Clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins

Stefano Patruno a,1, William Helland-Hansen b,⁎

a PGS, Weybridge, United Kingdom
b University of Bergen, Norway

ABSTRACT

Clinoforms are inclined and normally basinward-dipping horizons developed over a range of spatial and temporal scales in both siliciclastic and carbonatic systems. The study of clinoform successions underpins sequence stratigraphy and all efforts to reconstruct the relative partitioning of reservoir, seal and source rocks along shoreline to basin-floor profiles.

Here, we review clinoform research and propose a more systematic description and classification of clinoforms. This is a crucial step to improve predictions of facies and lithology distribution within shoreline to continental shelf and abyssal plain successions, together with the genesis, drivers and dynamics of their constituent sedimentary units.

Four basic clinoform types are here distinguished in delta/shorelines, lacustrines and marine environments, on the basis of their overall spatial and temporal scale, morphology, outbuilding dynamic and geodynamic and depositional setting: (1, 2) delta-scale clinoforms, which in turns are sub-divided into shoreline and delta-scale subaqueous clinoforms; (3) shelf-edge clinoforms; and (4) continental-margin clinoforms. Delta-scale clinoform sets are tens of metres high and typically represent 1–103 kyr, with progradation rates ranging from 1,000–100,000 m/kyr for shorelines and “subaerial deltas” to 100–20,000 m/kyr for subaqueous deltas; shelf-edge clinoform sets are hundreds of metres high and are nucleated and accreted in 0.1–20 Myr (usual progradation rates of 1–100 m/kyr) by successive cross-shelf transits of delta-scale clinoforms; continental-margin clinoform sets are thousands of metres high, hallmark key geodynamic/crustal boundaries (e.g., continent/ocean transition) and slowly prograde basinwards in ca. 5–100 Myr, with typical rates of 0.1–10 m/kyr.

As a consequence of the very different progradation rates and of the difficulty of large-scale clinothems to backstep during transgressions, shorelines are the most dynamic clinoforms with regards to position, continental margins the least, and shelf-edges are intermediate. Shortly after a transgression, therefore, the four clinoform types may prograde synchronously along shoreline-to-abyssal plain transects, forming “compound clinoform” systems. During the subsequent regressive cycle, however, due to the dissimilarity in progradation rates, different clinoform types will normally merge progressively with each other, giving rise to “hybrid clinoforms” (e.g., shelf-edge deltas), and fewer depositional breaks-in-slope are distinguished along a single shoreline-to-abyssal plain transect. Overall, all clinoform systems are the result of the dynamic evolution of compound and hybrid clinoforms along a temporal and spatial continuum, regulated by the cyclical backstepping of the smaller-scale system within natural progradation-retrogradational cycles of larger-scale clinothem outbuilding.

All clinothem types may show either an accretionary/active or draping/passive style, depending on the proximity to the sediment source. Draping clinothems are nearly-always composed of condensed fine-grained sediments, while actively accreting clinothems can be composed of predominantly coarse-grained (i.e., reservoir-forming) or predominantly fine-grained (i.e., non-reservoir) lithotypes.

A novel hierarchical classification scheme for both Recent and Ancient clinoforms is here proposed, consisting of 12 classes. The four basic clinoform types (delta-scale shoreline, delta-scale subaqueous, shelf-edge and continental-margin) are sub-divided into eight accretionary/active and draping/passive sub-types (8-division). Each accretionary sub-type is then sub-divided into a sandstone-prone and mudstone-prone variant (12-division), which can be at least tentatively predicted on the basis of the clinoform morphology, even in the absence of direct stratigraphic logs.

⁎ Corresponding author.
E-mail address: William.Helland-Hansen@uib.no (W. Helland-Hansen).
1 Currently at ION Geophysical, Chertsey, United Kingdom.

https://doi.org/10.1016/j.earscirev.2018.05.016
Received 16 March 2018; Received in revised form 28 May 2018; Accepted 29 May 2018
Available online 02 June 2018
0012-8252/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction: clinoforms and clinothems

1.1. Definitions and historical perspective

Clinoforms are ubiquitous inclined stratal, chronostratigraphic and depositional surfaces corresponding to “frozen” palaeo-bathymetric profiles; clinothems are the clinoform-bounded sediment-body counterparts (Rich, 1951; Bates, 1953; Asquith, 1970; Pirmez et al., 1998; Adams and Schlager, 2000; Steel and Olsen, 2002; Patruno et al., 2015a).

Clinoforms have attracted the attention of researchers for more than one century. Gilbert (1885) identified topsets, foresets and bottomsets

Fig. 1. Cross-sectional schemes parallel to the depositional dip, showing idealized compound clinoform systems at different scales. (A) Regional cross-section, highlighting three actively growing clinoform systems: delta, shelf-edge and continental-margin scale clinoforms. (B) Cross-section through the nearshore to inner marine shelf area, showing a typical shoreline to delta-scale subaqueous clinoform compound system (located in Fig. 1A) (after Helland-Hansen and Hampson, 2009). The idealized line location of Fig. 1B is shown in Fig. 1A.
within the Pleistocene Lake Bonneville deltas. Joseph Barrell discussed the role of sloping bedding planes in deltas (Barrell, 1912). John Rich was the first to introduce the terms clinoform and clinothem, separating the depositional surface into undaform (topset equivalent), clinoform (foreset) and fondoform (bottomset) (Rich, 1951). Here we adapt to Steel and Olsen (2002), who redefined clinoforms and clinothems to include a steeper middle foreset segment and its topset and bottomset extensions, respectively up-dip and down-dip.

Sloping depositional units occur at scales ranging from ripple-(centimetres), dune- and bar-foreset (decimetres to metres), delta and shoreface slopes (1–100 m) and up to sloping units formed by accretion of shelf edges (100’s m) and continental margins (>1000 m) (Larue and Martinez, 1989; Thorne, 1995; Henriksen et al., 2011) (Figs. 1, 2). Here we limit the use of clinoform and clinothem to larger sloping depositional surfaces and units (10’s to 1000’s m) generated by lateral accretion of sediment bodies in standing waters, or by passive sediment draping of existing slopes. Although both deep-water sediment drift “clinoforms” and smaller bedform foresets can have similar reliefs (e.g. tens of meter high aeolian dunes, tidal sand waves and sandy and muddy contourites Stow et al., 2002; Lancaster, 2004; Kubicki, 2008; Reeder et al., 2011; Pellegrini et al., 2016), they are beyond the scope of this review and are not further discussed. The same accounts for clinoformal drapes on tectonically generated structures such as intrabasinal highs and ridges and clinoformal drapes on erosional seascapes, such as drowned incised valleys and canyon walls (Fig. 3).

1.2. Palaeoenvironmental significance

Only two basic types of slopes can be distinguished in deltaic, lacustrine and marine settings: erosional and progradational margins (Ross et al., 1994; Ryan et al., 2009a). Erosional margins are bathymetric escarpments characterized by widespread erosion, mass flows, slumping, incision and sediment bypass to the lower slope, with formation of onlapping fans. Progradational margins are comprised by sedimentary clinothems, with a depositional profile which represents the equilibrium between sediment supply, accommodation, basin physiography and oceanographic processes (Ross et al., 1994).

Clinoforms are ubiquitous both in carbonate (e.g., Mullins et al.,...
1988; Everts and Reijmer, 1995; Leeder, 1999; Bosence, 2002; Bosence and Wilson, 2002a, 2002b; Pomar et al., 2002; Eberli et al., 2004; Maurer et al., 2010; Lanfranchi et al., 2011; Betzler et al., 2015) and siliciclastic systems (e.g., Schlee et al., 1979; Steckler et al., 1999; Adams and Schlager, 2000; Tessonn et al., 2000; Howell and Flint, 2002a, 2002b, 2002c; Cattaneo et al., 2003, 2007; Holgate et al., 2014, 2015; Pellegrini et al., 2018). Clinothems may be also formed by very shallow-water gypsum platform accretion (Tucker, 1991; Patruno et al., 2018, in press). Deltaic clinoforms have been even interpreted in ~3,600-3,200 Ma old sediments on Mars, suggesting that still-standing shallow lakes existed on that planet (Grotzinger et al., 2015).

Clinoforms typically comprise basinward-accreting slopes, although landward-accreting exceptions are possible, as lagoons infilling by washover-fan progradation (Møller and Anthony, 2003; Garrison et al., 2010; Martínez-Carreño et al., 2017) and the progradation of flood-tidal bodies (e.g., Siringan and Anderson, 1993).

Clinoform cross-sectional shapes conform to three basic types of curve-fitting equations: a linear, an exponential (asymmetrical, concave-upward "oblique" clinoforms) and a Gaussian (symmetrical "sigmoidal" clinoforms). Clinoform equilibrium profiles and gradients have been shown to be a function of sediment grain-size, sediment supply, dispersal processes (e.g., wave climate) and physiography of the depositional foundation (Figs. 4–6). For example, increasingly large-scale clinoforms are deposited in progressively deeper-waters, over progressively larger time-spans (Pirmez et al., 1998; Driscoll and Karner, 1999; Adams and Schlager, 2000; Adams et al., 2001; Friedrichs and Wright, 2004; Patruno et al., 2015a) (cf. Figs. 7–9). As a general rule, the gradient of siliciclastic clinoforms of similar height is proportional to the average sediment grain-size, as coarser-grain sediments are characterized by steeper angles of repose (Orton and Reading, 1993; Patruno et al., 2015a). Carbonate clinoforms can be even steeper (even > 40°), owing to a rigid framework produced by carbonate secreting organisms and/or early slope cementation (Hubbard et al., 1986; Kenter, 1990).

Finally, caution should be made when making inferences about bathymetry and relief in ancient successions due to compaction which ultimately reduces relief and slope angles. Decompaction should therefore be carried out before estimation of these parameters is made (Steckler et al., 1999; Patruno et al., 2015c; Klausen and Helland-Hansen, 2018; Beelen et al., in review). For carbonate clinoforms, the compactional factor may be less important. Particularly, the reefal construction of a stiff skeleton by framework building organisms at the time of deposition in combination with early cementation indicate that reliefs and gradients in the stratigraphic record may be closer to the original ones.
1.3. Sequence stratigraphic significance

Clinoforms may be difficult to identify. In outcrops, limited outcrop lateral extents combined with low slope angles limit clinoform visual recognition. In reflection seismic, for clinoforms to be imaged they need to be: (a) higher-relief than the vertical seismic resolution; (b) spaced wider than the tuning effect (c. 10 m); (c) associated to boundaries of facies with different acoustic properties or lined by thick carbonate-cemented layers (Holgate et al., 2014).

As a consequence, preserved or seismically-imaged clinoforms are...
Steel, 2003; Bullimore et al., 2005; Løseth et al., 2006; Ponce et al., 2008; Helland-Hansen and Hampson, 2009; Neal and Abreu, 2009; Patruno et al., 2015a; Anell and Midtkandal, 2017).

Dynamics, climate and other environmental forcing (e.g., Mitchum (uplift and subsidence), sediment supply, basin physiography, hydrodynamics, as well as reworking of either: (A) the transition from confined to unconfined flow (shoreline clinoforms), or (B) from high-energy to low-energy marine transport (delta-scale subaqueous clinoforms).

Sediments building into standing water-bodies are often related to discharge variations in the feeder river, sediment condensation and/or diastem deposition (i.e., short and transient interruptions in deposition with little or no erosion), operating at variable temporal scales. At these times, the deposition of carbonate cement, mudstone linings or organic matter enables the preservation of a paleobathymetry and shoreface-shelf 3D morphology, as well as reflecting primary external forcing like accommodation, sediment supply and sediment-grade (Ross et al., 1994; Postma, 1995; Pirmez et al., 1998; Driscoll and Karner, 1999; Adams and Schlager, 2000; Steel and Olsen, 2002; Quiquerez and Dromart, 2000; Holgate et al., 2014). Major clinoforms represent more significant hiatuses or erosion, and are marked by reflector terminations and/or unconformities linked to key sequence stratigraphic boundaries (Mitchum et al., 1977; Neal and Abreu, 2009; Pellegrini et al., 2017).

Since a clinoform represents a “frozen” or “fossilized” palaeodepositional interface preserved in the sedimentary record, its geometry gives direct information about past bathymetry and shoreface-shelf 3D morphology, as well as reflecting primary external forcing like accommodation, sediment supply and sediment-grade (Ross et al., 1994; Postma, 1995; Pirmez et al., 1998; Driscoll and Karner, 1999; Adams and Schlager, 2000; Steel and Olsen, 2002; Quiquerez and Dromart, 2000; Pellegrini et al., 2015a; Anell and Midtkandal, 2017).

The stratigraphic architecture of clinoforms sets, furthermore, provides a link in the understanding of how sediments are transported to deeper water settings (e.g., sediment partitioning between aggradational topset storage versus degradational topset bypass), as well as a physical record of the interplay between changes in sea-level, tectonics (uplift and subsidence), sediment supply, basin physiography, hydrodynamics, climate and other environmental forcing (e.g., Mitchum et al., 1977; McKee et al., 1983; Steel and Olsen, 2002; Porebski and Steel, 2003; Bullimore et al., 2005; Loeth et al., 2006; Ponce et al., 2008; Helland-Hansen and Hampson, 2009; Neal and Abreu, 2009; Charvin et al., 2010, 2011; Pellegrini et al., 2015c; Reeve et al., 2016; Pellegrini et al., 2017).

Clinoforms therefore represent key surfaces for sequence stratigraphy, and their stacking geometries and stratal terminations enable the very identification of system tracts and trajectory classes. Most clinoforms are formed during either highstands or lowstands, when sediment supply is expected to outpace the rate of relative sea-level rise (Neal and Abreu, 2009). Other clinoforms may be formed by regressive transits under overall transgressive conditions (e.g., Postma, 1995; Helland-Hansen and Martinsen, 1996; Plink-Björklund and Steel, 2002; Pellegrini et al., 2015), or when relative sea-level is falling (e.g. Plint and Nummedal, 2000).

1.4. Research avenues and economic value

Clinoform studies are essentially carried out along four different research avenues, including:

1. The study of ancient stratigraphy in outcrops, seismic, ground-penetrating radar and well-data (e.g., Mullins et al., 1988; Helland-Hansen, 1992, 2010; Hampson, 2000, 2016; Steel and Olsen, 2002; Porebski et al., 2003; Johannessen and Steel, 2005; Hampson and Howell, 2005; Gani and Bhattacharya, 2005; Patruno et al., 2015b, 2015c).

2. The analysis of modern sea-floor topography or sediments through echo-sounding, shallow seismic and cores (e.g., Field and Roy, 1984; DeMaster et al., 1985; Prior et al., 1986; Bellotti et al., 1994; Hernández-Molina et al., 2000a; Jol et al., 2002; Correggiari et al., 2005; Kuehl et al., 2005; Liu et al., 2006, 2007a, 2007b; Puig et al., 2007; Cattaneo et al., 2003, 2007; Bassetti et al., 2008; Palamenghi et al., 2011; Pellegrini et al., 2018).

3. Experimental studies in flumes and scaled physical models (e.g., McClay et al., 1998; Kostic et al., 2002; Muto and Steel, 2004; Gerber et al., 2008; Leva López et al., 2014).

4. Numerical modelling, focused on the controls on clinoform formation (e.g., Helland-Hansen et al., 1988; Ross et al., 1994; Pirmez et al., 1998; Driscoll and Karner, 1999; Adams et al., 2001, 2011; Friedrichs and Wright, 2004; Swenson et al., 2005; Friedrichs and Scully, 2007; Wolinsky and Pratson, 2007; Burgess et al., 2008; Charvin et al., 2010, 2011; Mitchell, 2012; Patruno et al., 2015c), clinoform imaging in reflection seismic (e.g., Holgate et al., 2014), and the impact of clinoforms on fluid flow (e.g., Enge and Howell, 2010; Graham et al., 2015a, 2015b; Howell et al., 2008; Jackson et al., 2009).

The realization that sediments building into standing water-bodies create sloping units gives far-reaching constraints on how stratigraphic units are correlated (cf. “shingled” versus “layer-cake” correlation in Gani and Bhattacharya, 2005) (Fig. 4). Clinothems have also significant storage potential for oil, gas, water and CO₂, and several hydrocarbon fields rely on intra-clinothem reservoirs units (e.g., Sydow et al., 2003; Cummings and Arnott, 2005; Holgate et al., 2013; Patruno et al., 2018, in press). Since most clinoforms are lined by low-permeability mudstones or cements (Holgate et al., 2014), they often act as baffles to hydrocarbon flow (Howell et al., 2008; Jackson et al., 2009; Graham et al., 2015a, 2015b). Therefore, only clinoform-based production models enable accurate prediction of hydrocarbon drainage patterns and recovery (Howell et al., 2008; Graham et al., 2015b).

2. A review of clinoform research

In this section, existing clinoform research has been reviewed through three logical patterns.

a) The scale-invariant clinoform genesis and dynamics, particularly the
difference between actively accreting clinoforms and passive/draping clinoforms (sub-Section 2.1);

b) The distinction of three basic types of clinoform spatial and temporal scales: delta-, shelf-edge and continental-margin scale (sub-Section 2.2);

c) The spatial association of clinoforms formed at the same time: compound versus hybrid clinoforms (sub-Section 2.3).

These three aspects are utilized in Section 3 to devise a novel clinoform classification.

2.1. Clinoform genesis and dynamics: active versus passive clinoforms (scale invariant)

Clinoform deposition can be condensed into two main modes, present at every scale, ranging from tens to thousands of metres: (1) clinoforms plastered passively on existing slopes by distant sediment sources (draping or passive clinothems) (Fig. 5); or (2) clinoforms accretion by sediment supply from active, nearby sediment sources (constructional or active clinothems) (Figs. 5; 10-18).

Constructional/active clinoforms imply active supply of sediments and sediment source proximity. Their nucleation and growth is associated to the change in sediment dispersion from confined to unconfined flow, or to the transitioning from high to lower energy levels (e.g., across the fairweather wave base) (Fig. 6; Driscoll and Karner, 1999; Puig et al., 2007). In either case, the loss of momentum and flow deceleration causes sediment load deposition. Much of it, and particularly all the coarsest-grained load is laid down in proximity of the sediment feeder (i.e., a river mouth or current head); the rest is transported further basinwards or alongshore (Kostic et al., 2002). Such basinward decline in sedimentation rate will lead to clinothem nucleation, propagation and amplification by continued deposition.

Fig. 7. Statistical distribution of clinoform heights, down-dip extents and gradients, based on the data compilation by Patruno et al. (2015a).
Passive/draping clinoforms imply nucleation or continued accretion by distant sediment sources, and more commonly have both aggradational clinoform trajectories and near-uniform thicknesses and sediment accumulation rates throughout the topset, foreset and bottomset areas (e.g., Palinkas and Nittrouer, 2006) (Fig. 5). This contrasts with the accumulation rate and thickness profiles of constructional clinoforms, characterized by sedimentation rates greatest along the foreset portion and significantly lower towards both the topset and the bottomset (e.g., Alexander et al., 1991; Leithold, 1993; Michels et al., 1998; Pirmez et al., 1998; Walsh et al., 2004; Palinkas and Nittrouer, 2006; Cattaneo et al., 2007; Pellegrini et al., 2015) (Figs. 10-18).

Active phases of clinoform growth (often characterized by coarser-grained sediment supply) can alternate with or transition into long periods of passive fine-grained draping from distant sources. Accordingly, clinoform sets may lithologically diversify depending on what process contributed sediments (e.g., in shelf-edges – Porębski and Steel, 2003, see later).

2.2. Clinoform scales: shorelines/deltas, shelf-edges, continental margins

Clinoforms can be characterized based on their relief, gradient, position in a proximal-distal transect, (palaeo-)bathymetry, and their mode and time-scale of formation (Table 1; Figs. 7–9). Four clinoform types, termed shoreline, delta-scale subaqueous, shelf-edge and continental margin clinoforms, are here discussed (Figs. 7, 8, 10-18).

2.2.1. Delta scale clinoforms

Delta-scale clinoforms are characterized by reliefs of tens of metres (common foreset heights of 10–30 m – Table 1, Fig. 7A) and are formed over relatively short time spans (c. 1–10^3 kyr – Table 1, Fig. 8A; Clifton,
1981; Patruno et al., 2015a; Ainsworth et al., 2017) in association with the progradation of either shorelines and subaerial deltas ("shoreline clinoforms"), or underwater sediment slopes of similar scale ("delta-scale subaqueous clinoforms"). In particular, shoreline clinoforms are formed when transitioning from confined to unconfined water flow in neritic waters, either close to the river mouth (via delta front/shoreface migration) or alongshore (via redistribution and redeposition of the sediment load) (Fig. 6a). Delta-scale subaqueous clinoforms are accreted in shelfal waters when transitioning from high-energy to low-energy water flow (see later) (Fig. 6b).

While every bed-scale dipping surface in a delta-front or shoreface succession defines a clinoform, most individual delta-scale clinoforms that are visible in outcrops, detectable in cores and/or resolvable in seismic reflect stratigraphic discontinuities and/or variations in cementation or sandstone/shale content. These are driven by enhanced wave scour/erosion or sediment starvation/hothouse, which in turns reflect minor variations in river feeder discharge, relative sea-level, sediment supply and/or wave climate, with highly variable temporal scale significance (Hampson, 2000; Hampson and Storms, 2003; Roberts and Sydow, 2003; Gerber et al., 2008; Enge et al., 2010; Charvin et al., 2011; Zecchin and Catuneanu, 2013; Patruno et al., 2015b, 2015c; Ainsworth et al., 2017). Regressive transits of delta-scale clinoforms generates the typical "parasequences" in marginal to shallow-marine successions (corresponding to a clinoform set), whereas repeated, high-frequency regressive-transgressive cross-shelf transits determines the stratigraphic architecture of shelves and shelf-edge clinothems (see later) (Van Wagoner et al., 1990; Burgess and Hovius, 1998; Johannessen and Steel, 2005; Olariu and Steel, 2009; Helland-Hansen et al., 2012).

Delta scale clinoform trajectory trends (Fig. 8) reflect regional or local fluctuations in sediment supply and relative sea-level. Local fluctuations are typically caused by autogenic processes such as delta-lobe shifting, differential compactional subsidence of shelfal muds in distal locations or sedimentary system self-organization linked to substrate physiography, such as autotretreat, autoincision and auto-acceleration (Clifton, 1981; Muto and Steel, 1992, 1997, 2004; Helland-Hansen and Martinsen, 1996; Hampson and Storms, 2003; Muto et al., 2007; Charvin et al., 2010; Leva López et al., 2014; Patruno et al., 2015c; Ainsworth et al., 2017). Regional fluctuations are caused by allogenic processes, such as eustatic sea-level changes or tectonically-generated regional changes in relative sea-level or sediment supply rates (e.g., variations in advance and retreat of Italian glaciers at the same centennial/millennial scale with the sediment supply fluctuations in the Adriatic basin, as reported by Pellegrini et al., 2018).

All the Recent delta-scale clinothems began prograding ca. 6–7 ka before present, with the waning of the rate of post-glacial eustatic rise (Summerhayes et al., 1978; Field and Roy, 1984; Stanley and Chen, 1996; Morales, 1997; Chen et al., 2000; Stouthamer and Berendsen, 2000; Goodbred and Kuehl, 2000a, 2000b; Hernández-Molina et al., 2000a; Ta et al., 2002a; Hori et al., 2002, 2004; Cattaneo et al., 2003, 2007; Palinkas and Nittrouer, 2006; Liu et al., 2006, 2007a, 2007b; Giosan et al., 2006b; Le Dantec et al., 2010; Qiu et al., 2014).

All delta-scale clinoforms, with the partial exception of smaller coarse-grained sub-types (see below), are characterized by fast cross-shelf regressive cycles (progradation rates of c. 10^{-1}–10^{2} km/kyr), very low progradation resistance ratios (sensu Patruno et al., 2015a) (10^{-4}–10^{-2}) and high progradation/aggradation ratios, highlighted by near-flat clinoform trajectories (< 0.9°) within each progradational clinoform set (Fig. 8). This is due to the relative proximity to sediment supply input points and with sediment accommodation which is vertically negligible (tens of metres) but laterally extensive (i.e., the whole marine shelf).

2.2.1.1. Shoreline clinoforms (Figs. 11–12). Shorelines correspond to the intersection between water and land surfaces, and their accurate recognition is critical for geologists and engineers (Dolan et al., 1991;
Wessel and Smith, 1996; Stive et al., 2002; Boak and Turner, 2005). The topset-to-foreset rollover point of shoreline clinoforms, with typical median bathymetry of 0–5 m, is a key shoreline indicator (Fig. 8A).

Shoreline clinoforms are formed wherever river systems debouch into standing waterbodies (e.g., lakes, lagoons, bays, open sea), provided that the local rate of sediment input outpaces that of sediment erosion due to waves and currents. Depositional processes range from suspension fallout from buoyant plumes to tractional deposition by river currents, waves and tides, but gravitational depositional processes (e.g., turbidity currents) may also be important, particularly on the clinoform toe (e.g., Pattison, 2005).

Fluvial dominated “subaerial deltas” form clinoforms that are oriented radial or normal to the river-mouth point source (Barrell, 1912; Bhattacharya, 2006). In wave- or tide-dominated settings, sediments are reworked and redistributed by basinal processes away from the river mouth, both alongshore and across-shelf (e.g., Yang and Nio, 1989). Wave-dominated coastal environments, in particular, consist of alternations of erosional stretches and accretive shore-parallel clinoforms in plan-view (e.g., wave-dominated deltas, shorelines/beaches, strandplains, spits, barrier islands and cheniers) (Augustinus, 1978; Morales, 1997; Heward, 1981; Jiménez et al., 1997; Jol et al., 1996, 2002; Bhattacharya and Giosan, 2003; Rasmussen, 2009). More generally, all shoreline clinoforms can be subject to a variable degree of wave, tide and riverine influence, with processes that may vary systematically in space and time during cross-shelf transits (e.g., increasing wave dominance as deltas prograde outwards on the shelf – Porąbski and Steel, 2006; Steel et al., 2008; Patruno et al., 2015b, 2015c).

While on the short term (< 10 years), storms are the main agents responsible for the changes in shoreline morphologies by rapid redistribution of nearshore sediment (Morton et al., 1995), during longer timescales the shoreline geomorphology and the stratigraphic architecture of shoreline clinoform successions are sensitive to even the most subtle and high-frequency fluctuations in relative sea-level, sediment supply, climate, basin hydrodynamics, sediment compaction and human influence (Morton and Suter, 1996; Foyle and Oertel, 1997; Morales, 1997; Sornoza et al., 1998; Hampson, 2000, 2010; Goodbred and Kuehl, 2000a, 2000b; Stive et al., 2002; Forbes et al., 2004; Mortimer et al., 2005; Bhattacharya, 2006; Charvin et al., 2011; Marriner et al., 2012; Ainsworth et al., 2017).

As a consequence of their genesis, the geomorphological components of shoreline clinoforms are associated with specific depositional facies. In particular: (1) topsets comprise subaerial delta top or coastal/alluvial plain deposits, including fluvial, lagoonal, floodplain and interdistributary bay facies; (2) the foresets consist of shoreface or delta front facies; and (3) the bottomset is composed of finer-grained prodelta or offshore shelfal sediments (Figs. 1B, 11, Helland-Hansen and
(Hampson, 2009). Each progradational-aggradational shoreline clinoform set therefore typically corresponds to a typical deltaic/shoreface parasequence that is up to a few tens of metres thick (Clifton, 1981; Duke, 1990; Coutellier and Stanley, 1987; Sornoza et al., 1998; Hori et al., 2002; Ta et al., 2002a; Olariu and Bhattacharya, 2006; Charvin et al., 2010). (Figs. 11–12).

Shelf-edge delta clinoforms share many properties with shoreline clinoforms. Nevertheless, in this review, shelf-edge deltas are considered part of the shelf-edge clinoform types (see later), since they are both characterized by similar values of relief (100s m), slope gradient, laterally-extensive plan-view morphology and process sedimentology (e.g., they are the only type of “delta” with abundant slope-controlled soft-sediment deformation and growth faulting) (Suter and Berryhill Jr, 1985; Sydow and Roberts, 1994; Plink-Björklund et al., 2001; Plink-Björklund and Steel, 2002; Porębski and Steel, 2003, 2006). As a consequence, “true” shoreline clinoforms are characterized by typical foreset heights of c. 5–40 m, depending on the bathymetry of the receiving basin (Fig. 7A). These low relief values highlight the challenge of imaging “true” shoreline clinoform systems with seismic reflection techniques. However, they are often well-imaged by GPR data (Jol et al., 1996, 2002; Smith and Jol, 1997; Hampson et al., 2008) (Fig. 11a) or high-resolution shallow seismic (Tesson et al., 2000; Hansen and Rasmussen, 2008; Rasmussen, 2009). They are also demonstrated in outcrops (Gani and Bhattacharya, 2005; Hampson et al., 2008; Enge and Howell, 2010; Enge et al., 2010) (Figs. 12a and b) although slope gradients in many instances are too low to be seen.

Grain size population is highly variable in shoreline clinoforms, ranging from muddy to sandy and pebbly (e.g., Gilbert-deltas and fan deltas – Postma, 1984; Nemec and Steel, 1988; Smith and Jol, 1997). Foreset heights tend to be noticeably lower in coarse-grained systems (c. 5–25 m) than in muddy shorelines (c. 6–60 m) (Fig. 7A). Variability of shoreline clinoform gradients is mainly a response to grain-size, although depositional processes are important additional drivers (Helland-Hansen, 2009). The usual inflection zone gradients of shoreline clinoforms range from 0.1–1.5° (mud-dominated) to 0.1–2.7° (sand-dominated systems) (Fig. 7A), although coarser-grained Gilbert-type deltas can be as steep as the angle of repose of their dominant sediment (Smith and Jol, 1997). A diagnostic criterion of

Fig. 11. Examples of cross-sections oriented approximately parallel the depositional dip of Recent shoreline (=subaerial delta) clinoform systems. These include: (A) coastal barrier spit, characterized by a vertical relief of < 10 m, from Long Beach (Willapa Bay, Washington State, U.S.A.), imaged with ground-penetrating radar technology (after Jol et al., 2002); (B) Po di Tolle lobe, characterized by a vertical relief of 20–30 m (Po River delta, northeastern Italy), with shoreline break position through the years annotated (after Correggiari et al., 2005); (C) Yangtze River delta (China), characterized by a vertical relief of 25–30 m, and isochron lines showing the position of the delta front clinoform through time (after Hori et al., 2001).
shoreline clinoforms is a highly oblique and asymmetric morphology, which is reflected by the highest values of shape ratios (i.e., the inflection point height divided by the clinoform total relief, *sensu* Patruno et al., 2015a) of all the clinoform types (Fig. 8A). These oblique profiles are linked to river-driven processes and typical low-angle shoreline trajectories (< 0.10°) within each clinoform set (Driscoll and Karner, 1999; Swenson et al., 2005; Patruno et al., 2015a). These features are in striking contrast with the typical sigmoidal profiles of delta-scale subaqueous clinoforms (see later).

As a consequence of the short time scales involved, the relative proximity of the deltaic source of sediment supply and the laterally-extensive accommodation distribution, shoreline clinoforms may very quickly prograde seaward over large distances. These clinoforms are therefore characterized by the highest values of progradation rates and depositional flux of all the clinoform types (respectively, 10^2–10^3 km/kyr, 10^2–10^3 km2/kyr, measured for sub-Milankovitch time spans)

Fig. 12. (A-B) Examples of cross-sections oriented approximately parallel the depositional dip of Ancient shoreline (= subaerial delta) clinoform systems. (B) Photomosaic (no vertical exaggeration) and (A) facies interpretation (vertical exaggeration × 4) of a cliff face (along depositional dip) of the Cretaceous-age Ferron Sandstone ancient shoreline clinoform system (Ivie Creek amphitheatre, Utah, U.S.A.) (after Anderson et al., 2002 and Gani and Bhattacharya, 2005). (C-E) Sketches illustrating the evolution of an idealised wave-dominated shoreline through times, forming a succession of progradational clinoform sets, each deposited during phases of relative sea-level stillstand and stacked on top of each other due to the episodic transgressive backstepping of the coastal system (redrated after Howell and Flint, 2002b).
Fig. 13. Examples of Recent (A–C) and Ancient (D–E) delta-scale clinoform systems, both in map-view and cross-sections oriented parallel to depositional dips (after Patruno et al., 2015a and references therein). These include: (A) Holocene Ganges muddy subaqueous delta (offshore India and Bangladesh) (modified after Palamenghi et al., 2011); (B, X and Y)–Holocene compound subaerial-subaqueous clinoform systems from the western Adriatic Sea (offshore eastern Italy) (modified after Cattaneo et al., 2003; Correggiari et al., 2005); (C) Holocene sand-prone delta-scale subaqueous clinoforms from offshore Cabo de Gata (southern Spain) (modified after Hernández-Molina et al., 2000a); (D) Cretaceous-age Blackhawk Formation-Mancos Shale subaerial-subaqueous compound clinoform system (modified after Hampson, 2010); (E) sand-prone delta-scale subaqueous clinoforms from the Upper Jurassic Sognefjord Formation (Norwegian Sea) (modified after Patruno et al., 2015a, 2015b, 2015c).
Fig. 14. Examples of cross-sections oriented approximately parallel the depositional dip of shelf-edge clinoform systems. These include: (A) New Jersey Atlantic passive margin, offshore U.S.A. (EW9009 line after Steckler et al., 1999); (B) Late Pliocene-Pleistocene Naust Formation on the Norwegian continental shelf (Line NVGTI-92-105 after Ottesen et al., 2009); (C) Shelf-edge delta lowstand wedge of the Late Pleistocene Po River, Adriatic Sea, offshore central Italy (after Pellegrini et al., 2017); (D) the Van Kuelenfjorden outcrop transect from Spitsbergen, Svalbard Islands, showing a 30 km lateral accretion of shelf-edge clinoforms (after Steel and Olsen, 2002).
Fig. 15. Cycles of ascending and descending progradation during the outbuilding of the Dornoch Formation clinoform set (East Shetland Platform, north-eastern UK Continental Shelf) (modified after Reid and Patruno, 2015 and Patruno et al., in press). Likely basin floor fans are associated to cycles of forced regression (i.e., descending clinoform sets), with likely sequence boundaries between the two (sensu Neal and Abreu, 2009). Because of the overall increase in accommodation during the deposition of the clinoform set, clinoforms increase their overall vertical relief from the inner to the outer part of the progradational clinoform set. As a consequence, the clinoforms evolve from delta-scale to shelf-edge scale clinoforms.

(Fig. 8C; Coutellier and Stanley, 1987; Patruno et al., 2015a). Examples of Recent systems include: (1) the Po Delta (Fig. 11b), that has prograded at a rate of 45 km/kyr in the last 360 years, partly because of anthropogenic forcing; (2) the Nile Delta, that has prograded seawards with an average rate of 10 km/kyr in the last 7,000 years; (3) the Ganges-Brahmaputra subaerial delta, that has accreted seaward at a rate of approximately 7 km²/yr since 1792 (Bellotti et al., 1994; Coutellier and Stanley, 1987; Allison, 1997; Correggiari et al., 2005).

More generally, analysis of landsat images show that progradation rates of modern deltaic systems range from 10⁻⁵ km²/yr to 10 km²/yr (Tore Aadland, pers.com. 2017). In contrast with uniformity of facies and stratigraphic architecture displayed by delta-scale subaqueous clinoforms, autigenic and high-frequency allogenic forcing in shoreline clinoforms result in episodes of very rapid progradation alternated with periods of abandonment, starvation, hiatuses, erosion and retreat (e.g., 91 episodes of Holocene avulsions in the Rhine-Meuse Delta) (Törnqvist, 1994; Allison, 1997; Saito et al., 2000; Stouthamer and Berendsen, 2000; Correggiari et al., 2005; Blum and Roberts, 2009; Dan et al., 2009).Avulsion periods are usually hallmarkmed by the deposition of draping clinoform and other diastemic geomorphological elements (e.g., Saito et al., 2000).

Progradational and retrogradational architectures may even be formed at the same time in different sections of the same shoreline/deltaic system (Martinsen and Helland-Hansen, 1995). Fast seaward progradation takes place in the sections of subaerial deltas that are closest to the current position of the main river outlets, while elsewhere the same delta front is sediment-starved and may be undergoing retreat. For example, in 1976–2000, due to fluvial course avulsions, two Yellow River abandoned delta lobes underwent landward retreat over 4.5–7.0 km while, over the same period, another delta lobe prograded quickly seaward over 20 km (Chu et al., 2006).

2.2.1.2. Delta-scale subaqueous clinoforms (Fig. 13). Shoreline-detached, fully subaqueous delta-scale clinoform wedges (or “delta-scale subaqueous clinoforms”) build across high-energy shelves between fair-weather and storm wave bases during relative sea-level stillstands, and are arranged through time to form laterally-extensive clinoform sets (Patruno et al., 2015a).

In contrast with input-dominated subaerial deltas, sediment dispersal and deposition in delta-scale subaqueous clinoforms is driven by basin dynamics, including: (a) near-bed sediment resuspension and advection triggered by large wave-tide shear stresses; (b) advective coastal currents flowing parallel to the clinoform strike; (c) bottom-hugging shell currents flowing parallel to the forestet-bottomset transition; (d) tidal, upwelling or geostrophic currents further offshore. Due to high near-bed shear stresses, the “subaqueous platform” topsets are regions of predominant bypass. Most river- and surf-derived sediment is transferred seawards, until reaching sufficiently deep bathymetries (typically 20–60 m) for the near-bed shear-stresses to decline below the
sediment motion threshold, leading to the thick forest deposition (Fig. 6b; Kuehl et al., 1986, 1997; Driscoll and Karner, 1999; Hernández-Molina et al., 2000a; Walsh et al., 2004; Svensson et al., 2005; Puig et al., 2007; Jaramillo et al., 2009; Sheremet et al., 2011; Mitchell, 2012; Mitchell et al., 2012; Qiu et al., 2014).

Delta-scale subaqueous clinoforms share many characteristics with shoreline clinoforms, including foreset heights (≤45 m) and time-scale of deposition (typically, c. 1–10 kyr) (Figs. 7A, 8A). Unlike shoreline clinoforms, however, delta-scale subaqueous clinoforms form shore-detached offshore breaks, with typical rollover bathymetry of 20–60 m (Fig. 8). Diagnostic criteria are the presence of well-developed topsets hosting marine facies and benthic fauna and lacking evidence of subaerial exposure, like palaeosols and coastal-plain facies (Cattaneo et al., 2003).

Because of the geometrical similarities between all delta-scale clinoforms, without direct coring it may be challenging to understand whether a mid-shelf delta-scale clinothem (e.g., in the Quaternary) is an actively accreting delta-scale subaqueous clinothem or an older lowstand shoreline abandoned in place following sea-level rise (e.g., Tesson et al., 1990; Hunt and Tucker, 1992; Casalbore et al., 2017). Nevertheless, the morphological classification of Patruno et al. (2015a) goes some way to discriminate between these two clinothem types, as summarized below.

Unlike shoreline clinoforms, most delta-scale subaqueous clinoforms are sigmoidal, with the lowest shape ratios of all clinoform types (0.10–0.65), and their trajectories are typically higher-angle (0.1–2.0°) (Fig. 8; Patruno et al., 2015a). Delta-scale subaqueous clinoforms are subject to efficient basin-parallel transport and sorting: therefore, their facies, grain-size, geophycology and architecture are all more uniform than in shoreline clinoforms (e.g., near-linear plan-view morphology) (Driscoll and Kuehl, 1999; Goodbred and Kuehl, 2000a, 2000b; Chen et al., 2000; Hernández-Molina et al., 2000a; Cattaneo et al., 2003, 2007; Liu et al., 2004, 2006, 2007b; Lobo et al., 2005; Qiu et al., 2014; Patruno et al., 2015a, 2015b).

The high-angle clinoform trajectories coupled with high-energy shore-parallel advective transport belts create an oceanographic environment capable of trapping most river-fed sediments on the inner shelf and preferentially redistributing them alongshore. This leads to lower across-shelf progradation rates than in most shoreline clinoform sets (Fig. 8C), with a decreased likelihood of sediment transfer to the basin floor (c.f., Fly River and East China Sea sediment budget – Milliman et al., 1985; Walsh et al., 2004; Liu et al., 2006, 2007a). In this case, the shelf and the subaqueous delta front become dissected by canyons, however, this closed system is breached, with shelf-bypass of river-fed sediment (e.g., the Ganges-Brahmaputra–Goodbred and Kuehl, 1999, 2000a, 2000b; Covault et al., 2007; Palamenghi et al., 2011).

Although the characteristics discussed thus far are shared by all delta-scale subaqueous clinoforms, sand-prone and mud-prone clinoform sub-types are characterized by further distinct geometric and genetic features (c.f., Patruno et al., 2015a), as detailed below.

2.2.1.2.1. Mud-prone versus sand-prone delta-scale subaqueous clinoforms. Modern muddy delta-scale subaqueous clinoforms are characterized by shore-parallel, broad, low-angle cross-sectional profiles on wide (29–376 km) and gently-sloping (0.01–0.38°) shelves (Patruno et al., 2015a). Most of these clinoforms in the past were simply classified as “prodelta” (e.g., Roberts and Sydow, 2003), as they form muddy “subaqueous deltas” offshore major river outlets, usually developing a compound configuration (see later) with their subaerial delta counterparts (Driscoll and Kuehn, 1999; Palamenghi et al., 2011, Fig. 13a); Yangtze and Yellow rivers (Chen et al., 2000; Hori et al., 2001; Liu et al., 2004, 2006, 2007a, 2007b; Qiu et al., 2014); Amazon (Kuehl et al., 1986; Nittouer et al., 1986); Fly Delta (Walsh et al., 2004); Po-Adriatic Shelf (Cattaneo et al., 2003, 2007; Palankas and Nittouer, 2006; Puig et al., 2007; Palankas, 2009, Fig. 13b); and Mahakam Delta (Roberts and Sydow, 2003). These systems are often found in cratonic or passive margin basins, with few exceptions (e.g., the Po-Adriatic – Calamita et al., 2007).

Recent sand-prone delta-scale subaqueous clinoforms, on the contrary, form actively-accreting shore-parallel clastic wedges on narrow (<35 km) and steep (>0.26°) high-energy shelves, between fair-weather and storm wave bases, and are commonly associated with non-deltaic shorelines and strandplains (Fernández-Salas et al., 2009; Patruno et al., 2015a). Examples include the clinoforms offshore Australia and New Zealand (Field and Roy, 1984; Dunbar and Barrett, 2005); southern Spain-Portugal (Hernández-Molina et al., 2000a; Lobo et al., 2005; Fernández-Salas et al., 2009) (Fig. 13c), and California (Chin et al., 1988; LeDantec et al., 2010). Most of these systems are in extensional or compressional tectonically active settings, which are effective in delivering a high coarse-grained sediment supply to a high-energy, steep and narrow shelf (Walsh and Nittouer, 2003). The genesis and growth of these sandbodies is in fact linked to the seaward-transport of well-sorted surf-zone sand during storms. Due to wave and current interaction, sand is entrained during storms at sites even deeper than 60 m. Storm-related shore-parallel currents are generally...
predominant in strength and time-duration, sculpting shore-parallel and near-linear subaqueous clinoforms (Field and Roy, 1984; Hernández-Molina et al., 2000a; Mitchell, 2012; Mitchell et al., 2012). Since the topset-to-foreset rollover depths reflect the wave/current traction field base (Mitchell, 2012), the rollovers of this clinoform subtype are typically 10–30 m deeper than in muddy subaqueous deltas (respectively, c. 20–60 m and 10–30 m, Fig. 8A).

With a few exceptions (e.g., Neill and Allison, 2005), muddy delta-scale subaqueous clinoform systems form significantly larger sedimentary bodies than sand-prone delta-scale subaqueous clinoforms. The along-strike extent of clinothems are of 10s of km for sand-prone subaqueous clinoforms, versus 100s–1000s of km for muddy subaqueous deltas (e.g. covering the whole East China Sea – Liu et al., 2006, 2007a). Along dip, rollovers of recent muddy subaqueous deltas are at much larger distance from the shorelines (7.5–125 km) than delta-scale sand-prone subaqueous clinoforms (0.6–7.2 km) (Patruno et al., 2015a). Because of the typical association between muddy subaqueous deltas with large river feeders, their values of sediment fluxes and progradation rates (10^{-1}–10^1 km/kyr) are high, and more similar to those of shoreline clinoforms than to those of sand-prone delta-scale subaqueous clinoforms. In contrast, because of the sporadic nature of depositional episodes, progradation rates and depositional flux of sand-prone subaqueous clinoforms are up to 3-4 and 2-3 orders of magnitude lower, respectively, than in subaerial deltas and muddy subaqueous deltas (Patruno et al., 2015a; Fig. 8C).

The down-dip extents of sand-prone delta-scale subaqueous clinoform forests (≤ 2.6 km) are one order of magnitude smaller than in other delta-scale clinoform types. As a consequence, the gradients of their foresets (0.6–9.0° in modern examples, and up to 27° in ancient ones) and inner bottomsets (0.1–4.0°) are more similar to the gradients of continental-margin clinoforms (see later) than to other types of delta-scale clinoforms. In contrast, muddy subaqueous clinoforms are characterized by gentle slopes for both bottomsets/topsets (< 0.4°) and foresets (< 0.9°) (Fig. 7C). In Recent systems, a foreset gradient threshold of 0.3-0.5° between these two clinoform sub-types has been identified (Patruno et al., 2015a).

These and other anomalous values of geomorphological, sedimentological and stratigraphic features are helpful to identify ancient delta-scale subaqueous clinoforms (Patruno et al., 2015a). Examples include those described by Plint et al. (2009), Hampson (2010), Patruno

In the carbonate realm, there are also similar laterally-extensive, fully-subaqueous clinohemts that strike parallel to the palaeo-shoreline. These contain coarse-grained cross-bedded grainstones, transported seaward by waves and currents and emplaced below wave base (c. 40–70 m), and are also associated to shore-parallel shelfal (topset) and bottom (toeset) currents (Cathro et al., 2003; Pomar and Tropeano,

Fig. 18. Examples of continental margin clinohemts. (A) Regional structural-bathymetric map of the Atlantic margins of the south-eastern United States, showing the location of the continental margin scale sedimentary wedge in relation to the continent/ocean transition; (B) 3D cartoons showing the Meso-Cenozoic geological evolution of the eastern Carolina continental margin (south-eastern U.S. Atlantic margin), with the position of the Jurassic-Recent continental margin scale clinohemt slopes reflecting the transition between continent and ocean crust (redrafted after Dillon et al., 1983); (C) Interpreted seismic cross-section off North Carolina, showing the progressive progradation of shelf-edge clinohemts towards the continental margin slope, forming an early shelf-edge to continental margin compound clinohemt system and a late hybrid continental margin clinohemt ("seismic image courtesy of the USGS https://walrus.wr.usgs.gov/namss/search/). BE = Blake Escarpment; FHS = Florida-Hatteras Slope. (Ritglord and Schouten, 1986)
the shelf-slope break (Henriksen and Vorren, 1996; Steel et al., 2000; Steel and Olsen, 2002; Roberts and Sydow, 2003; Sztanó et al., 2013; Hodgson et al., 2018; Pellegrini et al., 2018). As a consequence, these marine or lacustrine basins characterized by minimum water depths of
are surfaces of dynamic equilibrium that form at the margins of either
continental shelf
are characterized by signi

tinction between bathymetric shelf and deeper-water plateau (with the
of the
continental shelf
margin between the
continental shelf
continental margin clinoforms

2.2.2. Shelf-edge scale clinoforms (Figs. 14–16)

Shelf-edge clinoforms (in previous literature termed shelf-prism clinoforms – Helland-Hansen and Gjelberg, 2012; Patruno et al., 2015a) are surfaces of dynamic equilibrium that form at the margins of either marine or lacustrine basins characterized by minimum water depths of a few hundreds metres. In the case of non-erosional “progradational margins” (sensu Ross et al., 1994; Ryan et al., 2009a), the topsets and foresets of these clinoforms represent respectively the morphological shelf and slope, and the topset-to-foreset rollover point correspond to the shelf-slope break (Henriksen and Vorren, 1996; Steel et al., 2000; Steel and Olsen, 2002; Roberts and Sydow, 2003; Sztanó et al., 2013; Hodgson et al., 2018; Pellegrini et al., 2018). As a consequence, these clinoform sets typically represent c. 0.1–20 Myr; forest heights are c. 100–300 m and slope gradients range from 0.9–10° (infection zones) to 0.6–4.8° (average forest) (Figs. 7–8; Vanney and Stanley, 1983; Stecker et al., 1999; Steel and Olsen, 2002; Patruno et al., 2015a). Because of the dominance of short-term progradation and long-term aggradation in cycles of continental shelf outbuilding (Bullimore et al., 2008; Carvajal et al., 2009), shelf-edge clinoforms show lower progradation/aggradation ratios (with clinoform trajectories as high as 2.4°) and higher progradation resistance ratios (10^-2–1) than delta-scale clinoforms (Patruno et al., 2015a) (Fig. 8). Because of the predominance of high-angle trajectories, basinal processes and fine-grained sizes, shelf-edge clinoforms often display sigmoidal profiles, albeit oblique geometries are present in case of shelf-edge clinoforms and/or descending trajectories (Adams and Schlager, 2000; Pellegrini et al., 2017; Fig. 14B–C).

With the exception of draped structurally-controlled shelf-edge clinoforms (e.g., Fig. 5c), the repeated, regressive-transgressive, cross-shelf transit of delta-scale clinoforms is the key process that leads, through time, to the nucleation and evolution of most larger-scale shelf-edge clinoforms (Burgess and Hovius, 1998; Steel et al., 2000, 2003, 2008; Porębski and Steel, 2003, 2006; Johannessen and Steel, 2005; Oluari and Steel, 2009; Helland-Hansen et al., 2012) (Fig. 16). Initially, multiple superimposed delta-scale clinoform sets accrete by across-shelf delta progradation, repeatedly infilling the landward-tapering shelfal accommodation after each transgression (Fig. 16A–C). These repeated

<table>
<thead>
<tr>
<th>Rollover water depth (m)</th>
<th>Shelf-edge clinoforms</th>
<th>Muddy subaqueous delta clinoforms</th>
<th>Sand-prone subaqueous delta clinoforms</th>
<th>Shoreline clinoforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>550–1770</td>
<td>60–426</td>
<td>6–59</td>
<td>≤ 20 kyr</td>
<td>≤ 20 kyr</td>
</tr>
<tr>
<td>0.9 to +49</td>
<td>2.4 to 0.2</td>
<td>0 to +0.1</td>
<td>> 20 kyr</td>
<td>> 20 kyr</td>
</tr>
<tr>
<td>Coarse-grained sediment dispersal</td>
<td>Fluvio, wave, tide, gravity, sea-level control</td>
<td>Storm, tide, currents, gravity</td>
<td>Fluvio, wave, tide, gravity</td>
<td>Poor-Excellent</td>
</tr>
<tr>
<td>C. Minor to Excellent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basin floor reservoir potential</td>
<td>Thick, connected</td>
<td>Good potential, possibly disconnected</td>
<td>Minor, greater if close to the shelf-edge</td>
<td>Few, thin, disconnected</td>
</tr>
</tbody>
</table>

Values of water depth, progradation rates and time scale for shelf-edge deltas are based on 100s-1000s year cycles in the case study of the Po shelf-edge delta during the Pleistocene lowstand (Pellegrini et al., 2017, 2018).
cross-shelf transits results in long-term “stratigraphic climb” and gradually steeper and higher frontal slopes, with an eventual transition of clinoforms from delta-scale to shelf-edge scale (Fig. 16); Sydow and Roberts, 1994; Deibert et al., 2003; Porebski and Steel, 2003; Anderson, 2005; Anderson et al., 2016; Sztanó et al., 2013).

Normally, both a proximal active delta-scale clinoform system and a distal shelf edge draping clinoform with rollover-point bathymetries of up to 500 m are present (Fig. 16D), forming a compound clinoform system (see later), and shelf-edge clinoforms prograde slowly (c. 1–20 m/k.yr), via hemipelagic fallout (Stein et al., 2000, 2003, 2008; Steel and Olsen, 2002). Whenever the sediment-delivery deltaic systems reach the shelf break ("shelf-edge delta" stage, c.f. Johannessen and Steel, 2005), however, the shelf margin (i.e. the clinoform foreset) is subject to significant accretion, with much faster progradation rates (e.g., up to 10³ m/k.yr in the Pleistocene Po lowstand delta – Pellegrini et al., 2017, 2018) (Fig. 16E). As a consequence of this growth style, shelf-edge clinoforms typically possess a bipartite lithology, reflecting alternate sourcing by starved hemipelagic-hyperpycnal mud-drapes and, during shelf-edge delta stages, by active mud- or sand-prone shoreline progradation (Porebski and Steel, 2003; Bhattacharya and MacEachern, 2009).

Several published case studies detail this relationship between shelf-edge clinoforms and superimposed delta-scale clinoform cycles (e.g., Oliveira et al., 2011). For example, the Eocene-age succession outcropping in Spitsbergen hosts both gently-dipping low-relief (tens of metres) shoreline clinoforms and more steeply-dipping (3–6°), high-relief (average 200 m) sandy shelf-edge clinoforms. Regressive-transgressive shoreline cycles across narrow (1–10 km) and shallow (< 50 m) shelves are reflected by the alternate deposition of actively acrering sand-prone shelf-edge clinothems and, after each transgression, mudstone-prone shelf-edge draping clinothems (Helland-Hansen, 1992, 2010; Helland-Hansen et al., 1994; Steel et al., 2000, 2003; Steel and Olsen, 2002; Meller et al., 2002; Johannessen and Steel, 2005; Uroza and Steel, 2008; Johannessen et al., 2011; Grundvåg et al., 2014) (Fig. 14D). On the Shetland Platform (UK Continental Shelf), the Palaeogene Dornoch Formation forms sandstone-prone and laterally extensive clinoform sets that prograde over a largely Paleozoic substrate (Patruno and Reid, 2016, 2017; Patruno, 2017; Patruno et al., in press; Patruno and Lampart, 2018). These clinoforms gradually become higher-relief and more steeply-dipping basinward, due to both repeated stratigraphic climb and deeper palaeobathymetries linked to a gentle basinward tectonic tilting of the substrate. On the outer platform, therefore, these clinoforms are interpretable as shelf-edge deltas (Fig. 15; Patruno and Reid, 2016, 2017; Scisciani et al., in press; Turner et al., in press). On the Norwegian Continental Shelf, the Jurassic-age Sognefjord Formation comprises transgressive-regressive delta-scale sand-prone clinoform cycles. When a new clinoform set progrades beyond the leading edge slope of the previous set, it expands its thickness (up to 70 m) and increases its progradation rate, due to the sudden increase in accommodation controlled by antecedent palaeobathymetry (Patruno et al., 2015b, 2015c) (Fig. 13e). If this process had been repeated more times, a “true” shelf-edge scale clinothem (i.e. thicknesses > 100 m) would have been nucleated from delta-scale precursors.

As detailed in Section 2.3, shelf-edge clinoforms have been subject of intense active research, with the main focus to better predict the timing, amount and mode of emplacement of sand-transport from the shelf (topset) to the basin-floor (bottomset) (e.g., Steel and Olsen, 2002; Porebski and Steel, 2003, 2006; Løseth et al., 2006; Carvajal and Steel, 2009; Jones et al., 2013, 2015).

Shelf-edge clinoforms are identified on modern bathymetric profiles (Fig. 10 a,b,d) as well as in the ancient record (Steckler et al., 1999; Ryan et al., 2009a; Steel et al., 2000, 2003, 2008; Steel and Olsen, 2002; Johannessen and Steel, 2005; Glerstad-Clark et al., 2011; Klausen et al., 2016) (Figs. 14–15). Carbonate shelf-edge scale clinoforms driven by both in-place carbonate production and off-shelf sediment transport have also been described (e.g., James and Von Der Borch, 1991; Puga-Bernabéu et al., 2010). As in siliciclastic systems, shelf-edge carbonate clinoforms are steeper and with a broader range of cross-sectional geometries than proximal delta-scale carbonate clinoforms, which typically show oblique/exponential profiles (Quiquerez and Dromart, 2006).

2.2.3. Continental margin scale clinoforms (Figs. 17–18)

Continental margin scale clinoforms are the largest clinoform types, with foreset heights of about 600–2600 m and slope gradients ranging from 1.6–16.2° (infection zone) to 1.1–12.5° (average foresets) (Fig. 7; Patruno et al., 2015a). These large-scale clinoforms consist of topset-to-foreset rollover bathymetries of up to 1,770 m and develop over tens to hundreds of Myr (Fig. 8A) (e.g., Jurassic-Recent eastern United States continental margin – Figs. 10a, 18; Shipley et al., 1978; Schlee et al., 1979; Dillon et al., 1983; Klitgord and Hutchinson, 1988). Therefore, progradation rates and unit-width depositional flux of continental margin clinoforms are respectively up to 6 and 5 orders of magnitude lower than delta-scale clinoforms (Patruno et al., 2015a) (Fig. 8C). A relatively continuous and long-lasting but low-frequency stratigraphic record is thus revealed by continental margin clinoform trajectories (e.g., ice-sheet fluctuations – Larer and Barker, 1989).

Continental margin clinoform sets show the highest values of clinoform trajectories angles (0.9–49°) and progradation resistance ratios (up to 4 × 10⁻¹) of all the clinoform types (Fig. 8B). As a consequence of the low progradation/aggradation ratios, the pre-dominance of basinal processes and fine-grained lithotypes, continental margin clinoforms are nearly universally characterized by sigmoidal, symmetrical cross-sectional profiles (Fig. 17; Pirmez et al., 1998; Adams and Schlager, 2000; Patruno et al., 2015a).

As previously pointed out, although both shelf-edge and continental-margin clinoforms are developed at the outer edge of a bathymetric “shelf” or “plateau”, several authors differentiate these two categories on the basis that they correspond to statistically different clinoforms, associated to distinct structural styles and bathymetry (Carvajal et al., 2009; Henriksen et al., 2011; Patruno et al., 2015a). Diagnostic characteristics for continental-margin clinoforms over shelf-edge clinoforms include significantly slower progradation rate, lower progradation/aggradation ratios (Fig. 8C), and more commonly gravity-driven slope deformation (Wolinsky and Pratson, 2007; Carvajal et al., 2009; Patruno et al., 2015a). Only major structural elements (e.g., ocean/continent boundaries) can form slopes as high as thousands of metres. As a consequence, our definition of “continental-margin (scale) clinoform” comprises even clinoforms with heights as little as 500 m, as long as they are initially produced by the long-term sedimentary mantling of slopes associated with the transition from continental to oceanic crust, possibly followed by active “continental margin-delta” accretionary phases (see later) (Austin and Uchupi, 1982; Rice and Shade, 1982; Dillon et al., 1983; Larer and Barker, 1989; Hiscott, 2001; Walsh and Nittouer, 2003; Lin et al., 2008; Houseknecht et al., 2009; Covault et al., 2009; Hubbard et al., 2010). This primary conditioning of continental-margin (scale) clinoform relief by geodynamics rather than sedimentary processes separates this clinoform class from the previous ones (including shelf-edge clinoforms), which are rarely associated directly with continental margins, active tectonics or structural lineaments (Steel and Olsen, 2002). Continental-margin clinoforms are largely mudstone-prone (Porebski and Steel, 2003). Slopes and deep-water basins associated to continental margin clinoforms may nevertheless host a large amount of reservoir-forming sandstones, particularly in supply-dominated shelf-margins, where delivery of sand beyond the shelf-edge is primarily a consequence of the high rate of sediment supply and/or relative sea-level falls (Carvajal et al., 2009). For example, Neogene slope sand-prone deposits accumulated on the Brazilian continental margin clinoforms (Campos Basin area), with sand accumulations particularly concentrated on the upper slope and at the base of the continental
slope, with a middle foreset area which is a predominant bypass zone (Viana et al., 1998). The processes responsible for the delivery of sand to the continental slope in this case study is a three-stage process, which involves: (a) waves, tides and surface currents with sufficient energy to form submarine sand-prone submarine dunes on the outer shelf; (b) export of this sand from the outer shelf to the slope via a combination of sand spillover, waves, eddies and gravity-driven turbidity currents; and (c) sand deposition on the slope, controlled by the interplay between slope physiography (e.g., presence of canyons), mass movements and deep-marine contour currents (Viana et al., 1998; Viana et al., 1998;

![Interpreted seismic cross-sections oriented parallel to the depositional dip, showing examples of compound clinoform systems at various scale: (A) Jurassic to Recent shelf-edge (Florida-Hatteras Slope) to continental margin (Blake Escarpment) compound clinoforms from the Atlantic margins of the south-eastern U.S. (offshore Southern Carolina: Line FC8 after Schlee et al., 1979); (B) Quaternary-age delta-scale (accretionary) to shelf-edge (draping) compound clinoforms from southern Iberia (after Hernández-Molina et al., 2000a); (C) Holocene-age shoreline to delta-scale subaqueous clinoform compound clinoform system from the Tiber Delta, Tyrrhenian Sea, central Italy (after Amorosi and Milli, 2001).](image-url)
Rodger et al., 2006; Carvajal et al., 2009). The episodic development of continental-margin deltas and gullied clinoform rollovers are the key processes responsible for the formation of sand-rich continental-margin clinothems, as detailed in the next section.

2.3. Spatial associations of coeval clinoforms: compound versus hybrid clinoforms

The clinoform types described thus far can occur in isolation or be dynamically linked down-depositional dip. The latter case corresponds to compound and hybrid clinoform systems.

Compound clinoform configurations comprise clinoforms in a more proximal position and genetically-linked and time-equivalent outer clinoforms situated down depositional dip, such that the bottomset of a clinoform located in an up-dip location corresponds to the topset of a larger-scale clinoform set further down-dip (Figs. 19 and 20; Patruno et al., 2015a). In an extreme case, the four types of clinoforms (shoreline clinoforms, delta-scale subaqueous clinoforms, shelf edge clinoforms and continental margin clinoforms) may prograde simultaneously along shoreline-to-abyssal plain transects, although at significantly different rates (e.g., the U.S. Atlantic margin – Fig. 18). In other cases, progradation, erosion and retrogradation may take place at the same time in different sectors of a shoreline to abyssal plain transect (e.g., Madof et al., 2016).

Although delta-scale compound clinoform progradation during overall transgressive conditions have been recently reported (Pellegrini et al., 2015), compound clinoforms are typically developed during early highstands, after a prior transgression lead to the physical separation of shorelines and shelf-edge. During many subsequent episodes of cross-shelf shoreline transits, however, due to the exponential differences in progradation rates between clinoforms at the shoreline (c. 1,000–100,000 m/kyr), subaqueous delta (c. 100–20,000 m/kyr), shelf-edge (c. 1–100 m/kyr) and continental margin (c. 0.1–10 m/kyr) (Fig. 8C), these clinoforms types will gradually merge together through the establishment of shelf-edge deltas and continental-margin deltas, leading to a progressive reduction of the depositional breaks-in-slope along a shoreline-to-abyssal plain transect (e.g., only one, in the extreme case of continental-margin deltas). These “hybrid clinoforms” are simultaneously characterized by reliefs typical of the largest-scale clinoform type and by intermediate facies, progradation rates, morphologies and architectures (e.g., anomalously fast “shoreline-like” progradation rates of shelf-edge deltas).

The cycle of hybrid clinoform formation begins with the shoreline clinoforms merging with the normally slower delta-scale subaqueous clinoforms, giving rise, during the middle part of a highstand cross-shelf regression, to a single delta-scale clinoform system within the shelf (“hybrid shorelines”). For example, over the past 500 years, the Nile discharge has been confined to two main distributaries (Rosetta and Damietta), leading to their extensive progradation and a change of the Nile Delta from a precedent arcuate and wave-dominated delta-front with associated mid-shelf muddy subaqueous delta fed by high-energy longshore currents (c. 5,000–500 years ago) to a more river-dominated

![Fig. 20.](image-url)
and strongly prograding hybrid subaerial delta since 500 years ago, focused on the Rosetta and Damietta lobes and devoid of subaqueous delta counterparts (Summerhayes et al., 1978). This process of hybrid shoreline formation might not take place, however, in basins persistently dominated by high hydrodynamic energy (compared to river-driven sediment supply). In these cases, most of the river-driven sediment is supplied to the subaqueous delta, which is therefore characterized by a higher progradation rate than its subaerials counterpart (e.g., Liu et al., 2006; Liu et al., 2007a, 2007b; Hampson, 2010).

After its initial formation, the hybrid shoreline system reaches the shelf-edge, giving rise to a “shelf-edge delta”, that is a unique shoreline/shelf-break slope at the shelf-edge (0–5 m rollover bathymetry). In this context, Pellegrini et al. (2018) shows that, as shorelines approach the shelf-edge in the final stages of the formation of a shelf-edge delta “hybrid clinoform”, the distance between shorelines and shelf-edge can give rise to different clinoform geometry and distinctive basal deposits. Finally, if the shelf-edge delta reaches the continental margin (i.e. the edge of a whole continental shelf), a hybrid “continental margin delta” is created (e.g., present-day Niger, Congo, Mississippi and Amazon deltas – Fisk et al., 1954; Short and Stauble, 1967; Damuth, 1994; Hiscott, 2001; Rodger et al., 2006; Peltier and Fairbanks, 2006) (see Section 2.3.2).

This whole cycle of cross-shelf delta transit and progressively higher-relief hybrid clinoform formation (cf., Porębski and Steel, 2006) usually lasts less than 100 kyr (Burgess and Hovius, 1998; Steele et al., 2008), and could be significantly faster in cases of sea-level fluctuations characterized by higher-than-normal amplitude and frequency (e.g., Pleistocene glacio-eustatic changes). Cross-shelf delta transits are controlled by the interplay between: (a) relative sea level changes; (b) rates of river-fed sediment supply and calibre of sediment input; (c) along-shore and shore-perpendicular marine transport rates and the dominant depositional processes; (d) initial volume, length, gradient and physiography of shelf and slope. These factors determine: (1) the possibility for a shoreline to reach the shelf edge during any particular transit; (2) the time needed for that to happen; and (3) the sand/mud budget partitioning along the different segments of the shoreline-shelf-slope-basin delivery systems (Burgess and Hovius, 1998; Steel and Olsen, 2002; Muto and Steel, 2002; Johannessen and Steel, 2005; Porębski and Steel, 2003; Steel et al., 2008).

Cycles of alternate compound and hybrid clinoform development take place because regressive cross-shelf delta transits can be interrupted at any point by ensuing transgressions or auto-retreats (Muto et al., 2007). For a typical relative sea-level rise of < 100 m, delta-scale clinoforms retreat landward, while shelf-edge clinoforms are left in place, giving rise to a new compound system with an accretional delta-scale clinoform and a shelf-edge passive clinoform. Subsequently, if delta-scale clinoforms prograde across the shelf at a sufficiently fast rate, they will reach the shelf-edge before the onset of the next transgression, and the compound-hybrid clinoform cycle continues.

A similar evolutionary cycle occurs for shelf-edge to continental margin compound clinoform systems, but involving low-frequency and high-magnitude relative sea-level cycles over timescales of millions of years, and rare instances of shelf-edge landward retreats. For example, in the Mesozoic, a single hybrid shelf-edge to continental-margin clinoform system existed offshore Carolina (U.S.) (Fig. 19a). Following the onset of the “middle Cretaceous” climate warming and global oceanic anoxia (e.g., Patruno et al., 2015d; Unida and Patruno, 2016), a major Late Cretaceous eustatic rise (c. 100–200 m) caused the shelf-edge to be shifted up to 300 km landward, giving rise to a detached shelf-edge clinoform (Florida-Hatteras Slope) and a compound passive/draping continental margin clinoform (Blake Escarpment), separated by the wide submarine Blake Plateau (Figs. 10A, C, 18A–B, 19A; Uchupi, 1968; Shipley et al., 1978; Schlee et al., 1979; Dillon et al., 1983).

The best-known compound and hybrid clinoforms are delta-scale compound clinoforms and shelf-edge delta or continental-margin delta hybrid clinoforms, as further discussed below.

2.3.1. Delta-scale compound clinoforms (Figs. 19c, 20)

Delta-scale compound clinoforms consist of genetically-related paired subaerial and subaqueous delta-scale clinoforms, separated by a “subaqueous platform” bypass region (i.e., the subaqueous clinoform topset) (Fig. 19) (Allison, 1997; Pirmuz et al., 1998; Driscoll and Karner, 1999; Goodbred et al., 2003; Swenson et al., 2005; Kuehl et al., 2005; Giosan et al., 2006a; Pellegrini et al., 2015). Examples of Recent delta-scale compound clinoforms were formed at the onset of the Late Holocene highstand, and include the Western Adriatic (Fig. 13b), the Ganges-Brahmaputra, the Yellow Sea and the Mahakam River Delta (Fig. 20a) (Nittrouer et al., 1986; Michels et al., 1998; Cattaneo et al., 2003, 2007; Kuehl et al., 2005; Liu et al., 2004, 2007a, 2007b).

Generally, the partitioning of river-fed sediment between subaerial and subaqueous delta clinoform components is determined by the interplay between fluvial input and basin hydrodynamics. The portion of sediments reaching the subaqueous delta increases with: (1) greater magnitude and frequency of storm events; (2) decreasing river-flood discharge; and (3) decreasing sediment grain-size (Pirmuz et al., 1998; Driscoll and Karner, 1999; Goodbred et al., 2003; Cattaneo et al., 2003, 2007; Swenson et al., 2005; Palinkás and Nittrouer, 2006; Puig et al., 2007; Palinkás, 2009; Mitchell, 2012).

As a consequence of the above, the relative growth and development of subaqueous and subaerial delta-scale clinoforms are inversely related to each other, as suggested by negative correlations between the width of shelfal mudstone and coastal plain belts (Swenson et al., 2005; Hampson, 2010). For example, the Late Holocene Nile Delta evolved from a wave-dominated compound system (ca. 5–0.5 ka B.P.) into a strongly progradational river-dominated subaerial delta (i.e., a “hybrid shoreline”, since 0.5 ka B.P.) due to an increase in sediment input (Summerhayes et al., 1978; Frihy, 1988; Goodfriend and Stanley, 1999). The case study of the Atchafalaya Delta (U.S.), similarly, revealed a slightly diachronous development of a delta-scale compound clinoform system, with a 22 year difference between the onset of subaqueous and subaerial deltas (Roberts et al., 1980).

In cases where subaqueous deltas are well-developed, these will receive larger amounts of river-fed sediments than subaerial deltas, and will therefore form larger sedimentary bodies with faster progradation rates, resulting in a progressive lengthening of the subaqueous platform during regression (Liu et al., 2006, Liu et al., 2007a, 2007b; Hampson, 2010).

2.3.2. Shelf-edge delta and continental-margin delta hybrid clinoforms

Shelf-edge and continental-margin deltas are a common component of Quaternary shelves (Fig. 19a), and are the only instances when «deltaic clinothems» can be as thick as 100s1000s m (Suter and Berryhill Jr, 1985; Mayall et al., 1992; Sydow and Roberts, 1994; Morton and Suter, 1996; Steel et al., 2000, 2003, 2008; Steel and Olsen, 2002; Porębski and Steel, 2003; Sydow et al., 2003; Johannessen and Steel, 2005; Covault et al., 2009; Hubbard et al., 2010; Pellegrini et al., 2018). In particular, example of Quaternary continental-margin delta include the Niger, Congo, Mississippi and Amazon deltas (Fisk et al., 1954; Short and Stauble, 1967; Damuth, 1994; Hiscott, 2001; Rodger et al., 2006; Peltier and Fairbanks, 2006).

Accretional shelf-edge and continental-margin delta clinothems are separated by hemipelagic clinothems plastered on the shelf- or continental-margin after each delta retreat. Accretional shelf-edge clinothems might host highly continuous and laterally extensive reservoir intervals, forming some of the most prolific hydrocarbon fields in the World (e.g., Sydow et al., 2003). Furthermore, as detailed below, they might be associated with significant deep-water coarse-grained sediment transfer, depending on four factors: (1) clinoform trajectories; (2) sediment supply; (3) depositional processes; (4) presence of gullied shelf-edges.

Lowstand stages or phases of highly progradational, flat or descending clinoform trajectories (i.e., forced regressions) favour the establishment of the factors for the accelerated growth of sand-rich basin-
floor fans, with efficient and rapid (>0.1 Myr) sand transport beyond river-dominated shelf-edge or continental-margin deltas through focused and long-lived channelized shelf-slope pathways. During normal regression (i.e., ascending clinoform trajectories), in contrast, continental-margin and shelf-edge deltas are normally associated with aggradational wave-dominated clinoforms that are near-linear in plan-view, lack focused sediment dispersal and, in the absence of gullied shelf-edges, are characterised by slopes that are either mudstone-prone or host only minor tempestite sheet sandstones, and by negligible or muddy submarine fan development (Kolla et al., 2000; Steel and Olsen, 2002; Plok-Björklund and Steel, 2002, 2006; Deibert et al., 2003; Ritchie et al., 2004a, 2004b; Bullimore et al., 2005; Johannessen and Steel, 2005; Porēbski and Steel, 2006; Carvajal and Steel, 2009; Uroza and Steel, 2008; Gong et al., 2015; Gong et al., 2015; c.f. also the c2 clinothem of the upper Pleistocene Po-Adriatic succession, as detailed in Pellegrini et al., 2018).

In cases of very high sediment supply, however, deep-water sand transport may take place even during normal regressions and/or hightstands, through un-channelised slumping, mass transport complexes and low-density turbidites (Carvajal and Steel, 2006, 2009; Steel et al., 2008; Carvajal et al., 2009; Kertznus and Kneller, 2009; Henriksen et al., 2011; Dixon et al., 2012a, 2012b). A key example in this respect is the Neogene lacustrine shelf-edge scale clinoform succession in the Pannonian shelf-edge lacustrine basins (Magyar et al., 2013; Sztanó et al., 2013), where each phase of rising base-level corresponded to a time of climate-driven high sediment supply, when large volumes of sediments bypassed the aggrading topsets onto the slope and basin-floor. During times of base-level stagnation or minor fall, however, sediment supply was not enough to bypass the slope, and no deep-water fan was formed.

Deep-water sediment transfer in wave-dominated shelf-edge and continental-margin deltas only takes place if they are associated to high sediment supply, low shelf accommodation and/or gullied shelf-edges. In contrast, regardless of other conditions, whenever incised valleys and submarine canyons are developed, river-dominated shelf-edge deltas are the most efficient agents of coarse-grained sediment delivery to the slope and basin-floor, with significant basin-floor fan development (Short and Stauble, 1967; Suter and Berryhill Jr, 1985; Mayall et al., 1992; Sydow and Roberts, 1994; Steel et al., 2000, 2003, 2008; Plok-Björklund et al., 2001; Meller et al., 2002; Porēbski et al., 2003; Deibert et al., 2003; Porēbski and Steel, 2003, 2006; Roberts and Sydow, 2003; Sydow et al., 2003; Craibaugh and Steel, 2004; Anderson, 2005; Anderson et al., 2016; Johannessen and Steel, 2005; Plok-Björklund and Steel, 2006; Burgess et al., 2008; Carvajal et al., 2009;
Jones et al., 2013; Pellegrini et al., 2018). This includes large-scale sediment transfer to the basin-floor of continental-margin clinoforms (e.g., oceanic abyssal plains), as in the Niger Delta and the Cretaceous Tres Pasos-Dorotea formations, Chile (Uchupi, 1968; Damuth, 1994; Hiscott, 2001; Covault et al., 2009; Hubbard et al., 2010). More generally, in continental-margin clinoforms, only negligible river-derived sediment transport towards the abyssal plain takes place, particularly during highstands (e.g., < 5% in the Recent Gulf of Papua), but the presence of submarine canyons extending in proximity of river mouths changes dramatically this sediment balance (e.g., about 90% of Recent sediment off the Sepik River) (Walsh and Nittouer, 2003; Sweet and Blum, 2016).

In overpressured continental margin delta and larger shelf-edge delta clinoforms, the high relief, steep slopes and long run-out distances affect loading intensity and therefore slope stability, particularly during the fastest phases of delta progradation (“unstable shelf-margin deltas” sensu Porębski and Steel, 2003; e.g., Short and Stauble, 1967; Damuth, 1994), aided by reduced shear stress due to overpressuring (Walinski and Pratson, 2007). These slope instability features include possible attractive targets for hydrocarbon exploration, such as listric fault growth and rollover anticlines, mud or salt diapirs, large-scale slope collapse, major slumps and mass-transport complexes and gravity-sliding tectonics (Porębski and Steel, 2003; Sydow et al., 2003).

There are practical identification criteria for shelf-edge and continental-margin deltas. These are clinothems thicker than 100 m, laterally-extensive in plan-view and hosting widespread delta-slope and toe-of-slope deformation, including slumps and sand-laden hyperpycnal tinferential margin clinoforms, this alternation refers to the faster local delta progradation and merging between shelf-margin and deltaic sediment input. Parallel cross-sections through the same clinoform set will show different morphologies characterized by thin topsets and bottomsets, foreset heights, gradients etc. Clinoform types are characterized by a continuous sediment supply which drives a marine basinward facies belt migration through time, resulting in clinothem cross-sectional morphologies characterized by thin topsets and bottomsets, foresets and seafloor fans. The latter part of a shelf-edge delta beneath this sequence boundary therefore lies within a “highstand system tract” (sensu Van Wagoner et al., 1990 and Neal and Abreu, 2009).

3. Towards a hierarchical classification of deltaic and subaqueous siliciclastic clinoforms

The correct palaeoenvironmental interpretation of ancient clinoform sets tied to modern examples is crucial to envisage a realistic archeitectural and depositional model, including estimates of rates of progradation and depositional flux (e.g., Patruno et al., 2015c).

The theoretical quantitative framework of diagnostic architectural, sedimentological and stratigraphic features provided by both this work and Patruno et al. (2015a) can assist in the identification of ancient clinoform types and their dominant grain-size. These features can be directly measured or inferred from subsurface data (seismic, cores, logs, biostratigraphic and chronostratigraphic data). In particular, a statistically significant mathematical correlation has been pointed out between morphometric (e.g., foreset height, gradients etc.), palaeoenvironmental (e.g., palaeobathymetry at the rollover) and chronostratigraphically-constrained parameters (e.g., progradation rate, aggradation rate, sediment flux) (cf. Figs. 7–9). From these data it is possible to calculate clinoform palaeobathymetries once clinoform height, age spans or progradation rates have been measured, and vice versa. Chronostratigraphically-constrained relationships are indirect consequences of the accumulation of hiatuses of different scales over increasingly longer time spans (Sadler, 1981; Patruno et al., 2015a, 2015b, 2015c, 2015d), which makes depositional rates measured for ancient and recent units not directly relatable to each other. As a consequence, most statistical correlations shown in Figs. 7–8 for delta-scale clinoforms have been subdivided into longer-term (> 10 kyr duration) and shorter term (sub-Milankovitch) (< 10 kyr duration) sub-groups. For larger-scale, longer timescale clinoforms, the “Sadler effect” is less important (Fig. 8A).

3.1. Four division

The classification scheme that we propose here is primarily based on the four main clinoform types that have been discussed above: (1) shoreline clinoforms; (2) delta-scale subaqueous clinoforms; (3) shelf-edge clinoforms; (4) continental margin clinoforms (Fig. 21). The differentiation of these four main types is based on vertical relief, sedimentary facies and facies associations within each segment of these different clinothem types, degree of proximity along an idealized shoreline-to-abyssal plain transect, oceanographic setting and geodynamic context.

Autogenic and high-frequency allogenic drivers exert increasingly less influence on the geometry and architecture of clinoform sets developed at increasingly larger spatial and temporal scales. As such, continental margin and shelf-edge clinoforms are characterized by simpler clinoform trajectories than delta-scale clinoforms, and form units that normally can only translate seawards (Helland-Hansen and Hampson, 2009). This is an expression of the increasing discrepancy between clinoform relief and amplitude of relative sea level changes as clinoforms grow larger. Sea-level change amplitudes will normally be in the same order of magnitude as the relief of delta-scale clinoforms (i.e., tens of metres): hence, landward-stepping of clinoform successions will nearly-exclusively take place for this clinoform class (i.e., shorelines and delta-scale subaqueous clinoforms).

Some aspects of clinoform outbuilding, nevertheless, are scale-invariant. For example, all clinoforms record maximum vertical sediment accumulation rate in their upper foreset (e.g., Pratson et al., 1994; Michels et al., 1998; Cantaneo et al., 2007). In all clinoform types, laterally-extensive, linear to gently curvilinear plan-view morphology is indicative of times and areas dominated by basinal processes over fluvial input (Palinkas and Nittouer, 2006; Palinkas, 2009; Johannessen and Steel, 2005; Olariu and Steel, 2009).

3.2. 8-division

Each of the four main clinoform types can be sub-divided into two sub-types based on growth dynamic. This can be summarized as a binary subdivision between actively accretory (“active”) and passively draping (“passive”) clinoforms (Fig. 21). The former sub-types are characterized by a continuous sediment supply which drives a basinward facies belt migration through time, resulting in clinothem cross-sectional morphologies characterized by thin topsets and bottomsets and significantly thicker foreset sections. The latter clinoform sub-types are instead characterized by relative sediment starvation and condensation, which results into the deposition of passive drapes over an underlying inherited clinoformal morphology, with less pronounced contrast in thicknesses between topsets, foresets and bottomsets. Nucleation of clining formations occurs due to many possible reasons. Examples include: in all deltaic and subaqueous settings, sedimentary starvation and condensation due to relative base-level rise of changes in the oceanographic transport belts or wave climate; in subaerial deltas, sedimentary starvation and condensation due to lobe avulsion.

Actively accreting and passively draping clinothems often occur in alternation through the same clinoform set. In shelf-edge and continental margin clinoforms, this alternation reflects the repeated separation and merging between shelf-margin and deltaic sediment inputs. In subaerial deltas, processes of lateral lobe switching mean that parallel cross-sections through the same clinoform set will show different combinations of accretional/draping clinothem alternations (Correggiari et al., 2005).
3.3. 12-division

Draping clinothems are nearly always composed of condensed fine-grained sediments. Actively accreting clinothems, on the contrary, either comprise predominantly coarse-grained (i.e., reservoir-forming) or predominantly fine-grained (i.e., non-reservoir) lithotypes. This is a practical sub-division, driven by the necessity to devise a classification scheme through which clinoform geometries are associated to reservoir presence and quality (Fig. 21).

The geometrical diagnostic features of coarse-grained and fine-grained clinothems are likely scale invariant and include: (1) higher-angle slope gradients associated to steeper angles of repose for coarse-grained systems; (2) predominance of sigmoidal profiles for finer lithologies and oblique to top-truncated morphologies in coarse-grained systems; (3) descending clinoform trajectories are preferentially associated to coarser-grained systems (e.g., Tesson et al., 2000; Breda et al., 2007; Tamura et al., 2008; Pellegrini et al., 2017, 2018).

As a consequence of this final sub-division, 12 classes of clinoforms are here proposed, as outlined below and in Fig. 21.

1. Delta-1 = Delta scale, shoreline/subaerial delta, accretionary, coarse-grained clinoforms
2. Delta-2 = Delta scale, shoreline/subaerial delta, accretionary, fine-grained clinoforms
3. Delta-3 = Delta scale, shoreline/subaerial delta, draping/passive, fine-grained clinoforms
4. Sub-1 = Delta scale, subaqueous, accretionary, coarse-grained clinoforms
5. Sub-2 = Delta scale, subaqueous, accretionary, fine-grained clinoforms
6. Sub-3 = Delta scale, subaqueous, draping/passive, fine-grained clinoforms
7. Shelf-1 = Shelf-edge, accretionary, coarse-grained clinoforms
8. Shelf-2 = Shelf-edge, accretionary, fine-grained clinoforms
9. Shelf-3 = Shelf-edge, draping/passive, fine-grained clinoforms
10. Cont-1 = Continental margin, accretionary, coarse-grained clinoforms
11. Cont-2 = Continental margin, accretionary, fine-grained clinoforms
12. Cont-3 = Continental margin, draping/passive, fine-grained clinoforms

4. Conclusions

Clinoforms are “frozen” bathymetric profiles that give information about depositional processes, environments, bathymetry and gradients, as well as aiding the correlation of sedimentary units laid down in standing water bodies. Clinoform sets record the interplay between sediment supply and relative sea-level changes and enable us to understand the partition of land-derived sediment along non-marine to abyssal plain transects. The systematic description of relief, slope angle, and clinoform set trajectory and the clinoform classification itself all give premises to better assess these parameters.

Where rivers debouch into standing waters, (delta-scale) shoreline clinoforms are formed as a response to the current-deceleration and the increased accommodation. For delta-scale subaqueous clinoforms it is the deceleration associated with the transitioning from a high energy into deeper and less agitated waters (e.g., fairweather wave base) that causes clinoform nucleation and growth. Both delta-scale subaqueous and shoreline clinoforms have reliefs of few tens of metres, but the clinoform rollover bathymetries are c. 20–60 m for the formed and very shallow (0–5 m) for the latter. Shelf-edge scale clinoforms are usually formed by the stratigraphic cliff associated with repeated cross-shelf transits of delta-scale clinoform through extended time-periods, forming clinoforms hundreds of meters high. Finally, the kilometerscale high continental margin clinoforms are the result of sedimentary accretion of the continental margin slope.

Increasingly larger-scale clinoforms types, from delta-scale to shelf-edge and continental margin scale, reflect increasing distance from the source-area, increasing time spans of formation, decreasing progradation rates, increasingly ascending clinoform trajectories and reduced ability to step landwards. The latter factor is an effect of the increasing mismatch between relative sea-level rise amplitudes and clinoform reliefs, as sea-level amplitudes are typically of the same order of magnitude as delta-scale clinoform heights.

Different clinoform types can be clearly separated along the same non-marine to abyssal plain (palaeo-) bathymetric profiles (“compound clinoforms”), or they may for periods of time have coincided and moved together as “hybrid clinoforms” (e.g., hybrid shorelines, shelf-edge deltas, continental-margin deltas).

Clinoforms record the lateral accretion of depositional slopes either through active deposition from nearby sources (“accretionary/active clinoforms”), or by passive hemipelagic draping from distant sources (“draping/passive clinoforms”). All clinoform types discussed above may show an accretionary or draping style, depending on sediment source proximity.

In this article, a hierarchical classification of siliciclastic clinoforms has been proposed that is applicable to both Recent and Ancient clinoforms. This consists of the four main types: delta-scale shoreline clinoforms, delta-scale subaqueous clinoforms, shelf-edge clinoforms and continental margin clinoforms. Each of these type is subdivided into accretionary and draping components; for the accretionary clinoforms a further breakdown into fine-grained and coarse-grained types is proposed, resulting in a final sub-division of clinoforms into 12 classes.

Naturally, finer-scale details are not fully captured by this classification (e.g., mixed lithology); on the other side, simplicity and pragmatism are key virtues for all effective classification schemes. The proposed classification, furthermore, has the merit to bring together all the dynamic stratigraphy elements reviewed here, to honour both modern and ancient clinoform data and to be relatively flexible (e.g., delta-scale clinoforms can turn into shelf-edge clinoforms along the same clinoform set).

Acknowledgements

The authors gratefully acknowledge Gary Hampson and Claudio Pellegrini for their insightful and invaluable reviews of a previous draft of this manuscript.

References

Amorosi, A., Milli, S., 2001. Late Quaternary depositional architecture of Po and Tevere river deltas (Italy) and worldwide comparison with deltaic successions. Sediment. Geol. 144, 357–375.

