Nowcasting av norsk BNP
med maskinlæringsalgoritmer

Rene Alexander Valland

Masteroppgave

Masteroppgaven er levert for å fullføre graden

Master i samfunnsøkonomi

Universitetet i Bergen, Institutt for økonomi
September 2019
Forord

Sammendrag

Hvordan det går med økonomien er noe som aktører i finans, bedrifter og det offentlige tjener på å vite så fort som mulig. Blant de viktigste makrotallene er veksten i bruttonasjonalprodukt, som viser verdien av alt som produseres i et land over en periode, minus varer og tjener som blir brukt under denne produksjonen. Det er en indikator for et lands samlede verdiskaping, og gir uttrykk for opptjent bruttoinntekt for innenlands produksjon. En endring i BNP-vekst har stor betydning for befolkings optimisme rundt deres fremtidige økonomiske situasjon, arbeidsledighet, finanspolitikk og pengepolitikk. Det er nødvendig å kjenne økonomiens tilstand og utvikling for å tilrettelegge stabiliserende tiltak til rett tid.

I denne oppgaven tester vi om, og hvordan maskinlæring kan bidra til å forbedre prediksjoner på inneværende kvartals BNP-vekst over ulike tidspunkt i perioden. Vi vurderer treffsikkerheten til tre maskinlæringsmodeller opp mot tre tradisjonelle på et datasett med over 120 tidsserier, ved å predikere BNP-vekst for fastlands-Norge. Funnene i denne oppgaven er delt, først finner vi at maskinlæringsmetoder ikke nødvendigvis er bedre enn tradisjonelle metoder, men at prediksjon kan forbedres ved å inkorporere maskinlæringsmodeller med andre mye brukte modeller innen litteraturen, i en samlemodell. For det andre finner vi at å slå sammen modellene med vekting basert på historisk treffsikkerhet ikke nødvendigvis gir bedre prediksjonsevne enn et enkelt gjennomsnitt. Når vi evaluerer samlemodellenes prediksjonsevne på ulike tidspunkt, oppdager vi også at den optimale kombinasjonen av modeller og vekting varierer med hvilke makrovariabler som er nylig publisert, og prediksjonshorisont.
Innhold

1. Introduksjon .. 5
 1.1 Bakgrunn .. 5
 1.2 Litteratur .. 6
2. Teori .. 7
 2.1 Faktoranalyse .. 7
 2.1.1 Prinsipalkomponentanalyse ... 8
 2.2 Random Forest .. 9
 2.2.1 Bootstrap sampling og aggregering ... 9
 2.2.3 Beslutningstrær ... 9
 2.3 Support Vector Machine ... 11
 2.4 Nevralt Nettverk ... 12
 2.5 Modellkombinering .. 13
3.0 Data ... 15
 3.1 Stasjonariserings .. 17
 3.2 Metode ... 17
4.0 Resultater .. 17
 4.1 Første måned .. 18
 4.2 Andre måned .. 25
 4.3 Tredje måned .. 32
 4.4 Oppsummering ... 38
5.0 Konklusjon .. 40
Referanseliste ... 42
Appendix ... 45
 A.1 Variabelviktighet ... 45
 A.2 Tidsserietransformasjon ... 46
 A.3 Prosent av total varians forklart ved komponenter i faktormodell 48
 A.4.1 Variabelviktighet i random forest, første måned ... 49
 A.4.2 Variabelviktighet i random forest, andre måned ... 50
 A.4.3 Variabelviktighet i random forest, tredje måned ... 51
1. Introduksjon

1.1 Bakgrunn

Hvordan det går med økonomien er noe som aktører i finans, bedrifter og det offentlige tjener på å vite så fort som mulig. Blant de viktigste makrotallene er bruttonasjonalprodukt, som viser verdien av alt som produseres i et land over en periode, minus varer og tjenester som blir brukt under denne produksjonen. Det er en indikator for et lands samlede verdiskaping, og gir uttrykk for opptjent bruttoinntekt for innenlands produksjon. En endring i BNP-vekst har stor betydning for befolkningens optimisme rundt deres fremtidige økonomiske situasjon, arbeidsledighet, finanspolitikk og pengepolitikk. Det er nødvendig å kjenne økonomiens tilstand og utvikling for å tilrettelegge stabiliserende tiltak til rett tid. Likevel publiseres ikke økonomisk vekst tidligere enn 40 dager etter at den rapporterte perioden er over. Prediksjon av bruttonasjonalprodukt er derfor av interesse, og i de siste årene har feltet opplevd utvikling

1.2 Litteratur

2. Teori

2.1 Faktoranalyse
krever mindre datakraft. La vektor $X_t = (x_{1t}, x_{2t}, ..., x_{nt})'$ beskrive n transformerte, stasjonære tidsserier for periode $t = 1, ..., T$:

$$X_t = \Lambda F_t + \xi_t$$ \hspace{1cm} (1)

der $\Lambda = (\lambda_{0,ij})$ er en $(n \times r)$ matrise med faktorladninger, r antall faktorer, faktorvektor er $F_t = (f_{1t}, ..., f_{rt})'$, og ξ_t er idiosynkratisk komponent. Den idiosynkratiske komponenten $\xi_t = (\xi_{1t}, ..., \xi_{nt})'$ er uobserverbar og har forventning lik null og kovariansmatrise $\Psi = E[\xi_t, \xi_t']$. Modellen forenkles ved at antall faktorer r, typisk er mindre enn antall variabler n.

2.1.1 Prinsipalkomponentanalyse

For å redusere forklaringsvariablene til noen få felles faktorer, estimerer vi prinsipalkomponenter av datasettet ved lineær ortogonal transformering.

Prinsipalkomponentanalyse er en populær fremgangsmåte for faktoranalyse, da den er enkel å bruke, og gir gode resultater selv med store datasett. Vi ønsker å få så mye som mulig av essensen i datasettet inn i færrest mulig komponenter, samtidig som disse nye komponentene skal ha stor nok forklaringskraft til å kunne brukes i prediksjon. Transformeringen fra originale variabler, til prinsipalkomponenter foregår ved at den første komponenten skal ha høyest mulig varians. Neste komponent er den med nest høyest varians, betinget at den er ortogonalt uavhengig til den forrige. Og sånne fortsetter det videre, til alle variablene er transformert, de resulterende komponentene korrelerer da ikke med hverandre. Hvor mange faktorkomponenter en bør bruke er en del av modelltuning, en ønsker å bruke færrest mulig faktorer for å ivareta frihetsgrader, samtidig som en vil at faktorene skal forklare så mye som mulig av variasjonen. I analysen ender vi opp med en modell basert på ti komponenter, som til sammen

Prinsipalkomponentsanalysen bruker vi til å løse et MKM-problem i (3), der Λ og F_t er ukjente parametre vi estimerer ved:

$$\min_{\mathbf{F}_1, \ldots, \mathbf{F}_T} V_t(\Lambda, \mathbf{F})$$ \hspace{1cm} (2)

$$V_t(\Lambda, \mathbf{F}) = \frac{1}{NT} \sum_{t=1}^T (X_t - \Lambda F_t)'(X_t - X F_t)$$ \hspace{1cm} (3)
Løsningen på (3) er prinsipalkomponentestimator til faktorene, \(\hat{F}_t = N^{-1}\tilde{\Lambda}'X_t \), der \(\tilde{\Lambda} \) er eigenvektoerene i utvalgets variansematrize til \(X_t \), og inneholder de \(r \) største eigenverdiene estimert ved \(\hat{\Sigma}_x = \frac{1}{T-1}\sum_{t=1}^{T}X_tX_t' \). (Stock, 2016).

2.2 Random Forest
Francis Galton (1907) spurte innbyggerne i en landsby hvor mye en okse veier. Ingen av de gjetter riktig, men vet å ta gjennomsnittet av svarene oppnådde han et nesten perfekt estimat. Random Forest er basert på bootsrappede binære beslutningstrær, og ble først foreslått av Breiman (2001). Essensen i modellen er at vi reduserer variasen i estimatene, ved å bruke et regresjonstre mange ganger på flere bootstrap-utvalg vi har hentet fra datasettet. Det endelige estimatet finner vi enkelt ved gjennomsnittet, en prosess kalt bagging. Spesielt i prediksjon med mange variable og mye støy, er fremgangsmåten nyttig. Random forest er en videreutvikling av bagging

2.2.1 Bootstrap sampling og aggregering
Anta en modell \(Z \) som tilpasses et treningssett av det fulle datasettet, der \(Z = (z_1, z_2, ..., z_N) \), og \(z_i = (x_i, y_i) \). Vi trekker B nye datasett med tilbakelegg fra \(Z \), der hvert nye utvalg har samme størrelse som \(Z \). Noen observasjoner kan altså dukke opp flere ganger, mens andre ikke i det hele tatt. Modellen tilpasses samtlige B datasett, som vi kaller bootstrap-utvalg. Bootstrap-aggregering, eller bagging, kan forbedre estimatet ved å tilpasse modellen til hvert av bootstrap-utvalgene, \(b = 1, 2, ..., B \), som gir \(\hat{f}^b(x) \). Baggingen estimeres som gjennomsnittet for modellene over alle bootstraputvalg vi har:

\[\hat{f}_{bag}(x) = \frac{1}{B}\sum_{b=1}^{B}\hat{f}^b(x) \]

(4)

2.2.3 Beslutningstrær
Beslutningstrær lages for samtlige B bootstrap-utvalg. Fra variablene velges m tilfeldige variable, og vi finner det beste split-punktet som minimerer estimeringsfeil. En node som splitses gir oss to nye noder som enten splitses videre eller er terminale.

Vi har et datasett med \(p \) forklaringsvariable \(x_{ip} \), og en responsvariable \(y_i \), med \(N \) antall observasjoner. Vi deler responsvariablen inn i \(M \) regioner \(R_1, R_2, ..., R_M \), der responsvariablen er en konstant \(c_m \). Dette vises ved:
\[f(x) = \sum_{b=1}^{B} c_m I(x \in R_m) \]

(5)

der \(I \) er en indikatorfunksjon. I ordinær bagging vurderes alle variabler når den beste splitten identifiseres. I Random forest benyttes kun et tilfeldig utvalg av variablene. Antallet variabler som skal vurderes ved splitten i random forest er en hyperparameter vi velger på forhånd. Fremgangsmåten for valg av hyperparametre diskuterer videre i seksjonen om data og metode. Vi finner den verdien for \(c_m \) som minimerer summen av kvadratfeil, et mål på avviket mellom \(f(x) \) og \(y_i \). Beslutningstree bygges i flere steg. Ved første node, treroten, deles utvalget inn i to delutvalg ved hjelp av en grådig algoritme, der utvalget splittes ved en variabel \(j \) og et punkt \(s \). Dette gir to halvplan:

\[R_1(j,s) = \{ X | X_j \leq s \} \]

(6)

\[R_2(j,s) = \{ X | X_j > s \} \]

(7)

Ved å minimere summen av kvadratfeil til å finne optimal \(s \) og \(j \) får vi følgende:

\[\min_{j,s} \left[\min_{c_1} \sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2(j,s)} (y_i - c_2)^2 \right] \]

(8)

Den indre minimeringen løses for hver splitt ved:

\[\hat{c}_1 = g.j.snitt (y_i | x_i \in R_1(j,s)) \]

(9)

\[\hat{c}_2 = g.j.snitt (y_i | x_i \in R_2(j,s)) \]

(10)

Prosessen gjentas for hver splitt til et kriterie for terminalnode er oppnådd. Et relevant kriterie kan være at en splitt ikke oppfyller et forhåndbestemt krav om minimum antall observasjoner,
at maks antall nivåer på treet er nådd, eller at å splitte videre ikke gir nevneverdig reduksjon i avviksmålet. Når prosessen er fullført for samtliges beslutningstrær, filtreres støyen ut ved å slå dem sammen med bagging, der det endelige resultatet er gjennomsnittet av trærne:

\[\hat{r}_f^B(x) = \frac{1}{B} \sum_{b=1}^{B} T_b (x, \Theta_b), \]

(11)

der \(\Theta_b \) karakteriserer et tre b ved dets splitt-variabler og –punkt, og verdier ved terminalnodene.

Et eksempel på et beslutningstre finner en i appendix A.1, generert ved prediksjon for Januar 2019. I hver node av treet kontrolleres det om en tidsseries verdi er høyere eller lavere enn den oppgitte verdien i noden. Deretter fortsetter en nedover til en kommer til predikert verdi i terminalnoden, eller «bladene». Den endelige random forest prediksjonen gjøres ved å ta gjennomsnittet av alle trærne i modellen. Ulempen med maskinlæringsmodeller er at det kan være vanskelig å se hva som driver estimatet. Det utvikles hele tiden nye pogrampakker som forsøker å bøte på dette. Et eksempel kan sees på plot for variabelviktighet for perioden 2019Q1 i appendix A.4.

2.3 Support Vector Machine

2.4 Nevralt Nettverk

Nevralt nettverk er en samlebetegnelse for metoder som er inspirert av og etterligner biologisk nervevev i hjernen. Metodegrunnlaget kan spores tilbake til Frank Rosenblatt (1957) sin forsking på perceptroner. Et perceptron består av ett enkelt skjult lag med vekter, og er forgjengeren til nevralt nettverk.

Et enkelt nevralt nettverk består av tre lag, et for inndata, et skjult lag, og et for utdata. Hvert lag i modellen består av ulike vektornoder en kaller nevroner. I inndata har vi et nevron for hver tidsserie. Utdata består av kun ett nevron, estimert BNP-vekst. Lagene fungerer som filtrer, der inndata siles ut og transformeres til noe vi kan bruke i prediksjonen. I utgangspunktet er vektingen tilfeldig, hvis en har to uavhengige variabler v_1 og v_2, og en avhengig variabel y, skal en vekte de to inndataene slik at summen deres blir så lik y som mulig. Formelt kan det skrives som

$$\hat{y} = x_1w_1 + x_2w_2, \quad (12)$$

Der \hat{y} er utdata og w_i er variabelvekt. I figuren under har vi inndata i lag A, som vektes og summeres på veien til lag B. Vektingen er representert ved pilene mellom nevronene.

I hvert nevron ligger sigmoid aktiveringsfunksjoner som vekter inndataene, og kobler vekting mot utdata. Aktiveringsfunksjonen i et skjult nevron er her definert ved

$$h(v_i) = \left(1 + e^{-v_i}\right)^{-1}, \quad (13)$$

der $h(v_i)$ er transformert data fra det i-te nevron i det skjulte laget, og v_i den vektede summen fra inndata til nevronet. Læring oppnås ved at modellen vekter inndata på nytt hvis estimatet er for langt unna observert verdi. Modellen oppdaterer vektene etter Levenberg-Marquardt optimering. Optimeringen lar en estimere en Jacobian-matrise, som inneholder in-sample estimeringsfeil. Den bruker så disse feilene til å gå tilbake og vekte de aktuelle nödene på nytt, til den har minimert taksfunksjonen MSE (19).
Figur 1: Illustrering av et nevralt nettverk.

2.5 Modellkombinering

Selv om én enkelt modell gjør det veldig bra, kan prediksjonen forbedres ved å slå sammen resultater fra flere modeller inn i et ensemble. Vi vekter da resultatene og samler de i én enkelt prediksjon \hat{Y}_t for et gitt tidspunkt. Gitt at vi har N modeller $j = 1,2,3..., N$, definerer vi den samlede prediksjonen i tidspunkt t som

$$\hat{Y}_t = \sum_{j=1}^{N} w_{j,t} \hat{Y}_{j,t}.$$ \hspace{1cm} (14)

Der \hat{Y}_t er ensemblets estimat i tidspunkt t, w_j er vektkoeffisienten for modell j ved tidspunkt t, og $\hat{Y}_{j,t}$ modell j’s prediksjon i tidspunkt t. En søker å oppnå en vekting som minimerer prediksjonens kvadrerte residual, der denne defineres ved:
\[
MSE_t = \left(\hat{Y}_t - Y_t \right)^2 ,
\]

der \(Y_t \) er samme periodes observert verdi. Etterpå summerer vi modellens MSE over hele prediksjonsperioden, og bruker dens gjennomsnitt som mål på om den gjør det bra eller ikke, ved å sammenligne modellene.

Det finnes ulike fremgangsmåter for vektfordeling. Hvilken som gir best resultat er der ingen klare regler for, det kan variere med modellsammensetningen og dataene en bruker. Her bruker jeg to ulike metoder for vekting, og vurderer disse opp mot hverandre på resultatene. Den første, og enkleste metoden vi bruker for å angi vekt er et enkelt gjennomsnitt av prediksjonene fra hver enkelt modell,

\[
w_j = \frac{1}{N} .
\]

En modells vekt er da konstant over perioden, så lenge samme antall modeller er i bruk. Fremgangsmåten vekter altså alle modellene likt, og ser bort i fra historisk treffsikkerhet. Til tross for metoden kan virke for enkel, har den gitt gode resultater i tidligere litteratur, et fenomen kjent som «the forecast puzzle», og videre beskrevet og forklart av Claeskens mfl (2016).

\[
\omega_{i,t} = \frac{1}{N} \sum_{j=1}^{N} \frac{1}{MSE_{j,t}}
\]

der \(i \) er modellen som skal vektes, \(t \) tidsperioden som estimeres for, og \(N \) antall modeller i ensemblet.
3.0 Data

Vi har simulert publisheringsforsinkelser i analysen, ved at serier fra industriproduksjon for en periode er tilgjengelig til bruk først i andre måned etter at perioden er over. Finansdata publiseres daglig, og er tilgjengelig for inneværende periode, mens resten av tidsseriene for en periode er tilgjengelig i slutten av måneden etter at perioden er over. Hvis vi predikerer

Noen av tidsseriene er preget av sesongeffekter, blant annet er konsum og varehandel høyere rundt juletider, og produksjon lavere i ferier. Slike gjentakende fenomen er vanlig å filtrere ut ved såkalt sesongjustering, for å gjøre dataene lettere å forstå og analysere. Jeg har hentet ferdig sesongjusterte tidsserier der data tilgjengelig er sesongjustert med X-13ARIMA-SEATS i R. Programpakken er utviklet av United States Census Bureau, og er blant de mest brukte i verden til sesongjustering (Sax & Eddelbuettel, 2018).

Data som publiseres daglig er først slått sammen til månedlig gjennomsnitt. Siden BNP-vekst her er representert som kvartalsvis vekstrate, konverterer jeg månedvise variabler til aggregert tre-måneders gjennomsnitt, som beskrevet i Mariano og Murasawa, 2003:

\[x_{i,t}^Q = \frac{1}{3} (x_{i,t}^M + 2x_{i,t-1}^M + 3x_{i,t-2}^M + 2x_{i,t-3}^M + x_{i,t-4}^M). \]
3.1 Stasjonarisering

3.2 Metode

4.0 Resultater
Vi begynner med å se på de ulike modellenes ytelse hver for seg over perioden, hvor godt de predikerer BNP-vekst i neste kvartal. Deretter samler vi modellene og vurderer hvilken kombinasjon av modeller og vekting som gir best prediksjon i en gitt måned. Analysen gjøres først i slutten av kvartalets første måned, deretter andre, så tredje. Resultatene for perioden oppsummeres i del 4.4.
4.1 Første måned
I tabell 1 har vi gjennomsnittlig prediksjonsfeil for hver enkeltmodell over perioden 2007Q2-2019Q1. Random Walk gjorde det klart dårligst, og brukes som sammenligningsgrunnlag for de andre modellene i prosent. Faktormodeller, AR(1) og random forest har alle en ganske lav og lik gjennomsnittlig målefeil over perioden, og virker som gode kandidater for sammenslåing, gitt at de varierer ulikt.

Prediksjonsfeil

<table>
<thead>
<tr>
<th>Modell</th>
<th>MSE</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Forest</td>
<td>0.576</td>
<td>59.30%</td>
</tr>
<tr>
<td>Nevralt Nettverk</td>
<td>0.982</td>
<td>101.06%</td>
</tr>
<tr>
<td>Support Vector Regression</td>
<td>1.147</td>
<td>118.12%</td>
</tr>
<tr>
<td>Faktormodell</td>
<td>0.595</td>
<td>61.27%</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.542</td>
<td>55.80%</td>
</tr>
<tr>
<td>Random Walk</td>
<td>1.187</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Det er også interessant å se hvordan feilleddene varierer over perioden, i figur 2 vises det for faktormodell og AR(1). Begge modellene bommer ganske grovt i begynnelsen av perioden, spesielt sterkt negativt BNP-endring greide ikke modellen å følge. Videre utover perioden flater den ut, noe som kan følge av at BNP-endring også har stabilisert seg.

![Figur 2: Feilledd over perioden for faktormodell og førsteordens autoregresjon.](image-url)
I figur 3 ser vi at selv om modellen har ganske like feilledd, varierer de veldig i prediksjon. Mens førsteordens autoregresjon er flat over perioden, følger faktormodell mer med på svingningene. Det medfører og at faktormodellen straffes med høy MSE når den bommer på svingninger.

For maskinklæringsmodellene ser vi mye det samme, der de sliter med å predikere finanskrisen i slutten av 2018. Vi ser og at de fortsetter å bomme ganske mye over perioden, i motsetning til faktormodellen og AR(1).

Figur 4: Feilledd over perioden for Random forest, nevralt nettverk og SVM.
I figur fem ser en hvordan maskinlæringsmodellene varierer fra hverandre. Mens random forest predikerer riktig retning på vekstendring, ligger den fortsatt ganske flat. Modellen virker å mangle styrke til å følge vekstendringene fulgt ut. I motsatt fall er nevralt nettverk og SVM mer volatile, de svinger mye mer med observert verdi, men bommer også i perioder der BNP-vekst ligger flatt. Spesielt i slutten av perioden, der vekst har vært jevn, bommer SVM og nevralt nettverk grovere enn de andre modellene.

![Figur 5: Predikert økonomisk vekst, mot observert. Random forest, Nevralt Nettverk, SVM.](image)

I neste steg samler vi prediksjoner fra modellene i to grupper, en benchmarkmodell som består av faktormodell og AR(1), og en maskinlæringsgruppe kalt ML, som består av random forest, nevralt nettverk og support vector machine. Vi sammenligner resultatene for samlemodellene og prediksjonsfeil over perioden, og ser hvordan de enkelte modellene bidrar til prediksjonen i en samlet modell.

I tabell 2 vises avvik mellom predikert og observert verdi når vi samler modellene. Enkeltmodellene i de to ensemble-gruppene er vektet etter de to metodene diskutert i avsnitt 2.5. Vi fokuserer på resultatene fra invers MSE vekting (IMSE), men har med resultater for vekting ved enkelt gjennomsnitt (Avg) som sammenligningsgrunnlag når vi evaluerer vektemetodene. Vi observerer at Benchmark-samlemodellen gjør det bedre enn maskinklæring
på tvers av de ulike vektemetodene, men bare så vidt. Fra tabell 1 så vi at modellene nevralt nettverk og SVM hadde svært høy gjennomsnittlig feilredd. Likevel, når vi slår disse sammen til ML får vi en enda bedre gjennomsnittlig prediksjon enn selv den beste enkeltmodellen i samlingen. Også benchmarkensemblet gir bedre resultater enn enkeltmodellene den utgjøres av.

Prediksjonsfeil

<table>
<thead>
<tr>
<th>Modell</th>
<th>Vekt</th>
<th>1.måned</th>
<th>MSE</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>IMSE</td>
<td></td>
<td>0.525</td>
<td>54.07</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td></td>
<td>0.549</td>
<td>56.58</td>
</tr>
<tr>
<td>Maskinlæring</td>
<td>IMSE</td>
<td></td>
<td>0.546</td>
<td>56.23</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td></td>
<td>0.542</td>
<td>55.82</td>
</tr>
</tbody>
</table>

Tabell 2: Feilredd for samlede benchmark og maskinlæringsmodeller

Figur 6 viser hvordan benchmarkmodellen er vektet med invers MSE metoden over perioden. Variasjonen i begynnelsen av perioden kommer av at det historiske sammenligningsgrunnlaget begynner i første periode, og jobber seg mot et jevnere gjennomsnitt jo lenge utover vi kommer.

![Figur 6: Vekting benchmarkmodeller i prosent over perioden](image-url)
I slutten av perioden er vektfordelingen nesten tilsvarende et enkelt gjennomsnitt. Tilsvarende for maskinlæringsmodeller ser vi en utjevning i figur 7, men at SVM prioriteres lavere enn de to andre modellene, mens random forest som viste seg å være ganske konservativ over perioden, blir vektet høyere. En samlemodell kan tenkes å inneha samme evne til å følge skarpe endringer i BNP-vekst som vi så i nevralt nettverk og SVM, samtidig som den flates ut gjennom random forest.

Figur 7: Vekting maskinlæringsmodeller i prosent over perioden.

Setter vi de to samlemodellene opp motser vi at de matcher hverandre ganske likt.

Figur 8: Feilledd for to samlemodeller, benchmark og maskinlæring.
Figur 9 illustrerer de to samlemodellenes prediksjon over perioden, som ventet er begge modellen ganske flate, men maskinlæring svinger mer enn benchmarkmodellen, en nyttig egenskap når vi slår alt sammen til en komplett modell. Slår vi sammen benchmark og maskinlæring vektes AR(1) og random forest høyere enn tidligere i forhold til de andre modellene, mens nevralt nettverk og SVMs viktighet fortsatt reduseres (figur 10).

Figur 10: Modellvekting i komplett modellensemble. Random forest og AR(1) høyest vektet.
Vi ønsker å se om maskinlæringsmodeller kan forbedre benchmarkmodellen. Derfor prøver vi oss frem med ulike kombinasjoner av benchmarkmodeller og enkeltmodeller fra maskinlæringsgruppen (tabell 3). Den beste får vi ved å slå sammen benchmark(AR(1), faktormodell) og random forest. Vi kan likevel få en enda bedre modell ved å slå sammen alle modellene, og inkludere en naiv random walk.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Vekt</th>
<th>1. måned</th>
<th>MSE</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensemble</td>
<td>IMSE</td>
<td>0.546</td>
<td>45.99</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.547</td>
<td>46.11</td>
<td>%</td>
</tr>
<tr>
<td>BM + RF</td>
<td>IMSE</td>
<td>0.540</td>
<td>45.50</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.534</td>
<td>44.97</td>
<td>%</td>
</tr>
<tr>
<td>BM + NN</td>
<td>IMSE</td>
<td>0.547</td>
<td>46.10</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.555</td>
<td>46.76</td>
<td>%</td>
</tr>
<tr>
<td>BM + SVM</td>
<td>IMSE</td>
<td>0.552</td>
<td>46.51</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.572</td>
<td>48.14</td>
<td>%</td>
</tr>
<tr>
<td>Ensemble + RW</td>
<td>IMSE</td>
<td>0.518</td>
<td>43.6</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.511</td>
<td>43.1</td>
<td>%</td>
</tr>
</tbody>
</table>

Tabell 3: Feilledd for ulike sammensetninger av samlemodeller.
4.2 Andre måned

I tabell 4 har vi gjennomsnittlig prediksjonsfeil for hver enkeltmodell over perioden 2007Q2-2019Q1.

<table>
<thead>
<tr>
<th>Modell</th>
<th>MSE</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Forest</td>
<td>0.541</td>
<td>55.67 %</td>
</tr>
<tr>
<td>Nevralt Nettverk</td>
<td>0.886</td>
<td>91.20 %</td>
</tr>
<tr>
<td>Support Vector Regression</td>
<td>1.068</td>
<td>109.93 %</td>
</tr>
<tr>
<td>Faktormodell</td>
<td>0.516</td>
<td>53.14 %</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.557</td>
<td>57.31 %</td>
</tr>
<tr>
<td>Random Walk</td>
<td>0.971</td>
<td>100.00 %</td>
</tr>
</tbody>
</table>

Resultatene for prediksjon i andre måned har mye fellestrekk med første måned. Random forest, faktormodell og AR(1) er fortsatt de mest nøyaktige over perioden, men nevralt nettverk og SVM har forbedret seg noe. Nytt i andremånedanalyse er at har mer oppdatert data, der makrotall (utenom industriproduksjon) er kommet inn for kvartalets første måned.

Figur 12: Feilledd over perioden for faktormodell og førsteordens autoregresjon.
I figur 12 er begge modellenes feilledd lavere enn i første måned, og flater ut fortere over perioden. AR(1) predikson er forholdsvis flat over hele perioden.

![Figur 13: Predikert økonomisk vekst, mot observert. Faktormodell og førsteordens autogregresjon.](image)

For maskinlæringsmodellene er det ganske uendret siden første måned, det kan virke som om modellene ikke greier å bruke de oppdaterte dataene like effektivt som benchmarkmodellene.

![Figur 14: Feilledd over perioden for Random forest, nevralt nettverk og SVM.](image)
Figur 15: Predikert økonomisk vekst, mot observert. Random forest, Nevrlt Nettverk, SVM.

Figur 16: Vekting benchmarkmodeller i prosent over perioden
Figur 17: Vekting maskinlæringsmodeller i prosent over perioden.

Prediksjonsfeil

<table>
<thead>
<tr>
<th>Modell</th>
<th>Vekt</th>
<th>2 måned</th>
<th>MSE</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>IMSE</td>
<td>0.522</td>
<td>53.70 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.509</td>
<td>52.36 %</td>
<td></td>
</tr>
<tr>
<td>Maskinlæring</td>
<td>IMSE</td>
<td>0.548</td>
<td>56.37 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.491</td>
<td>50.55 %</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 5: Prediksjonsfeil for samlemodellene benchmark og maskinlæring.

Nytt i andre måned er også at feilledene for de to samlemodellene varierer over perioden noe mer enn i første måned. Det kan være tegn på at modellene benytter seg av de nye dataene ulikt.
Figur 18: Feilledd for to samlemodeller, benchmark og maskinlæring.

Figur 19: Prediksjon ved maskinlæring og benchmark, mot observerte verdier.
Som i første måned slår vi sammen alle modellene og vurderer sammensetnignen.

Figur 20: Modellvekting ensemble.

Vektingen av modellen er ganske likt som i første måned, AR(1) og random forest, de «flate» modellene er relativt høyere vektet enn tidligere. I sum får vi også et flatt ensemble.

Figur 21: Ensembleprediksjon mot observert BNP-vekst.
Overraskende nok er nevralt nettverk forslått som den beste maskinlæringsmodellen å slå sammen med benchmarkmodellene. En mulig forklaring kan være at random forest, som har gjort det best av maskinlæringsmodellene, ligner for mye på benchmark, og derfor ikke bidrar noe til prediksjonen. Nevralt nettverk har vært unøyaktig, men kan bidra til å predikere de svingingene i vekst som benchmarkmodellene ikke får til. Enda en overraskelse er at random walk fortsatt kan forbedre ensemblet med sin inntreden.

Prediksjonsfeil

<table>
<thead>
<tr>
<th>Modell</th>
<th>Vekt</th>
<th>2 måned</th>
<th>MSE</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensemble</td>
<td>IMSE</td>
<td>0.503</td>
<td>0.503</td>
<td>51.77 %</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.450</td>
<td>0.450</td>
<td>46.36 %</td>
</tr>
<tr>
<td>BM + RF</td>
<td>IMSE</td>
<td>0.512</td>
<td>0.512</td>
<td>52.74 %</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.502</td>
<td>0.502</td>
<td>51.72 %</td>
</tr>
<tr>
<td>BM + NN</td>
<td>IMSE</td>
<td>0.469</td>
<td>0.469</td>
<td>48.33 %</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.446</td>
<td>0.446</td>
<td>45.90 %</td>
</tr>
<tr>
<td>BM + SVM</td>
<td>IMSE</td>
<td>0.578</td>
<td>0.578</td>
<td>59.48 %</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.541</td>
<td>0.541</td>
<td>55.68 %</td>
</tr>
<tr>
<td>Ensemble + RW</td>
<td>IMSE</td>
<td>0.486</td>
<td>0.486</td>
<td>50.1 %</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.436</td>
<td>0.436</td>
<td>44.9 %</td>
</tr>
</tbody>
</table>

Tabell 6: Feilledd for ulike sammensetninger av samlemodeller.
4.3 Tredje måned
I slutten av kvartalets tredje måned sitter en på finansvariabler fra samme måned, makrovariabler fra andre måned, og industriproduksjon fra første måned i kvartalet.

<table>
<thead>
<tr>
<th>Prediksjonsfeil</th>
<th>3 måned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modell</td>
<td>MSE</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.524</td>
</tr>
<tr>
<td>Nevralt Nettverk</td>
<td>0.609</td>
</tr>
<tr>
<td>Support Vector Regression</td>
<td>0.934</td>
</tr>
<tr>
<td>Faktormodell</td>
<td>0.483</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.593</td>
</tr>
<tr>
<td>Random Walk</td>
<td>0.971</td>
</tr>
</tbody>
</table>

Når en predikerer i slutten av tredje måned har en så oppdaterte data en kan få. Fra tabell 7 er samtlige modeller med unntak av AR(1) mer nøyaktige enn i de tidligere periodene.

Resultatene for prediksjon i andre måned har mye fellestrekk med første måned. Random forest, faktormodell og AR(1) er fortsatt de mest nøyaktige over perioden, men nevralt nettverk og SVM har forbedret seg noe. Nytt i andremånedsanalyse er at har mer oppdatert data, der makrotall (utenom industriproduksjon) er kommet inn for kvartalets første måned.

Figur 22: Feilledd over perioden for faktormodell og førsteordens autoregresjon.
Figur 23: Predikert økonomisk vekst i kvartalets tredje måned, mot observert verdi.

Faktormodell og førsteordens autogregresjon.

I forhold til tidligere måneder varierer faktormodellen mindre. Maskinlæringsmodellene greier fortsatt ikke predikere finanskrisen med de data vi har brukt, men er mer nøyaktig enn i tidligere måneder. Spesielt nevralt nettverk har lavere feilredd over perioden, mens SVM fortsatt sliter med store avvik.

Figur 24: Feilredd over perioden for Random forest, nevralt nettverk og SVM.
I tredje måned greier modellene i større grad å henge med når BNP-vekst svinger sterkt. SVM er modellen som er nærmest i å predikerer finanskrisen i 2008, men svinger varierer også mye når observerte verdier ellers holdes stabile. Også nevralt nettverk er blitt bedre i tredje måned, og har for første gang en gjennomsnittlig MSE som er noe lik benchmarkmodellene. Vi slår sammen modellen i hver sine grupper, og ser at vektingen er mye lik som tidligere.

Figur 26: Modellvekting for benchmark for prediksjon i tredje måned. Prosent over perioden
Figur 26: Modellvektning for maskinlæringsmodeller samlet for prediksjon i tredje måned.
Prosent over perioden

<table>
<thead>
<tr>
<th>Modell</th>
<th>Vekt</th>
<th>3 måned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>IMSE</td>
<td>0.476</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.470</td>
</tr>
<tr>
<td>Maskinlæring</td>
<td>IMSE</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.490</td>
</tr>
</tbody>
</table>

Tabell 8: Prediksjonsfeil for benchmark og maskinlæringsgruppen over perioden, tredje måned.
Figur 29: Modellvekt ensemble, tredje måned.

Til tross for at feilneddet i ensemble-modellen er så nær identisk til benchmark, vektes modellene fortsatt noe likt, nesten halvparten benchmark og halvparten maskinlæringsmodeller. SVM og nevralt nettverk vektes fortsatt relativt lavt til tross for deres høyere nøyaktighet i tredje måneds prediksjon.

Vi lister opp flere kombinasjoner av samlemodeller for prediksjon i tredje måned. Vi ser at igjen er et fullstendig ensemble med random walk fortsatt den beste kombinasjonen av modeller. Benchmarkgruppens opprinnelige gjennomsnittlige feilned for perioden så vi var 0,476, eller 49,30 % av random walk. Sammenlignet kan benchmark forbedres ved å legge til nevralt nettverk eller SVM i tredje måned, mens random forest ikke bidrar til forbedring. Fjerner vi derimot random forest fra ensemblet, øker feilnedet til 47,10 % av RW.
Prediksjonsfeil

<table>
<thead>
<tr>
<th>Modell</th>
<th>Vekt</th>
<th>3 måned</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSE</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensemble</td>
<td>IMSE</td>
<td>0.455</td>
<td>46.85 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.447</td>
<td>46.04 %</td>
<td></td>
</tr>
<tr>
<td>BM + RF</td>
<td>IMSE</td>
<td>0.476</td>
<td>49.00 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.471</td>
<td>48.50 %</td>
<td></td>
</tr>
<tr>
<td>BM + NN</td>
<td>IMSE</td>
<td>0.469</td>
<td>48.26 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.467</td>
<td>48.10 %</td>
<td></td>
</tr>
<tr>
<td>BM + SVM</td>
<td>IMSE</td>
<td>0.469</td>
<td>48.32 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.472</td>
<td>48.57 %</td>
<td></td>
</tr>
<tr>
<td>Ensemble + RW</td>
<td>IMSE</td>
<td>0.438</td>
<td>45.1 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td>0.428</td>
<td>44.1 %</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 9: Prediksjonsfeil for ulike kombinasjoner av modeller i tredje måned.

4.4 Oppsummering

Vi har predikert kvartalsvis vekst i slutten av hver måned innenfor det aktuelle kvartalet. Som ventet får vi lavere prediksjonsfeil for modellene, med unntak av autoregresjon og random walk, som ikke benytter seg av oppdateringer i forklaringsvariablene. Selv om random forest gjør det bra, er det faktormodellen som jevnt over gjør det best. De andre maskinlæringsmodellen viste seg å være offer for overfitting, der de følger svingninger godt, men samtidig svinger mye ellers.
For begge modellgruppene forbedres prediksjon betraktelig i slutten tredje måned, når data for inneværende kvartal for første gang er tilgjengelig for alle variabelgrupper. Selv om noen av modellene gjorde det være enn en naive random walk, greier vi likevel å forbedre maskinlæringsmodellen ved å ta gjennomsnittet av prediksjonene deres. Det er ikke åpenbart om en bør bruke invers kvadrert residual som basis for vekting, eller gjennomsnittet når en samler modellene, dette varierer over perioden, samt modellgrupper.

Tabell 10: Prediksjonsfeil for enkeltmodeller over for alle prediksjonshorisonter.

<table>
<thead>
<tr>
<th>Modell</th>
<th>1. måned</th>
<th>2. måned</th>
<th>3. måned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSE</td>
<td>%</td>
<td>MSE</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.576</td>
<td>59.30 %</td>
<td>0.541</td>
</tr>
<tr>
<td>Nevralt Nettverk</td>
<td>0.982</td>
<td>101.06 %</td>
<td>0.886</td>
</tr>
<tr>
<td>Support Vector Regression</td>
<td>1.147</td>
<td>118.12 %</td>
<td>1.068</td>
</tr>
<tr>
<td>Faktormodell</td>
<td>0.595</td>
<td>61.27 %</td>
<td>0.516</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.542</td>
<td>55.80 %</td>
<td>0.557</td>
</tr>
<tr>
<td>Random Walk</td>
<td>1.187</td>
<td>100.00 %</td>
<td>0.971</td>
</tr>
</tbody>
</table>

Tabell 11: Prediksjonsfeil for benchmark og maskinlæringsmodeller for alle prediksjonshorisonter.

<table>
<thead>
<tr>
<th>Modell</th>
<th>1. måned</th>
<th>2. måned</th>
<th>3. måned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vekt</td>
<td>MSE</td>
<td>%</td>
</tr>
<tr>
<td>Benchmark</td>
<td>IMSE</td>
<td>0.525</td>
<td>54.07 %</td>
</tr>
<tr>
<td>Avg</td>
<td></td>
<td>0.549</td>
<td>56.58 %</td>
</tr>
<tr>
<td>Maskinlæring</td>
<td>IMSE</td>
<td>0.546</td>
<td>56.23 %</td>
</tr>
<tr>
<td>Avg</td>
<td></td>
<td>0.542</td>
<td>55.82 %</td>
</tr>
</tbody>
</table>
Tabell 12: Prediksjonsfeil for ensemblemodeller for alle prediksjonshorisonter.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Vekt</th>
<th>1. måned</th>
<th>2. måned</th>
<th>3. måned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MSE</td>
<td>%</td>
<td>MSE</td>
</tr>
<tr>
<td>Ensemble IMSE</td>
<td>0.546</td>
<td>45.99 %</td>
<td>0.503</td>
<td>51.77 %</td>
</tr>
<tr>
<td>Avg</td>
<td>0.547</td>
<td>46.11 %</td>
<td>0.45</td>
<td>46.36 %</td>
</tr>
<tr>
<td>BM + RF IMSE</td>
<td>0.54</td>
<td>45.50 %</td>
<td>0.512</td>
<td>52.74 %</td>
</tr>
<tr>
<td>Avg</td>
<td>0.534</td>
<td>44.97 %</td>
<td>0.502</td>
<td>51.72 %</td>
</tr>
<tr>
<td>BM + NN IMSE</td>
<td>0.547</td>
<td>46.10 %</td>
<td>0.469</td>
<td>48.33 %</td>
</tr>
<tr>
<td>Avg</td>
<td>0.555</td>
<td>46.76 %</td>
<td>0.446</td>
<td>45.90 %</td>
</tr>
<tr>
<td>BM + SVM IMSE</td>
<td>0.552</td>
<td>46.51 %</td>
<td>0.578</td>
<td>59.48 %</td>
</tr>
<tr>
<td>Avg</td>
<td>0.572</td>
<td>48.14 %</td>
<td>0.541</td>
<td>55.68 %</td>
</tr>
<tr>
<td>Ensemble + RW IMSE</td>
<td>0.518</td>
<td>43.60 %</td>
<td>0.486</td>
<td>50.10 %</td>
</tr>
<tr>
<td>Avg</td>
<td>0.511</td>
<td>43.10 %</td>
<td>0.436</td>
<td>44.90 %</td>
</tr>
</tbody>
</table>

Ved å samle alle modellene i analysen, greier vi å få prediksjonsnøyaktighet som er bedre enn hvilken som helst av enkeltmodellene. Dette gjelder i større grad i kvartalets siste måned, mens de i første og andre varierer litt om en bør kombinere benchmark med kun én av maskinlæringsalgoritmene. Kanskje det mest overraskende resultatet er at random walk kombinert med de andre modellene i analysen skulle gi det beste resultatet over alle prediksjonshorisontene, for gjenomsnittet for hele perioden. En annen overraskelse er at samlemodellene gjør det dårligere i andre måned, enn i første, spesielt for maskinlæring. Det kan tyde på overfitting, at maskinlæringsalgoritmene legger for stor vekt på variabler som er blitt publisert i andre måned, blant annet realkonjunkturer fra forrige kvartal. Samtidig finner også Aastveit og Trovik (2012) at å inkludere internasjonale makrovariabler gir dårligere prediksjon, en mulig forklaring på det vi ser her. Samtidig kan de gode resultatene fra første måned forklares ved finansvarablens fremoverskuddende egenskaper, da finansverdier ikke bare beskriver nåtid, men en forventning om fremtiden.

5.0 Konklusjon
Vi har gjennomgått og evaluert treffsikkerheten til seks ulike modeller på simulert sanntidsdata, til å predikere kvartalsvis BNP-vekst. Prediksjonstidspunkt har funnet sted i

Vi har funnet at maskinlæringsmodeller ikke er noe hellige gral som garanterer gode prediksjoner. Selv om maskinlæringsmodellene gjerne plukker opp variasjoner i kvartalsvis endring bedre enn tradisjonelle modeller, bomber de også kraftigere. Istedenfor finner vi at maskinlæringsmodeller passer godt til å kombinere med tradisjonelle modeller, og kan gi modellkombinasjoner som gir bedre prediksjoner enn tradisjonelle modeller greier på egen hånd.

I en fremtidig analyse bør variabelviktigheten studeres med ved å predikere hver gang en variabel publiseres i løpet av måneden. På den måten kan en se i hvilken grad modellene benytter seg av data ulikt. En kan også inkludere sentimentvariable, «myke data» fra spørreundersøkelser og forventingsindekser.
Referanseliste

Appendix

A.1 Variabelviktighet
A.2 Tidsserietransformasjon

Tidsseriene er transformert for å gjøre de stasjonær.

1 = ingen transformasjon
2 = førstedifferansen,
3 = førstedifferanse på logaritmeform

<table>
<thead>
<tr>
<th>Tidsserie</th>
<th>Transformasjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNP</td>
<td>Gross Domestic Product, Mainland, Constant Prices, Change P/P</td>
</tr>
<tr>
<td>Finans</td>
<td>Central Bank of Norway, Trade Weighted Index, TWI</td>
</tr>
<tr>
<td></td>
<td>Central Bank of Norway Import Weighted Krone Index, J44</td>
</tr>
<tr>
<td></td>
<td>OBX All Share Index, Total Return, Close, NOK</td>
</tr>
<tr>
<td></td>
<td>OBX Consumer Discretionary, Index, Total Return, Close, NOK</td>
</tr>
<tr>
<td></td>
<td>OBX Consumer Staples, Index, Total Return, Close, NOK</td>
</tr>
<tr>
<td></td>
<td>OBX Energy, Index, Total Return, Close, NOK</td>
</tr>
<tr>
<td></td>
<td>OBX Financials, Index, Total Return, Close, NOK</td>
</tr>
<tr>
<td></td>
<td>OBX Health Care, Index, Total Return, Close, NOK</td>
</tr>
<tr>
<td></td>
<td>OBX Industrials, Index, Total Return, Close, NOK</td>
</tr>
<tr>
<td></td>
<td>OBX Information Technology, Index, Total Return, Close, NOK</td>
</tr>
<tr>
<td></td>
<td>OBX Materials, Index, Total Return, Close, NOK</td>
</tr>
<tr>
<td></td>
<td>OBX Telecommunication Services, Index, Total Return, Close, NOK</td>
</tr>
<tr>
<td></td>
<td>OBX, Utilities, Index, Total Return, Close, NOK</td>
</tr>
<tr>
<td></td>
<td>FX Spot Rates, NOK per EUR, Fixing</td>
</tr>
<tr>
<td></td>
<td>FX Spot Rates, NOK per GBP, Fixing</td>
</tr>
<tr>
<td></td>
<td>FX Spot Rates, NOK per USD, Fixing</td>
</tr>
<tr>
<td></td>
<td>FX Spot Rates, NOK per SEK, Fixing</td>
</tr>
<tr>
<td></td>
<td>FX Spot Rates, NOK per SDR, Fixing</td>
</tr>
<tr>
<td></td>
<td>FX Spot Rates, NOK per JPY, Fixing</td>
</tr>
<tr>
<td></td>
<td>FX Spot Rates, NOK per DKK, Fixing</td>
</tr>
<tr>
<td>Sentiment</td>
<td>Leading Indicators, Retriever Norway AS, Financial News Index, FNI</td>
</tr>
<tr>
<td>Finans, utland</td>
<td>United States, S&P500 Index, Price return, Close, USD</td>
</tr>
<tr>
<td></td>
<td>United States, Interbank rates, LIBOR, 3 month, Fixing</td>
</tr>
<tr>
<td></td>
<td>Sweden, Interbank rates, STIBOR, 3 month, Fixing</td>
</tr>
<tr>
<td></td>
<td>Euro Area, STOXX 50, Index, Price Return, Close, EUR</td>
</tr>
<tr>
<td></td>
<td>United Kingdom, FTSE 100, Index, Price Return, Close, GBP</td>
</tr>
<tr>
<td></td>
<td>Germany, Deutsche Boerse, DAX 30, Index, Total Return, Close, EUR</td>
</tr>
<tr>
<td></td>
<td>France, Euronext Paris, CAC 40, Index, Price Return, Close, EUR</td>
</tr>
<tr>
<td></td>
<td>Sweden, Nasdaq OMX, Stockholm Index, Price Return, Close, SEK</td>
</tr>
<tr>
<td></td>
<td>United Kingdom, FTSE 350, Index, Dividend Yield</td>
</tr>
<tr>
<td></td>
<td>United States, Government Benchmark, 3 Month, Yield</td>
</tr>
<tr>
<td></td>
<td>United States, Government Benchmark, 10 Year, Yield</td>
</tr>
<tr>
<td></td>
<td>United States, Government Benchmarks, Eurostat, Government Bond, 10 Year, Yield</td>
</tr>
<tr>
<td></td>
<td>Sweden, Government Benchmarks, Eurostat, Government Bond, 10 Year, Yield</td>
</tr>
<tr>
<td></td>
<td>Euro Area, Government Benchmarks, Eurostat, Government Bond, 10 Year, Yield</td>
</tr>
<tr>
<td>Rente</td>
<td>Interbank Rates, NIBOR, 1 Month, Fixing</td>
</tr>
<tr>
<td></td>
<td>Interbank Rates, NIBOR, 3 Month, Fixing</td>
</tr>
<tr>
<td></td>
<td>Interbank Rates, NIBOR, 6 Month, Fixing</td>
</tr>
<tr>
<td></td>
<td>Government Benchmarks, 2 Year, Yield, End of Period</td>
</tr>
<tr>
<td></td>
<td>Government Benchmarks, 5 Year, Yield, End of Period</td>
</tr>
<tr>
<td></td>
<td>Government Benchmarks, 10 Year, Yield, End of Period</td>
</tr>
<tr>
<td>Råvarepriser</td>
<td>Leading Indicators, Citi, Commodity Terms of Trade Index</td>
</tr>
<tr>
<td></td>
<td>Crude Oil, Brent, Spot, North Sea, Close, USD</td>
</tr>
<tr>
<td></td>
<td>World, Aluminum, LME Official Prices, USD</td>
</tr>
<tr>
<td>Arbeidsmarked</td>
<td>Unemployment, Registered, Males & Females</td>
</tr>
<tr>
<td></td>
<td>Employment, Employed Persons (LFS), Males & Females, By Age, Total 15-74 Years</td>
</tr>
</tbody>
</table>
Industriproduksjon

- Industrial Production, Main Industrial Groupings, Intermediate Goods, Index
- Main Industrial Groupings, Energy Goods, Index
- Main Industrial Groupings, Energy Goods, Index
- Main Industrial Groupings, Intermediate Goods, Index
- Main Industrial Groupings, Non-Durable Consumer Goods, Index
- Main Industrial Groupings, Capital Goods, Index
- Industrial Production, Total, Index
- Manufacturing, Printing, Reproduction, Index
- Manufacturing, Rubber, Plastic & Mineral Products, Index
- Manufacturing, Furniture & Manufacturing N.E.C., Index
- Manufacturing, Ships, Boats & Oil Platforms, Index
- Manufacturing, Fabricated Metal Products, Index
- Manufacturing, Textiles, Wearing Apparel, Leather, Index
- Manufacturing, Refined Petroleum, Chemicals, Pharmaceuticals, Index
- Manufacturing, Basic Metals, Index
- Manufacturing, Computer & Electrical Equipment, Index
- Manufacturing, Transport Equipment N.E.C, Index
- Manufacturing, Wood & Wood Products, Index
- Manufacturing, Non-Ferrous Metals, Index
- Manufacturing, Basic Chemicals, Index
- Manufacturing, Paper & Paper Products, Index
- Manufacturing, Food, Beverages & Tobacco, Index
- Manufacturing, Repair, Installation of Machinery, Index
- Manufacturing, Total, Index

Konsumpriser

- Consumer Price Index, Total, Index
- Consumer Price Index, Transport, Total
- Consumer Price Index, Communication, Total
- Consumer Price Index, Recreation & Culture, Total
- Consumer Price Index, Restaurants & Hotels, Total
- Consumer Price Index, Miscellaneous Goods & Services, Total
- Consumer Price Index, Food & Non-Alcoholic Beverages, Total
- Consumer Price Index, Alcoholic Beverages & Tobacco, Total
- Consumer Price Index, Clothing & Footwear, Total
- Consumer Price Index, Housing, Water, Electricity, Gas & Other Fuels, Total
- Consumer Price Index, Health, Total
- Leading Indicators, Citi, Inflation Surprise Index

Blandet, utland

- United States, Consumer Surveys, Conference Board, Consumer Confidence Index, Total
- Euro Area, Economic Surveys, DG ECFIN, Economic Sentiment Indicator, Balance, SA
- Sweden, Business Surveys, Swedbank, Purchasing Managers’ Index, Total, SA
- Euro Area, HICP, All-Items, Index
- United Kingdom, Consumer Price Index, Total, Index
- United States, Consumer Price Index, All Urban Consumers, U.S. City Average, All Items Less Food & Energy, SA
- Sweden, Consumer Price Index, Total, Index
- United Kingdom, Industrial Production, Total, Constant Prices, SA, Index
A.3 Prosent av total varians forklart ved komponenter i faktormodell

<table>
<thead>
<tr>
<th>Faktorantall</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andel av varians</td>
<td>0.1376</td>
<td>0.06737</td>
<td>0.05873</td>
<td>0.04736</td>
<td>0.03807</td>
<td>0.03613</td>
<td>0.0333</td>
<td>0.02948</td>
<td>0.0276</td>
<td>0.02585</td>
</tr>
<tr>
<td>Akkumulert</td>
<td>0.1376</td>
<td>0.20497</td>
<td>0.2637</td>
<td>0.31106</td>
<td>0.34913</td>
<td>0.38526</td>
<td>0.41856</td>
<td>0.44804</td>
<td>0.47564</td>
<td>0.50149</td>
</tr>
</tbody>
</table>
A.4.1 Variabelviktighet i random forest, første måned
A.4.2 Variabelviktighet i random forest, andre måned
A.4.3 Variabelviktighet i random forest, tredje måned