$$

This function is a simplification of the detailed spatial maps of ELA for southern Norway calculated by Lie et al. (2003b). The latter

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice density</td>
<td>ρ_i</td>
<td>917</td>
<td>kg m$^{-3}$</td>
</tr>
<tr>
<td>Freshwater density</td>
<td>ρ_{fw}</td>
<td>1000</td>
<td>kg m$^{-3}$</td>
</tr>
<tr>
<td>Gravitational acceleration</td>
<td>g</td>
<td>9.81</td>
<td>m s$^{-2}$</td>
</tr>
<tr>
<td>Rate factor</td>
<td>A</td>
<td>1.0753×10^{-24}</td>
<td>s$^{-1}$ Pa$^{-3/2}$</td>
</tr>
<tr>
<td>Basal friction parameter</td>
<td>α</td>
<td>0–120</td>
<td>(Pa a$^{-1/2}$)</td>
</tr>
<tr>
<td>Sliding law exponent</td>
<td>m</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Glen's law exponent</td>
<td>n</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Vertical SMB gradient, ablation zone</td>
<td>Γ_{abl}</td>
<td>0.0037</td>
<td>a$^{-1}$</td>
</tr>
<tr>
<td>Vertical SMB gradient, accumulation zone</td>
<td>Γ_{acc}</td>
<td>0.002</td>
<td>a$^{1/2}$</td>
</tr>
<tr>
<td>Upper bound on SMB</td>
<td>B_{max}</td>
<td>1</td>
<td>m w.e.</td>
</tr>
<tr>
<td>Lower bound on SMB</td>
<td>B_{min}</td>
<td>−6</td>
<td>m w.e.</td>
</tr>
<tr>
<td>Mesh resolution</td>
<td>Δx</td>
<td>1–15</td>
<td>km</td>
</tr>
<tr>
<td>Time step</td>
<td>Δt</td>
<td>0.05</td>
<td>a</td>
</tr>
</tbody>
</table>
calculated ELAs based on modern temperature and precipitation records for southern Norway, using observed ELAs from local glaciers and ice caps as validation.

A temporally varying ELA is calculated by adding a time-dependent anomaly \(\Delta \text{ELA}(t) \) to the initial reference ELA \((x, y)_{\text{ref}} \):

\[
\text{ELA}(x, y, t) = \text{ELA}(x, y)_{\text{ref}} + \Delta \text{ELA}(t). \quad (4)
\]

We thus have a spatially varying surface forcing, with temporal changes applied uniformly in space. Here, the temporal changes \((\Delta \text{ELA}(t)) \) will be based on reconstructions for the deglaciation (see Sect. 4.3).

An elevation dependent surface mass balance rate \(B \) is calculated using separate vertical mass balance gradients \(\Gamma_{\text{abl}} \) and \(\Gamma_{\text{acc}} \) in the ablation and accumulation zones, respectively (see Table 1). These gradients are based on present-day and past studies of Greenland, Alaska, and Norway (Van de Wal, 1996; Van de Wal et al., 2005; Rea and Evans, 2007; Van Beusekom et al., 2010; Huss and Farinotti, 2012), which is representative of the regional climate in our modelled area. We also compared our gradients against large-scale, coarse-resolution simulations of the entire Eurasian Ice Sheet (L. Tarasov, unpubl. data) and found our gradients to be appropriate time-averaged values for the deglaciation.

In the ablation zone, \(B \) at a certain elevation \(z \) is calculated by

\[
B(z) = \max \left(\Gamma_{\text{abl}}(z - \text{ELA}(x, y, t)), B_{\text{min}} \right),
\]

and similarly in the accumulation zone

\[
B(z) = \min \left(\Gamma_{\text{acc}}(z - \text{ELA}(x, y, t)), B_{\text{max}} \right).
\]

The limits of \(B_{\text{min}} = -6 \) m water equivalent (w.e.) and \(B_{\text{max}} = 1 \) m w. e. are introduced to avoid unphysical surface mass balance rates and are consistent with a range of observations from the Greenland Ice Sheet and Alaska (Van de Wal, 1996; Van de Wal et al., 2005; Van Beusekom et al., 2010; Helsen et al., 2012).

3.4. Ocean forcing

At the base of ice shelves, we apply a uniform reference submarine melt rate \(M_{\text{ref}} = 20 \text{ m a}^{-1} \). This melt rate is close to observations of Greenland outlet glaciers (Rignot et al., 2010) and Antarctic ice shelves (Rignot et al., 2013). We expect ocean conditions for the Norwegian coast to be similar, considering changes in sea surface temperatures (SSTs) reconstructed for the Norwegian Sea during deglaciation (Bakke et al., 2009; Eldevik et al., 2014; Dokken et al., 2015). For simulations of the deglaciation, submarine melt rates are scaled with atmospheric forcing as follows:

\[
M = M_{\text{ref}} + 0.05 \Delta \text{ELA}(t),
\]

where \(\Delta \text{ELA}(t) \) is given in Fig. 9a (see details in Sect. 4.3). This corresponds to a 1:20 submarine melt rate to ELA scaling, e.g., a 100 m change in ELA implies a 5 m a\(^{-1}\) change in submarine melt rate. This scaling assumes that atmosphere and ocean changes are coupled on the centennial to millennial time-scales considered here. This coupling may occur via direct air-sea interactions, or through varying atmospheric-induced runoff, resulting in subglacial discharge and changes in submarine melt (Slater et al., 2016). Melt rate magnitudes are arbitrary yet consistent with measured submarine melt rates on Greenland (Rignot et al., 2010; Motyka et al., 2011; Fried et al., 2015).

4. Experimental design and empirical constraints

4.1. Initial conditions

As initial conditions we impose a simplified representation of the 18 ka ice sheet. We choose 18 ka as a starting point since the Norwegian Channel Ice Stream collapsed prior to this time (Svendsen et al., 2015; Sejrup et al., 2016; Morén et al., 2017). This means the ice sheet margin was at the coast, similar, albeit slightly more extensive than the margins of the Greenland Ice Sheet today. We initialise our ice sheet model with estimated 18 ka grounding lines based on empirical evidence (Hughes et al., 2016; Gump et al., 2017; Mangerud et al., 2017). As the 18 ka grounding line positions are not well constrained, we let the grounding line evolve freely during a spin-up period, relaxing it to a stable position. We start with a polynomial-shaped ice sheet surface covering all sites of younger \(^{10}\)Be exposure dates (Mangerud et al., 2013; Briner et al., 2014; Svendsen et al., 2015; Gump et al., 2017), and such that the interior ice sheet surface is in approximate agreement with Eurasian Ice Sheet simulations (L. Tarasov, unpubl. data). The spinup simulation is run for 2000 years using fixed model parameters and a constant climate with \(\text{ELA}_{\text{ref}} \). We assume that the model reaches steady-state when rates of thickness change is smaller than 1 cm per year. Empirical evidence document a gradually falling relative sea level during deglaciation (Lohne et al., 2007; Lunnan, 2016). We therefore run our simulations using a sea level 20 m higher than today, in line with deglaciation-averaged sea levels from these reconstructions.

4.2. Sensitivity to atmospheric and ocean forcing

To quantify the ice sheet response to climate change, we perform a sensitivity study to step changes in surface mass balance
and submarine melt relative to the 18 ka model steady-state (Fig. 3).

Perturbations to the ELA range from +100 to +1200 m relative to 18 ka ELAs. For comparison, Younger Dryas ELAs are estimated to be c. 500 m higher than those at 18 ka, while present-day ELAs are c. 1000 m higher than 18 ka ELAs (Andreassen et al., 2005; Mangerud et al., 2016).

Submarine melt rates are perturbed in two separate sensitivity experiments, increasing from the reference melt rate $M_{ref} = 20$ m a$^{-1}$ at 18 ka, to 100 and 200 m a$^{-1}$.

Following these step perturbations of the ELA and submarine melt rates, starting with the 18 ka ice sheet, we let the model evolve to a new steady-state. In reality, changes would not have been instantaneous, or as large as applied here. The rationale behind making step changes, as opposed to a time-dependent forcing, is to isolate the relative ice sheet response to a different atmosphere and ocean, irrespective of the time scale of the forcing.

4.3. Deglaciation 18–11 ka

To model the deglaciation, we use the time-varying function $\Delta ELA(t)$, developed from a conceptual curve in Mangerud et al. (2016), as our atmosphere forcing (Fig. 9a). In order to scale this curve we have used the Younger Dryas ELA determined from the highest Younger Dryas lateral moraines, the present day ELA for the early Holocene (11 ka), and available paleoclimate reconstructions to estimate $\Delta ELA(t)$ for the rest of the period.

One of our objectives is to quantify the significance of ocean forcing as a driver of long-term ice sheet mass loss. To test this, we perform two parallel experiments for the period 18–11 ka using different submarine melt rates: (i) constant at 20 m a$^{-1}$, (ii) time-dependent, scaled to $\Delta ELA(t)$ over the course of deglaciation (Eq. (7); Fig. 9a).

Reconstructions of Norwegian Sea SSTs exist for the deglaciation (Bakke et al., 2009; Eldevik et al., 2014; Dokken et al., 2015). However, these do not give sufficient basis to spatially refine submarine melt rates in our region. We therefore keep our external forcing spatially uniform throughout the simulations.

5. Results

5.1. Ice sheet flow at 18 ka

For the state at 18 ka BP, we compare modelled ice velocities and flow directions (Fig. 3) with observations of glacial striae. In the entire area north of Korsfjorden and northwest of Hardangerfjorden (cf. Fig. 2) the model shows overall westward ice-flow across mountain areas. The ice flow direction is modulated by the underlying topography, particularly by the major fjords, where velocities are higher. However, note that the simulated ice flow is unobstructed by several deep N–S trending fjords.

The simulated ice-flow across fjords is consistent with the oldest recorded glacial striae. These striae, found on the westernmost islands and on mountain summits inland, are all directed west towards the coast. These observations suggest that ice flow at the early stages of the deglaciation, when the ice was thick, was relatively independent of the underlying bed topography (Aarseth and Mangerud, 1974; Aa and Mangerud, 1981; Hamborg and Mangerud, 1981; Sale, 2017). During the deglaciation, as the ice became thinner, the glacial striae show that the ice movement gradually became controlled by the bed topography.

The model shows westward ice flow out of the outer half of Hardangerfjorden, which is the longest and deepest fjord in the area, a picture consistent with glacial striae (Follestad, 1972; Holtedahl, 1975; Hamborg and Mangerud, 1981). Further south, the pattern of striae is more complicated, but for the western part, it is reasonably consistent with our modelled directions (Ringen, 1963; Rennøvik, 1971; Anundsen, 1972, 1990). We also note that there are locally conflicting ice movements between the model and observations, for which we have no straightforward explanation. For example, Andersen and Wangen (1987) found that ice flow was directed out of Boknafjorden and across northern Jæren, in contrast to our model results, which show ice-flow directions towards the Boknafjorden trough. Since modelled flow directions appear sensitive to underlying topography in coastal areas with thinner ice, a potential explanation is that an underestimated ice thickness leads to local flow inconsistent with the empirical evidence. Indeed, 10Be exposure ages indicate that mountains which featured as small nunataks in the 18 ka model scenario were still covered by ice at this time, suggesting that the model underestimates ice thickness slightly in coastal areas.

5.2. Ocean forcing as a selective trigger

We start with a sensitivity study of the 18 ka ice sheet as described in Sect. 4.2. A spatially uniform increase in submarine melt rates from 20 to 100 m a$^{-1}$ causes significant differences in timing and magnitude of grounding line retreat between fjords (Fig. 4). Retreat occurs through deep sections of the northernmost fjords in our domain (Fensfjorden and Hjeltefjorden), despite these fjords being relatively far from the grounding line off Herdla is consistent with reconstructions for the early Holocene (11 ka) and available paleoclimate reconstructions (cf. Fig. 2) the model shows overall westward ice-flow at the new stable position compared to before retreat (Fig. 5b).

In stark contrast to the significant retreat in the north, the grounding line retreats only a few kilometres at the three narrow, shallow fjord mouths in the center of our domain (Korsfjorden, Selbjørnsfjorden, Bamlafjorden; Fig. 4). In the south, the most sensitive area is Boknafjorden. Fast-flowing ice in the main trough of Boknafjorden is fed by multiple tributaries from the east and south (Fig. 3). Following the increase in submarine melt (to 100 m a$^{-1}$), Boknafjorden’s grounding line is dislodged from a ~250 m shallow sill south of the island Bokn and retreats ~25 km inland in less than 30 years, with a mean retreat rate exceeding 800 m a$^{-1}$. The grounding line stabilises a few kilometres upstream on a second sill (at km 55 in Fig. 5a). The glacier speeds up by 40% during the fast retreat, but slows down and flows only 5–10% faster at its new stable position compared to before retreat (Fig. 5b).

In our sensitivity experiments with a higher submarine melt rate of 200 m a$^{-1}$ (Fig. 6), comparable to present-day Jakobshavn Isbræ in Greenland (Motyla et al., 2011), retreat proceeds past the second sill in Boknafjorden (at km 55). Counter to canonical marine ice sheet instability theory (Weertman, 1974), retreat does not accelerate over the retrograde slope around km 55–65. This part of the bed coincides with the narrow entrance (bottleneck) to the inland Nedstrandsfjorden (Fig. 4). Retreat and flow accelerate again at the end of the overdeepened bed (at km 70) and up the prograde bed towards km 80. Here, the glacier stabilises with a steep surface just upstream of the grounding line. The steady-state velocities close to the front vary by a factor of three over less than 10 km, in stark contrast to the dynamics of the flatter initial surface topography at 18 ka (Fig. 6).

Fig. 7a shows the 18 ka and perturbed steady-state grounding lines for experiments with our reference and perturbed melt rates, 20 and 100 m a$^{-1}$, respectively. There is little difference between grounding lines associated with 100 and the more extreme 200 m
a\(^1\) melt rate. The exception is Boknafjorden, where the grounding line is dislodged from a sill located in a lateral constriction of the fjord, and thereby migrates into the inland Nedstrandsfjorden, as shown along its flowline in Fig. 6.

5.3. Surface mass balance: a slow trigger and long-term driver

In our second set of sensitivity experiments, we raise the ELA relative to the 18 ka state, as described in Sect. 4.2. Here we describe the 300 m ELA rise. To put this forcing in perspective, the air temperature following the Younger Dryas cold reversal (See Sect. 5.4 for more details) may have increased by 4–5 °C in southern Norway (Birks et al., 2013), accompanied with ELA increases of up to 300–500 m (Lie et al., 2003b; Mangerud et al., 2013, 2016).

As with the ocean forcing, the model shows a spatially variable response to the regionally uniform ELA increase of 300 m (Fig. 7b). This imposed step increase of the ELA corresponds to an instantaneous inland migration of the ELA by c. 30–40 km, depending on the topographic setting. Retreat due to atmospheric warming and ELA rise is more extensive than the response to ocean warming and enhanced submarine melt, particularly for land-based ice. The flat Jæren area in the south and the dynamic Boknafjorden ice stream experience the most extensive retreat (Fig. 7b). Most of the margin in this region is on the verge of transitioning from marine-to land-terminating ice in response to the ELA change.

Ice in the central fjords of our domain (Bømla-Hardangerfjorden, Selbjørnsfjorden, Korsfjorden) retreat 20–25 km inland of their 18 ka margins. Retreat is more modest in the central fjords than in the nearby Bergen area to the north. This results in a complex ice sheet margin, where uplands generally become ice-free first. In contrast, marine-terminating glaciers survive, fed by upstream ice discharge and pinned by topography in an otherwise too warm climate for land-based ice to persist. Conversely, the
Fig. 5. Bedrock topography modulates response to ocean forcing. Glacier geometries and velocities along the flowline in Boknafjorden (Fig. 4) are shown every five years, in response to a five-fold increase in submarine melt rate, from 20 to 100 m a⁻¹.

Fig. 6. Bedrock topography modulates response to ocean forcing. Glacier geometries and velocities along the flowline in Boknafjorden (Fig. 4) are shown every five years, in response to a step ten-fold increase in submarine melt rate, from 20 to 200 m a⁻¹.
marine-based Boknafjorden ice stream retreats further inland than the nearby land-based ice.

We find that from the 18 ka state, a warmer atmosphere with elevated ELA (Fig. 7b) causes substantially more ice volume loss than our most extreme ocean warming with 200 m a⁻¹ submarine melt rates (Fig. 7a). As an example, raising the ELA by 300 m increases the surface melt and ice discharge by a factor of two.

A summary of the experiments starting from the 18 ka state employing a range of ELA and submarine melt rates is shown in Fig. 8. However, a fair comparison between magnitudes of ELA changes and submarine melt rates is not straightforward. For small changes of the ELA, more ice is retained in the fjords and a warmer ocean is indeed important. For example, a 100 m ELA increase combined with five times higher submarine melt rates yields 40% more mass loss than the ELA increase alone. Note that submarine melt rates are an order of magnitude higher than surface melt rates (cf. Sect. 3.3 and 4.2), yet submarine melt affects a significantly smaller area than does the surface melt across the ablation area. For larger ELA changes, much of the margin becomes land-terminating (Fig. 7b). Beyond this point (an ELA increase of c. 300 m), surface mass balance almost completely determines the amount of mass lost (Fig. 8).

5.4. Simulated deglaciation of western Norway

In the previous sections, the sensitivity experiments employ constant perturbations starting from a fixed 18 ka climate. In contrast, now we run the model with time-varying climate forcing approximating the deglaciation from 18 to 11 ka (Sect. 4.3), including a time-varying ELA and submarine melt (Fig. 9a). We are thus in a position to compare our model results with independent empirical evidence (Fig. 10). Note, that the submarine melt rate is scaled to the ELA, as described in Sect. 3.4 (Eq. (7)).

For the deglaciation 18–11 ka, our model results suggest that the Boknafjorden and Jæren areas to the south are the most sensitive to changes in climate. Consistent with reconstructions and our sensitivity experiments outlined in Sect. 5.2 and 5.3, this is where marine-based ice retreats first, progressing into the wide, deep trough inland of the stabilising shallow sill between the islands Bokn and Kvitsøy (Fig. 10a).

Except for the detailed reconstructed Younger Dryas margin, our spatially continuous model history makes it possible to examine the ice margin in more detail than in the reconstructions (Fig. 2; red lines in Fig. 10). The modelled ice margin for the warm Bølling-Allerød period c. 14.8–12.7 ka BP is in good agreement with reconstructions (Fig. 10b and c). An exception is the retreat of the Hardangerfjorden glacier in the Allerød, which we are not able to
capture. Retreat of this outlet glacier is also documented for the early Holocene (e.g. Mangerud et al., 2013), while the model glacier front is still located close to the Younger Dryas position (Fig. 10d) at the end of our simulation at 11 ka (not shown here). We discuss this mismatch in Sect 6.3.

Marine-based fronts generally lag retreat on land, consistent with our sensitivity experiments in Sect. 5.3. This is particularly clear during the Bølling-Allerød (Fig. 10b and c) and the Younger Dryas (Fig. 10d), resulting in an ice margin with marine-based outlet glaciers chiselled in between nearby ice-free mountains.

For the Younger Dryas cold reversal, the modelled margin is largely consistent with the reconstructions, which for this time period are highly precise. There is a small mismatch in the southern part of the model domain, likely due to the influence of the nearby domain boundary. We also underestimate the well-documented advance in the north (Mangerud et al., 2016). However, overall the agreement between the model and the reconstructions is excellent for the Younger Dryas.

We end our simulation in the early Holocene (11 ka). At this time, the model fits well with reconstructions in the south, while ice margin retreat in the north is underestimated (not shown here). Overall, we find that temporally variable ocean forcing has a minor effect on long-term mass loss over the course of the deglaciation in south-western Norway (Fig. 9). Differences between model experiments with and without variable oceanic melt only causes a difference of 4% in mass loss during the Younger Dryas (Fig. 9b).

6. Discussion

6.1. Atmospheric warming drives deglaciation

Our sensitivity experiments and 18—11 ka BP simulations suggest that the deglaciation of western Norway was mainly driven by atmospheric warming, with little long-term influence by the ocean. The subdued importance of the ocean can be explained by a combination of small long-term upstream effects of submarine melt, and marine-based fronts becoming land-terminating. In addition, increased surface ablation leads to surface thinning and thereby
less ice supplied to marine-terminating fronts. Since grounding line stability depends on the upstream flux to the grounding line, and the water depth at the grounding line (e.g., Schoof, 2007), enhanced surface ablation causes ‘grounding line starvation’ and further retreat up the fjords.

Ocean-induced melt affects only a fraction of the area that is affected by surface melt, as mentioned in Sect. 5.3. Sustained ice sheet retreat must have required large, persistent changes in surface mass balance. This is supported by models and reconstructions of the Laurentide Ice Sheet, where surface melt rather than dynamic discharge has been suggested to control ice stream activity and ice sheet mass balance (Carlson et al., 2009; Ullman et al., 2015; Stokes et al., 2016). However, this comparison is complicated by the different topographic settings, since Laurentide ice streams were active over more subdued topography than the fjord landscape of western Norway. Western Norway is more comparable to the fjord landscapes of Greenland and the Antarctic Peninsula.

In Greenland, recent dynamic retreat and acceleration is thought to have been triggered at the ice-ocean boundary (Holland et al., 2008; Murray et al., 2010), in addition to coupling between increased surface ablation and more vigorous submarine melt (Straneo and Heimbach, 2013). Similarly, ocean warming may have triggered initial retreat in the early-to middle part of the deglaciation in western Norway. For example, foraminifera-based marine reconstructions suggest up to 6°C change in SSTs in the Norwegian Sea entering the Bolling-Allerød warm period (Eldevik et al., 2014; Dokken et al., 2015). At this time, both our model simulations and ice marginal reconstructions suggest a widespread retreat.

Our simulated ocean-triggered retreat and resulting initial dynamic surface thinning in western Norway support the hypothesis that recent observed retreat of marine-terminating glaciers in Greenland was triggered by the ocean. Further, our results are consistent with the inference that the ocean will continue to exert control on Greenland marginal mass loss over the next few decades. However, based on our experiments, we expect that widespread retreat and substantial deglaciation of Greenland on time scales beyond a few decades will be driven primarily by atmospheric warming and surface melt.

In reality, higher surface melt leads to increased runoff, subglacial discharge and increased buoyancy driven oceanic melt at the ice-ocean interface (Slater et al., 2016). As a consequence, surface mass balance is likely to dominate on long time scales, as it also paces the mass loss at the ocean boundary. This is not explicitly resolved in our model: instead, it is implicitly accounted for by scaling the submarine melt to changes in the ELA (cf. Sect. 3.4).

Over the course of deglaciation, calculation of individual ice sheet-wide fluxes shows that rates of mass loss from surface and submarine melt are comparable in magnitude during the warm periods (Bolling-Allerød and Holocene), while ice discharge provides the largest contribution to the total rate of ice sheet mass loss (not shown here). The results also show that the submarine melt dominates over surface melt in the cold periods with extended marine terminating margins (early deglacial and Younger Dryas), with surface melt increasing in the Holocene, as the ice sheet margins retreat. Eventually, surface melt overrides submarine melt as the ice becomes land terminating.

This behaviour is expected, as submarine melt rate in the model is scaled to the ELA forcing (cf. Eq. (7)). In other words, given no change in the floating area, mass loss from submarine melt scales directly with the imposed ELA changes (surface melt). However, the floating area of ice is not fixed: it changes as a function of grounding line dynamics and buttressing. As a consequence, the mass loss from submarine melt is highly dependent on the total area of floating ice (cf. Fig. 9b). Given that grounding line dynamics and buttressing depend on topographic changes along the fjords (including deepening/shoaling of the bed, widening/narrowing of the trough walls), the fjord topography strongly influences the magnitude of mass loss from submarine melt.

In a warming climate, sea-level rise may act as a positive feedback for glaciers close to flotation, rendering glaciers terminating in deeper water more vulnerable, potentially causing more vigorous calving and retreat (e.g. Brown et al., 1982; Warren, 1992). This argument can be ruled out for the deglaciation of the western Scandinavian Ice Sheet, since relative sea level was falling along the coast of western Norway (Lohne et al., 2007; Lunnan, 2016).

We find that the Boknafjorden ice stream and the flat Jæren area was the most sensitive sector in western Norway, consistent with reconstructions of early deglaciation in this region. The deep, wide trough in Boknafjorden makes it particularly vulnerable to unstable grounding line retreat (e.g., Schoof, 2007; Jamieson et al., 2012; Åkesson et al., 2018), while the low-lying Jæren region is deprived from the supply of upstream ice in our simulations, making it highly sensitive to increased surface melt. Our results suggest that the fjords act to channel ice from upstream accumulation areas towards otherwise ice-free coastal regions. Upstream ice discharge is the main control of long-term retreat, rather than retreat being dominated by warm ocean water at the terminus. An efficient resupply of ice is not possible for Jæren, since this region is not fed by any fjords or upstream valleys, and is ∼70–90 km away from large accumulation areas located in the vast interior mountain plateau. In the central and northern parts of western Norway, this mountain plateau extends closer to the coast (Mangerud et al., 2011, p. 291) and transitions into deep valleys and fjords over distances of ∼5–30 km (Fig. 2).

To summarise, with increased surface melt, our simulations suggest that high mountain areas along the coast become ice-free first, while marine-terminating glaciers in fjords tend to survive. This pattern is consistent with contemporary changes in Greenland, where outlet glaciers in fjords persist even when exposed to extensive melt because they are efficiently fed by large accumulation areas upstream. In contrast, dynamically stagnant ice on uplands are more vulnerable to surface melt.

6.2. Retreat and readvance modulated by topography

The model simulations exhibit an excellent fit with the reconstructed marginal positions for the Younger Dryas (Fig. 10d). This agreement is rather remarkable considering our simplified representation of surface mass balance, ice dynamics, ocean forcing and temporally invariant basal friction. Despite these simplifications, the model is close to the empirically well-documented ice sheet margin. We therefore suggest that the role of subglacial hydrology and ice-ocean interactions are not critical in providing a first-order picture of long-term ice sheet evolution and sensitivity. We also note that the modelled ice sheet margin at this time is largely land-based, incised by a few marine-terminating glaciers in deep fjords.

Ample evidence support the YD as a major climatic event involving both the atmosphere and the ocean (e.g. Bakke et al., 2009; Eldevik et al., 2014), and that the large-scale readvance during the YD in western Norway was driven by a change in climate. Nevertheless, the excellent fit to the reconstructed YD margin, given the many limitations of our model and forcing, leads us to hypothesise that the YD margin positions were strongly modulated by the local topography.

In addition to the YD, our simulations suggest that movements of the ice sheet margin in western Norway were heavily influenced by geometry: A sector between 18 ka and the Bolling period commencing ∼4.8 ka BP. Strong topographic controls of ice stream and outlet glacier retreat have been found elsewhere, including in Greenland (Hogan et al., 2016), Scandinavia (Mangerud, 1980;
Because of their strong dependency on topography, individual marine-terminating glaciers are questionable climate indicators (Mann, 1986; Post et al., 2011). Our asynchronous, simulated retreat during deglaciation in western Norway supports this idea, and is also consistent with the highly variable observed retreat for Greenland outlet glaciers (e.g. Moon and Joughin, 2008; Hill et al., 2017). In Greenland, fjord geometry has been suggested as key to both the stability of glacier fronts (Morlighem et al., 2016), and the sensitivity to submarine melt, surface melt and subglacial discharge (Bartholomáus et al., 2016; Motyka et al., 2017), as well as the extent of upstream thinning following terminus retreat (Pelískon et al., 2017). Studying the detailed impact of each of these factors on paleo-time scales remains a focus for future work.

Our findings, and the growing amount of evidence for Greenland's outlet glaciers, suggest that present-day changes to glaciers include geometric influences that may be overlooked, or worse, falsely attributed to external forcing. This reasoning does not contradict marine-terminating glaciers as vulnerable to a warming regime explicitly, due to their unconstrained nature, and to keep computational needs down. However, we expect that temperate basal conditions prevailed in the fjords throughout the deglaciation. This is supported by numerous glacial straı̂e, p-forms and ice-front deposits consisting of glaciofluvial sediments (e.g. Hamborg and Mangerud, 1981; Sollid and Serbel, 1994; Mangerud et al., 2011; Salee, 2017). Sediment cover is sparse at present, and we do not expect that sediment thickness varied considerably during deglaciation. However, we acknowledge that our parameterization of basal motion (Sect. 3.2) is simple, and future experimental work will elaborate on the effects of different parameterizations. Our results also suggest that the details of these processes may not be required when estimating ice sheet sensitivity to a first-order (see Sect. 6.2).

Regarding the ocean forcing, we refrain from adding additional parameters and keep submarine melt rates depth-independent. Observations and models suggest that melt rates vary with depth with a maximum at a given depth above the grounding line (Jenkins, 2011). In addition, undercutting by warm fjord water may influence calving rates (O'Leary and Christoffersen, 2013; Rignot et al., 2015; Bønn et al., 2017). As we exclude calving dynamics in our simulations, we may somewhat underestimate the sensitivity of the model to the ocean forcing. However, we do not expect this to change our main conclusions.

While we do not include explicit calving in the model, submarine melt is applied to the floating ice and modulates the length and thickness of any floating tongues present. In this respect, the imposed ocean forcing implicitly acts as a variable calving rate. The ocean forcing also affects the upstream ice by changing the buttressing of the floating tongue. This has been shown to stabilise grounding lines located in otherwise ‘unstable’ topographic settings, such as retrograde (upstream deepening) beds and widening troughs (Gudmundsson et al., 2012; Gudmundsson, 2013; Schoof et al., 2017; Ákesson et al., 2018). We expect that the additional buttressing associated with the neglected explicit calving renders a slightly delayed and subdued response of marine-terminating parts of the ice sheet margin in our model. We note that for grounded termini, without floating tongues, the submarine melt applied in the model would have no impact. This is not strictly consistent with observations of grounded marine-terminating glaciers in Greenland.

6.3. Model limitations

We use the Shelves Stream Approximation (SSA) to simulate ice flow. This approximation neglects vertical shear and is therefore suitable in areas of fast flow, such as marine-terminating glaciers and ice shelves. However, SSA is less accurate in the interior of ice sheets where vertical shear dominates. Thus, we expect that our model underestimates flow from the interior, giving a slightly too thick ice near the ice divide. However, 2D SSA has been shown to capture ice flow even in regimes where its applicability should be limited (Larour et al., 2012). In addition, we expect that uncertainty in the surface mass balance will be more important than differences due to approximations in the representation of ice flow.

Neither in the Allerød period (Fig. 10c), nor in the early Holocene (not shown) are we able to capture the documented retreat of the Hardangerjorden glacier. This may be because we do not include calving in our model, as explained in Sect. 3.1. Including a calving law is therefore a priority for future work.

In the north of the domain, we underestimate the ice sheet retreat following the Younger Dryas. At this time, the margins in this region are mostly land-based. This suggests that we may underestimate surface ablation, or that the simulated Younger Dryas ice sheet is too thick and therefore able to persist during the early Holocene.

Glacial isostatic adjustment (GIA) is not included in our simulations. Shoreline diagrams indicate a postglacial emergence of ~100 m in the inner Hardangerfjorden area (Mangerud et al., 2016), decreasing towards the coast. This may lead to the model overestimating the surface elevation of ice, in particular for the interior. However, uplift has been minor along the coast due to the smaller ice load. Therefore, we expect that our exclusion of GIA has little impact on our modelled grounding line dynamics.

We do not model sediment dynamics, hydrology or thermal regime explicitly, due to their unconstrained nature, and to keep computational needs down. However, we expect that temperate basal conditions prevailed in the fjords throughout the deglaciation. This is supported by numerous glacial straı̂e, p-forms and ice-front deposits consisting of glaciofluvial sediments (e.g. Hamborg and Mangerud, 1981; Sollid and Serbel, 1994; Mangerud et al., 2011; Salee, 2017). Sediment cover is sparse at present, and we do not expect that sediment thickness varied considerably during deglaciation. However, we acknowledge that our parameterization of basal motion (Sect. 3.2) is simple, and future experimental work will elaborate on the effects of different parameterizations. Our results also suggest that the details of these processes may not be required when estimating ice sheet sensitivity to a first-order (see Sect. 6.2).

Regarding the ocean forcing, we refrain from adding additional parameters and keep submarine melt rates depth-independent. Observations and models suggest that melt rates vary with depth with a maximum at a given depth above the grounding line (Jenkins, 2011). In addition, undercutting by warm fjord water may influence calving rates (O'Leary and Christoffersen, 2013; Rignot et al., 2015; Bønn et al., 2017). As we exclude calving dynamics in our simulations, we may somewhat underestimate the sensitivity of the model to the ocean forcing. However, we do not expect this to change our main conclusions.

While we do not include explicit calving in the model, submarine melt is applied to the floating ice and modulates the length and thickness of any floating tongues present. In this respect, the imposed ocean forcing implicitly acts as a variable calving rate. The ocean forcing also affects the upstream ice by changing the buttressing of the floating tongue. This has been shown to stabilise grounding lines located in otherwise ‘unstable’ topographic settings, such as retrograde (upstream deepening) beds and widening troughs (Gudmundsson et al., 2012; Gudmundsson, 2013; Schoof et al., 2017; Ákesson et al., 2018). We expect that the additional buttressing associated with the neglected explicit calving renders a slightly delayed and subdued response of marine-terminating parts of the ice sheet margin in our model. We note that for grounded termini, without floating tongues, the submarine melt applied in the model would have no impact. This is not strictly consistent with observations of grounded marine-terminating glaciers in Greenland.

6.4. Implications for past and future ice sheet stability

Our experiments emphasise that warm ocean water is a selective trigger for glacier retreat, and that basal sills and fjord constrictions may delay or even prevent continued retreat. However, once triggered, retreat and thinning may be rapid, since geometric features lead to glaciers responding out-of-sync with their external forcing, as manifested by retreat rates higher than 800 m a⁻¹ for the Boknafjorden ice stream in our sensitivity experiments (Fig. 5). Such short-lived behaviour will likely be missed and interpretations biased accordingly in low-resolution geological evidence, or worse, if evidence is overridden and destroyed by an advancing ice sheet. This highlights the advantages of using a detailed numerical ice sheet model together with geological data to study long-term changes.

The behaviour found in our study corroborates recent

Mangerud et al., 2016), Antarctic Peninsula (Jamieon et al., 2012, 2014), Patagonia (Warren, 1994), and Alaska (Mercer, 1961), though none of these include a high-resolution model of grounding line dynamics allowing for comparison across glaciers along the ice sheet margin.
observations of accelerated yet spatially variable Greenland outlet glacier retreat over the last two decades (Moon and Joughin, 2008; Howat and Eddy, 2011; Straneo and Heimbach, 2013). However, fast retreat is not likely to be sustained in the long-term, as illustrated by our modelled slowdown and stabilisation of the Boknafjorden ice stream at a new basal pinning point after 30–40 years (Fig. 5). Similarly, decadal-scale stabilisation on basal pinning points has been found in ocean-forced experiments focusing on the sensitivity of Greenland outlet glaciers to future warming (Morlighem et al., 2016; Choi et al., 2017).

Our results suggest that the ocean is a potential trigger for glacier retreat, and can dominate decadal-scale mass loss. However, for large-scale retreat over multiple centuries to millennia the surface mass balance dominates. In other words, ice-ocean interactions and grounding line dynamics can control the short-term response of outlet glaciers, while surface mass balance controls the long-term ice sheet response. This result has important implications for the future of the Greenland and East Antarctic Ice Sheets, as well as for paleo-ice sheets. These ice sheets will, to a varying extent, all transition from marine-to land-terminating ice sheets, similar to our modelled history of the deglaciation of the western Scandinavian Ice Sheet. Note, that for regions with widespread marine-terminating margins, the ocean has a strong influence. For example, during times in the past when the Greenland Ice Sheet extended to the continental shelf, we expect ice-ocean interactions to have been the major drivers of ice sheet retreat. Similarly, West Antarctica rests on a marine-based bed extending far inland (Fretwell et al., 2013), and is expected to be vulnerable to warming ocean conditions for a significantly longer period of time (Hillenbrand et al., 2017).

7. Conclusion

We have used a high resolution two-dimensional ice sheet model with detailed grounding line dynamics and simplified physics and climatology to study deglaciation of the western Scandinavian Ice Sheet, and its sensitivity to ocean and atmosphere forcing.

Our experiments suggest that the ocean is a potent yet selective trigger of decadal scale grounding line retreat for the marine-terminating margins of the ice sheet covering western Norway. In contrast, we find that longer term mass loss over the course of the deglaciation of western Norway was dominated by surface melt, with the ocean playing a minor role. Once a retreat is triggered, the simulated extent and rate of retreat is highly dependent on the presence of sills and lateral constrictions in the fjords.

In south-western Norway, the Boknafjorden ice stream and the Jæren area to the south are the most sensitive to climate change. Boknafjorden’s deep, wide trough makes it geometrically unstable and more vulnerable to warm subsurface waters, resulting in a transient rapid grounding line retreat of up to 800 m a⁻¹. The flat Jæren area lacks upstream supply of ice, and is therefore highly sensitive to increased surface melt.

The details of our modelled ice sheet margins are heavily influenced by topography. This is particularly important for the widespread readvance during the Younger Dryas cold-reversal c. 12.7–11.6 ka BP. We reproduce the reconstructed Younger Dryas margin with excellent detail, despite our simple forcing and model physics. When estimating first-order ice sheet sensitivity, we therefore suggest that the details of basal motion and ice-ocean interactions are not critical, and that individual outlet glaciers may respond out-of-phase with ambient climate forcing. However, high model resolution is needed to capture topographic effects and grounding line migration accurately.

Our findings imply that ice-ocean interactions and grounding line dynamics are fundamental to short-term ice sheet mass loss. These are the likely controls of decadal to centennial scale responses of outlet glaciers and require high-resolution representation in models. For long-term past and future changes on centennial to millennial scales, our experiments suggest that atmospheric changes are the main drivers of mass loss and resulting sea level rise.

Author contributions

JJS, JM, and KHN came up with the idea of the study, HÅ, KHN, and MM refined the ideas and designed the model experiments, MM provided the ice sheet model, HÅ implemented necessary model developments specific to this study together with MM, HÅ performed model simulations with significant input from MM and KHN. Model results were analysed by HÅ, MM, and KHN, with feedback from JJS and JM. HÅ wrote the paper and made all the figures, with considerable contributions from MM, KHN, and JM. JJS gave valuable feedback on the final version of the manuscript.

The authors declare that this research was conducted without any potential conflicts of interest.

Funding

The research leading to these results was funded by the Research Council of Norway (project no. 229788), as part of the project Eurasian Ice Sheet and Climate Interactions (EISCLIM) led by JJS. The Research Council of Norway also supported a research stay for HÅ at the University of California, Irvine (project no. 261582). HÅ’s research stay was also partly funded by a scholarship from Meltzerfondet at the University of Bergen, and the Norwegian Research School in Climate Dynamics. The research has also received support from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement 610055 as part of the ice2ice project. We acknowledge access to computation facilities through the NOTUR project NN4659K “Models of past ice and climate”, supported by the Research Council of Norway.

Acknowledgements

We wish to thank Anna Hughes, Dale Gump, and Jason Briner for assisting with local (published) reconstructions, Johannes Bondzio for help with model development, Lev Tarasov for sharing large-scale (unpublished) model output, as well as Hafldís Hafldadson and Kristian Vasskog for sharing knowledge about local geology and climate history. We are also very grateful to Andreas Vileli and an anonymous reviewer for the many constructive comments received during the review process.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.quascirev.2018.07.004.

References

