Surgical treatment of hip fractures in Norway

The Norwegian Hip Fracture Register

Jan-Erik Gjertsen

Dissertation for the degree of philosophiae doctor (PhD)

at the University of Bergen

17.04.09
Scientific environment

This study was initiated in 2004 and the work was carried out while working as a registrar, and later as a consultant surgeon at the Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen. Supervision has been given by the staff at the Norwegian Arthroplasty Register at the same department. During the last three months financial support was given by the Centre for Clinical Research at Haukeland University Hospital.

This thesis is a part of the PhD programme at the Department of Surgical Sciences, University of Bergen.
Contents

1 ACKNOWLEDGEMENTS .. 7
2 LIST OF ABBREVIATIONS ... 9
3 LIST OF PUBLICATIONS ... 11
4 ABSTRACT ... 13
5 BACKGROUND .. 15
 5.1 DEFINITION OF HIP FRACTURES ... 15
 5.2 EPIDEMIOLOGY OF HIP FRACTURES ... 16
 5.3 TREATMENT OF HIP FRACTURES ... 17
 5.3.1 Historic perspective ... 17
 5.3.2 Modern treatment ... 18
6 THE NORWEGIAN HIP FRACTURE REGISTER ... 24
7 THE NORWEGIAN ARTHROPLASTY REGISTER ... 26
8 AIMS OF THE STUDY ... 27
9 METHODS ... 28
 9.1 COLLECTION OF DATA ... 28
 9.2 CODING LIST ... 29
 9.3 OPERATION FORM .. 30
 9.4 CLASSIFICATION .. 31
 9.4.1 Fracture classification ... 31
 9.4.2 Co-morbidity .. 31
 9.4.3 Cognitive function .. 32
 9.4.4 Charnley category ... 32
 9.5 PATIENT QUESTIONNAIRE .. 32
 9.6 QUALITY OF LIFE (EQ-5D) ... 33
 9.7 QUALITY OF DATA .. 33
 9.8 STATISTICS .. 33
10 SUMMARY OF PAPERS I-IV ... 35
11 GENERAL DISCUSSION ...40

11.1 REGISTER STUDIES AS A METHOD ...40

11.1.1 Register studies and randomised, controlled trials ...40

11.1.2 Completeness and quality of data ...42

11.1.3 Outcome measures ..43

11.2 RESULTS ...45

11.2.1 Epidemiology and treatment of hip fractures ...45

11.2.2 Treatment of displaced femoral neck fractures in elderly patients47

11.2.3 Total hip arthroplasty as treatment of hip fractures ..49

12 CONCLUSIONS ...52

13 FUTURE RESEARCH ..53

13.1 SURGICAL OUTCOME AFTER HIP FRACTURES ..53

13.2 FUNCTIONAL OUTCOME AFTER HIP FRACTURES ...53

13.3 ECONOMIC OUTCOME AFTER HIP FRACTURES ..54

13.4 MORTALITY RATES AFTER HIP FRACTURES ..54

14 SOURCE OF DATA ..55

15 APPENDIX ..67

Appendix 1 Operation form The Norwegian Hip Fracture Register 2005-2008 (Norwegian)
Appendix 2 Operation form The Norwegian Hip Fracture Register 2008- (Norwegian)
Appendix 3 Operation form The Norwegian Hip Fracture Register 2008- (English)
Appendix 4 Patient questionnaire (Norwegian)
Appendix 5 EQ-5D (English)
Appendix 6 EQ-VAS (English)
Appendix 7 Visual analogue scales (English)
Appendix 8 Operation form The Norwegian Arthroplasty Register 1987-1992 (Norwegian)
Appendix 9 Operation form The Norwegian Arthroplasty Register 1993-2004 (Norwegian)
Appendix 10 Operation form The Norwegian Arthroplasty Register 2005- (Norwegian)

PAPERS I-IV
1. Acknowledgements

This study was performed at the Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway during the years 2004-2008.

First of all I would like to thank my colleague Dr Sven Young who gave me the opportunity to work at the Department of Orthopaedic Surgery during my final year as a medical student. In this period I became aware of the outstanding and friendly atmosphere at the department, and I was introduced to the exciting sphere of orthopaedic surgery. I am in dept to all my colleagues at the department for, in a busy clinic, giving me time to perform my research.

Professor emeritus Anders Mølster, also known as ”The Kind Professor”, deserves acknowledgement for introducing me to orthopaedic research, and for being my supervisor during the first two years at Haukeland University Hospital.

A special thank also to Professor Ove Furnes, head of the department and leader of the Norwegian Arthroplasty Register. Ove was actively involved in the planning of the Norwegian Hip Fracture Register, which became the platform for my thesis. His enthusiasm and goodwill for scientific work has been an important motivation for many of my colleagues as well as my own research.

I am in great dept to my always-positive supervisor, Dr Jonas Meling Fevang, for his constructive contributions throughout my research and for all the stout conversations in our office.

My co-supervisor, Professor Lasse Engesæter, also deserves a special thank. Lasse has been one of the pioneers in the Norwegian Arthroplasty Register, and is now the head of the Norwegian Hip Fracture Register. His enthusiasm for the scientific work is enormous, and his helpfulness is invaluable.

I am also grateful to my co-supervisor, statistician Stein Atle Lie, for his patience when trying to guide me through the mystic world of medical statistics. His contribution to the statistical analyses has been of invaluable importance.
The head of Section for Joint Replacements and Rheumatoid arthritis surgery, Dr Arne Skredderstuen, deserves credit for making room for my research activities and for teaching me prosthetic surgery in the operating room.

A great thank also to Professor Leif Ivar Havelin, former head of the department, and my supervisor in Orthopaedic Surgery since 2006. His feedback and good advises on all of the papers have been of high value.

My co-author and good colleague, Dr Tarjei Vinje, deserves credit for all the valuable discussions in the office.

I would also like to thank project co-ordinator Lise Kvamsdal at the Norwegian Arthroplasty Register for her high quality data recording, for helping me contacting the industry when new implants have appeared, and for managing all problems during registration in a perfect manner. Also special greetings to the rest of the staff at the Norwegian Arthroplasty Register, and in particular Kjersti Steindal, for her important, and invaluable, work in operating the databases.

Centre for Clinical Research at Haukeland University Hospital deserves great credit for assigning me a clinical scholarship necessary to fulfil my thesis.

All orthopaedic surgeons in Norway deserve credit for continuous accurate data reporting to both the Norwegian Arthroplasty Register and the Norwegian Hip Fracture Register. A great thank to all patients who did respond to the 4 and 12 months questionnaires. Their contribution was of great importance, and hopefully, it may improve the treatment for hip fracture patients in the future.

I am grateful to my parents, Erik and Kari Gjertsen, and to my sister, Christine, for all their support throughout my life.

Finally, I acknowledge the love and support from my beloved wife and best friend, Hilde, and the inspiration I get from our wonderful little sunbeam, Emma, to whom this thesis is dedicated.
2. List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADL</td>
<td>activities of daily living</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>AO</td>
<td>Arbeitsgemeinschaft für Osteosynthesefragen (Eng: ASIS)</td>
</tr>
<tr>
<td>ASA</td>
<td>American Society of Anaesthesiologists</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>EQ-5D</td>
<td>the five-dimensional scale of EuroQol</td>
</tr>
<tr>
<td>EQ-VAS</td>
<td>the visual analogue scale of EuroQol</td>
</tr>
<tr>
<td>GLM</td>
<td>general linear model</td>
</tr>
<tr>
<td>HA(s)</td>
<td>hemiarthroplasty (ies)</td>
</tr>
<tr>
<td>IF</td>
<td>internal fixation</td>
</tr>
<tr>
<td>MID</td>
<td>minimal important difference</td>
</tr>
<tr>
<td>n</td>
<td>number</td>
</tr>
<tr>
<td>NAR</td>
<td>Norwegian Arthroplasty Register</td>
</tr>
<tr>
<td>NHFR</td>
<td>Norwegian Hip Fracture Register</td>
</tr>
<tr>
<td>NPR</td>
<td>Norwegian Patient Registry</td>
</tr>
<tr>
<td>OA</td>
<td>osteoarthritis</td>
</tr>
<tr>
<td>RCT</td>
<td>randomised controlled trial</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>THA(s)</td>
<td>total hip arthroplasty (ies)</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>VAS</td>
<td>visual analogue scale</td>
</tr>
</tbody>
</table>
3. List of publications

This thesis is based on the following papers, referred to in the text by their roman numerals:

4. Abstract

Each year in Norway, approximately 9,000 patients are hospitalised and operated on due to hip fractures (femoral neck fractures, trochanteric fractures, and subtrochanteric fractures). There are several treatment methods available for the different types of fractures. Despite the high number of patients, and extensive research on hip fractures, there has so far been no consensus on the treatment. To evaluate the results of different treatment methods for different types of hip fractures, and to investigate the epidemiology of these fractures, the Norwegian Hip Fracture Register (NHFR) was established, and a nation-wide registration initiated, in 2005. The findings of this thesis were based on data from this new hip fracture register and from the Norwegian Arthroplasty Register. The overall intention was to evaluate the treatment of hip fractures in Norway, with special emphasis on dislocated, intracapsular femoral neck fractures in elderly patients.

In the first paper, the completeness of the registration in the NHFR was evaluated using data from the Norwegian Patient Registry. The completeness of operation form registration was 64 % in 2005 and 79 % in 2006. All hospitals performing hip fracture surgery reported to the register at the end of 2006. The response rate of the questionnaire sent to the patients 4 months postoperatively was 58 %. After 2 years of registration, the data in the register confirmed that disagreement on which treatment methods should be used for different hip fractures, and in particular for the dislocated femoral neck fractures, existed between orthopaedic surgeons.

In the second paper, we investigated the outcome of dislocated femoral neck fractures in elderly patients. The results of internal fixation with 2 screws/pins and bipolar hemiarthroplasty (HA) were compared. The functional outcome was assessed from questionnaires sent to patients 4 months postoperatively. This study showed that the patients operated with a hemiarthroplasty had less pain, were more satisfied with the result of the operation, and had a higher health-related quality of life according to EQ-5D.

In the next study, we used the data from the questionnaires sent to elderly patients operated due to dislocated femoral neck fractures 4 and 12 months postoperatively to compare the results of internal fixation with 2 screws/pins and bipolar HA. Statistically significant differences were found after both 4 and 12 months. HA provided less pain, higher patient satisfaction, higher quality of life, and fewer re-operations compared with internal fixation.
The differences were present also in patients with cognitive impairment and in groups of patients with different walking abilities.

In the last study, we used data from the Norwegian Arthroplasty Register to investigate the results of total hip replacement (THA) as treatment for acute femoral neck fractures and sequelae after femoral neck fractures. The results of these particular THAs were compared to the results of THA in patients with osteoarthritis (OA). The results showed that THA in fracture patients showed good results, but with an increased risk of revision, especially due to early infections, early dislocations, and of peri-prosthetic fractures, compared to OA patients.

The overall conclusion of this thesis is that we have established a well-functioning national register for hip fractures. Our findings suggest that elderly patients with dislocated femoral neck fracture should be treated with hemiarthroplasty in preference to internal fixation irrespectively of cognitive function and walking ability. THAs have also showed good results concerning the number of revisions.
5. Background

5.1 Definition of hip fractures

The term hip fracture refers to fractures in the upper femur, including femoral neck fractures, trochanteric fractures, and subtrochanteric fractures. Different studies have revealed a great variation in the fracture type distribution. The femoral neck fractures can be divided into intracapsular fractures and extracapsular, or basocervical, fractures. The intracapsular fractures can further be divided into undisplaced (Garden 1 or 2) and displaced (Garden 3 or 4). In most studies, the femoral neck fracture is the most frequent fracture type. Approximately 55-60% of the hip fractures are intracapsular femoral neck fractures, and 2/3 of these fractures are displaced. The trochanteric fractures include intertrochanteric and pertrochanteric fractures, and constitutes approximately 30-52% of all hip fractures. The subtrochanteric fractures are fractures where the centre of the fracture line is between the distal limit of the lesser trochanter and the proximal 5 cm of the femoral shaft. The subtrochanteric fractures and the basocervical fractures constitutes each approximately 5% of all hip fractures.

Figure 1. Classification of hip fractures, with distribution in percent according to The Norwegian Hip Fracture Register. Annual Report 2008.
5.2 Epidemiology of hip fractures

World-wide approximately 1.7 million hip fractures occur every year\(^9\). The highest rates are seen in North America and Europe\(^{10,11}\). In Norway (with 4.7 million inhabitants), approximately 9,000 patients are hospitalised and operated due to hip fractures annually\(^ {12}\). The incidence of hip fractures in Norway is high compared to other countries\(^ {4,13,14}\). There are also geographical differences in incidence between the different counties\(^ {13-16}\), and even differences in incidence within a single city\(^ {17}\). During the last decades, the incidence has been increasing both in Norway and other parts of the world\(^ {3,13-15,18}\). However, several recent studies have suggested a reversal of this trend\(^ {19-24}\). The mean age of patients at fracture varies in the literature from 74 to 82 years\(^ {2-4,6,23}\). Only 2 % of the total number of hip fractures occurs in patients younger than 50 years of age\(^ {25}\). In younger patients, hip fractures usually result from a large trauma, while in the elderly, most hip fractures occur due to low-energy trauma, i.e. fall from standing height. Women constitute from 68 to 78 % of the patients\(^ {2-4,6,23}\). The high number of women can be explained by the predominance of women over men as age increases, and the higher incidence of osteoporosis among postmenopausal women.

![Incidence of primary hip fracture - 2006](image)

Figure 2. Incidence of hip fractures in Norway. The figure does not show the true incidence as only approximately 80 % of fractures are reported to the register. From: The Norwegian Arthroplasty Register. Report 2007\(^ {26}\).
It has been reported that the incidence of hip fractures increases exponentially with age. Around the world the number of elderly is rising. Thus, the advancing age of the population has led to a higher number of hip fractures, and increased demands on health service. Even if assuming an unchanged age- and sex-specific incidence of hip fractures, the projected number of hip fractures world-wide in the near future is escalating. In 2050, there will be between 7 and 21 million hip fractures in the world annually, depending on secular trends. Accordingly, there is a need to develop preventive strategies, and to optimise treatment and rehabilitation.

5.3 Treatment of hip fractures

5.3.1 Historic perspective

The era of “modern” operative orthopaedics started in 1846 after the introduction of anaesthesia. However, orthopaedic surgery was not without considerable risk for the patients. The invention of asepsis by Joseph Lister in 1867 improved the results concerning infections. Even after Wilhelm Konrad Röntgen discovered X-rays in 1895, the first X-ray machines were not good enough to take satisfactory radiographs of the hip. Accordingly, it was difficult to separate trochanteric fractures from femoral neck fractures. Most patients with hip fractures were treated by bed rest, by traction, with huge splints, or with plaster cast. Most intracapsular fractures did not unite, and the mortality was high. Bernhard Rudolf Konrad von Langenbeck was probably the first surgeon to perform an internal fixation of a non-united fracture in the femoral neck during the 1850-ies using a gimlet, but unfortunately his patient died of sepsis. He was followed by Franz König in 1875, who also used a gimlet to treat a femoral neck fracture in a young patient. This fracture healed, and accordingly, König became the first surgeon to perform a successful internal fixation of femoral neck fracture. In Norway, Professor Julius Nicolaysen already in 1897 described an operation method used for femoral neck fractures; after closed reduction, and without general anaesthesia or radiographs, a triangular steel nail was carefully introduced percutaneously, parallel to the assumed axis of the femoral neck. By listening to the sound of the nail being introduced through the femoral neck, it was possible to identify the time when the nail reached the acetabulum. The nail was then wrapped in a sterile bandage, and the hip was immobilised in a plaster cast. The nail was extracted after 4 weeks and the cast was removed 8 to 10 weeks postoperatively.

In 1931, Marius Nygaard Smith-Petersen invented a special nail that on cross section had three flanges, used for stabilising femoral neck fractures by preventing rotation of the
neck of the femur39. The nail was originally made from stainless steel, later changed to cobalt-chrome (Vitallium). Sven Christian Johansson introduced a thin metal wire as guide for the Smith-Petersen nail, which now became cannulated40. In the trochanteric fractures, a lateral offset plate could be used in addition to the Smith-Petersen nail.

Guy Whitman Leadbetter reported good results with the use of his reduction manoeuvre in 1933. In this manoeuvre, the injured hip was flexed 90 degrees, and while manual traction was applied, the hip was internally rotated and circumducted into abduction. Also in the days before operative treatment with nailing was common he used this method with relatively good results. In patients with intracapsular fractures treated with plaster cast after reduction, approximately 70\% of the fractures united41.

In 1940 Austin T. Moore constructed a Vitallium model of the proximal femur in a patient with a tumor. The model was made from calculations on radiograms, and had side plates that were bolted to the femur42. Later, the idea of an intramedullary stem was introduced; first, the acrylic femoral head prosthesis designed by the Judet-brothers43;44, later the self-locking metal hemiprosthesis designed by Austin Moore45. Frederick R. Thompson invented his hemiprosthesis in 195046. The indications, however, were non-union, avascular necrosis after femoral neck fracture, and bilateral arthritis. From the 1950-ies John Charnley started to develop hip replacements, and his work led to the modern principles of low-friction arthroplasty used today47. The Charnley total hip prosthesis and the Norwegian Christiansen prosthesis were the most commonly used prostheses brands in Norway in the 70-ties48. The Christiansen prosthesis had, however, inferior results49.

5.3.2 Modern treatment

General principles

A hip fracture is associated with increased morbidity and mortality. Half of the patients die within 5 years after the operation50-52. The increased mortality is in particular prominent in patients with cognitive impairment, comorbidity, and low physical abilities. These patients must be paid special attention during treatment and rehabilitation53. Several complications are associated with prolonged bed rest, including infections, thrombo-embolic disease, and pressure-sores. These complications are particularly pronounced in the elderly. Accordingly, it is essential to achieve a good functional outcome as soon as possible. Surgical management which will allow early mobilisation is therefore the treatment of choice for most hip fractures. The aim of the treatment is to return the patients to their pre-fracture functional ability6;54.

Several newer studies have concluded that the treatment should be based on the patient’s age, functional demands, and individual risk profile55-59. Many different types of implants exists, each of the implants has its advantages and disadvantages.

Figure 3. Operation methods for hip fractures. Radiograms of different type of implants:

a. Osteosynthesis with 2 screws
b. Osteosynthesis with hip compression screw
c. Osteosynthesis with hip compression screw with lateral support plate
d. Osteosynthesis with intramedullary nail
e. Hemiarthroplasty
f. Total hip arthroplasty
Screws and pins
Screws and pins have been used for both displaced and undisplaced femoral neck fractures. Several different implants exist. They are introduced in the femoral neck over guide pins through small incisions. The screws have only proximal threads, which secures compression, and consequently, a good contact face in the fracture, even when the femoral neck is shortened during fracture healing. Complications after internal fixation with screws or pins include avascular necrosis of the femoral head, non-union, malunion, osteosynthesis failure, and local pain due to the osteosynthesis-material. For the displaced fractures, reoperation rates from 10 to 49 percents have been found in the literature\(^6\). For the undisplaced fractures, however, the reoperation rate is low\(^6\). Screws or pins have been the most common treatment used in younger patients with femoral neck fractures, and for the undisplaced femoral neck fractures in the elderly\(^6\).

Compression Hip Screw
The compression hip screw system has been the most frequently used implant for the trochanteric and subtrochanteric fractures in Norway\(^5\). It consists of a lag screw inserted into the femoral neck and a hip plate with a proximal barrel. In order to secure compression of the fracture during healing, the lag screw can slide through the barrel. The hip plate can have an integrated or additional lateral support-plate to prevent medial dislocation of the femur. The support plate is especially applicable in the multifragmentary trochanteric fractures, intertrochanteric fractures, and in subtrochanteric fractures. The complications include infection, malunion, fracture of femur, and osteosynthesis failure\(^6\)–\(^8\).

Intramedullary nail
The intramedullary nails are most frequently used for the trochanteric and subtrochanteric fractures. They are mini-invasively introduced proximal to the greater trochanter, and inserted through the tip of the trochanter or through the piriform fossa. There are several designs of nails available; the preferable design for hip fractures is the reconstruction design. The nails typically have one lag screw that with a guiding instrument can be introduced through the nail and into the femoral neck. Some nails have two lag screws in order to give rotational stability. The recently introduced Trigen Intertan Intertrochanteric Antegrade Nail (Smith & Nephew, Memphis) has one lag screw and one compression screw, which facilitates both rotational stability and intraoperative compression of the fracture. Some nails are equipped with a set
screw used to lock the lag screw in fractures where compression is not required. The characteristics of the fracture determine whether to use a short or a long nail. In order to increase the stability of the fracture, both the short and long nails have distal locking screws. One of the most frequently occurring complications has been the peri-implant fracture63,66. Other complications include infection, malunion and osteosynthesis failure63-65.

Hemiarthroplasty
The hemiarthroplasty (HA) can be used for both femoral neck fractures and basocervical fractures, and are more uncommonly used for trochanteric fractures. A HA is also frequently used as a salvage operation for the non-healed femoral neck fractures in elderly patients. The hemiprosthesis can be of a bipolar or a unipolar design. A bipolar hemiprosthesis consists of a femoral stem, a femoral head and a bipolar head. The femoral head can be in one piece together with the stem, or it can be attached to the stem through a taper locking mechanism, the latter giving the possibility of adjusting tension by choosing between different sizes of the head. The bipolar head is attached to the femoral head, permitting movements both in the hip joint and between the bipolar head and the femoral head. The bearing surface between the femoral head and the bipolar head is typically metal on polyethylene. In the unipolar prosthesis, a hemi-head is attached directly to the stem through the taper locking mechanism, permitting movement only in the hip joint. The monoblock hemiprosthesis consists of only one piece, and is therefore also considered to be unipolar. The hemiprosthesis can be fixated to the femur with or without cement. Modern uncemented stems have a structured surface, and can be hydroxy-apatite coated, to facilitate bony anchoring of the prosthesis. By operating a patient with a HA, the problems with avascular necrosis of the femoral head, malunion, and non-union can be avoided. However, complications after hemiarthroplasty include infections, dislocations, and peri-prosthetic fractures55,58,67-70. Also, there is a risk of acetabular erosion, specially in younger, active patients71-73.

Total hip arthroplasty
An increasing number of patients are operated with a total hip arthroplasty (THA) as primary treatment for acute femoral neck fractures74,75. The components of a THA can be of cemented or uncemented design. The THA consists of a femoral stem, a femoral head and an acetabular cup. Both the femoral stem and the acetabular component can be of monoblock or modular design. Modern uncemented implants have a structured surface, and may have hydroxy-
apatite coating, to facilitate bony anchoring of the prosthesis. The femoral head is typically made from metal or ceramic, while the bearing surface of the acetabular component is normally made from polyethylene (plastic), ceramic, or metal. Complications include infections, dislocations, peri-prosthetic fractures, and aseptic loosening.\(^{76-78}\)

Controversies

Primary arthroplasty and internal fixation with screws or pins have been the two main options for treating the dislocated femoral neck fracture in elderly patients. In several randomised, controlled studies, arthroplasty has provided better functional outcome than internal fixation, as assessed by Harris hip score\(^{79}\) and EQ-5D\(^{80-82}\). In two randomised, control studies, hemiarthroplasty showed better results than internal fixation as treatment for dislocated femoral neck fractures\(^{70,83}\), while other randomised, controlled studies have shown poor results for the hemiarthroplasty compared to internal fixation as treatment for these fractures\(^{55,57}\). A Cochrane review comparing arthroplasty and internal fixation found no definite differences in pain and residual capacity\(^{84}\). There has, so far, been no consensus in Norway on the treatment of the dislocated femoral neck fractures\(^{5}\). This controversy has been the main focus of interest in this thesis. Also, for the trochanteric and subtrochanteric fractures, there has been no consensus on which operation method to be preferred. While some authors advocate intramedullary nailing for the unstable trochanteric fractures\(^{65}\), other studies recommend hip compression screw as standard treatment\(^{63,85}\).

The need for a registry

Despite extensive research on hip fractures, the treatment of the dislocated femoral neck fractures in the elderly is still controversial. Several surveys in the past have shown lack of agreement among orthopaedic surgeons on the treatment of these fractures\(^{25,62,86-90}\). Further, there has been no consensus on the treatment of trochanteric and subtrochanteric fractures\(^{25,63,65,85}\). Increased age in the population has led to a higher number of hip fractures\(^{27}\). Due to continued increasing of age, the number of hip fractures requiring treatment accordingly will increase in the future. Consequently hip fracture patients will have an increased demand for the health service\(^{29}\). To reduce this already heavy workload for the health system in Norway, it is therefore essential to optimise the treatment of this important group of patients. The lack of consensus states that there is a need for a national register to monitor the treatment of the hip fractures.
National registers for hip fractures already exist in several countries. In Sweden, the RIKSHÖFT was initiated in 1988. With operation forms from the different hospitals, and patient questionnaires 4 months postoperatively, a nationally registration of hip fracture treatment in the elderly has been performed. In the Swedish registry it is possible both to compare different treatment methods for the different fracture types, and to compare different ways of rehabilitating the patients. In 1993 the Scottish Hip Fracture Audit was established to improve hip fracture care, and they now provide nationally comparable data. The Standardised Audit of Hip Fractures in Europe (SAHFE) is a national audit encompassing the Swedish and the Scottish registries as well as datasets from other European countries. Through these datasets it is possible to study background and outcome factors such as rehabilitation methods of hip fractures on a Europe-wide basis and in a standardised manner.

There has been agreement in the Norwegian Orthopaedic Association that a hip fracture register also was needed in Norway. Therefore, The Norwegian Hip Fracture Register was established, and a nation-wide registration of hip fractures was initiated in January 2005. This registry will be thorough described later in this thesis.
6. The Norwegian Hip Fracture Register

Under the initiative of Kristian Bjørgul, the Quality Improvement Committee of the Norwegian Orthopaedic Association started a pilot project from 2001 to 2002 called “Hoftefraktur prosjektet”. This project was derived from the Swedish RIKSHÖFT and the SAHFE project. The project was based in 3 hospitals: Haugesund sjukehus, Sykehuset Østfold (Fredrikstad), and St. Olavs Hospital (Trondheim). There were 3 patient forms following the patients through the hospital system, and information was added along the way. Information included final reports from the hospital stay, consultations in outpatient clinics, and reoperations. Data on return to home and functional scores was to be collected by the surgeons. There was a large workload on the contact surgeons, and they only worked part time with the project. Consequently, the hospital reports did not work.

Based on the experience with the pilot project, the committee contacted the Norwegian Arthroplasty Register (NAR) with a suggestion to start a national register of hip fractures. The leader of the NAR, Professor Ove Furnes, consequently became a member of the committee in the end of the project. It was of paramount importance to secure money for the register. After securing the finances from Helse Vest in 2004, the NAR with Professor Ove Furnes, Professor Lars B Engesæter, Professor Leif Ivar Havelin, Dr Jonas Fevang, Dr Jan-Erik Gjertsen, Mrs Kjersti Steindal, and Mrs Lise Kvamsdal started the process of reworking the report forms and writing research protocols. It was decided that the register should be based on the same principles as the well-established Norwegian Arthroplasty Register with regard to only gathering information that the surgeons are able to fill in directly after surgery. Thus, the report form was made simple and consisted of only one page. In order to diminish workload and to increase the compliance, the information on patient-reported pain, patient satisfaction, and quality of life was decided to be collected by mail administrated from the register’s central office, and no longer by the hospitals.

At the request of the general meeting of the Norwegian Orthopaedic Association 23, October 2004, The Norwegian Hip Fracture Register (NHFR) was established. The register is owned by the Norwegian Orthopaedic Association, and receives funding from Helse-Vest. In January 2005, the register started a nation-wide registration of hip fractures. The main aims of the NHFR are to collect epidemiological data, to evaluate the results of different treatment methods for the different types of hip fractures in various populations, and to identify inferior implants early on. The register provides data on incidence of fracture types, treatment
methods, and trends over time. Information about the patient, fracture, and operation is obtained from a form that is filled in by the surgeon immediately after surgery (Appendix 1-3). The patient questionnaire is described in more detail in Chapter 9.3 (Appendix 4-7). The register receives records from the Norwegian Register of Vital Statistics with information on dates of death and emigration. The data collection has concession from the Data Inspectorate based on consent from the patients.

Professor Lars B Engesæter has the position as head of the register and Dr Jonas M. Fevang has a 20% position as orthopaedic surgeon in the NHFR. The orthopaedic surgeons Dr Jan-Erik Gjertsen, Dr Tarjei Vinje, and Dr Kjell Matre are all performing research in the register. Project co-ordinator for the NHFR is Mrs Lise Kvamsdal. Informatics specialist Kjersti Steindal is responsible for the database, and for preparing the annual reports. Mrs Kari Alver Vågstøl and Mrs Marianne Wiese are responsible for the registration of data from the operation forms. Ms Kaia Furnes and Ms Ronja Furnes register data from the patient’s questionnaires. Dr Jan-Erik Gjertsen supervises the registration of the operation forms.

The registration completeness has been approximately 80%, and the response rate of the 4-months patient questionnaires has been 59%\(^5\). The annual report is sent to all members of the Norwegian Orthopaedic Association, to all hospitals performing hip fracture surgery, and to the health authorities. Hospital-specific reports are reported back to the participating hospitals to facilitate improvement in treatment.
7. The Norwegian Arthroplasty Register

The Norwegian Arthroplasty Register (NAR) was established in September 198793,94. The register is owned by the Norwegian Orthopaedic Association, and receives funding from Helse-Vest and Helse-Bergen. The register contains prospective data on more than 110,000 primary hip arthroplasties and 18,000 revisions74. From 1994 the register was extended to include registration of all joint replacements95. The main aim of the NAR is to identify inferior implants as early as possible. The register also provides hospital-specific results, which are reported back to the participating hospitals to facilitate local improvement in treatment. Thus, the NAR functions as a quality register, both locally and nationally95.

Information is collected through a 1-page form that is filled in by the surgeon after each operation (Appendix 8-10). The same form is used for both primary operations and revisions. Using the patients’ national personal identification number, the revisions can be linked to their primary operation. Only operations involving removal or change of one or more prosthesis components are defined as a revision. Small re-operations, such as closed reduction of a dislocated prosthesis or soft tissue revision are not reported. To obtain accurate information on the implants, stickers with catalogue numbers of the implants, supplied by the manufacturers, are used.

The register receives records from the Norwegian Register of Vital Statistics with information on dates of death and emigration. The data collection is approved by the Data Inspectorate. All patients give a written consent to be entered into the register. The completeness of registration in the NAR has been close to 100\%, both for primary operations and revisions96,97. The register staff includes orthopaedic surgeons, statisticians, informatics specialists, and secretaries.

The annual report is sent to all members of the Norwegian Orthopaedic Association, to all hospitals performing joint replacements, and to the health authorities. Hospital-specific reports are reported back to the participating hospitals to facilitate improvement in treatment.
8. Aims of the study

The overall objective of this thesis was to investigate the treatment of hip fractures, and in particular the displaced femoral neck fractures, in Norway.

The specific aims of the four papers included in the thesis were:

I To describe and evaluate the completeness of the Norwegian Hip Fracture Register, and to describe epidemiological data of hip fractures, and the treatment of these fractures in Norway.

II To compare the functional outcomes 4 months postoperatively of hemiarthroplasty and internal screw fixation as treatment for displaced femoral neck fractures in elderly patients.

III To investigate whether the functional outcomes found in Paper II could be found also after 12 months follow-up, and in particular if similar differences between the treatment groups could be found in subgroups of patients with cognitive impairment and in patients with various degrees of walking ability. Further, to investigate the short-term functional outcomes in patients treated with a secondary hemiarthroplasty. Finally, to assess reoperation rates after hemiarthroplasty and internal screw fixation as treatment for the displaced femoral neck fractures.

IV To investigate the survival of total hip arthroplasty after acute femoral neck fractures and sequelae after these fractures, in particular the short-term time dependent revision rates.
9. Methods

The methods described in Chapter 9.1 to 9.6 refer to the Norwegian Hip Fracture Register, and accordingly to Papers I, II, and III. The methods used in Paper IV were in accordance with the methods described in Chapter 7.

9.1 Collection of data

The collection of data in the NHFR is performed as a prospective observational study. Before initiating the register, we worked out an operation form, to be filled in by the surgeon, and a patient questionnaire. To be able to include the correct questions in the forms, the main problems of interest were defined during this process. Even though some new problems of interest have turned up after the registration of patients started, the research is limited by the specific questions available on the original forms. The data collection has been approved by the Data Inspectorate.

Contact persons (surgeons or medical secretaries) have been established at all hospitals where hip fracture surgery is performed. They are responsible for the local registration of operation forms, which is described in more detail in Chapter 9.3. Each patient has to give a written consent to be entered into the register, and consent from the patient’s family is sought if the patient is not able to give or withhold consent. The consent form is entered into the patient record at the hospital. Both primary operations and re-operations are registered. Using the patients’ national personal identification number, revisions can be linked to their primary operation. All re-operations should be reported to the register. Hip fractures treated primarily with a total hip arthroplasty (THA), and hips reoperated with THAs due to sequelae after hip fractures, are reported on separate forms and registered in the NAR (Appendix 8-10). These THAs can be added to the analysis files before analyses are performed. Hip fractures treated without surgery are not reported to the register.
9.2 Coding list

Dr Jan-Erik Gjertsen did the coding of the implants, and all other variables on the operation form. For the implants, all main components are registered. Since some hemiprostheses can consist of components from different prostheses brands, and since the implants may consist of different numbers of components, a system where up to 5 different implants could be registered separately was made. The implants were categorised into 5 main groups describing which method of operation that was used (hemiarthroplasty, screws/pins, hip compression screw system, intramedullary nail, angular plate). Further, they were categorised into subgroups to describe the different component in each implant type (e.g. for hemiarthroplasty: femur stem, prosthesis head, bipolar head). Each component was registered with a catalogue number supplied by the manufacturers. Accordingly, all implants were registered as accurately as possible. If only the implant brand, and not the specific type of implant, was known, the implant could still be registered as an unspecified implant of a certain brand. Also, for the other variables on the operation form, code lists were made. The code lists for cement, antibiotic prophylaxis, and thrombosis prophylaxis were the same as the lists in the NAR. Together with project co-ordinator for the NHFR, Mrs Lise Kvamsdal, Dr Jan-Erik Gjertsen has regularly updated the coding lists. New implants have been included in the code lists as soon as they have been reported to the register.

All information was registered in an Oracle 9i database. Once a year, during preparations of survival files and annual reports, data on THAs due to acute hip fractures or sequelae after hip fractures, registered in the database of the NAR, were duplicated into the NHFR database. In order to send questionnaires to the patients at proper times, the two databases were connected monthly to get data also on the acute hip fractures operated primarily with a THA. Further, the registers were monthly updated with information on dates of death and emigration from the records of the Norwegian Register of Vital Statistics. Mrs Kjersti Steindal was responsible for the database, and for making analysis files and annual reports. The Department of Information Technology at Haukeland University Hospital was responsible for the technical- and data safety system.
9.3 Operation form

The operation form to the NHFR has been made as simple as possible (Appendix 1-3). It is a one-page form. And it takes only about one minute to fill it in. To achieve as correct and complete reporting as possible, the surgeons were encouraged to fill in the operation form immediately after surgery. To obtain accurate information on the implants, stickers with catalogue numbers of the implants supplied by the manufacturers were used. If no stickers were available, the surgeon described the implant as accurately as possible.

Time of operation and time of fracture were recorded. If the exact time of fracture was unknown, an estimate of the time from fracture until surgery should be made. The classification of fracture type is described in Chapter 9.4.1. The patient’s co-morbidity was estimated using the American Society of Anaesthesiologists score (ASA-score)\(^\text{98}\), which is described in Chapter 9.4.2. To define the presence of cognitive impairment, the surgeon - if in doubt – could use the clock-drawing test\(^\text{99}\). The clock-drawing test is described in detail in Chapter 9.4.3. Further, the operation form contained information on type of operation and cause of operation. If a hemiarthroplasty is used, information on fixation and the surgical approach was filled in. In addition, the following information was included:

- Presence of a pathological fracture
- Type of anaesthesia
- Peroperative complications
- Duration of surgery
- Systemic antibiotic prophylaxis
- Thrombosis prophylaxis

In order to send out the 4-months questionnaires to the patients at the proper time, we encouraged monthly delivery of operation forms to the register. Forms lacking information were returned to the hospitals for completion of the data that was missing. One hospital registers the operation forms electronically. Guidance to the operation form has been made and has been to all contact persons.
9.4 Classification

9.4.1 Fracture classification

We defined hip fractures as femoral neck fractures, trochanteric fractures, and subtrochanteric fractures. The femoral neck fractures were further divided into intracapsular fractures and basocervical fractures. For the intracapsular fractures, the Garden classification was used\(^1\). The Garden classification is one of the most commonly used classification systems available and is preferred by most orthopaedic surgeons\(^100\). Garden classified femoral neck fractures into 4 types based on displacement on the anterior-posterior radiograph:

- Garden I: undisplaced incomplete, including valgus impacted fractures
- Garden II: undisplaced complete
- Garden III: complete fracture, incompletely displaced
- Garden IV: complete fracture, completely displaced

While most surgeons have problems with distinguishing all four Garden fracture types it has been shown that the inter- and intraobserver variation in distinguishing between undisplaced and displaced fractures is acceptable\(^101\). Therefore, in this thesis, Garden I and II fractures were defined as undisplaced femoral neck fractures and Garden III and IV fractures as displaced femoral neck fractures. The basocervical fractures are extra capsular fractures with the fracture plane running along the capsular insertion, just proximal to the lesser and greater trochanter. During the first 3 years of registration, the trochanteric fractures were divided into two-fragmentary fractures and multi-fragmentary fractures. This was also the classification used in this thesis. In order to investigate the intertrochanteric fractures as a separate group, the AO-classification has been used for the classification of trochanteric fractures since 13 May 2008\(^7\). The subtrochanteric fractures were defined as fractures where the centre of the fracture line was between the distal limit of the lesser trochanter and the proximal 5 cm of the femoral shaft.

9.4.2 Co-morbidity

The score of the American Society of Anaesthesiologists (ASA-score) was used to assess comorbidity\(^98\). A patient that smokes more than 5 cigarettes daily was defined as at least ASA 2.
ASA 1: A normal, healthy patient
ASA 2: A patient with mild systemic disease
ASA 3: A patient with severe systemic disease
ASA 4: A patient with incapacitating disease
ASA 5: A moribund patient

9.4.3 Cognitive function

To define the presence of cognitive impairment, the surgeon - if in doubt – could use the clock-drawing test99. In this test the patient gets a paper with a circle and the following instruction: “This circle represents a clock face. Please put the numbers so that it looks like a clock and then set the time to 10 minutes past 10”. This test has been reported to have good correlation with the Mini-Mental State Examination, and is quick and easy to administer99.

9.4.4 Charnley category

The Charnley category was used in the patient questionnaire to describe functional ability of the patients102.

Charnley category A: Involvement of only the ipsilateral hip
Charnley category B: Also involvement of the contra lateral hip
Charnley category C: Also involvement of other joints or systemic problems limiting activity

9.5 Patient questionnaire

A pilot investigation was performed at Haukeland University Hospital in 2004 to test whether elderly patients were able to fill in the patient questionnaires properly. After 4, 12, and 36 months the questionnaires were sent directly from the register to all the patients operated on in 2005 and 2006 (Appendix 4). For scientific- and economic reasons, and in order to reduce the workload at the register, the questionnaires from 2007 were only sent to selected subgroups of patients. The patient questionnaire is described in detail in Paper I6. If an operation form was delivered to the register later than 7 months after the primary operation, the 4-months questionnaire was not sent to the patient. However, these patients will still receive the 12-months and 36-months questionnaires.
9.6 Quality of life (EQ-5D)

To assess quality of life, we used the EuroQol, which is a standardised non-disease-specific instrument for describing and evaluating health-related quality of life103. It consists of a health status part (EQ-5D) which has five dimensions (mobility, self-care, usual activities, pain/discomfort, and anxiety/depression). Each item has 3 different responses (no problem, some problems, and major problems) (Appendix 5). The preference scores (EQ-5D index scores) generated from a large European population were used104. An EQ-5D index score of 1 indicates best possible health state, and a score of 0 indicates a health state similar to death. Some health states are given negative index score, which indicates a health state worse than death. Further, we used the EQ-VAS, which is a 20-cm visual analogue scale ranging from 0 (signifying worst possible health) to 100 (signifying best possible health) (Appendix 6).

9.7 Quality of data

All operation forms that were difficult to interpret were discussed with Dr Jan-Erik Gjertsen before they were registered in the database. Forms lacking information were returned to the hospitals for completion of the data that were missing. Since all forms from a specific period from a specific hospital were registered consecutively, a form with incorrect information about implants, or other variables, might be more easily discovered. Before the yearly reports were made, the staff of the NHFR critically reviewed the manuscript, and illogical information was corrected. Because hospital-specific reports were sent to the contact persons, they had the possibility to check their own data, and to report back to the register if any operations were missing, or if incorrect information was discovered. To validate the data in the NHFR, our data have been compared to data from the Norwegian Patient Registry (NPR). Compared to the NPR, the completeness of registration was 64 % in 2005 and 79 % in 20065.

9.8 Statistics

The Pearson’s chi-square test was used for comparison of categorical variables in independent groups. Student’s t-test and analysis of variance (ANOVA) were used for continuous variables. All data were considered to be independent. A logistic regression analysis was done to describe each variable’s influence on the response rate (Paper I). We used general linear models (GLMs) to adjust for potential confounders in Paper II (age, sex, cognitive impairment, ASA-score, and preoperative delay of surgery) and Paper III (age, sex, ASA-
score). In Paper IV, the Cox model was used to adjust for differences in sex, age, and cement type, to calculate cumulative survival of the prostheses at given times, to make adjusted survival curves, and to calculate differences in revision risk with different reasons for revision as endpoint in the various diagnosis groups105. Patients who died or emigrated during the follow-up period were identified from files provided by Statistics Norway, and the follow-up for implants in these patients was censored at the date of death or emigration or at the date of which the annual analysis-files were made. Non-parametric (time-dependent) relative risks in Paper IV were calculated using smoothed scaled Schoenfeld residuals106. Continuous variables were normally presented with 95\% CI. The significance levels were set to 0.05; except in Paper I where it was set to 0.01. Patients younger than 70 years were excluded in Papers II and III and patients younger than 60 years were excluded in Paper IV. In Paper II, sub-analyses were performed for patients in different age groups, patients with cognitive impairment, patients with no problems in walking prior to the fracture, and patients in Charnley category A. In Paper III, separate analyses were performed for patients with cognitive impairment and patients with different preoperative walking ability. Both in Papers II and III analyses were performed according to the intention-to-treat principle: i.e. the patients remained in the same treatment group (IF or HA) whether or not a reoperation was performed. Also, analyses without reoperated patients were performed in Paper II and III. In Paper IV separate analyses were performed for patients operated before and after 1995. The statistical analyses were performed with SPSS software for MS-Windows, versions 13.0 (Papers II and IV), 14.0 (Paper I) and 15.0 (Paper III) (SPSS Inc., Chicago, IL) and S-Plus version 7.0 for MS-Windows (Insightful Corp., USA).
10. Summary of Papers I – IV

Paper I

Background: The Norwegian Hip Fracture Register was established in January 2005 to collect nation-wide information as a basis for improved management of patients with hip fractures. This paper reported our experience after the first two years.

Methods: After both primary operations and re-operations, the surgeons filled in a standardised, one-page form with information about the patient, the fracture, and the operation. Fractures treated with a total hip arthroplasty were reported to the national arthroplasty register, but were added to the hip fracture register before analyses were performed. 4, 12, and 36 months postoperatively a standardised questionnaire including health-related quality of life (EQ-5D), visual analogue scales concerning pain and patient satisfaction, and Charnley category for functional assessment was sent directly from the register to the patients. To validate the registration completeness, our data were compared with data from the Norwegian Patient Registry (NPR).

Results: During the first year of registration all 55 hospitals treating hip fractures in Norway started to report their hip fracture operations. During 2005, the monthly reporting increased and it was stabilised in 2006. 13,251 primary operated hips (mean age of patients 80 years, 72 % females) and 2,325 reoperations were reported during 2005 and 2006. Compared to NPR, the registration completeness was 64% in 2005 and 79% in 2006. 58 % of the patients alive answered the 4-months questionnaire. The non-responders were older, more often cognitively impaired, and had a higher degree of co-morbidity compared to the responders. Undisplaced femoral neck fractures (19 % of all fractures) were almost exclusively operated with screw osteosynthesis (95 %). Dislocated femoral neck fractures (38 % of all fractures) were in 52 % of the cases operated with a hemiarthroplasty. Osteosynthesis with a hip compression screw was the dominating operation method (81 %) for trochanteric fractures.
Conclusion: Already after two years, our nation-wide system for surveillance of demographics, treatment, and outcome for hip fractures was functioning well. The response rate on the 4-months questionnaires was as expected relatively low due to an old population with high co-morbidity and cognitive impairment. The different treatment methods used for patients within the same fracture type groups revealed that there was no consensus in Norway regarding the treatment of hip fractures.
Background: Primary arthroplasty and internal fixation are the two main options for treatment of displaced femoral neck fractures. Despite several randomised studies, the optimal treatment in the elderly is still controversial. Based on data from the Norwegian Hip Fracture Register, we compared satisfaction, pain, and quality of life 4 months after surgery in patients over 70 years of age with a displaced femoral neck fracture operated with internal fixation or with a bipolar hemiarthroplasty.

Patients and methods: Data on 1,569 fractures in patients over 70 years of age operated with internal fixation (n=663) or hemiarthroplasty (n=906) had been registered in the hip fracture register. The register also provided data on patient satisfaction, pain, and quality of life (EQ-5D) assessed 4 months after surgery using VAS scales and EQ-5D health questionnaires.

Results: Patients operated with hemiarthroplasty had less pain (VAS 27 vs. 41), were more satisfied with the result of the operation (VAS 33 vs. 48), and had better EQ-5D index score 4 months postoperatively (0.51 vs. 0.42) than patients operated with internal fixation.

Conclusion: Our findings suggested that a hemiarthroplasty gave better results than internal fixation 4 months after surgery in elderly patients with displaced femoral neck fracture.
Paper III

Background: Internal fixation and arthroplasty are the two main options in the treatment of displaced femoral neck fractures in the elderly. The optimal treatment remains controversial. Using data from the Norwegian Hip Fracture Register, we compared the results of hemiarthroplasty and internal screw fixation in displaced femoral neck fractures.

Patients and Methods: Data from 1,031 patients over 70 years of age operated due to a displaced femoral neck fracture with internal fixation (n = 428) or hemiarthroplasty (n = 603) were compared. The evaluation was based on the patients’ own assessment (visual analogue scales concerning pain (0-100) and patient satisfaction (0-100), and quality of life (EQ-5D)) at 4 and 12 months follow-up. Subanalyses on patients with cognitive impairment were done. The risk of reoperations was also analysed.

Results: After 12 months the HA group reported less pain (19.2 vs. 29.9), higher satisfaction with the operation result (25.7 vs. 38.9), and a higher EQ-5D index score (0.60 vs. 0.51) compared to the IF group. All results were statistically significant (p<0.001). Virtually the same statistically significant differences were found at 4 months follow-up. Also for patients with cognitive impairment the HA provided the best functional outcome at 12 months follow-up (less pain, higher satisfaction with the operation result, and higher EQ-VAS) (p<0.001). There were 118 reoperations (29 %) performed in the IF group and 10 (1.6 %) in the HA group.

Conclusion: Hemiarthroplasty provided less pain, higher patient satisfaction, and higher quality of life both at 4 and 12 months follow-up compared with internal fixation as treatment for dislocated femoral neck fractures in elderly patients. Also for the cognitively impaired patients the best functional outcome was provided by HA. There were more reoperations in the IF group.
Paper IV

Background: A total hip arthroplasty (THA) is often used as treatment for failed osteosynthesis of femoral neck fractures and increasingly also for acute femoral neck fractures. To investigate the results of THA after femoral neck fractures, we used data from the Norwegian Arthroplasty Register (NAR).

Patients and methods: The results of primary total hip replacements in patients with acute femoral neck fractures (n = 487) and sequelae after femoral neck fractures (n = 8,090) were compared to those of total hip replacements in patients with osteoarthritis (OA) (n = 55,109). The hips were followed 0 - 18 years. The Cox multiple regression model was used to construct adjusted survival curves and to adjust for differences in sex, age, and type of cement among the diagnostic groups. Separate analyses were done on the subgroups of patients who were operated with Charnley prostheses.

Results: The survival rate of the implants after 5 years was 95 % for the patients with acute fractures, 96 % for the patients with sequelae after fracture, and 97 % for the OA-patients. With adjustment for age, sex, and type of cement, the patients with acute fractures had an increased risk of revision compared to the OA patients (RR 1.6, 95 % CI: 1.0-2.6; p=0.05) and the sequelae patients had an increased risk of revision (RR 1.3, 95% CI: 1.2-1.5; p<0.001). The increased risk of revision was most apparent for the first 6 months after primary operation. Sequelae hips had higher risk of revision due to dislocation (RR 2.0, 95 % CI: 1.6-2.4; p<0.001) and periprosthetic fracture (RR 2.2, 95 % CI: 1.5-3.3; p<0.001) and lower risk of revision due to loosening of the acetabular component (RR 0.72, 95 % CI: 0.57-0.93; p=0.01) compared to the OA patients. There was a marked increase in risk of revision due to deep infection during the first 2 weeks.

Conclusion: THA in fracture patients showed good results, but there was an increased risk of early dislocations, early infections, and periprosthetic fractures compared to OA patients.
11. General discussion

11.1 Register studies as a method

11.1.1 Register studies and randomised, controlled trials

Randomised, controlled trials (RCTs) represent the strongest level of evidence in medical research\(^{107}\). These studies should therefore be the gold standard when evaluating clinical evidence in orthopaedic patients. In the field of hip fractures, several randomised studies have been published, and the results of these studies are of great importance when different treatments are compared. However, the randomised studies have, unfortunately, some limitations. First of all, conducting a RCT is difficult, requires large work loads for the researchers, and is time demanding. Accordingly, conducting these studies may be very expensive. In hip arthroplasty surgery, the results are generally very good, and the differences between the different study groups may be small. Consequently, a large number of patients and a very long follow-up are needed to detect differences. In hip fracture surgery, on the other hand, the differences between the different treatment modalities can be large, and RCTs may give highly significant results favouring one particular implant. However, there are several different treatment methods and a great number of different implants available today. Many of the complications that have been reported occur very infrequently, and a very high number of implants and patients must be investigated to detect any statistically significant differences. Since RCTs only can address one or two primary research questions, a very high number of these studies would be necessary. Consequently, it is not possible to conduct randomised studies on all possible hypotheses that ideally should be investigated.

Register studies are less conclusive than RCTs and they have a lower level of evidence. The fundamental criticism of observational studies has been that the results may be distorted by unrecognised confounding factors. It has, however, been shown that observational studies can give results similar to those of RCTs if potential confounders are controlled for\(^{108}\). Small differences between treatments may still be due to unknown confounders, and the differences must therefore not be overestimated. To minimise the possibility for confounding of the results, adjusted analyses, such as Cox regression analyses or logistic regression analyses can be performed, in where the simultaneous effect of several risk factors can be studied, and the analyses may be adjusted for skewnesses in the distribution for background variables. On the other hand, register-based studies have several
advantages over the randomised, controlled studies, including lower cost, greater timeliness, and a broader range of patients. Register studies can address several implant brands and patient categories in the same study. Further, a register-based study can collect epidemiological data to give information on incidence of fracture types, treatment methods, and trends over time.

There are some advantages of a national register study. Firstly, the large number of patients makes it possible to find significant results earlier than in a RCT. Secondly, a national register provides the results from the average surgeon at the average hospital. Since hip fracture surgery is performed at more than 50 hospitals in Norway, the results from the large university hospitals, specialised into orthopaedic trauma, generally do not dominate the results. However, a national register study also has disadvantages. If implants are used only in a few hospitals and by a few surgeons, factors such as surgical skills and the particular hospitals’ routines and revision policy may influence the results of these particular implants. Further, an eventual specialised rehabilitation program available after the discharge from some particular hospitals may influence the functional outcome of the surgery in these patients.

Some treatments may routinely be selected for the sickest patients by the physicians, and an observational study may in these cases give invalid results. There may be similar differences in the indications for some of the treatment modalities for hip fracture patients; i.e. the sickest patients are operated with one particular treatment method. However, so far it seems to be no consensus on the treatment of hip fractures in Norway. The results provided by this national registry reflect the outcomes that can be achieved for the average patients. Further, adjustments for confounders, such as ASA-score and cognitive dysfunction, can be done. Thus, there is reason to believe that the results from the Norwegian Hip Fracture Register may be trusted.

Even if the randomised, controlled trials represent the gold standard when seeking evidence in medical research, it seems clear that it is not always possible, or appropriate, to conduct this type of studies. Observational studies can often give useful and valid data, also when investigating problems that can not easily be clarified with randomised, controlled studies, in particular for rare adverse outcomes. Consequently, it is more accurate to say that observational and randomised studies complement each other, rather than competing in the field of clinical research. Results from both types of studies should therefore be included when searching the literature.
11.1.2 Completeness and quality of data

Completeness of the operation forms

The registration completeness in the Norwegian Arthroplasty Register (NAR) has been high both for primary operations and revisions. Espehaug and colleagues found a registration completeness of 97% for all primary THAs when comparing the results in the NAR with the data from the Norwegian Patient Registry (NPR)97. Arthursson and colleagues found that only 0.4% of the THAs performed at one large local hospital had not been reported to the NAR96. In order to obtain a high registration completeness from the surgeons, a one-page operation form, similar to that of the NAR, has been used in the Norwegian Hip Fracture Register (NHFR).

Also for the NHFR, data from the Norwegian Patient Registry (NPR) were used to evaluate the completeness of the registration. The completeness, according to the NPR, was 64% in 2005 and 79% in 20065. There was an increase in the reporting to the NHFR during 2005 due to the fact that some of the larger hospitals started registration late that year. A stable reporting rate to the register was observed throughout 2006.

One Norwegian study has reported that re-hospitalisations due to sequelae after hip fractures might be registered in the NPR as acute hip fractures110. Accordingly, they found an overestimation of 14% in the NPR when compared to local electronic databases at 3 hospitals, and therefore questioned the validity of the NPR electronic database. An overestimation was also reported on hip fractures in the English Public Health Common Data Set111. These findings may explain some of the difference between the data in the NHFR and the NPR. From 2008, the NPR data will be personally identifiable and consequently, the comparing of data from the NPR and the NHFR will probably be more valid. Validation studies of the registration of both primary operations and re-operations in the hip fracture register should be performed.

The main reason why there was a lower completeness in the NHFR compared to the NAR was probably that it takes time to establish good routines for reporting to a recently established register. Also, while elective hip arthroplasties are performed at daytime by surgeons dedicated to prosthesis surgery, hip fracture surgery is also performed during weekends and at night time by the surgeons on call, usually registrars in training and with a high turnover in their positions. Since both the NAR and the NHFR are dependent on reporting from a large group of surgeons, feedback is important to maintain the surgeons’
interest. Therefore, all participating hospitals receive their hospital-specific report in addition to the annual report.

Completeness of the patient questionnaires
In the NAR, two studies have reported a response rate of 81% from patients who had undergone primary or revision hip arthroplasties112,113. Those patients were younger than, and had probably less co-morbidity than the average hip fracture patient, and they received a reminder if they did not respond to the questionnaire. Thus, the relatively low response rate in the NHFR can be explained by high age, considerable co-morbidity, cognitive impairment, and many patients moving temporarily or permanently into nursing homes. Probably, a better response rate could have been achieved if reminders were sent to the non-responders. The patients who responded to the 4-months questionnaires were younger, less cognitively impaired, and had a lower ASA-score compared to the non-responders. Consequently, the responders represented a selected subgroup of patients. Also, patients with an inferior clinical outcome may be more likely to respond to the questionnaire. However, the results showed that the response rate was not influenced by fracture type and operation method. We therefore believe that data from the 4-months and 12-months questionnaire can be trusted.

11.1.3 Outcome measures
Outcome in the Norwegian Arthroplasty Register
The common outcome measure in the NAR is revision of the prosthesis. The definition of a revision is an operation involving removal or change of one or more prosthesis components. Accordingly, patients with dislocated hip prosthesis treated with closed reduction of the prosthesis should not be reported as a revision to the register. Normally, only patients with recurrent dislocations undergo surgical revision of the prosthesis. The rate of surgical treatment for recurrent dislocations has been reported to be about 40%114. This means that our endpoint was very strict and that the results found in Paper IV could have been more evident if all dislocations were included as an endpoint. Further, patients with prosthesis infection operated with soft tissue revision without a change or removal of prosthesis components were not registered in the NAR, and consequently not included in Paper IV. Again, the endpoint was very strict. Therefore, the risk of deep infection is probably greater than the findings of that study. However, the comparison of the relative risk estimates between OA patients and fracture patients should not be affected unless one of the patient
groups more often was treated non-operatively, i.e. with soft tissue debridement and long-term suppression antibiotic treatment. The use of clinical endpoints, such as functional outcome, would demand that the patients had to be followed regularly with radiographic and clinical controls, which is not practically possible in a national register.

Outcome in the Norwegian Hip Fracture Register

A re-operation is the primary outcome measure in the NHFR. In contrast to the NAR, the NHFR has defined all secondary procedures as re-operations, including removal of implant, soft tissue revisions, and closed reduction of dislocated hemiprosthesis. Since some of the re-operations are performed as day-surgery or in outpatient clinics, there could be a lower reporting rate for these re-operations, especially for the minor re-operations. The results found in Paper IV were, however, in good accordance with the literature. Other studies have reported reoperation rates from 24 to 42 % for internal fixation and from 2 to 13 % for arthroplasties.

In addition to re-operations, clinical outcome measures such as pain, satisfaction with the result of the operation, and quality of life (EQ-5D) can be assessed with the patient questionnaires. One weakness of the clinical outcome variables is that they are patient reported. Information from eventual clinical examinations and / or radiographic controls at the different operating hospitals was not reported to the register. Such data would certainly have strengthened the validity of the results and conclusions of Papers II and III. However, to maintain a good completeness of the registration, it is important to keep the workload for the surgeons as small as possible.

The results from both the VAS scales concerning pain, patient satisfaction, and quality of life (EQ-VAS), and from the EQ-5D index score must be interpreted with some care. Due to the high number of patients in the NHFR, small differences between treatment groups can be statistically significant. However, when the differences are small, they could be of no clinical relevance. This is important to keep in mind when analysing data from the register. Ehrich and colleagues found that, on a 10 cm visual analogue scale, the minimal perceptible clinical improvement was determined to be 9.7 mm. Another study found that changes larger than 12 % of the baseline score, or 6 % of the maximum score, can be detected as minimal important differences (MID). Two studies found that the lower bounds of MID for EQ-5D index score was between 0.06-0.08, whereas for the EQ-VAS the lower bound of MID was 7. Consequently, in our studies, a difference of 10 on the VAS concerning pain,
satisfaction, and quality of life (EQ-VAS) could indicate a difference of clinical importance. Similarly, a difference of 0.1 on the EQ-5D index score may indicate a significantly clinical difference.

Quality of life

The EQ-5D has been widely used in patients with hip fractures, also when the patients have been cognitively impaired. Several studies have validated the EQ-5D, and it has been recommended to be used also in elderly patients with hip fractures\cite{119-123}. Some studies, however, found some disadvantages for use on the cognitively impaired patients, where differences could be found between the patients’ and their relatives’ assessments\cite{124,125}. Tidermark and colleagues found that there was a good correlation between the EQ-5D index scores and other outcome measures such as pain, mobility, independence in ADL, and independent living status\cite{119}. One weakness in the design is that the preoperative EQ-5D is assessed retrospectively at 4 months postoperatively. The patients, or the relatives, may have problems remembering the exact situation before the fracture. Consequently, the answers in EQ-5D may be inaccurate. Lingard et al found only moderate agreement between recalled data and prospective data concerning preoperative status\cite{126}. In contrast, Howell et al found the correlation between prospective data and recalled data to be good\cite{127}. However, the preoperative EQ-5D index score reported by the patients in study II and III showed good correlation with an age-matched Swedish reference population\cite{128}.

11.2 Results

11.2.1 Epidemiology and treatment of hip fractures

In Paper I, we found that the mean age of patients was 80 years, and that 72 % of the patients were women. These findings corresponded well with the results of the Swedish National Hip Fracture Register, RIKSHÖFT (mean age 81 years, 71 % females)\cite{6} and the Scottish Hip Fracture Audit (mean age 81 years, 76 % females)\cite{91}. Other epidemiological studies of hip fractures in Northern Europe found a mean age between 78 and 82 years\cite{2,4,23,25,129,130}. In these studies, between 70 % and 79 % of the patients were women. In Paper I we found that the femoral neck fractures constituted 57 % and the trochanteric fractures constituted 30 % of all fractures. Also the distribution of fractures was similar to that presented by the Swedish register\cite{6}. Furthermore, other studies found that the femoral neck fracture was the most
frequent fracture type (41-61 %), and that the trochanteric fractures constituted between 35 %
and 52 % of all hip fractures2-4,23.

The results in Paper I showed that there was no national consensus on the treatment of
dislocated femoral neck fractures. However, compared to earlier studies from the NHFR, a
greater part of the patients has recently been operated with a hemiarthroplasty, which now has
become the most frequent operation method used when treating these fractures131,132. This
may indicate a shift in the treatment from primary osteosynthesis to hemiarthroplasty in
patients with dislocated femoral neck fractures. Also in Denmark a similar shift in the
treatment of these fractures has been found62. One explanation to this shift is probably the
results of several studies concluding that the outcome after arthroplasty is superior to that
after internal fixation67-70,80-83,133-135. Another explanation, however, may be that treatment of
hip fractures nowadays are performed more frequently by trained orthopaedic surgeons,
instead of general surgeons with less competence in arthroplasty surgery.

In a recent Norwegian national survey, Figwed and colleagues found great variance in
the hospitals’ preferences on the treatment methods of dislocated femoral neck fractures in the
elderly. Written directions on the treatment of hip fractures only existed at 55 % of the
hospitals89. Other surveys have found the same lack of consensus in Denmark, UK, Canada,
and USA62,86,87,90. Results from the Scottish Hip Fracture Audit, showed no consensus on the
treatment of both undisplaced and displaced femoral neck fractures in patients over 80 years
of age, although the majority of patients with displaced fractures was operated with
arthroplasty. In addition, there was great variance in the policy of using uncemented
prostheses between the different hospitals91. In two prospective multicenter studies, a
heterogeneous treatment of femoral neck fractures and trochanteric fractures between
hospitals in Sweden, Finland, and the Netherlands were found. There were also differences
between the two Swedish hospitals25,136.

In Paper I, no consensus on the treatment of trochanteric and subtrochanteric fractures
were found. Other studies from other European countries have also indicated that the
treatment of trochanteric fractures varied between different countries, and also between
hospitals within the same country25,136. In Norway, the compression hip screw has been the
dominating operation method used for these fractures, although the trochanteric
multifragmentary fractures, and in particular the subtrochanteric fractures, frequently were
operated with intramedullary nailing5,131. The Gamma nail (Stryker Howmedica) has been
used as treatment for trochanteric and subtrochanteric fractures in several hospitals, and is the
most popular intramedullary nail used when treating hip fractures in Norway. This implant has been associated with an increased risk of femoral shaft fractures. So far, there seems to be no agreement in the literature on the treatment of the trochanteric and subtrochanteric fractures, even though the Cochrane collaboration recommend compression hip screw for the trochanteric fractures.

11.2.2 Treatment of displaced femoral neck fractures in elderly patients

The main findings in Papers II and III were that hemiarthroplasty (HA) provided less pain, more satisfied patients, better quality of life according to the EQ-5D, and fewer re-operations in elderly patients with displaced femoral neck fractures compared to internal screw fixation (IF). The superior outcome was present both at 4 and 12 months follow-up.

Already in 1979, Søreide and colleagues found that hemiarthroplasty provided better results than internal fixation in patients with femoral neck fractures. However, the treatment of the dislocated femoral neck fractures in the elderly is still controversial. Our findings were in good accordance with the results of a recent randomised, controlled study from Frihagen et al comparing hemiarthroplasty (HA) with internal fixation (IF) using Harris hip score, EQ-5D, and Barthel index as functional outcome. The patients in that study were also Norwegian, and they were about the same age. However, they had more patients with cognitive impairment. They found virtually the same differences in EQ-5D index score and EQ-VAS between IF and HA as in our study at both 4 and 12 months follow-up. However, in the randomised study, all mean values were generally higher than in the present study for both treatment groups. One reason can be that the EQ-5D in the two studies was assessed differently. In the randomised study, a research assistant registered the EQ-5D, and the patients might be eager to please the department that performed the surgery. In our study, the EQ-5D was filled in by the patients or the relatives in their homes and sent to an independent national register by airmail. One other reason can be that our study represents the results from a whole country with a large cohort of patients, and from the average surgeon, and not only the results from one specialised clinic with special interest for these fractures. Our results were also in good accordance with another recent randomised, controlled study that used pain and walking ability as functional outcome.

Other studies in which the uncemented Austin Moore uncoated hemiprostheses were used, found no difference in functional outcome compared to IF. One reason could be the use of hemiprostheses documented to have inferior results. In our study, most
prostheses were cemented, and the majority of the uncemented prostheses had modern, hydroxy-apatite coated stems. The results of cemented prostheses have previously been reported to be better than the results of uncemented, uncoated hemiprostheses, concerning pain, walking ability, use of walk aids and ADL. Other studies reported better results after arthroplasty compared to IF at early follow-up, but with less differences at later follow-ups. According to these studies and the present study, the patients in the arthroplasty group might have a faster rehabilitation period with less pain and better quality of life. A hip fracture is associated with an increased mortality, and half of the patients are dead within 5 years. Therefore, it is important to achieve a good outcome as soon as possible.

Furthermore, sub-analyses in paper III showed that the bipolar HA performed well also in the cognitively impaired patients. This is in contrast to an earlier study that found no difference in functional outcome between IF and HA in this subgroup of patients. The cognitively impaired patients were older and had a higher degree of comorbidity. The probability for these patients to be reoperated may therefore be less than for other patients. Consequently, to avoid a final inferior outcome it is important that these patients are operated initially with the best available treatment. According to the results of this study, the cognitively impaired patients should be operated with a modern well-documented hemiprosthesis. The sub-analyses of patients with minimal and moderate problems in walking showed similar differences as those found for all patients, favouring HA as the treatment of choice independent of the patient’s walking ability. For ambulatory healthy elderly patients with high functional demands, several studies have found better results after THA compared to IF as treatment for dislocated femoral neck fractures. In order to find the optimal treatment modalities for the different patient groups, comparison of the results of THA and HA will be performed in future studies from our register. The results from Paper III showed that the secondary HAs provided the same functional outcome as the primary HAs at follow-up 12 months after the index operation, although there was a non-significant tendency towards poorer results for the secondary HAs. All these salvage arthroplasties had a follow-up of more than 4 months, and this could indicate that the rehabilitation period also for these secondary procedures was rapid. These results must however, be interpreted with some care. Other studies have reported more pain one year postoperatively and a higher risk of reoperation after secondary HA compared to primary HA.

In Paper III, few minor reoperations, such as removal of screws or pins, were reported. Our results were in good accordance with other studies that have reported a reoperation rate
from 24 to 42 % for internal fixation and from 2 to 13 % for arthroplasties55;67;83. A meta-analysis found reoperation rates from 10 to 49 % for internal fixation and from 0 to 24% for arthroplasties60. According to our data, only 2 hemiprostheses (0.3 %) were re-operated due to dislocation. Only one closed reduction (0.2 %) of a dislocated hemiprostheses was reported to the register. This is in contrast to a recent study finding that dislocation occurred in 4 % of hemiarthroplasties, and that the dislocations most frequently were interprosthetic, i.e. separation of the prosthesis head and the bipolar head146. This result indicates that an under-reporting of re-operations to the NHFR, and especially closed reduction of dislocated hemiarthroplasties, exists. One of the long-term complications associated with hemiarthroplasty is acetabular erosion71-73. The follow-up for the patients included in Papers II and III is, so far, too short to assess this problem. The rate of re-operations after hemiarthroplasty will therefore probably increase.

Several RCTs have found that total hip arthroplasty provided better functional outcome than internal fixation when assessed by Harris hip score79 and EQ-5D80-82. In a Cochrane review comparing IF and arthroplasty, Parker and Gurusamy found no definite differences in pain and residual disability84.

Several more recent studies have concluded that the treatment of the displaced femoral neck fractures should be based on the patient’s age, functional demands, and individual risk profile55;56;58;59. With today’s knowledge, arthroplasty surgery seems to give superior results compared to internal fixation in the elderly, provided that well-documented, good prosthesis brands are used. Our register-based study in a large cohort confirmed that the hemiarthroplasty gave satisfactory outcome147. THA may, according to other studies, give better outcome than a HA both in the short and long term, in particular in the relatively healthy, active, and lucid patients. However, a THA has also some disadvantages that will be discussed in Chapter 11.2.3.

11.2.3 Total hip arthroplasty as treatment of hip fractures

Total hip arthroplasty (THA) is known to be a highly cost-effective operation for patients with osteoarthrosis (OA)148. Every year approximately 6,500 patients receive a THA in Norway. Primary osteoarthrosis was the cause for of the THAs in 78 % while 7.1 % were performed due to sequelae after previous fractures in the proximal femur8. An increasing number of patients are operated with primary THA after acute fractures in the femoral neck8,75. This may
reflect an indication shift from primary internal fixation to THAs in patients with displaced femoral neck fractures.

In Paper IV we found that total hip arthroplasties (THAs) as treatment for primary osteoarthritis (OA) provided good results when the main outcome measure was revision. Similarly, THAs after acute femoral neck fractures and sequelae after these fractures had good results. The results were, however, inferior to those of the OA patients mainly due to more infections during the first 2 weeks and dislocations during the first year after surgery, and due to more periprosthetic fractures. This is in accordance with the findings of Johnsen and colleagues who found that patients with sequelae after trauma had an adjusted RR of implant failure of 2.8 between 31 days and 6 months after primary THA, when compared to OA patients.149 After 6 months they found no statistically significant difference.

We found that one of the most important risk factor for revision of the prostheses in the patients with acute femoral neck fractures or sequelae after such fractures was dislocation. Other studies have also confirmed these results76,78,150-153. Bystrøm and colleagues found that femoral head size was an important risk factor for dislocations of THAs.151 Studies have reported that increasing age, and especially the presence of cerebral dysfunction is associated with a higher dislocation rate.151,154 However, in Paper IV the patients with acute femoral neck fractures and sequelae after fractures had a lower average age than usually seen in studies of femoral neck fracture patients.5,80,119,155 Consequently, these patients represented a selected group of femoral neck fracture patients. Other plausible explanations to dislocation can be an increased tendency to fall, less muscular control, abnormal local anatomy with limb shortening and scar tissue after the previous operation. Only patients with recurrent dislocations undergo surgical revision, and as mentioned in Chapter 11.1.3, our results might have been even more significant if we had used dislocation alone as the end-point.

In the time dependence study in Paper IV the sequelae group had a significantly increased risk of revision due to infection during the first 2 weeks postoperatively compared to OA patients. Our study only included patients who underwent surgical revision with a new prosthesis or with an exchange or removal of one or more of the components. Patients operated only with a soft tissue revision were not registered, and thus we believe that the risk of deep infection is larger than the results presented in Paper IV. However, the relative risk estimates comparing OA patients and fracture patients should not be influenced unless the fracture patients more often are treated with soft tissue debridement and long time suppression antibiotic treatment than OA patients. A previous study from our register found no statistically significant difference in infection risk when comparing sequelae patients with OA
patients but this study did not present time dependent analyses. The risk of a deep infection is still small. More use of antibiotics, both systemically and in cement, may be one possible explanation to these good results.

Patients with sequelae after femoral neck fractures have been reported to have an increased risk of peri-prosthetic fractures. Our study confirmed these results. In a nation-wide observational study, minor trauma, including a fall to the floor, and a spontaneous fracture was reported to be the main aetiologies for peri-prosthetic femoral fractures. Patients with previous femoral neck fractures may have a higher tendency to fall. They are also osteoporotic and thus more prone to fractures. Also, holes after osteosynthesis material in the proximal femur may cause a weakness in the bone and may lead to peri-prosthetic fractures. In Paper IV only patients who have had a surgical revision with a new prosthesis component were included. The patients treated with wire and/or plate fixation were not reported to the Arthroplasty Register and were therefore not included. The true number of peri-prosthetic fractures is therefore probably higher.

In several, recent randomised controlled studies THA has provided superior functional outcome than IF as treatment of dislocated femoral neck fractures. In other studies THA gave superior results compared to HA as treatment of femoral neck fractures. Blomfeldt and colleagues found that secondary THAs performed as salvage operations after failed IF provided inferior hip function according to Charnley score and EQ-5D when compared to primary THA for displaced femoral neck fractures. The results of these randomised studies suggest that THAs could be recommended as a treatment of femoral neck fractures in the relatively healthy, lucid, elderly patients with high functional demands. The long-term results of these particular THAs should be addressed in future studies.
12. Conclusions

Paper I:
- All hospitals performing hip fracture surgery reported to the NHFR.
- The registration of data in the register was satisfactory after two years of registration.
- 59% of the patients answered the 4-months questionnaire. Considering high age and considerable co-morbidity, this result is as expected.
- There was no consensus in Norway regarding the treatment of hip fractures.

Paper II:
- Patients with a dislocated femoral neck fracture treated with a HA had less pain, were more satisfied with the result of the operation, and had a higher quality of life 4 months after surgery compared to patients treated with IF.

Paper III:
- The differences in functional outcome found in Paper II persisted 12 months postoperatively.
- HA provided a superior functional outcome than IF also in patients with cognitive impairment, and in subgroups of patients with different walking ability.
- No significant difference between primary and secondary HA was found twelve months after the index operation, although there was a non-significant tendency towards poorer results for the secondary HAs.
- There were more re-operations in the IF group compared to the HA group.

Paper IV:
- THA had good results, not only for OA, but also for acute femoral neck fractures and for sequelae after femoral neck fractures.
- The patients with an acute fracture had a 1.6 times higher risk of revision compared to OA patients. The sequelae patients had 1.3 times higher risk of revision.
- We found an increased relative risk of revision for the fracture patients due to early dislocation and infection, and due to peri-prosthetic fractures compared to the OA patients.
13. Future research

13.1 Surgical outcome after hip fractures

The reoperation rates for the dislocated femoral neck fractures have, so far, only been investigated briefly and we still have a short follow-up of the implants. Even though we know that most complications following osteosynthesis occur during the first two years, the problems with loosening or wear of the prosthesis, or acetabular wear in the hemiarthroplasties may occur later. The higher risk of reoperation for the secondary hemiarthroplasties found in other studies must be further investigated also in the hip fracture register. The hemiarthroplasty has become the most frequently used operation method for the dislocated femoral neck fractures. Several types of hemiprosthesis designs exist. Future studies should focus on the results of different types of prostheses. The results of cemented and uncemented prostheses should be compared. Further, the results of the monoblock-prostheses should be investigated. Finally, since an earlier study has shown a risk of interprosthetic dislocation in prostheses with snap-fit bipolar heads, the results of these prostheses should be compared to the results of bipolar hemiprostheses with locked bipolar heads.

13.2 Functional outcome after hip fractures

The results of Papers II and III showed superior outcome in patients operated with HA compared to those operated with IF. The follow-up was, however, only 12 months. The patients included in the studies above all had their primary operation in 2005 and 2006. All patients still alive at 36 months follow-up will receive a new questionnaire and the results from these questionnaires will be investigated, and compared to the 4- and 12-months results. The comparison of primary and secondary HAs in Paper III must be further investigated. Before conclusions can be made, a longer follow-up and a higher number of patients are needed. Total hip arthroplasties performed due to acute hip fractures, and registered in the NAR, are also included in the files of the NHFR. Consequently it will be possible to compare the functional outcome of HA and THA. Earlier studies have shown that THA gives superior outcome compared to HA as treatment of dislocated femoral neck fractures. Since also patients operated with a primary THA due to a femoral neck fracture receive questionnaires 4, 12, and 36 months after surgery, the results of these particular THAs should be compared to the results of both IF and HA. Further, the outcome after IF in younger patients should be investigated. For all the different treatment modalities, sub-analyses should be done in
different age groups. As a result of this thesis and several recent studies it seems likely that most dislocated femoral neck fractures in the elderly should be treated with an arthroplasty. Further research should concentrate on which type of arthroplasty that gives the best outcome for different patient categories.

13.3 Economic outcome after hip fractures

One important issue that has not been discussed in this thesis is the economic outcome after the different treatment modalities for patients with displaced femoral neck fractures. The initial cost of treating a patient with screw osteosynthesis is lower than treatment with a bipolar HA. However, the patients in the IF group have more re-admissions due to hip-related problems, and they undergo more reoperations than patients operated with HA. Keating and colleagues found, accordingly, that the total hip-related costs was higher in the IF group compared to the HA group. A study from Rogmark and colleagues found similar results, favouring the HA group as the most cost efficient treatment. Another study found that THA was the most cost-effective treatment for the elderly patients with displaced femoral neck fractures. Using data from NHFR and NAR it is possible to examine the cost-effectiveness of IF, HA and THA as treatment for the dislocated femoral neck fractures.

13.4 Mortality rates after hip fractures

Postoperative mortality is one important factor to consider when choosing between different surgical procedures. The mortality rates have only been briefly investigated in this thesis. However, in order to complete the comparison of IF and HA as treatment for the dislocated femoral neck fractures, a study assessing mortality rates has been initiated.
14. **Source of data**

15. Appendix

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>Operation form The Norwegian Hip Fracture Register 2005-2008 (Norwegian)</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Operation form The Norwegian Hip Fracture Register 2008- (Norwegian)</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Operation form The Norwegian Hip Fracture Register 2008- (English)</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Patient questionnaire (Norwegian)</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>EQ-5D (English)</td>
</tr>
<tr>
<td>Appendix 6</td>
<td>EQ-VAS (English)</td>
</tr>
<tr>
<td>Appendix 7</td>
<td>Visual analogue scales (English)</td>
</tr>
<tr>
<td>Appendix 8</td>
<td>Operation form The Norwegian Arthroplasty Register 1987-1992 (Norwegian)</td>
</tr>
<tr>
<td>Appendix 9</td>
<td>Operation form The Norwegian Arthroplasty Register 1993-2004 (Norwegian)</td>
</tr>
<tr>
<td>Appendix 10</td>
<td>Operation form The Norwegian Arthroplasty Register 2005- (Norwegian)</td>
</tr>
</tbody>
</table>
AKTUELLE OPERASJON
- Primaeroperasjon
- Reoperasjon

SIDE (ett kryss) (Bilateral opr. = 2 skjermer)
- Høyre
- Venstre

OPR TIDSPUNKT
(dd.mm.åå) |__|__| |__|__| |__|__| kl |__|__|
 Samarbeider om brudd tidspunkt, fyll ut neste punkt.

BRUDD TIDSPUNKT
(dd.mm.åå) |__|__| |__|__| |__|__| kl |__|__|
 Dersom det er usikkerhet om brudd tidspunkt, fyll ut neste punkt.

TID FRA BRUDD TIL OPERASJON I TIMER
- 0-6
- >6-12
- >12-24
- >24-48
- >48

DERSOM DET ER USIKKERHEIT OM BRUDD TIDSPUNKT, FALL UT NESTE PUNKT.

DEMENS
- Nei
- Ja (Se test på baksiden)

ASA-KLASSE
(se bakside av skjema for definisjon)
- Frisk
- Asymptotisk tilstand som gir økt risiko
- Symptomatisk sykdom
- Livstruende sykdom
- Moribund

ÅRSAK TIL PRIMAEROPERASJON (TYPE PRIMAERBRUDD)
(Kun ett kryss)
- Lårhalsbruudd utslaget (Garden 1 og 2)
- Lårhalsbruudd disklokt (Garden 3 og 4)
- Lateralt lårhalbruudd
- Petrokantært to-fragment
- Petrokantært flerfragment
- Subtrokantært
- Annet

ÅRSAK TIL REOPERASJON (Fiere enn et kryss kan brukes)
(Spesifiser nøyaktig produkt eller fest ett produktklistrelapp på baksiden)
- Fjerning av implantat (Brukes når dette er eneste prosedyre)
- Girdestone
- Bipolar hemiprotese
- Unipolar hemiprotese
- Re-osteosyntese
- Drenasje av hematom eller infeksjon
- Lukket reposisjons av luksert hemiprotese
- Åpen reposisjon av luksert hemiprotese
- Annet, spesifiser

FNR. (11 sifre) ...
Navn: ..

Fylles ut bare ved primæroperasjon og ved reoperasjon til totalprotese brukes kun hofteproteseskjema. Alle produktklistrelapper settes i merket felt på baksiden av skjemaet.

NAVN / STØRSEL EKVEN./ KATALOGNUMMER
………………………………………

TILGANG TIL HOFTELEDDET VED HEMIPROTESE
(Kun ett kryss)
- Anterolateral
- Lateral
- Posterolateral
- Annet, spesifiser

Fylles ut bare ved primæroperasjon - eget skjema for totalproteser
(Spesifiser nøyaktig produkt eller fest ett produktklistrelapp på baksiden)
- To skruer eller pinne
- Tre skruer eller pinne
- Bipolar hemiprotese
- Unipolar hemiprotese
- Glideskru og plate
- Glideskru og plate med trochantær støtteplate
- Vinkelplate
- Kort margnagle uten distal sperre
- Kort margnagle med distal sperre
- Lang margnagle uten distal sperre
- Lang margnagle med distal sperre
- Annet, spesifiser

Merk: (Kun ett kryss)

NIKSKASJON AV HEMIPROTESE
(For totalprotese sendes eget skjema til hofteproteseregisteret)
- Usoementert
 - med HA
 - uten HA
- Sement med antibiotika

PATOLOGISK BRUDD (Annen patologi enn osteoporose)
- Nei
- Ja, type

TILGANG TIL HOFTENE (Kun ett kryss)
- Anterolateral
- Lateral
- Posterolateral
- Annet, spesifiser

ANESTESITYPENAVN / STØRSEL EV. KATALOGNUMMER
………………………………………

ÅRSAK TIL REOPERASJON
(Fiere enn et kryss kan brukes)

- Osteosyntesematerialet skåret gjennom caput
- Nyt brudd rundt implantat
- Løsning av hemiprotese
- Annet, spesifiser

Navn / størrelse ev. katalognummer
………………………………………

ÅRSAK TIL REOPERASJON
(Fiere enn ett kryss kan brukes)

- Fjerning av implantat (Brukes når dette er eneste prosedyre)
- Girdestone
- Bipolar hemiprotese
- Unipolar hemiprotese
- Re-osteosyntese
- Drenasje av hematom eller infeksjon
- Lukket reposisjons av luksert hemiprotese
- Åpen reposisjon av luksert hemiprotese
- Annet, spesifiser

TILGANG TIL HOFTELEDDET VED HEMIPROTESE
(Kun ett kryss)
- Anterolateral
- Lateral
- Posterolateral
- Annet, spesifiser

PATOLOGISK BRUDD (Annen patologi enn osteoporose)
- Nei
- Ja, type

TILGANG TIL HOFTENE (Kun ett kryss)
- Anterolateral
- Lateral
- Posterolateral
- Annet, spesifiser

ANESTESITYPENAVN / STØRSEL EV. KATALOGNUMMER
………………………………………

ÅRSAK TIL REOPERASJON
(Fiere enn ett kryss kan brukes)

- Osteosyntesematerialet skåret gjennom caput
- Nyt brudd rundt implantat
- Løsning av hemiprotese
- Annet, spesifiser

Navn / størrelse ev. katalognummer
………………………………………

ÅRSAK TIL REOPERASJON
(Fiere enn ett kryss kan brukes)

- Fjerning av implantat (Brukes når dette er eneste prosedyre)
- Girdestone
- Bipolar hemiprotese
- Unipolar hemiprotese
- Re-osteosyntese
- Drenasje av hematom eller infeksjon
- Lukket reposisjons av luksert hemiprotese
- Åpen reposisjon av luksert hemiprotese
- Annet, spesifiser

TILGANG TIL HOFTELEDDET VED HEMIPROTESE
(Kun ett kryss)
- Anterolateral
- Lateral
- Posterolateral
- Annet, spesifiser

PATOLOGISK BRUDD (Annen patologi enn osteoporose)
- Nei
- Ja, type

TILGANG TIL HOFTENE (Kun ett kryss)
- Anterolateral
- Lateral
- Posterolateral
- Annet, spesifiser

ANESTESITYPENAVN / STØRSEL EV. KATALOGNUMMER
………………………………………

ÅRSAK TIL REOPERASJON
(Fiere enn ett kryss kan brukes)

- Osteosyntesematerialet skåret gjennom caput
- Nyt brudd rundt implantat
- Løsning av hemiprotese
- Annet, spesifiser

Navn / størrelse ev. katalognummer
………………………………………

ÅRSAK TIL REOPERASJON
(Fiere enn ett kryss kan brukes)

- Fjerning av implantat (Brukes når dette er eneste prosedyre)
- Girdestone
- Bipolar hemiprotese
- Unipolar hemiprotese
- Re-osteosyntese
- Drenasje av hematom eller infeksjon
- Lukket reposisjons av luksert hemiprotese
- Åpen reposisjon av luksert hemiprotese
- Annet, spesifiser

TILGANG TIL HOFTELEDDET VED HEMIPROTESE
(Kun ett kryss)
- Anterolateral
- Lateral
- Posterolateral
- Annet, spesifiser

PATOLOGISK BRUDD (Annen patologi enn osteoporose)
- Nei
- Ja, type

TILGANG TIL HOFTENE (Kun ett kryss)
- Anterolateral
- Lateral
- Posterolateral
- Annet, spesifiser

ANESTESITYPENAVN / STØRSEL EV. KATALOGNUMMER
………………………………………

ÅRSAK TIL REOPERASJON
(Fiere enn ett kryss kan brukes)

- Osteosyntesematerialet skåret gjennom caput
- Nyt brudd rundt implantat
- Løsning av hemiprotese
- Annet, spesifiser

Navn / størrelse ev. katalognummer
………………………………………

ÅRSAK TIL REOPERASJON
(Fiere enn ett kryss kan brukes)

- Fjerning av implantat (Brukes når dette er eneste prosedyre)
- Girdestone
- Bipolar hemiprotese
- Unipolar hemiprotese
- Re-osteosyntese
- Drenasje av hematom eller infeksjon
- Lukket reposisjons av luksert hemiprotese
- Åpen reposisjon av luksert hemiprotese
- Annet, spesifiser

TILGANG TIL HOFTELEDDET VED HEMIPROTESE
(Kun ett kryss)
- Anterolateral
- Lateral
- Posterolateral
- Annet, spesifiser

PATOLOGISK BRUDD (Annen patologi enn osteoporose)
- Nei
- Ja, type

TILGANG TIL HOFTENE (Kun ett kryss)
- Anterolateral
- Lateral
- Posterolateral
- Annet, spesifiser

ANESTESITYPENAVN / STØRSEL EV. KATALOGNUMMER
………………………………………

ÅRSAK TIL REOPERASJON
(Fiere enn ett kryss kan brukes)

- Osteosyntesematerialet skåret gjennom caput
- Nyt brudd rundt implantat
- Løsning av hemiprotese
- Annet, spesifiser

Navn / størrelse ev. katalognummer
……………………………………...
Appendix II
Hoftebrudeforløpsskjema

ÅRSAK TIL REOPERASJON

Hvis det er usikkerhet om brudd tidspunkt, fyll ut dette feltet.

| BRUDD TIDSPUNKT | (dd.mm.åå) ||__|__| |__|__| kl |__|__|
|------------------|------------------|

OPR TIDSPUNKT

| (dd.mm.åå) ||__|__| |__|__| kl |__|__|
|------------------|------------------|

TID FRA BRUDD TIL OPERASJON I TIMER

- 0-6
- >6-12
- >12-24
- >24-48
- >48

DEMENS

- Nei
- Ja

Primaeroperasjon

TYPE PRIMÆROPERASJON

- Primaeroperasjon
- Reoperasjon

SIDE (ett kryss)

- Bilateral
- Unilateral

OPR TIDSPUNKT

| (dd.mm.åå) ||__|__| |__|__| kl |__|__|
|------------------|------------------|

BRUDD TIDSPUNKT

| (dd.mm.åå) ||__|__| |__|__| kl |__|__|
|------------------|------------------|

Dersom det er usikkerhet om brudd tidspunkt, fyll ut dette feltet.

TILGANG TIL HOFTELEDDET

<table>
<thead>
<tr>
<th>Venstre</th>
<th>Høyre</th>
</tr>
</thead>
</table>

Primærbrudd Årsklassifikasjon

FORSKJELLTE åR

- Lårhalsbrudd udisklokt
- Lårhalsbrudd dislokt (Garden 1 og 2)
- Lårhalsbrudd dislokt (Garden 3 og 4)
- Lårhalsbrudd
- Pertrokanært tofragment (AO klassifikasjon A2)
- Pertrokanært flerfragment (AO klassifikasjon A2)
- Intertrokanært (AO klassifikasjon A3)
- Subtrokanært
- Annet

Perioperativ komplikasjon

- To skruer eller pinner
- Tre skruer eller pinner
- Bipolar hemiprotese
- Unipolar hemiprotese
- Glideskrue og plate
- Glideskrue og plate med trochantarr støtteplate
- Vinkelplate
- Kort margnagle uten distal sperrer
- Kort margnagle med distal sperrer
- Lang margnagle uten distal sperrer
- Lang margnagle med distal sperrer
- Annet

Fyldes ut ved primæroperasjon - eget skjema for totalproteser

TYPE REOPERASJON

- Fyldes ut ved et kryss kan brukes

FIKSASJON AV HEMIPROTESE

- Anteriorlateral
- Lateral
- Posterolateral
- Annet

Systemisk antibiotikaprophylaks

OPERASJONSTID

- hud til hud
- med HA
- uten HA

Tromboseprophylaks

Lege:

Legen som har fylt ut skjemaet (navnet registreres ikke i databasen).
Appendix III
Norwegian Hip Fracture Register
Helse Bergen HF, Department of Orthopaedic Surgery
Haukeland University Hospital
Mellendalsbakken 11
5021 BERGEN
Phone: (+47)55976452

HIP FRACTURES

PRIMARY OPERATIONS ON PROXIMAL FEMORAL FRACTURES and ALL REVISIONS, included closed reduction of hemiprostheses. When primary operation with total hip arthroplasty and revision with total hip arthroplasty use form to the arthroplasty register only. All stickers are to be put in marked area on back of form.

CURRENT OPERATION
 slated on the back of form)

- Primary operation □ 2 Revision

SIDE (one mark) (Bilateral op.= 2 forms)
- Right □ Left

TIME OF OPERATION

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>hrs</th>
<th></th>
</tr>
</thead>
</table>

TIME OF FRACTURE

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>hrs</th>
<th></th>
</tr>
</thead>
</table>

If uncertainty on time of fracture, fill in next section.

TIME FROM FRACTURE TO OPERATION IN HOURS

- 0-6 □ 6-12 □ 12-24 □ 24-48 □ >48

COGNITIVE IMPAIRMENT

- No □ Yes (See text on the back of form) □ Uncertain

ASA-CLASSIFICATION (see text on the back of form for definition)
- Healthy
- Mild systemic disease
- Severe systemic disease
- Incapacitating disease
- Moribund

REASON FOR PRIMARY OPERATION (TYPE OF FRACTURE) (One mark only)

- Undislocated intracapsular fracture (Garden 1 og 2)
- Dislocated intracapsular fracture (Garden 3 og 4)
- Basocervical fracture
- Trochanteric 2 fragment (AO class A1)
- Trochanteric multifragment (AO class A2)
- Inter trochanteric (AO class A3)
- Subtrochanteric
- Other

TYPE OF PRIMARY OPERATION (One mark only)

(Fill in only when primary operation – separate form for THAs)

- Two screws or pins
- Three screws or pins
- Bipolar hemi prosthesis
- Unipolar hemi prosthesis
- Hip compression screw and plate
- Hip compression screw with lateral support plate
- AO-plate
- Short intramedullary nail without distal locking
- Short intramedullary nail with distal locking
- Long intramedullary nail without distal locking
- Long intramedullary nail with distal locking
- Other

TYPE OF REOPERATION (More than one mark can be used)

(Specify product exactly or use stickers with catalogue number supplied by the manufacturers on the back of form)

- Removal of implant (when only procedure)
- Girdlestone
- Bipolar hemi prosthesis
- Unipolar hemi prosthesis
- Re-osteosynthesis
- Drainage of hematoma or infection
- Open reduction of dislocated hemiprosthesis
- Other, specify

Name / size, if possible Catalogue number

FIXATION OF HEMIPROSTHESIS

(For total hip arthroplasty a separate form is sent to the arthroplasty register)

- Uncemented
- with HA □ without HA
- Cement with antibiotics Name...
- Cement without antibiotics Name...

PATHOLOGICAL FRACTURE (Other pathology than osteoporosis)

- No □ Yes, type...

APPROACH TO HIP JOINT WHEN HEMIARTHROPLASTY (One mark only)

- Anterolateral
- Lateral
- Posterolateral
- Other

TYPE OF ANESTHESIA

- Narcosis □ Spinal □ Other, specify...

PEROPERATIVE COMPLICATIONS

- No □ Yes, Which...

DURATION OF OPERATION (skin to skin).............minutes

SYSTEMIC ANTIBIOTIC PROPHYLAXIS

- No □ Yes, Which (A)...

Dosis (A)........ Total number of dosis:.............Duration:hours

Ev. in combination with (B)...

Dosis (B)........ Total number of dosis:.............Duration:hours

THROMBOSIS PROPHYLAXIS

- No □ Yes, Which type...

Dosis day of surgery........ First dose given preoperatively □ No □ Yes

Later dosis:........ Duration:days

Ev. in combination with

Dosis:........ Duration:days

Mechanical pump □ No □ Foot □ Thigh Duration:days

Name:...

Hospital:..

Birth number:..

Name:...

(Write distinct ev. patient sticker – specify hospital.)

Surgeon who has filled in form (name is not registered.)

Surgeon.
Appendix IV
PASIENTSPØRRESKJEMA NASJONALT HOFTEBRUDDREGISTER

1. Dato for utfylling av skjema: __________

2. Spørreskjemaet er besvart av:

☐¹ Meg selv

eller ved hjelp av....(kryss av i ruten som gjelder)

☐² Slektning (ektefelle, barn)
☐³ God venn eller annen nærstående
☐⁴ Annen privat person
☐⁵ Hjemmesykepleier/hjemmehjelp
☐⁶ Annen person, angi hvem: ____________________________
I de neste 5 spørsmålene ønsker vi å vite hvordan livssituasjonen din var FØR du fikk hofte/lårhalsbruddet som du ble operert for.

3. Hvordan opplevde du gangevnen din?
 □ Jeg hadde ingen problemer med å gå omkring
 □ Jeg hadde litt problemer med å gå omkring
 □ Jeg var sengeliggende

4. Hvordan klarte du personlig stell?
 □ Jeg hadde ingen problemer med personlig stell
 □ Jeg hadde litt problemer med å vaske meg eller kle meg
 □ Jeg klarte ikke å vaske meg eller kle meg

5. Hvordan klarte du dine vanlige gjøremål (f.eks. arbeid, studier, husarbeid, familie- og fritidsaktiviteter)?
 □ Jeg hadde ingen problemer med å utføre mine vanlige gjøremål
 □ Jeg hadde litt problemer med å utføre mine vanlige gjøremål
 □ Jeg var ute av stand til å utføre mine vanlige gjøremål

6. Smerter eller ubehag?
 □ Jeg hadde verken smerte eller ubehag
 □ Jeg hadde moderat smerte eller ubehag
 □ Jeg hadde sterk smerte eller ubehag

7. Angst eller depresjon?
 □ Jeg var verken engstelig eller deprimert
 □ Jeg var noe engstelig eller deprimert
 □ Jeg var svært engstelig eller deprimert
I de 5 neste spørsmålene ønsker vi å vite hvordan livssituasjonen din er NÅ:

8. Hvordan opplever du gangevnen din?
 □ 1 Jeg har ingen problemer med å gå omkring
 □ 2 Jeg har litt problemer med å gå omkring
 □ 3 Jeg er sengeliggende

9. Hvordan klarer du personlig stell?
 □ 1 Jeg har ingen problemer med personlig stell
 □ 2 Jeg har litt problemer med å vaske meg eller kle meg
 □ 3 Jeg klarer ikke å vaske meg eller kle meg

10. Hvordan klarer du dine vanlige gjøremål (f.eks. arbeid, studier, husarbeid, familie- og fritidsaktiviteter)?
 □ 1 Jeg har ingen problemer med å utføre mine vanlige gjøremål
 □ 2 Jeg har litt problemer med å utføre mine vanlige gjøremål
 □ 3 Jeg er ute av stand til å utføre mine vanlige gjøremål

11. Smerter eller ubehag?
 □ 1 Jeg har verken smerte eller ubehag
 □ 2 Jeg har moderat smerte eller ubehag
 □ 3 Jeg har sterk smerte eller ubehag

12. Angst eller depresjon?
 □ 1 Jeg er verken engstelig eller deprimert
 □ 2 Jeg er noe engstelig eller deprimert
 □ 3 Jeg er svært engstelig eller deprimert
13. Din helsetilstand i dag.

For å hjelpe folk til å si hvor god eller dårlig en helsetilstand er, har vi laget en skala (omtrent som et termometer) hvor den beste tilstanden du kan tenke deg er merket 100 og den verste tilstanden du kan tenke deg er merket 0.

Vi vil gjerne at du viser på denne skalaen hvor god eller dårlig helsetilstanden din er i dag, etter din oppfatning. Vær vennlig å gjøre dette ved å trekke en linje fra boksen nedenfor til det punktet på skalaen som viser hvor god eller dårlig din helsetilstand er i dag.
14. Sett ett kryss på den streken som du synes tilsvarer din gjennomsnittlige smerteopplevelse fra den opererte hoften den siste måneden:

<table>
<thead>
<tr>
<th>Ingen smerte</th>
<th>Maksimal smerte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15. Sett ett kryss på den streken som du synes tilsvarer hvor fornøyd du er med operasjonsresultatet:

<table>
<thead>
<tr>
<th>Fornøyd</th>
<th>Misfornøyd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
16. Har du besvær fra den andre høften?

☐ Ja ☐ Nei

17. Er det andre årsaker til at du har problemer med å gå?
 (For eksempel smerter fra andre ledd, ryggsmerte, hjerte-karsykdom
 eller andre sykdommer som påvirker gangevnen din)

☐ Ja ☐ Nei

Takk for at du tok deg tid til å svare på spørsmålene. Dine svar er svært
nyttige for oss. Vennligst send spørreskjemaet i retur til oss i den ferdig
frankerte svarkonvolutten.
Appendix V
By placing a tick in one box in each group below, please indicate which statements best describe own health state today

Mobility
- I have no problems in walking about
- I have some problems in walking about
- I am confined to bed

Self-Care
- I have no problems with self-care
- I have some problems washing or dressing myself
- I am unable to wash or dress myself

Usual activities *(e.g. work, study, homework, family or leisure activities).*
- I have no problems with performing my usual activities
- I have some problems with performing my usual activities
- I am unable to perform my usual activities

Pain/Discomfort
- I have no pain or discomfort
- I have moderate pain or discomfort
- I have extreme pain or discomfort

Anxiety/Depression
- I am not anxious or depressed
- I am moderately anxious or depressed
- I am extremely anxious or depressed
Appendix VI
To help people say how good or bad health state is, we have drawn a scale (rather like thermometer) on which the best state you can imagine is marked 100 and the worst state you can imagine is marked 0.

We would like you to indicate on this scale how good or bad your own health is today, in your opinion. Please do this by drawing a line from the bow below to whichever point on the scale indicates how good or bad your health state is today.
Appendix VII
PAIN

Place a mark on the line which represents the average pain from the operated hip the last month:

No pain

Maximal pain

mild moderate medium strong unbearable

SATISFACTION

Place a mark on the line which represents the degree of satisfaction with the result of the operation:

Satisfied

Dissatisfied

Very satisfied satisfied medium satisfied dissatisfied very dissatisfied
Appendix VIII
ANAMNESE:

1. SMERTER (ett kryss):
 - Sterke spontaner i hville og om natten.
 - Sterke som hindrer all gangaktivitet.
 - Moderater, titterer begrenset gange.
 - Etter noe aktivitet, forsvinner i hville.
 - Lette eller periodevis. Størtsmerter.
 - Ingen smert.

2. GANGEVNE (ett kryss):
 - Få meter med 2 krykker/stokker/sengliggende.
 - Sterkt begrenset med eller uten stokker.
 - Begrenset med stokk (under en time). Kan stå lenge.
 - Kan gå lange avstander med en stokk.
 - Ingen stokk, men hatter.
 - Normal gåevne.

3. FUNKSJONSGRUPPE (ett kryss):
 - Aktuelle hofte syk eller frisk.
 - Begge hofter syke eller frisk.
 - Annet som reduserer gangevnan.

4. TIDLIGERE OPERASJONER I AKTUELLE HOFTE:
 - Nei (avt. flere kryss)
 - Osteosynesse pga. fraktur i prox. femurende.
 - Hemiproteus pga. fraktur.
 - Osteotomi.
 - Arthrodes.
 - Totalproteser(r) Type(r):
 - Annet:

5. VARIGHET AV SYMPT. I AKT. HOFTE: ___________ år
 (under 1 år = 0).

OPERASJONSOPPLYSNINGER:

6. OPERASJONSDATO: ____________

7. AKTUELLE OPERASJON ER (ett kryss):
 - Primær totalproteseoperasjon.
 - Reoperasjon.

8. AKTUELLE SIDE (ett kryss):
 - Høyre
 - Venstre
 - Venstre - høyre allerede protese.
 - Venstre - høyre allerede protese.

9. AKTUELLE HOFTEOPERASJON ER (ett kryss):
 a) Primærprotese pga.:
 - Idiopatisk coxartrose
 - Rheumatoid artritt.
 - Sept. coll. fem.
 - Dysplasi.
 - Dysplasi med laksjon.
 - Perthes/ep.fys.
 - Bechterew.
 - Annet:
 b) Reoperasjon pga. (avt. flere kryss):
 - Lesning av acetabulardelen.
 - Lesning av femurdel.
 - Luxasjon.
 - Dyptinfeksjon.
 - Fraktur av femur.
 - Smert.
 - Annet:

 Reop. - bytte av acetabulardelen.
 Reop. - bytte av hele protesen.

11. TILGANG (ett kryss):
 - Fremre (Smith-Pettersen).
 - Anterolateral.
 - Later.
 - Posterolateral.
 - Annet:

12. TROCHANTEROSTOMI:
 - Nei
 - Ja

13. BENTRANSPLANTASJON:
 - Nei
 - I acetabulum.
 - I femur.
 - I acetabulum og femur.

14. PROTESE, NAVN/TYPE (Spesifiser nødvaktig):
 - Acetabulum:
 - Navn/Type:
 - Evt. Kat. nr.
 - Sement med antibiotika. Navn:
 - Sement uten antibiotika. Navn:
 - Ikke sementert.

15. Femur:
 - Navn/Type:
 - Evt. Kat. nr.
 - Sement med antibiotika. Navn:
 - Sement uten antibiotika. Navn:
 - Ikke sementert.

16. Caput:
 - Fasttettende caput.
 - Separat caput. Navn/Type:
 - Evt. Kat. nr.
 - Diagn.

17. SYSTEMISK ANTIBIOTI KAPROFYLAKSE:
 - Nei
 - Ja. Hvilken:
 - Dose:
 - Varighet:

18. OPERASJONSTID: "Green house"
 - Operasjonstid med laminært luftstrøm.
 - Vanlig operasjonstid.

19. OPERASJONSTID (hud til hud):
 - ____________ min.

20. PEROPERATIVE KOMPLIKASJONER:
 - Nei
 - Ja. Hvilken:

Lege: __________________________
(legen som har flytt ut skjemaet)
HOFTPROTESER

ALLE TOTALPROTESER I HOFTLEDD REGISTRERES (ikke hemiproteser)

Innsetting, skifting eller fjerning av protese eller protesedel.

4. TIDIGERE OPERASJON I AKTUELL HOFT (evt. flere kryss)
 - Nei
 - Osteosynse for fraktur i prox. femurarede
 - Hemiprotese pga. fraktur
 - Osteolomii
 - Artrodesi
 - Totalprotese
 - Annen operasjon

5. Hvis protese tidligere, TYPE(R):
 Årstall siste protese: _________
 Antall proteser tidligere i aktuelle høfte: _________

6. OPERASJONSDATO: _________

7. AKTUELLE OPERASJON ER (ett kryss):
 - Primæroperasjon (og/og hvis hemiprotose tidligere)
 - Recoperasjon (totalprotese tidligere)

8. AKTUELLE SIDE (ett kryss):
 - Bilateral opq. = 2 skjema
 - Hø
 - Ve
 - Hø - Venstre allerede protese
 - Ve - Høyre allerede protese

9. AKTUELLE OPERASJON ER:
 - Kryss av enten i PA eller BB
 A. Primæroperasjon pga. (ett kryss):
 - Lidglastisk curatrose
 - Rheumatisk artritis
 - Sørvælde etter fraktur, coll fem.
 - Sepr. dysplasi
 - Sepr. dysplasi med total luksjon
 - Sepr. Partes/Epiphysesyke
 - Rot. Reduktion
 - Annet:
 (f.eks. caputfraktur, tild. artrodesi o.l.)
 - Akut fraktur collis femor
 B. Recoperasjon, pga. (evt. flere kryss):
 - Løs acetabular komponent
 - Løs lemur komponent
 - Luksjon
 - Evn infeksjon
 - Fraktur (ved protesen)
 - Smert
 - Annet:
 (f.eks. Girdlestone etter tild. infisert protese, protesefraktur, utstilt plastiforings osv.)
 Osteosyke i acetab. uten løsning
 Osteosyke i femur uten løsning

10. REOPERASJONSTYPE (evt. flere kryss):
 - Etter fraktur komponent
 - Etter acetabular komponent
 - Etter fraktur komponent
 - Anden operasjon.
 Fjernet protese (f.eks. Girdlestone).
 Ang hvilke deler som ble fjernet:

 Etter plastiforings
 Etter av caput
 Annet:

11. TILGANG
 - Framre (Smith-Petersen)
 - Anterolateral
 - Lateral
 - Posterolateral
 - Annen

12. TROCHANTEROSTEOTOMI
 - Nei
 - Ja

13. BENTRANSPLANTASJON
 - Nei
 - I acetabulum
 - I femur
 - i acetabulum og femur
 - Benpakking i acetabulum (impaksofen)
 - Benpakking i femur (impaksofen a.m. Ling/Gie)

PROTESE: NAVN/DESIGN/COATING
Spesialiser nøyaktig eller bruk klistrelapp på baksida

14. Acetabulum
 - Navn/Type:
 - Evt. katalognummer:
 - Med hydroksylapatitt
 - Uten HA

15. Femur
 - Navn/Type:
 - Evt. katalognummer:
 - Med hydroksylapatitt
 - Uten HA

16. Caput
 - Fastsittende caput
 - Separat caput + Navn/Type:

17. SYSTEMISK ANTIMICROBIALFYLAKSE
 - Nei
 - Ja, hvilken
 - Dose:
 - Vanlig (antall døgn):

18. OPERASJONSTID
 - ”Green house”
 - Operasjonstid med laminære luftstrem
 - Vanlig operasjonstid

19. OPERASJONSTID (HUID TIL HUD): _________ MINUTTER

20. PEROPERATIV KOMPLIKASJON
 - Nei
 - Ja, hvilken:

Legen: ____________
Legen som har fylt ut sjømmet, (navnet registreres ikke)
Appendix X
HOFTERPROTESER

ALLE TOTALPROTESER I HOFTERLEDD REGISTRERES (ved hemiproteser etter hoftebrudd sendes hoftebruddskjema til Hofterbruddregisteret). Innsetting, skifting eller fjerning av proteste eller protesedeler.

TIDLIGERE OPERASJON I AKTUELLE HOfte (ev. flere kryss)
- Nee
- Osteosyntese for fraktur i prox. femurende
- Hemiprotese pga. fraktur
- Osteotomi
- Artrodeise
- Totalprotese(r)
- Annen operasjon

OPERASJONSDATO (dd.mm.åå) __

AKTUELLE OPERASJON (ett kryss)
- Primæroperasjon (også hvis hemiprotese tidligere)
- Reoperasjon (totalprotese tidligere)

AKTUELLE SIDE (ett kryss) (Bilateral opr.= 2 skjema)
Høyre □ Venstre □

AKTUELLE OPERASJON (KRYSS AV ENEN I A ELLER B)
A. Primæroperasjon pga. (ev. flere kryss)
□ Idiopatisk coxartrose
□ Rheumatoid artritt
□ Sekvele etter frakt. coll. fem.
□ Sekv. dysplasi
□ Sekv. dysplasi med total luksasjon
□ Sekv. Perthes/Epiphyselyse
□ Mb. Bechterew
□ Akutt fraktura coll. femoris
□ Annen ………………………………………………………………………………….
□ (f.eks caputnekrose, tild. artrodeise o.)

B. Reoperasjon pga. (ev. flere kryss)
□ Les acetabularkomponent
□ Les femurkomponent
□ Luksasjon
□ Dyp infeksjon
□ Fraktur (ved prosessen)
□ Smiser
□ Osteolyse i acet. uten løsning
□ Osteolyse i femur uten løsning
□ Annen ………………………………………………………………………………….
□ (f.eks Girdlestone etter tidl. infisert proteste)

REOPERASJONSTYPE (ev. flere kryss)
□ Byte av femurkomponent
□ Byte av acetabularkomponent
□ Byte av hele protesten
□ Fjernet proteste (f.eks Girdlestone)
□ Angi hvilke deler som ble fjernet …………………………………………………
□ Byte av plastforing
□ Byte av caput
□ Andre operasjoner ………………………………………………………………..

TILGANG (ett kryss)
□ Fremre (Smith-Petersen) □ Lateral
□ Anterolateral □ Posterolateral
□ Annen …………………………………………………………………………..

LEIE □ Sideleie □ Rygg

TROCHANTEROSTEOTOMI □ Nee □ Ja

BENTRANSPLANTASJON (ev. flere kryss)
Acetabulum □ Nee □ Ja □ Benpakking
Femur □ Nee □ Ja □ Benpakking a.m. Ling/Gie

BENTAP VED REVISJON (Paprosky's klassifikasjon se baksiden)
Acetabulum □ Type I □ Type II □ Type III □ Type IV
Femur □ Type I □ Type II □ Type III □ Type IV

PROTESE NAVN I DESIGN / “COATING”
(spesifiser nøyaktig eller bruk kriterium på baksiden)
Acetabulum
□ Navn/Type ………………………………………………………………..
□ Dia. ……………………..
□ Med hydroksylapatitt □ Uten hydroksylapatitt
□ Sement med antibiotika – Navn …………………………………………..
□ Sement uten antibiotika – Navn …………………………………………..
□ Usementert

Femur
□ Navn/Type ………………………………………………………………..
□ Dia. ……………………..
□ Med hydroksylapatitt □ Uten hydroksylapatitt
□ Sement med antibiotika – Navn …………………………………………..
□ Sement uten antibiotika – Navn …………………………………………..
□ Usementert

Caput
□ Fastløsende caput □ Fastløsende caput – Navn/Type ………………………
□ Separat caput - Navn/Type ………………………………………………..
□ (ev. kombinasjon med) ……………………………………………………..

MINI INVASIV KIRURGI (MIS) □ Nee □ Ja

COMPUTERNAVIGERING (CAOS) □ Nee □ Ja

TROMBOSEPROFYLAKSE □ Nee □ Ja
□ Dosingopr.dag………………………………………………………………
□ Dosingopr.dag………………………………………………………………
□ Først e dose gitt preopr □ Først e dose gitt preopr
□ Senere dosering………………………………………………………….
□ Senere dosering………………………………………………………….
□ Antatt varighet …………døgn □ Antatt varighet …………døgn

SYSTEMISK ANTIMYKOTIKAFPROFYLAKSE □ Nee □ Ja
□ Dose (A)………………………………………………………………
□ Dose (B)………………………………………………………………
□ Total antall doser …………timer □ Total antall doser …………timer
□ Ev. i kombinasjon med (B)…………………………………………………..
□ Ev. i kombinasjon med (B)…………………………………………………..
□ Antatt varighet …………døgn □ Antatt varighet …………døgn

LEGENavn……………………………………………………………….

Legen som har fylt ut skjemaet (navnet registreres ikke i databasen).

F.nr. (11 sifre)…………………………………………………..
Navn:……………………………………………………………..
(Skriv tydelig ev. pasient klistrelapp – spesifiser sykehus.)
Sykehus:……………………………………………………………..

17.07.2007