The systematics and phylogeny of Haminoeidae (Mollusca, Cephalaspidea), with special focus on the taxonomy and phylogeny of the genus *Haloa sensu lato*
The systematics and phylogeny of Haminoeidae (Mollusca, Cephalaspidea), with special focus on the taxonomy and phylogeny of the genus *Haloa sensu lato*

Trond Roger Oskars

Thesis for the Degree of Philosophiae Doctor (PhD) at the University of Bergen

Date of defence: 01.04.2019
The systematics and phylogeny of Haminoeidae (Mollusca, Cephalaspidea), with special focus on the taxonomy and phylogeny of the genus *Haloa sensu lato*
Scientific environment

This PhD project was financed through a four-year PhD candidate position at the University Museum of Bergen, the University of Bergen. The work for this thesis was carried out at the Department of Natural History, Section of Taxonomy and Evolution, at the University Museum of Bergen within the research group Phylogenetic Systematics and Evolution. Additional funding for laboratory and travel expenses was funded by grants graciously awarded by the Meltzer Research Fund and the Malacological Society of London.
Taxonomy (the science of classification) is often undervalued as a glorified form of filing—
with each species in its folder, like a stamp in its prescribed place in an album; but
taxonomy is a fundamental and dynamic science, dedicated to exploring the causes of
relationships and similarities among organisms. Classifications are theories about the basis
of natural order, not dull catalogues compiled only to avoid chaos.

Acknowledgements

As long as I can remember, I have always loved nature and the relationships between creatures. From my brother Frode filming a four year old me hosting my own “nature documentary” on living fossils to standing in pet shops studying the feet of particularly confused parrots revelling in their dinosaur-like feet. It was not until the second year of my bachelor, during general zoology, I fell for the mystery of molluscs. How could something so simple, still be simultaneously so complex? However, I was completely sold after attending an incredibly enthusiastic and motivational Manuel Malaquias’ course on Systematic Zoology, which also gave me a love for the world of invertebrates. When the time was ripe for looking for advisors and potential topics for my master thesis, my first and only choice was Manuel, and I would take any project that allowed me to study molluscs through classical dissections and DNA. Thanks to Manuel I have now studied Cephalaspidea gastropods for close to eight years, from my last year of the bachelors reading selected papers, through my master thesis and now my PhD. Manuel has always been a great support, both showing me great fait and challenging my ideas and hypotheses, constantly driving me up and forward. Manuel has always been accessible and ready to help, either behind a door ajar or by e-mail with tropical snakes slithering around the floor of his hut. I am also deeply thankful for my secondary advisor Endre Willassen whose knowledge on phylogenetics and taxonomy is only matched by his many amazing anecdotes from a long life dedicated to science. His advice and discussions have saved me a lot of frustration when battling phylogenetic software and I have always learned something new when I knocked on his door. This thesis would not exist without Manuel and Endre’s dedication as advisors, teachers and co-authors. The thesis would also not have been possible without the co-authors of my papers namely Deepak Apte, Sadar Aslam, Monisha Bharate, Appukuttannair Biju Kumar, Constantino Mifsud, Paula M. Mikkelsen, Sumantha Narayana, Raveendhiran Ravinesh, David Rees, Ghazala Siddiqui and Chin Chin Too.

The bulk of this work would not be possible without access to type material and loans from international collections facilitated by curators such as P. Bouchet (Muséum national d’Histoire naturelle, Paris, France), K. Hazegawa (National Museum of Nature and Science, Collection Centre at Tsukuba, Japan), A. Salvador, J. Ablett and D. Reid (Natural History Museum, London, UK), G. Paulay and J. Slapcinsky (Florida Museum of Natural History, University of Florida, USA), T. Gosliner (California Academy of Science, USA), M.
Schrödl (Bavarian State Collections of Zoology, Germany), L. Cervera (University of Cádiz), K. Jensen (Natural History Museum of Denmark), L. Geiger (Santa Barbara Museum of Natural History, USA), T. Lee (Museum of Zoology, University of Michigan, USA), A. Miller, B. Rudman and I. Loch (Australian Museum, Sydney, Australia), C. Rowley and R. Burn (Victoria Museum, Australia), N. Wilson (Western Australia Museum, Australia) and M. Mackenzie (Auckland Museum, New Zealand).

My deepest gratitude is also extended to all our dedicated colleagues, who provided us with valuable samples for the project namely C. Pittman (Hawaii), J. Letourneux (French Polynesian snails), C. Carlson and the late P. J. Hoff (Guam), K. Y. Yang (Hong Kong), M. Yorifuji, Y. Hirano and A. Zamora-Silva (Okinawan snails), T. Haga (Japan), S. Panha (Thailand), T. K. Siang (Singapore), M. E. Mazruki (Malaysia), G. Cobb (Australia), G. Brodie and M. Wood (Australia) G. Feulner (United Arab Emirates), Y. Tibiriçá (Zavora Marine Lab, Mozambique), M. Bursey, A. Hodgson, and N. Miranda (South Africa) and C. Redfèrn (the Bahamas and Florida snails).

I would also like to thank to L. Lindblom, K. Meland, and S. Thorkildsen at the DNA lab of the Biodiversity laboratory, to K. Kongshavn at the Invertebrate collections of the University Museum, and to I. Heggestad at the Laboratory for analytical electron microscopy at Department of Earth Science for assistance and good advice during my lab work. Thanks also to C. Chen for translation of particularly difficult Japanese handwriting, to R. Mally for help with making sense of text written in imaginative scientific German, and to J. Siegwald for correcting my attempts on French. Again, I am grateful to M. Malaquias, E. Willassen, R. Mally and J. Austin for valuable comments on my synopsis. Finally yet importantly, I would like to thank and dedicate my thesis to my wife Svetlana and my daughter Evelina, whose love, laughter, patience and support helped me a lot during my thesis work.
Abstract

The family Haminoeidae consist of herbivorous snails found worldwide in tropical to temperate shallow waters on reefs, seagrass beds, rocky shores and mangroves. The family is the most diverse within the Order Cephalaspidea, but it has been plagued by systematic and taxonomic confusion due to many species and genera being vaguely defined only on shell or inconsistently on a few anatomical features. In this thesis I aim to resolve the taxonomy and systematics of the family and genera based on an integrative approach using a combination of molecular phylogenetic analyses using the mitochondrial genes cytochrome c oxidase subunit I, 12S rRNA, 16S rRNA, and the nuclear genes 18S rRNA, 28S rRNA, and Histone 3 coupled with morpho-anatomical data, the latter resulting from a revision of anatomical characters based in literature and dedicated anatomical dissections. Several of the traditional Haminoeidae genera were synonymized (Austrocylichna, Limulatys, Micraenigma, Nipponatys, Tepidatys) resurrected (Haloa, Haminella, Lamprohaminoea, Roxaniella, Weinkauffia) or showed to not belong in the family (Cylichnium, Hamineobulla, Micratys, Mimiatys, Mnestia, Osoratts, Roxania, SpiSSitydeus). The results showed that the family is composed of 17 genera including the new genus here described Vellicolla and the informal clade “Mini-haminoeids”. Further, the type genus Haminoea was shown to be non-monophyletic, with three main radiations, namely Haminoea (Atlantic + eastern Pacific), Haloa sensu lato (Indo-West Pacific), and Smaragdinella. A comprehensive study of Haloa s. l. based on an expanded taxon sampling including representatives from putatively all species demonstrated that this clade consist of four clades warranting generic status with unique ecological, biogeographic, and morphological features, namely Haloa sensu stricto (13 species with dull colours distributed across the Indo-West Pacific), Lamprohaminoea (5 species with bright colours distributed across the Indo-West Pacific), and the two new genera here described Bakawan (4 species restricted to mangrove habitats) and Papawera (2 species restricted to temperate waters of Australasia). Systematic revisions were conducted for the four genera and 7 new species were found and described (Haloa [2], Lamprohaminoea [3], Bakawan [2]).
List of Publications

The published papers are reprinted with permission from the Journal of Natural History and the Journal of Conchology. All rights reserved.
Contents

Scientific environment ... 3

Acknowledgements .. 5

Abstract ... 7

List of Publications .. 8

Contents .. 10

1. Introduction .. 11
 1.1 Introducing the family Haminoeidae ... 11
 1.2 Morphology and anatomy of Haminoeidae .. 13
 1.3 Haminoeidae: species diversity, biology, and human impact ... 18
 1.4 Aims of the Thesis .. 21

2. Materials and Methods .. 22
 2.1 Studied Material .. 22
 2.2 Phylogenetic methods .. 23
 2.3 Morpho-anatomical methods .. 24
 2.3.1 Dissections ... 25
 2.3.2 Scanning electron microscopy (SEM) ... 25
 2.3.3 Graphic images ... 26

3. Redefining the family Haminoeidae ... 26
 3.1.1 The systematics and phylogeny of Haminoeidae (I–III) .. 26
 3.1.2 The systematics and taxonomy of genus Haloa sensu lato (IV–X) 31

4. Summary of main results .. 32

5. General conclusions and future perspectives ... 34

6. References ... 36
1. Introduction

1.1 Introducing the family Haminoeidae

The family Haminoeidae Pilsbry, 1895 belongs to the gastropod order Cephalaspidea Fischer, 1883, which is a highly diverse group belonging to the marine Heterobranchia Burmeister, 1837 (e.g. in part the traditional Opisthobranchia). Haminoeidae is a highly successful group of herbivores that feed predominantly on diatoms and filamentous algae (Usuki 1966a, b; Rudman 1971a, b, 1972a; Burn and Thompson 1998; Malaquias 2010; Malaquias and Cervera 2006; Too et al. 2014; Austin et al. 2018; Papers I–X). They are usually found in shallow tropical to temperate waters where they inhabit subtidal habitats like sand flats, mud flats, seagrass beds, algal mats or coral reefs, but also intertidal environments such as rock pools and mangroves (Er. Marcus and Burch 1965; Burn 1974, 1978; Rudman 1971a, 1972a; Burn and Thompson 1998; Carlson and Hoff 2003; Malaquias and Cervera 2006; Gosliner and Behrens 2006; Gosliner et al. 2008, 2015; Too et al. 2014; Austin et al. 2018; Papers I–X).

Many genera and species of Haminoeidae were first described on their usually thin, delicate shells, and many species are still only known by this character (Paper III). The shells can be similar between genera and species, but can also be variable within species (Fig. 1; Paper III). The most common shape is the bubble-like oval or rounded shells such as those found in the genera Atys Montfort, 1810, Haminoea Turton & Kingston, 1830 and Haloa Pilsbry, 1921. Whereas genera like Bullacta Bergh, 1901, Phanerophthalmus A. Adams, 1850 and Smaragdinella A. Adams, 1848 have more flattened shells. The colour of the shells is generally whitish transparent, white, pale brown or rarely yellowish green as in Smaragdinella. The shells usually have a smooth surface, but can be sculptured with spiral striae and in some cases axial growth lines. The shells also have an outer layer or periostracum, which is transparent, faint yellow to dark brownish-red in colour. Although all these features may vary within and between genera, a common feature of the shells is the reduced innermost whorls (Er. Marcus 1957, 1958; Burn 1978; Mikkelsen 1996; Burn and Thompson 1998; Too et al. 2014, Paper III).
Figure 1. Shells of Haminoeidae. A. *Atys ooformis* (Habe, 1952), Wakayama Pref., Honshu, Japan. (NSMT 38605, H = 12.6 mm). B. *Haminoea navicula* (Da Costa, 1778), Vigo, Spain (NHMUK 1851.7.1.9, H = 27 mm). C. *Haloa crocata* (Pease, 1860), Hawaii (NHMUK 1961194, *Haminea glabra*, H = 18 mm). D. *Bullacta caurina* (Benson in Cantor, 1842) Shanghai, China Sea (NHMUK 196946 H = 17 mm). E. *Phanerophthalmus minikoiensis* (Smith, 1903), Minicoy, Lakshadweep, India (NHMUK 1903.9.14.10, holotype, H = 4 mm). F. *Smaragdinella calyculata* (Broderip & Sowerby, 1829), Okinoshima Island, Kochi Prefecture, Japan (NSMT 51281, H = 12 mm).

Externally the animals can be quite similar in morphology and colour patterns between species and genera (Fig. 2), but genera like *Bullacta, Phanerophthalmus* and *Smaragdinella* are more distinctively shaped (see Paper III). Most species are translucent to whitish or dull-coloured in hues of green to brown and usually mottled with dots and blotches. However, notable exceptions are brightly coloured such as species of the genera *Lamprohaminoea* Lin, 1997 and *Vellicolla* Oskars et al. (Paper III) (Fig. 2).

1.2 Morphology and anatomy of Haminoeidae

As mentioned above, many species are mostly known from their shells or external morphology, which can show both high similarity and variation. Despite this fact, shells and morphology have subtle differences that can be useful to distinguish genera and species especially in light of molecular phylogenetic frameworks as revealed by recent revisionary work (e.g. Too et al. 2014; Austin et al. 2018; Papers I–X).

The general appearance of most haminoeids consists of a large, external, posterior shell and the anterior head region, which includes the dorsal cephalic shield, the ventral foot with its lateral projections, the parapodial lobes. The cephalic shield usually has a pair of visible eyes and posterior lobes (cephalic lobes). Ventrally the pallial lobe, an extension of the mantle that functions as a secondary foot, exits the opening of the shell (aperture) and projects behind the shell (Fig. 3).

However, some genera have a more distinct morphology, which is likely an adaptation to their lifestyles. Bullacta has a flattened philinid body shape, and lives intertidally on mud flats of estuaries (Malaquias 2010; Ge et al. 2013; Shi et al. 2018). Phanerophthalmus is narrowly elongate and has a reduced shell (Austin et al. 2018) and crawls on the surface of the substrate like most haminoeids. However, species of the genus have been observed to also show limited swimming capacities by flapping their large parapodial lobes (Quoy and Gaimard 1833; A. Adams 1850; H. Adams and A. Adams 1854; pers. obs.). Smaragdinella is flattened and quite rounded in shape with large pallial and parapodial lobes. The shape is likely due to the limpet like lifestyle of the genus, with species living on rocky substrates in the upper intertidal (A. Adams 1848, 1850; Risbec 1951; Er. Marcus and Burch 1965; Miller 1969; Rudman 1972, 2004) or inside empty shells of barnacles (Chaban and Chernyshev 2016).

The external Hancock’s organ is a mostly ridge-like chemical sensory organ (Göbbler and Klussmann-Kolb 2006) which is found laterally on the head between the cephalic shield and the parapodial lobes (Fig. 4). This organ can be quite distinctly shaped in some genera (Papers III, VI).
Figure 3. External morphology of Haminoeidae. A. *Weinkauffia turgidula* (Forbes, 1844), dorsal view (left image), ventral view (right image) Mediterranean, modified from Vayssière (1893). B. *Bakawan* sp. 1, Panglao, the Philippines courtesy of M. A. E. Malaquias. Abbreviations: cl, cephalic lobes. cs, cephalic shield. e, eyes. f, foot. m, mouth. pal, pallial lobe. pl, parapodial lobes. sh, shell.

Figure 4. *Haminoea alfredensis* (Bartsch, 1915) (ZMBN 86406, H = 16 mm; South Africa) with shell and mantle removed showing Hancock’s organ and female reproductive system. Abbreviations: agl, albumen gland. am, ampulla. amg, anterior mucous gland. cs, cephalic shield. ga, genital atrium. ggl, gametolytic gland. gz, gizzard. ho, Hancock’s organ. pl, parapodial lobes. pmgl, posterior mucous gland. smg, external seminal groove. v, vestibule. vm, visceral mass.
Figure 5. Anterior digestive system. A. *Haminoea alfredensis* (ZMBN 86406, H = 16 mm; South Africa). B. *Smaragdinella cf. sieboldi* (ZMBN 125447, H = 7 mm; Mozambique), Mozambique (AM 119920, H = 11 mm; New Zealand). C. SEM, right lateral view of gizzard plate of *Papawera zelandiae* (AM 119920, H = 11 mm; New Zealand). D. SEM, radula of *Haloa japonica* (ZMBN 91233, animal length 5.5 mm; Japan). E. SEM, jaw of *Haloa crocata* (ZMBN 88215, H = 12 mm; Hawaii). Abbreviations: bb, buccal bulb. anm, annulated muscles. gz, gizzard. m, mouth. oe, oesophagus. sl, salivary glands.

Despite some external morphological useful taxonomic characters, the internal anatomy is in most cases much more useful for recognising and defining genera and species. The details of the digestive tract and the hermaphroditic reproductive organs have been shown to be of great systematic significance in *Cephalaspidea* gastropods (e.g. Eilertsen and Malaquias 2013; Too et al. 2014; Malaquias et al. 2016; Austin et al. 2018). The anterior digestive system is formed by the mouth, followed by the muscular buccal bulb, salivary glands, and a muscular gizzard (Fig. 5). The buccal bulb holds the semi-circular jaws that are composed of numerous, small chitinous elements that aid the radula in grasping and holding food (Rudman 1971b). The buccal bulb holds the radula, which can be highly variable in shape within and between genera and species. The radula is generally composed by several rows, ranging between 16–65 (Too et al. 2014; Austin et al. 2018; Papers IV–X), generally the number increases with the size of the animal. Each row consists of a central rachidian tooth flanked on each side by the inner lateral tooth and 1–58 outer lateral teeth (Paper III). The radula transports the food to the oesophagus, which leads to the gizzard. The gizzard is covered in annulated musculature and holds three chitinous gizzard plates that are used to crush the food prior to digestion (Rudman 1971b; Thompson 1976). Some genera, such as *Haminoea, Haloa, Lamprohaminoea, Bakawan Oskars & Malaquias, VI and Papawera*
Oskars & Malaquias, VI may have bristles or spines anterior to the gizzard plates (Vayssière 1885; Thompson 1976; 1988; Schaefer 1992; Álvarez et al. 1993a; Malaquias and Cervera 2006; Papers VI–X). These likely restrict the amount of food entering the gizzard at one time (Rudman 1971b; Thompson 1976).

The hermaphroditic reproductive system consists of the posterior female glands and the anterior male reproductive system. The female system lies within the mantle cavity over the visceral mass (most vital organs such as digestive organs) (Fig. 4). From the vestibule (the opening, also called vagina) of the female reproductive system, a seminal groove runs externally on the right side of the body until the genital aperture just beyond the Hancock’s organ. The genital aperture opens to the male reproductive system, which generally consists of a penial sheath enveloping a muscular penis, a seminal duct, and a prostate (Fig. 6).

In several genera such as Haminoea and Roxaniella (Papers I, III, VI) the penial sheath covers a muscular penis that connects directly to the seminal duct (Fig. 6). Some genera lack a penis, but possesses a hollow atrium enveloped by a sheath. In genera with an atrium, the seminal duct empties into a constriction or modified region of the upper atrium called the fundus (sensu Er. Marcus and Burch, 1965). The fundus can be empty (e.g. Papawera, Paper IX), modified with thickened walls and/or soft warts/ridges (e.g. Haloa, Smaragdinella, Bakawan; Papers VI, VIII, X) or can be filled with chitinous spines (e.g. Haminella, Lamprohaminoea, Papers III, VII).
There are few studies on how copulation occurs in Haminoeidae, but in *Lamprohaminoea*, the atrium everts to reveal the chitinous spines that line the fundus. However, this structure does not seem to be used for penetration, but probably to hold to the mating partner (Fig. 7).
1.3 Haminoeidae: species diversity, biology, and human impact

Within the Cephalaspidea, Haminoeidae is the most diverse family with about 115 species considered valid (MolluscaBase, 2018a). However, the diversity is likely much higher as new species are frequently discovered (Too et al. 2014; Austin et al. 2018; Paper IV) and several are yet to be formally named (e.g. Papers III, VII–X). Historically the family consisted of 46 genera that have been moved back and forth between Haminoeidae and other families, but presently fewer are considered valid and part of the Haminoeidae (e.g. Oskars et al. 2015; Papers III, VI). The family Haminoeidae is thus quite important as they constitute a considerable part of Cephalaspidea diversity, but it also entails relevant ecological, economic, and human health aspects.
Species of Haminoeidae are important prey for predatory cephalaspids of the family Aglajidae (Rudman 1972b; Burn 1974; Zamora-Silva and Malaquias 2016), Conus gastropods (Kohn 1959), sea stars (Loh and Todd 2011) and coral reef fishes (Leray et al. 2013). Some species like Haminoea orbignyana (Férussac, 1822) can be highly productive and constitute large parts of faunal communities (Malaquias and Sprung 2005; Zabbey and Malaquias 2013), and the egg masses of this species are a food source for other gastropods such as the nudibranch Calliopaea bellula d’Orbigny, 1837 (Coelho et al. 2006).

Human consumption of Haminoeidae is not particularly common. However, species of "Haminoea"-like gastropods (e.g. Haloa, Smaragdinella, Bakawan) are called “Siput Bawang” or Onion Snails in Singapore and eaten with soy sauce or bean paste (Ng and Sivasothi 2001; Wild Singapore 2016). Additionally, the North West Pacific endemic Bullacta caurina (Benson in Cantor, 1842) [commonly referred in the literature as B. exarata (Philippi, 1849)], is eaten and used in Chinese traditional medicine (Ye and Lu 2001; Liu et al. 2013; Liao et al. 2017). The species is also commercially important, and is harvested and farmed in aquaculture (Ying et al. 2004; Li et al. 2014). Bullacta may also be useful in other respect, as compounds with potential antioxidant, antibacterial, and antitumor abilities have been isolated from the species (Liu et al. 2013; Ma et al. 2013; Liao et al. 2017).

This biomedical aspect is also interesting as several marine Heterobranchia have defensive secondary metabolites that may be useful as medical compounds (Cimino and Gavagnin 2007). Haminoeidae is no exception as defensive chemicals such as polypropionates, dubbed Haminols, have been isolated from species of Haminoea (Cimino et al. 1991; Marin et al. 1999; Cutignano et al. 2007; Nuzzo et al. 2015) and the cytotoxic polypropionate Nalodionol has been isolated from Smaragdinella calyculata (Broderip & Sowerby, 1829) (Szabo et al. 1996). Polypropionates have gained a lot of interest because of their properties as potential anticancer, antibiotic, antiparasitic and immunorepressing compounds (Davies-Coleman and Garson 1998; Pelttari et al. 2002; Chênevert et al. 2003; Kigoshi and Kita 2015). Additionally, alklyphenols and alkylcatechols have been isolated from Haloa japonica (Pilsbry, 1895b) (as Haminoea callidegenita; Spinella et al. 1998; Marin et al. 1999; Izzo et al. 2000), which are interesting molecules for biomedicine as they seem to have cytotoxic antibiotic and DNA strand cutting abilities (Izzo et al. 2000).

As highlighted in theme 1.2, some species and even genera of Haminoeidae can be difficult to tell apart, and this does not only lead to taxonomic complications, as it also causes
conservation challenges. A good example is the highly invasive species *Haloa japonica*, which was not widely recognised until quite recently. The first detailed study of the species was by Gibson and Chia (1989) who described it as the new species *Haminoea callidegenita* Gibson & Chia, 1989 occurring in Washington State, USA. Later the species was also found in the Mediterranean and the Atlantic coast of North West Spain (Álvarez et al. 1993b as *H. callidegenita*). Álvarez et al. (1993b) suggested that the species could have been introduced in the 1930’s with import of oysters from Washington, USA to be used in European aquaculture. It was not until Gosliner and Behrens (2006) found specimens occurring in California and compared their internal anatomy with specimens from Japan, that *H. callidegenita* was confirmed to be a synonym of *H. japonica*. This Indo-West Pacific (IWP) origin was later confirmed by molecular analyses as the species was shown to be a close relative of *Haminoea natalensis* (Krauss, 1848; = *Haloa wallisii* Gray, 1824) and other IWP species (Hanson et al. 2013a, b; Paper VI). *Haloa japonica* seems to be spreading north in Europe, as it was recently recorded in the Netherlands (Faase 2018).

The difficulty to identify correctly *H. japonica* was largely due to lack of knowledge about the diversity and taxonomy of species in the genus (Gosliner and Behrens 2006; Hanson et al. 2013a). One of the obvious consequences of lack taxonomic knowledge is that the introduction of species in alien regions can go unnoticed for long periods, with potentially negative implications. For example, *Haloa japonica* has replaced populations of the native *Haminoea vesicula* (Gould, 1855) in Boundary Bay, Canada (Hanson et al. 2013b) and of several native *Haminoea* species in the Laguna di Sabaudia, Italy (Macali et al. 2013).

Additionally, it was demonstrated that *H. japonica* in California could be a potential medical and economical problem as it is an intermediate host for *Schistosoma* parasites causing cercarial dermatitis or swimmer’s itch in humans (Brant et al. 2010; Hanson et al. 2013b). This is of economical concern as it may affect the recreational businesses connected to the use of local beaches (Hanson et al. 2013b). Interestingly, the species has not been found to host similar parasites in its native range (Hanson et al. 2013b) and this association between parasite and host could be a novel interaction between previously unconnected species.

Another example is *Lamprohaminoea cyanomarginata* Heller and Thompson, 1983 that is widely known as a Red Sea species, which has invaded the Mediterranean Sea trough the Suez Canal (Lessepsian immigrant). The species is now spread across the eastern, south and central Mediterranean Sea (Köhler 2003; Yokes 2003; Rudman, 2003; Zenetos et al. 2004,
2008, 2010; Mifsud 2007; Crocetta and Vazzana 2009; Rizgalla et al. 2018; Paper VII) and recently was reported for the first time in the western part of this basin (Spain: Fernández-Vilert et al. 2018).

Fernández-Vilert et al. (2018) noted that the range of the species was not restricted to the Red Sea, as Köhler (2018) reported it from Oman. In addition to this, our results further showed that this species is a junior synonym of Lamprohaminoea ovalis (Pease, 1868) which is widely distributed from Hawaii and French Polynesia in the East, to Okinawa in the North and Australia in the South (Papers VI, VII). Species of Lamprohaminoea were believed to feed exclusively on cyanobacteria (Cruz-Riviera and Paul 2006), but likely also feed on diatoms (Paper VII). Cruz-Riviera and Paul (2006) found that L. ovalis was less selective on which genera of cyanobacteria it fed on, than other members of the genus. This broader diet and the extensive range suggest that the species can thrive in a wide range of habitats, and may be part of the success of the species outside its natural range.-The species of Lamprohaminoea are brightly coloured, which is likely to signal distastefulness as the species have predator deterring secondary metabolites. This may also have aided in L. ovalis invasion of the Mediterranean (Mollo et al. 2008). An unnamed brominated tetrahydropyranol has been isolated from Mediterranean specimens of L. ovalis (as L. cyanomarginata; Mollo et al. 2008) and from Indian specimens of the L. ovalis species-complex (Fontana et al. 2001; VII), whereas the structurally similar brominated tetrahydropyranyl, kumepaloxane, has been isolated from L. cymbalum from Fiji (Poiner 1989). Nevertheless, it is unknown whether the metabolites of Lamprohaminoea are produced by the gastropods themselves or originate from their food (Poiner et al. 1989; Mollo et al. 2008).

1.4 Aims of the Thesis

The first major aim of this thesis is to resolve the systematics and taxonomy of the family Haminoeidae. The goal was to define the family, by establishing its generic diversity and affiliation within the Cephalaspidea. This was attempted by producing a phylogenetic hypothesis of the relationship of Haminoeidae to other cephalaspids and relationships of the genera within the family (Paper III). In addition to this we described the diagnostic characters of each genus based on available literature and revisionary studies (e.g. Too et al., 2014; Austin et al., 2018; Papers I, III, VI).
The second aim is to sort out the systematics and taxonomic composition of the Indo-West Pacific *Haloa sensu lato*. The goal was to define the phylogenetic relationships of the three well-supported clades recovered within *Haloa* (Paper III) and the closely related genera *Smaragdinella* and *Haminoea*. This was attempted by expanding the taxon set of paper III with specimens from all previously suggested subclades (*e.g.* Papers IV, V) and biogeographic regions. Additionally, an integrative approach combining molecular phylogenetics, conchological and morpho-anatomical characters was used to define and describe the recovered clades, establish putative relationships, and determine potential synapomorphies (Paper VI).

The third aim was to describe and characterise the species of *Haloa sensu lato* and revise their systematics through the study of conchological and morpho-anatomical characters anchored in a molecular phylogenetic framework (Papers VII, VIII, IX, X).

2. Materials and Methods

2.1 Studied Material

The majority of my studied material was made available as loans from collections of the following institutions: Australian Museum, Sydney (AMS), California Academy of Sciences, San Francisco, CA, USA (CAS); Florida Museum of Natural History, University of Florida, Gainesville, FL, USA (FLMNH), Muséum national d’Histoire naturelle, Paris, France (MNHN), The Museum of Comparative Zoology, Harvard (MCZ, USA), Museum Victoria, Melbourne, Australia (MV), The Natural History Museum, London, United Kingdom (NHMUK, formerly BMNHUK, British Museum of Natural History), Royal Belgian Institute of Natural Science, Brussels, Belgium (RBINS), Royal British Columbia Museum, Canada (RBCM), National Museum of Natural History (Naturalis), Leiden, the Netherlands (RMNH), Santa Barbara Museum of Natural History, CA, USA (SBMNH), the Museum of Zoology, University of Michigan, USA (UMMZ), Museum für Naturkunde, Humboldt University, Berlin, Germany (ZMB) and the Zoological Museum, Natural History Museum of Denmark (ZMUC). The study also benefited from the generous donations of material of colleagues worldwide, and fieldwork conducted by Manuel Malaquias that resulted in the material available to me housed at the Invertebrate collections of the University Museum of Bergen (Department of Natural History), Norway (ZMBN). Study of shells and especially type material was made possible by research visits to the National Museum of Nature and Science, Collection Centre at Tsukuba, Japan (NSMT) and to The
Natural History Museum, London, United Kingdom (NHMUK). Relevant type material was also made available by public online collections, such as The Academy of Natural Sciences of Drexel University (ANSP) and Online Zoological Collections of Australian Museums (OZCAM).

I was also fortunate to have carried out fieldwork in Okinawa, Japan and Taiwan to collect new samples. In those cases, the living animals were relaxed in 7.5% magnesium chloride solution (mass of hydrated crystals in relation to the volume of fresh water), or frozen for 1–5 hours in sea water, and then fixed and preserved in 96% ethanol.

2.2 Phylogenetic methods

The phylogenetic study of Haminoeidae was the culmination of projects previously started by P. M. Mikkelsen, M. A. E. Malaquias and C. C. Too. Thus, a large amount of sequences was available for my phylogenetic analyses. In addition to this, the DNA extractions of these projects were available to me to amplify missing DNA markers. Some molecular data was available for haminoeids in the NCBI GenBank, most of it generated by M. A. E. Malaquias and colleagues. Nonetheless, the sequences available in GenBank were largely sufficient to perform BLAST searches to check for contaminations.

However, for *Haminoea sensu lato* the number of species with sequences on Genbank was restricted to only a few represented mostly by the cytochrome *c* oxidase subunit I (COI) gene and some sequences of the 28S rRNA gene. Therefore, considerable time was spent in the laboratory extracting and amplifying DNA from additional specimens from different localities to build up a large comparative sequence library.

For the family level phylogeny of Haminoeidae (Paper III) and for the genus and species level phylogeny of *Haloa sensu lato* (Paper VI) the molecular analyses built on the primer selection and gene selection that had proven useful for cephalaspids including haminoeids in previous studies (*e.g.*, Malaquias *et al.* 2009; Hanson *et al.* 2013a; Oskars *et al.* 2015; Austin *et al.* 2018). The standard gene markers used in the phylogenetic analyses were the mitochondrial gene markers COI and 16S rRNA, which have relatively fast mutation rates and usually return good resolution at species and genus level. The nuclear gene markers 28S rRNA and Histone H3 have slower mutation rates and usually have good resolution on generic, family and higher taxonomic levels (*e.g.*, Malaquias *et al.* 2009; Oskars *et al.* 2015). For the phylogeny of Haminoeidae (Paper III) the nuclear 18S rRNA gene was also included.
as it showed good resolution on higher taxonomic levels before (Malaquias et al. 2009). For the phylogeny of *Haloa sensu lato* (Paper IV) the less frequently employed mitochondrial gene 12S rRNA (12S) was included as it previously showed to yield promising results in separating molluscan species (Järnegren et al. 2007; Puillandre et al. 2009).

For papers I, IV, V, which were mainly focused on species identification and delimitations, the standard barcode gene COI was chosen for the phylogenetic analyses, and the species hypotheses were tested with the species delimitation method Automatic Barcode Gap Discovery (ABGD). The principle of this method focuses on the barcode gap, which assumes that the genetic distance of specimens within a species is lower than the genetic distance between species. The ABGD method detects a “gap” in the genetic distance of analysed sequences where there is little or no overlap between intraspecific and the interspecific genetic distance. Following this, sequences are clustered into hypothetical species, based on a set upper threshold on the intraspecific distance. The method then partitions the sequences into groups/species based on the next gap between intra- and interspecific distance and repeats this method until the data cannot be further partitioned (Puillandre et al. 2012). For papers VII, VIII, IX and X the COI sequences used in paper VI were analysed with the ABDG method to compare with species distinguished by anatomical characters.

The phylogenetic analyses of Haminoeidae and *Haloa sensu lato* followed the methods that had proven most useful for previous studies on cephalaspsids. The individual gene datasets were concatenated (fused) to a single dataset and analysed by Bayesian analysis (Malaquias et al. 2009; Hanson et al. 2013a; Eilertsen and Malaquias 2013; Oskars et al. 2015; Moles et al. 2017; Austin et al. 2018). Additional tree-building methods were used to test for congruency of results. For both phylogenetic analyses using several gene markers (Papers III, VI) the datasets were additionally run under maximum likelihood models (ML) and in paper III we also used maximum parsimony (MP). Because Bayesian analysis can overestimate support values for nodes (Simmons et al. 2004), we also tested robustness of the clades with bootstrap analyses in ML and MP.

2.3 Morpho-anatomical methods

When the phylogenetic framework was in place, specimens from distinct geographical origins representing each lineage were selected to characterise the morphological and
anatomical features of species. The laboratory work performed for all the papers followed the same methods and workflow.

2.3.1 Dissections

The animals were gently separated from the shell with the aid of forceps, but when the animas were deeply retracted, the shells were broken to facilitate extraction. The female reproductive system, male reproductive system, gizzard, and buccal bulb were dissected out by opening the cephalic shield dorsally. Shells from museum collections and dissected specimens were imaged with a DSLR camera equipped with macro-lens. The dissected organs and Hancock’s organs were drawn using a stereo microscope fitted with a drawing tube. Drawings where later traced and shaded on lime paper with pigment markers.

2.3.2 Scanning electron microscopy (SEM)

The gizzard and buccal bulb were dissolved and the gizzard plates, gizzard bristles, jaws, and radulae were cleaned by digesting the surrounding tissue with enzymes following a protocol modified from the studies of Holznagel (1998) and Vogler (2013). The structures were incubated at 56°C for approximately 4–6 hours, in a solution of the protein degrading enzyme proteinase K suspended in ATL buffer (see Papers I–X). For formalin fixed material for which the aforementioned method did not work, maceration took place in a 10−30% solution of lye (NaOH).

Prior to SEM, gizzard plates, gizzard bristles and jaws were critical-point dried (CPD) to avoid distortion resulting from dehydration. This distortion is caused by the effects of surface tension acting on the tissue as the liquid medium (e.g. water, ethanol (EtOH)) crosses the phase boundary from liquid phase to gaseous phase. CPD works by gradually replacing EtOH with liquid carbon dioxide (CO2), and then increasing the temperature and pressure until the critical point of temperature and pressure is reached. At the critical point (CO2: 31°C; 74 bar/73 atm) the physical differences between liquid and gaseous phases are close to identical and the phase boundary between the phases dissipates. In other words, the liquid can pass directly to gaseous phase, eliminating the effects of surface tension (Anderson 1951, 1966; Bozzola & Russell, 1999).

All anatomical parts were mounted on metallic stubs using carbon sticky tabs. The radulae were mounted directly by orienting this structure inside a drop of water and flattening with a
fragment of glass cover slip until they dried. The stubs were then coated with gold-palladium prior to imaging.

2.3.3 Graphic images

All images and plates in the thesis and the papers were made in Inkscape 0.92 (Inkscape Team, 2015) and Gimp 2.10 (Mattis et al., 1995; Natterer et al., 2018).

3. Redefining the family Haminoeidae

3.1.1 The systematics and phylogeny of Haminoeidae (I–III)

Many species and genera of Haminoeidae are known only from their shells or a few anatomical characters. Additionally, there is substantial taxonomic uncertainty due to vague original descriptions of many of the taxa. The systematics of the family is also complicated by the inconsistent use of shells and anatomy to build classification systems. This inconsistency of character choice has been the rule for classification of most cephalaspideans (Mikkelsen 1993).

Historically, 46 genera have been assigned to Haminoeidae (Iredale 1929, 1936; Habe 1952; Kuroda and Habe 1952; Burn 1974, 1978; Burn and Thompson 1998; Higo et al. 1999; Too et al. 2014; Paper VI). However, only 13 to 17 names have been used in recent literature (Too et al. 2014), and only 15 are recognised as valid in MolluscaBase (2018a). The first species described belonging to the Haminoeidae are Atys naucum (Linnaeus, 1758) and Haminoea hydatis (Linnaeus, 1758), and as most cephalaspids they were originally assigned to the genus Bulla Linnaeus, 1758. Only later, B. naucum was ascribed by Montfort (1810; as A. cymbulus) to the genus Atys, which was the first true haminoeid genus.

The species B. hydatis was selected by Turton and Kingston (1830) as the type species of Haminoea, which later became the type genus of Haminoeidae. At the time, Turton and Kingston (1830) assigned their new genus to the recently described family Bullidae Gray, 1827, which held most of the cephalaspids. In the following years several more bubble-shelled genera were described such as Alicula Ehrenberg, 1831 (= Aliculastrum Pilsbry, 1896), Roxania Leach 1847 (now part of Alacuppidae Oskars, Bouchet & Malaquias, 2015, Paper III), Dinia H. Adams & A. Adams, 1854 (= Diniatys Iredale, 1936), Weinkauffia
Weinkauff, 1873 and *Roxaniella* Monterosato, 1884. Of these, Fischer (1883) only considered *Dinia* and *Alicula*, and regarded them subgenera of *Atys*. Fischer (1883) retained *Haminoea* in Bullidae, but reassigned *Atys* and *Smaragdinella* A. Adams, 1848 to Scaphandridae G. O. Sars, 1878 and *Phanerophthalmus* A. Adams, 1850 to Philinidae Gray, 1850.

Later, Pilshry (1895a) regarded all the aforementioned bubble-shelled genera as subgenera of *Atys*, but retained the system of Fischer (1883). On the other hand, he included *Haminoea* as the single genus of the subfamily Haminoeinae Pilshry (1895a) which he placed in Akeridae Mazarelli, 1890. The latter family is now part of the sea-hare order Anaspidea Fischer, 1883. Bergh (1900, 1901, 1905) regrouped most of the haminoeids back under Bullidae based on characters like shells, radulae and reproductive systems. On the other hand, he described the family Ophthalmidae Bergh, 1905 to accommodate the flat-shelled *Smaragdinella*, *Phanerophthalmus*, and *Cryptophthalmus* Ehrenberg, 1828.

Thiele (1925) using similar characters, was the first to establish the traditional concept of haminoeids, by uniting them in the family Atyidae\(^1\) Thiele, 1925. He further split the family into two subfamilies. The first was Atyinae for *Atys*, *Bullacta*, *Haminella* Thiele, 1925, *Haminoea*, and *Liloa* Pilshry, 1921. Whereas, the second was Smaragdinellinae Thiele, 1925, for *Smaragdinella*, *Cryptophthalmus*, and *Phanerophthalmus*. Later, Thiele (1926) also separated out *Bullacta* and placed it in its own subfamily Bullactinae Thiele, 1926.

By the early 21\(^{st}\) century, most of the haminoeid genera were split within three widely accepted families Haminoeidae, Smaragdinellidae (for *Smaragdinella* and *Phanerophthalmus*) and Bullactidae (for *Bullacta*) (Burn and Thompson 1998; Bouchet and Rocroi 2005; Bouchet et al. 2017). Nevertheless, the first molecular phylogenetic studies focused on cephalaspids suggested a different systematic arrangement. For example, *Smaragdinella* and *Phanerophthalmus* did not form a distinct family as they consistently clustered with other Haminoeidae genera (Malaquias et al. 2009; Oskars et al. 2015). The genus *Bullacta* was found to be sister to the remaining Haminoeidae, but its internal anatomy suggested its inclusion in the family (Malaquias 2010; Oskars et al. 2015). Additionally genera traditionally considered part of the Haminoeidae, such as *Mnestia* H. Adams & A.

\(^1\) Due to homonymy with Atyidae De Haan, 1849 (Crustacea) the emended correct family name is Atydidae. See Opinion 1553. Bulletin of Zoological Nomenclature 46(3), September 1989.
Adams, 1854 (often called Ventomnestia Iredale, 1936), were showed to belong elsewhere deserving in same cases their own family assignment (e.g. family Mnestiidae Oskars, Bouchet & Malaquias, 2015; Malaquias et al. 2009; Oskars et al. 2015; Paper III).

However, the affiliation of most of the 46 genera associated with the family has not been tested in a phylogenetic framework. This coupled with the lack of modern systematic revisions of most lineages means that the validity and affiliation of many of the haminoeoid genera remained until now uncertain (Oskars et al. 2015). In addition to this, the knowledge on the anatomy of several species and genera is restricted, as most studies have focused on few characters (e.g. Habe 1952) or few selected species and genera (e.g. Er. Marcus and Burch 1965; Burn 1966; 1969, 1974; Ev. Marcus and Er. Marcus 1970; Rudman 1971a, b, 1972a; Gibson and Chia 1989; Gosliner 1994; Carlson and Hoff 2000a, b; Gosliner and Behrens 2006; Malaquias and Cervera 2006).

Burn (1978) was the first to give a comparative overview of the anatomy of Atys-like genera, but focused on species occurring in Australia. Burn (1978) studied characters such as external morphology, shells, radulae and male reproductive systems of the genera Austrocylichna Burn, 1974, Nipponatys Habe, 1952, Cylchnatys Habe, 1952, and Diniatys, which led him to regard the genera as distinct. Later Too et al. (2014) conducted a detailed anatomy-based study that aimed to define the synapomorphies for genera commonly confused with Atys, which led them to redefine the genera Aliculastrum, Diniatys and Liloa. These studies made, at least in some cases, possible to revaluate taxonomic affiliations based only on characters of the shell. This was shown in paper II, as the species Haminoea callosa Preston, 1908, was found to possess a projection on the columella. Too et al. (2014) found this feature to be unique for Diniatys, which led us to reascribe the species to genus Diniatys.

On the other hand, Too et al. (2014) could not find any synapomorphies for the genus Atys suggesting that the genus could be an artificial group. In paper I we investigated the Mediterranean and Macaronesian species Atys jeffreysi (Weinkauff, 1866) which is the type species of the subgenus Roxaniella (e.g. Pilsbry, 1895a). We compared this species to the amphi-Atlantic Atys macandrewii E. A. Smith, 1872 that is the only other confirmed Atys species to occur in the Mediterranean. The study also included a phylogeny based on the gene cytochrome c oxidase sub-unit I (COI), including all available sequences of Atys, and the closely related Aliculastrum and Liloa. The results pointed towards the possible paraphyly of Atys supporting the conclusion of Too et al. (2014; paper I) and this was
corroborated by our much broader analysis of the Haminoeidae based on a multilocus approach and extensive taxon sampling (Paper III).

Paper III is the most comprehensive study of the family to date, and it revealed several novelties regarding the systematics of Haminoeidae. For example species of the genus *Cylichnium* Dall, 1908 which has been placed both within Haminoeidae (Thiele 1925, 1931; Nordsieck 1972) and Scaphandridae (Dall 1908; Bouchet 1975; Valdés 2008; Valdés and McLean 2015), branched off alone and most likely belong to a distinct family. *Hamineobulla* Habe 1950 has been included in Bullidae (Habe 1950; MolluscaBase 2018b) or Haminoeidae (Kitao and Habe 1982; Higo *et al.* 1999, 2001). However, Rudman (2000) suggested that *Hamineobulla* might be related to Scaphandridae, as they had similar radulae, a relationship that was strongly supported by our analyses (Paper III). The genera *Mimatys* Habe, 1950 and *Roxania* have both been included in Haminoeidae (Habe 1950; Bouchet 1975; Gantes and Coronet 1981) or Scaphandridae/Cylichnidae (Thompson 1976, 1988; Higo *et al.* 1999; Valdés 2008), but both belonged to the family Alacuppidae. Another novelty was that the two most well known genera of the family, *Atys* (70 species; MolluscaBase 2018c) and *Haminoea* (61 species; MolluscaBase 2018d) were confirmed as non-monomorphic. On the other hand, the genera *Aliculastrum*, *Diniatys* and *Liloa* as defined by Too *et al.* (2014) were found to be valid. Lineages traditionally ascribed to *Atys* split in four clades, namely *Roxaniella*, *Weinkauffia*, *Vellicolla*, and *Atys* proper. *Roxaniella* was found to be closer to *Aliculastrum* and *Liloa*, whereas *Weinkauffia* branched off as the second most basal genus within Haminoeidae (Paper III). *Atys* was redefined to include only three known species, namely the type species *A. naucum*, *A. kuhnsi* Pilsbry, 1917, and *A. semistriatus* Pease, 1860. Several genera were synonymized such as *Limulatys* Iredale, 1936 (= *Weinkauffia*), *Nipponatys* (= *Aliculastrum*), *Micraenigma* Berry, 1953 (= *Diniatys*) and *Austrocylichna* (= *Roxaniella*) and one new genus was described, namely *Vellicolla* to accommodate several of the brightly coloured haminoeids (Paper III). A group to which no name is available was rendered and is here referred informally as Mini Haminoeids (Paper III).

As mentioned above, *Haminoea* did not form a monophyletic group, but the extent of the paraphyly of *Haminoea* was not in any way anticipated (Paper VI). The Atlantic species *Haminoea solitaria* (Say, 1822), an established member of the genus, was found to belong to the resurrected genus *Haminella* (Paper III). Yet, the remaining *Haminoea sensu lato*
formed a well-supported clade, but with the genus *Smaragdinella* nested inside as sister to all IWP species. Thus, we retrieved an Atlantic + East Pacific clade of *Haminoea*, sister to an IWP clade, containing *Smaragdinella*.

However, the limpet like, rocky intertidal genus *Smaragdinella* is anatomically distinct (see Risbec 1951; Er. Marcus and Burch 1965; Rudman 1972a; Chaban and Chernyshev 2016) from the IWP *Haminoea* (see Er. Marcus and Burch 1965; Rudman 1971a, b; Gosliner and Behrens 2006) and the IWP *Haminoea* have features that are not present in the Atlantic + East Pacific ones, such as the presence of a fundus lacking a muscular penis in the male reproductive system (Fig. 5) (Papers III, VI). Therefore, and thus we re-erected the genus *Haloa* to accommodate the IWP species.

However, Paper III did not include all known species of the IWP genus *Haloa sensu lato*. When the taxon set was expanded to include these (Paper VI), the analyses found four distinct clades of these snails. The *Haloa* proper with dull coloured species from the entire IWP (Paper X), the new genus *Papawera* Oskars & Malaquias, VI with Australasian temperate species (Paper IX), *Lamprohaminoea* Lin, 1997 only with the colourful species (Paper VII), and the new genus *Bakawan* Oskars & Malaquias, VI only with mangrove-associated species (Paper VIII).

The results of paper III severely reduced the number of the 46 genera historically connected to Haminoeidae to only 14 valid genera. Additionally, of the 13 to 17 commonly recognised genera mentioned by Too et al. (2014), three were regarded as synonyms and we suggested the exclusion of several valid genera from Haminoeidae. Unfortunately, we could not test some of these molecularly, but their shell and anatomical features clearly suggest a distant affiliation (e.g. *Osorattis* Iredale, 1929; *Spissitydeus* Iredale, 1936 and *Micratys* Habe, 1952; Paper III). Based on the results of papers III and VI we retrieved a total of 17 genera, of these, *Vellicolla*, *Bakawan* and *Papawera* were new to science and the Mini Haminoeids formed an additional eighteenth group that is likely one or possibly two undescribed genera.

However, there are still several unanswered questions, as some genera synonymized based on anatomical characters were not available for molecular analyses. *Cylichnatys* is one of these genera with a unique external morphology and internal anatomy that sets it apart from all other genera of haminoeids (Burn 1978; Chaban and Chernyshev 2014). Due to this, we considered the genus valid, but it remains uncertain where it fits within the family.
Even though the systematics of Haminoeidae is now much better known (Papers III, VI), it is not so straightforward to define the family based on morphological synapomorphies. The traditionally recognised synapomorphies of the family are the three chitinous gizzard plates and the reduction of the interior whorls of the shells due to reabsorption (Er. Marcus 1957, 1958; Burn 1978; Mikkelsen 1996; Burn and Thompson 1998; Too et al. 2014, Papers III, VI). Nevertheless, these features have also been found in the genus Mnestia (Carlson and Hoff 2000b), which now belongs on its own family (Oskars et al. 2015). However, a novel character that is a potential synapomorphy was found in the female reproductive system, namely a lamellate anterior mucous gland, which so far is only documented in genera of the Haminoeidae (see Bergh 1901; Er. Marcus 1958; Ev. Marcus 1970; Rudman 1971a, b, 1972a; Gosliner 1994; Papers VII–X; Figs 4, 6). However, it is not yet confirmed whether this feature occurs in all genera of the Haminoeidae.

3.1.2 The systematics and taxonomy of genus Haloa sensu lato (IV–X)

The result of papers III, IV and V suggested that the systematics of Haloa needed to be further investigated. This led to paper VI where we studied the phylogenetic and taxonomic composition of Haloa based on an expanded taxon set with all available specimens from all putative species across their geographical distributions. The results supported the hypothesis that Haloa in reality consists of four distinct clades of generic level, Haloa Pilsbry, 1921, Lamprohaminoea Lin, 1997 and the new genera Bakawan Oskars & Malaquias, VI and Papawera Oskars & Malaquias, VI with unique morphological synapomorphies and ecologies (paper VI).

The name Lamprohaminoea was re-erected for the clade of brightly coloured species all distributed across sub-tropical and tropical waters of the IWP, possessing distasteful secondary metabolites that act as predator deterrents (Poiner et al. 1989; Fontana et al. 2001; Mollo et al. 2008). The genus is distinguished by having a seminal duct, which consist of a circular lumen within an outer duct, and a fundus filled with chitinous spines (Paper VI).

Five species were recognised (Paper VII), including the species L. cymbalum (Quoy & Gaimard, 1832) and L. ovalis (Pease, 1868) and an additional three undescribed species. The previously well-established species “Haminoea” cyanomarginata Heller & Thompson, 1983
was showed to be conspecific with *L. ovalis*, which is highly polychromatic. This polychromy may cause *L. ovalis* to look quite similar to the other species, but the species can be separated by the internal fundus, where the spines form distinctive patterns (Paper VII).

The new genus *Bakawan* Oskars & Malaquias, (Paper VI) includes species that are restricted to mangrove habitats in the Indian Ocean and western Pacific (Cobb 2018; Yonow and Jensen 2018; Papers V, VIII). *Bakawan* has a unique seminal duct with a cross-section showing 6–8 grooves radiating from the central lumen and a thick-walled fundus with modified lateral walls (Paper VI). Four species were recognised in the genus including two undescribed (Papers VI, VIII). The shells and jaw elements show subtle yet distinctive differences between species, but the best character to discriminate is the shape of the right lateral wall of the fundus, which has unique modifications in all species.

The genus *Papawera* Oskars & Malaquias, (Paper VI) was erected for the temperate Australasian species *Papawera zelandiae* (Gray, 1843), endemic to New Zealand, and *P. maugeansis* (Burn, 1966), endemic to temperate southern Australia. The genus has a unique annulated prostate and a seminal duct with a cross-section depicting a semi-enclosed duct within an outer layer (Paper VI). In paper IX we redescribed these two species, which have different external morphologies, but share similar radulae, jaws and architecture of the male reproductive system, however with distinct prostates and fundi.

Haloa includes only dull-coloured species distributed across the IWP (Papers III, VI, X) and is distinguished by a cross-section of the seminal duct with four grooves radiating from the lumen forming a cross and a fundus filled with soft flaps, warts, or ridges (Paper VI). Thirteen species were recognised including three undescribed species. The external morphology and colour patterns are similar between species making distinction difficult. However, the species can be separated by the internal fundus, which is modified with thickened walls or thin walls lined with distinctive patterns (Paper X).

4. Summary of main results

- The historical taxonomic diversity of Haminoeidae, was largely based on shells and a few anatomical characters, with 46 genera historically being ascribed to the family and only 13–17 genera commonly accepted in recent literature. However, a combination of molecular phylogenetics with a revision of the anatomical features of
the genera redefined the number of genera to 17 and one undescribed group that likely is a distinct genus (papers III, VI).

- The valid genera Cylichnium, Hamineobulla, Micratys, Mimatys, Mnestia, Osorattis, Spissitydeus and Roxania, which have historically been connected to Haminoeidae was shown to not belong to the family (Paper III).

- Although several characters such as the external morphology, shells, radulae and gizzard plates were previously difficult to use on their own, after our molecular phylogenetic framework and systematic revision of the genera, it is now possible to use these morpho-anatomical features for generic identification (Papers II, III).

- At species level, the external morphology, shells, radulae and gizzard plates are difficult to use alone for identification but often when combined are possible to use in species recognition (Papers III, VI). However, the male reproductive system can in most cases confidently recognise genera and species.

- The genus Atys was confirmed polyphyletic, and redefined to include only three IWP species. The genera Roxaniella, Vellicolla, Weinkauffia, previously considered subgenera or junior synonyms of Atys, were shown to be valid genera (Paper III).

- The genus Haminoea sensu lato was shown to be paraphyletic with three main radiations: Haminoea sensu stricto (Atlantic + EP), Smaragdinella (IWP), and Haloa sensu lato (IWP) (Paper III).

- The IWP Haloa sensu lato consist of four molecularly and anatomically distinct genera, including Haloa, Lamprohaminoea and two the new genera here described, namely Bakawan and Papawera.

- Lamprohaminoea have distinctly colourful species, with distasteful metabolites that deter predation. Although reported to only feed on cyanobacteria (Cruz-Riviera and Paul 2006) it was found that they also feed on diatoms. The well-known invasive species L. cyanomarginata is a junior synonym of L. ovalis (Paper VII).

- Specimens of what is often named “Haminoea fusca” (Paper V) belong to the new genus here described Bakawan, and includes four externally cryptic species but with distinct anatomies. Most records of “Haminoea fusca” refer in fact to other species of the genus and the most wide spread species is Bakawan rotundata, whereas the “true” B. fusca is only confirmed from the Philippines (Paper VIII).

- Papawera is a genus that consist of only two species, P. maugeansis and P. zelandiae, restricted to temperate Australasia (Papers VI, IX).
- *Haloa sensu stricto* is restricted to the IWP and is ecologically diverse and rich in species, but external similarity between lineages makes species recognition difficult. The species *Haloa japonica* is highly invasive in the Mediterranean Sea, North East Atlantic and North East Pacific (Paper X).

5. General conclusions and future perspectives

The traditionally preferred characters for classifying haminoeids have been the shells and the radulae. However, these morphological characters may be very similar in different groups and difficult to use in taxonomic work. A lesson from our comparative studies is that the hard parts of the internal anatomy, radulae, jaws and gizzard plates are quite useful in delimiting genera, but have limited value in species identifications except when used in combination with other characters. On the other hand, the characteristics of the soft internal anatomy, especially the details of the hermaphroditic reproductive system, hold great value on all taxonomic levels, but the male part is especially useful at species level. The systematics of Haminoeidae and their evolutionary relationships have been clarified thanks to comprehensive molecular analyses combined in an integrative approach with anatomical studies (Paper III). As the most complete revision of Haminoeidae to date, we have emended the systematics of the family, but also exposed holes that need to be filled by future studies.

Two of the considered defining features of the family are the presence of three chitinous gizzard plates and the reduction of the interior whorls of the shells (Er. Marcus 1957, 1958; Burn 1978; Mikkelsen 1996; Burn and Thompson 1998; Too et al. 2014, Paper III). Similar features have been reported in the family Mnestiidae (genus *Mnestia*) by Carlson and Hoff (2000b). *Mnestia* has not been studied in depth and future studies should clarify the anatomy of this elusive genus to determine if these features apparently shared with the Haminoeidae are in fact the same and thus likely the result of convergent evolution. However, the presence of lamellate mucous glands in the female part of the reproductive system seems to be unique to the Haminoeidae.

Remaining problems rest with some of the more obscure genera that were not available for molecular phylogenetic analyses. For instance, the genus *Cylichnatys* was found to be anatomically distinct (e.g. Burn 1978; Chaban and Chernyshev 2014) and is considered a valid genus, but its phylogenetic position within the family is unknown (Paper III). Yet, features of the reproductive system suggest a possible connection to *Liloa* and *Aliculastrum*...
(Paper III), but this should be investigated further with DNA and other data. The type species of *Weinkauffia* (*W. turgidula*) from the Mediterranean was described in detail by Vayssière (1893), but was also unavailable for sequencing. Future studies should aim to redescribe and sequence the species to compare with IWP species ascribed to this genus. *Limulatys* was regarded a junior synonym of *Weinkauffia* (III), but the type species of *Limulatys*, (*Weinkauffia reliquus*) has an unknown anatomy and should be studied and sequenced to confirm the taxonomic status of the genus. The genus *Nipponatys* was regarded a junior synonym of *Aliculastrum* and *Austrocyclina* was synonymised with *Roxaniella* (Paper III), but this was drawn from shell and anatomical characters only, because no specimens were available for sequencing. These genera need to be investigated in the future to confirm their taxonomic status and affiliation.

Although some well-known genera have been redefined, there are still major gaps in the knowledge of their systematics and taxonomy. The genus *Haminoea sensu stricto* includes around 18 species occurring in the Atlantic, EP and temperate South Africa. However, most species of *Haminoea* have not been comprehensively revised across its entire range and most of the information available on the species is from the original descriptions or regional studies (*e.g.* Malaquias and Cervera 2006). *Smaragdinella* includes the well-known species *S. calyculata* and *S. sieboldi* A. Adams, 1864 that were described based on shells. Luckily, these shells are quite distinctive as *S. calyculata* only has a small cup-shaped remnant of the interior whorls (Habe 1952; Burn and Thompson 1998, Paper III), whereas *S. sieboldi* has an apparent coil of the last whorl (Chaban and Chernyshev 2016, Paper IV). However, our results (Papers III, VI) show that the genus contains two distinct clades that conform to either shell type, but both clades seem to hold several species (Paper VI, fig 1A). A comprehensive revision of the genera *Haminoea* and *Smaragdinella* is needed to fully understand their diversity and systematics.

The genus *Atys* previously held around 70 species from all oceans, but our results restricted the number to IWP species as many others have been reassigned to other genera. However, there are still several elusive species that are only known from the shell and therefore have an uncertain affiliation (MolluscaBase 2018c). Of the three confirmed species, the internal anatomy has only been described for *A. naucum* (Bergh 1901; Carlson and Hoff 1999), whereas *A. kuhnsi* is only known from external morphology (Pittman and Fiene 2018) and DNA (Oskars *et al.* 2015). However, preliminary molecular and anatomical data of
specimens conforming to shells of *A. naucum*, suggest it to be a complex of species (Oskars pers. obs.). Our results from paper **III**, further suggested a similar case for the IWP species *A. semistriatus*, which may in fact be a complex of several lineages. Two species names available that resemble *A. semistriatus* are *A. ooformis* (Habe, 1952) from Japan and *A. xarifae* Er. Marcus & Ev. Marcus, 1960, from the Maldives. Likewise, a broader study of the genus *Atys* is needed to determine the true diversity of species.

Haminella is the sister genus of *Atys*, but its type species *H. maltzani* Thiele, 1925 from Dakar, Senegal is only known from the original description. The only specimens available for study belonged to the species *Haminella solitaria* from the West Atlantic coast of USA. It remains to be clarified whether in fact there is one amphi-Atlantic species or two species. New collecting efforts in West Africa are necessary.

Our phylogenetic analyses revealed seemingly undescribed species in the genera *Aliculastrum*, *Diniatys*, *Haminoea* and *Roxaniella* that could be formally described in future studies (Papers **III, IV**).

The new informal group “Mini-haminoeids” (Paper **III**) warrants a name and the formal description of its species diversity. Several species are known in this group, but none are described. At last, the new genus here described *Vellicolla* was defined based on shells, external morphology, and molecular data, but the anatomy remains unknown. *Vellicolla* was rendered sister to the “Mini-haminoeids” and hopefully in light of novel specimens its anatomy can also be studied.

6. References

Adams, A. (1848). ‘Notes from a journal of research into the natural history of the countries visited during the voyage of HMS Samarang: under the command of Captain Sir Edward Belcher’. (Reeve, Benham, and Reeve: London, UK).

http://www.molluscabase.org/aphia.php?p=taxdetails&id=138054

Nordsieck, F. (1972). ‘Die europäischen Meeresschnecken (Opisthobranchia mit Pyramidellidae; Rissoacea) vom Eismeer bis Kapverden, Mittelmeer und Schwarzes Meer’. (Gustav Fischer Verlag: Stuttgart, Germany)

Scheppman, M. M. (1913). ‘Pulmonata and Opisthobranchia Tectibranchiata. Part VI of the Prosobranchia, Pulmonata and Opisthobranchia Tectibranchiata of the Siboga Expedition. Monograph 49’ (Brill: Leiden, the Netherlands)

Thompson, T. E. (1988). ‘Molluscs: benthic Opisthobranchs: Mollusca, Gastropoda: keys and notes for the identification of the species (Vol. 8)’. (Brill, Leiden, the Netherlands)

Paper I

Redescription of the Cephalaspidea gastropod *Atys jeffreysi* (Weinkauff, 1866) (Haminoeidae), with a discussion on the phylogenetic affinities of the Mediterranean species of the genus

Journal: Journal of Natural History
Paper II

Diniatys callosa (Preston, 1908), new combination name for *Haminoea callosa* from The Andaman Islands (India)

Journal: Journal of Conchology
Paper III

A molecular phylogeny of the gastropod family Haminoeidae *sensu lato* (Heterobranchia, Cephalaspidea), - a generic revision

Journal: Invertebrate Systematics

Accepted for publication
Paper IV

Description of a new species of *Haminoea* (Gastropoda: Cephalaspidea) from India, with an account of the diversity of the genus in the Indo-West Pacific

Journal: Journal of Natural History
Paper V

Beyond shells: First detailed morphological description of the mangrove-associated gastropod *Haminoea* aff. *fusca* (A. Adams, 1850) (Cephalaspidea: Haminoeidae), with a COI phylogenetic analysis

Journal: Zoosystema

Accepted for publication
Paper VI

A molecular phylogeny of the Indo-West Pacific gastropods *Haloa sensu lato* (Cephalaspidea: Haminoeidae): Tethyan vicariance, higher generic diversity, and ecological specialization

Journal: Molecular Phylogenetics and Evolution

Accepted with review
Paper VII

Intended journal: Invertebrate Systematics

Manuscript format
Paper VIII

Intended journal: Journal of Molluscan Studies

Manuscript format
Paper IX

The temperate Australasian genus *Papawera* Oskars and Malaquias, submitted (Cephalaspidea: Haminoeidae): redescriptions of *P. zelandiae* and *P. maugeansis*.

Intended journal: Journal of Natural History

Manuscript format
Paper X

Intended journal: Zoological Journal of the Linnean Society

Manuscript format