Paper II
Observations of upper ocean boundary layer dynamics

in the marginal ice zone

Ilker Fer\textsuperscript{1,2} and Arild Sundfjord\textsuperscript{2,3}

\textsuperscript{1}Bjerknes Centre for Climate Research, Bergen

\textsuperscript{2}Geophysical Institute, University of Bergen, Bergen

\textsuperscript{3}Norwegian Polar Institute, Tromsø

\textit{Accepted for publication in Journal of Geophysical Research.}

\textit{Copyright (2006) American Geophysical Union.}
Abstract

Vertical profiles of turbulent kinetic energy dissipation and small-scale hydrography were collected in the upper ocean boundary of both ice-covered and ice-free stations in the marginal ice zone of the Barents Sea in spring 2005. Together with shipboard wind measurements and current profiles, the mixed and mixing layer dynamics is studied. During the survey, shear production by the stress at the surface or under the ice dominated. Large upward turbulent heat fluxes $\sim$300-500 Wm$^{-2}$ were calculated for the mixing layers overlying the warm Atlantic Water which compared well with those obtained from an independent parameterization. At the top of the pycnocline corresponding heat fluxes were 10-20 W m$^{-2}$. Significant stabilizing buoyancy fluxes were estimated for ice-drift stations due to melting of ice in response to the large heat fluxes. The mean dissipation profile in the ice-free reference station agreed with the constant-stress wall layer scaling within 30%. On the contrary, the observed dissipation profiles were enhanced in the upper half of under-ice mixing layer or within 2.5 times the assessed pressure-ridge keel depth. Deeper in the mixing layer the profiles relaxed towards the wall scaling. The variability of dissipation in the mixed layer were better captured by the shear production profile when local friction speed was used together with a mixing length profile modified by buoyancy fluxes. Significant correlations were found between dissipation integrated over the mixing layer and work done by stress under the ice, and the wind work at 10 m height. The low correlation between the mixed layer depth and length scale for neutral conditions significantly increased when the reduction in the mixing length due to buoyancy fluxes was accounted for. The mixing depth is observed to be strongly correlated with the outer neutral planetary length scale.

Keywords
Turbulence, mixing, dissipation, surface mixed layer, Marginal Ice Zone, Barents Sea
1. Introduction

Among the ice-covered Polar regions, the marginal ice zones (MIZ) where ice concentration ranges from open water to consolidated pack ice are the most physically and bio-geochemically active areas. Relying on the present understanding of the air-sea-ice interaction and its parameterization, Smith and Niebauer [1993] conclude that the ice-edge phytoplankton bloom cycle is primarily regulated by vertical stratification whereas the spatial extent of the bloom is controlled by the ice dynamics and the response to wind forcing. Vertical mixing in the MIZ and the dynamics of the surface and under-ice mixed layer will therefore have direct influence on the food web and carbon cycle.

The Barents Sea is a key region for water mass modification [Pfirman et al., 1994]. This is manifested by the observation that while a majority of the inflow to the Barents Sea from a transect between north of Norway and Bjørnøya is Atlantic Water (AW, hereinafter) with temperature $> 3 \, ^{\circ}C$ [Ingvaldsen et al., 2004], only 25% of the Barents Sea water that enters the Arctic Ocean through a section between Novaya Zemlya and Franz Joseph Land (the main exit to the Arctic Ocean) has temperature $> 0 \, ^{\circ}C$ [Schauer et al., 2002]. The MIZ in the Barents Sea is a frontal zone caused by the interaction of cold-fresh melt water and this relatively warm and salty modified water of Atlantic origin. The MIZ here is characterized by significant biological production [Falk-Petersen et al., 2000] and large biomass compared with the interior Arctic Ocean [Sakshaug, 2004]. In addition to the enhanced biological carbon cycling, inorganic carbon fluxes can also be large, due to increased ability to dissolve and absorb CO$_2$ of the cooled through-flowing AW [Kaltin et al., 2002].

It is the purpose of this paper to report on observations of turbulence in the near-surface and under-ice mixed layer of the MIZ in the Barents Sea, during early melting conditions. The
The data set presented herein was collected from the *R.V. Jan Mayen* during the last of a series of multi-disciplinary cruises of the “Carbon flux and ecosystem feedback in the northern Barents Sea in an era of climate change” (CABANERA) project as a joint effort of the CABANERA and the Polar Ocean Climate Processes (ProCLIM) projects. A more detailed description of the hydrography, fine-scale and turbulence characteristics comprising the surveys of both 2004 and 2005 is reported in Sundfjord et al. 2006, *Hydrography and turbulent mixing in the Marginal Ice Zone of the Barents Sea*, submitted to *J. Geophy. Res.*, (hereinafter referred to as Sundfjord et al. submitted). In the next section we give a brief description of the measurements and survey. In section 3 we summarize the observations of the environmental forcing and upper mixed layer dynamics, and subsequently in section 4 we present and discuss our results. We examine the vertical structure of the dissipation of turbulent kinetic energy, $\varepsilon$, with respect to constant stress scaling (section 4.1), a local stress scaling incorporating the effect of stabilizing buoyancy flux (section 4.4), and a modified version of the law-of-the-wall (section 4.5). In section 4.2, we attempt to delineate the influence of pressure ridge keels which might impose considerable drag. Heat flux and vertical eddy diffusivity in the upper ocean boundary (section 4.3), integrated dissipation in the mixed layer (section 4.6) and the dependence of the observed mixed and mixing layer depths to the wind stress forcing and related parameters (section 4.7) are discussed.

In this study, we employ a right-handed co-ordinate system with the vertical positive upwards. The day of the year is given with the convention that day 0.5 is 12:00 UTC on 1 January 2005. Salinity is calculated using the practical salinity scale. In order to facilitate reading we name the stations A-D (section 2) which corresponds to stations XIV, XVI, XVII, and XVIII, respectively, of the cruise log and of Sundfjord et al. (submitted).
2. Measurements

Measurements of hydrography, fine-scale current profiles and temperature/shear microstructure were made during 18 May – 04 June 2005 in the MIZ around the Svalbard Archipelago. The survey covered ice-stations drifting north of Svalbard at ~2000 m depth (Station A) in the northern part of Hopen Deep (Station B) and near the Great Bank (Station C). A reference station was occupied in ice-free water (Station D) in Hopen Deep close to the Central Bank. The stations are shown in Figure 1 and summarized in Table 1 (for detailed description, see Sundfjord et al. submitted).

At stations, continuous current profiles were collected and averaged every 5 min from the vessel-mounted 150 kHz RD-Instruments ADCP at 4 m bins from 15 m to a last good bin at ~250 m. Ship velocity derived from navigation is representative of the ice velocity for drift stations. Wind speed and direction were acquired by the ship weather station every minute whereas the temperature sensor malfunctioned. Ice cover percentage was assessed subjectively from the vessel. Ice draft and pressure ridge keel depths were measured by divers using pressure gauges along multiple transects below the large main ice floe near which all the sampling was done. The ice parameters given in Table 1 are representative of the stations although we can not assess the degree of local variability.

The microstructure data were collected at 1024 Hz using a loosely-tethered free-fall MSS profiler [Prandke and Stips, 1998] equipped with airfoil shear probes and fast response conductivity and temperature (FP07) sensors. The profiler comprises an acceleration sensor and conventional CTD sensors for precision measurements. Microstructure data are processed as described in Fer [2006]. The dissipation rate of turbulent kinetic energy per unit mass, ε in units W kg⁻¹, is calculated using the isotropic relation

\[ \varepsilon = 7.5v \langle u_z^2 \rangle, \]

where \( \nu \) is the viscosity.
of seawater (within \(1.6-1.9 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}\) for the recorded range of temperatures -1.8 to 5 °C), \(u_x\) is the shear of the horizontal small-scale velocity, and angle brackets denote appropriate averaging. The instrument fall speed (0.7-0.8 m s\(^{-1}\)) is used to convert from frequency domain to vertical wavenumber domain using Taylor’s hypothesis, and the shear variance is obtained by iteratively integrating the reliably resolved portion of the shear wavenumber spectrum of half-overlapping 1-s segments. Narrow band noise peaks induced by the probe guard cage are above the wavenumber range chosen for the analysis. Typical commonly accepted uncertainty in \(\varepsilon\) measurements is a factor of two [Moum et al., 1995]. Dissipation data in the upper 5-8 m are unreliable due to contamination of the ship’s wake as well as the initial adjustment to the free-fall. The profiles of precision CTD (corrected against available SeaBird CTD profiles) and \(\varepsilon\) are produced as 10 cm and 50 cm vertical averages, respectively. Typically a sequence of 3 microstructure profiles (set hereafter) was acquired every 3-6 h over typical station duration of 26-45 h (Table 1). The collection of each set typically lasted 0.5-1h. A set ensemble of 50-cm vertical bin averaged dissipation profiles thus consists of 6 data points when both shear probes acquired acceptable data.

3. Observations

Station A, north of Svalbard, is located where the continental slope branch of warm and relatively salty AW transported by the West Spitsbergen Current enters the Arctic. The West Spitsbergen Current is observed to split into multiple branches in the Fram Strait [Quadfasel et al., 1987], and the part that flows along the Svalbard continental slope and crosses the Yermak Plateau is possibly the strongest [Bourke et al., 1988]. The reader is also referred to relevant papers of dedicated surveys on turbulent mixing during an ice-drift in the Yermak Plateau where measurements revealed upward oceanic heat fluxes reaching 30 W m\(^{-2}\) due to
energetic mixing events as a result of proximity to internal wave sources [Padman and Dillon, 1991; Wijesekera et al., 1993].

Over the duration of drift A, initially southwards and then westwards, the depth averaged currents were towards north-east (Figure 2a). The average temperature of \( \theta = -0.8 \degree C \) in the under-ice mixed layer was significantly above the freezing point for the observed salinity at atmospheric pressure \( T_f(S=34.2, P=0) \) of \(-1.88 \degree C\). This is due to the upwards vertical heat flux from the underlying warm AW (quantified later in section 4.3). For similar mixed layer values of S, the average \( \theta \) in the interior Barents Sea was significantly lower; emphasizing the strong heat loss AW encounters en-route through the shallow Barents Sea (section 1). Particularly towards the east of the Great Bank, the temperature in the under-ice mixed layer was close to the freezing point with negligible warming, hence contribution to melting, from AW.

The along-track observations of wind forcing together with upper 50-m potential temperature, \( \theta \), and dissipation, \( \varepsilon \), are shown as time series in Figure 3. The instantaneous wind speed (gray points, Figure 3a) reached strong gale scale (20.8-24.4 m s\(^{-1}\)) both during stations B and D, forcing interruption of MSS sampling. Both the magnitude and direction of wind velocity at B were highly variable. The energy flux at 10 m height, \( E_{10} = \tau U_{10} \) where \( \tau \) is the wind stress and \( U_{10} \) is the wind speed at 10 m, was largest at A (6.3 ± 2.3 W m\(^{-2}\)) and lowest at C (1.2 ± 1.5 W m\(^{-2}\)) when averaged (± one standard deviation) over the duration of the station. The wind stress, \( \tau = \rho_a C_D U_{10}^2 \), is calculated using air density \( \rho_a = 1.25 \) kg m\(^{-3}\) and drag coefficient, \( C_D = 2.7 \times 10^{-3} \) (section 4.1). The influence of the large energy flux at B is clearly seen on the ship (ice drift) and depth averaged water velocity progressive vector diagrams (Figure 2b). During relatively calm C, the wind direction was also stable (Figure 3a).
and the ice drift was at \( \sim 20^\circ \) to the right of the north-easterly wind. The nearly stationary semi-diurnal loops of the depth-averaged current at C (Figure 2c) indicate very little net transport during the ice station time. At open water station D the vessel followed a set of drifting sediment traps, so that the vessel drift was representative of the mean water current of the upper \( \sim 50 \) m and not the true surface current speed.

The surface mixed layer is often defined as the upper layer of the ocean with quasi-homogeneous potential density above the pycnocline. Its thickness, referred to as mixed layer depth \( D_{\text{mixed}} \), is most commonly determined by various threshold methods as the depth where a property (e.g. density, temperature or their vertical gradients) first exceeds a prescribed threshold. Resulting estimates of \( D_{\text{mixed}} \) are often sensitive to the choice of method and thresholds and sometimes do not agree with what the “eye” would pick, and require manual corrections. Relative performance of various methods was reported by Thomson and Fine [2003] who also proposed a split-and-merge method to determine \( D_{\text{mixed}} \). In this study, we adopt an improved version of the split-and-merge method [R. Thomson, personal commu.] which includes an additional run of the split-and-merge procedure using a lower boundary depth determined by the first run. The sensitivity of the result to the initial choice of parameters is greatly reduced. In our data set, credible mixed layer depths for different hydrographic conditions were more consistently identified compared to those derived from threshold criteria. The occupied drift-stations (A, B, and C) were 50-90\% ice covered and the surface mixed layer was in contact with the ice cover (also referred to as under-ice mixed layer).

The mixed layer depth, \( D_{\text{mixed}} \), (stars in Figure 3c) was shallowest at B and varied within 10-35 m for the drift stations of our survey. An anomalous estimate of \( D_{\text{mixed}} \) for the second
set of A is significantly shallower than the nearby occupations due to a weak vertical salinity gradient (the temperature is well-mixed down to a depth comparable with \(D_{\text{mixed}}\) values of other sets). We retain the objective estimate of the split-and-merge algorithm. A mixed layer represents a history of the previous mixing events and is not necessarily subject to mixing at the time of measurement. Therefore a distinction is often made between the mixed layer and the mixing layer \([\text{Dewey and Moum, 1990; Padman and Dillon, 1991; Brainerd and Gregg, 1995}]\). It is only when the mixing layer is deeper than the mixed layer that the turbulent motions work against the stratification and a part of the energy input is used to increase the potential energy of the water column. We define the mixing layer depth, \(D_{\text{mixing}}\), as the depth when \(\varepsilon\) first drops below \(3 \times 10^{-8}\) W/kg, approximately 3-4 times the instrument noise level. \(D_{\text{mixing}}\) (circles in Figure 3c) is, on average, deeper than \(D_{\text{mixed}}\), suggesting entrainment of stratified water into the mixed layer, albeit occasionally a different pattern can be observed: e.g., mixed layer deepens during the first half of C when \(D_{\text{mixing}}\) decreases.

For the ice-drift stations the depth is converted to distance from the ice bottom, \(z\), using the measured ice thickness and scaled by \(D_{\text{mixed}}\) or \(D_{\text{mixing}}\). Observed profiles of dissipation from all 23 set-averaged profiles from the ice-covered stations are shown in Figure 4 with scaled distance from ice. Values of \(\varepsilon\) range over 4 decades. The arithmetic mean of \(\varepsilon\) over 0.05 normalized distance bins agree within 95% confidence intervals of the maximum likelihood estimate (MLE) from a log-normal distribution, \(\varepsilon_{\text{MLE}} = \exp(\mu + \sigma^2/2)\), where \(\mu\) and \(\sigma\) are the expected value and standard deviation of \(\ln(\varepsilon)\), respectively \([\text{Baker and Gibson, 1987}]\). On the average, dissipation increases with distance from the ice-water interface down to about \(|z|/D_{\text{mixing}} \sim 0.3\), decreases linearly down to \(|z|/D_{\text{mixing}} \sim 0.6\), then remains nearly constant at \(\sim 6 \times 10^{-7}\) W kg\(^{-1}\) down to \(|z|/D_{\text{mixing}} \sim 0.9\) before dropping sharply near the mixing layer depth.
4. Mixed Layer Dynamics: Results and Discussion

4.1. Stress Scaling

The main forcing mechanisms in a surface or under-ice mixed layer are surface stress and/or buoyancy forcing or a combination of the two. The average under-ice stress, hence the friction speed, can be obtained from the ice force balance [McPhee, 1990]. The steady-state force balance, ignoring the internal ice stresses’ contribution yields

\[
\tau_a - \tau_0 = jh_i \rho_i f \left( \tilde{U}_i - \tilde{U}_g \right)
\]

(1)

where the tangential air stress on ice is

\[
\tau_a = \rho_a C_D \left| \tilde{U}_a - \tilde{U}_i \right| \left( \tilde{U}_a - \tilde{U}_i \right) \text{ [N m}^2]\n\]

(2)

Here, subscripts \( a \) and \( i \) refer to the atmosphere and ice, \( j = (-1)^{1/2} \), \( h_i \) is the ice thickness, \( \rho_i \) is the ice density, \( f \) is the Coriolis parameter, \( \tilde{U} \) is the horizontal velocity vector in complex notation (\( \tilde{U} = u + iv \) where \( u \) is the east component and \( v \) is the north component of the velocity), \( C_D \) is the drag coefficient between air and ice and \( \tau_0 \) is the tangential stress at the ice-water interface. The contribution of internal stresses to the force balance in the MIZ is negligible and Eq. (1) can be used to get an estimate of the friction speed under the ice \( u_{so} = \sqrt{\left| \tau_a \right|} \). We computed the friction speed for the duration of each MSS set (23 sets in total in 3 ice-drift stations) using station mean ice thickness, local value of \( f \), \( \rho_a = 1.25 \text{ kg m}^{-3} \), \( \rho_i = 917 \text{ kg m}^{-3} \) and \( C_D = 2.7 \times 10^{-3} \), representative for 50% ice-covered outer and diffuse MIZ.
[Guest et al., 1995]. The geostrophic velocity, $U_g$, and ice drift velocity, $U_i$, are assumed to be represented by the depth-averaged current from the vessel-mounted ADCP and smoothed ship navigation, respectively. The geostrophic velocity is the current due to the slope of the sea surface that would exist in the absence of the ice. When $U_g$ is approximated as the current at the deepest reliable depth bin of the ADCP (in lieu of depth-average), friction speed changes within 6%. All the velocity data are vector averaged for the duration (∼1h) of each MSS set prior to calculating $u^*0$.

Under melting conditions destabilizing buoyancy flux is not expected due to increased stratification caused by accumulation of melt water under the ice. Estimates of heat flux in the mixed layer show significant oceanic heat flux towards the ice (section 4.3). We therefore assume that there was no turbulent production by destabilizing surface buoyancy flux. This is also the case for the open water station D: Lacking shipboard meteorological data to derive the sea-atmosphere heat flux, we rely on NCEP reanalysis at station D. At the NCEP grid point closest to the station, the net heat flux for the duration of D is ∼90 W m$^{-2}$, towards the ocean (or ∼75 W m$^{-2}$, when adjusted for sensible heat fluxes inferred from CTD). The uncertainty may be large, but we have confidence in the direction of the flux given the large net contribution from the radiation fluxes during the boreal summer. Here, the air temperatures close to the water surface, when inferred from the temperature records when MSS and SeaBird CTD sensors were in air, were 1-2 °C, not significantly different from water temperature of ∼ 3 °C and thus contributing very little to the total heat fluxes. Stabilizing buoyancy flux from melting sea ice, on the other hand, can be comparable to the other terms in the TKE equation, especially in response to localized large upward heat fluxes. This is discussed further in section 4.4.
In the absence of buoyancy flux and vertical transport of turbulent kinetic energy, in a steady, horizontally homogenous flow, shear production balances dissipation. The dissipation rate, $\epsilon$, then scales with $\epsilon_s = u_0^3/\lambda$, where $\lambda$ is the turbulent length scale. Near a boundary, in the constant-stress layer, the relevant length scale is the distance from boundary, $\lambda = \kappa|z|$ [Tennekes and Lumley, 1972], which is often called the law-of-the-wall (LOW). For conditions dominated by wind stress in an oceanic mixed layer, Lombardo and Gregg [1989] find $\langle \epsilon/\epsilon_s \rangle \sim 1.76$ for $0.25 \leq |z|/D_{\text{mixed}} \leq 1$, consistent with atmospheric observations. They attribute the factor 1.76 (i.e. deviation from unity) to possible turbulence production by convection. Large discrepancies are expected and observed [Gargett, 1989] when strong winds lead to additional turbulent processes, e.g., wave-breaking [Agrawal et al., 1992], bubbles and coherent structures of Langmuir circulation [Thorpe et al., 2003]. In the under-ice boundary layer the influence of pressure ridge keels and irregular under-ice surface roughness and topography can disrupt the flow [McPhee, 2002] or other organized structures related to flow along a boundary, e.g. ejections and sweeps can be present [Fer et al., 2004]. 

We evaluated the LOW scaling both for ice stations and station D (Figure 5). The cases with ice-relative water speed (magnitude of vector difference between drift velocity and the average velocity from the shallowest two bins of the ADCP) greater or smaller than 0.20 m s$^{-1}$ are examined separately. This is nearly equivalent to $u_0$ greater or smaller than $\sim 1.4$ cm s$^{-1}$ because the surface friction speed and ice relative speed relation is tight (not shown). Given the 95% confidence intervals, we do not observe significant differences with respect to water speed in the stress-scaled profiles in the mixed or mixing layer. The distance from the ice is scaled by both $D_{\text{mixed}}$ and $D_{\text{mixing}}$, separately. The latter shows a similar shape to that observed by Lombardo and Gregg [1989] where the scaled profile drops abruptly close to the
base of the mixing layer. When the 0.05 normalized depth bin MLE values are averaged over the mixed (mixing) layer $\varepsilon$ is 4.5 (4) times that predicted by the LOW. This large ratio is mostly due to the enhanced dissipation within $\sim 0.2$-0.4 normalized distance from the ice. This is not the case for the open water station (dashed trace in Figure 5b) where the increase with distance from the ice in the upper part of the water column is absent. The dissipation profile for the open water is in remarkable agreement with LOW with an average $\varepsilon/\varepsilon_s \sim 1.3$ within $D_{\text{mixing}}$ (this excludes the last set after the storm event when no ADCP data were available). The most likely source for the increased dissipation in the drift stations in the upper half of the mixed layer is turbulence generated from an upstream source, e.g. keels of pressure ridges.

### 4.2. The Effect of Keels

Using instrumented masts suspended in the boundary layer under drifting ice floes, direct measurements of Reynolds stresses and turbulent heat fluxes by the eddy-correlation method were previously reported [e.g., McPhee, 1992; McPhee and Martinson, 1994]. Besides the cases when turbulent fluxes did behave in a manner expected from a boundary layer near a rough wall, cases were also common when the Reynolds stress, hence local friction velocity, increased with distance from the ice bottom [McPhee, 2002]. For example, measurements when flow approached the instruments from an identified pressure ridge (with unknown keel depth), the friction speed profile showed enhanced values between $|z| \sim (0.3$-$0.6)/D_{\text{mixed}}$ [McPhee, 2002, his Figure 5c], the signature of which is comparable to our observations (Figure 5). Another example is the case reported in Skyllingstad et al. [2003] where the local friction speed increased consistently with increasing vertical distance as recorded by instruments at $|z| \sim 0.16D_{\text{mixed}}, \sim 0.38D_{\text{mixed}}$ and $\sim 0.48D_{\text{mixed}}$ at the wake of a $\sim 10$ m deep keel ($h_{\text{keel}} \sim 0.4D_{\text{mixed}}$). These observations led Skyllingstad et al. [2003] to study the effects of keels in the turbulence exchange under-ice boundary layer. Using a large-eddy
simulation of the latter mentioned case, they showed that the keel generated a turbulent wake region extending several hundreds of meters downstream from the keel, in good agreement with observations. The 10-m deep keel caused enhanced vertical mixing, increasing the heat flux five-fold from the background values.

When the vertical distance from the ice is scaled with the keel depth, $h_{\text{keel}}$, the dissipation is observed to be larger than that predicted by LOW down to $(2-2.5)h_{\text{keel}}$, below which the dissipation profile approaches and agrees with the stress scaling (Figure 5c). We interpret this observation, in contrast with the open water station, as an influence of the keels on the turbulent structure in the under-ice mixed layer. In the lower half of the mixing layer depth, the effect of keels is negligible and average $\epsilon/\epsilon_s$ is within 1.6-1.8, close to the observations of Lombardo and Gregg [1989]. Although based on a small data set, our observations indicate that the keels can enhance the dissipation levels (and momentum flux, assuming production balances dissipation) four-fold from levels expected from a wall-layer within $2.5h_{\text{keel}}$, or the upper half of the mixed layer, in good agreement with other cases of direct measurements and modelling. Not having information on the orientation of the keel, we cannot investigate the cases for along/across keel flow.

4.3. Heat Flux and Vertical Eddy Diffusivity

Station averages are computed for the vertical eddy diffusivity, $K_z$, and heat flux, $Q$, and summarized in Table 2. The heat flux $Q = \rho C_p \langle dT/dz \rangle \langle K_z \rangle$ is calculated using density, $\rho$, and heat capacity, $C_p$, calculated with the station average $\theta$ and $S$ tabulated in Table 1. An upper limit for $K_z$ is estimated using Osborn’s model $K_z = \Gamma \langle \epsilon \rangle/\langle N^2 \rangle$ [Osborn, 1980] using the typical value $\Gamma = 0.2$ [Moum, 1996], a coefficient related to the efficiency of mixing. With the typical uncertainty of a factor 2 for $\epsilon$, and accounting for variability of $\Gamma$, the eddy diffusivity
derived using microstructure shear profilers in stratified waters cannot be more accurate than within a factor of 3-4. For highly turbulent flows Reynolds analogy is expected to hold and diffusivities for salt, heat, buoyancy and momentum can all be considered equal within this uncertainty. In calculating $K_z$, the station average $N$ is held constant to be representative of the average, background stratification (averaged over several semi-diurnal periods), whereas the set-averaged $\varepsilon$ is employed to derive the mean and variability of $K_z$.

In the mixing layer, and particularly in the mixed layer, the vertical gradients of temperature and density, hence buoyancy frequency, are small and may not be reliably measured by our sensors. Because Osborn’s model is not appropriate for nearly neutral stratification, care must be taken to evaluate $K_z$ and $Q$. We calculate the vertical gradients as the slope of linear fits to 5-m moving windows of 10-cm resolution MSS temperature and density profiles. The values are retained only when the magnitude of the slope is greater than twice the standard error of the fit and are set to zero otherwise. The gradients are then ensemble averaged over the number of MSS sets during the stations. There is a low but significant background mean temperature gradient and stratification although the variability between sets is comparable to the station average. For reference, when calculated from the regression of temperature and density against depth over the whole extent of the mixed layer $D_{\text{mixed}}$, the mean gradients are zero at 95% confidence for $\langle dT/dz \rangle = (0.4-1) \times 10^{-3}$ °Cm$^{-1}$ and $\langle N \rangle = (1-3) \times 10^{-3}$ s$^{-1}$ (the ranges cover the individual values for the four stations). This suggests that in the mixing layer, the temperature gradient at C and the buoyancy frequency at both C and D may be questionable (Table 2) and the mean values for diffusivity and the heat flux in the mixing layer of these stations should be taken with caution. There is very strong vertical heat flux towards the ice in the mixing layers of A and B where average eddy
diffusivities are nearly identical, and both these two stations have AW origin heat sources below the pycnocline.

The averages within $0.9 \leq |z|/D_{\text{mixing}} \leq 1$, where the stratification is strong and significant, the values of $K_z$ and $Q$ are reliable. The heat flux is representative of that from the pycnocline towards the ice for the drift stations. The average heat flux is largest, $\sim 21 \text{ W m}^{-2}$, at station A where the mixed layer temperatures are also the highest, consistent with warming of the mixed layer by the AW from below. This value can be compared to the maximum heat flux of $27 \text{ W m}^{-2}$ measured in the pycnocline on the northern flank of the Yermak Plateau at 2100 m water depth [Padman and Dillon, 1991]. Again consistent with the mixed layer temperature (close to the freezing point) is station C where the heat flux is only $\sim 5 \text{ W m}^{-2}$.

The eddy diffusivity at the base of the mixing layer ranges within $1-10 \times 10^{-4} \text{ m}^2\text{s}^{-1}$ under drifting ice. Diffusivity for the ice-free station is considerably larger for both the mixing layer column and the base of the mixing layer. The passage of the storm could possibly have increased the mixing here.

The heat fluxes in the mixing layer are 10-30 times that at the base of the mixing layer. This emphasizes that the small temperature gradients contribute significantly to the turbulent heat flux towards the ice given large vertical diffusivities. Although values of heat flux 300-500 W m$^{-2}$ may seem large, they are comparable to observations of Ivanov et al. [2003] who measured water/ice to air atmospheric heat fluxes in the Barents Sea MIZ (close to B in our study) during May in 1999. They describe large variations in the turbulent fluxes of sensible heat, reaching 300-500 W m$^{-2}$ during northerly winds. Furthermore the ice cover at the drift stations is within 50-90% (Table 1) and a large portion of the heat flux is thus expected to escape to the atmosphere without contributing to melting the ice. Comparable
heat fluxes were reported in the MIZ of the Greenland Sea where direct measurements under drifting ice averaged to 388 W m\(^{-2}\) during a stormy summer day [McPhee, 1994]. Another set of observation supportive of large oceanic heat fluxes is the mixed layer temperatures recorded from drifting buoys of the North Pole Environmental Observatory, over the Yermak Plateau which reached about 0.4 °C above the freezing round day 50 of year 2003 (~3 months earlier in year than our observations in 2005) yielding heat flux estimates in excess of 100 Wm\(^{-2}\) [McPhee et al., 2003].

In the under-ice boundary layer, in the absence of strong buoyancy flux, \(\langle K_z \rangle\) was reported to be well-approximated by 0.02\(u_0^2/\nu\) [McPhee and Martinson, 1994]. The ratio \(\langle K_z \rangle / (0.02u_0^2/f)\) is tabulated in Table 2, and the drift stations (as well as the ice-free station) suggest that the McPhee and Martinson relation, when averaged across the mixing layer, captures the observed values of \(K_z\) within the large uncertainty. It is noted that this relation uses the neutral planetary length scale (and \(u_0\) as velocity scale), to which the mixing was shown to be well correlated (Figure 10a, introduced later). Stabilizing buoyancy flux at stations A and B (section 4.4) will violate the assumption of neutral conditions. This is discussed in the next section. A relation involving local friction velocity and modified mixing length show slightly better agreement with the observations (section 4.4). The agreement between microstructure-inferred diffusivity and relations in the form of \(u^\ast\lambda\) builds some confidence on our estimates using Osborn’s model in weak stratification.

Following Turner [1973], we can classify turbulent kinetic energy generating mechanisms as “external” (e.g. stress work at the surface for the oceanic surface mixing layer or that at the bottom boundary for bottom boundary layer) and “internal” (e.g. shear-induced mixing due to internal waves at the pycnocline). The average mixing throughout the under-ice
mixing layer appears to be governed mainly by “external” parameters. The correlation between $D_{\text{mixing}}$ and the stratified planetary scale was also significant (Figure 10b) which encourages a comparison between the average mixing at the base of the mixing layer ($0.9 \leq |z|/D_{\text{mixing}} \leq 1.1$) with $K_z \propto u^2_*/(fN_{\text{pyc}})^{1/2}$ derived from this “external” length scale on dimensional grounds. The observed $\langle K_z \rangle$ at the base of the mixing layer is $(0.2-3) \times 10^{-3}$ and $10 \times 10^{-3}$ times this scale for ice stations and ice-free station, respectively. The large range and scatter with no significant relation lead us to conclude that “internal” sources must partly contribute to mixing at the base of the mixing layer in the MIZ, where outer planetary scales alone are not sufficient to explain the processes. During moderate wind forcing Sundfjord et al. (submitted) found significant correlation between dissipation and thus diffusion rates within and below the pycnocline and current shear (variance) forced by tidal currents.

The heat flux $Q_0 = \rho C_p \langle w' T' \rangle_0$ at the lower ice surface can be approximated using an exchange coefficient called the turbulent Stanton number, $C_T$, and the departure of the mixed-layer temperature from its freezing point as $Q_0 = \rho C_p C_T u_* (T_\infty - T)$, where $T_\infty$ is far-field mixed-layer temperature away from the ice [McPhee, 1992]. The Stanton number was found to be nearly constant (~0.0057) for a wide range of roughness Reynolds numbers [McPhee et al., 1999]. Using $C_T = 0.0057$ and the station average $u_*$ and $\theta$ (for $T_\infty$) Stanton number based heat flux estimates are 578, 224, 43 W m$^{-2}$, respectively for stations, A, B, and C (Table 3). The agreement with the observations is remarkable for A and B (Table 2). As discussed previously, the mean gradient at C is questionable and the calculated heat flux based on microstructure measurements can be in error. Nevertheless the trend is similar between estimates from the two methods: heat flux for C is significantly lower than that for A and B. The comparison between our estimates of relatively large heat fluxes in the mixing layer and
those from the independent method of McPhee et al. [1999] gives further confidence to our results.

4.4 Local Turbulence Closure and Effects of Stabilizing Buoyancy Flux

Assuming that the boundary layer turbulence adjusts rapidly to changes in surface flux conditions and neglecting advection of TKE, McPhee [1999] introduced the Local Turbulence Closure (LTC) approach that incorporates a formulation of the turbulent mixing length, $\lambda_{\text{LTC}}$, in the oceanic mixed layer [McPhee, 1994], based on a similarity theory for the stable planetary boundary layer. For shear-driven turbulence, the eddy viscosity is calculated using local friction speed $u_\ast$, instead of $u_{\ast0}$, as $K = u_\ast \lambda_{\text{LTC}}$, where $\lambda_{\text{LTC}}$ is allowed to follow the LOW ($\lambda = \kappa|z|$) until a maximum is reached, determined by the stability. For neutral or stable conditions the maximum mixing length is given by

$$\lambda_{\text{max,LTC}} = \Lambda u_{\ast0} \eta^2 / |f'|$$  \hspace{1cm} (3)

where $f$ is the Coriolis parameter, $\Lambda = 0.028$ and the stability factor is

$$\eta = \left[ 1 + \frac{\Lambda u_{\ast0}}{\kappa |f'|} \frac{1}{R_c L_{\text{MO}}} \right]^{1/2}$$  \hspace{1cm} (4)

with the critical flux Richardson number, $R_c = 0.2$. The Monin-Obukhov length, $L_{\text{MO}} = u_{\ast0}^3 / (\kappa B_0)$ is a measure of relative importance of stress and buoyancy flux. Buoyancy is expected to be important when $L_{\text{MO}}$ is comparable with the other turbulent length scales in the flow [Shay and Gregg, 1986; McPhee and Morison, 2001]. For a complete description of $\lambda_{\text{LTC}}$ and $K$ in the mixed layer, friction velocity and buoyancy frequency at both boundaries, i.e. at the ice-ocean interface and at the pycnocline, are needed since the stratification at the
Pycnocline will affect the mixing length. For a given \( u_0, B_0 \) and T-S profile in the mixed layer, profiles of \( u^* \) and \( K \) can be estimated by an iterative technique [McPhee, 1999]. Here we do not apply iteration for generating \( u^* \) and \( K \) profiles but use the LTC approach 1) to show the expected change in the mixing length profile due to buoyancy effects, and 2) to scale the observed dissipation with an estimate of shear production, \( P_S = u^*^3 / \lambda_{LTC} \), from the local friction speed assumed to follow the analytic solution of Ekman stress equation,

\[
u_* = u_{*0} \exp\left[\sqrt{f / (2u_{*0}\lambda_0)}(z/2)\right].
\]

A crude estimate of the surface buoyancy flux induced by melting of sea ice can be made assuming that the upwards oceanic heat flux at the ice-ocean interface is used entirely for melting at the interface, resulting in a salinity flux of \( \langle w'S' \rangle_0 = \lambda_{LTC} \langle w'T' \rangle_0 / L_v \) [McPhee, 1994]. Here, \( S \) and \( S_i \) are the mixed layer and sea ice salinities, respectively, and \( L_v \) is the latent heat of fusion for saline ice (\( \sim 301 \text{ kJ kg}^{-1} \) for -2°C ice with \( S_i = 4 \)). The buoyancy flux at the interface is \( B_0 = \langle w'b' \rangle_0 = g \left( \beta \langle w'S' \rangle_0 - \alpha \langle w'T' \rangle_0 \right) \) where \( g \) is the gravitational acceleration, \( \alpha \) is the thermal expansion coefficient and \( \beta \) is the haline contraction coefficient. Using \( S_i = 4 \), \( S \) values from Table 1 and Stanton-number derived \( \langle w'T' \rangle_0 = Q_0 / \rho C_p \), we estimate \( B_0 \) (Table 3). The buoyancy flux at A and B is \( \mathcal{O}(10^{-7}) \) W kg\(^{-1}\), one order of magnitude greater than that at C. In response to \( B_0 \), we expect reduction in the maximum mixing length in the mixed layer, through Eqs. 3 and 4. Results are summarized in Table 3 and Figure 6. \( \lambda_{maxLTC} \) is 0.5 (station A) to 0.8 (station C) times the mixing length expected from the maximum length scale in a neutral planetary boundary layer, \( \lambda_{maxN} \approx 0.03 \ u_0/f \) [McPhee and Morison, 2001]. When values of \( Q \) averaged within \( D_{mixing} \) listed in Table 2 are taken as \( Q_0 \) (instead of Stanton number based estimates), results for station A remain identical whereas \( \lambda_{maxLTC} = 2 \) m at station B.
The local shear production, \( P_S = \frac{u*^3}{\lambda_{LTC}} \), captures the variability of the mean dissipation profiles within a factor of 2, comparable to the measurement uncertainty, and \( \varepsilon/P_{SLTC} = 1.1 \) when averaged within \( |z|/D_{mixed} \leq 0.9 \) (Figure 6b). We repeat that our application of LTC will not be valid as the pycnocline is approached and the actual \( u* \) profile, hence \( P_S \), can be different than the assumed analytic solution of the Ekman stress equation. Nevertheless this scaling captures the salient features of the observations and is a better approximation compared to LOW. The average dissipation is less \((0.9P_{SLTC})\) when the portion affected by the keel is removed. Because we can only make a crude estimate of \( B_0 \) from station mean values, the scaling of \( \varepsilon \) is done only for the station mean profiles (instead of set mean profiles). When averaged between \( 0.2 \leq |z|/D_{mixed} \leq 0.9 \) (lower and upper limits imposed by the observations closest to the ice and by the proximity to the pycnocline, respectively), \( P_{SLTC} \) is 8 (station A) to 25 (station C) times \( B_0 \), hence shear production dominates. The vertical transport terms in the TKE, assumed negligible throughout this study, cannot be assessed using our data set. McPhee [2004], using year-long SHEBA data, showed that the average imbalance between shear production and dissipation measured at two levels sufficiently away from the boundary could be explained by the divergence of vertical TKE flux. The approximate balance between \( \varepsilon \) and \( P_{SLTC} \) reported here may be due to possible cancelling of buoyancy flux and transport terms and/or a deviation of the assumed \( u* \) profile from the real one in favor of the \( \varepsilon-P_S \) balance. Nevertheless, the scaling accounts for the suppression of the mixing length by stabilizing buoyancy forces and employs a representative profile for \( u* \) giving good estimates of the mean dissipation in the mixed layer above the pycnocline.

A comparison between the inferred eddy diffusivity from the Osborn model and eddy viscosity from LTC suggests overall agreement, slightly better than bulk diffusivity for neutral conditions suggested by McPhee and Martinson [1994] (compare Tables 2 and 3).
detailed discussion on comparing dissipation-derived diffusivity and \( K \propto u^\lambda \) is not warranted because of the contradictory assumptions in each approach.

4.5. Modified Law-of-the-Wall

Observations near the oceanic bottom-boundary layers typically adhere to LOW when inferred from near-bottom measurements (within several m from the bottom). This is occasionally the case also for the upper ocean boundary layer [Gargett, 1989; Lombardo and Gregg, 1989], and more frequently, for the under-ice boundary layer. Farther from the boundary the velocity gradient typically decreases with distance from the boundary at a rate greater than that predicted by LOW. In a recent study, Perlin et al. [2005], propose a modified version of LOW where the mixing length scale asymptotes from a linearly varying profile near the boundary to the Ozmidov length, \( L_O \), at the top, consistent with suppression of the length of turbulent eddies by the stratification capping the quasi-homogeneous, mixed layer. They find that observations from several data sets agree very well when scaled with the LOW modified by the empirical mixing length

\[
\lambda = \kappa |z| \left( 1 - \frac{|z|}{h_d} \right)
\]  \hspace{1cm} (5)

For a stratified boundary layer \( h_d \) is chosen such that the mixing length approaches \( L_O \) near the mixed layer depth, i.e., \( h_d = D_{\text{mixed}}/[(1-(L_O/\kappa D_{\text{mixed}})] \). This is consistent with the observations of McPhee and Martinson [1994] who estimated mixing length in a near-neutral under-ice mixing layer in drifting ice, showing that \( \lambda=\kappa |z| \) (LOW) does not hold for depths \( >\sim 4 \text{ m} \) (note the resemblance between the modified LOW exemplified in Figure 7b here and their Figure 4a).
In near neutral stratification $L_O$ is not a relevant parameter but as the stratified base of the mixed layer is approached, it is representative of the maximum length turbulent eddies may achieve. We observe $L_O \sim 4$ m at about half the mixing layer depth, decreasing to 0.3-1 m at the base of $D_{\text{mixing}}$ (Figure 7). We chose to average $L_O$ within $0.9 \leq |z|/D_{\text{mixing}} \leq 1.1$ for each MSS set to evaluate the modified LOW. The resulting length scale curves normalized by mixing layer depth for each set are shown in Figure 7b and contrasted to LOW. The modified LOW effectively reduces the length scale in the lower half of the mixing layer. The range of $\lambda$ associated with the modified LOW is consistent with the maximum length scale in a neutral planetary boundary layer, $\lambda_{\text{maxN}} \approx 0.03 u^*/f$ [McPhee and Morison, 2001].

The stress scaling using the modified LOW length scale is applied to dissipation profiles and shown in Figure 8. Also shown is the standard LOW scaling (gray trace) for comparison. Because the stress scaling of dissipation is most sensitive to $u^*$ (to the third power), the modification of $\lambda$ significantly affects the scaled profile only in the lower half of the mixing layer, where $\lambda$ considerably deviates from LOW. When the vertical distance from the ice is scaled by $D_{\text{mixing}}$, $\langle \varepsilon/\varepsilon_{\text{smod}} \rangle \sim 1.75$, on the average, performs better than the LOW ($\langle \varepsilon/\varepsilon_{s} \rangle \sim 4$), but overestimates the observed levels on the lower half of the mixing layer where the standard LOW appears more favorable. If the modified LOW is a better model for the under-ice mixing layer, as it was shown to be for oceanic bottom boundary layers [Perlin et al., 2005], the discrepancy between the observations and the model can be due to unresolved issues concerning the transport of turbulent kinetic energy and possible use of a part of turbulent kinetic energy to radiate internal waves at the base of the mixed layer [Linden, 1975]. If this is the case, the agreement with the standard LOW away from the keels would be fortuitous.
4.6. Column Integrated Dissipation

The rate of dissipation of turbulent kinetic energy, \( \varepsilon \), is an important component of the mixed layer energy budget. The integrated dissipation in the mixed layer

\[
\varepsilon_I = \int_0^{D_{	ext{mix}}} \rho \varepsilon(z) dz \quad \text{[Wm}^{-2}\text{]} \quad (6)
\]

is well-correlated with and accounts for a fraction of the energy flux in the atmospheric boundary layer. In ice-free conditions, a large fraction of the rate of working of wind stress at 10 m, \( E_{10} \), is dissipated in air and between 4-9% of \( E_{10} \) is estimated to penetrate the air-sea interface (\( E_0 \equiv \rho u^3_0 \) [Richman and Garrett, 1977] and only 0.1-0.2% of \( E_{10} \) is used to increase the potential energy of a deepening mixed layer [Denman and Miyake, 1973]. When the forcing is dominated by wind stress, Oakey and Elliot [1982] reported \( \varepsilon_I \approx 0.01E_{10} \) (or \( \varepsilon_I \approx 6.5E_0 \)). Comparable result (\( \varepsilon_I \approx (4\pm1)E_0 \)) was obtained by Dewey and Moum [1990] who integrated \( \varepsilon \) through the mixing layer. In the upper mixed layer in the North Atlantic, recent measurements bounded the ratio \( \varepsilon_I/E_{10} \) between 0.03-0.07 [Lozovatsky et al., 2005]. When the surface is ice-covered, the wind-stress related turbulent production is due to the rate of working of stress under the ice. Using an estimate of \( E_0 \approx C_D U^3 \) with drag coefficient of \( C_D = 0.005 \) and ice-relative current, \( U \), at 300 m depth, Padman and Dillon [1991] obtained \( \varepsilon_I \approx 2.4E_0 \) for \( U > 0.05 \text{ m s}^{-1} \) under the drifting pack ice near the Yermak Plateau. In the above cited studies, \( \varepsilon_I \) is measured by microstructure profilers with shear-probes and the unreliable measurements in the upper 5-8 m of the mixed layer were accounted for either by extending the uppermost reliable measured value to the surface or applying a law-of-the-wall model to the dissipation profile. Padman and Dillon [1991] state that the relatively low value of \( \varepsilon_I/E_0 \) compared to open water observations may be due to the unique nature of ice-ocean
momentum transfer and/or the consequences of choosing the drag coefficient, ice-relative current level, and extrapolation of $\epsilon$.

Using the integrated dissipation over the mixing layer depth, we find significant correlation of $\varepsilon_I$ with $E_0$ and $E_{10}$, for both ice-drift and open water stations (Figure 9). In evaluating $\varepsilon_I$, we assume LOW is applicable for the uppermost 5-8 m. This range is less than the depth where the LTC attains its maximum mixing length deviating from LOW (compare $D_{\text{mixed}}$ in Table 3 and Figure 6a). For the drift stations, $E_0 = \rho u_{*0}^3$ is calculated with $u_{*0}$, friction speed, estimated using the steady-state force balance as described previously. For the ice-free station, $u_{*0} = [(\rho_a/\rho_w)C_D U_{10}^2]^{1/2}$. The least-squares fit yields $\varepsilon_I/E_0 \approx 9.9 (\pm 2)$, when each parameter varies more than two decades. The open water observations do not show a significantly different pattern and we include all data in the regression. This ratio is larger than previous open water observations and appears inconsistent with low inferred values under ice [Padman and Dillon, 1991]. The drag coefficient Padman and Dillon chose is approximately twice the $C_D$ used in this study, and because $E_0 \propto C_D^{3/2}$, a factor of $\sim 3$ discrepancy may be expected. Furthermore their measurements were conducted under pack ice and a dense ice cover is expected to reduce effective transfer of momentum from wind to water. In the previous section it is shown that the keels significantly enhance dissipation in the upper half of $D_{\text{mixed}}$, which in turn would lead to an increase in $\varepsilon_I$ and $\varepsilon_I/E_0$. These factors can partly explain why $\varepsilon_I/E_0$ in our survey is larger than that reported for previous ice-free studies. Consistent with this statement, it can be noted that the ice-free data points from our survey would yield a slightly lower ratio, albeit statistically insignificant, than ice-drift stations alone (Figure 9). Given the uncertainties, sensitivity to the choice of parameters and not being able to assess the details of transfer from $E_0$ to $\varepsilon_I$, we can only make the point that our data set indicates a significant correlation between the column integrated dissipation in the mixing
layer and the work done by the stress at the surface, at a rate not inconsistent with previously reported values.

Because $E_{10}$ is a more conventionally measured parameter $\varepsilon_1 \propto E_{10}$ dependence is often preferable. Previous observations support a linear relation with constant of proportionality in the range 0.01-0.07 [Oakey and Elliott, 1982; Lozovatsky et al., 2005]. Our observations suggest that the power on $E_{10}$ is significantly less than unity (Figure 9b) for partially ice-covered sea. This might be due to an efficient reduction in the energy transfer between the wind and under-ice boundary layer related to the presence of ice, or to the choice of $C_D$.

4.7. Mixed Layer Depth, Mixing Layer Depth, and Entrainment

It is often desirable to derive relations between surface forcing and the mixed layer depth and its deepening. When stress is the dominant forcing mechanism the relevant velocity scale is the friction speed $u^*$ and, in a neutral boundary layer, the outer length scale (away from very near the surface) is the planetary length scale $u^*/f$. The length scale will be modified in the presence of significant buoyancy fluxes (section 4.4). A stratified planetary length scale, $u^*/(fN_{pyc})^{1/2}$ can also be a good indicator of the mixed layer depth evolution after strong stress forcing [Pollard et al., 1973; Lentz, 1992; Lozovatsky et al., 2005]. $N_{pyc}$ is the buoyancy frequency at the pycnocline, here calculated as the mean $N$ between the base of the mixed layer and the base of the pycnocline.

Zero-lag correlation coefficients, $r$, between $D_{\text{mixed}}$, $D_{\text{mixing}}$ and planetary length scales are tabulated in Table 4. The values of $r$ obtained using the mixed layer depths and the length scale for neutral conditions are either not significantly different than zero or low. When the
mixing length is modified by factor \( A = \frac{\lambda_{\text{max LTC}}}{\lambda_{\text{max N}}} \) (Table 3), the expected reduction in maximum mixing length due to estimated buoyancy flux at each station, the correlation coefficients consistently increase.

We find the mixing length \( D_{\text{mixing}} \) to be significantly correlated with both neutral and stratified planetary length scales. For the reasons that the LTC derived \( \lambda_{\text{max}} \) values will not be valid near the pycnocline and \( D_{\text{mixing}} \) typically extends below the pycnocline, we did not account for the effects of the buoyancy flux in \( D_{\text{mixing}} \) correlations. Implementing the assessed ice cover and keel depth values, we find slightly higher correlations using \( D_{\text{mixing}} \), however not conclusively more significant than using the standard planetary scales alone. The regressions of \( D_{\text{mixing}} \) against neutral and stratified planetary scales are shown in Figure 10. When the intercept is set to zero, 
\[
D_{\text{mixing}} = 0.23 \frac{u*}{f} \quad \text{and} \quad D_{\text{mixing}} = 1.5 \frac{u*}{(fN_{\text{pyc}})^{1/2}}
\]
with slightly lower correlation coefficients of 0.65 and 0.62, respectively. The ratio \( D_{\text{mixing}} /\left[\frac{u*}{(fN_{\text{pyc}})^{1/2}}\right] \) is in good agreement with the range 1.3-1.9 derived from both observations and numerical models [for summary see Lozovatsky et al., 2005]. In the upper mixed layer in the North Atlantic Lozovatsky et al. [2005] obtained a tight relation, 
\[
D_{\text{mixed}} / (u* / f) \sim 0.44 \quad \text{when} \quad D_{\text{mixed}} \text{ was lagged 12-h.}
\]
Because wind has to work for a period to effectively erode the existing stratification in deep mixed layers, higher correlations are observed between \( D_{\text{mixed}} \) and \( u*0 \) when lagged \( \sim 5-12h \) [Lentz, 1992; Lozovatsky et al., 2005]. In this study, relatively low values of \( r \) obtained using \( D_{\text{mixed}} \) could perhaps improve with an appropriate time lag, which cannot be evaluated with our drift stations.

The mixed layer deepens by entraining stratified water across its base. For cases when turbulent entrainment is stress driven, power-laws in terms of a bulk Richardson number, \( R_{i0} = \frac{D_{\text{mixed}} \Delta b}{u*0^2} \), where \( \Delta b \) is the buoyancy (density times the gravitational acceleration) jump below the mixed layer depth \( D_{\text{mixed}} \), have been suggested in literature. When the rate of
change of depth of a deepening mixed layer is defined as entrainment speed, \( U_e \), a relation of the form \( U_e/u* \propto R_i^m \) can be suggested where \( m \sim -0.5 \) [Price, 1979], or \( m \sim -0.35 \) [Mellor and Strub, 1980; as inferred by Nagai et al., 2005]. Recently Nagai et al. [2005] reported on field and numerical study results on entrainment laws for the surface mixed layer of a lake where they propose a stress-buoyancy combined scaling when both forces are at play. On the other hand, Kantha et al. [1977] emphasize that the power \( m \) should vary with \( R_i \) such that for very turbulent flows \( R_i \to 0, m \sim 0 \) and for very stratified flow \( m \sim \infty \) [see also the thorough review in Nagai et al., 2005]. We use our scarce observations from the times when \( D_{\text{mixed}} \) was deepening to evaluate this dependency. \( U_e \) is estimated by the slope of the linear fit to the mixed layer depth against time, \( \Delta b \) at the base of the mixed layer is obtained as the buoyancy at the first point from 0.5 m CTD bins below \( D_{\text{mixed}} \) minus the depth mean buoyancy within \( D_{\text{mixed}} \). The values of \( R_i \) are remarkably low, implying a turbulent regime, with no significant relation with the normalized entrainment speed (Figure 11). This is consistent with \( m \) approaching zero for low values of \( R_i \), implying \( U_e/u* \sim \) constant (with an average value of 0.014, here). We cannot rule out the fact that the apparent scatter and the lack of clear relation between \( U_e/u* \) and \( R_i \) can be as a consequence of the large natural variability on a variety of scales, including factors such as wind stress curl from passing low pressure systems that may act to lift the pycnocline [McPhee et al., 2005]. The available data points from open water are suggestive of power law dependence close to -0.5, but this is certainly not conclusive.

5. Summary and Concluding Remarks

Measurements of turbulent kinetic energy dissipation and small-scale hydrography from the under-ice boundary layer in the marginal ice zone of the Barents Sea have been analyzed with emphasis on the coupling between external forcing, processes within the mixing layer, effect of stabilizing buoyancy flux encountered by melting of sea ice, and
deepening of and entrainment into the mixed layer. Here we summarize our conclusions emphasizing the caveats that vertical transport in the local TKE balance is neglected and the limited measurements were made during the drift (except D) across a frontal system with horizontally non-homogeneous hydrography which can significantly influence our inferences of the mixed and mixing layer dynamics. Furthermore, the air-ice/ice-water drag coefficient remains an important parameter the choice of which can significantly influence the results.

During the survey, significant buoyancy fluxes were estimated for stations A and B, however shear production by the stress at the surface or under the ice dominated. The wind stress scaling using the LOW underestimated the mixing-layer depth averaged dissipation with a factor of 4. This was suggested to be associated with the enhanced dissipation induced by the pressure-ridge keels for two reasons: 1) a reference open water stations agreed well with the LOW and 2) the departure from LOW was large within 2.5 keel depth below which (or in the lower half of the mixing layer) the agreement with LOW was acceptable within the uncertainties. A modified LOW model yields results, when scaled with the observations, which are close to values reported previously but with a skewed dissipation profile. In the lower half of the mixing layer the modified model predicts larger values than observed. The mixing length associated with the modified model is significantly reduced away from the boundary and is within the range of maximum mixing length expected in a rotational outer boundary layer. We can not conclude as to whether this modified scaling, shown to be appropriate for bottom boundary layers, is advantageous also for use at the ice-ocean boundary.

The salient features of the observations and variability of dissipation in the mixed layer were better captured using the Local Turbulence Closure (LTC) approach [McPhee, 1999],
which accounts for the change in the mixing length profile due to buoyancy fluxes and employs local friction speed in deriving shear production and eddy viscosity. We simply used the analytic solution of Ekman stress equation for a representative \( u^* \) profile and a crude estimate of the surface buoyancy flux assuming that the upwards oceanic heat flux at the ice-ocean interface is used entirely for melting. The maximum mixing length in the mixed layer reduced by factor 0.5 - 0.8 than that expected in a neutral planetary boundary layer. The local shear production captured the variability of the mean dissipation profiles and approximately balanced the mixed layer average within the measurement uncertainty.

Observed dissipation integrated over the mixing layer is strongly correlated with work done by stress under the ice with the relation \( \varepsilon_I/E_0 \approx 9.9 \ (\pm 2) \). The correlation was also significant with the wind work at 10 m height but the relation was \( \varepsilon_I \propto E_{10}^{(0.65 \pm 0.1)} \) suggesting that energy transfer between the wind and under-ice boundary layer is effectively reduced compared to open water observation in the literature (where \( \varepsilon_I \propto E_{10} \)). The low correlation between the mixed layer depth and length scale for neutral conditions significantly increased when the reduction in the mixing length due to buoyancy fluxes was accounted for. The highest correlations, however, were found between the mixing layer depth and the outer neutral planetary length \( u^*/f \) and the stratified planetary length scale \( u^*/(fN_{pyc})^{1/2} \). The eddy diffusivities inferred from microstructure data were high (\( O(10^{-2}) m^2s^{-1} \), in rough agreement with \( K \propto u^*\lambda \) relations. At ice stations where cold surface water overlays warm water of Atlantic origin the vertical heat fluxes were considerable. Fluxes of 300-500 Wm\(^{-2} \) were inferred for stations A (where the AW is transported by the West Spitsbergen Current at the northern shelf break of Svalbard) and B (just north of the central Barents Sea Polar Front). These fluxes were found to compare well with those obtained from an independent parameterization [McPhee et al., 1999]. Inferred bulk Richardson number, \( Ri_o \), values were
low, in the range 0.5-20, as expected from a highly turbulent regime. In the observed range of $\text{Ri}_o$, the rate of deepening of the mixing layer depth was found to be a nearly-constant fraction (0.5-1.5%) of the friction speed, and independent of $\text{Ri}_o$.

The effect of keels on turbulence under the ice merits further studies and the assessment of the under-ice topography and roughness remains a challenge. Positively buoyant microstructure profilers deployed in rising mode with a guide pulley suspended at a depth below the mixed layer and with a probe guard large enough to allow for approaching the under-ice surface as close as 5-10 cm can help to resolve the turbulence structure very close to the ice.

Acknowledgments

We thank the captain and the crew of the R.V. Jan Mayen. IF is supported by the ProCLIM project grant 155923/700 and AS is supported by the CABANERA project grant 155936/S30, both funded by the Norwegian Research Council. We thank Haakon Hop for SCUBA diving data collection. Peter M. Haugan, Harald Svendsen and Karolina Widell commented on an earlier draft of the manuscript. We thank an anonymous reviewer who provided valuable comments and suggestions. This is publication number XXX of the Bjerknes Centre for Climate Research. NCEP re-analysis data were provided by the NOAA CIRE Climate Diagnostics Center, Boulder, Colorado, http://www.cdc-noaa.gov/.
References


Table 1. Summary of occupied stations. Time is given as day of the year (doy) in 2005 with 12:00 UTC on 1 January equal to 0.5. Duration is the time between the first and last MSS cast for each station. Bottom depth recorded by the ship echo-sounder and estimated friction speed are averaged over the duration of the station. Potential temperature and salinity are averages over the mixed layer depth over ensemble of MSS sets.

<table>
<thead>
<tr>
<th>Station</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude, start [N]</td>
<td>81° 07.6′</td>
<td>77° 08.4′</td>
<td>77° 25.7′</td>
<td>75° 40.5′</td>
</tr>
<tr>
<td>Longitude, start [E]</td>
<td>16° 19.0′</td>
<td>29° 56.7′</td>
<td>41° 02.8′</td>
<td>31° 47.8′</td>
</tr>
<tr>
<td>Start time [doy]</td>
<td>139.2</td>
<td>144.2</td>
<td>147.0</td>
<td>149.9</td>
</tr>
<tr>
<td>Duration [h]</td>
<td>26.7</td>
<td>43.3</td>
<td>36.9</td>
<td>44.5</td>
</tr>
<tr>
<td>Bottom depth [m]</td>
<td>2000</td>
<td>200</td>
<td>220</td>
<td>340</td>
</tr>
<tr>
<td>Ice cover, I [%]</td>
<td>50</td>
<td>80-90</td>
<td>60-70</td>
<td>0</td>
</tr>
<tr>
<td>Ice thickness, h_i [m]</td>
<td>1.0</td>
<td>0.9-1.1</td>
<td>3.0-3.2</td>
<td>0</td>
</tr>
<tr>
<td>Keel depth, h_keel [m]</td>
<td>4.8-6.3</td>
<td>4.7</td>
<td>3.7-4.0</td>
<td>0</td>
</tr>
<tr>
<td>u*0 [m/s]</td>
<td>0.023</td>
<td>0.017</td>
<td>0.015</td>
<td>0.02</td>
</tr>
<tr>
<td>θ [°C]</td>
<td>-0.80</td>
<td>-1.31</td>
<td>-1.76</td>
<td>3.12</td>
</tr>
<tr>
<td>S</td>
<td>34.20</td>
<td>34.19</td>
<td>34.31</td>
<td>35.09</td>
</tr>
<tr>
<td>MSS sets</td>
<td>7</td>
<td>5</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>Total MSS profiles</td>
<td>21</td>
<td>13</td>
<td>32</td>
<td>15</td>
</tr>
</tbody>
</table>
Table 2. Station mean (± one standard deviation) vertical temperature gradient, $\langle dT/dz \rangle$, buoyancy frequency, $N$, vertical eddy diffusivity, $\langle K_z \rangle$ and heat flux $\langle Q \rangle = \rho C_p \langle K_z \rangle \langle dT/dz \rangle$, averaged over the extent of the mixing layer ($|z|/D_{\text{mixing}} \leq 1$) and near the bottom of the mixing layer ($0.9 \leq |z|/D_{\text{mixing}} \leq 1$). For the averages within the mixing layer, the ratio $\langle K_z \rangle/(0.02u_0^2/f)$ is also given. Vertical distance is positive upwards and a positive value of $Q$ indicates an upwards heat flux towards the ice, i.e. ice gains heat. In the mixed layer, where the mean vertical gradients are weaker, the vertical gradient of temperature is not significantly greater than zero at 95% confidence for $[4-10]\times10^{-4} \, ^\circ \text{Cm}^{-1}$, where values of $N$ within $[10-30]\times10^{-4} \, \text{s}^{-1}$ is zero at 95% confidence (the ranges cover the individual values for the four stations). The values not significantly different than zero are given in parenthesis and derived parameters are listed in italics.

<table>
<thead>
<tr>
<th>Station</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle dT/dz \rangle$ $[\times10^{-3} , ^\circ \text{Cm}^{-1}]$</td>
<td>5 ± 15</td>
<td>7.3 ± 6.7</td>
<td>(-0.3 ± 0.7)</td>
<td>-2.6 ± 2.3</td>
</tr>
<tr>
<td>$\langle N \rangle$ $[\times10^{-3} , \text{s}^{-1}]$</td>
<td>5.4 ± 6.5</td>
<td>6.5 ± 5</td>
<td>(2.5 ± 3.2)</td>
<td>(1.7 ± 1.4)</td>
</tr>
<tr>
<td>$\langle K_z \rangle$ $[\times10^{-2} , \text{m}^2\text{s}^{-1}]$</td>
<td>2.8 ± 5</td>
<td>2.9 ± 4</td>
<td>7.9 ± 12</td>
<td>16 ± 16</td>
</tr>
<tr>
<td>$\langle Q \rangle$ $[\text{W m}^{-2}]$</td>
<td>558</td>
<td>319</td>
<td>-87</td>
<td>-1713</td>
</tr>
<tr>
<td>$\langle K_z \rangle/(0.02u_0^2/f)$ [-]</td>
<td>0.4</td>
<td>0.7</td>
<td>2.5</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Averages within 0.9 $\leq |z|/D_{\text{mixing}} \leq 1$

<table>
<thead>
<tr>
<th>Station</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle dT/dz \rangle$ $[\times10^{-3} , ^\circ \text{Cm}^{-1}]$</td>
<td>37.4 ± 8.9</td>
<td>20 ± 4</td>
<td>1.6 ± 0.8</td>
<td>-5.0 ± 0.5</td>
</tr>
<tr>
<td>$\langle N \rangle$ $[\times10^{-3} , \text{s}^{-1}]$</td>
<td>10.6 ± 5</td>
<td>6.8 ± 1.8</td>
<td>6.3 ± 3.2</td>
<td>2.2 ± 1</td>
</tr>
<tr>
<td>$\langle K_z \rangle$ $[\times10^{-2} , \text{m}^2\text{s}^{-1}]$</td>
<td>0.01 ± 0.01</td>
<td>0.09 ± 0.13</td>
<td>0.07 ± 0.08</td>
<td>0.72 ± 1</td>
</tr>
<tr>
<td>$\langle Q \rangle$ $[\text{W m}^{-2}]$</td>
<td>21</td>
<td>11.5</td>
<td>5</td>
<td>-149</td>
</tr>
</tbody>
</table>
Table 3. Inferred surface buoyancy flux, $B_0$, Monin-Obukhov length, $L_{MO}$, and maximum mixing length scale of the LTC, $\lambda_{\text{maxLTC}}$ for drift stations A-C. $B_0$ is estimated (see section 4.4) assuming the given ice-ocean interface heat fluxes, $Q_0$, and station mean mixed layer $\theta$, $S$ and surface friction speed listed in Table 1. Station mean mixed layer depth, $D_{\text{mixed}}$, the ratio of $\lambda_{\text{maxLTC}}$ to the maximum length scale in a neutral planetary boundary layer, $\lambda_{\text{maxN}}$, and $\langle K_z \rangle/\lambda_{\text{LTC}} u^*$ are also listed.

<table>
<thead>
<tr>
<th>Station</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_0$ [W m$^{-2}$]</td>
<td>578</td>
<td>224</td>
<td>43</td>
</tr>
<tr>
<td>$D_{\text{mixed}}$ [m]</td>
<td>21</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>$B_0$ [$\times 10^{-7}$ W kg$^{-1}$]</td>
<td>3.8</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>$L_{MO}$ [m]</td>
<td>80</td>
<td>81</td>
<td>281</td>
</tr>
<tr>
<td>$\lambda_{\text{maxLTC}}$ [m]</td>
<td>2.6</td>
<td>2.2</td>
<td>2.6</td>
</tr>
<tr>
<td>$\lambda_{\text{maxLTC}}/\lambda_{\text{maxN}}$ [-]</td>
<td>0.54</td>
<td>0.61</td>
<td>0.80</td>
</tr>
<tr>
<td>$\langle K_z \rangle/\lambda_{\text{LTC}} u^*$ [-]</td>
<td>0.6</td>
<td>1.1</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Table 4. The correlation between mixed layer depth, $D_{\text{mixed}}$, mixing layer depth, $D_{\text{mixing}}$ and chosen parameters. $u_*$ is the friction velocity under ice, $h_{\text{keel}}$ is the keel depth (from sea surface), $I$ is the ice coverage in %, $N_{\text{pyc}}$ is the buoyancy frequency between the mixed layer and the base of the pycnocline. The number of data points is 23, giving a correlation coefficient significantly greater than zero $r \sim 0.4$ at 95% confidence. The values of $r$ not significantly different than zero are given in brackets. The correlations between $D_{\text{mixed}}$ are also derived after modifying parameter 1 by $A = \lambda_{\text{maxLT}}/\lambda_{\text{maxN}}$ (Table 3), the expected reduction in maximum mixing length due to estimated buoyancy flux at each station.

<table>
<thead>
<tr>
<th>Parameter 1</th>
<th>Parameter 2</th>
<th>Correlation coefficient, $r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_<em>/f$, $Au_</em>/f$</td>
<td>$D_{\text{mixed}}$</td>
<td>(0.35), 0.61</td>
</tr>
<tr>
<td>$u_*/f$</td>
<td>$D_{\text{mixing}}$</td>
<td>0.81</td>
</tr>
<tr>
<td>$u_*/(h_{\text{keel}}<em>f)$, $Au_</em>/(h_{\text{keel}}*f)$</td>
<td>$D_{\text{mixed}}$</td>
<td>0.56, 0.70</td>
</tr>
<tr>
<td>$u_*/(h_{\text{keel}}*f)$</td>
<td>$D_{\text{mixing}}$</td>
<td>0.8</td>
</tr>
<tr>
<td>$(u_*/I)/(h_{\text{keel}}<em>f)$, $A(u_</em>/I)/(h_{\text{keel}}*f)$</td>
<td>$D_{\text{mixed}}$</td>
<td>0.48, 0.70</td>
</tr>
<tr>
<td>$(u_*/I)/(h_{\text{keel}}*f)$</td>
<td>$D_{\text{mixing}}$</td>
<td>0.83</td>
</tr>
<tr>
<td>$u_*/(N_{\text{pyc}}<em>f)^{1/2}$, $Au_</em>/(N_{\text{pyc}}*f)^{1/2}$</td>
<td>$D_{\text{mixed}}$</td>
<td>(0.35), 0.60</td>
</tr>
<tr>
<td>$u_*/(N_{\text{pyc}}*f)^{1/2}$</td>
<td>$D_{\text{mixing}}$</td>
<td>0.82</td>
</tr>
<tr>
<td>$(u_*/I)/(N_{\text{pyc}}<em>f)^{1/2}$, $A(u_</em>/I)/(N_{\text{pyc}}*f)^{1/2}$</td>
<td>$D_{\text{mixed}}$</td>
<td>(0.31), 0.50</td>
</tr>
<tr>
<td>$(u_*/I)/(N_{\text{pyc}}*f)^{1/2}$</td>
<td>$D_{\text{mixing}}$</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Figure 1. Location map of the study site with place names and occupied stations (A, B, C, and D) indicated by boxes covering the approximate spatial extent of each drift. The gray-shaded isobaths are 100, 200, 300, 500, 1000 and 2000 m.
Figure 2. Progressive vector diagrams derived from 12-h smoothed ship velocity (black, representative of the ice drift in a-c) and depth averaged current (gray). Dots are placed at 6h intervals, the squares are placed at the mean time of each MSS-set. The diagrams cover the durations identified in Figure 3, except that in d) terminates \(\sim 24\)h before the last MSS set. The depth averaged current in c) is enlarged in a box of 4 km \(\times 2.5\) km to show the near-inertial period loops.
Figure 3. Overview of along-track a) wind speed, $U_{10}$, and direction b) wind stress, $\tau$ and work, $E_{10}$ and MSS derived set-averaged color-coded profiles of c) potential temperature, $\theta$ and d) dissipation, $\varepsilon$. Wind data are recorded at $\sim 10$ m from the ship weather station. The 1-min wind velocity record (speed shown as gray crosses in a) are hourly vector-averaged (black trace in a), interpolated for missing data prior to calculation of direction, stress and wind work. Time series cover varying geographic locations (Fig. 1). The duration of occupation of stations is bounded by vertical lines with stations names indicated at top. Station D is in open water with temperature $>3^\circ C$ in the upper 50 m. In c) circles are the mixing layer depth whereas red stars are the mixed layer depth. Typical duration of each MSS set is about 1-h, however the width of the color-coded columns in c) and d) are arbitrary, $\sim 3$ h, for clarity.
Figure 4. Observed dissipation profiles for the ice-covered stations of the survey. The ordinate is the vertical distance from the ice, $|z|$, scaled by the mixed layer depth, $D_{\text{mixed}}$, in a) and by the mixing layer depth, $D_{\text{mixing}}$ in b). Presented are set averaged 23 profiles (gray crosses), their arithmetic mean in 0.05 unit normalized distance bins (gray trace) and the MLE values (black trace). The MLE trace agrees with that of the arithmetic mean within 95% confidence intervals.
Figure 5. Vertical profiles of dissipation normalized by stress scaling, $\varepsilon_s = u^3/\kappa |z|$. Vertical distance from the ice, $|z|$, is scaled by a) the mixed layer depth, $D_{\text{mixed}}$, b) the mixing layer depth, $D_{\text{mixing}}$ and c) the keel height, $h_{\text{keel}}$. The profiles are presented as MLE values over the number of data points, $n$, (shown in narrow adjacent panels) in normalized depth bins (of length equal to 0.05 for a & b and 0.5 for c). The conditions when the magnitude of ice-relative velocity was greater than (black) and less than (gray) 0.2 m/s are shown separately. The 95% confidence intervals are given for only one profile, for clarity. The average values (over all values of ice relative speed) for the normalized depth $\leq 1$ are indicated in a) and b). The dashed trace in b) is the profile derived for the open water station D, shown for reference.
Figure 6. Vertical profiles of a) mixing length for drift stations A (thin), B (thick) and C (dashed) and b) average dissipation scaled by the shear production, $P_S$, estimated using the LTC model [McPhee, 1999]. Vertical distance from the ice is normalized by the mixed layer depth, $D_{\text{mixed}}$. Dots in a) mark $|z|/D_{\text{mixing}} = 0.3$, for reference. The profiles are derived from station mean values in $|z|/D_{\text{mixed}} = 0.05$ unit bins and the number of data points, $n$, used in averaging $\varepsilon$ are shown in the last panel. Scaled dissipation within $|z|/D_{\text{mixed}} \leq 0.9$ is 1.1 (vertical dashed line in b).
Figure 7. Profiles of a) Ozmidov length scale $L_O = (\varepsilon/N^3)^{1/2}$ MLE values (thick) and 95% confidence intervals (thin) and b) mixing length scale $\lambda$ normalized by the mixing layer depth for law-of-the-wall (LOW, thick line) and modified law of the wall (gray curves). In both panels ordinate is the distance from ice scaled by $D_{\text{mixing}}$. Very large values of $L_O$ in the nearly neutral stratification in the upper half of $D_{\text{mixing}}$ are irrelevant and not shown. The horizontal extent of the gray box in a) covers the total range of individual values for 23 mean profiles over $|z|/D_{\text{mixing}} = 0.9-1.1$ (vertical extent of the box) used in the calculation of the modified-LOW length scale. The horizontal extent of the box in b) is the range of maximum mixing length in the rotational outer boundary layer, $\lambda_{\text{max}} \approx 0.03 \, u^* / f$, derived using local $f$ and friction velocity for each MSS set (the vertical extent is arbitrary).
Figure 8. Profiles of dissipation rate $\varepsilon$ normalized by the modified law-of-the-wall $\varepsilon_{smod} = u_*^3/\lambda$ with $\lambda$ from Eq. 5 (black). The distance from ice $|z|$ is scaled by the mixed layer depth, $D_{mixed}$, in a) and by the mixing layer depth, $D_{mixing}$ in b). The MLE values (black) and 95\% confidence intervals are shown for $|z|/D_{mixing} = 0.05$ bins. There are typically $\sim$50 data points, $n$, averaged in each normalized depth bin of the lower half of the mixed and mixing layers (narrow adjacent panels). The average of the standard LOW scaling (over both cases of ice relative speed in Figure 5) is shown for reference (gray).
Figure 9. The dissipation integrated over the mixed layer, $\varepsilon_I$, versus a) under-ice energy flux rate, $E_0$, b) wind work at 10 m, $E_{10}$, for ice stations (crosses) and open water (bullets). The upper 5-8 m of the dissipation profile not reliably measured by our sampling is approximated using LOW. The intercept and exponent of the linear fit are indicated with ± standard errors.
Figure 10. Regression of mixing layer depth, $D_{\text{mixing}}$, against a) outer neutral planetary length scale, $u_*/f$, and b) stratified planetary length scale, $u_*/(fN_{pyc})^{1/2}$. The slope ($\pm$ standard error) of the linear least-squares fit (with non-zero intercept) is indicated together with the correlation coefficient, $r$. When intercept is set to zero slopes are 0.23 ($r=0.65$) and 1.5 ($r = 0.62$), respectively, for a) and b).
Figure 11. Normalized entrainment speed, $U_e/u_0$ versus bulk Richardson number, $Ri_o$, derived from observations when the mixed layer was deepening. Drift stations do not show any apparent trend with $Ri_o$ and scatter around a mean of 0.014. Relevant power laws reported in the literature are shown for reference. Two data points available from the ice-free station agree fairly well with the $Ri_o^{-0.5}$ power-law.