Combined measurement of differential and total cross sections in the $H \rightarrow \gamma\gamma$ and the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channels at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration*

1. Introduction

Differential cross-section measurements are important studies of Higgs boson production, probing Standard Model (SM) predictions. Deviations from the predictions could be caused by physics beyond the SM [1,2]. Both the ATLAS and CMS collaborations have measured differential cross sections in the $H \rightarrow \gamma\gamma$ [3] and $H \rightarrow ZZ^* \rightarrow 4\ell$ [4] decay channels, which were obtained using 36.1 fb$^{-1}$ of pp collision data produced by the Large Hadron Collider (LHC) in 2015 and 2016 with a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector [5]. The combined cross section is extracted for the total phase space, increasing the degree of model dependence compared to the individual measurements, which were performed in a fiducial phase space close to the selection criteria for reconstructed events in the detector. Despite the additional systematic uncertainties assigned to the extrapolation to the total phase space, the combination significantly reduces the measurement uncertainty compared to the results in the individual decay channels.

The measured observables include the total production cross section, the Higgs boson’s transverse momentum p_T^H, sensitive to perturbative QCD calculations, and the Higgs boson’s rapidity y^H, sensitive to the parton distribution functions (PDF). Furthermore the number of jets N_{jets} is measured in events with a Higgs boson and jet transverse momentum above 30 GeV, as well as the leading jet’s transverse momentum p_T^j. Both the N_{jets} and p_T^j observables probe the theoretical modelling of high-p_T QCD radiation in Higgs boson production. The N_{jets} observable is also sensitive to the different Higgs boson production processes [6].

The cross sections are obtained from yields measured in the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channels, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. For each decay channel and each observable, the cross sections can be written as

$$\sigma_i = \sum_j N_i^{\text{sig}} \times \epsilon_i \times \frac{B}{b_i} \times A_i \times C_i,$$

where i is the iterator over the bins of the observable of interest, σ_i is the cross section in bin i, N_i^{sig} is the number of measured reconstructed signal events following the analysis selection, L is the integrated luminosity and B is the branching fraction. The term C_i is the correction factor from the number of events reconstructed to the number of events at particle level produced in the respective fiducial phase space, and A_i is the acceptance factor extrapolating to the total phase space.
from the fiducial to the total phase space contained in the bin of interest.

Predicted branching ratios and production cross sections are obtained for \(m_H = 125.09 \) GeV [15], as described in Section 2. The number of signal events in each bin of a probed observable is extracted in the \(H \rightarrow \gamma\gamma \) and \(H \rightarrow Z\gamma \rightarrow 4\ell \) channels from fits to the \(m_{\gamma\gamma} \) and \(m_{4\ell} \) invariant mass distributions, respectively. The signal extraction and the correction factors are discussed in detail in Refs. [11,12]. The correction factors are obtained from simulated events, assuming SM Higgs boson production. In order to harmonize the published \(H \rightarrow \gamma\gamma \) fiducial measurement [11] with the \(H \rightarrow Z\gamma \rightarrow 4\ell \) analysis [12], adjustments were made to the bin boundaries and the uncertainties of the correction factors due to the fractions of different Higgs boson production processes in the \(H \rightarrow \gamma\gamma \) decay channel. To extrapolate to the total phase space, acceptance factors and uncertainties are calculated for the combination, as discussed in Section 3. Section 4 presents the combination methodology. The results are discussed in Section 5.

2. Higgs boson Monte Carlo samples, cross sections and branching fractions

Predictions of SM Higgs boson production are used in the calculation of the correction and acceptance factors, and are compared to the measured cross sections. The Monte Carlo (MC) event generators that were used to simulate gluon-gluon fusion (ggF), vector-boson fusion (VBF), associated Higgs boson production (VH, \(V = W, Z \)), and Higgs boson production in association with a heavy-quark pair (tH, bbH) are listed in Table 1. The accuracy of the calculations and the PDF sets used are also given, with the abbreviations NLO for next-to-leading order, NNLO for next-to-next-to-leading order, and NLL for next-to-next-to-leading order. For ggF, VBF, VH, and bbH in both decay channels and tH in the \(H \rightarrow \gamma\gamma \) decay channel, Pythia8 [16,17] was used for the decay, parton shower, hadronization and multiple parton interactions. For tH in the \(H \rightarrow Z\gamma \rightarrow 4\ell \) decay channel, HERWIG++ [18,19] was used.

The samples are normalized to the cross-section predictions taken from Refs. [14,34–36]. These predictions were obtained assuming a Higgs boson mass of 125.09 GeV [15] to calculate cross sections and branching ratios. Details are given in Table 2, including the accuracy of the calculations, and the composition of the production modes in the SM. N3LO is the abbreviation for next-to-next-to-next-to-leading order, and EW stands for electroweak.

In addition to the NNLOPS sample (see Table 1) scaled to the N3LO cross section with a K-factor of 1.1, further SM ggF predictions are compared with the measurements. If not mentioned otherwise, the cross sections predicted by the respective calculations are used. For the comparison with data, the non-ggF Higgs boson production processes are added using the samples and cross sections described above.

- The \(p_{T}^{\ell\ell} \) distribution is compared with the predictions from HRES [63,64], RAIDISH + NNLOJET [65], and MADGRAPH5 AMPI_NLO. HRES includes resummation to NNLL and computes fixed-order cross sections for ggF Higgs boson production up to NNLO in QCD. It describes the \(p_{T}^{\ell\ell} \) distribution at NLO. Finite \(t-, b-, \) and \(c-\)quark masses are included at NLO accuracy. The RAIDISH + NNLOJET prediction includes resummation to NNLL and matching to the one-jet NNLO differential spectrum from NNLOJET [66,67]. It includes corrections from the finite \(t-\) and \(b-\)quark masses. The predictions from MADGRAPH5 AMPI_NLO are scaled to the N3LO cross section with a K-factor of 1.47. This generator provides NLO accuracy in QCD for zero, one, and two additional jets, merged with the FxFx scheme [68] and includes the finite top quark mass effects [30,69,70].

- The \(|y^{\ell\ell}| \) measurement is compared with predictions from MADGRAPH5 AMPI_NLO merged with the FxFx scheme and SCETLIB + MCFM8 [71,72], which achieves NNLO + NNLL_p accuracy\(^1\) by applying a resummation of the virtual corrections to the gluon form factor. The underlying NNLO predictions are obtained using MCFM8 with zero-jetness corrections [73,74].

- The \(p_{T}^{\ell\ell} \) measurement is compared with SCETLIB, with NNLL' + NNLO_\beta_0_psi accuracy\(^2\) [72,75].

- Multiple predictions exist for different bins of the \(N_{\text{jets}} \) distribution. Considered here are the STWZ-BLPTW prediction [14,75,76], which includes NNLL + NNLO resummation for the \(p_{T} \) of the leading jet, combined with a NLL' + NNLO resummation for the subleading jet, and the JVE-N3LO prediction [77], which includes NNLL resummation of the \(p_{T} \) of the leading jet with small-R resummation and is matched to the N3LO total cross section. In addition, predictions from MADGRAPH5 AMPI_NLO, are compared with the full \(N_{\text{jets}} \) distribution.

For ggF, VBF, and VH, the PDF4LHC set is varied according to its eigenvectors [25], and the envelope of the variations is used as the systematic uncertainty. The effect of PDF uncertainties on \(tH \) and \(bbH \) is negligible and not included. The renormalization and fac-

\(^1\) The prime indicates that important parts of the N3LL (next-to-next-to-next-to-leading logarithm) contribution are included along with the full NNLL corrections and the subscript \(\psi \) indicates that resummation is applied to the gluon form factor.

\(^2\) NNLO_0 refers to the NNLO corrections relative to the LO gg \(\rightarrow H \) process with 0 additional partons.

Table 1

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
<th>Accuracy in QCD</th>
<th>PDF set</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggF</td>
<td>PowHeq-Box v2 (NNLOPS) [20–23]</td>
<td>NLO (p_{T}^{\ell\ell}) consistent with HerQG (NNLO + NNLL) [26,27]</td>
<td>PDF4LHC [25]</td>
</tr>
<tr>
<td>VBF</td>
<td>PowHeq-Box v2 [20–22,28]</td>
<td>NLO</td>
<td>PDF4LHC</td>
</tr>
<tr>
<td>VH</td>
<td>PowHeq-Box v2 (MINLO) [20–22,29]</td>
<td>NLO</td>
<td>PDF4LHC</td>
</tr>
<tr>
<td>tH</td>
<td>MADGRAPH5_AMPI_NLO (v.2.3.3) [30]</td>
<td>NLO</td>
<td>CT1lonlo [31]</td>
</tr>
<tr>
<td>bbH</td>
<td>MADGRAPH5_AMPI_NLO (v.2.3.3) [30,32]</td>
<td>NLO</td>
<td>NNPDF23 [33]</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Process</th>
<th>Accuracy</th>
<th>Fraction [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggF</td>
<td>NLO, NLO EW corrections [37–50]</td>
<td>87.4</td>
</tr>
<tr>
<td>VBF</td>
<td>NLO, NLO EW corrections [51–53]</td>
<td>6.8</td>
</tr>
<tr>
<td>VH</td>
<td>NNLO [55,56], NLO EW corrections [57]</td>
<td>4.1</td>
</tr>
<tr>
<td>tH</td>
<td>NLO, NLO EW corrections [58–61]</td>
<td>0.9</td>
</tr>
<tr>
<td>bbH</td>
<td>five-flavour: NNLO, four-flavour: NLO [62]</td>
<td>0.9</td>
</tr>
</tbody>
</table>
torization scales are varied by factors of 2.0 and 0.5. For NNLOPS, instead of the internal scale uncertainties, the same scheme as in Refs. [11,12,78] is used: four parameters account for uncertainties in the cross sections for events with different jet multiplicities [14, 75,76,79], and three parameters account for the uncertainties in the modelling of the p_T^H distributions.

The predicted Higgs boson decay branching ratios are $(0.227 \pm 0.0007\%)$ and $(0.0125 \pm 0.0003\%)$ for the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ decays, respectively [14]. Both branching ratio calculations include the complete NLO QCD and EW corrections. For $H \rightarrow ZZ^* \rightarrow 4\ell$, the interference effects between identical final-state fermion pairs are included. The correlations of the branching ratio uncertainties and the dependence of the predicted branching ratios on the Higgs boson mass are taken into account in the combination. For the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel, which has the larger dependence, this corresponds to a relative variation of $\sim 2\%$ in the branching ratio when varying the assumed Higgs boson mass by ± 0.24 GeV [15].

3. Acceptance correction

The acceptance factors that extrapolate at particle-level from the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ fiducial phase space to the full phase space are estimated using the MC samples and cross sections described in Section 2. Their evaluation assumes SM Higgs boson production fractions and a Higgs boson mass of 125 GeV; the 90 MeV difference from 125.09 GeV has negligible impact on the Higgs boson kinematics and is covered by the systematic uncertainty from the Higgs boson mass measurement. In the $H \rightarrow \gamma \gamma$ fiducial phase space [11], the selected events have two photons with pseudorapidity $\eta < 1.37$ or $1.52 < |\eta| < 2.37$ and $p_T^{\gamma_1} > 0.35m_{\gamma\gamma}$, $p_T^{\gamma_2} > 0.25m_{\gamma\gamma}$, where $p_T^{\gamma(2)}$ refers to the transverse momentum of the (sub)leading photon and $m_{\gamma\gamma}$ is the invariant mass of the two photons. The photons are required to be isolated: the p_T of the system of charged generator-level particles within $\Delta R = 0.2$ of the photon is required to be less than 0.05 times the p_T of the photon. In the $H \rightarrow ZZ^* \rightarrow 4\ell$ fiducial phase space [12], the selected events have four muons, four electrons, or two electrons and two muons. The three leading leptons are required to have $p_T > 20, 15, 10$ GeV. The lowest-p_T muon (electron) has to fulfill $p_T > 5 (7)$ GeV. The muons have to be within $|\eta| < 2.7$ and the electrons within $|\eta| < 2.47$. Following the selection of events in data, requirements are placed on the masses of the two same-flavour opposite-charge pairs, on the ΔR of any two leptons, and the invariant mass of the four-lepton system, 115 GeV < $m_{4\ell}$ < 130 GeV.

In the total phase space, the quantities p_T^H and $|y^H|$ are computed directly from the simulated Higgs boson momentum instead of its decay products, as in the fiducial analyses. Simulated particle-level jets are built from all particles with $cT > 10$ mm excluding neutrinos, electrons and muons that do not originate from hadron decays. Photons are excluded from jet finding if they originate directly from the Higgs boson decay or are radiated off decays from the Higgs boson decay. Jets are reconstructed using the anti-k_t algorithm [80] with a radius parameter $R = 0.4$, and are required to have $p_T > 30$ GeV.

Theory uncertainties in the signal acceptance related to the PDF, higher-order corrections, and the parton shower are considered for the acceptance factors and are correlated between the two channels. Uncertainties due to the PDF and scales are estimated as described in Section 2. Uncertainties due to the parton shower are evaluated by comparing the ggF default showering PYTHIA8 with HERWIG7. The uncertainty is derived from the full difference between the two cases. The Higgs boson mass is varied within the uncertainty of the ATLAS–CMS combined measurement [15]. To account for model dependence, the fractions of production modes are varied within the uncertainties from the dedicated measurements by the ATLAS and CMS collaborations [81]. For $t\bar{t}H$, the 13 TeV ATLAS results are used [82]. The bbH cross section is varied within the uncertainties due to the PDF and higher-order corrections [14]. The total systematic uncertainties of the acceptance factors range between 0.4% and 5%, depending on the observable and bin. The parton shower uncertainty dominates.

The inclusive acceptance factors are 50% for the $H \rightarrow \gamma \gamma$ channel and 42% for the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel (relative to the full phase space of $H \rightarrow ZZ^* \rightarrow 2\ell 2\ell^\prime$, where $\ell, \ell^\prime = e$ or μ). The acceptance is lower for $H \rightarrow ZZ^* \rightarrow 4\ell$ than for $H \rightarrow \gamma \gamma$ since it is less likely for four leptons to fulfill the fiducial requirements. Fig. 1 shows the acceptance factors used for the differential observables and their systematic uncertainties. The fiducial acceptance falls off steeply as the Higgs boson rapidity increases, as both fiducial definitions include pseudorapidity requirements on the Higgs boson decay products. The fiducial acceptance in the $H \rightarrow \gamma \gamma$ channel as a function of p_T^H is shaped by the p_T selection criteria on the photons.

4. Statistical procedure

The combined measurement is based on maximizing the profile-likelihood ratio [83]:

$$\Lambda(\sigma) = \frac{L(\sigma, \hat{\theta}(\sigma))}{L(\hat{\sigma}, \hat{\theta})}.$$

Here σ are the parameters of interest, θ are the nuisance parameters, and L represents the likelihood function. The $\hat{\sigma}$ and $\hat{\theta}$ terms denote the unconditional maximum-likelihood estimate of the parameters, while $\Lambda(\sigma)$ is the conditional maximum-likelihood estimate for given parameter values.

The likelihood function L includes the signal extraction, the correction to particle level, and the extrapolation to the total phase space in each channel. Therefore, the total cross section as well as the cross sections in different bins for each observable can be derived directly as parameters of interest σ based on the combined data set from the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ channels.

The distribution shape and normalization systematic uncertainties of all components are included in the likelihood function as nuisance parameters θ with constraints from subsidiary measurements. This allows the uncertainties to be correlated between bins, decay channels, and correction and acceptance factors. The uncertainty components of the predicted branching ratios are correlated between the decay channels, as well as the uncertainties in the acceptance and correction factors due to production mode variations, PDF and higher-order corrections, and the parton shower. The uncertainty in the Higgs boson mass, including its effect on the predicted branching ratio, is also correlated between channels.

Experimental uncertainties in the correction factors and the signal extraction in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel, like the energy scale and resolution of electrons, photons, and jets, and in the luminosity measurement and pileup modelling are also correlated.
The bin boundaries of all probed observables are consistent between the $H \rightarrow \gamma\gamma$ and the $H \rightarrow ZZ^* \rightarrow 4\ell$ analyses [11,12]. Where one bin in one of the measurements corresponds to two bins in the other, the wider bin size is used. The sum of the cross sections in the finer bins is considered as the parameter of interest in these cases, and an additional unconstrained nuisance parameter that floats in the fit describes the difference between the merged bins. The normalization and shape uncertainties of the $H \rightarrow \gamma\gamma$ background estimate [11] are fit to the data as nuisance parameters without any initial constraint.

The test statistic $-2\ln \Lambda$ is assumed to follow a χ^2 distribution for constructing confidence intervals [83]. This asymptotic assumption was tested with pseudo-experiments for bins with low numbers of events and found to be appropriate.

The level of agreement between the two channels in the total phase space is evaluated by using a profiled likelihood as a function of the difference of the cross sections in each bin. $\sigma_i^H - \sigma_i^A$. The number of degrees of freedom is the same as the number of bins in the tested distribution. The probability that a measured differential cross section is compatible with a theoretical prediction is found by computing a p-value based on the difference between the value of $-2\ln \Lambda$ at the unconditional maximum-likelihood estimate and the value obtained by fixing the cross sections in all bins to the ones predicted by the theory. The uncertainties in the theoretical predictions are ignored when calculating the p-values. Including these uncertainties would increase the p-values.

5. Results

The total cross section is measured to be $47.9^{+9.1}_{-8.6}$ pb in the $H \rightarrow \gamma\gamma$ decay channel and $68^{+11.1}_{-10.0}$ pb in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel. The result of the combined measurement is $57.0^{+7.2}_{-6.8}$ (stat.) $^{+3.0}_{-2.3}$ (syst.) pb, in agreement with the SM prediction of 55.6 ± 2.5 pb [14]. The results from the individual decay channels are compatible, with a p-value of 14%.

Fig. 2 shows the differential cross sections in the total phase space measured in the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channels as well as the combined measurement as a function of p_T^H, $|y^H|$, N_{jets}, and $p_T^{H\ell}$. Different SM predictions are overlaid. The uncertainties in the MADGRAPH5_AMC@NLO distribution are larger than for the other predictions, as this prediction is at NLO accuracy only.

For all differential observables and bins, the measurement is dominated by statistical uncertainties, which vary between 20% and 30%. Significant uncertainties affecting all observables, includ-
between phase well, typically the and 2016 systematic bottom as of and well Fig. 2. The ATLAS Collaboration / Physics Letters B 786 (2018) 114–133
cay pH
T ,
Table 3 shows the total shaded the channel, as 40% background predictions integrated as 3–6%.
The transverse area. Different the cross section by the black circle) for (a) Higgs boson transverse momentum p_T^j (b) Higgs boson rapidity y_H, (c) number of jets N_{jets} with $p_T > 30$ GeV, and (d) the transverse momentum of the leading jet p_T. The first bin in the p_T^j distribution corresponds to the 0-jet bin in the N_{jets} distribution, as indicated by the black vertical line. Different SM predictions are overlaid, their bands indicating the PDF uncertainties as well as uncertainties due to missing higher-order corrections. The ordering of the predictions is the same in the legend as in the figure. Predictions for the other production processes are also added to the ggf predictions, and also shown separately as a shaded area. The dotted red line corresponds to the central value of the NNLOPS ggf prediction, scaled to the total N_{LO} cross section by the given K-factor, and added to the xH prediction. The uncertainties due to higher orders in the NNLOPS prediction are obtained as in Refs. [11,12,78]. The MadGRAPH_AMC@NLO prediction is scaled to the total N_{LO} cross section by the given K-factor. For better visibility, all bins are shown as having the same size, independent of their numerical width. The panel on the bottom shows the ratio of the predictions to the combined measurement. The total uncertainties of the combined measurement are indicated by the black error bars, the systematic uncertainties by the black open boxes.

ing the total cross section, include the uncertainty in the 2015 and 2016 integrated luminosity, which is 3.2% [84], affecting the signal and simulated background estimates in the $H \to ZZ \to 4j$ decay channel, with an impact of about 4% on the measurement, and the background estimate in the $H \to gg \to 4j$ signal extraction [11], typically 2–6%. For N_{jets} and p_T^j, the uncertainties in the reconstruction of the jet energy scale and resolution are important as well, typically 3–6% (>10% for $N_{jets} \geq 3$) [85].

The level of agreement between the two channels in the total phase space is quantified by the corresponding p-values: 58% for p_T^j, 40% for $|y_H|$, 53% for N_{jets} and 67% for p_T^j.

Table 3 shows the p-values indicating reasonable agreement between the probed SM predictions and the measurement. The relatively low p-value for HRs can be explained by the lower computed total cross section, as this prediction is at NNLO + NLL accuracy. The lower p-values for p_T^j reflect the lower predictions compared to the measurement for high jet p_T. Compatibility checks of individual bins indicate less than 3σ local discrepancy.

6. Conclusion

A combined measurement of the total and differential cross sections in the $H \to ZZ \to 4j$ and $H \to ZZ \to 4f$ decay channels was performed, using 36.1 fb–1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Good agreement is observed when comparing the re-
results from the two channels, extrapolated to a common phase space. The total Higgs boson production cross section is measured to be $57.0^{+6.0}_{-5.0}$ (stat.) $^{+4.0}_{-4.0}$ (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The larger data set and the combination of the two decay channels give measurement uncertainties that are significantly smaller than in previous results. The combined results agree with Standard Model predictions.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; Shota Rustaveli National Science Foundation, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; Research Grants Council, University Grants Committee, Hong Kong SAR, China; ISF, I-CORE and The Nella and Leon Benoziyo Center for High Energy Physics, Weizmann Institute of Science, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNISW and NCN, Poland; FCT, Portugal; MINE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; Department of Science and Technology, South Africa; MINECO, Spain; SR and Knut and Alice Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, Canarie, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and H2020 Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully. In particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKa (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [86].

References

R.D. M. 120
A. P. 073003, 665 J. High
order sarino, Ciccolini, Spira, Harlander, Higgs
differential for (Eds.), Phys. C. Lett. 325, 579
(2014) 550, LHC
S. M. at Higgs the
LHC at
Higgs collider, Phys.
W. Beenakker, et al., NLO QCD corrections to pp
production in hadron colliders, Phys. Rev. D 86
R. Harlander, M. Kramer, M. Schmacher, Bottom-quark associated Higgs-boson
production: reconciling the four- and five-flavour scheme approach, arXiv:1112.
1478 [hep-ph], 2011.
D. de Florian, G. Ferrera, M. Grazini, D. Tommasini, Higgs boson production at
the LHC: transverse momentum resummation effects in the \(H \to \gamma \gamma \) and \(H \to W^- W^+ \) decay modes, J. High Energy Phys. 06 (2012)
M. Grazini, H. Sargsyan, Heavy-quark mass effects in Higgs boson production
F.F. Mounet. E. Re, P. Tortelli, Higgs transverse-momentum resummation in
X. Chen, T. Gehrmann, E.W.N. Glover, M. Jaquier, Precise QCD predictions for
corrections to Higgs boson production at large transverse momentum, J. High
R. Frederix, S. Frixione, Merging meets matching in MC@NLO, J. High Energy
R. Frederix, S. Frixione, E. Vryonidou, M. Grazini, Heavy-quark mass effects in
2017 [hep-ph].
O. Mattelaer, On the maximal use of Monte Carlo samples: re-weighting events
M.A. Ebert, J.K.L. Michel, F.J. Tackmann, Resummation improved rapidity
spectrum for gluon fusion Higgs production, J. High Energy Phys. 05 (2017) 088,
M.A. Ebert, et al., SCETlib: a C++ package for numerical calculations in QCD
A. Banfi, et al., Jet-prompted Higgs cross section in gluon fusion at NLO + NNLL
05108 [hep-ph].
ATLAS Collaboration, Measurement of the Higgs boson coupling properties in
the \(H \to ZZ \to 4\ell \) decay channel at \(\sqrt{s} = 13 \text{ TeV} \) with the ATLAS detector,
X. Liu, F. Petriello, Reducing theoretical uncertainties for exclusive Higgs-boson
4405 [hep-ph].
M. Cacciari, G.P. Salam, G. Soyer, The anti-k(t) jet clustering algorithm, J. High
ATLAS and CMS Collaborations, Measurements of the Higgs boson production
and decay rates and constraints on its couplings from a combined ATLAS and
CMS analysis of the LHC pp collision data at \(\sqrt{s} = 7 \text{ and } 8 \text{ TeV} \), J. High Energy
ATLAS Collaboration, Evidence for the associated production of the Higgs boson
G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-
[physics.data-an];
[Erratum].
ATLAS Collaboration, Luminosity determination in pp collisions at \(\sqrt{s} = 8 \text{ TeV} \)
03953 [hep-ex].
ATLAS Collaboration, Jet energy scale measurements and their systematic
uncertainties in proton-proton collisions at \(\sqrt{s} = 13 \text{ TeV} \) with the ATLAS detector,
ATLAS Collaboration, ATLAS computing acknowledgements, ATL-PUB-
null
131 Physics Department, Royal Institute of Technology, Stockholm, Sweden
132 Departments of Physics and Astronomy, Stony Brook University, Stony Brook, NY, United States of America
133 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
134 School of Physics, University of Sydney, Sydney, Australia
135 Institute of Physics, Academia Sinica, Taipei, Taiwan
136 E. Andronikashvili Institute of Physics, Tbilisi, Georgia (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
137 Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
138 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
139 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
140 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
141 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
142 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
143 Tomsk State University, Tomsk, Russia
144 Department of Physics, University of Toronto, Toronto, ON, Canada
145 TRIUMF, Vancouver, BC, Canada
146 Department of Physics and Astronomy, York University, Toronto, ON, Canada
147 Division of Physics and Astronomy Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
148 Department of Physics and Astronomy, Tufts University, Medford, MA, United States of America
149 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States of America
150 Department of Physics and Astronomy, University of Upsala, Upsala, Sweden
151 Department of Physics, University of Illinois Urbana-Champaign, IL, United States of America
152 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia – CSIC, Valencia, Spain
153 Department of Physics, University of British Columbia, Vancouver, BC, Canada
154 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
155 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
156 Department of Physics, University of Warwick, Coventry, United Kingdom
157 Waseda University, Tokyo, Japan
158 Department of Particle Physics, Weizmann Institute of Science, Rehovot, Israel
159 Department of Physics, University of Wisconsin Madison, WI, United States of America
160 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
161 Department of Physics, Yale University, New Haven, CT, United States of America
162 Yerevan Physics Institute, Yerevan, Armenia

Also at Department of Physics, University of Malaya, Kuala Lumpur, Malaysia.

Also at Borough of Manhattan Community College, City University of New York, NY, United States of America.

Also at California State University, East Bay; United States of America.

Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town; South Africa.

Also at CERN, Geneva; Switzerland.

Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.

Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.

Also at Departamento de Fisica de la Universitat Autònoma de Barcelona, Barcelona; Spain.

Also at Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain); Spain.

Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah; United Arab Emirates.

Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.

Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.

Also at Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.

Also at Department of Physics, California State University, Fresno, CA; United States of America.

Also at Department of Physics, California State University, Sacramento, CA; United States of America.

Also at Department of Physics, King's College London, London; United Kingdom.

Also at Department of Physics, Nanjing University, Nanjing; China.

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia.

Also at Department of Physics, Stanford University; United States of America.

Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.

Also at Department of Physics, University of Michigan, Ann Arbor, MI; United States of America.

Also at Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.

Also at Giresun University, Faculty of Engineering, Giresun; Turkey.

Also at Graduate School of Science, Osaka University, Osaka; Japan.

Also at Hellenic Open University, Patras; Greece.

Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; Romania.

Also at B. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany.

Also at Instituto Catalana de Recerca i Estudis Avançats, ICREA, Barcelona; Spain.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.

Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary.

Also at Institute of Particle Physics (IPP); Canada.

Also at Institute of Physics, Academia Sinica, Taipei; Taiwan.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia.

Also at Istanbul University, Dept. of Physics, Istanbul; Turkey.

Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.

Also at Louisiana Tech University, Ruston, LA; United States of America.

Also at LPNHE, Sorbonne Université, Paris Didier Sorbonne Paris Cité, CNRS/IN2P3, Paris; France.

Also at Manchester College, New York, NY; United States of America.

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.

Also at National Research Nuclear University MEPhI, Moscow; Russia.

Also at Near East University, Nicosia, North Cyprus; Turkey.

Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
Also at School of Physics, Sun Yat-sen University, Guangzhou; China.
Also at The City College of New York, New York, NY, United States of America.
Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
Also at TRIUMF, Vancouver, BC, Canada.
Also at Universita di Napoli Parthenope, Napoli; Italy.
* Deceased.