Reduced white matter connectivity in the corpus callosum of children with Tourette syndrome


Original Article

Reduced white matter connectivity in the corpus callosum of children with Tourette syndrome

Kerstin J. Plessen, Center for Child and Adolescent Mental Health, University of Bergen, Norway; Renate Grüner, Department of Biological and Medical Psychology, University of Bergen, Norway; Arvid Lundervold, Department of Biomedicine, University of Bergen, Norway; Jochen G. Hirsch, Department of Neuroradiology, University of Basel, Switzerland; Dongrong Xu, Columbia College of Physicians & Surgeons and the New York State Psychiatric Institute, New York, USA; Ravi Bansal, Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway; Åsa Hammar, Halos, University of Bergen, Norway; Astri J. Lundervold, Tore Wentzel-Larsen, Stein Atle Lie, Achim Gass, Bradley S. Peterson, and Kenneth Hugdahl, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway

Abstract

Background: Brain imaging studies have revealed anatomical anomalies in the brains of individuals with Tourette syndrome (TS). Prefrontal regions have been found to be larger and the corpus callosum (CC) area smaller in children and young adults with TS compared with healthy control subjects, and these anatomical features have been understood to reflect neural plasticity that helps to attenuate the severity of tics.
Method: CC white matter connectivity, as measured by the Fractional Anisotropy (FA) index from diffusion tensor images, was assessed in 20 clinically well-defined boys with Tourette syndrome and 20 age- and gender-matched controls.

Results: The hypothesis that children with TS would show reduced measures of connectivity in CC fibers was confirmed for all subregions of the CC. There was no significant interaction of TS and region. Reductions in FA in CC regions may reflect either fewer interhemispheric fibers or reduced axonal myelination. FA values did not correlate significantly with the severity of tic symptoms. Group differences in measures of connectivity did not seem to be attributable to the presence of comorbid ADHD or OCD, to medication exposure, or group differences in IQ.

Conclusion: Our findings of a reduced interhemispheral white matter connectivity add to the understanding of neural connectivity and plasticity in the brains of children who have TS.