Evaluating System Dynamics as a Tool for Teaching History

By

Margarita María Cruz Barrientos

Thesis Submitted in Fulfillment of the Requirements for the Degree of Master of Philosophy in System Dynamics

System Dynamics Group
Department of Geography
University of Bergen

Supervised by David Wheat, Senior Lecturer

May, 2007
Abstract

Key words: conventional education, weaknesses, behavior over time, structure, understanding, identification, transfer, learning, performance, revolutions.

History has been traditionally taught as a presentation of isolated facts, which are hardly related by students. Furthermore, students are seldom encouraged to transfer what they learn at school to interpret different happenings over time. Thus, they lack understanding of history’s relevance for them. The conventional method of teaching history appears to be unlikely to prepare students to face the challenges of modern society. Therefore, there is a strong need of improving the conventional teaching method for students to see history as a subject whose understanding goes beyond the past and provides tools to interpret other situations that behave alike.

The System Dynamics (SD) approach seems to be an attractive method to teach history mainly because relationships between different variables that made history unfold can be clearly described through the SD approach. SD may be, then, useful for students to understand why and how history happened. Furthermore, when such understanding is based on SD generic structures, other similar historical phenomena can be understood too. Thus, from this point of view, history is not seen anymore as a subject made of isolated events. Rather, it is seen as a subject that cross time and is related to different issues along human conditions. Relevance of history may be then understood by students.

In this thesis, SD is evaluated as a tool for enhancing students’ understanding of history, precisely about revolutions. Experiments using the conventional and the SD as teaching methods have been carried out with high school Colombian students. Results show that the more fields approached with SD, the more enhanced students’ understanding about history is. Important assessment of SD as a tool to teach history is the main contribution of this thesis, which is worth to be considered as a building block in the construction of a history curriculum based on SD.
Acknowledgement

This study, which has become an important part of my days during the last year, has been possible thanks to my supervisor, my colleagues, and my family. I dedicate this study to all of them.

I want to give thanks to my supervisor, David Wheat, for teaching me his thorough approach to the research method, for his guidance, attentive disposition, confidence and support. I am also really grateful with my colleagues, especially with Maria Teresa Gonzalez, who shared attentively every difficulty and achievement found on the way. I also owe most of these findings to Andreas Baier, who became not only my biggest support but also the greatest inspiration for finding out the best way to reach the goal.

Finally, every piece of this work is dedicated to my family, because of their endless support and love, and especially because they have founded the research interest on me.
TABLE OF CONTENTS

Introduction .. 6

1. *Problems with Conventional Methods of Teaching History* 9

2. *Using System Dynamics to teach History* .. 12

 2.1 **Overview of SD** .. 12

 2.2 **Usefulness of SD as a teaching tool in social sciences and History: looking over the evidence** ... 17

 2.3 **SD for teaching revolutions** ... 19

 2.3.1 **Revolutions as diseases** .. 19

 2.3.2 **Useful SD concepts for teaching revolutions** 21

 2.4 **In-service Training: the outset of infecting with the SD approach** 22

3. **Experimental Design** .. 24

 3.1 **The Research Method** .. 24

 3.2 **Teaching Method and the Students’ Task** .. 25

 3.2.1 **SD groups** ... 25

 3.2.2 **CONTROL groups** .. 26

 3.3 **Teaching Method: French Revolution and Instructional Design** 27

 3.3.1 **SD approach of the French Revolution** .. 28

 3.3.2 **Features of Instructional Method** ... 30

 3.4 **Test Instrument** ... 33

 3.5 **Measures of Performance** .. 36

 3.6 **Hypotheses** .. 38

 3.7 **Sample Selection Process and characteristics of the sample** 39

 3.7.1 **Logistic issues** ... 41

4. **Results** .. 42

 4.1 **Students who improved -SWI-** ... 42

 4.2 **Effective Improvement -EI-** .. 43

 4.3 **Comparisons per groups of questions** ... 44

 4.3.1 **Structured based questions** .. 44

 4.3.2 **Behavior based questions** ... 45

 4.3.3 **Policies and Forecasting questions** ... 46

 4.4 **Controlling for Other Influences** ... 46

5. **Discussion** .. 50

6. **Future Research** .. 60

References .. 63

Appendix I: Details about treatments and the task performed by students in the different groups .. A-1

Appendix II: French Revolution: S&F Model .. A-2
Appendix III: Full Instructional Content _____________________________________ A-4

Appendix IV: Alternative Hypotheses for each null Hypothesis ________________ A-23

Appendix V: Pilot Experiments: Lessons learned _____________________________ A-24

Appendix VI: Raw data pre and post tests _________________________________ A-25

Appendix VII: Normality and Homocedasticity assumptions for T-test and ANOVA __ A-30
Introduction

Knowledge about history provides the understanding of why and how important happenings in the past occurred, and of the way those happenings are related between each other. Furthermore, learning history is more relevant because its understanding helps identify schemas for interpreting present situations. Nonetheless, educators discuss that there is evidence that students who learn history at school see history as a boring subject, which is useless because it does not provide them with understanding of things they can really apply to real life. Identification of similar patterns in the past is not done by students, and thus, they can hardly make associations between different historical episodes and the present life they face.

This perception of history is a result of its conventional teaching method, which encourages students to memorize isolated events that happened in the past, rather than strengthening the comprehension of how and why situations occurred. Students’ expectations are difficult to be met by this method and thus, students lose motivation, and usually fail in recalling what they have been taught. Without having knowledge of the past, students cannot interpret other fields of study and other present situations because of ignoring important lessons learned from what happened before (Burton, 2006), (Jianting, 2006), (History News Network, 2006). Critic educators, who have identified such weakness in the conventional method of teaching history, have tried different attempts of improving the method. Attempts to enhance students’ understanding of history have been mostly focused on the way the information is given to the students, rather than on the content itself, which is basically made of isolated historical events. Different sources of getting historical information, didactic teaching material, and teaching based on multimedia learning have been the main contributions done so far (Education World, 2006; Mintz, 2003; Wiley & Ash, 2005). However, these attempts have not been widely recognized as successful methodologies to enhance students understanding about history. Thus, many students still fail in learning history and in relating the past with the present and the present with the future (Forrester, 1992).

Students’ identification with history is still missing, mainly because relationships between what happened in the past are not clear enough to apply them in a different context. Improvement in the way history is taught claims for improvements in the method. As Donovan and Bransford (2005) have stated in their book, history cannot be learned without the consideration in the method of aspects such as: changes occurred in the states of affairs and their impact over time, the general framework in which the historical happening occurred, the evidence, the empathy of the learners with the people who intervened in historical situations, and storage of the knowledge that the student have about the past. Thus, if a method accomplishes those key elements in the learning process of history and has been tested with students, then this method should be the beginning of replacing the conventional one for teaching history.

System Dynamics (SD), besides other tenets, is a perspective based on relationships between elements intervening in a system, on changes over time of those elements, and provides the feasibility of using generic structures or models to study different topics whose patterns behave similarly. From this point of view, SD becomes an attractive method, which may fill the gap in students’ minds regarding the interpretation of history as a useful subject that has to do not only with past but also with current happenings.
Behavior over time of different historical phenomena may be taught by using SD tools and the underlying structure that caused history to occur. From this perspective, isolated historical events do not exit any longer. Rather, feedback relationships between them are highlighted and their interaction gives rise to the behavior in which a historical happening unfolded. At this point, almost all the concepts proposed by Donovan and Bransford (2005) are met. Thus, understanding of history may be enhanced from the SD point of view.

SD has been used to enhance both the learning and transferability of knowledge regarding social sciences (Forrester, 1992). The main work in this sense has been done by Jeff Potash and John Heinbokel, who have built an SD based curriculum for teaching history of plagues and people and their impact on economic, biological and human issues. In later studies, they have focused on how populations have changed over time and the implication of this on human existence. The application of such curriculum showed to be good at improving the understanding and motivation of students (Potash et al, 1996). In addition, their experience has been the ground for them to believe that SD really enhances the understanding of historical happenings as part of a whole that goes beyond the past, and provides tools to understand present issues (Potash, 2005; Potash & Heinbokel, 2006). However, real assessment of the effectiveness of SD in the enhancement of understanding history has not been done so far. Experiments, in which the believed better performance given by the SD approach is tested in comparison to the performance gained through the conventional teaching method, have not been carried out. Thus, there is still a great need of assessing the enhanced understanding of students about history given by the SD approach.

In an attempt to improve the conventional teaching method, this thesis aims to test whether SD enhances students’ understanding of history as a disciplinary approach. Hence, whatsoever the results of this attempt are, the assessment done with this work about students’ performance looks for providing support and evidence about the usefulness of the SD approach as a tool for teaching history.

In order to answer such questions, an experiment has been carried out with 120 Colombian high school students. Both, conventional and SD teaching methods were used as treatments with four different groups of students for teaching about revolutions. Furthermore, in order to test whether the more fields approached with SD matters in the students’ understanding, two of the four groups went through a previous experiment regarding Civics’ Engagement (using either the Conventional or the SD teaching method) and then took the history experiment. The students were then tested about their general understanding of revolutions and how revolutions change over time. Afterwards, the performance of the groups was compared.

In the first section of this thesis, problems with the Conventional method of teaching history are described in detail. Attempts done to improve history teaching from this point of view will be presented in this section as well. In section 2, SD is presented as a tool to teach history and to enhance students’ understanding. This section briefly describes the main SD concepts and their application to this experiment. Various attempts to enhance students’ understanding of history are presented also in section 2. In the third section, the experimental design is explained in detail. Results of the experiment are presented in section four, based on the measures of performance defined for assessing students’ general understanding of revolutions. In section 5, a discussion
of the findings is presented based on the reasons that caused such results from the experiment. Section 6 section mentions the lessons learned from this experiment in anticipation of future improvement to such experiment.
1. Problems with Conventional Methods of Teaching History

The goal of learning history is subject to two main interpretations by educators: *enhancing collective memory* or *the disciplinary approach*. Enhancing collective memory is the conventional goal of history education, which proposes history instruction provide learners with a base of historical knowledge that is deemed important by authority figures who guide educational policies. Under this goal, students’ primary task is the chronological memorization of events, and their associated names, dates and locations. The second approach is based on teaching skills for understanding history in the way historians do, which indeed, is not the conventional or widely used method of teaching this field (Wiley & Ash, 2005).

The usual history book combines text of historical narratives with maps, charts, timelines, pictures, diagrams and paintings to convey the historical happenings. Furthermore, history teachers often supplement reading assignments and lectures with films or documentaries based about how history occurred. However, despite the use of this media, students are not provided yet with the proper understanding of the past in light of comprehending the present and interpreting possible futures (Potash 1995).

It has been widely discussed among critic educators that school education is not preparing students to cope with modern life. It is argued that the main failure is revealed in the form of corporate executives who misjudge the complexities of growth and competition, government leaders who are at a loss to understand economic and political change, and publics that support inappropriate responses to public concerns (Forrester, 1992). Furthermore, since students are overloaded with facts without having a framework of reference for making those facts relevant for the complexities of life, it is strongly discussed that there is an important part of the learning process, which is discarded. Thus, there is strong agreement in the fact that traditional education, because of its fragmentary nature, becomes less relevant as society becomes more complex, crowded, and tightly interconnected (Forrester, 1992). In addition, there has been extensive accordance in the fact that Conventional teaching methodology seems to make many students lose motivation about some fields that are difficult to relate to the present. Furthermore some students after being taught with the Conventional method fail to recall previous knowledge and thus, they make mistakes due to ignoring lessons of the past (Forrester, 1992), (Burton, 2006), (History News Network, 2006). This is the case of social sciences, especially history, a subject that is widely taught as a mere presentation of dates, events, and actors, which are hardly related to causes, consequences and effects that have to do with other fields of study and with real life. Hence, history is widely taught without analyzing the context that gave life to the happenings and without relating similar behaviors on a shorter time scale that a student can experience in a week or a year (History News Network, 2006). As a result, students find difficult to relate to changes over time in the present and future. They can hardly understand the reason why they learn something that has happened already and is not going to change by its study (Forrester, 1992), (History News Network, 2006).

1 Orville Vernon Burton is Professor of History and Sociology at the University of Illinois, Urbana-Champaign (UIUC). He is also a Senior Research Scientist at the National Center for Supercomputing Applications where he heads the initiative for Humanities and Social Science projects. Further information at: http://historymatters.gmu.edu/d/6164
Beyond the previous thoughts and impressions of those critic educators lay in students’ performance as the determinant factor about whether or not students, certainly, understand what it is presented to them about history, and about whether or not such critics are truth.

Results of this Conventional schema of teaching history speak for themselves. Embedded into this frame, students –especially those in high school- dislike those subjects that are barely related to real life, that seem to be impractical. When they list their favorite subjects, history always comes in last. They consider it the most irrelevant of 21 school subjects; “boring” is the description most often applied (Loewen, 1996). Up to 20% of the student population at Fisher School in United States have classified history as the least favorite subject they are ever taught (Jianting, 2006). On the other hand, it has been found that history has not only been classified by students as the most boring subject but also as one of the hardest and most difficult to understand and recall in mind after the examination periods, just 10% of the population at Fisher School find it easy to learn (Jianting, 2006), (Burton, 2006). Furthermore, Pinette² has stated that because the typical high school history curriculum requires students to do little more than memorize names, dates, and major historical events, students often begin college with the belief that history is "Truth" rather than interpretation, which may highly intervene in their performance by limiting the learning sense of such field (Pinette, 2002).

Such performance confirms, then, what educators tend to highlight with the intention of claiming for improvements in history education. Therefore, this overview cannot be nullified and deserves full attention, especially when history is seen as a discipline whose learning and understanding takes students into the commitment with social reality (Burton, 2006). Furthermore, history’s understanding becomes crucial because mistakes made in the past recur often because there is not sufficient knowledge and understanding of the lessons of the past (Burton, 2006). Hence, it is clear that history education requires much more than the presentation of snapshots of what happened in the past. There is an evident weakness of the Conventional method in giving the students the tools to interpret more effectively the world around them. The method, then, call for its enhancement in order to fulfill the dynamic understanding demanded from students when they face real life complexities.

Innovative teachers and schools have made several efforts to improve the learning process of history and to motivate students to learn more. Some professors have encouraged their students to think about other ways of problem solving that could have been used in the past to make historical happenings to occur differently. This methodology has taken students into a deep analysis of the historical facts and made them relate a piece of history to some other historical patterns (Burton, 2006). More recently, informatics technologies have been introduced by some institutions as the main tool to improve student’s learning about history. Digital History is a website developed to support the teaching of American history in schools and colleges, which intends to be innovative by presenting interactive learning modules where history is taught as a part of the society, and visual effects are used to emphasize the important

² Denise Pinette Domizi is the designer of the instruction “Constructing History: How historians see the light” whose purpose is to help students examine their beliefs about history and to assess a conceptual change for them to understand better this field (Pinette, 2002).
issues in history (Mintz, 2003). However, there has been no assessment of the performance of students using such methodologies.

The concept of multimedia learning, defined as acquiring knowledge in a domain through interacting with an educational environment that presents information using multiple sources, has also been applied to history in an attempt to improve the learning process. Two main reasons support the use of the multimedia learning theory in history: (1) Multiple-source environments attempt to make history learning more like the activities of real historians, and (2) Graphics or archives are often used to make the context of the time more engaging, vivid, or personally relevant for the learner. The approach is based on a constructivist point of view, which proposes that learning that is done as a form of inquiry leads to better understanding of the subject matter than learning that is transmitted through lecture or memorization. In a history classroom with this approach, rather than being simply told to believe a single story or learn what is in the textbook, students are presented with information from a variety of sources and perspectives, and taught the standards of historical inquiry, investigation and debate.

One of the most representative studies of the multimedia learning in history is the work of Kathrin Spoehr, in which a corpus of high school hypermedia instructions (called ACCESS – American Culture in Context: Enrichment for Secondary Schools) was created to enhance student understanding by supplementing text book materials and class instruction. Several assessments of learning outcomes show that this use of multimedia was beneficial to students with ACCESS: Those students who were taught with ACCESS outperformed those who were taught with the non-ACCESS class instruction. However, those improvements cannot be entirely attributable to the impact of multimedia learning on history because students in the ACCESS classroom profited from the role played by the teachers who were accompanying the process in the ACCESS classrooms, whose advance knowledge on the field could help students intensify and maximize the construction of the hypermedia corpus. Thus, the only conclusion that can be drawn from such experiment is that when multimedia learning is used in problem-based inquiry tasks, with teachers who are involved in the construction of a corpus and who think about the best ways to integrate the corpus into ongoing instruction, then improvements in historical understanding can be obtained. Furthermore, other studies on multimedia history instruction report pre/post test gains in learning. However, those gains cannot address whether the multimedia environment is better than learning from a text book or a lecture (Wiley & Ash, 2005). Thus, advantages of the multimedia learning method over the Conventional teaching method of history are not strongly conclusive so far.

However, even when some students and teachers find these methods as innovative and useful, they have not been widely recognized as a Conventional method to teach history (Forrester, 1992). In addition, despite these and other intentions to improve history instruction, students who are taught by these methodologies are not involved in a real thinking environment in which they can find out how history happened, what causes change over time, how lessons of history could be interpreted to the present, and how consequences of the historical happenings affect other matters along the years. Thus, it is important to mention what Donovan and Bransford (2005) have proposed for making history a useful and enjoyable discipline for students.

After several meetings with teachers, Donovan and Bransford concluded that history cannot be learned unless it is presented to students in a general framework in which
some concepts inherent to it must be considered. Such concepts include: time taken for the historical event to be developed, change in the state of affairs, causes that make the change occur, empathy that leads to understand people’s ideas in the former times, evidence of the historical situations which is important to be interpreted for the understanding and learning of the discipline, and most important, what they called accounts which looks for accumulating knowledge of history through the learning life of students. Once students have been through such a learning process of history, they find this subject as a discipline that really contributes to the understanding of the past, the present and the future. Some short experiments were run with students of high school and after being analyzed qualitatively, the author concluded that students do well when history is conceived as a dynamic and interrelated discipline (Donovan & Bransford, 2005). Given this perspective, history stops being perceived by students as a mere recall of events and becomes a dynamic discipline that, even when it is based on former happenings, its implications go through time. Thus, if there is an approach to teach history, which can meet the tenets proposed by Donovan and Bransford, it would be really helpful in broadening students’ understanding and motivation.

Rather than looking for media that eases the communication of the history, it is required an approach that allows making real the learning methodology proposed by Donovan and Bransford, which lets students understand why and how history occurred and changed over time, and how those changes affected different fields and situations that happened in the past. Furthermore, once such methodology is brought to life, historical patterns must be able to be related to other situations that behave similarly, and thus, students may be committed themselves to the society and all its complexities. Such approach is described with this thesis.

2. Using System Dynamics to teach History

2.1 Overview of SD

From the definition of its founder, System Dynamics (SD) is a perspective that combines theory, methods and philosophy for analyzing the behavior of systems. In such perspective, the world is understood as a whole, rather than as the result of isolated pieces. Thus, SD shows how thing really change through time (Forrester 1998). Complementary, SD is defined by John D. Sterman as “a perspective and set of conceptual tools that enable us to understand the structure and dynamics of complex systems. It is also a rigorous modeling method that enables us to build formal computer simulations of complex systems and use them to design more effective policies and organizations (Sterman 2000).

SD focuses on the tenet that dynamic behavior in a system is due to the feedback structure of the system. Structure determines characteristic behavior (CLE, 2006).

The main SD concepts are stocks, flows, feedback loops, delays and non-linearities. However, to the extent of this study, it is sufficient to present the first four concepts

3 Jay Wright Forrester
because they are the only ones used in the SD teaching instruction. Thus, in order to understand them, consider a bathtub containing water\(^4\) (Sterman, 2000).

The bathtub accumulates water over some time.

The water in the bathtub at any time is called a *stock* of water, which is represented with a rectangle in the SD notation. Thus, stocks are accumulations and characterize the state of a system by keeping track over time (Sterman, 2000).

![Figure 1. Bathtub analogy: stocks](image)

The stock of water in the bathtub increases when the faucet is open. The amount of water that flows in may be controlled by the faucet, and is called the *inflow*. In the bathtub example, an inflow is represented by an arrow going into the stock, with a valve or faucet that determines that water is being added to the bathtub. Thus, the flows are the rates that increase or decrease the stock (Sterman, 2000).

![Figure 2. Bathtub analogy: flows](image)

Thus, in the bathtub example, the water in the bathtub is a stock, and the flow of water is the rate which changes the stock. Hence, the stocks can only be affected by the flows. In addition, the flows can be determined by stocks, other flows and growth rates.

Consider the case in which the water flowing into the bathtub comes from a tank containing water as a reservoir (Sterman, 2000).

![Figure 3. Bathtub analogy: stock and flows](image)

\(^4\) The Bathtub analogy is known as the hydraulic metaphor used by Forrester in 1961 to explain the concepts of stock and flows through the explication of the flow of water into and out of reservoirs. For further information see Sterman (2000,p.193).
The tank accumulates water over time, thus it is considered as a stock of water as well, which is represented by another rectangle. In this case, the water is flowing out from the tank, meaning that the level of water in the tank decreases when there is water flowing out from it and flowing into the bathtub. Thus, the inflow of water in the bathtub is the outflow of the stock of water in the tank, which is represented by an arrow going out from it (Sterman, 2000).

The representation of the relationships between stock and flows, in which stocks are symbolized as rectangles and arrows, correspondingly, is denominated as Stock and Flows (S&F) diagrams in the SD nomenclature. S&F diagrams are the central tool of SD (Sterman, 2000).

In the daily life, stocks and flows are possible to be identified. It is only necessary to think in terms of the things that accumulate over time and those that increase or decrease such accumulation. However, the relationships are not only on one way as it happened in the bathtub analogy. The inflow can determine the amount in which the stock increases, but the same stock can also affect the inflow. Thus, it is not only important to think of the causes of a system, but also how the system affects such causes (Sterman, 2000).

Consider the case of a population, which increases through time. Thinking in terms of accumulation and changes over time leads to identify that the number of inhabitants within a population are accumulated, and that such accumulation occurs according to the number of births over time. Thus, the population can be considered a stock of people and the births over time can be considered as the rate that increases the stock of population. When there are births, there are more inhabitants in the population. Figure 5 shows the S&F representation of this example.

However, the more population, the more births occur. Thus, the relationship between this inflow and this stock is mutual. While the population is increased by the births over time, the births are increased by the population. In the S&F nomenclature, such relationship is represented by a simple arrow going from the stock to the inflow. And the entire mutual relationship between population and births is called feedback loop (Sterman, 2000).
A feedback loop then, is a cause and effect diagram with mutual causation between variables. It should have at least two elements, which are interconnected one to another. SD makes use of a special type of diagram, called Causal Loop Diagram (CLD), which highlights one of the core concepts in SD: feedback between elements of a system. The feedback then is made of at least two relationships, which in the CLD nomenclature are represented by an arrow, pointing to the variable to be affected (Sterman, 2000).

The relationships between elements in the feedback loop can be positive or negative, which can lead to have positive or negative feedback loops as well. When an increase in the initial element causes an impact in the same direction in the other element, then this relationship is a positive one. In the example of population, the relationship between births and population is positive in both ways: an increase in Births causes Population to grow, and an increase in population makes Births augment. However, when an increase in the initial element causes an impact in the opposite direction on the other element, then the relationship is considered as a negative one. To figure out this relationship consider in the example of the population that deaths make population decrease. Thus, an increase in deaths causes Population to decrease. Positive relationships are represented by a “+” sign and negative ones are represented by a “-” sign (Sterman, 2000).
Likewise, there are two types of feedback loops.

Positive or Reinforcing Loops: all the relationships in this loop are positive. Its polarity is represented by an “R”. As follows, a CLD between births and population expresses births add to population. In addition, an increase in population causes more births. Thus, such feedback loop is a positive or reinforcing one. Reinforcing loops amplify a change along the loop (Sterman, 2000).

Negative or Balancing Loops: an odd number of relationships in this loop are negative. Its polarity is represented by a “B”. The following CLD shows that the more deaths subtract from population, and population adds to deaths. However, the relationship in the other way has different polarity: the larger the population, the higher the number of deaths. Thus, such feedback loop is a negative or balancing one. Balancing loops seek balance along them (Sterman, 2000).

The corresponding S&F diagram for the last negative loop is presented as follows, in addition to the positive loop between births and population.
This diagram shows at some extent that the transition of people from the moment in which they are born until they die takes time. Once a person has born, some years must pass by until this person dies and decreases the population. This process whose output lags behind its input is called as delay in the SD nomenclature.

The relationships presented between stock and flows, including delays, give rise to certain behaviors over time. Thus, knowing how a process is structured leads to expectations regarding its behavior. Therefore, greater understanding is possible to be built about the way a structure should be managed or understood over time. Hence, the ability to understanding the behavior from the structure that generates is an important aspect when approaching social sciences, such as history (Sterman, 2000).

2.2 Useful of SD as a teaching tool in social sciences and History: looking over the evidence

After knowing what SD is and what it is useful for, SD seems to be a promising methodology to meet the proposal done by Donovan and Bransford (2005) given its nature of expressing relationships between different elements, changes over time, and causes and effects related to past, present and future happenings. SD provides as well the possibility of understanding history within a certain context.

In the field of education, SD has been found as a useful tool to facilitate students’ performance. The dynamic approach based on S&F and CLD provides a foundation that is transferable from field to field, a basic that places the knowledge into a structured pattern, which augments the learning and ability to transfer knowledge to other happenings. There are several schools doing excellent work in this respect. Pioneering schools are scattered mainly over the United States, extend into the Scandinavian countries and Germany (Forrester, 1992; Skillings, 1997; Road Maps, 1992). Before 1992, no network has existed for interchanging information regarding SD among those involved in pre-college education. Thus, the Creative Learning Exchange has been founded in order to distribute SD materials among all those who are interested in it (Creative Learning Exchange, 1992).

Road Maps is a series of self-study guides that use modeling exercises and selected literature to provide a resource for learning about the principles and practices of SD; cases studies are related to social sciences, biology, management (Road Maps, 1992).

Roberts concluded that SD, as an organizing framework, can be a very useful tool to teach and improve performance of fifth and sixth grade students, through the implementation and evaluation of a curriculum to teach children about SD and its application in many fields of study. Though the sample was small, the results seem positive enough to warrant further experimentation with this strategy for teaching and understanding problems (Roberts, 1978).

The Feedback Method is an SD approach to teach macroeconomics to college and high school students. Assessment in this regard has revealed that students not only preferred

5 Besides education, SD has been even more widely used to approach management, urban, and development problems, performing an important role due to its contribution for a better understanding and improved policy making of these issues (Forrester 1992)
the explanations given by the SD approach, but also they perform better when they are taught with it (Wheat, 2007).

In the field of History, Greg Reid has explored the causes of the American Civil War in light of systemic thinking and SD tools. Instruction made of five one hour lessons given to students, aimed to supply the students with an understanding of why the Civil War took place, and that the war was not an isolated event that came out of the blue, but a conflict that began brewing during the foundation of the country. Students were encouraged to help the teacher complete causal loop and S&F diagrams that illustrated the gradual increase in the main reasons of the civil war (Reid, 1996). Another case study is the Easter Island population problem, which has been taught using S&F diagrams by Diana Fisher as part of her curriculum. A population model has been utilized to explain the reasons of the depletions of the population of this isolated island. Concepts, such as the carrying capacity of the main resources, are introduced for explaining the behavior over time of the population. Learning by doing is the methodology followed by students. As they are taught about what happened in the Island, they also model by themselves what they are taught. Policy making also makes part of the case study, thus, students are encouraged to answer what would happen with the population if more coconut palms were planted to support the nutrition of the island (Fisher, 1992). Unfortunately, there is not available information about the way Fisher’s and Reid’s lessons were assessed and how much they enhanced students’ understanding regarding populations’ problems.

Doubtless, the most significant contribution to the use of SD in the history curriculum has been done by Jeffrey Potash and John Heinbokel, who have adopted great interest in using SD in the social sciences’ classroom. A conventional curriculum based on SD for the teaching of social sciences and mainly human history became their main focus of attention after they have realized that repeated patterns of behavior are present along history, in which populations have shaped the course of human history because of constraints given by the interaction with resources and human attitudes. Furthermore, they believe that understanding how and why history has unfolded replete with recurring patterns, will be determinant for the student’s motivation and to enable them to learn from the past when thinking about the present and future (Potash 1995; Potash, 2005; Potash & Heinbokel, 2006).

Their first effort, entitled Plagues and People, commenced with a relatively simple model of disease dissemination that drew upon historical epidemics to develop the historical contexts within which these operated, and to better understand the current AIDS epidemic in terms of cultural as well as biological factors. This model has been tested with students in the form of a curricular practice, in which students were taught gradually how to build and simulate models based on S&F diagrams. This methodology led the students’ understanding of the case studies to be related to other facts over time, and certainly, to the context in which they were developed (Potash et al, 1996). Later on, Population Dynamics and the Human Experience, is doubtless their most exciting and ambitious project of all. They identify myriad structures which influence how, where, and why human populations have grown over the course of history; and then look at the role of human population growth as it has affected economic, political, and social systems, past and present (Potash, 2005). Correspondingly, Heinbokel and Potash with the Center for Interdisciplinary Excellence in SD (previously the Waters Center for
System Dynamics) have designed Demo Dozen, a collection of 12 interactive lessons about American history, bacteria reproduction, finances, which are accompanied with dynamic models (CIESD, 2001; Waters Center for System Dynamics, 2001). One of the most famous case studies taught with Demo Dozen is the Irish Potato Famine. Beyond the conventional causes found for this happening, they explain using S&F diagrams and time series graphs, how and why this happening is related to past and future happenings such as the great depletion of the Irish population even several years after the famine. Thus, a stock representing the Irish population at any time is increased by the birth rate and the death rate in Ireland. The most interesting point of their approach is the consideration of the available resources, and the attitudes and expectations of the people towards believing about getting welfare in Ireland. These factors become the most determinant factors for population loss in Ireland in the period 1846-1900, even after the famine (Potash & Heinbokel, 2006).

After a while of exploring in the history classroom, Potash and Heinbokel state that passing from the learning of discrete events regarding the social sciences to the understanding of patterns as part of a whole, is a process which is really enhanced by using generic SD concepts and tools. Furthermore, they strongly believe that “When students develop the capacity for and the interest in understanding the powerful role of dynamic feedbacks between populations, resources, and attitudes in the past and, more critically, when they can see the relevance of that learning when applied to their own world, we will have truly made progress in our efforts to bring social studies to the level of creating systems citizens” (Potash, 2005; Potash & Heinbokel, 2006).

Nevertheless, assessment is absent in all the practices employed by those who have intended to approach history by using SD, even in the most important contribution made by Potash and Heinbokel. Despite all of them highlight the fact that students benefit from using SD as a teaching tool, none of them has evaluated how much benefit those students get. Controlled experiments, in which it is possible to measure how much enhancement and improvement the students profit from an SD approach, is still missing and is calling for answers. In the intent of recognizing SD as a generic tool to teach different fields, scientific assessment is widely required.

2.3 SD for teaching revolutions

2.3.1 Revolutions as diseases

Revolutions are among the most often repeated happenings in history. They describe more or less similar patterns of behavior, which come from similar structures or relationships between elements. Thus, revolutions result an interesting case to approach history.

Crane Brinton (1965) analyzes and compares the development over time of different revolutionary processes such as the American Revolution, the French Revolution, the English Revolution and the Russian Revolution too. He finds out that all of them share common patterns that made them unfold in the way they did. He describes such patterns through the analogy of the development of a fever over time, in which three stages are present most of the time: the symptoms, the fever itself, and the breakdown. The

6 Such collection of interactive lessons is called Demo Dozen, which is available at http://www.ciesd.org/influence/demo_dozen.shtml
symptoms represent the dissatisfaction of a current state versus a desired state; the fever itself represents the development of the revolution over time; and the breakdown represents the loss of morale by those who support the revolution, and therefore this stage describes the revolution’s end (Brinton, 1965). Among all stages, the fever itself exhibits the core point that determines the course of revolution; therefore, the process of understanding how a revolution gains and looses power is essential for the students to manage and interpret similar situations in the past, present, and the future.

Specifically, as Brinton (1965) states, the fever itself goes through different stages. Likewise, once the revolution has started, it experiences different phases in which its popularity and support of the people varies over time.

The full symptoms disclose themselves and the fever of the revolution has then begun. After a hard beginning because of constructing reliability on the revolution, the fever of the revolution faces a period of great popularity. The revolution then works up, not regularly but with advances and retreats, to a crisis, frequently accompanied by delirium, the rule of most violent revolutions: reigns of terror. Specifically, the revolution gains great support, in which several chaotic happenings occur for a while until the first and main event occurred: the breakdown of the often oppressor government is reached (Brinton 1965). From the revolutions analyzed by Brinton (1965), in the specific case of the French Revolution, million of conversations between the French population spread the fear that the king and his party were about to dismiss the revolutionary assembly and rule by armed force. The revolution started to gain even more power. Paris and other French towns, therefore, rose in its might and with a sure instinct did impressive revolutionary facts such as the seizing on the Bastille. The revolutionaries stirred up France in a hundred ways: they sent orators to street corners and cafes, they distributed radical news-sheets and pamphlets, they sent agents to spread discontent among the royal troops, and they even subsidized prostitutes to get at the soldiers more effectively. People joined the Revolution because their neighbors already did it. A strong motivation to diffuse the fever of the revolution is revealed in events like these presented in France.

Once the revolutionaries have gained what they wanted, they wish to stay in power. New ways of government arise and a revolution is still on against those who do not support it. Until the moment, a process of strengthening the revolution through more support is essential to keep the power. In the meantime of these events, the incipient government lacks ability to meet the interests of all those who had hopes in the revolution, and this is the cause for stronger and radical supporters of the revolution to take over the power and start reigning. In this moment, radical and lunatic events start happening such as the terror reigns, in which many people are killed at a search of virtue of the revolution (Brinton, 1965). The revolutions analyzed by Brinton (1965) showed to be very successful in the first stage. They became actual revolutions instead of mere discussions and desires, especially after revolutionaries have beaten, or won over, the armed forces of the revolution.

Crane Brinton (1965) also states that in social systems, as in the human organism, a kind of natural healing force tends almost automatically to balance one kind of change with another and restorative change. Thus, social systems such as revolutions seek themselves for the balance, in order to gain equilibrium after a period of crisis and disorder. Once the revolution has gained power, its natural trend is to recover a state of
equilibrium, in which the population feels satisfied with it. Tranquility is claimed by the population and so the revolution itself starts losing power. The equilibrium is then restored and the revolution is over. In all four revolutions analyzed by Brinton (1965) the crisis period was followed by a convalescence, by a return to a fundamental desire of calm (Brinton, 1965).

Thus, the fever itself of a revolution should be taught using an approach, such as SD, that describes the dynamics of revolutions rather than mere discrete events that happened.

2.3.2 Useful SD concepts for teaching revolutions

The description of the fever itself as stated by Brinton (1965) presents two main processes that reveal dynamics and diffusion of the passion of revolution. On one hand, the gain of strength of the revolution and all the critical happenings occurring alongside are the result of a reinforcing process, in which the desire of revolution is increasingly supported by the population. The spread or diffusion of such desire of revolution is given by the several conversations, news-pamphlets, orators, and different strategies adopted by the revolutionary parties. The diffusion process amplifies and reinforces the popularity of revolution among people. In SD terms, this process is given by a reinforcing loop describing an exponential growth. On the other hand, there is a process of seeking balance to restore calm among population. This process is then given by a balancing loop, in which a goal seeking behavior proceeded by a collapse describes the way the population lose interest in the revolution and tranquility is recovered.

Thus, in terms of SD, the fever itself of a revolution is analogous to a diffusion process given by a generic SD structure called the SI Model or Diffusion Model. This model is a simplification of diseases, which represents the spread of a disease within a population over time.

In the model, the total population of a region or community is divided into two categories: those susceptible to the disease, S, and those who are infectious, I, (for this reason the model is known as SI model). As people are infected they move from the susceptible category to the infectious category. The SI model is the simplest model of spread of epidemics and is based on the assumptions of not taking into account births, deaths, and migrations. Furthermore, it has to do with chronic infections in which once people are infected, they remain infectious indefinitely\(^7\). The SI model contains two loops, the positive Contagion loop and the negative Depletion Loop. Infectious diseases spread as those who are infectious come into contact with and pass the disease to those who are susceptible, increasing the infectious population still further (the positive loop is dominating) while at the same time depleting the pool of susceptible (the negative loop). Both categories of population, Susceptible and Infectious are represented by stocks in the SD nomenclature, while the rate at which the population gets infected and migrate from susceptible to infectious is considered a flow. The infectious population exhibits s-shaped growth, in which after great difficulty of infecting new people at the

\[^7\] Due to the simplicity of the SI model, extensions of it have been made, in which recoveries from the ill state and deaths are possible. Therefore, the stock of infectious population is decreased at the last stage. In the way revolutions are approached for the present experiment, both, the simple SI model and the considerations about deaths are taken into account. Further information about the Diffusion Model (with all its extensions) is available in Business Dynamics, Chapter 9 (Sterman, 2000)
beginning of the disease, new cases of infection rise exponentially the stock, which later on keeps constant as there are no new cases of infection.

Three more constant variables make part of the model: the probability of infecting a susceptible person when is contacted by infectious people, monthly contacts per infectious, and total population.

As follows the S&F diagram of the SI model is presented with its corresponding graph of behavior over time.

![S&F diagram and behavior over time of diseases](image)

From this perspective this model becomes very useful to teaching about the revolutionary process in history.

2.4 In-service Training: the outset of infecting with the SD approach

At each school in which the history experiment was run, a three hour in-service training with teachers was done in order to share the basics of SD and the core meaning of SD with which history would be explained to students in the SD groups. The teachers were taken into some theory about SD through a verbal presentation (with power point presentation as an aid), then were encouraged to play the Infection Game and finally, the presentation of the Diffusion Model was used to debrief the game and transmit the understanding of situations which are spread as diseases do.

Main concepts of SD such as accumulation, multiple influences, feedback loops, non proportionality, and delays were taught to teachers through the explanation of the bathtub analogy. The teachers did not have previous knowledge or experience in SD; thus, in order to let them understand those new concepts, the Infection Game was played and immediately debriefed in an active plenary session. At this point, the Diffusion model was presented as the core model that leads to the understanding of how the disease was spread among all the members of the group, and how the number of people who was infected every day changed over time. The diffusion model played an important role because it led teachers to understand from which perspective the history

8 The Infection Game is adapted from The Epidemic Game by Hill Glass at the catalina Foothills School District, Tucson, Arizona, 1993.
The Infection Game:
Stocks and Flows

The INFECTED people appear through NEW INFECTIONS. When a SUSCEPTIBLE is infected he becomes into an INFECTED.

Figure 13. Slide # 8 Infection Game debriefing during the In-Service training

Interest and enthusiasm were the main reactions of teachers during and after the in-service training session. At first, their attention was focused on learning about how to improve education in K-12 and how to make the students more interested in it; but while taking them into the entire in-service session they could see the kind of generic applications that this tool can have on different fields, and thus, teachers got enthusiastic and really interested in learning how to apply such approach.

Concepts such as accumulation, flows and feedback loops were difficult for them to grasp. However, the idea of approaching different fields (such as diseases and history) from a systemic point of view was challenging and encouraging enough to make them ask further questions and to keep interest in the session. The queries were mainly about the previous applications of SD in the education field, their results in the understanding and interest of the students, and about the advantages of using this tool instead of using a conventional teaching method. Furthermore, the most eager ones were interested in knowing how to apply it in examples of physics, biology and informatics that make trouble to the students.

This session was really important because it revealed how relevant the improvement of education and the need that teachers have to approximate to the best approach for teaching K-12 students. It was revealed a strong need to enhance the understanding of students in both, the soft and hard sciences.

Because of all stated in this section, it may be thought of SD as a better approach to help students understand history within the context in which it occurred and to interpret it in light of the present life and possible futures. Specifically, it may lead students’
understanding into why and how history occurred and changed over time, and how those changes affected future situations and different fields. Furthermore, generic structures of SD, such as the SI model, that can be applied to different fields of study, allow relating historical happenings that behave similarly, and thus, students may be committed themselves to the society and all its complexities. Thus, this study aims to answer this research question:

Does SD enhance students’ understanding of history as a disciplinary approach?

Exploring whether students’ understanding of history is enhanced when the students either have or do not have previous knowledge of SD is highly interesting to determine the role of that teaching method in the learning process of history. Assessment of the impact of the SD teaching method on students’ performance is aimed to be provided to validate the contribution of SD in students’ understanding of history.

3. Experimental Design

3.1 The Research Method

The chosen method of research is a laboratory experiment in which actual history classrooms constitute the “laboratory”. Different instructional treatments were applied to different groups of students in order to compare their performance.

The Teaching Method and the Experimental Experiences were the two treatments applied to the groups of study. The Teaching Method treatment concerns the method used to teach history to the students, and it is made of two levels, the Conventional method and the System Dynamics method. The Experimental Experience treatment concerns students’ previous experience in experiments using the teaching method assigned to them. Those without prior experience represented the First Experimental Experience, while those who participated in the Civics’ Engagement Experiment by Maria Teresa Gonzalez\(^9\) represented the Second Experimental Experience.

These treatments definitions lead to the following experimental design, in which four different groups were taught with different teaching methods and must go through different experimental experiences.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Teaching Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Experiences</td>
<td>SD Method</td>
</tr>
<tr>
<td>First Experimental Experience</td>
<td>SD1 group</td>
</tr>
<tr>
<td>Second Experimental Experience</td>
<td>SD2 group</td>
</tr>
</tbody>
</table>

Table 1. Treatments

The Conventional teaching method is the traditional way of teaching history in a Colombian classroom. This typically involves reading passages about the development of a historical process based on the presentation of isolated events, reading about the biography of the main characters in history, presentation of pictures, and timelines.

\(^9\) Further information about the Civics’ Engagement Experiment is available by contacting its author. Email address: maria.galvis@student.uib.no or at www.clexchange.com/ftp/newsletter/CLEx16.1.pdf
Additionally, graphs over time accompanied the explanation of the development over time of the historical case study. Such graphs are not often used as a tool to teach history, but certainly could be added to the Conventional curriculum. By using the time series graphs in both teaching methods leaves the SD concepts as the only difference between both teaching methods. The SD teaching method provided the students with the same information as the Conventional teaching method; however, SD tools (stocks, flows, S&F diagrams, and SI model) were used to approach the case study from a SD point of view. Thus, both system thinking and S&F diagrams in the SD method were the main difference presented in the teaching methods. The Conventional method presented isolated historical events, while the SD Method presented connections and a structure underlying the happenings of such events. Both teaching methods were presented to the students in computerized slideshow format.

In the First Experimental Experience, students studied a history case study using either SD or the Conventional method. Students in the Second Experimental Experience approached the same history case study, and in addition, a Civics case study, using in both experiments the same teaching method (either SD or the Conventional method). Thus, more than one field of study was approached with the teaching method.

3.2 Teaching Method and the Students’ Task

The previously mentioned in-service training with teachers facilitated access to and cooperation from the students, thus different sessions with students were done in order to teach them with one of the teaching methods. This section briefly describes the instructional method and the tasks performed by the students.

3.2.1 SD groups

SD1 group went through two-day sessions whereas the SD2 group had three-day sessions with the SD approach.

a) Introductory Session: A very similar session to the in-service training given to the teachers was provided to both SD groups (SD1 and SD2) on the first day of the experiment. Students were taught with a verbal instruction about the basic concepts of SD, such as accumulation, change over time, multiple influences, and feedback loops. The bathtub analogy supported the presentation of the SD concepts. The Infection Game was played and its debriefing was supported by a presentation of the Diffusion Model. The session lasted 3 hours.

b) Applying the History SD Instruction: during the second day SD1 students were taken to a computer lab where each of them had access to an individual computer, and the students were provided with a computerized slideshow instruction about the French Revolution from an SD perspective. Afterwards, the students were tested about their understanding of revolutions in general. The session lasted 2 hours in total.

10 The Civics Engagement Experiment was run a day before the students in the Second Experimental Experience went through the history experiment.

11 The French Revolution was chosen as the revolutions’ case study to teach history in the experiment. The details about the case study will be presented in the coming section.
c) **Applying the History SD Instruction to students with prior SD knowledge:** On the third day, the same “second step” procedure was applied to the SD2 group, which consisted of students who had participated in the Civics Engagement experiment on the second day.

3.2.2 CONTROL groups

The CONTROL1 group went through a single day of instruction, whereas the CONTROL2 group had two days of instruction.

a) **Applying the History Conventional Instruction:** in the first day, students from the CONTROL 1 group were taken into a computer lab in order to follow the case study with a Conventional teaching method lasting 1 hour. Readings, passages, pictures, and graphs were presented. Afterwards, the students were tested about their understanding of revolutions in general.

b) **Applying the History Conventional Instruction to students with prior experimental knowledge:** CONTROL2 students, who went through the Conventional approach of Civics Engagement experiment, were taken during a second experimental day into the process described in the step presented above.

The following table summarizes the way the teaching method was presented to each group, according to what was said above. Differences in the presentation of the teaching method between groups are expected to make their performance discern. Further detail regarding the task performed by the students and the treatments is available in the Appendix I.

<table>
<thead>
<tr>
<th>Groups</th>
<th>SD1</th>
<th>CONTROL1</th>
<th>SD2</th>
<th>CONTROL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching Method</td>
<td>SD</td>
<td>Teaching Method: Conventional</td>
<td>SD</td>
<td>Teaching Method: Conventional</td>
</tr>
<tr>
<td>Experimental Experience</td>
<td>First</td>
<td>Experimental Experience: First</td>
<td>Second</td>
<td>Experimental Experience: Second</td>
</tr>
<tr>
<td>Pre test (one week in advance)</td>
<td></td>
<td>- Pre test (one week in advance)</td>
<td>- Pre test (one week in advance)</td>
<td></td>
</tr>
<tr>
<td>Verbal instruction about SD principles and the Infection Game. Duration: 3 hours</td>
<td></td>
<td>- Verbal instruction about SD principles and the Infection Game. Duration: 3 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computerized slideshow about the French Revolution, using SD as approach. Duration: 2 hours</td>
<td></td>
<td>- Computerized slideshow about the French Revolution, approached with a Conventional method. Duration: 1 hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Test</td>
<td>-Post Test</td>
<td>-Post Test</td>
<td>-Post Test</td>
<td>-Post Test</td>
</tr>
</tbody>
</table>

Table 2. Tasks per group
3.3 Teaching Method: French Revolution and Instructional Design

As previously mentioned in the section 2, given the analogy between the development of fevers and revolutions over time presented by Crane Brinton (Brinton, 1965), the course of a revolution can be taught by using the concept of “infection” of the desire of revolution within a certain population. A person who makes part of the revolution is the infectious one who can transmit the desire of revolution (the disease) among people. Infecting other people to join the revolution is not an easy task at the beginning and it takes some time until people starts getting infected by such purpose. However, once there are more revolution’s supporters (more infectious), the desire of joining the revolution starts to increase and to become popular among the people (contagion loop). After a while, there are few non-revolutionaries to who transmit the passion for the revolution, thus the number of people supporting the revolution does not increase anymore, and this can either remain constant or collapse. In figure 14, the behavior of an infectious population and a revolutionary population are presented to reflect at some extent their analogy in their behavior as stated by Crane Brinton (1965).

![Figure 14. Behavior of revolutions as diseases.](image)

With the purpose of clarifying this concept to the students who are learning history in this experiment, the French Revolution has been chosen as the case study. Thus, the generality of the development over time of the revolution can be transferred to the French Revolution, and the SI model can be utilized to explain students in the SD groups how the revolution changed over time in light of those persons supporting it. For those students involved in the Conventional method, the focus is on the changes that the revolution suffered over time.

The Conventional instructional method approaches the instructional goal by using readings, passages, pictures, presentation of isolated events regarding the French revolution, and presentation of graphs about the number of revolutionaries supporting the revolution. However, the SD relies on system thinking and S&F diagrams. In the SD instructional method, the case study utilized the SI model, explained in section 2.

12 In figure 14, both behaviors represent at some extent the behavior of both populations over time. However, such behaviors can differ, especially at the late phase, because of the deaths or other factors that decrease the number of people in both populations. Furthermore, it is important to be aware that not every revolution behaves in the same way. Revolutions studied by Brinton (1965) are alike in this sense; however, other kind of revolutions may totally differ from the disease analogy.
3.3.1 SD approach of the French Revolution

Revolutions describe s-shaped growth in which the number of people joining a revolution changes according to the dominance of a reinforcing (strengthening) loop or of a balancing (weakening) loop. The strengthening loop is analogous to the contagion loop in the SI model and the balancing loop is analogous to the depletion loop. The groups of revolutionary and non-revolutionary people can be thought as stocks. At the same time, the people joining the revolution can be interpreted as a flow, which decreases the non-revolutionary stock and increases the revolutionary stock.

At the beginning of the French Revolution, the strengthening loop takes a while until people start believing in the usefulness of joining the revolution. So, the stock of revolutionaries starts accumulating people who make part of the revolution. New supporters of the revolution might want to involve more people in the revolution. Thus, the contagion loop starts to dominate and to convince many people to join the French Revolution. At this point the stock has started to grow exponentially and the revolution has become quite popular between the French people. However, once the revolution has gained popularity and gained lots of supporters, fewer people are susceptible to become revolutionary. Thus, the stock of revolutionary people stops to increase in that accelerating way, and begins to seek balance. The depletion loop takes dominance at this moment, and slowly all those who were not part of the revolution join it as well. The stock still accumulates revolutionary people, but the accumulation occurs slowly now because conversions from non-revolutionaries to the revolutionary party do not occur that often. When there is no more susceptible population to convince of joining the revolution, the stock stops to increase and reaches stability. The depletion loop has balanced the contagion loop and the French Revolution does not last forever.

Thus, the French revolution is suitable to be approached with the SI model mentioned in section 2. The first approximation to the French Revolution with the SI model considers the simplest SI model, without deaths of revolutionaries and returns to the non-revolutionary state are not considered. At this point the stock of revolutionary people behaves as shown in figure 14. In the last parts of the instructional method, the extension regarding the dead revolutionaries is included in the model for enhancing students’ understanding of such system13.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{sir_diagram.png}
\caption{S&F of revolutions as diseases}
\end{figure}

13 This extension of the SI model is called SIR model, where S and I are still the Susceptible population to get infected and the Infectious population correspondingly, and R is the Recovered population from the disease. This case treats the diseases which are not chronic, such as the flu, in which the population gets recovered from the disease after some time (Sterman, 2000).
Thus, the model, initially made of two stocks, one flow, two feedback loops, and three parameters was used to explain the dynamics of the French Revolution over time, considering its difficult beginning, its peak, its slow down, and its later stability. The understanding of the flow of people from being non revolutionaries to become revolutionaries is highly decisive of the dynamics associated to revolutions. This same structure gives rise to the s-shaped behavior of a disease. Enhancing the understanding and reality of the model is intended to be done by adding in the model a stock of dead revolutionaries, which die at a certain rate over time. The assumption is that certain amount of revolutionaries dies as a result of the violence of revolutions. The third stock accumulates the number of dead revolutionaries and is fed by a negative feedback loop, the deaths loop. Revolutionaries dying in the French revolution increase such stock and decrease the Revolutionaries stock. The greater the number of revolutionaries is, the greater the death rate is, and the smaller the number of remaining alive revolutionaries is (Sterman, 2000). Figure 16 shows the full S&F diagram, in which the dead revolutionaries are considered.

Because of the effect of the deaths loop, the stock of Revolutionaries after the dominance of the depletion loop is decreased. At this point, the number of revolutionaries dying per month is greater than the number of non-revolutionaries becoming revolutionaries. Thus, the characteristic s-shape growth in the simple SI model collapses when the dead revolutionaries are taken into account. Figure 17 presents a representative behavior of the stock of revolutionaries (infectious) with the SI model considering deaths (recoveries).

In Appendix II, there is a complete version of the model, included equations, used in the SD instructional method.
3.3.2 Features of Instructional Method

The instructional method used for the presentation of the French revolution as the case study for both, CONTROL and SD groups, shared some similarities. Both instructional methods were computer based and delivered step by step the learning concepts regarding the French revolution. They contain exactly the same 14 initial slides, which present the main concepts regarding the French revolution in the form of readings and graphs. Slide 10 gives an example of the information displayed. From slide number 14 on, every instructional method focuses its efforts in presenting, gradually, how all those important facts regarding the revolution are related to one another and how this affected the development of the revolution; each instruction making use of its teaching method.

![Figure 18. Introductory slides for both SD and Conventional instructional methods](image)

The SD instructional method was made of 52 slides and presented the case study to the students by using text, supportive images, time series graphs, and S&F diagrams. Step by step, the diffusion model was built using simple equations and S&F diagrams, in which every important concept for the purpose of the case study was placed into a variable making part of the model. Slides 16 (in Figure 19) provide an example.

![Figure 19. SD approach to the French Revolution](image)

Emphasizing in the conversion of non revolutionary people to revolutionary one over time was important in order to describe how the behavior of the revolutionary party changed over the revolution, which is the concept causing the main dynamics in the
system. Therefore, an explanation of the behaviors arising from such model was delivered highlighting: firstly the exponential growth in regard of how the revolutionary population gained strength among the French people; secondly the goal seeking behavior, which causes the weakening of the revolution, and thirdly a stage of stabilization due to the interaction of the two mentioned above stages. As a result the s-shaped growth is presented as the behavior that involves the two mentioned above. Slides 27 in figure 20 presents an example of how the exponential behavior was presented with SD.

Figure 20. SD approach to the development over time of the revolutionary population

The main part of the instruction was focused on the diffusion model session, which included 28 slides and was based on the simplest version of the SI model. In addition, a third stock was added to the model, in which the dead revolutionaries during the revolution were taken into account. Thus, the development of such population over time was undermined but still exhibited s-shaped with the trend of collapsing. At the end of the instructional method, students are encouraged to think what would happen if the King of the French revolution had understood how the revolution was spread.

In addition to the French revolution, two more examples about the s-shaped growth (non historical happenings) were briefly described for the students to get more settle in their minds that the main understanding of such model is the way it is developed over time. Through a hyperlink, students could easily access from any of the slides of the French revolution to 7 slides more about the tenets of SD as a review of what was taught in the introductory session.

In the case of the Conventional instructional method the slideshow was made of 45 slides, in which the events playing an important role of the revolution were presented through text and supportive images. Slide 16 (in figure 21) is analogous to the information presented in figure 19. The explanation of the change of the revolutionary population over time utilized texts, equations and time series graphs emphasizing in three behaviors over time: exponential growth, goal seeking, and s-shaped growth. Slides 26, presented in figure 22 is analogous to figure 20.
The concept of dead revolutionaries was introduced to explain how such behaviors may be affected and to make the analysis of the case study more realistic. Finally, students were encouraged to think what would have happened if the King had known how the revolution was developed over time.

In addition to the French Revolution, two more examples of the s-shaped growth were briefly presented.

It was important to guarantee equality in the content of both instructional methods, leaving the only differences to the method used for teaching the case study. Thus, the students in the Conventional groups would not have disadvantages for not receiving at least the same information than the SD groups. That is the reason for both instructional methods to make use of simple equations and time series, even though they are not conventionally taught in the history lessons.

Furthermore, both instructional methods made use of multimedia principles of delivering the instructional information (Wiley & Ash, 2005). Animation of graphs, diagrams, and loops; supportive images; and motivating texts were all relevant mechanisms to grasp students’ attention.
Full instructional content is provided in Appendix III.

3.4 Test Instrument

As history teaching has been oriented to the memorization rather than to the understanding of relationships that made history to occur in a certain way, there are no previous elaborated tests useful to assess students’ performance regarding revolutions and their dynamics. Thus, the test used to measure students’ performance has been self designed by the author. Rather than recalling knowledge regarding the French revolution, the test intended to measure the general understanding of revolutions, based on their dynamics (change over time and the relationships that give rise to that change) and the transferability of such understanding to other happenings. Transfer tests require that the learner applies what was learned to a novel situation. The characteristic that distinguishes someone who learns by understanding from someone who learns by rote is the ability to transfer knowledge (Mayer, 1999). Thus, the understanding of the case study was required to be transferred along all the questions of the test, due to the questions encouraged the students to apply the understanding of the relationships underlying and explaining the dynamics of revolutions.

The test was made of 14 multiple choice questions which are presented in Table 3. The questions were classified in three types according to their main measurement purpose. The transferability of the structure underlying the development of the revolutionary population among the French revolution was one of the tasks that students should face most often in the test. These questions were presented in the form of analogies between the case study and other historical happenings, and in the form of questions asking for correct explanations of why certain happenings occurred during revolutions. Questions number 1, 5, 6, 7, and 8 belong to this type of question. This type of question was relevant because it tested the understanding of different relationships between the elements that caused a revolutionary population to develop in a certain way. Furthermore, these questions reveal whether a student is able to associate the understanding of the case study to another topic that may come from similar structural patterns.

A second set of questions had the purpose of measuring the understanding of the behavior of revolutions over time and the application to such knowledge to new situations. This type of question was presented in the form of analogies with other fields of study and of graphs recalling possible development over time of the populations of the revolutions. The importance of this set of questions is the possibility of measuring whether or not a student is able to associate the general behavior of revolutions with

14 In this Appendix, instructional content of all sessions done with students and teachers is available. However, it is suggested to the reader to make use of the Power Point slides available in the electronic version of this thesis.

15 Question number 2 was not included within the groups because its objective was not intended to measure knowledge nor learning process but to test students’ ability to interpret graphs in the pre test because the instructional methods were based on several graphs.
<table>
<thead>
<tr>
<th>Question</th>
<th>a.</th>
<th>b.</th>
<th>c.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. What makes a Revolution to gain strength in a group of people?</td>
<td>The increasing support of a group of people</td>
<td>The meetings offered by Revolutionaries</td>
<td>The prohibition by the state of not letting anyone to become part of the Revolution</td>
<td>b) and c)</td>
</tr>
<tr>
<td>2. Take a look to the following graph:</td>
<td>The number of Non Revolucionarios does not decrease significantly in the early years</td>
<td>Once the Non Revolutionaries start to decrease, the depletion of the group occurs very fast until it stops decreasing and remain in a fix level</td>
<td>The group of Non Revolutionaries does not decrease</td>
<td>a) and b)</td>
</tr>
<tr>
<td>3. Which of the following graphs describes best the number of Revolutionaries supporting the Revolution along its duration?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Which of the following sentences is more similar to the development of a Revolution over time?</td>
<td>To the speed used by a rocket to fly to the space</td>
<td>The interest accumulation in bank account</td>
<td>The spread of a recent news</td>
<td>a) and b)</td>
</tr>
<tr>
<td>5. Which pair of elements presented at each possible answer (a. to d.) is more similar to the relationship of the people joining the revolution and the number of people who don’t support it?</td>
<td>The relationship between water flowing out from the drain of a bathtub and level of water in the bathtub</td>
<td>The relationship between the juice filling a glass and the level of juice in the glass</td>
<td>The relationship between the people who go to the stadium and the soccer players in the team</td>
<td>a) and c)</td>
</tr>
<tr>
<td>6. The relationship between “the people joining annually the Revolution” and “those who are part of the revolutionary group” is similar to:</td>
<td>The relationship between the central American towns being conquered annually by the Aztecs and the total of towns in Aztec Empire’s care</td>
<td>The relationship between the peasant people who migrated to the cities after the Industrial Revolution and the people who lived in the countryside before the Industrial Revolution</td>
<td>The relationship between the people who annually were killed in the guillotine during the French Revolution and the number of people who supported the French Revolution</td>
<td>None of them</td>
</tr>
</tbody>
</table>

Table 3. Test Instrument
7. The relationship between “the possibility of convincing people of joining the Revolution” and “the number of people annually joining the Revolution” is similar to:

| The relationship between the probability of being a country liberated by Simon Bolivar and average lifetime of Simon Bolivar | The relationship between the probability of believing in the ideas of the reason supported by the Enlightenment Movement and the number of people supporting the Enlightenment annually between 1700-1789 | The relationship between the number of the Spanish conquistadores in America and the number of native people who died during the conquest of America | None of them |

8. The relationship between “the number of Non revolutionaries in a revolution” and the “number of revolutionaries in a revolution” is similar to:

| The relationship between people infected with HIV and the babies that annually are born with HIV | The relationship between people who are not aware of the World's news and People who are aware of the World's news | The relationship between people purchasing new products in the market and the quality of the new products | b) and c) |

9. Which of the following strategies might be applied by a Governor in order to stop a revolution and thus, to avoid the negative effects of it:

| To keep the people satisfy | To isolate the Revolutionaries from the Non Revolutionaries | To declare the Revolution as illegal | a) and b) |

10. What would happen if a Governor, with the attempt of stopping a Revolution, tries to arrest all those who look suspicious of making part of the revolution?

| The revolutionaries would reject those who might want to belong to the revolutionary party. | All those who do not support the Revolution yet would follow the rules of the Governor | The development of the Revolution would be slower along the time | a) and b) |

11. Which of the following strategies could be applied by a Governor in order to delay the development of a Revolution?

| To use advertisements in order to highlight the bad and cruel actions done by the revolutionaries | To keep quiet about the actions of the Revolution for not altering it | To kill some of the revolutionaries | b) and c) |

In order to answer the following questions, please read the coming paragraph:

If the Governor of a country, which faces a Revolution, decides to grant one time some rights and privileges as citizens to those who do not want to join the Revolution, how would it affect the following items?

12. The number of revolutionaries supporting the Revolution:

| Less people would be willing to join the Revolution | People would take longer to decide joining the Revolution | The Revolutionary party is not radically affected by such policy | a) and b) |

13. The number of dead bodies during the Revolution:

| Every year, there would be less dead bodies than the previous year. | The number of dead bodies would be the same | The deaths would be less that otherwise would have been | d. a) and b) |

14. The development of the Revolution along the time would be:

| Slower | Faster | The same | Does not have anything to do with the policy

Table 3. Test Instrument
another situation that may unfold in the same way than revolutions over time. Questions number 3 and 4 belong to this group.

The last questions intended to measure the application of the understanding not only of the structure underlying the French revolution development, but also the understanding of the behavior over time of the populations involved in such revolution. These questions are the “what would have happened if…” type, referring to forecasting and thinking about hypothetical scenarios based on the understanding of the structure and the behaviors underlying the case study. Questions 9-14 belong to this type of questions.

All set of questions required different cognitive skills. Questions in the groups of behavior and structure may be easier answered by students than what the last group of questions can be. In the structure based questions the main requirement had to do with identifying constituent parts and functions of a concept. In the behavior questions it was demanded the identification and relation between parts and function of a process. While the last group of questions had to do with making an assessment of elements, relationships, values and effects. The latter process shows a more difficult process for the students to perform correctly. The skills required per groups of questions are determined based on Bloom’s Taxonomy16 (Angelo & Cross, 1988)

Even though the aim of each question is to measure different levels of understanding of revolutions, there is still chance for the students to answer them properly without having the expected understanding required for the question.

The test was applied as pre test and post test, thus results due to the treatments’ application may be compared.

3.5 Measures of Performance

Both treatments, the teaching method and the experimental experiences, represent the independent variables of this experiment in that they are controlled by the experimenter. The application of these variables determined the students’ performance, in other words, the dependent variables. The dependent variables are the response variables, which are given by the performance of the students in both tests after receiving the different treatments.

Assessment of students’ performance has been done by two different measures: Students who improved per group (SWI), and Effective Improvement (EI). The first measure talks about how wide the effect of the treatment was on the students and excludes the amount of improvement per student. The second measure shows how much improvement of the maximum gain17 based on the pre test scores is reached by the students. In this measure, not only the amount of improvement is considered per student, but also such improvement is contrasted with student’s learning potential. The benchmark to be reached by the students is an EI that equals the learning potential.

16 Benjamin Bloom created this classification of forms or levels of learning. It identifies three domains of learning: cognitive, affective, and psycho-motor, each of which is organized as a series of levels or prerequisites. The cognitive domain is the one used for this thesis’ purpose. From the lowest to the highest category it is defined as: knowledge, comprehension, application, analysis, synthesis, evaluation (Businessballs, 2006; Angelo & Cross, 1988).

17 Maximum possible gain is defined as Learning Potential = (100-Correct Answers % in the Pre test)
<table>
<thead>
<tr>
<th>Measure</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students who improved (SWI)</td>
<td>Total Students per group whose Absolute Gain is positive/ Total number of students per group</td>
</tr>
</tbody>
</table>
| Effective Improvement (EI) | • If Total Score Post Test > Total Score Pre Test: Absolute Gain/(100 - Correct Answers % in the Pre test)
• If Total Score Post Test < Total Score Pre Test: Absolute Gain/ Correct Answers % Pre test |

Table 4. Measures used to calculate improvement in the performance of students

These two measures of performance have been used in both the full test and the groups of questions defined in the previous section. Measuring students’ improvement in the full test leads to have an overview of their general performance, while knowing how their performance was along the groups of questions reveals were such improvement is located. Strengths of SD and CONTROL groups in the understanding of revolutions can be identified through the analysis per group of questions.

The benchmark in the performance per group of questions is given by consistent improvement in the three groups. When students improved only in one group of questions, the performance is not considered as a better one. However, if they show better performance in all groups of questions their improvement turns consistent and reveals that there was less likelihood of answering the questions by guessing. Thus, knowing the importance of the questions, in which students improved, provides a complementary tool to determine whether or not SD groups had better performance than the CONTROL groups.

Even though all questions demand certain knowledge of SD, it is straightforward to all students to answer correctly questions 5-7, 1, 8, and 3 after either the CONTROL or SD instructional methods were presented, though SD groups are more skilled to answer them more correctly. However, questions 4 and 9-14 are more demanding even to the students who went through the SD treatments due to understanding of dynamics of revolutions is required.

Besides the independent variables, some uncontrollable and immeasurable ones influenced as well students’ performance during the experiment. The main nuisances were the finalization of the scholar year at the same time than the experiments’ application, and the cognitive training some students had during the first semester of 2006 to pass the final examination for graduating. Regarding the first one, students from all grades in the school were experiencing high load of tasks and exams to be done in order to finish the year properly. Some students had more exams than others because they did not present them on time. Therefore, to diminish the effect of this nuisance, the students for the experiment were picked from the bunch of students who did not have such great pressure and stress as those who had exams left. This helped to have on average the same level of stress and cognitive load on the students. Regarding the latter nuisance, not much was to be done to diminish its effect, due to absence of chances given by the school to mix those students, who received training for specific exams, with the rest of the students who did not receive any training of this kind.
Emotional and social differences in students had a diffusion effect (nuisance) on their performance in the experiment, which unfortunately were not susceptible to be controlled somehow by the design itself.

3.6 Hypotheses

The following hypotheses are intended to test whether SD is a better method to enhance understanding of history as a disciplinary approach. Both perspectives from which the research question is approached, students with and without previous SD knowledge, will be tested by making use of such hypotheses as well. Hence, there are two sub-sets of hypotheses, which will use the measures of performance to be tested and give answer to the research question.

Hypotheses 1: Regarding groups with different teaching method\(^{18}\) and the same experimental experience\(^ {19}\)

SIW Null Hypothesis: There is no significant difference in the SWI of groups who were taught with different teaching method but assisted to the same experimental experience.

\[
H_{0,SWI}: \text{SWI}_{SD1} = \text{SWI}_{CONTROL1} \\
H_{0,SWI}: \text{SWI}_{SD2} = \text{SWI}_{CONTROL2}
\]

EI Null Hypothesis: There is no significant difference in the EI of groups who were taught with different teaching method but assisted to the same experimental experience.

\[
H_{0,EI}: \text{EI}_{SD1} = \text{EI}_{CONTROL1} \\
H_{0,EI}: \text{EI}_{SD2} = \text{EI}_{CONTROL2}
\]

Hypothesis 2: Regarding groups with the same teaching method and different experimental experience

SIW Null Hypothesis: There is no significant difference in the SWI of groups who took the same teaching method but assisted to different experimental experience.

\[
H_{0,SWI}: \text{SWI}_{SD1} = \text{SWI}_{SD2} \\
H_{0,SWI}: \text{SWI}_{CONTROL1} = \text{SWI}_{CONTROL2}
\]

EI Hypothesis: There is no significant difference in the EI of the students who took the same teaching method but assisted to different experimental experiences.

\[
H_{0,EI}: \text{EI}_{SD1} = \text{EI}_{SD2} \\
H_{0,EI}: \text{EI}_{CONTROL1} = \text{EI}_{CONTROL2}
\]

\(^{18}\) Either the Conventional or SD teaching method
\(^{19}\) Either the First Experimental Experience or the Second Experimental Experience
All hypotheses will be tested using a two-tailed test with a level of significance equal to 0.0520.

3.7 Sample Selection Process and characteristics of the sample

The experiments were run in the Fray Rafael de la Serna School in the city of Medellin, Colombia, during the first two weeks of November, 2006. In Colombia the scholar year goes from late January until late November. Thus, the time of the year in which the experiments were done was crucial in determining the availability of the students who could be subjects under study. During the last month of school, all students are required to take final exams, and for those students, who did not perform excellent along the year, several assignments are required to be handed in as well. Therefore, students who did well the whole year were under less pressure than those who had to repeat some tasks in which they did not do well.

According to this, the Principal of the school decided to provide the students required for the experiment, from those students who only had to present exams and few assignments left. Students made part of 8th, 9th, 10th and 11th grades21, whose age ranged between 15 and 17 years. Thus, 30 students were assigned to each group. Table 5 describes the characteristics of the sample size per group.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>SD1</th>
<th>CONTROL1</th>
<th>SD2</th>
<th>CONTROL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Students in Grades</td>
<td>-8 Students from 9th grade</td>
<td>-10 Students from 8th grade</td>
<td>-5 Students from 9th grade</td>
<td>-4 Students from 8th grade</td>
</tr>
<tr>
<td></td>
<td>-22 Students from 10th grade</td>
<td>-20 Students from 11th grade</td>
<td>-25 Students from 10th grade</td>
<td>-26 Students from 11th grade</td>
</tr>
<tr>
<td>Students' Age</td>
<td>15-17 years old</td>
<td>15-17 years old</td>
<td>15-17 years old</td>
<td>15-17 years old</td>
</tr>
<tr>
<td>Female Population</td>
<td>0%</td>
<td>13%</td>
<td>0%</td>
<td>13%</td>
</tr>
<tr>
<td>Students repeating the grade</td>
<td>7%</td>
<td>3%</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>Day Time for the experiment</td>
<td>Morning</td>
<td>Afternoon</td>
<td>Morning</td>
<td>Afternoon</td>
</tr>
<tr>
<td>Grades in Social Sciences</td>
<td>Outstanding</td>
<td>Outstanding</td>
<td>Outstanding</td>
<td>Outstanding</td>
</tr>
</tbody>
</table>

Table 5. Categories according to the type of question

Students from the 11th grade were selected to make part of the CONTROL groups because the experimental sessions were less than the ones designed for the SD groups. In addition, the 11th grade is the last grade of school in Colombia, thus, the students had more tasks to do in order to get the graduation on time. The sample size for CONTROL groups was complemented with students of 8th grade. In contrast, students from the 10th grade were not waiting for any graduation, thus, they had more availability to go through longer experimental sessions, and so, they were chosen for the SD groups. The sample size was complemented with students from 9th grade.

20 In Appendix IV the alternative hypotheses for each null hypothesis are presented.

21 In the school each grade had two different groups: the 11th grade had group 1 and group 2. Likewise for the 10th, 9th, and 8th grade.
Students’ population was distributed between women and men: 93% of the students were men and only 7% were women, due to the school had a low feminine presence. Whereas, four students of the 30 in each CONTROL group were women, none was present in the SD groups.

Furthermore, within the population per group there were some students who were repeating the current grade. In detail, SD1 group had 1 student doing for the second time the 9th grade and 1 repeating the 10th grade, SD2 and CONTROL1 groups had 1 student each doing the same grade for the second time, and the CONTROL2 group had none repeating the scholar year.

The different sessions of the experiment were applied during the first hours of the scholar day (morning) for the SD groups and during the last hours of the scholar day (after lunch break) for the CONTROL groups.

Since it was not possible to elaborate a full random process to select the students, one of the factors that helped determining certain homogeneity in the initial conditions of all groups was the grades of the students in the field of Social Sciences and History. The grades of the students per group were averaged out and then compared. All four groups had an average grade of “O-Outstanding (above average)” in such subject, thus, despite all the differences between groups, they shared certain homogeneity and equal initial conditions to perform the experiment.

Another important factor to be mentioned is the discipline and attitude of the students towards learning activities. Three of the four groups presented similar behavior regarding the attention paid and the attitude to perform those scholar demanding tasks. SD1, CONTROL1 and CONTROL2 groups were undisciplined and disobedient, noisy and few attempting to the scholar activities in general. Those students are used to receive ticking off by the teachers of the school, who are the same used to tell them off often. In contrast, the discipline and attitude of the SD2 group is rather positive oriented to new scholar tasks. They get easily concentrated and motivated by new things to do, thus, teachers do not give ticking off regularly. Thus, since most of the students were undisciplined, a teacher was accompanying each experimental session, in order to establish authority and order in the classroom. However, the teachers were not allowed to interfere at any stage of the experiment.

As it was stated previously, the students of the 11th grade who participated in the CONTROL groups were finishing the last year of school, in which all students must take official exams measuring their knowledge gained during the 11 grades of school life. This exam is relevant in the sense that it is the first admission criterion that Colombian universities consider for conceding places for the students and so, it is enough reason for the students to get training in such exam along the previous months to the exam in order to perform well at it. Both 11th grades groups had special training to perform well in such exam and to review the most important issues they were taught in the school. However, most of the questions of this test are the rote knowledge type, in which the knowledge is required to be repeated rather than to be understood and to be applied. Hence, these students gained some training to learn how to resolve such

22 All four groups presented in average a grade of “Outstanding (above average)” among a qualitative scale in which the highest grade is E= excellent, followed by O= Outstanding, A= Acceptable, D= deficient, and I= insufficient.
questions and how to recall the knowledge. Therefore, this special training is expected to help these students perform well at the lowest type of question in the test. However, this training is not expected to have influence on the performance of these students on the highest type of question, mainly because this test is the transfer knowledge type and its demands result much less susceptible of being overcome by training in answering certain types of questions rather than by understanding the subject itself.

Despite Vernon Smith’s precepts, in educational experiments as the present one, such precepts do not apply to direct students’ performance and motivation. In an experiment of this kind, rewards are provided by the innate satisfaction of the task itself rather than by an extrinsic reward such as money. Competence and autonomy are two senses increased by participating in this experiment and are the Responsible of driving the motivation and performance of the students. Furthermore, since extrinsic rewards such as monetary rewards can undermine intrinsic motivation of students, students in this experiment were not stimulated by extrinsic (monetary) rewards but with the task itself (Deci & Ryan, 2000). The participation in the experiment was compulsory rather than voluntary according to any external reward. In addition, only the privacy Vernon Smith’s precept has been applied to this experiment, in which students did not have information about the performance of the other students nor of the other groups.

3.7.1 Logistic issues

The experiments were run in computer based format. Thus, different computer labs with more than 30 computers were provided by the school to perform the experiments at their place. Every student possessed personal computer tools to execute the slideshow (either SD or Conventional one), which was set beforehand. Once the students went in the computer lab, they were arranged by alphabetical order in order to avoid being distracted by external factors. They received the instructions about the experiment and were told about its objective and what was expected from them with the activity. At this moment, they could start going through the instruction by their own.

In the case of both SD groups, the introductory session to SD required the organization of a conference room with projector and microphone. Likewise, such a room with such material was required for the in-service training with the teachers.

Since the experiments were run in November, time in which the author was already in Norway, a bachelor student from the author’s home university and with previous SD knowledge, was trained to run the experiments on behalf of the author. Exhaustive training and instructions during the summer 2006 were given to the trainee through performing a pilot experiment in three different schools of Medellín, Colombia. The trainee possessed then, the skills required to perform such task. The main duties of the

23 Vernon Smith presents different precepts which constitute a proposed set of sufficient conditions for a valid controlled microeconomic experiment, which have to do mainly with the control and measurement provided by instruments as monetary rewards. Thus, precepts such as non-satiation, saliency, dominance, privacy and parallelism explain how the performance of a subject who is presenting an experiment is determined by not only the amount of the rewards but also by the way in which they are distributed (Smith, 2002 & 1982).

24 In the section of the determinants of students’ performance the role of the intrinsic motivation of the task on students’ performance will be discussed.

25 The author’s home university is Universidad Nacional de Colombia, Sede Medellín.

26 Further information about the pilot experiment is available in the Appendix V.
trainee were dealing with the Principal of the school according the author’s instructions, organizing the logistics, guaranteeing the installation of the appropriate instructional methods to the groups, providing the pre and post tests, and teaching in verbal format the introductory session to both SD groups.

The entire experimental design used in these experiments was based on the learned lessons from pilot experiments carried out in Colombia during the summer 2006. With the purpose of describing how those lessons helped improving the current experimental design, they are reported in Appendix V.

The experimental design presented in this section shapes students’ performance, thus, results are presented as follows.

4. Results

As mentioned in section 3, students’ performance has been assessed in both the full test and types of questions by making use of three different measures of performance: SWI and EI. As follows, the results of students’ performance are presented according to such measures.

4.1 Students who improved -SWI-

The SD1 group had better performance than the CONTROL1 group based on the SWI measure of performance for the full test. As table 6 shows, 53% of the students in the SD1 group had improved scores, compared to the 43% of students in the CONTROL1 group. For those groups in the second experimental experience, the differences are even greater: 60% of the students in the SD2 group had improved scores, compared to the 33% of students in the CONTROL2 groups who improved their performance. From the groups who were taught with SD and assisted to different experimental experiences, the SD2 group had more students with improved scores.

<table>
<thead>
<tr>
<th>First Experimental Experience</th>
<th>SD Method</th>
<th>Standard Method</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD1</td>
<td>SWI=53%</td>
<td>CONTROL1</td>
<td>P-value=0.447</td>
</tr>
<tr>
<td>Second Experimental Experience</td>
<td>SD2</td>
<td>CONTROL2</td>
<td>P-value=0.039</td>
</tr>
<tr>
<td>P-values</td>
<td></td>
<td>0.610</td>
<td>-</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P-value=0.610</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Two-tailed t-tests have been run to test the statistically significant differences of the hypotheses concerning SWI. A significance level of 0.05 was used to test the hypotheses. For the groups in the first experimental experience, the better performance of the SD1 groups was not statistically. However, the better performance of the SD2 was statistically different. Acceptance or rejection of the SWI null hypotheses depends

27 Raw data per question per student in both tests is available in Appendix VI.
28 The assumptions required to perform a t-test and ANOVA, normality and homoscedasticity, were totally fulfilled by the data. The data comes from a normal distribution and the variances among all groups are homogeneous. Detail about the assumptions is presented in the Appendix VII.
on whether the group had additional SD training. After additional training, the differences were large enough to justify rejection of the null hypotheses.29

4.2 Effective Improvement -EI-

Table 7 shows results of the full test according to the EI measure of performance. While the CONTROL1 improved more than the SD1 group in the case of the first experimental experience groups, the SD2 greatly outperformed the CONTROL2 group in the case of the second experimental experience groups. However, t-tests showed that there is no statistically significant difference at the 0.005 level in the performance of groups who were taught with different teaching methods and assisted to the same experimental experience.

In regard of those students taught with the same teaching method during different experimental experiences, clearly, the SD2 group outperformed the SD1 group. However, statistically significant difference in their performance has not been revealed by the t-test at the significance level of 0.0530.

<table>
<thead>
<tr>
<th>First Experimental Experience</th>
<th>SD Method</th>
<th>Standard Method</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD1</td>
<td>1.15%</td>
<td>CONTROL1</td>
<td>0.707</td>
</tr>
<tr>
<td>CONTROL1</td>
<td>4.23%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Experimental Experience</th>
<th>SD Method</th>
<th>Standard Method</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD2</td>
<td>10.96%</td>
<td>CONTROL2</td>
<td>0.114</td>
</tr>
<tr>
<td>CONTROL2</td>
<td>-0.92%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7. Effective Improvement –EI-

An often used measure of performance is the Absolute Gain (AG)31, which indicates how much students improved. Results with the AG for the four groups of students in this experiment are in the same direction than the results with the EI32. However, the EI provides a more trustworthy judgment of students’ performance because the number of improved questions is compared to the size of their learning potential. In addition, the AG excludes the improvement of many students because of the ceiling effects. Thus, in this assessment the EI is chosen as the measure of how much improvement the students got.

29 Since ANOVA provides considerably more flexibility in testing group differences when there are more than two groups to be compared and more than one independent variable (treatment) affecting dependent one, an ANOVA has been applied to test the statistical difference between all groups. The results agree with the t-tests’ results: There is no statistically significant difference in the SWI of all groups. The P value for the ANOVA test has been 0.182 and the F statistic is 1.65.

30 An ANOVA has been applied to test the statistical difference in the EI of all four groups. Results show that there is no significant difference between them. The P value is 0.425 and the F statistic is 0.938. Thus, this confirms what was found with the t-tests.

31 The Absolute Gain (AG) is defined as = (Correct Answers % Post test – Correct Answers % Pre Test)

32 In the case of the groups in the first experimental experience, the CONTROL1 outperforms the SD1, while the SD2 group greatly outperforms the CONTROL2 group in the case of the second experimental experience. The AG for the SD1 group is 1.7%, for the CONTROL1 is 5%, for the SD2 is 6.2%, and for CONTROL2 is -0.92. No statistically significant difference was found with the t-tests at the level of significance of 0.05.
4.3 Comparisons per groups of questions

The measures, SWI and EI, are utilized to test students’ performance per groups of questions as defined in section 3. The results support the main conclusions given from the EI and SWI in the full test. SD groups tend to outperform CONTROL groups, when more training with the SD method is given to students. Though, statistically significant difference is only found between groups in the second experimental experience.

Structure based questions revealed that more students in the SD1 group got –in average- more strength over the CONTROL1 group in understanding the structure underlying the diffusion process of a revolution. In contrast, CONTROL1 group demonstrated to have more students with great strength in the groups of questions of Behavior, and Policies and Forecasting. In regard to the EI, the CONTROL1 group is more outstanding in all groups of questions. Then, CONTROL1 students seemed to understand the behavior and the structures supporting dynamics of revolutions, so that, they could get insights about what kind of policies they should apply when desiring to change the course of a revolution over time. However, statistically significant difference was not found in the performance of these groups with none of the measures of performance.

On the other hand, the SD2 group had the greatest amount of students with improvement (from all four groups) in the structure and behavior types of questions, which represent, at some extent, deep understanding of dynamics of revolutions and its transferability to other historical cases. Likewise, the EI for the SD2 group is once again the highest. In addition, based on the SWI the behavior questions were statistically better answered by the SD2 group, revealing an important difference in the performance of CONTROL and SD groups in the second experimental experience.

As follows the results per groups of questions are presented.

4.3.1 Structured based questions

Based on the SWI criterion, the SD groups outperform the CONTROL groups for the structure based questions. The SD1 group had 24% of students with improved scores, while CONTROL1 group had 19%. Though, statistically significant difference with the EI is found between the performances of both SD groups in the behavior questions. Thus, students from the SD2 group improved in average more than what the SD1 did in this type of question. In contrast, though a lack of statistically significant difference in the performance of both groups for the questions concerning Policies and Forecasting, the SD1 performance was better than the performance of the SD2 group for both measures SWI and EI.

Some differences are present among groups with the same teaching method. With both the SWI and the EI, the SD2 group exhibits outstanding performance over the SD1 group in the structure and behavior types of questions. Statistically significant difference with the EI is found between the performances of both SD groups in the behavior questions. Thus, students from the SD2 group improved in average more than what the SD1 did in this type of question. In contrast, though a lack of statistically significant difference in the performance of both groups for the questions concerning Policies and Forecasting, the SD1 performance was better than the performance of the SD2 group for both measures SWI and EI.
applied. Likewise, the performance of both SD groups is rather similar in this group of questions, which responds to the expectations given the SD treatments to both groups.

In the case of the EI measure of performance, the groups in the first experimental experience improved in average the same in the structure based questions. Thus, significant difference is not found with the t-test applied. In the case of the groups in the second experimental experience, the SD2 improved in average more than the CONTROL2 group, though statistically significant difference is not found after applying the t-test. Similarly, for both groups taught with the same teaching method, the improvement is much higher in the case of the SD2 group, while there is not statistically significant difference in their performance.

<table>
<thead>
<tr>
<th>Structure</th>
<th>SD Method</th>
<th>Standard Method</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Experimental Experience</td>
<td>SD1</td>
<td>CONTROL1</td>
<td>SWI P-value=0.078 EI P-value=0.839</td>
</tr>
<tr>
<td></td>
<td>SWI=24%</td>
<td>SWI=19%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EI=6%</td>
<td>EI=7%</td>
<td></td>
</tr>
<tr>
<td>Second Experimental Experience</td>
<td>SD2</td>
<td>CONTROL2</td>
<td>SWI P-value=1 EI P-value=0.266</td>
</tr>
<tr>
<td></td>
<td>SWI=25%</td>
<td>SWI=21%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EI=15%</td>
<td>EI=7%</td>
<td></td>
</tr>
<tr>
<td>P-values</td>
<td>SWI P-value=0.647 EI P-value=0.164</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 8. Performance in Structure based questions

4.3.2 Behavior based questions

The SWI and EI reveal wider differences in the performance of the groups in the behavior based questions. In the case of the groups in the first experimental experience, CONTROL1 outperforms SD1 with both measures of performance. However, even though, the SD1 group presented a deterioration of its performance with the EI, there was not statistically significant difference in the performance of both groups based on t-tests, nor with the EI neither with the SWI. In the case of the groups in the second experimental experience, the difference in the performance between SD2 and CONTROL2 groups is wide enough to cause statistically significant difference based on the SWI measure. Thus, students in the SD2 group tended to answer more properly those questions based on the understanding of the behavior of revolutions. In the case of the EI, the difference in the performance of both groups is still wide and the SD2 reveal greater improvement than the CONTROL2. However, statistically significant difference is not found.

Both SD groups presented huge differences in the performance of the behavior based questions. SD2 group appears to have more students improving their performance (SWI) and gaining greater improvement in the post test (EI). The difference with the EI measure of performance is higher, which leads to have statistically significant difference between both groups.
4.3.3 Policies and Forecasting questions

Students from SD and CONTROL groups had almost the same performance with both measures of performances in this group of questions. In the case of the groups in the first experimental experience, CONTROL1 group outperformed SD1 group with both the SWI and the EI. However, there is not statistically significant difference in their performance after applying a t-test. In the case of the second experimental experience, the SD2 group had more students improving their performance than what the CONTROL2 had. However, the difference is not statistically significant. Likewise, the SD2 group presented fewer deterioration of its performance with the EI than the CONTROL2 group, though there is no statistically significant difference in their performance with the EI measure.

For both SD groups, the performance is in average the same for the SWI, though the SD1 outperformed the SD2 for the first time. While SD1 had 17% of students with improved scores, the SD2 group had 14%. However, with the EI measure, the SD2 shows a deterioration of its performance, while the SD1 group improved 2.2%. Statistically significant difference in the performance of both groups is not found with any of the measures of performance.

<table>
<thead>
<tr>
<th>Policies and Forecasting</th>
<th>SD Method</th>
<th>Standard Method</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Experimental Experience</td>
<td>SD1 SWI=17% EI=2.2%</td>
<td>CONTROL1 SWI=22% EI=3.9%</td>
<td>SWI $P_{value}=0.561$ EI $P_{value}=0.698$</td>
</tr>
<tr>
<td>Second Experimental Experience</td>
<td>SD2 SWI=14% EI=2.8%</td>
<td>CONTROL2 SWI=12% EI=-5.6%</td>
<td>SWI $P_{value}=1$ EI $P_{value}=0.671$</td>
</tr>
<tr>
<td>P-values</td>
<td>SWI $P_{value}=1$ EI $P_{value}=0.406$</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 10. Performance in Policies and Forecasting questions

4.4 Controlling for Other Influences

Results given the by the SWI and the EI in the full test and in the groups of questions suggest that the SD teaching method enhances the understanding of history if students have more training in that method. Using the SWI measure of performance, for
example, the SD2 group outperformed more convincingly the CONTROL2 group than the SD1 outperformed the CONTROL1 group. For the EI measure, the SD1 group did not outperform its CONTROL group, while the SD2 did. Furthermore, the SD2 outscored the SD1 group on both measures of performance. While these results are suggestive, the results of the statistical significance t-tests do not provide strong confidence.

Factors other than the teaching method applied to students may have influenced students’ performance, and may have interfered in the perception of the absolute impact of the teaching method on the groups’ performance.

The conditions and circumstances of the student selection and group assignment process suggest that that process was not random. The absence of a random process in students’ assignment to each group represents an important issue affecting students’ performance, mainly because guarantee of the same initial conditions for all groups was not given. Then, students may have had different capabilities before the experiment was carried out. The pre test applied to students one week in advance of the experiment was intended to measure students’ initial capabilities, which were expected to be homogeneous along all groups. However, all groups showed different performance in the pre test, and with it, they revealed different initial capabilities to run the experiment. Thus, an important factor to be considered in students’ performance is given by the prior capabilities that students had before the experiment was carried out.

Hence, it would be expected a positive correlation between scores in the pre test and in the post test and that is seen in the data with a correlation coefficient equal to 0.44 for such relationship. With respect to the measures of performance, SWI and EI, a negative correlation with the pre test is expected because the pre test scores are subtracted to obtain both measures. Again, the data support that assumption with correlations coefficients of -0.51 between the SWI and the pre test scores, and of -0.37 between the EI and the pre test scores. It is necessary, therefore, to try to control statistically what was not controlled effectively by the group assignment process. Therefore, a multiple regression analysis was performed. This analysis includes not only the teaching method but also the students’ prior capabilities as explanatory variables of the performance. Controlling other effects on students’ performance different from the teaching method is the main attempt of the multiple regression analysis.

In the following equation, Y represents students’ performance and is a function of the teaching method and the pre test scores (given in %). Coefficients b and c indicate the relationship between students’ performance and each explanatory variable. The coefficient “a” represents the intercept or constant and the errors are also considered in the model.

\[Y = a + b \times \text{Teaching Method} + c \times \text{Pre Test Scores} + \text{error} \]

The inclusion of the pre test scores as an explanatory variable of students’ performance leads to ensure that any given effect on the performance is not due to some effect of the prior capabilities but due to the teaching method. In other words, the linear regression helps hold the pre test scores constant, while the teaching method influences the

33 The SD1 group answered correctly 45% of the questions in the pre test, the CONTROL1 group answered 41% of them, SD2 51%, and CONTROL2 48%.
performance according to the SD exposure received by students. Thus, the teaching method per student is defined as a number referring to the number of days of SD training received during the experiment. Thus, students in the SD1 group received a number 1 in the method variable due to one day of instruction based on SD, students in the SD2 group received a number 2 due to two days of instruction based on SD, and students in both CONTROL groups received a zero because they had no instruction based on SD.

All 120 students participating in this experiment are considered as a full group for the multiple regression analysis.

The performance is given by the two measures of performance previously used, the SWI and the EI. Thus, there are two multiple regressions to run:

\[\text{SWI} = a + b \times \text{Teaching Method} + c \times \text{Pre Test Scores} + \text{error} \quad (1) \]

\[\text{EI} = a + b \times \text{Teaching Method} + c \times \text{Pre Test Scores} + \text{error} \quad (2) \]

After applying the multiple regression analysis the values for the coefficients are given. In the case of the first (1) equation, the coefficients determine the equation as follows:

\[\text{SWI} = 1.111 + 0.159 \times \text{Teaching Method} - 0.016 \times \text{Pre Test Scores} + \text{error} \quad (1a) \]

The hypotheses regarding having coefficients without impact on students’ performance (coefficients equal to zero) are rejected with a P-value of 0.001 for the method and with a P-value of 0.000 for the pre test scores. As expected, the exposure to SD has a positive correlation with the SWI meaning that the more exposure to the SD teaching method, the higher SWI. Similarly, the pre test scores were expected to have a negative correlation with the SWI, because the more students did well in the pre test, the less reflected is their improvement in the SWI (measure based on the difference between post and pre tests scores).

Likewise, in the case of the second equation (2), the coefficients are certainly different from zero. Furthermore, the hypotheses regarding coefficients equal to zero are rejected with statistical difference in the case of the teaching method coefficients (P-value equal to 0.041), and the pre test scores’ coefficient (P-value equal to 0.000).

\[\text{EI} = 31.561 + 6.208 \times \text{Teaching Method} - 0.704 \times \text{Pre Test Scores} + \text{error} \quad (1a) \]

Similarly to the SWI case, the correlation between the teaching method and the EI was positive as expected, indicating that the more exposure to the SD teaching method, the greater the improvement gained by students. Accordingly, there is no wonder in the

34 The “number” representing the “amount” of SD training per group is certainly arbitrary. However, those numbers have been assigned in an effort to draw general conclusions about the impact of the teaching method on students’ performance. This numbering scheme implies a linear relationship between the number of days of SD training and the effect of such training, while in fact the effect is probably nonlinear and increases at a decreasing rate as more and more days of training are received.
negative correlation between the pre test and the EI. The higher the scores in the pre test, the less improvement the students can reveal through the EI (considering the nature of the equation, in which the nominator subtract the pre test).

Through the multiple regressions, the effect of the method on students’ performance could be isolated when taking into consideration, simultaneously, the effect of the students’ prior capabilities. Both regressions reveal, then, that the method of teaching history matters and that any observed effect of the teaching method on the performance is not due to the students’ prior capabilities but because of the method itself. The more exposure the students have to the SD method, the higher is their EI and the more students improved their performance. Statistical difference in the impact of the explanatory variable “teaching method”, for both measures SWI and the EI, evidences that certainly the SD has an important effect on students’ performance.

These results seem to be encouraging. However, there is a potential methodological problem in the fact that the pre test scores are being subtracted in both sides of equations 1a and 2a. Given the nature of the SWI and the EI equations, the results of the pre test are subtracted from the post test scores to calculate the improvement given by students. Thus, a more trustworthy way of calculating the impact of the teaching method on students’ performance must be based on the post test scores (%) as the performance variable (dependent variable), which is predicted by the teaching method and the pre test scores. The linear equation must be then:

\[
\text{Post Test Scores (\%)} = a + b \times \text{Teaching Method} + c \times \text{Pre Test Scores} + \text{error} \quad (3)
\]

This way of approaching the impact of the teaching method on students’ performance provides more conservatism and confidence on the results given by this test. Any effect of the teaching method on students’ performance will be more reliable given the fact that the pre test scores effect are not affecting both sides of the equation.

The results do not go far away from the conclusions provided in the two previous regressions. The coefficient for the pre test scores predicts statistically the post test scores of students. However, the level of statistical confidence resulting from this more conservative approach is at the 0.06 level, revealing a less strong effect of the teaching method on students’ performance than what was revealed with equations 1a and 2a. Nonetheless, the P-value for rejecting the hypothesis is rather close to the significance level of 0.05, which shows results almost as strong as those mentioned before. Thus, if the sample size were larger, the power of the effect of the teaching method on students’ improvement will be stronger, and the level of statistical confidence might meet that customary target level. The effect of both explanatory variables on students’ performance is positive, indicating as expected that the higher the scores in the pre test, the higher the scores in the post test. Likewise, the greater the exposure to the SD teaching method, the higher the score in the post test.

Important findings result from this analysis, in which the teaching method seems to be still a strong explanation of students’ performance, when keeping track of the effect of the students’ prior capabilities on their performance. Even though the

\[35\] In addition, the assumptions regarding normality of the residuals and dispersion of the residuals according to the teaching method are fulfilled with the linear regression for both measures of performance (SWI and EI).
implementation of the experiment may not have adequately randomized the effects of students’ prior capabilities, the multiple regression helps to control that influence. Thus, it was not possible to build randomly the groups for this experiment, it can be concluded that when controlling the initial conditions regarding the prior capabilities of students, the effect of the SD teaching method on students’ performance is positive and enhances students’ understanding of revolutions.

5. Discussion

Based on the SWI for the full test, the SD groups had more students improving in the post test than the CONTROL groups. However, while the CONTROL1 group outperforms the SD1 group, the SD2 is the group with the greatest EI not only from the groups in the second experimental experience but also from all groups. Statistically significant difference between the performances of the groups has been found only between SD2 and CONTROL2 based on the SWI measure.

In the case of the groups of questions, SD1 group showed strength with the SWI in understanding the structure underlying the diffusion process of a revolution, and in using such understanding for interpreting other events that behave similarly. In contrast, the CONTROL1 group did better with the SWI in the questions based on behavior of revolutions and in the questions concerning policies and forecasting questions. In addition, the group did better based on the EI in all groups of questions. However, there is no statistical difference in the performance of both groups. The SD2 clearly outperformed the CONTROL2 group in all groups of questions and with both measures of performance (SWI and EI). Statistical difference in their performance is found with the EI in the groups of questions based on behavior of revolutions. Similarly, the SD2 outperformed the SD1 group in the structure and behavior based questions with both measures of performance. In addition, questions regarding behavior had statistical difference in the EI of both SD groups.

The performance of the SD over the CONTROL groups differs depending on the measure of performance, which suggests some uncontrolled effects that may have caused the performance to differ. Thus, in an effort to control effects that were not controlled in the assignment process of the students to each group, the multiple regression analysis has been carried out in light of providing a stronger point of view to identify the role of SD in the learning process of history. In this case, the consideration of the pre test scores as an explanatory variable of the performance of the students helped isolating the effect of the teaching method on students’ understanding of revolutions. Thus, the perception of the absolute effect of the method is more clearly understood. Results suggest insights in the same direction than those provided by the SWI and EI in both, the full and groups of questions. The method for teaching history matters and students’ understanding of revolutions seems to be enhanced by the SD teaching method if students have more training in the method. The longer is the exposure of students to the SD teaching method, the better is their performance in the

36 The assumptions regarding normality of the residuals and dispersion of the residuals according to the teaching method are fulfilled with the linear regression for the Post Test Score (%). This fact strengthen the reliability of the linear regression as test for measuring the impact of the teaching method on the performance of students.
post test. In addition, this analysis also reveals the importance of considering the initial students’ capabilities in light of interpreting the results. Thus, any observed effect of the teaching method on the performance of students is not given by students’ prior capabilities but by the method itself. Despite absence of statistical significance in the relevance of the teaching method on students’ performance, the nearness of the P-value builds confidence on the outcomes, especially when they strength the insights given already by the measures of performance SWI and EI in the full test and groups of questions.

Conclusions based only on either the SWI or the EI for the full test or in groups of questions do not explore totally the effectiveness of the SD teaching method on students’ understanding of revolutions and their dynamics. Likewise, conclusions given from the multiple regression analysis provide more enhanced insights about the effectiveness of the teaching method when they are not analyzed in an isolated way. Thus, rather than focusing the attention on one single measure, it is more important to keep an overview of how many students improved per group, how much the group improved, on which groups of questions this improvement was concentrated, and how strong is the impact of the teaching method on students’ performance. At the end, it will be possible to draw finally whether SD enhances the understanding of revolutions.

Certainly, SD2 group presented the greatest SWI. The performance of SD2 students’, based on the SWI, is statistically different from its CONTROL group. In addition, the SD2 group improved more questions in the full test than what the rest of the groups did (high EI). SD2 students’ improvement was focused consonantly on questions based on the understanding of the behavior of revolutions and the structure underlying such behavior. The performance of the groups in behavior questions is statistically different from the CONTROL2 group and the SD1 group also. Furthermore, the amount of SD training received by students seems to be a good explanatory variable of the students’ performance. Thus, since students in the SD2 group received the largest amount of SD training in this experiment, their good performance may have been given by the effect of the method itself rather than by other effects such as students’ prior capabilities. Reliability on SD2 accurate performance, as a result of the effectiveness of the SD teaching method, is increased then by the suggestions provided by the multiple regression analysis. Thus, given the consistency of the results of all views of students’ performance, it can be concluded that students in the SD2 group did not improve accidentally, and that SD may be considered as a proper tool for enhancing students’ understanding of history, specifically of revolutions.

The SD1 group outperformed the number of students who improved in the CONTROL1 group, especially in the structure based questions. However, the CONTROL1 group outscored the SD1 group with the EI applied not only to the full test but also to the groups of questions. In accordance with the expected effects of the teaching method on both groups in the first experimental experience, it can be seen that performance of students in both groups seems not to be explained solely by the teaching method applied. As a first attempt to control other various effects, the students’ prior capabilities have been considered as an important effect influencing students’ performance and the impact of the teaching method may be analyzed more confidently. Statistical significance of the SD method is not found. However, since the P-value is still close to the significance level, it is possible to conclude that the amount of SD exposure received by students has certain effect on students’ performance. Students without
exposure to SD teaching method (CONTROL groups) are tended to have poorer performance than those who have had at least one day of SD based instruction. Nonetheless, the teaching method seems not to be a good explanatory variable for the outstanding performance of CONTROL1 group in comparison to the SD1. Thus, some other uncontrolled effects, different from the students’ prior capabilities, must have influenced students’ performance.

According to the treatments applied to each group of students, it was expected to find in the results of this experiment that those students, who were taught with the SD teaching method and participated in the second experimental experience, would have the best performance from all the groups in all measures of performance. Similarly but less significant, the performance of the students who were taught with SD during the first experimental experience was expected to follow the same direction than the performance of the SD2 group. None of the Conventional groups were expected to be outstanding. However, as seen before, the results differ at some extend from the expected ones, mainly in the groups in the first experimental experience. Factors that have influenced students’ performance need to be discussed in light of the effectiveness of the SD method of teaching history. Factors such as the expected better performance of the SD1 group and the outstanding improvement of the CONTROL1 group over the SD1 cannot be overlooked.

There were factors, controlled within the experiment, that were expected to delimit groups’ performance. The experiment design, the treatments, the instructional design were all factors that carefully defined the learning process and the understanding of the students about the revolutions over time. The research method and the experimental design were established in a way that students could show the outcome of being under certain type of treatments. Besides, content of the French revolution was provided to the students in the form of instructional methods and facilitated the chances for the students to show the skills acquired during the experiment given certain type of applied treatment. Furthermore, despite absence of a random students’ assignment process to the groups, all four groups were statically homogenous and their average performance in the subject of social sciences was rather the same. At some extent, groups were under similar conditions to be guided with the treatments towards the expected results.

Students from the SD1 group were under the effect of the SD teaching method treatment and First Experimental Experience treatment. The introductory session to the SD basic concepts, the Infection game, the debriefing using the diffusion model, and the instruction about the French revolution from an SD point of view, were determinants of the students’ scores. This group was taught about the concept of diffusion of a disease of a revolutionary population over time. S&F structures were the essential tools to place in a structured pattern the general understanding of revolutions and their dynamics over time. Furthermore, behavior over time was presented as a result of the interaction of the elements in the S&F diagrams, so that students were able to understand such behavior rather than merely recall it. However, even though SD1 students were taught about all mentioned above, the time for understanding this approach was few. Thus, this group was expected to have improved performance in the structure and behavior groups of questions. Some of these expectations were fulfilled. With the SWI, the SD1 group outperforms the CONTROL1 group in the structure questions.
SD students in the second experimental experience had as great strength the fact that they already were in touch with the SD tools, mainly with the Diffusion model and S&F diagrams, in order to understand the importance of Civics. These students studied the same diffusion structure from three different fields of study: infections, civics and French revolution. Therefore, they were more skilled than the rest of the students to improve their performance in the three groups of questions. Indeed, this group has fulfilled most of the expectations in the sense of being rather outstanding not only in the full test, but also in types of questions based on the structure and behavior of revolutions. In the last group of questions, the SD2 group was not the most outstanding group; however, its performance in such group was not bad, meaning that some of the students who improved in the other groups confirmed their understanding in the Policies and Forecasting group of questions.

In contrast, students from the CONTROL groups were taught about behavior of revolutions over time and the way the French revolution was unfolded. However, they were not taught about the way to understand such behavior and the reasons why the revolutionary population in the French revolution developed in the way it did. Thus, these groups were expected to answer properly the questions of the test in which recall of behavior of revolutions was required. In the case of the CONTROL2 group, this group did not even perform well in such questions. Nonetheless, it was not expected a greater performance of CONTROL1 group in comparison to the SD1 group. Certainly, CONTROL1 group outperformed the SD1 group in behavior and policies and forecasting questions.

Thus, besides the treatment effects, some more causes (unmeasured effects) may have influenced students’ performance. Specifically, other factors different from the teaching method may have, in some cases, undermined or amplify students’ performance. Issues regarding implementation of the experiment (mainly duration), motivation, and cognitive loads could have undermined the possible performance of SD groups, especially the SD1 group. Furthermore, such effects may have caused the results of the CONTROL1 group to be better in categories in which it was not expected. Figure 23 shows the presence of the various effects on students’ performance. It describes, as stated previously, that measured factors such as the teaching method and the students’ prior capabilities have a positive influence on students’ performance. The more training the students receive with SD, the more enhanced their understanding of revolutions is. Likewise, the higher the pre test scores of students, the better their performance in the post test. In addition, the figure shows that other unmeasured factors may have influenced students’ performance but since those factors were not controlled by the experiment, their type of impact on the performance is not known numerically.
Thus, as follows a description of those unmeasured effects is presented according to the way the intervened in the experiment, in an attempt to determine their role and influence on students’ performance.

a. Duration of the experiment

The duration of the experiments’ sessions is one of the factors that limited the SD groups’ chance of maximizing the benefits from the SD teaching method. Specifically, 2 hour sessions are not enough to understand the concepts of SD. Even people who have received training in SD take time until they can understand how the process of accumulation occurs, how the feedback loops are given, and what an S&F diagram represents. Learning to think systemically and to understand changes over time implies more practice. Thus, it is very likely that SD groups did not achieve exactly what was expected from them because in few sessions they could not get the concepts. This must have certainly undermined the performance of students in the SD1 group. The evidence for this is the fact that the SD2 group showed more enhanced performance after going through 3 day sessions rather than just two. This fact leads to think that having longer time for introducing the SD teaching material to the students is essential for them to respond to the benefits of the teaching method, and with this a more enhanced improvement in the understanding of revolution may be is given.

b. Motivation

A student could be motivated to learn new skills because he or she understands their potential utility or value, or because learning the skills will yield a good grade and the privileges a good grade affords. According to Self Determination Theory (SDT)37
students can perform extrinsically motivated actions with resentment, resistance and disinterest, or alternatively, with an attitude of willingness that reflects an inner acceptance of the value or utility of the task. In the first case, one feels externally propelled into an action; in the later case, the extrinsic goal is self endorsed and thus adopted with a sense of volition (Deci & Ryan, 2000). Extrinsic motivation is aimed to be achieved in school tasks by internalizing the goal of the activity and by understanding the potential utility on such task. Likewise in the present experiment, the task itself should have been motivating enough to be self internalized by the students in order to focus their will and disposition on learning about revolutions. Besides, instructional design and the people involved in the application of the experiment aimed to motivate the students as much as possible. However, other factors undermined the motivation of some of the groups (Deci & Ryan, 2000).

The scholar year in Colombia ends at mid November, time in which these experiments were run. Certainly, students were strongly motivated to accomplish all the goals they were required to do before the academic year ended. However, it is very likely that their motivation could not be strongly oriented into an activity that demanded from them to learn something extra during such critical academic period of time. Besides this factor, the students did not receive any kind of reward for participating in the experiment. Rather, they had to follow a compulsory activity given by the Principal of the school. Acceptance of the potential utility of such task was a tough process for the students, who at first tried to reject to go through more overloading activities different from the regular ones. Thus, relying only on the motivation that the instruction itself could provide to the students was not enough to ensure their best, especially because the students had many things to do alongside the experiments. This may have been essential in undermining the performance of all groups according to what was expected from those students.

The autonomy and the perceived benefits from the task are factors that promote the internalization and integration of the activity by the students (Deci & Ryan, 2000; Heckhausen, 1989). In the motivation through identification, the student has identified personally with the importance of the task and thus, accepted its regulation as his or her own. Studies have revealed that the more students are externally regulated, the less they show interest, value or effort in the tasks to be performed. The more autonomous extrinsic motivation, the more associated it is with greater engagement, better performance, less dropping out, higher quality learning, and greater psychological well-being. Thus, the fact that the scholar year was finishing and students had to focus their interest on more relevant tasks at the same moment, could have caused certain degree of demotivation on them, making more difficult the process of internalizing the goal of the experiment and to visualize its potential utility in the activity (Deci & Ryan, 2000).

Furthermore, the experiment and its goals were presented to the students some minutes before the pre test were applied to them. At the beginning of this test, the students were because it is inherently enjoyable, and extrinsic motivation, which refers to doing something because it leads to a separable outcome. Further information about Self Determination Theory (SDT) is available in (Deci & Ryan, 2000).

38 Since the Principal chose the students who participated in the experiment, they only had to follow what he wanted them to do.

39 The least autonomous form of motivation is the external regulation, in which some behaviors are performed to satisfy an external demand or obtain an externally imposed reward contingency. However, a more autonomous, or self determined form of motivation is regulation through identification.
told by a teacher about what was expected from them in the activity and what the importance of their performance was. Hence, each teacher was responsible for introducing these words to the students and for presenting the person in charge of applying the experiment. The role of the teacher on the students’ motivation on the experiment (and on its consequent internalization as a students’ personal interest) was rather important, and everything he said could have been a source of shedding interest or not on the students. With almost all groups, teachers kept faithful to present only what the experiment was about, however; when introducing the pre test and the experiments to the SD1 group the teacher bawl them out because they were still too energetic and noisy from the lunch break they took before. Right after, the teacher introduced the experiment and the pre test to be applied.

Cognitive Evaluation Theory (CET)40 argues, among other tenets, that a high level of motivation cannot be achieved when a few sense of autonomy is surrounding the task to be performed. Furthermore, not only tangible rewards, but also threats, deadlines, directives and competition pressure diminish motivation. Certainly, the teacher accompanying the SD1 group took out whatsoever motivation students could have had, after giving them a tick off. Thus, it is very likely that students mixed the teacher’s sermons with the sense of the experiment and thus, this single event could affect their performance, which did not entirely respond towards the expected goal. On the other hand, students from the CONTROL1 group were told about the experiment by the social sciences teacher, who indeed, told them anything else than the purpose of the experiment and what was expected from them. No berating, no ticking offs were given, and furthermore, students were already in social sciences class, which could make them relate the experiment to a subject’s task instead of an extra task to be performed at the end of the year. Thus, the task itself could be more internalized and so, a high level of extrinsic motivation arose, which explains the sometimes lower performance of the SD1 group in comparison to the CONTROL1.

c. Working Memory Limitations

When dealing with novel information the working memory41 has two severe limitations: its capacity and the duration that this information can remain in memory. All instructional methods requiring learners to deal with novel information must be processed by a structure that is minute in capacity and that retains the new information for no more than a few seconds. These limitations become successively less critical as familiarity increases (Sweller, 2005).

The French revolution was not an unfamiliar topic for the students; however, for those students whose teaching method was SD, the approach was indeed novel for them and provided lots of novel information about how the topic could be understood. System thinking, S&F diagrams, and understanding of behavior and structure, were just some of the novel issues students from the SD groups had to go through in order to understand the activity. The information presented was required to be recalled at any step further of the instruction. Both constraints of working memory, capacity and duration of the information, were violated. Capacity was overloaded by introducing so many SD concepts, required for the understanding of the entire instruction, in such a short period

40 Further information about Cognitive Evaluation Theory (CET) is available in (Deci & Ryan, 2000).

41 The working memory is the cognitive structure in which information is consciously processed (Sweller, 2005).
of time. Furthermore, the information was demanded to be recalled as long as the SD students went through the instruction, and so, the duration period for the information to be used was rather long. These factors may have undermined, especially, the effect of the treatments applied to the SD1 group, which were expected to enhance more students’ understanding about revolutions. The more practice acquired by the SD2 group with the SD approach gave the students the chance to have one day more of getting to know the novel information. Even though instructional methods for both SD groups were the same, the experience gained by the SD2 group, due to being part of the Civics’ experiment, let them understand better the novel information that were presented to them. Nevertheless, the entire learning potential that these students had was still far to be reached.

Instructional methods presented to SD groups failed in considering the working memory capacity, and added a rather high level of element interactivity42. Intrinsic cognitive load was inherent to the SD approach. Changing the way of approaching historical issues demands a great effort from students, especially when it is required from them to relate several elements introduced along the instruction for achieving a general understanding of the topic. Furthermore, extraneous cognitive load was presented in the need for the students to relate multiple sources of visual information, which all were essential for the understanding and were not intelligible in isolation. Thus, total cognitive load for the SD groups was rather heavy, which certainly undermined the performance of SD groups, especially of SD1 group that had less SD training.

On the other hand, students from the Conventional teaching method went through an instructional method that presented an approach of the topic that did not add complexity and novelty to the task. Extraneous cognitive load still is seen in this instruction because pictures, graphs and written texts were still present and were required to understand the topic. However, the total cognitive load of CONTROL groups was not as heavy as SD groups.

\textbf{d. CONTROL groups: Special training for the State exam}

Both CONTROL groups went through the final exam of the school run by the Colombian State. The exam is presented at mid September and students are trained during the first semester of the year to improve their cognitive skills for passing the exam. When the experiment was run at mid November, those students still had fresh what they got in such training. Thus, their cognition was highly increased and attentive for focusing on relevant issues taught in the instruction and to recall them in the test. This factor certainly enhanced the capacity of the CONTROL groups, in answering questions better than they were expected to do. Consequently, the performance of students in SD groups, mainly the SD1 group, can result overlooked.

42 In respect to the Cognitive Load Theory, the extraneous cognitive load is caused by inappropriate instructional designs that ignore working memory limits and fail to focus working memory resources on schema construction and automation. Intrinsic cognitive load is the cognitive load due to the natural complexity of the information that must be processed by the students. It is determined by levels of element interactivity. High element interactivity material imposes a high working memory load (Sweller, 2005).
Figure 24 summarizes the effect of each influence on students’ performance. Clearly, factors, such as the duration of the experiments and the cognitive loads given by the instruction, undermined SD students’ performance in accordance to what was expected from them. A negative relationship represents such effect. In addition, the motivation was an important factor that significantly undermined the performance of all groups, especially SD groups (a negative relationship represents such effect in figure 24). External greater preparation of CONTROL groups for taking exams have amplified the performance of students who were taught with the conventional method. A positive relationship then is given between the special training in exams and students’ performance in figure 24. Thus, if considered and controlling all the influencing factors, the impact of the teaching method itself is a relevant explanatory variable of students’ performance, which is conclusive to determine the effectiveness of SD as a method for enhancing understanding of history, especially of revolutions.

Consequently, keeping in mind an integral point of view of the SWI and EI (in both the full test and the groups of questions), of the significant impact of the SD teaching method on students’ performance, and of all the various unmeasured effects provides support for concluding that certainly the SD approach is a tool that enhances students’ understanding and learning process in the field of history when students receive long training with the method.

Contribution to the Learning Process of History

Certainly, history is a discipline whose understanding goes beyond the accumulation of knowledge of the past. Its learning provides schemata and frameworks that when are seen as part of a whole allow individuals to identify recurrent patterns of behavior between different historical happenings. Thus, not only a single historical situation can be understood and recalled, but also such understanding becomes relevant to understand the diverse events in the society.
Teaching history with the SD method provides the students with a general framework, in which they can consider the relationships between all elements interacting in a historical happening. The methodology for teaching history proposed by Donovan and Bransford (Donovan & Bransford, 2005) is met by the SD approach. Thus, the consideration of changes of the state of affairs over time, the consideration of the time in the historical happenings, and the accumulation of knowledge are all factors that students in the SD groups revealed to grasp and to consider for the entire understanding of the case study.

Furthermore, Potash and Heinbokel’s beliefs regarding the benefits of SD when teaching history have been, at some extent, confirmed by the present assessment of the SD tools. Thus, understanding historical patterns as part of a whole is an issue indeed given by the SD teaching method, which places such understanding in schemata that can be recalled and applied in further learning processes.

Understanding of the connections between the isolated events and variables playing an important role in the course of a revolution is determinant for altering the long term memory and to settle this understanding into the form of knowledge of history. Students who still approach the case study with the Conventional way of thinking can hardly reveal understanding of why history unfolded in certain ways. A mere recall of isolated events is the instrument for them to face history, which becomes a poor instrument when it is intended to make of history a science whose reflection and learning provides the students with tools for the understanding of society and for better approaching social problems, which reveal similar patterns than some occurred in the past, such as wars.

In addition, as Potash and Heinbokel believe, the understanding of how and why history occurred is greatly enhanced by the SD approach, and this understanding may lead students into the comprehension of the complexity of the present and the future in light of the lessons learned of the past (Potash 1995; Potash, 2005; Potash & Heinbokel, 2006). The assessment of students’ performance in this experiment suggests then, that SD teaching method may be a useful approach for the students to learn from the past and the way consequences of the historical happenings affected other matters over the time in order to interpret better the present and future situations they will face.

At the same time, the present assessment has revealed more clear procedures to implement the SD teaching method as a conventional method to teach history. Longer and continuous sessions, in which different case studies are approached through the SD perspective, matter in the enhancement of students’ performance. Thus, the longer the time a student has been in touch with the SD approach, and the more fields she has learned with SD, the easier to profit from such teaching method to get a deeper understanding of how certain historical happening was developed over time. Therefore, the possibility of constructing lighter instructional methods that do not load students’ working memory more than necessary is an important issue for getting students’ attention in learning with a different teaching method. Designing gradual increase of the cognitive demands of the SD instruction will guarantee that students do not lose any chance of improving their understanding of revolutions. Furthermore, it is required to enhance their external motivation by providing instructions and instructors that transmit autonomy and high perceived benefits to the students. Motivation seems to be an important factor influencing students’ performance, which may be enhanced by the
providing students with all conditions for identifying with the activity and to give worth to its utility for them.

Also, it is required to consider having much better and equal initial conditions for all groups who are tested with such experiment. Wherever possible, students must have in average the same capabilities to perform the experiment.

Thus, ensuring the control of those effects mentioned above, which undermined or amplify students’ performance must be a must to do task in further experiments. Complementary, having bigger sample sizes may enhance the statistical power of the teaching method on the performance of the students. In this case, the performance of the SD groups would be highly enhanced in comparison to the performance of the CONTROL groups.

System Dynamics is still a young approach in the classroom, especially in those fields of study which have to do with social sciences, as in the case of history. Hence, further research and validation of the role of SD in the performance of the students of history is still a critical matter that deserves being at least considered as a possible conventional method to teach such subject. Those who are interested in such task are encouraged to take into account the contribution of this thesis.

6. Future Research

The present study suggests important insights regarding the usefulness of SD in the history classroom. However, it is still necessary to do more research in this field, given the few applications of SD in social sciences, and the great absence of assessment of the benefits that students really get from such approach. Therefore, in this section important aspects are mentioned in order to improve in the future the outcome of this and coming experiments for those who may be interested in the field.

Factors such as the duration of the experiments’ sessions and the number of case studies approached with the SD teaching method seem to be relevant to enhance students’ understanding of the dynamics and change over time of history. SD is an approach that itself provides the students with a greater understanding of the developing over time of history, but at the same time provides the students with lots of information and new reasoning that must be taught gradually over several teaching sessions. Thus, slowing down the presentation of the SD approach of history is an issue that really matters when thinking about further research in regard of these experiments.

An introductory session is still required to enroll the students into the SD thinking, to teach its basic concepts, and to play the Infection Game with its corresponding debriefing. Furthermore, the case study should be split into sessions of no more than 30 minutes, in which the content is presented step by step in the sessions. One week for one single case study would be the ideal situation in order to guarantee that students are not too cognitively loaded and that they will not loose attention because of tiredness. As mentioned in the previous section, this experiment has failed in loading the students, especially those in the SD treatments, with lots of information in very few periods of time.
Besides, teaching more than one case study, all supported on the same basic SD structure (in this case the diffusion model), let the students succeed in grasping the proper knowledge and understanding of the dynamics of history. Thus, all groups under the SD treatment should study at least two case studies. In addition, from the lessons learned in the present experiment, it is very important to assess students’ understanding after every teaching session. Thus, if different case studies are intended to be taught in daily sessions within a week, assessment after each session is necessary. Every session should be proceeded by a test asking for the concepts learned during that session, and thus, the learning process of the students can be followed for measuring performance and for giving immediate feedback to the students about how they are performing in the experiment. Likewise, students’ maximization of the benefits of such approach might be strengthened by running the experiment in a period of time, in which the students are not facing a too hectic moment, such as the end of the scholar year. These two considerations may be useful to lessen the cognitive load intrinsic to the SD approach itself and may increase the students’ possibility to gain more profit from this teaching method.

Accordingly, a great sense of autonomy, given not only by the experiment but also by those people accompanying the learning process, is required to guarantee motivation and that students will identify with the activity’s goal and will integrate it with the personal goals. In this sense, high school students have shown the need of a figure of authority to behave during teaching sessions, which are not done in the conventional schema they are used to. Thus, people accompanying the students during the teaching sessions are necessary but should limit to perform the unique role of a figure of authority and respect. Teachers must be prepared for not playing the role of the responsible of the activity, in order to avoid having different attitudes that interfere in the performance of the different groups of study.

Furthermore, a constant and immediate feedback of the performance along the sessions is highly decisive for the students’ performance and their motivation. The present experiment did not provide the students with feedback about their understanding of revolutions and their performance. Thus, students could not know whether their performance was correct or whether further efforts and attention should be put in the activity. Information about their understanding of each session should encourage them either to put more efforts in the activity or to keep on doing the same well in order to finish with a high performance (Deci & Ryan, 2000).

External rewards such as monetary and academic rewards can only persuade the external motivation of students, and can easily undermine the intrinsic one. However, when the instruction contains factors such as high sense of autonomy, clear benefits from the learning experience, and immediate feedback of the performance; it is possible to increasingly persuade students’ motivation with an external scholar reward such as an academic grade. Feasibility of this motivational strategy may be negotiated with the schools. A combination of all those factors will define the students to do their best in the task.

The computer based instruction is absolutely important to guarantee the provision of the same information to all students. This should be less loaded by information and should be interactive enough to present immediate feedback of the performance to the students.
An Interactive Learning Environment (ILE) must be an ideal computer aid to transmit the information of history and to interact with the student along the sessions.

The test instrument is an important matter for measuring what is expected from the experiment. Thus, wherever possible, the test used to measure students’ understanding regarding revolutions and their dynamics must be based on previous elaborated tests that measure the purpose of this experiment. Wherever not possible, the test should be carefully designed in cooperation not only with historians but also with system dynamicists, who can contribute with their understanding of the field and of the dynamic approach to the case study. After the design, the test should be widely tested before being applied to students in order to filter those questions that even though are intended to measure high understanding of revolutions can be easily correctly answered by guessing. Furthermore, from what has been experienced in the pilot experiments previous to this experiment, presentations in groups about different case studies analyzed with the SD perspective is a revealing instrument to test understanding of revolutions and their dynamic behavior. Sharing the personal understanding regarding revolutions with others is an important exercise to commonly build knowledge about this topic. However, designing a proper way of assessing students’ understanding from the groups’ presentations is a relevant issue, in which certain minimum parameters of performance might be created to measure and classify students’ performance.

All the above considerations might want to be applied to CONTROL groups as well. For this purpose, all initial conditions for Conventional and SD groups must be the same in terms of cognition, knowledge, and attitude conditions. To ensure this, randomization of students’ samples is essential. Each subject should be assigned randomly to the corresponding group to which she will belong. Thus, coordination with the schools should be done very well in advanced in order to control any disturbance that makes more complicated the randomization of the samples (such as the time pressure presented in the school).

Additionally, the fact that the SD2 group was the most outstanding group and that SD1 revealed high SWI, provides the insight that SD could be, indeed, a better way to teach history and to place its understanding in a structured pattern in students’ minds. Thus, it is required to keep on building a conventional methodology based on SD to teach history in high school classrooms. In order to reach such goal, it is important to continue experimenting with the SD approach in the real history classroom. All possible interested on this aim are encouraged to take into account the contribution of this thesis.
References

http://sysdyn.clexchange.org/road-maps/rm-toc.html

Appendix I: Details about treatments and the task performed by students in the different groups

Each combination of treatments applied to a specific group of study makes possible to grasp the sources of information that may be useful to answer the questions underlying this study. This combination of treatments defined the task to be done by the students. As follows, it is explained the learning process in which each group was taken through depending on the treatments apply to it, detailing more information than the presented previously in the Research Method section.

a) SD1 group

This group was under the combination of the SD and First Experimental Experience treatments, meaning these students were taught about the French Revolution from an SD approach and it was the first time they presented an experiment of this kind. They had no previous knowledge of SD.

One week in advance of the instruction days, this group took a pre test in which, the students’ knowledge regarding the evolution of revolutions over time, was tested. The group received two days of instruction, one introductory day to SD and a second day to take the designed instruction for these purposes. During the first day the students were introduced into the basic concepts of SD, such as accumulation, rates, feedback loops, through the bath tub analogy. Alongside, they were taught about how to read and interpret stock and flows diagrams. Furthermore, the Infection Game was played and debriefed in terms of the diffusion model, and would be an important analogy later on the study of the French Revolution.

On the second instruction day, the students took a computer based instruction, whose approach was the system dynamics teaching method, and learned about the French Revolution by understanding the stocks and flows and the dynamics within them. At this point, the students are encouraged to recall and transfer the infection game debriefing in order to enhance their understanding. The second session lasted 2 hours approximately.

At the end of the second day instruction, the students took a post test (same test than the pre test) in which was aimed to measure whether the SD treatment enhanced their understanding of revolutions.

b) CONTROL1 group

The combination of treatments applied to this bunch of students only varies in the teaching method in comparison to the SD1 group. Hence, the first treatment was the teaching method Conventional and they were taught about the French revolution by using a Conventional method based on computer instruction. Besides, the students did not have any previous experience in experiments of this kind and so, they made part of those students belonging to the first experimental experience.

To test the prior knowledge and understanding of the group regarding revolutions, a pre test was applied to all of them.
Since the students did not were required to learn a new methodology or approach to the field, it was not mandatory to have an introductory session, in which new concepts, analogies, and models were presented. Thus, only one day of instruction were necessary, in which students went through the same French Revolution computer based instruction than the one used by the SD1, with the only difference that this instruction was not written in SD terms and thus, required only one hour from the students to read it. Though, the provision of the same information on both instructional methods is guaranteed. Reading the evidence of the French Revolution in the computer screens was the main task of students who belonged to this group.

Right after the instruction the students took a post test aiming to measure how the Conventional teaching method enhanced students’ understanding of revolutions.

c) SD2 group

In this case, the treatments under which the students went through are on one hand the SD as a teaching method and on the other hand the students were taking their Second Experimental Experience.

The process in which they went through along the experiment is almost the same process that the SD1 group faced; with the single difference that these students had previous knowledge of experiments of this kind due to they were previously subjects of study of the SD treatment in the experiment of Civics’ experiments by Maria Teresa Gonzalez. This single difference provides this group with strength that may enhance their understanding of revolutions over time.

Thus, students had a pre test measuring their understanding of revolutions, which was applied at the same time than it was to the rest of the groups of the history experiment. One week after the pre test, the students had the same introductory session to SD concepts than the SD1 group, had a second computer based instruction in the field of Civics, and as a third day of instruction, they had the computer based history instruction approaching the French Revolution from a SD point of view. Right after the history instruction, they took a post test aiming to measure how enhanced was their understanding of revolutions after being under such treatments.

Evidently, these students went into a deeper study and use of SD than the SD1 group.

d) CONTROL2 group

As a final combination of treatments the CONTROL2 group received the Conventional method as the teaching method and had a Second Experimental Experience by being participants of this history experiment. Likewise the CONTROL1 group, this bunch of students in the CONTROL2 group went through the same instructional and teaching process, though they had previous knowledge of the Civics’ experiment and this may enhance their ability to perform better.

As all the groups of students, this one was tested one week in advance of the experiment, in order to gather information about the students’ previous knowledge and understanding of revolutions. They received two instruction sessions, but the first one was part of the Civics experiment and the second one was part of the History
experiment. Both sessions were computerized and were similar in methodology; therefore, this group of students did have prior knowledge of how an experiment of this kind works. However, no better improvement is expected in this group given the treatment of Second Experimental Experience due to they were not taught through a new and different approach that required time from them to get settled in their minds. After the history instruction the group was tested in order to see how much contribution the combination of these two treatments had on them.

Appendix II: French Revolution: S&F model

Equations:

- **Non Revolutionaries (persons)** = 28.000.000 – (Becoming Revolutionaries)*dt

- **Revolutionaries (persons)** = 300 + (Becoming Revolutionaries – Yearly Death Rate)*dt

- **Dead Revolutionaries (persons)** = 0 + (Yearly Death Rate)*dt

- **Becoming Revolutionaries (persons/month)** =
 (REVOLUTIONARIES/Population)*((NON REVOLUTIONARIES*Monthly Contacts per Revolutionary*Probability of Convincing a Non Revolutionary when is contacted by a Revolutionary)

- **Monthly Death Rate (persons/month)** = REVOLUTIONARIES/Yearly Death Rate

- **Monthly contacts per Revolutionary (persons/persons/month)** = 0.5

- Probability of Convincing a Non Revolutionary when is contacted by a Revolutionary (dimensionless) = 0.5

- **Population (persons)** = 28.000.000

- **Death Rate (dimensionless)** = 0.05/12
Appendix III: Full Instructional Content-Teaching Material

As follows, the instruction for both methods are presented for giving the reader the idea of what is mentioned in the three first sections of this thesis. However, it is suggested to the reader to make use of the Power Point files, which have been enclosed to this thesis for her to see clearly what was presented in such instructional material.

1. Common Slides (1-14)

The following slides contain readings regarding the French Revolution, which made part of the instructional methods of both teaching methods.
Antecedents of the French Revolution

The French Revolution was a social and political process that took place in France between 1789 and 1799, whose main motivations were Freedom, Equality, and Fraternity seeking.

The French population was discontented with its governance and with King Louis XVI as its main head. There were economic instability, the food was insufficient, and its prices were getting higher every day. Moreover, the United States had been declared an independent Republic. These facts made the population feel the need of being free from the monarchy and the clergy who had reigned always. Likewise, the Enlightenment ideas, left to the French population the motivation of seeking the reason, the equality, and the human rights more than any other egotistic interest.

The Revolution starts

Soon the economic instability of France, King Louis XVI appointed a new Minister of Finances in 1788 in order to find a solution to the bankruptcy that seemed to be inevitable. The Minister proposed a reform of the tax system by increasing the taxes paid by people. According to the importance of such a reform, it had to be approved by the General Assembly of the Notables and by the General States who did not gather since 175 years ago.

Statistically, many French people started to join the revolutionary party. The desire of Freedom, Equality, and Fraternity gave rise to strong passions among the population. Thus, some clergy and nobility members and the common population joined the Revolution ideals. Likewise, military troops from different French cities started to support the Revolution. King Louis XVI sent some troops to stop the new General Assembly, and when the French citizens realized this abuse, they overran the Bastille, the prison of Paris, as a sign of support to the Revolution. This was the first event that revealed that the Revolution would be definitely a bloody one.

Some consequences

The French Revolution changed France forever. 28 million out of its 30 million inhabitants joined the Revolution, leaving as great legacy the Human and Citizen Rights Declaration and the principles of Freedom, Equality, and Fraternity in Europe.

Once the Revolution was started, how was its development over time?

During the development of the French Revolution, common pattern was present in all its stages. The French population was divided into 2 big groups: Those supporting the Revolution and those who disliked it.

For example:
- At the beginning of the Revolution the groups were the nobility against the monarchy.
- Later on, the Jacobins against the nobility, the French monarchy, and the closest countries.
- Since 1793, the Directory against those who still disliked the Revolution.
2. Conventional Instruction for the CONTROL groups

The following slides are the focus of the conventional method as it was taught for this experiment. With these slides, the instruction is finished.

The Revolution had 2 main groups: Revolutionaries and Non Revolutionaries

The people who did not support the Revolution yet, the clergy, many from the nobility and the monarchy made part of the Non Revolutionaries.

The Freedom, Equality and Fraternity lovers made part of the Revolutionaries.

People’s support was essential to make the Revolution alive

Periodically, more people joined the Revolution in order to get Freedom, Equality and Fraternity. Peasants, people from the cities, some of the nobility and clergy, and army troops joined with passion to the Revolutionaries group.

In other words, people changed from being Non Revolutionaries to be Revolutionaries, during some periods of time.

Now, let’s study how the conversion from Non Revolutionaries to Revolutionaries is performed

Let’s think of the factors that made this conversion possible:

1. Total Population
2. Conviction Power
3. Monthly Contacts

Let’s link these elements:

1. Total Population

 \[\text{Total Population} = \text{Total number of Revolutionaries} + \text{Total number of Non Revolutionaries} \]

 The total French population was divided into Revolutionaries and Non Revolutionaries.

2. Conviction Power:

Probability of convincing a Non Revolutionary to join the Revolution when contacted a Revolutionary

When Revolutionaries met Non Revolutionaries, there is a high likelihood that the latter are convinced to join the Revolution.

Let’s assume that half of the Non Revolutionaries that are contacted by Revolutionaries are convinced of joining the Revolution.

3. Monthly contacts

Number of monthly contacts between Revolutionaries and Non Revolutionaries

By the moment, let’s assume that every 2 months, each Revolutionary encountered 1 person susceptible of being convinced to join the Revolution.
Total Contacts between Revolutionaries and Non Revolutionaries

The total contacts between Revolutionaries and Non Revolutionaries are the result of three factors:

1. Monthly Contacts
2. Number of Non Revolutionaries in the population, who are susceptible of being convinced
3. Revolutionaries fraction in the population = REVOLUTIONARIES/REVOLUTIONARIES + NON REVOLUTIONARIES

Total contacts between Revolutionaries and Non Revolutionaries = Monthly contacts x Number of Non Revolutionaries x Revolutionaries fraction

How does the “Becoming Revolutionaries” process occur?
The following factors cause it to occur:

1. Monthly Contacts
2. Number of Non Revolutionaries
3. Revolutionaries fraction in the population = REVOLUTIONARIES/REVOLUTIONARIES + NON REVOLUTIONARIES
4. Conviction Power: Probability of converting a Non Revolutionary

Understanding the previous analysis helps me understand how the French Revolution gained power and was so popular among the French population

Becoming Revolutionaries

Becoming Revolutionaries is based on the following equation:

Becoming Revolutionaries = Monthly Contacts x Non Revolutionaries x Probability of converting a Non Revolutionary

Let’s assume that:
- Monthly contacts = 10 contacts per month
- Non Revolutionaries = 20
- Revolutionaries = 10
- Total Population = 25
- Probability of converting a Non Revolutionary: 1/5

Then:

Becoming Revolutionaries = 10 x 20 x 1/5 x 0.20

= 8 becoming Revolutionaries

How the number of Revolutionaries changed since the Revolution started in 1789

Now, let’s see in detail this structure, in order to understand how some events in the French Revolution occurred.

1. Exponential Growth

During the 4th year, there were approximately 14,000 members of the Revolutionary Assembly.

This happened because, at the beginning, there were many Non Revolutionaries. It was easier to convince them than the Revolutionaries. As the Revolution progressed, the more people joined the Revolution, the more popular it was among the people, encouraging more people to join the Revolution as well. However, this also happened and there were enough Non Revolutionaries to resist

Let’s see how the number of Revolutionaries changed since the Revolution started in 1789

This exponential behavior caused events such as:

- Overthrow of The Bastilles, Paris’ prison in 1789
- Tax evasion by the peasants
- Rejection of the authority that the clergy and the monarchy used to have.
- Confrontation between the Revolutionaries, the monarchy and the nobility.
- Creation of the first settled Revolutionary group, The Jacobins
- The ordinary people became politically powerful by the population.
- Human and Citizen Rights Declaration
- Creation of the French Republic and the Convention Committee, whose main function was to keep the security of the Revolution.
- Increasing population's demands of removing the King's Government because it was strongly against the Revolution.
The Exponential structure caused events such as:

- Persecution and revolution in the guise of the King Louis XVI and his wife.
- Confrontation with other countries, who were afraid of losing revolution in their lands. Thus, the Revolutionary Wars started.
- Rising of characters such as Robespierre, young lawyer who became the leader of the Jacobins and promoting the Terror Reign in order to avoid the New Republic.
- Terror Reign (1793-1794) where those who seem to be against the revolution were killed by the Revolutionary.
- During the Reign, 18,000 people were killed in the guillotine.
- During the Reign, 700,000 young men were recruited to join the Revolutionary parties.

Events that motivated other people to join the Revolution, and generated strong passions for performing more revolutionary actions.

2. Goal Seeking

Due to everything there were less people to confirm obtaining the Revolution, there was a moment at the end of 1792, in which the Revolutionary group started to grow more, mainly due to the fact that there were more new Revolutionary becoming Revolutionary because they were willing to be killed, those who were against, using the Revolution had ceased to justify the other left castrated during the Terror Reign, decided not to join the Revolutionary party.

This structure plane reproduces this situation, which at the same time describes a large consumption of people, and death, in which the growth of something in order to increase something to be comfortably.

The goal of the Revolution was to avoid the mean population to make possible the Revolutionary party.

The following factors caused less people to join the revolution at the end of 1792. Thus, the goal was reached slower:

- The economic problematic kept on affecting the lowest social classes. They had to adjust to some liberal strategies such as free market prices.
- Rising of the anti-revolutionary wars, strongly supported by the lowest social classes.
- Robespierre is accused of betrayal and is sent to the guillotine in 1794, thus, the Terror Reign and his desire of building the Virtue Republic in France are frustrated.

The Revolution developed as follows:

- Creation of a weak government called the Directory, which allows the appointment of Napoleon Bonaparte as the youngest director of the army.
- Bonaparte projects the Directory in 1799 and takes over the control of France.
- Phase of order and restoration, which lead to the end of the French Revolution.

In 1760, about the total population had joined the Revolution, and many of those states that the Revolution for King. Thus, there were no schools and many opposed some of the initial purposes of the Revolution. Therefore, a number of the continues also occurred and showed down the goal seeking process.

S-shaped growth along the Revolution period

- The structure we have studied is called: Diffusion Model, which presents an S-shaped growth, as can be seen in the graph below.
- The S-shaped growth has an initial phase in which there is an exponential growth, then a goal seeking behavior, and once the goal is reached, there is no more growth over time.

Can we find more examples with S-shaped growth?

- Rumor Diffusion at the school! Initially the rumor is spread quickly through all the groups, but once almost all the people are aware of it, the diffusion of the rumor is quite slow, until it is forgotten.
Can we find more examples with S-shaped growth?

- Purchase of new products which have been introduced to the market with high expectancy. At the beginning, every body buys the product, but once the time has passed by just a few people keep on buying it.

Now, let’s consider what happened with the Revolutionaries who died during the Revolution?

The Revolutionaries were not super heroes, thus many of them died during the Revolution. Let’s study the effect of this.

- Let’s assume that 5% of the Revolutionaries died annually.
- This indicates that the Revolutionary group became smaller than otherwise would have been with every death.
- The more people in the Revolutionary group, the greater the number of deaths, because 5% of the Revolutionaries were actually killed (Death Rate).
- The number of deaths were increasing with the Revolution development over time.

- The red line shows the number of Revolutionaries at the end of the French Revolution.
- As it was expected, when taking into account the number of death Revolutionaries, the group was smaller and so it was the total population.
- Taking into account the number of deaths leads us to approach with more reality the French Revolution.
- The green line shows the number of Revolutionaries without taking into account the number of death Revolutionaries.

Changing the course of the Revolution

- If the King had comprehended better the factors influencing the development of the Revolution over time, he could have designed a strategy, which perhaps would have changed the course of the Revolution.
- Thousand of deaths could have been avoided.
- The loss of power and the consequent death of the King could have been avoided also.
- Public mess and the several wars could have been avoided.

History has great effects over time...

Therefore, it is quite important to understand how the events of the past could have been improved in order to avoid the same mistakes in the future.

And now... are you ready to accomplish the mission assigned by the World History Channel?

We hope you had learned a lot about the French revolution!!!

Thank you and happy to receive the French Test.

END
3. SD Instruction for the SD groups

The following slides are the focus of the SD method as it was taught in this experiment. With these slides, the instruction is finished.
2. Conviction Power

Probability of convincing a Non Revolutionary to join the Revolution when contacted by a Revolutionary

When Revolutionaries meet Non Revolutionaries, there is a high likelihood that the latter are convinced to join the Revolution.

Let’s assume that half of the Non Revolutionaries that are contacted by Revolutionaries are convinced of joining the Revolution.

Total Contacts between Revolutionaries and Non Revolutionaries

The total contacts between Revolutionaries and Non Revolutionaries are the result of three factors:

1. Monthly Contacts (the number of meetings)
2. Number of Non Revolutionaries in the population, who are susceptible of being convinced (see number 1 in the following slide)
3. Revolutionaries in the population = REVOLUTIONARIES / TOTAL POPULATION, (see number 3 and 4 in the following slide)

Total contacts between Revolutionaries and Non Revolutionaries = \[\text{Number of contacts per Revolutionary \times Number of Non Revolutionaries} \]

How does the “Becoming Revolutionaries” process occur?

The following factors cause it to occur:

1. Monthly Contacts
2. Number of Revolutionaries
3. Revolutionary Fraction in the Population = REVOLUTIONARIES / TOTAL POPULATION
4. Conviction Power = Probability of convincing a Non Revolutionary
5. Revolutionaries in the population = REVOLUTIONARIES / TOTAL POPULATION

Becoming Revolutionaries

Becoming Revolutionaries is based on the following equation:

\[\text{Becoming Revolutionaries} = \text{Monthly Contacts per Revolutionary} \times \text{Number of Non Revolutionaries} \times \text{Conviction Power} \times \text{Revolutionary Fraction in the Population} \]

Let’s assume that:
- Monthly contacts = 2 per meeting
- Non Revolutionaries = 10
- Revolutionaries = 5
- Total Population = 15
- Probability of convincing a Non Revolutionary = 0.5

Then:

\[\text{Becoming Revolutionaries} = (2 \times 10 \times 0.5) \times 0.5 = 2.5 \text{ Non Revolutionaries per month} \]

This is the structure that helps me understand how the French Revolution gained power and was so popular among the French population.

The more Revolutionaries were at the beginning of the Revolution, the more people considered joining the Revolution.

Likewise, the more Non Revolutionaries, the greater the chances that this group was convinced to join the Revolution.

From each 100 Non Revolutionaries, 50 were considered joining the Revolution.

Now, let’s see in detail this structure, in order to understand how some events in the French Revolution occurred.
Part of this structure helps me understand how the number of Revolutionaries changed since the Revolution started in 1789.

1. Exponential Growth

Despite the many previous uprisings, the French Revolution (1789) was characterized by its size and impact. As a result of the French Revolution, the number of Revolutionaries grew at an exponential rate, with each successful revolution leading to more revolutions. This exponential growth can be visualized through a chart that shows the number of Revolutionaries over time.

Events that motivated other people to join the Revolution and generate strong passions for performing more revolutionary actions.

This Exponential structure caused events such as:

- Overthrow of the Bastille, Paris prison in 1789
- Execution by the revolutionaries
- Neglect of the monarchy and the country
- Contradiction between the Revolutionaries, the monarchy, and the people
- Creation of the first terrorist group: The Jacobins
- The ordinary people became politically pressured by the propaganda
- Human rights and citizen rights declared
- Creation of the French Republic and the revolutionary committee
- The main function was to create the security of the Revolution
- Increasing population's desire to remove the King's Government because it was strongly against the Revolution.

2. Goal Seeking

The structure shows that the French Revolution started with a goal of ending the monarchy and establishing a republic. However, the revolution faced many challenges and setbacks, which led to the creation of the Committee of Public Safety and the Jacobin Club. The fall of Robespierre and the Directory marked the end of the revolution.

The following facts caused less people to join the revolution at the end of 1792. Thus, the goal was reached slower.

- The economic problems kept on affecting the lowest classes. They had to adjust some strategies such as free market pricing.
- Rising of anti-revolutionary events, strongly supported by the lowest social classes.
- Robespierre is accused of betrayal and is sent to the guillotine in 1794. Thus, the Terror Reign and his desire of building the Virtue Republic influence are frustrated.

The following facts caused less people to join the revolution at the end of 1792. Thus, the goal was reached slower.

- Creation of a weak government called The Directory, which allows the appointment of Napoleon Bonaparte, as the youngest director of the army.
- Bonaparte rejects The Directory in 1799 and takes over the control of France.
- Phase of order and restoration, which lead to the end of the French Revolution.

In 1795, a new total population had joined the Revolution, and many of those supported the Revolution for long time. Thus, the revolution had more support and went against some of the initial stages of the Revolution. Therefore, it is not seen just as a social phenomenon but a revolutionary one.
The Revolution developed as follows:

- The structure we have studied is called the 'Diffusion Model', which presents an S-shaped growth, as can be seen in the graph below.
- The S-shaped growth has an initial phase in which there is an exponential growth, then a gradual slowing behavior, and once the goal is reached, there is no more growth over time.

S-shaped growth along the Revolution period

- The diffusion model has a problem: Diffusion Model, which presents an S-shaped growth:
- At least two groups representing different states:
- To change from one state to the other it is necessary a contagion to occur:
- The contagion occurs from one group to the other:
- Probability of being infected when there are encounters between both groups occur, which can ranges from 0%-100%:
- Quick growth at the early stages:
- Slow growth after infecting nearly "all" elements of the group:
- Constant growth after reaching the peak:
- Every case in which a diffusion exists:

Diffusion Model

- This behavior with an S-shaped growth of the diffusion of a rumor over time is produced by a structure such as the one we already studied: The Diffusion Model:
- The only difference is in the values of Total population, daily contacts done by those who know the rumor, and probability of telling the rumor to a person who did not hear it before:
- Thus, according to these values, the behavior (graph) of the S-shaped growth may vary a bit:

Can we find more examples with S-shaped growth?

- Rumor Diffusion at the school: Initially the rumor is spread quickly through all the groups, but once almost all the people are aware of it, the diffusion of the rumor is quite slow, until it is forgotten.

Main Elements of a Diffusion Model

- Likewise, the Diffusion Model is responsible for such S-shaped behavior:
- The values of total population, daily contacts between those who buy and those who do not, and the probability of convincing a person of purchasing the product, receive a different value:
Now, let’s consider what happened with the Revolutionary leaders during the Revolution?

The Revolutionary leaders were not longer born, that’s why many of them died during the Revolution. Let’s study the effect of this.

- Let’s assume that 3% of the Revolutionary leaders died annually.
- This indicates that the Revolutionary leaders became smaller than otherwise would have been with every death.
- Let’s start at the total number of Revolutionary leaders and reduce the Revolutionary leaders by 3% each year to know the number of Revolutionary leaders we can accumulate them in a stock.

The red line shows the number of Revolutionary leaders at the end of the French Revolution.

- As it was expected, when taking into account the number of deaths, the group was smaller and so it was the total population.
- Taking into account the number of deaths leads us to approach with more reality the French Revolution.
- The green box shows the number of Revolutionary leaders without taking into account the number of death Revolutionary leaders.

Changing the course of the Revolution

- If the King had comprehended better the factors influencing the development of the Revolution, he could have designed a strategy, which perhaps would have changed the course of the Revolution.
- Thousand of deaths could have been avoided.
- The loss of power and the consequent death of the King could have been avoided also.
- Public mass and the several wars could have been avoided.

Important!!!

Journalist

It is important to take into consideration that every model is a simplification of the reality. Thus, the Diffusion Model that we studied here is a simplification of what French Revolution was and so, it does not pretend to analyze all the causes and events that are related to it.

Nevertheless, it is a structure that helps relating and understanding how many of the most relevant historical events of this Revolution happened. Besides, it helps to structure the important events and actions that helped that the Revolution was held up as one of the most important ones through the history of the world.

History has great effects over time...

Therefore, it is quite important to understand how the events of the past could have been improved in order to avoid the same mistakes in the future.

And now...are you ready to accomplish the mission assigned by the World History Channel?

We hope you had learned a lot about the French revolution!!!
3.1 Slides used in the SD Instruction as Review for the Stock and Flow concepts learned in the introductory session

Let’s revise a bit about Stock and Flows

Stock and Flow
Think of a bathtub with water

- The bathtub accumulates the water along the time. The amount of water in the bathtub is called stock. It is represented with a rectangle.

<table>
<thead>
<tr>
<th>Stock and Flow</th>
<th>Stock and Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Think of a bathtub with water</td>
<td>The stock of water in the bathtub increases when the faucet is open. The amount of water flowing may be controlled by the faucet.</td>
</tr>
</tbody>
</table>

Let’s revise a bit about Stock and Flows

- An inflow of water in this case is represented by an arrow going to the stock, with a valve or by a faucet that determines the speed with which the water is added to the bathtub.

<table>
<thead>
<tr>
<th>Stock and Flow</th>
<th>Stock and Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>An inflow of water</td>
<td>According to this, it can be concluded that the water in the bathtub is a stock and the flow of water is the rate at which the stock changes. Thus, the stocks can only be affected by the flows.</td>
</tr>
<tr>
<td>Water in the tub</td>
<td>Other examples:</td>
</tr>
<tr>
<td>Inflow of Water</td>
<td></td>
</tr>
</tbody>
</table>
Non Linearities

This concept has to do with the fact that effects are not proportional to their causes. Besides, they are not necessarily the same along the time.

As an example, we can think of what happen if I hit my little brother. Perhaps his answer won't be as strong as I hit him, and thus, the effect I receive for fighting against him is not proportional to my effect on him.

4. Introductory Session to SD groups: SD Concepts, Infection Game, Diffusion Model
What is System Dynamics?

- System Dynamics is a method to increase the understanding and learning of complex systems.
- It is composed of a philosophy and tools in order to analyze and model the systems under study.
- It enhances the decision making process.
- It provides generic structures that help to improve the learning process of different fields of study.

Basic Concepts of System Dynamics

In the study of the systems it has been designed a language of concepts which are relevant for their understanding. In this presentation we will approach two of them:

- **Stock and Flows**
- **Feedback Loops**

Stock and Flows

Think of a bathtub with water:

- The bathtub accumulates the water along the time. The amount of water in the bathtub is called **stock**. It is represented with a rectangle.

![Bathtub Diagram]

- The stock of water in the bathtub increases when the faucet is open. The amount of water that flows may be controlled by the faucet.

Stock and Flows

- An **inflow**, of water in this case, is represented by an arrow going to the stock, with a valve or by a faucet that determines the speed with which the water is added to the bathtub.

![Inflow Diagram]

- According to this, it can be concluded that the water in the bathtub is a stock and the flow of water is the rate which changes such stock. Thus, the stocks can only be affected by the flows.

- Other examples:

![Feedback Loop Diagram]

Feedback Loops

- The system reacts to the solutions; the yesterday’s solution could be today’s problem.
- The relationships are not only in one way; the result of our actions defines the situations we face in the future.

Feedback Loops

There are two feedback loops types:

- **Positives**: they are reinforcing loops.

 ![Reinforcing Loop Diagram]

- **Negatives**: they are balancing or counteracting loops.

 ![Balancing Loop Diagram]
The Infection game

Instructions

- Choose between heads or tails
- Only one person is infected at the beginning
- Everyone makes a "contact" per day
- The disease is transmitted when shaking hands with an INFECTIOUS
- When an INFECTIOUS shakes hands with a HEALTHY, it is probable that the disease is transmitted.
- Fill out in the sheet of paper the information that is required.

Let's Play!!!

Now, let's apply the concepts of System Dynamics

Accumulation: Stocks
- There are two big groups of people, INFECTIOUS and HEALTHY PEOPLE.
- Each of these groups accumulates people that have a different health status, therefore, these groups may be considered as stocks.
- Stock of HEALTHY People and stock of INFECTIOUS ones.

Changing State: Flows
- When HEALTHY and INFECTIOUS shake hands among them, Becoming infectious occurs.

From the diagram it can be seen:
- Inflow: the more becoming infectious the more INFECTIOUS people.
- Outflow: the more becoming infectious the less HEALTHY people.

But, how are the new transmissions carried through exactly?

Feedback Loops and Multiple influences (1)
1. The population is split into two big groups: HEALTHY and INFECTIOUS.
- Total Population = HEALTHY + INFECTIOUS

And how many contacts are done between INFECTIOUS vs. HEALTHY ones?

The contacts made by the INFECTIOUS are the responsible for the spread of the disease. It is important to consider:
- Number of INFECTIOUS
- Daily contacts per INFECTIOUS
- HEALTHY proportion (equal to the number of HEALTHY divided over total population) shows how many persons in the population are susceptible to be infected.
- The number of contacts between INFECTIOUS and HEALTHY are the result from the encounters between them.

Total contacts between HEALTHY and INFECTIOUS = Daily contacts per INFECTIOUS * INFECTIOUS + HEALTHY proportion
3. Probability of Contagion

Now, what tells us about how many Becoming Infections are done is:
- Number of contacts between HEALTHY and INFECTIOUS.
- The probability that someone may be infected depends on the state of the coin which is shown clearly.
- When a coin is thrown through the air there is equal probability on both HEADS or TAILS. Thus, the probability of getting a HEAD is 0.5.
- Consequently, there is equal chance that someone gets infected or not.

Now, from this structure let's analyze how the spread of the disease was carried through.

Strong Infection Loop: Strengthening the Contagion

This feedback loop indicates the spread of the disease. Initially, at the beginning of the game there is only one infected person and in the first day has the chance of being infected by someone. This continues throughout the day, by the time the disease has been passed onto the others.

Strong Infection Loop: Strengthening the Contagion

Left: The situation could happen if there are more INFECTIOUS and fewer HEALTHY. The system would be more contagious.

Right: The situation could happen if there are less INFECTIOUS and more HEALTHY. The system would be less contagious.

Other examples of Exponential Growth

- Bacteria Reproduction in the food: once a bacteria has been in touch with the food, it reproduces quite fast and after a couple of hours, the food is full of bacteria.
- Purchase of new products: once a product enters the market after long negotiations it is more likely to be bought quickly before it is sold out in the shops.

Balancing the Infection Loop: Weakening the Contagion

The feedback loop is responsible for the loss of production of Becoming Infected people per time.

When the number of INFECTIOUS people are few, HEALTHY will be more likely to spread the disease. The system will be more contagious.

Since there are more people Becoming Infected, the number of INFECTIOUS keeps constant in the time.
In-service Training with teachers

These slides contain the Power Point presentation used for the In-service training with the teachers of the schools (both, in the pilot experiments in the summer and the final experiments in the autumn).
EXPERIMENTS AND SYSTEM DYNAMICS

What are we learning today?
- What is System Dynamics?
- Concepts of System Dynamics
- Who are interested in System Dynamics?
- The Infection Game
- Other examples
- Experiments

WHAT IS SYSTEM DYNAMICS?
- It is a field of study that provides a philosophy and tools to model and analyze complex systems.
- It helps to improve the process of decision making.
- It provides generic structures that help to improve the learning of different fields of study.

Concepts of System Dynamics
- Stocks and Flows
- Feedbacks and multiple influences
- Non linearities
- Delays

Who are interested in SD?
Those who want to face appropriately the complexity of the world in which we live
- Education institutions
- Researchers
- Governments
- Companies
- Consultancy firms

The more the complexity of a system, the higher the probability of making wrong decisions.

The Infection Game
Instructions:
- Heads or Tail
- There is one infected person at the beginning.
- Every person makes one contact per “day”
- The infection spreads when shaking hands with an INFECTED person.
- When an INFECTED contacts a SUSCEPTIBLE, there is a chance of transmitting the disease.
- Please fill the sheet every “day” of the game.

The Infection Game:
Stocks and Flows
The INFECTED people appear through NEW INFECTIONS. When a SUSCEPTIBLE is infected, he becomes into an INFECTED.
The Infection Game:
Feedbacks and multiple influences

The INFECTED people are the agents who cause the infection to SUSCEPTIBLES.

The Game of Infection:
Dynamic corrections

The quantity of NEW INFECTIONS depends on:
- How many individuals make contact with every INFECTED.
- The chance to create a contagion every time there is a contact.
- Population
- SUSCEPTIBLE
- INFECTED

What did we learn of the Game?

- The spread of a disease is faster than what it seems. Exponential behavior.
- The initial phase of the disease requires more attention than the last one, if the goal is to prevent future contagions.
- Taking prevention measures is needed in the first contagious contacts.

Other cases

- The diffusion of a rumor.
- The acceptance of a new product in the market.
- Believers of a religion.
- Do you find more?

Experiments

- Students from 9th, 10th and 11th grade.
- Instruction to the students in the areas of civics and history, based on System Dynamics.
 - The Infection Game
 - Instruction in the computer.
 - Pre and post tests.

THANK YOU!!
Appendix IV: Alternative Hypotheses for each null hypothesis

Hypothesis 1: Regarding groups with different teaching method and the same experimental experience

SIW Null Hypothesis: There is no significant difference in the SWI of groups who were taught with different teaching methods but assisted to the same experimental experience.

\[H_{0,SWI}: \text{SWI}_{SD1} = \text{SWI}_{CONTROL1} \]
\[H_{0,SWI}: \text{SWI}_{SD2} = \text{SWI}_{CONTROL2} \]

SWI Alternative Hypothesis: There is a significant difference in the SWI of groups who were taught with different teaching methods but assisted to the same experimental experience.

\[H_{1,SWI}: \text{SWI}_{SD1} \neq \text{SWI}_{CONTROL2} \]
\[H_{1,SWI}: \text{SWI}_{SD1} \neq \text{SWI}_{CONTROL2} \]

EI Null Hypothesis: There is no significant difference in the EI of groups who were taught with different teaching methods but assisted to the same experimental experience.

\[H_{0,EI}: \text{EI}_{SD1} = \text{EI}_{CONTROL1} \]
\[H_{0,EI}: \text{EI}_{SD2} = \text{EI}_{CONTROL2} \]

EI Alternative Hypothesis: There is a significant difference in the EI of groups who were taught with different teaching methods but assisted to the same experimental experience.

\[H_{1,EI}: \text{EI}_{SD1} \neq \text{EI}_{CONTROL2} \]
\[H_{1,EI}: \text{EI}_{SD1} \neq \text{EI}_{CONTROL2} \]

Hypothesis 2: Regarding groups with the same teaching method and different experimental experience

SIW Null Hypothesis: There is no significant difference in the SWI of groups who took the same teaching method and assisted to different experimental experience.

\[H_{0,SWI}: \text{SWI}_{SD1} = \text{SWI}_{SD2} \]
\[H_{0,SWI}: \text{SWI}_{CONTROL1} = \text{SWI}_{CONTROL2} \]

SWI Alternative Hypothesis: There is a significant difference in the SWI of groups who took the same teaching method and assisted to the same experimental experience.

43 Either the Conventional or SD
EI Hypothesis: There is no significant difference in the EI of the students who took the same teaching method and assisted to different experimental experiences.

\[H_{0, EI}: EI_{SD1} = EI_{SD2} \]

\[H_{0, EI}: EI_{CONTROL1} = EI_{CONTROL2} \]

EI Alternative Hypothesis: There is a significant difference in the EI of the students who took the same teaching method but assisted to different experimental experiences.

\[H_{1, EI}: EI_{SD1} \neq EI_{SD2} \]

\[H_{1, EI}: EI_{CONTROL1} \neq EI_{CONTROL2} \]

Appendix V: Pilot Experiments: Lessons Learned

During the summer 2006, the same SD research method and experimental design was applied to 81 high school students from Colombia in order to gain some expertise and internal validity of the teaching material and the evaluation tools. Pilot experiments were run, in which 44 students were taught with SD teaching method without having previous knowledge, and 37 more students were taught with the teaching method as well but they did have previous knowledge of SD because they took as well the pilot experiments of the Civics Engagement Experiment.

The teaching sessions, the teaching material and the evaluation tools applied in this pilot were all the same than those that the SD groups received in the last version of this experiment. However, the students who participated in this pilot version of the experiments were different from those who participated in the final version. Students from 9th, 10th, and 11th from three different schools in Medellin, Colombia, participated in the SD sessions. In addition, after the post tests these students were required to do small group presentations in which they were encouraged to apply the understanding of the diffusion model to another revolutionary case study. The results from the teams’ presentations revealed what students really understood about the revolutions from a SD approach. Concepts about change over time, about how a group of people decide to join the revolutionary party and the factors affecting this decision were well grasped by students. However, concepts such as accumulation, feedback loops that are the responsible of certain behaviors were hardly caught by them.

Nonetheless, rather than mentioning the results from these pilot experiments, the great contribution of it is the knowledge gained in order to make better the final version of the experiment applied in November. It was possible to identify the aspects of the instruction that shed confusion for the students and thus, these features were improved in the last version of the SD instruction. Likewise, elements, which were distracting and
were not necessary for the essential understanding of the SD approach, were removed from the instruction facilitating the comprehension of the topic by freeing the cognitive load that students’ had to face. Thus, the last version of the SD instruction was not only tested with students in the real classrooms and in a similar environment to the one that students of the final experiment had, but also was improved to make it better and easier for the students to respond to the treatments applied to them.

Accordingly, it was found that some questions in the test were not aiming to measure the goals of this study, thus, they were either improved or replaced. The pilot test was made of 9 questions, from which two were open questions and were based on an additional reading. Questions of this type were interesting in the sense that they revealed how persistent the traditional way of thinking of the students was over the systemic thinking supposed to be given by an approach as SD. Just few students revealed real understanding of the topic in these questions and furthermore, most of the students did not even answer them. Therefore, it was concluded that questions of this type are not only troublesome when doing the results’ analysis but also are confusing and very demanding for the students after going through a 2 hours history instruction with SD teaching method. Likewise and despite the great contribution of the small group presentations, it was observed that most of students did not work in the group presentations but only some of them did. Unfortunately, the presentations revealed the understanding of some few students but not of all of them. Hence, the last version of the test took into consideration those difficulties and weaknesses of the pilot tests, and by improving them it was possible and easier for the students to show what they were supposed to understand after being through the different treatments.

The need of having a CONTROL group for each experimental experience was understood after analyzing the pilot experiments’ results, in which it was revealed a lack of a reference point with whom to compare the SD students’ performances.

Appendix VI: Raw data Pre and Post tests

Pre test

<table>
<thead>
<tr>
<th>Correct Answer</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
<th>Q9</th>
<th>Q10</th>
<th>Q11</th>
<th>Q12</th>
<th>Q13</th>
<th>Q14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>1</td>
<td>SD1</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SD1</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SD1</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>SD1</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>SD1</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>SD1</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>SD1</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>SD1</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>SD1</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>SD1</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td>SD1</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>12</td>
<td>SD1</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>13</td>
<td>SD1</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>14</td>
<td>SD1</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>SD1</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>SD1</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>16</td>
<td>SD1</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>17</td>
<td>SD1</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>18</td>
<td>SD1</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>19</td>
<td>SD1</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>20</td>
<td>SD1</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>21</td>
<td>SD1</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>22</td>
<td>SD1</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>-</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>23</td>
<td>SD1</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>24</td>
<td>SD1</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>25</td>
<td>SD1</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>26</td>
<td>SD1</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>27</td>
<td>SD1</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>28</td>
<td>SD1</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>29</td>
<td>SD1</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>30</td>
<td>SD1</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>31</td>
<td>CONTROL1</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>32</td>
<td>CONTROL1</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>33</td>
<td>CONTROL1</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>34</td>
<td>CONTROL1</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>35</td>
<td>CONTROL1</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>36</td>
<td>CONTROL1</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>37</td>
<td>CONTROL1</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>38</td>
<td>CONTROL1</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>39</td>
<td>CONTROL1</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>40</td>
<td>CONTROL1</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>41</td>
<td>CONTROL1</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>42</td>
<td>CONTROL1</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>43</td>
<td>CONTROL1</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>44</td>
<td>CONTROL1</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>45</td>
<td>CONTROL1</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>46</td>
<td>CONTROL1</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>47</td>
<td>CONTROL1</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>48</td>
<td>CONTROL1</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>49</td>
<td>CONTROL1</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>50</td>
<td>CONTROL1</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>51</td>
<td>CONTROL1</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>52</td>
<td>CONTROL1</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>53</td>
<td>CONTROL1</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>54</td>
<td>CONTROL1</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>55</td>
<td>CONTROL1</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>56</td>
<td>CONTROL1</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>57</td>
<td>CONTROL1</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>58</td>
<td>CONTROL1</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>59</td>
<td>CONTROL1</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>60</td>
<td>CONTROL1</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>61</td>
<td>SD2</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>62</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>63</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>64</td>
<td>SD2</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>65</td>
<td>SD2</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>66</td>
<td>SD2</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>SD2</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>SD2</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>SD2</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>SD2</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>SD2</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>SD2</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>SD2</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>SD2</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>SD2</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>SD2</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>SD2</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>SD2</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>SD2</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>CONTROL2</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>CONTROL2</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>CONTROL2</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>CONTROL2</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>CONTROL2</td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>CONTROL2</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>CONTROL2</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>CONTROL2</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>CONTROL2</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>CONTROL2</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>CONTROL2</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>CONTROL2</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>CONTROL2</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>CONTROL2</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>CONTROL2</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>CONTROL2</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>CONTROL2</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>CONTROL2</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>CONTROL2</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>CONTROL2</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>CONTROL2</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>CONTROL2</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>CONTROL2</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>CONTROL2</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>D</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>CONTROL2</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>CONTROL2</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>CONTROL2</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>D</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>CONTROL2</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>
Post test

<table>
<thead>
<tr>
<th>Correct Answer</th>
<th>Student</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B B B A B B A D D B A B A A C A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>D B B B D A A B D D B D C A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>D B A A B B B A A D C A D C A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A D B C A A B B B A A B B C A A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A B C A C B B A B A A D A D B</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A B A A C C B B A A A B A A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>D D B D A C A C C A D A B D</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>D B B A B A B D B B C A D C A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>B D B B B A A A B C A A A A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A B C B B A C B C B A A A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A D D C A A B B D A B A D C A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A D D D A C C B D C D A B A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>B D A D A A D B D A A D C A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A C B B B D B B B B A A A B A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>D B A D B A D B A D D B - D C A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A B D B A B B A A C A A C A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A A B B B B C D B A B C A C A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A A B D A D A D A C B D A A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A B C B A A D B C D C A C C</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A B A C B D B B D C C D A A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A B B B A B C A C B A A B A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A B B B B B B B B B A A A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A D B B B A A D B A D B C A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A D B A B A A A B C A A C A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A D B A A B B C B B B A A A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A D B B B B B B B A A A A A</td>
<td>SD1</td>
<td></td>
</tr>
<tr>
<td>A A B B C B B C A A B B A A A</td>
<td>SD1</td>
<td></td>
</tr>
</tbody>
</table>

Correct Answer

<table>
<thead>
<tr>
<th>Student</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL1</td>
<td>A D B B A A D B A C A D C A</td>
</tr>
<tr>
<td>CONTROL1</td>
<td>A D A A A C A A A C A A C A</td>
</tr>
<tr>
<td>CONTROL1</td>
<td>A D D A C B B D D B A C D C</td>
</tr>
<tr>
<td>CONTROL1</td>
<td>A B B C B A B A A D A D B C</td>
</tr>
<tr>
<td>CONTROL1</td>
<td>C A B D A A D C A D C A D B</td>
</tr>
<tr>
<td>CONTROL1</td>
<td>A D B D B A D D A C A D A C</td>
</tr>
<tr>
<td>CONTROL1</td>
<td>A D C B A B D A D C A D C A</td>
</tr>
<tr>
<td>CONTROL1</td>
<td>A D B B B C B B A C C D C A</td>
</tr>
<tr>
<td>CONTROL1</td>
<td>A B B D A A B B C B A A A A</td>
</tr>
<tr>
<td>44</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>45</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>46</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>47</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>48</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>49</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>50</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>51</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>52</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>53</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>54</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>55</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>56</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>57</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>58</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>59</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>60</td>
<td>CONTROL1</td>
</tr>
<tr>
<td>61</td>
<td>SD2</td>
</tr>
<tr>
<td>62</td>
<td>SD2</td>
</tr>
<tr>
<td>63</td>
<td>SD2</td>
</tr>
<tr>
<td>64</td>
<td>SD2</td>
</tr>
<tr>
<td>65</td>
<td>SD2</td>
</tr>
<tr>
<td>66</td>
<td>SD2</td>
</tr>
<tr>
<td>67</td>
<td>SD2</td>
</tr>
<tr>
<td>68</td>
<td>SD2</td>
</tr>
<tr>
<td>69</td>
<td>SD2</td>
</tr>
<tr>
<td>70</td>
<td>SD2</td>
</tr>
<tr>
<td>71</td>
<td>SD2</td>
</tr>
<tr>
<td>72</td>
<td>SD2</td>
</tr>
<tr>
<td>73</td>
<td>SD2</td>
</tr>
<tr>
<td>74</td>
<td>SD2</td>
</tr>
<tr>
<td>75</td>
<td>SD2</td>
</tr>
<tr>
<td>76</td>
<td>SD2</td>
</tr>
<tr>
<td>77</td>
<td>SD2</td>
</tr>
<tr>
<td>78</td>
<td>SD2</td>
</tr>
<tr>
<td>79</td>
<td>SD2</td>
</tr>
<tr>
<td>80</td>
<td>SD2</td>
</tr>
<tr>
<td>81</td>
<td>SD2</td>
</tr>
<tr>
<td>82</td>
<td>SD2</td>
</tr>
<tr>
<td>83</td>
<td>SD2</td>
</tr>
<tr>
<td>84</td>
<td>SD2</td>
</tr>
<tr>
<td>85</td>
<td>SD2</td>
</tr>
<tr>
<td>86</td>
<td>SD2</td>
</tr>
<tr>
<td>87</td>
<td>SD2</td>
</tr>
<tr>
<td>88</td>
<td>SD2</td>
</tr>
<tr>
<td>89</td>
<td>SD2</td>
</tr>
<tr>
<td>90</td>
<td>SD2</td>
</tr>
<tr>
<td>91</td>
<td>CONTROL2</td>
</tr>
<tr>
<td>92</td>
<td>CONTROL2</td>
</tr>
<tr>
<td>93</td>
<td>CONTROL2</td>
</tr>
<tr>
<td>94</td>
<td>CONTROL2</td>
</tr>
<tr>
<td>95</td>
<td>CONTROL2</td>
</tr>
</tbody>
</table>
Appendix VII: Normality and Homocedasticity assumptions for T-test and ANOVA

The assumptions are checked as follows.

\(a\) Normality

The first assumption was tested using the Shapiro-Wilks statistic. In this case it is desired to prove the null hypothesis, in which it is stated that the data come from a normal distribution.

\[H_0: \text{The data come from a normal distribution.} \]
\[H_1: \text{The data does not come from a normal distribution} \]

The Pre test scores were used as the non biased measure to test the normality hypothesis. The found P-value for the total distribution was 0.979, which is greater than the critical value 0.05. Then, the null hypothesis is –indeed- accepted: the data come from a normal distribution. Likewise, when taking a look to the Normal Q-Q Plot is also appreciated the normal trend of the distribution. The data has achieved the first assumption: it is normal.

<table>
<thead>
<tr>
<th>Test of Normality</th>
<th>Shapiro-Wilk P-value</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre Test Scores</td>
<td>0.979</td>
<td>120</td>
</tr>
</tbody>
</table>
Similarly, when testing the normality of the data corresponding to each of the evaluated groups, it is found that the P-values for the Shapiro-Wilk statistic are all greater than 0.05, demonstrating once again that the null hypothesis can not be rejected and therefore, the data within each group show that come from a normal distribution as well.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
Group & Statistic & df & Sig. \\
\hline
Sum Pre test & 0.952 & 30 & 0.189 \\
SD1 & 0.947 & 30 & 0.142 \\
CONTROL1 & 0.945 & 30 & 0.125 \\
SD2 & 0.967 & 30 & 0.465 \\
CONTROL2 & 0.967 & 30 & 0.465 \\
\hline
\end{tabular}
\caption{Tests of Normality}
\end{table}

\noindent Normality Test within each group

\textbf{b) Homoscedasticity}

This is the second assumption that must be fulfilled, which proves whether there is homogeneity in the variance of the different groups that were evaluated.

\textbf{H}_{0}. The variances of the groups SD\textsubscript{1}, CONTROL\textsubscript{1}, SD\textsubscript{2}, and CONTROL\textsubscript{2} are homogeneous among them.

\textbf{H}_{1}. The variances of the groups SD\textsubscript{1}, CONTROL\textsubscript{1}, SD\textsubscript{2}, and CONTROL\textsubscript{2} are not homogeneous among them.

A Levene statistic was used as a decision tool for rejecting or accepting the null hypothesis. Similar to the Shapiro-Wilks proof, when the Levene P value is greater than the level of significance (0.05), the null hypothesis is not rejected. In this case, P-value was equal to 0.942, which is –in fact- greater than the significance value, therefore the null hypothesis cannot be rejected and it can be concluded that the four groups of data present homogenous variances.