Diagram Predicate Framework

meets Model Versioning
and Deep Metamodelling

Diagram Predicate Framework

meets Model Versioning
and Deep Metamodelling

Alessandro Rossini

Dissertation for the degree of Philosophiae Doctor (PhD)
Department of Informatics
University of Bergen

December 2011

ISBN 978-82-308-1900-5

University of Bergen, Norway

Submitted 3" October 2011

All text and figures € 2011 Alessandro Rossini

To my parents

Contents

Preface iX
Scientific Environment xiii
Abstract XV
1 Model-Driven Engineering 1
1.1 Introduction 1
1.2 Diagrammaticmodelling 2
1.3 Metamodelling 5
14 Constraints. 6
1.5 Typingandconformance 6

2 Diagram Predicate Framework 9
2.1 Graphand graph homomorphism 9
2.2 Signature and specification 000 13
2.3 Typingandconformance 22
2.4 Specification morphism 22
2.5 Specification transformation oL 24
2.6 Specificationentailment 27
27 Relatedwork. 32
2.8 Conclusion and futurework 34

3 Constraint-Aware Model Versioning 35
3.1 Introduction 35
3.2 Modelversioning 36
3.3 Calculation and representation of dilerences 39
3.4 Synchronisation 48
3.4.1 Construct the common of commons 50

3.4.2 Construct the di [erknce specifications 53

3.4.3 Construct the merge of dilerknces 53

3.44 Detectconflicts 54

345 Resolveconflicts 60

3.4.6 Construct the synchronised specifications

3.5 Relatedwork.
3.6 Conclusion and future work

4 Deep Metamodelling
4.1 Introduction
4.2 Metamodelling
4.3 Deep metamodelling
4.3.1 Deep characterisation

4.3.2 Double typing and linguistic extension
4.3.3 Some open questions in deep metamodelling
4.4 Formalisation of deep metamodelling
4.4.1 Double metamodellingstack
4.4.2 Partial double metamodelling stack
4.4.3 Deep metamodellingstack
4.5 Flattening of a deep metamodelling stack

46 Relatedwork.
4.7 Conclusion and future work

5 Conclusion
A Appendix

Bibliography

Preface

The last four years of my life have been dedicated to writing this thesis and
to making it as perfect as possible. These years have witnessed days and
nights of hard work, discussion, stress, frustration, anguish, insomnia, as
well as praise, relief, travelling and fun.

If you are going to read this thesis, | hope that you will find it inter-
esting. If you are just going to browse through it quickly, |1 hope that you
will find the models as beautiful as | do. If you are only interested in this
preface, I hope it will leave you with a nice memory.

Bergen, 3" October 2011

Acknowledgements

This thesis would not have been possible without the contribution of the
outstanding individuals | have met during these four years.

First of all, I would like to thank my supervisor Uwe Wolter, for teach-
ing me a lot of interesting knowledge which spans from mathematics
to philosophy and history, as well as for giving me invaluable feedback
about my research. He deserves much of the credit for this thesis and
I am indebted to him for all his help and inspiration, scientifically and
otherwise. 1 would also like to thank my co-supervisor Khalid A. Mughal,
for suggesting that | enrol in a PhD programme and for supporting all my
choices when | finally followed his suggestion. With time | realised that
his initiative saved me from becoming a frustrated software engineer.

A special thanks goes to Adrian Rutle, for helping me to get started
with my research and for sharing many good times with me, both in Bergen
and while travelling. He has been a brilliant colleague and a good friend,
and | have many good memories from these years.

I am grateful to my parents Pompilio and Loretta, for all they have
done for me, especially for setting my life on what I believe is the right
path. | hope that this thesis will make them as proud of me as | am of
them.

Preface

“Tusen takk™ to Synngve Solberg Tokerud, for her love and friendship,
for teaching me about Norwegian and Norway, as well as for her beautiful
smile which always helped me to stay positive.

The Department of Informatics at the University of Bergen has given
me a private o [ce,la good salary and great financial support, and | am
thankful for that. | would like to thank the Programming Theory group,
especially Marc Bezem, Torill Hamre, Anya Helene Bagge, Valentin David,
Dag Hovland and Federico Mancini, for creating a stimulating environ-
ment to work in, for all the chats about informatics and teaching, for all
the empirical studies on espresso and on chocolate spreads, as well as for
all the feedback they gave me about my work. | am also grateful to the
administration of the Department of Informatics, especially Ida Holen, for
patiently listening to my rants every time | needed to vent my frustration,
Petter Bjgrstad and Torleiv Klgve, for supporting my stays abroad, and
Steinar Heldal, for guiding me through the bureaucracy of the University.

My research was carried out in cooperation with fellow researchers
from the Department of Computer Engineering at the Bergen University
College. Thanks to Yngve Lamo, for his suggestions about how to deal
with the Norwegian system, and Florian Mantz, for being an excellent
flatmate and for preparing pancakes every Sunday.

Part of this thesis was written during my 4-month stay at the Depart-
ment of Computer Engineering at the Autonomous University of Madrid.
“Muchas gracias” to Juan de Lara and Esther Guerra, for taking care of
me during my stay and for giving me plenty of insights which ended up
being almost half of this thesis.

I would like to thank my opponents Reiko Heckel and Einar Broch
Johnsen, for all the time they have spent reviewing this work, and Michal
Walicki, for coordinating the committee. | am also grateful to all my
fellow researchers and anonymous reviewers who pointed out flaws and
suggested possible improvements in my research.

Despite all the time spent preparing this thesis rather than hanging
out, I still have many friends left and they should all be awarded for their
patience. In Bergen, Mikal Carlsen @stensen helped me with practically
everything before and after my move to Norway. Diego Fiore has been
one of my closest friends, who shared countless discussions about the
grotesque society we live in with me and was a perfect companion on
many su [odating trips around the world. Paolo Angelelli has also been
a very good friend, who contributed a lot to the discussion about how to
develop an ideal society. My stay in Madrid would not have been the same
without Lucia Cammalleri, Teresa Terrana and Daniele Sidoti, who treated
me like a close friend since the first day we met. In Italy, my good, old
friends Maura Brandimarte, Albert Marsili, Marino Di Carlo, Graziano
Liberati and Angelo Di Saverio have been there every time | was back
home, and | really appreciate it.

X

Finally, this thesis would have not reached this level of art without
the free and open source software | use and enjoy. A special thanks goes
to the communities behind GNU, Linux, KDE, Firefox, Kile, Inkscape,
Subversion and Git.

Xi

Scientific Environment

The research presented in this thesis has been conducted within the Pro-
gramming Theory Group of the Department of Informatics at the Univer-
sity of Bergen, as well as within the Department of Computer Engineering
at the Autonomous University of Madrid during my 4-month stay.

Xiii

Abstract

Model-driven engineering (MDE) is a branch of software engineering
which aims at improving the productivity, quality and cost-e [edtiveness
of software by shifting the paradigm from code-centric to model-centric.
MDE promotes models and modelling languages as the main artefacts of
the development process and model transformation as the primary tech-
nique to generate (parts of) software systems out of models. Models enable
developers to reason at a higher level of abstraction, while model trans-
formation restrains developers from repetitive and error-prone tasks such
as coding. Although techniques and tools for MDE have advanced con-
siderably during the last decade, several concepts and standards in MDE
are still defined semi-formally, which may not guarantee the degree of
precision required by MDE.

This thesis provides a formalisation of concepts in MDE based on the
Diagram Predicate Framework (DPF), which was already under develop-
ment before this work was initiated. DPF is a formal diagrammatic spe-
cification framework founded on category theory and graph transforma-
tion. In particular, the main contribution of this thesis is the consolidation
of DPF and the formalisation of two novel techniques in MDE, namely
model versioning and deep metamodelling. The content of this thesis is
based on a sequence of publications resulting from the joint work with
researchers from the University of Bergen, the Bergen University College
and the Autonomous University of Madrid.

The work presented in this thesis is neither purely theoretical nor
purely practical; it rather seeks to bridge the gap between these worlds. It
provides a formal approach to model versioning and deep metamodelling
motivated and illustrated by practical examples, while it introduces only
the theoretical constructions which are necessary to investigate, formalise
and solve these practical challenges.

XV

Abstract

This thesis is organised as follows. Chapter 1 introduces MDE along
with a discussion regarding some of its fundamental concepts, techniques
and standards. Chapter 2 outlines DPF along with a formalisation of some
of the fundamental concepts in MDE. In Chapter 3, a formal approach
to model versioning is described. In Chapter 4, a formal approach to
deep metamodelling is presented. Chapter 5 provides some concluding
remarks. Finally, Appendix A details some of the categorical constructions
used in this thesis.

XVi

CHAPTER

Model-Driven Engineering

In this chapter, we introduce MDE along with a discussion regarding some
of its fundamental concepts, techniques and standards.

1.1 Introduction

Since the beginning of informatics, developing high-quality software at a
low cost has been a continuous vision. This vision has boosted several
shifts of programming paradigms; e.g., from machine code to assembler
programming and from imperative to object-oriented programming. In
every shift of paradigm, productivity has been increased by raising the
abstraction level of programming languages and techniques. One of the
latest steps in this direction has led to the usage of models and modelling
languages in development processes.

Initially, models were adopted for mere documentation purposes while
source code remained the main artefact of the development process. Lately,
however, models have gained a central role in the development process.
This trend has led to a branch of software engineering which pursues the
shift of paradigm from code-centric to model-centric. In the literature, this
branch is referred to as model-driven engineering (MDE), model-driven
development (MDD) and model-driven software development (MDSD).
In this thesis, we adopt the term MDE to denote this branch.

MDE promotes models as the main artefacts of the development pro-
cess as well as model transformation as the primary technique to automat-
ically generate (parts of) software systems. By raising the abstraction level
from source code, models enable developers and domain experts to focus
on the problem domain rather than implementation details. By automat-
ing repetitive and error-prone tasks such as coding, model transformation
enhances productivity, reusability and quality. 1

Evolution of
programming

Model-driven
engineering

Advantages of
MDE

Model-Driven
Architecture

Eclipse Modeling
Framework

Model

Descriptive vs.
prescriptive

1. Model-Driven Engineering

The reference industrial standardisation of MDE is the Model-Driven
Architecture (MDA), which was initiated by the Object Management Group
(OMG) [66] late in 2000 [39, 53, 67, 74]. The basic ideas of MDA are
closely related to generative programming [25], software factories [45],
domain-specific languages [58], etc. MDA is based on multiple standards,
including the Meta-Object Facility (MOF) [68], the Unified Modeling Lan-
guage (UML) [71], the Object Constraint Language (OCL) [70] and the
XML Metadata Interchange (XMl) [69].

Some popular implementations of the MDA standards exist. The de-
facto standard is the Eclipse Modeling Framework (EMF) [32, 86], which
is part of the Eclipse project [33].

1.2 Diagrammatic modelling

The term model may have di [erent meanings depending on the context.
In [20], one of the definitions of model is “a representation of something,
either as a physical object which is usually smaller than the real object,
or as a simple description of the object which might be used in calcu-
lations”. In software engineering, a model denotes “an abstraction of a
(real or language-based) system allowing predictions or inferences to be
made” [55]. In formal specifications such as formal logic and universal
algebra, in contrast, a system is represented by a specification, i.e., a set of
logical formulae, while a model of such a specification denotes a mathem-
atical structure which satisfies these formulae. Thus, formal specifications
correspond to models in terms of software modelling. In this thesis, we
interpret the term model from the software engineering perspective.
Models are often categorised into descriptive and prescriptive: a de-
scriptive model describes an existing original, e.g., a map of a real city
with streets, buildings, etc. while a prescriptive model specifies aspects of
an original which is to be built, e.g., a blueprint of a building. In software
engineering, models may be both prescriptive and descriptive: a model
can be used to represent relevant aspects of a software system and later on
drive the implementation of the same software system (see Figure 1.1).

I prescribes
|1 Model |

S
represented by

e
|ﬂiginal |I:I

Figure 1.1: A model may describe or prescribe an original

describes

1.2. Diagrammatic modelling

The term diagram may also have di [erent meanings depending on the
context. In [20], one of the definitions of diagram is “a geometric symbolic
representation of information according to some visualisation technique”,
e.g., chart diagrams and cake diagrams. In software engineering, a dia-
gram denotes a structure which is based on graphs, i.e., a set of nodes
(or vertices) together with a set of arrows (or edges) between nodes. In
category theory, in contrast, a diagram denotes a graph homomorphism
from a shape graph into a graph [12, 38]. In this thesis, we interpret the
term diagram from the software engineering perspective.

Since graph-based structures are often visualised in a natural way, the
terms diagrammatic and visual and are often treated as synonyms. In this
thesis, however, we distinguish between these terms. A diagrammatic
model denotes a model which is represented by a graph-based structure,
while a visual model denotes a model which is intuitive for humans. Al-
though itis feasible to visualise graph-based structures, it may be a challen-
ging task, and sometimes even unfeasible, to find intuitive visualisations
for all aspects of diagrammatic models.

Diagrammatic models have already been adopted in software engin-
eering for some decades; e.g., flowcharts (Seventies) for the description
of behavioural properties of software systems; petrinets (Eighties) for the
specification of discrete distributed systems; entity-relationship diagrams
(Eighties) for the conceptual modelling of data structures.

A factor which has helped in the popularisation of diagrammatic mod-
els is the conceptual two-dimensionality of the modelled universes [31],
e.g., nodes and arrows, activities and decisions, places and transitions, entities
and relations, classes and associations, objects and links, etc. Each of these
models may be represented by graph-based structures with nodes repres-
enting the first dimension and arrows representing the second dimension
of the modelled universe.

Several modelling languages have emerged in the last few years as
attempts to facilitate MDE. In the state-of-the-art of MDE, models are often
specified by means of MOF-based modelling languages suchas UML. UML
includes a set of languages which are used to describe or specify structural
and behavioural aspects of object-oriented software systems. The following
example illustrates the usage of a UML class diagram to represent structural
aspect of an object-oriented software system. Note that the example is
intentionally kept simple, retaining only the details which are relevant for
the discussion.

Example 1 (UML class diagram). Let us consider an information system for
the management of students, universities and projects. This information system
should satisfy the following requirements:

1. A university educates none to many students.

2. A student studies at least at one and at most at four universities.

Diagram

Diagrammatic vs.
visual

History of
diagrammatic
models

Conceptual two-
dimensionality

Unified
Modeling
Language

Instance

1. Model-Driven Engineering

Figure 1.2 shows a UML class diagram representing an object-oriented struc-
tural model of the information system above.

Figure 1.2: A UML class diagram

The class diagram consists of two classes Student and University and a
bidirectional association between the classes. The bidirectional association has
two role names uStuds and sUnivs together with two multiplicity constraints
0..*and 1..4. The requirements 1 and 2 are enforced in the class diagram by the
multiplicity constraints 0..*and 1..4, respectively.

The term instance may also have di [erent meanings depending on the
context. In software engineering, an instance denotes a structure which
satisfies the requirements of its corresponding class or, more generally, its
corresponding model; i.e., a model restricts the set of its valid instances.
The following example illustrates the usage of UML object diagrams to
represent possible instances of an object-oriented software system at a
point in time.

Example 2 (UML object diagram). Building upon Example 1, Figure 1.3 shows
a UML object diagram representing a possible instance of the information system
above.

Figure 1.3: A UML object diagram

The UML object diagram consists of two objects Alessandro and Adrian of
type Student, two objects UoB and BUC! of type University, and three links
between the objects. Note that these objects are just illustrations of possible
runtime objects of the considered information system.

L«yYoB” and “BUC” stand for University of Bergen and Bergen University College, re-
spectively.

4

1.3. Metamodelling

1.3 Metamodelling

The precise definition of the term metamodel is frequently debated in the
literature (see [9, 16, 17, 43, 48, 55, 56, 85] for a comprehensive discus-
sion). Conceptually, the prefix meta- suggests that modelling has occurred
twice, which is reflected in the definition “[a metamodel is] a model of
models” [67]. Technically, a metamodel defines the abstract syntax of a
modelling language. The abstract syntax describes the set of modelling
concepts, their attributes and their relationships, as well as the rules for
combining these concepts to specify valid models [71]. This means that a
metamodel restricts the set of its valid instances in the same way a model
does, which is reflected in the definition “a model is an instance of a me-
tamodel” [71]. The following example illustrates the usage of a simplified
UML metamodel to represent the modelling concepts of class diagrams.

Example 3 (UML metamodel for class diagrams). Building upon Example 1,
Figure 1.4(a) shows a simplified UML metamodel for class diagrams. Figure 1.4
also shows some of the relations between the class diagram and the metamodel as
dashed, grey arrows.

(@)

Metamodel
Model

(b)

Figure 1.4: A simplified UML metamodel for class diagrams

The metamodel consists of three metaclasses Class, Property and Associ-
ation and two bidirectional associations between the metaclasses. The metaclass
Property has two attributes lower and upper. The classes Student and Univer-
sity in the class diagram are instances of the metaclass Class in the metamodel.
The multiplicity constraints 0..*and 1..4 in the class diagram are specified by the
attributes lower and upper of the metaclass Property in the metamodel. Note
that each model element in a UML class diagram is an instance of exactly one
model element in the UML metamodel.

Note that the UML metamodel, in turn, is a valid instance of the MOF
metamodel. UML diagrams, UML and MOF are part of the so-called
OMG’s 4-layer hierarchy [17], which is described in detail in Section 4.2.

Metamodel

Structural vs.
attached
constraints

Typed by and
conforms to

Linguistic and
ontological
typing

1. Model-Driven Engineering

1.4 Constraints

MOF-based modelling languages allow for the specification of simple con-
straints such as multiplicity and uniqueness constraints, hereafter called
structural constraints. These structural constraints are usually specified
by attributes of classes in the corresponding metamodel of the modelling
language. However, these structural constraints may not be su [cieht to
specify complex system requirements. Hence, metamodels are often com-
plemented with textual constraint languages such as OCL to specify more
complex constraints, hereafter called attached constraints. The following
example illustrates the combination of UML class diagrams with OCL
constraints.

Example 4 (UML class diagram with attached OCL constraint). Let us
consider once again the information system of Example 1. This information
system is extended with the following additional requirements:

3. A project involves none to many students.
4. A project must be controlled by at least one university.

5. Astudentinvolved in a project must study at at least one of the controlling
universities.

Figures 1.5(b) and 1.5(c) show a UML class diagram and an attached OCL
constraint, respectively, which are compliant with the requirements above.

The requirements 1, 2, 3 and 4 are enforced in the UML class diagram by
multiplicity constraints. The requirement 5, however, can only be enforced by an
attached OCL constraint.

1.5 Typing and conformance

In MDE, the terms typing and conformance and are often used interchange-
ably. In this thesis, however, we distinguish between these terms. A model
is said to be typed by a metamodel if each element in the model is typed
by an element in the metamodel, while a model is said to conform to a
metamodel if it is typed by the metamodel and, in addition, satisfies all
(structural and attached) constraints of the metamodel.

UML object diagrams and UML class diagrams are located at the same
model metalevel although UML object diagrams can be regarded as models
which are typed by UML class diagrams. At the same time, since UML
object diagrams are at the model metalevel, they are regarded as models
which are typed by the UML metamodel. These two flavours of typing
are referred to as ontological and linguistic, respectively [9, 48, 55, 56]. The
following example illustrates these two flavours of typing.

6

1.5. Typing and conformance

(@)

Metamodel
Model

(b) SR -

(©

Figure 1.5: A UML class diagram together with an OCL constraint

Example 5 (Linguistic and ontological typing). Figures 1.6(a) and 1.6(b)
show a simplified UML metamodel and a UML class/object diagram, respectively.

(@)
linguistic linguistic
Metamodel
Model
(b) .
ontological

Figure 1.6: Linguistic and ontological instantiation

The class Student is linguistically typed by the metaclass Class, while the
object Alessandro is ontologically typed by the class Student and linguistically
typed by the metaclass InstanceSpecification.

1. Model-Driven Engineering

Note that a model with these two flavours of typing is said to have
double linguistic/ontological typing. A metamodelling hierarchy which
supports double linguistic/ontological typing is described in detail in Sec-
tion 4.3.

CHAPTER

Diagram Predicate
Framework

In the previous chapter, we introduced MDE along with a discussion re-
garding some of its fundamental concepts. In this chapter, we outline DPF
along with a formalisation of some of the fundamental concepts in MDE.
DPF will be adopted as the formal underpinning for the formalisation
of model versioning and deep metamodelling presented in the following
chapters.

2.1 Graph and graph homomorphism

In a first approximation, diagrammatic models can be represented by
graphs of dilerkent kinds, e.g., simple graphs, bipartite graphs, direc-
ted graphs, directed multi-graphs, attributed graphs, hypergraphs, etc.
Graphs are a well-known and well-understood means to represent struc-
tural and behavioural properties of software systems [36]. In this thesis,
we adopt directed multi-graphs.

A directed multi-graph consists of a set of nodes together with a set of
arrows, where multiple arrows between the same source and target nodes
are permitted. Graphs are related by graph homomorphisms. A graph
homomorphism consists of a pair of maps from the nodes and arrows of a
graph to those of another graph, where the maps preserve the source and
target of each arrow.

Kinds of graphs

Semantics of
nodes and
arrows

2. Diagram Predicate Framework

Definition 1 (Graph). A graph G = (Gy, Ga, src®, trg®) consists of a set Gy
of nodes (or vertices), a set Ga of arrows (or edges) and two maps src®, trg® :
Ga — Gy assigning the source and target to each arrow, respectively. f : X - Y
denotes that src(f) = X and trg(f) =Y.

Definition 2 (Subgraph). A graph G = (G, Ga, src®, trg®) is subgraph of
a graph H = (Hn, Ha, srcH, trgh), written G [CH, if and only if Gy [Hy,
Ga [Ha and srcC(f) = srcH(f), trg®(f) = trg"(f), for all f [Qa.

Definition 3 (Graph homomorphism). A graph homomorphism¢ : G - H
consists of a pair of maps @n : Gy —» Hn, @a @ Ga — Ha which preserve the
sources and targets, i.e., foreacharrow f : X — Y in G we have @a(f) : on(X) -
on(Y)inH.

Remark 1 (Inclusion graph homomorphism). G [CH if and only if the inclu-
sion mapsincy : Gy 3 Hy andinca : Ga [3 Ha define a graph homomorphism
inc: G 3 H.

Having defined graphs and graph homomorphisms, it is natural to
consider all graphs and graph homomorphisms as objects and morphisms,
respectively, of a category [12, 38]. The category of graphs is defined as
follows:

Definition 4 (Category of graphs). The category Graph has all graphs G as
objects and all graph homomorphisms ¢ : G - H as morphisms between graphs
G and H.

The composition @; : G - K of two graph homomorphisms @ : G -
Hand ¢ : H - K is defined component-wise @; Y = (@n, @a); (Un, Wa) =
(ON; UN, @a; Wa). The identity graph homomorphisms id® : G — G are also
defined component-wise id® = (id®, id®~). This ensures that the composition of
graph homomorphisms is associative and that identity graph homomorphisms are
left and right neutral with respect to composition.

The semantics of nodes and arrows of a graph has to be chosen in a way
which is appropriate for the corresponding modelling environment [82].
In object-oriented structural modelling, each object may be related to a set
of other objects. Hence, it is appropriate to interpret nodes as sets and

arrows X = Y as multi-valued functions f : X — [(Yl). The powerset [(Yl)
of Y is the set of all subsets of VY, i.e., [(Y]) = {A | A [LYI,. Moreover, the
composition of two muylti-yalued functions f : X - [(Yl),g:Y - [(@)is
defined by (f; 9)(x) ;= {g(y) | y [3Kx)}. The following example illustrates
the usage of graphs to represent object-oriented structural models.

10

2.1. Graph and graph homomorphism

Example 6 (Graph). Building upon Example 4, Figure 2.1 shows a graph G rep-
resenting a simplified object-oriented structural model of the information system
above.

Figure 2.1: A graph G

In G, the nodes Student, University and Project are interpreted as sets
Student, University and Project, and the arrows sUnivs, uStuds, pUnivs
and pStuds are interpreted as multi-valued functions sUnivs : Student -

C(niversity), etc.

The semantics of a graph can be formally defined in either an indexed
or a fibred way [31, 90]. In the indexed version, the semantics of a graph is
given by all graph homomorphisms sem : G - U from the graph G into a
category U, e.g., Set (sets as objects and functions as morphisms) or Mult
(sets as objects and multi-valued functions as morphisms as described
above).

In the fibred version, the semantics of a graph is given by the set of
its instances. An instance (I, 1) of a graph G consists of a graph | together
with a graph homomorphism 1 : 1 — G. The following example illustrates
the usage of graphs and graph homomorphisms to represent instances of
a graph.

Example 7 (Instance of graph). Building upon Example 4, Figure 2.2(b) shows
a graph I representing an instance of the graph G. Figure 2.2 also shows some of
the mappings of the graph homomorphism 1 : | - G as dashed, grey arrows.
The mappings of the nodes of the graph homomorphism 1 are defined as follows:
1(Alessandro) = ((Adrian) = Student
1(UoB) = 1(BUC) = University
\(DPF) = 1(Distech) = Project
The mappings of the arrows of the graph homomorphism t are defined accord-
ingly.
The graph G alone is not su [cieht to capture all the requirements 1, 2, 3,
4 and 5 (see Examples 1 and 4); e.g., the arrow from the node Distech to the
node Alessandro in the graph | represents the information “the project Distech
involves the student Alessandro”, but, according to requirement 5, “the project
Distech can not involve the student Alessandro because he is not a student at the
Bergen University College”.

11

Indexed
semantics

Fibred semantics

Categorical
sketches

Generalised
sketches

2. Diagram Predicate Framework

@)

(b)

I?x

Figure 2.2: The graph G and a possible instance |

Although the usage of graphs for the representation of diagrammatic
models is a success story, an enhancement of the formal basis is needed
to specify diagrammatic constraints and define a conformance relation
between models which takes into account these constraints.

A natural choice for this enhancement is category theory, and in par-
ticular the categorical sketch formalism, which can be used to define the
semantics of diagrams and thus of diagrammatic models. In the categor-
ical sketch formalism, a model is represented by a graph, and properties
of the model are expressed by universal properties such as limits, colimits
and commutativity constraints [12, 38]. This approach has the benefit of
being generic and at a high level of abstraction, but it turns models into a
complex categorical structure with several auxiliary objects [31].

The proposed formal underpinning of this thesis is the Diagram Pre-
dicate Framework (DPF) [78, 79, 80, 81, 82, 83, 84], which is a generalisation
and adaptation of the categorical sketch formalism, where the constrain-
ing constructs of modelling languages are represented by user-defined
signatures in a more intuitive and adequate way. In particular, DPF is an
extension of the Generalised Sketches [60] formalism. This extension was
originally developed by Diskin et al. in [28, 29, 30].

12

2.2. Signature and specification

2.2 Signature and specification

In DPF, a model is represented by a specification S. A specification S =
(S,CS: %) consists of an underlying graph S together with a set of atomic
constraints CS which are specified by means of a signature >. A signature
> = (MN*,a*) consists of a set of predicates m [IM*, each having an arity
(or shape graph) o (). An atomic constraint (11, 8) consists of a predicate
m [IN* together with a graph homomorphism & : a*(t) — S from the
arity of the predicate to the underlying graph of the specification.

Definition 5 (Signature). Asignature X = (IM%, o*) consists of a set of predicate
symbols M* and amap o> which assigns a graph to each predicate symbol 1 [T1%.
o> (1) is called the arity of the predicate symbol Tt.

Definition 6 (Atomic constraint). Given a signature > = (N>, a*), an atomic
constraint (1T, 8) on a graph S consists of a predicate symbol 1 [T1* and a graph
homomorphism & : o> (1) - S.

Definition 7 (Specification). Given a signature ~ = (%, a%), a specification
S = (S, CS:) consists of a graph S and a set CS of atomic constraints (T, 3) on
S with m (1%,

The following example illustrates the usage of signatures and specific-
ations to represent object-oriented structural models.

Example 8 (Signature and specification). Building upon Example 7, Table 2.1
shows a sample signature >~ = (N>, o*) suitable for object-oriented structural
modelling. The first column of the table shows the predicate symbols. The second
and the third columns show the arities of predicates and a proposed visualisation
of the corresponding atomic constraints, respectively. Finally, the fourth column
presents the semantic interpretation of each predicate.

Figure 2.3 shows a specification S = (S,CS :) representing an object-
oriented structural model of the information system above.

Figure 2.3: A specification S

13

2. Diagram Predicate Framework

Table 2.1: A sample signature >

g a*(m) Proposed vis. | Semantic interpretation

f
[mult(m,n)] 1—2>2 W ACX . m < [f(X)] < n,

with0O<m<nandn=1

[injective] 1—>2 | [x]—=[v] | KT : f(x) = f(xYim-
i plies x = x~

a

o f
[surjective] 1——=2 W LY XX : y [CHK(x)
f

[inverse] 1

2 @ R, Oy : y DT if

a
N\
~ and only if x Ca(y)

g
a [irr] f

[irreflexive] D XTI X : x [T(x)

' x——~[] | st = g 1y O

N
[comp]

f
2 @i XIX: f(x) Cgix)
g

[composition] | 1

W=—N
o

[image- 1
inclusion]

())

In S, the nodes Student, University and Project are interpreted as sets
Student, University and Project, and the arrows sUnivs, uStuds, pUnivs
and pStuds are interpreted as multi-valued functions sUnivs : Student -
C(Wniversity), etc.

Based on the requirement 2 (see Example 1), the function sUnivs has car-
dinality between one and four. In S, this is enforced by the atomic con-
straint ([mult(1,4)],61) on the arrow sUnivs. This atomic constraints is
formulated by the predicate [mult(m,n)] from the signature > (see Table 2.1).
Moreover, the function uStuds is surjective. In S, this is enforced by the atomic
constraint ([surjective], d3) on the arrow uStuds. Furthermore, the func-
tions sUnivs and uStuds are inverse of each other; i.e., [S1[—3$tudent and
[W1CWniversity : s CUStuds(u) if and only if u [CSUNivs(s). In S, this is en-
forced by the atomic constraint ([inverse], d;) on sUnivs and uStuds. Finally,
based on the requirement 5 (see Example 4), the image of the function pStuds
has to be included in the image the composition of the functions pUnivs and
uStuds. In S, this is enforced by the atomic constraints ([composition],) on
the arrows pUnivs, uStuds and pStuds’, and ([image-inclusion], ds) on the
arrows pStuds and pStuds’. The graph homomorphisms 01, &,, 03, 84 and s are
defined as follows (see Table 2.2):

14

2.2. Signature and specification

01(1) = Student,
02(1) = Student,
03(1) = University,
04(1) = Project,

01(2) = University,
02(2) = University,
03(2) = Student,
04(2) = University,
04(a) = pUnivs,
05(2) = Student,

01(a) = sUnivs
02(a) = sUnivs,
03(a) = uStuds
04(3) = Student,
04(b) = uStuds,
0s(a) = pStuds,

02(b) = uStuds

04(C) = pStuds’

0s(1) = Project, 05(b) = pStuds’

Table 2.2: The atomic constraints (11,3) [GS and their graph homomor-
phisms

(11, 9) o> (m) 3(a*(m))
([mult(1,4)],01) 1—>2 Student sunivs University
a sUnivs
- N —
(Linverse], ;) 1 2 Student University
_ N~~~
b uStuds
uStuds

University ———— > Student

([surjective], d3)

a) pUnivs o
Project ——————— University

m‘\ lusmds

([composition], d4)

3 Student
a pStuds
_ R . TN —
([image-inclusion],ds) | 1 2 Project Student
~_ 7 — =
b pStuds’

Remark 2 (Predicate symbols). Some of the predicate symbols in > (see
Table 2.1) refer to single predicates, e.g., [surjective], while some others refer
to a family of predicates, e.g., [mult(m,n)]. In the case of [mult(m,n)], the
predicate is parametrised by the (non-negative) integers m and n, which represent
the lower and upper bounds, respectively, of the cardinality of the function which
is constrained by this predicate.

The semantics of predicates of the signature > (see Table 2.1) is de-
scribed using the mathematical language of set theory. In an implement-
ation, the semantics of a predicate is typically given by the code of a
corresponding validator such that the mathematical and the validator se-
mantics should coincide. However, it is not necessary to choose between
the above mentioned possibilities; it is su [cieht to know that any of these
possibilities defines valid instances of predicates.

15

Semantics of
predicates

Semantics of a
specification

2. Diagram Predicate Framework

Definition 8 (Semantics of predicates). Given a signature = = (M*,a%), a
semantic interpretation [..]> of = consists of a mapping that assigns to each
predicate symbol 1 CIN* a set [[rt]|> of graph homomorphisms 1 : O — a (1),
called valid instances of 11, where O may vary over all graphs. [t]* is assumed
to be closed under isomorphisms.

The semantics of a specification is defined in the fibred way [31, 90];
i.e., the semantics of a specification S = (S, CS:%) is given by the set of its
instances (I, 1). An instance (I, 1) of a specification S consists of a graph |
together with a graph homomorphism 1 : I - S which satisfies the set of
atomic constraints CS.

To check that an atomic constraint is satisfied in a given instance of
a specification S, it is enough to inspect only the part of S which is
aledted by the atomic constraint. This kind of restriction to a subpart is
obtained by the pullback construction [12, 38], which can be regarded as a
generalisation of the inverse image construction.

Definition 9 (Instance of a specification). Given a specification S = (S, CS:
%), an instance (I,1) of S consists of a graph | and a graph homomorphism
t 1| - S such that for each atomic constraint (11, 5) QS we have 1~],
where the graph homomorphism 15: O™ - a*(m) is given by the following
pullback:

oz (T[) % S

T 5. T

L
0 1

The following example illustrates the usage of graphs to represent
instances of a specification.

Example 9 (Instance of a specification). Building upon Example 8, Fig-
ure 2.4(b) shows a graph | representing an instance of the specification S. Fig-
ure 2.4 also shows some of the mappings of the graph homomorphismt1:1 - G
as dashed, grey arrows.

The graph homomorphism t is defined as in Example 7 and satisfies the set of
atomic constraints CS. If the graph | contained an arrow from the node Distech
to the node Alessandro (shown as a dotted, red arrow), it would not be a valid in-
stance of S since itwould violate the atomic constraint ([image-inclusion], ds):

pStuds(Distech) = {Alessandro, Adrian} 1

uStuds(pUnivs(Distech)) = {Adrian}

Given a specification S, the category of instances of S is defined as
follows:

16

2.2. Signature and specification

(@)

(b)

Figure 2.4: The specification S and a possible instance |

Definition 10 (Category of instances). Given a specification S = (S,CS:
%), the category Inst(S) has all instances (I,1) of S as objects and all graph
homomorphisms @ : | — 1™as morphisms between instances (I,1) and (1515,

such that 1 = @; 1"
S
|%_|EI

Inst(S) is a full subcategory of Inst(S) where Inst(S) = (Graph | S) is the
comma category of all graphs typed by S [12]; i.e., we have an inclusion functor
incS : Inst(S) 3@ Inst(S).

As mentioned, in an implementation, the semantics of a predicate is
typically given by the code of a corresponding validator such that the
mathematical and the validator semantics should coincide. The follow-
ing example illustrates the usage of an existing validation framework to
provide an implementation of the predicates of a signature.

17

2. Diagram Predicate Framework

Example 10 (Implementation of predicates of a signature). Let us consider
a system for international money transfers. IBAN (International Bank Account
Number) is the standard for identifying bank accounts internationally. Some
countries have not adopted this standard and, for money transfer to these countries,
aspecial clearing code is needed in combination with the plain account number.
BIC (Bank Identifier Code) is the standard for identifying banks globally.

A form for international money transfers should contain (at least) the input
fields bic, iban, accountand clearingCode. Supposing that the currency is Euro,
this form should also contain the input fields amountEuros and amountCents.
Moreover, this form should satisfy the following requirements:

1. The BIC code of the beneficiary’s bank is required.

2. Either the IBAN or both clearing code and account number are required.
3. The amount to transfer must be between 0.01 and 100000.00 Euros.

Table 2.3 shows a signature ® = (IM®, a®) which contains predicates used to

specify data validation constraints.

Table 2.3: A data validation signature @

n CO® a®(m) Proposed vis. Semantic interpretation
[required] 1—+=2 o—f> [XTX : f(x) defined
[exactly-one- 1—2-2 f XICX : (f(x) defined and
null] g(x) undefined) or (f(x) un-
b g [eon] defined and g(x) defined)
3
[all-or-none- 1—2s2 f X1 X : (f(x) defined
null] and g(x) defined) or
b g~ laonn] (f(x) undefined and g(x)
3 undefined)
A
a f
TN
[cross-range- 1 2 m x1 C1X : (mg,n) <
~_ 7 — 1 =
(M1, 1), (M2, n2))] b g (f(x), 9(x)) = (M2, ny)
[range(m,n)] 1—>2 | [X]—5t—[mnt] | GOX:m<) <n

Note that in the semantic interpretation of the [cross-range], the symbol
< refers to the lexicographical order.

Figure 2.5 shows a specification P = (P,CP : ®) representing an object-
oriented structural model of the form above. The form is represented by the node
Paymentwhile the input fields are represented by the arrows bic, iban, account,
clearingCode, amountEuros and amountCents.

18

2.2. Signature and specification

Figure 2.5: A specification P = (P, CP: ®)

In P, the requirement 1 is enforced by the atomic constraint ([required],
01) on the arrow bic. This atomic constraint ensures that the user provides a
value in the input field bic. Moreover, the requirement 2 is enforced in P by
two atomic constraints: ([exactly-one-null], d;) on the arrows iban and
account together with (Jall-or-none-null], 3) on the arrows account and
clearingCode. These atomic constraints ensure that a user provides values
in either the input field iban or both the input fields account and clearing-
Code. Furthermore, the requirement 3 is enforced in P by the atomic con-
straint ([cross-range((0, 1), (100000, 0))], d4) on the arrows amountEuros
and amountCents. This atomic constraint ensures that the user provides val-
ues in the input fields amountEuros and amountCents which add up to a
value within the range 0.01 to 100000.00. In addition, the atomic constraint
([range(0,99)], 65) on the arrow amountCents ensures that a user provides a
value in the input field amountCents within the range 0 to 99.

For the signature @, it is possible to base the implementation of each predic-
ate on the SHIP Validator [49, 61]. The XMI serialisation of the specification
P = (P,CP: ®) (see Listing 2.1) can be transformed to a Java class tagged by
Java annotations compatible with the SHIP Validator (see Listing 2.2). For each
atomic constraint (1, 8) AP, a corresponding Java annotation is attached to the
getter methods of the Java class. Note that an atomic constraint on a single arrow,
e.g., ([required], d;) on the arrow bic, translates to a single Java annotation,
e.g., @Required on the method getBic(). Likewise, an atomic constraint on
multiple arrows, e.g., ([exactly-one-null], ;) on the arrows iban and ac-
count, translates to multiple Java annotations, e.g., @ExactlyOneNull on the
methods getlban() and getAccount(). The interested reader can download a
proof-of-concept implementation of a code generator from [14].

19

QWO ~NOUTAE WNBEF

e
=

=
N

13

2. Diagram Predicate Framework

Listing 2.1: XM serialisation of the specification P = (P, CP: ®)

<?xml version="1.0" encoding="ASCII"?>
<no.hib.dpf.metamodel:Specification
xmIns:no.hib.dpf.metamodel="http://no.hib.dpf.metamodel™
1d="9090a2ec-0e36-4fcc-8f04-3a0226f0a938" name="P">

<node id="525d2a64-66el1-42f8-aec9-9f186379a77b" name="Payment"/>
<node id="d3ae4964-d091-41d7-9127-09856b3ce316" name="String"/>
<node id="0cac0671-a7e0-4d99-8216-14d24f186375" name=""Integer"/>

<arrow id="b5a45cda-3ee0-42a0-a568-81f9e92d7e25" name="bic" source="//@node
.0" target="//@node.1"/>

<arrow id="ad030229-b66c-40b5-8Ff7f-59f1a25e24a8" name="iban" source="//@node
.0" target="//@node.1"/>

<arrow id="1d54b8c6-a51b-4858-ade9-0a66522b80eb™ name="account" source="//
@node.0" target="//@node.1"/>

<arrow id="2c4b8f89-dc27-44e6-bdb4-a0e298c26f85" name="clearingCode" source
="//@node.0" target="//@node.1"/>

<arrow id="07a4001b-4c8e-461f-a845-4ac985b0c36d" name="amountEuros" source
="//@node.0" target="//@node.2"/>

<arrow id="7559ch35-863a-49dd-a2b3-3e9e893c1356" name="amountCents" source
="//@node.0" target="//@node.2"/>

<constraints 1d="33003eb9-d287-4bd8-9a28-ccf6d3ea9eel0" type="[required]">
<arrow source="//@arrow.0" />
</constraints>

<constraints id="33003eb6-7987-4558-ba28-aaf693349ee0" type="[not-required
1>
<arrow source="//@arrow.1" />
<arrow source="//@arrow.2" />
<arrow source="//@arrow.3" />
<arrow source="//@arrow.4" />
<arrow source="//@arrow.5" />
</constraints>

<constraints id="e0661dc3-0620-44e6-af54-07bf14875c16" type="[exactly-one-
null]">
<arrow source="//@arrow.1" />
<arrow source="//@arrow.2" />
</constraints>

<constraints id="1160e483-b701-4c23-9641-7e73909de528" type="[all-or-none-
null]">
<arrow source="//@arrow.2" />
<arrow source="//@arrow.3" />
</constraints>

<constraints id="elf2babl-b58c-4273-97bb-d0cdd14abe45" type="[cross-range]">
<param name="mi1" value="0" />
<param name="n1" value="01" />
<param name="m2" value="100000" />
<param name="n2" value="00" />
<arrow source="//@arrow.4" />
<arrow source="//@arrow.5" />
</constraints>

<constraints id="9132c6e8-7af9-4fc6-8b67-afac0471b13b" type="[range]">
<param name="min" value="0" />
<param name="max" value="99" />
<arrow source="//@arrow.5" />

</constraints>

</no.hib.dpf.metamodel:Specification>

20

©CO~NOOOD_WNE

2.2. Signature and specification

Listing 2.2: Java class generated by transformation
public class Payment {

private String bic;

private String iban;

private String account;
private String clearingCode;

private int amountEuros;
private int amountCents;

@Required
public String getBic() {
return bic;

}

@ExactlyOneNull

@NotRequired

public String getlban() {
return iban;

}

@ExactlyOneNull

@AII0rNoneNull

@NotRequired

public String getAccount() {
return account;

}

@AIIOrNoneNull

@NotRequired

public String getClearingCode() {
return clearingCode;

}

@IntRange(min=0,max=100000)

@CrossRange

public int getAmountEuros(){
return this.amountEuros;

}

@IntRange(min=0,max=99)

@CrossRange

public int getAmountCents(){
return this.amountCents;

}

These Java annotations are in turn transformed into executable tests by the
SHIP Validator. The interested reader can consult [49, 61] for details about
the implementation and execution of these tests. Note that the idea of using
annotations to hide the actual validation code and, at the same time, tag the
properties to be tested, allow the constraints to be easily integrated into existing
code. Besides, the validation aspects of the system remain well separated from the
application aspects. This separation of concerns facilitates the transformation of
the atomic constraints into actual working code.

21

2. Diagram Predicate Framework

2.3 Typing and conformance

In DPF, a specification S is said to be typed by a graph T if there exists a
graph homomorphism 1 : S — T, called the typing morphism, between the
underlying graph of the specification S and the graph T. A specification
S is said to conform to a specification T if there exists a typing morphism
1:S - T between the underlying graphs of S and T such that (S,1) is a
valid instance of T; i.e., such that 1 satisfies the atomic constraints CT.

Definition 11 (Typed specification). Given a signature = = (M*,a%) and a
graph T, a specification S = (S, CS: Z) typed by T is a specification S together
with a graph homomorphism 1 : S — T, called the typing morphism.

Definition 12 (Conformant specification). Given a signature = = (IN*, a%)
and a specification T = (T, C": %), a specification S = (S, CS: X) which conforms
to T is a specification S together with a typing morphism 1t : S - T such that
(S, 1) CImst(T).

2.4 Specification morphism

In DPF, the relation between specifications is represented by specification
morphisms. Specification morphisms are graph homomorphisms between
the underlying graphs of specifications. These graph homomorphisms
induce a translation of instances of graphs.

Proposition 1 (Translation of instances of graphs). Each graph homomor-
phism @ : S - SYinduces a functor @. : Inst(S) - Inst(SY with @.(I,1) =
(I, ; @) for all (1,1) CImst(S).

Inst(S) —— > Inst(SY

Moreover, each graph homomorphism @ : S — SYinduces a functor ¢° :
Inst(SY - Inst(S) with @~ (151 given by the pullback (15@™: 15 15h&:

|m}
17, S) of the span S — > ST 17[31].

22

2.4. Specification morphism

S sH

IE'T P.B. TID

|I:I e |EI
Inst(S) <——— Inst(SY

In addition, these graph homomorphisms should preserve atomic con-
straints.

Definition 13 (Specification morphism). Given two specifications S = (S, CS:
>)and ST& (SHCS"5), a specification morphism ¢ : S — SFis a graph homo-
morphism @ : S — Stsuch that (t, 3) CAS implies (1, ; @) CAS".

o)

aZ(m) —>=5 — 88

Remark 3 (Subspecification). A specification S = (S, CS:X) is a subspecific-
ation of a specification S&= (SCS?) , written S S if and only if S is a
subgraph of S™and the inclusion graph homomorphism inc : S [3 S™defines a
specification morphisminc: S @3 SY

Remark 4 (Graph homomorphism and atomic constraints). Any graph
homomorphism @ : S — SHinduces a translation of atomic constraints; i.e., for
any specification S = (S, CS: X) we obtain a specification @(S) = (S5C?©®):3)
with C®®) = @(CS) = {(m, 5; @) | (1t,d) [AS}.

Based on this remark, the condition for specification morphisms can be
reformulated as follows: a specification morphism ¢ : S - Stis a graph
homomorphism ¢ : S — SSsuch that g(S) LS i.e., C*® = @(CS) LCF"

Given asignature >, the category of specifications is defined as follows:

Definition 14 (Category of specifications). Given a signature = = (M, o),
the category Spec(Z) has all specifications S = (S, CS: X) as objects and all
specification morphisms @ : S — SThs morphisms between specifications S and
st

The associativity of composition of graph homomorphism ensures that the
composition of two specification morphisms is a specification morphism as well
and that the composition of specification morphisms is associative. Moreover,
the identity graph homomorphisms id® : S — S define identity specification
morphisms idS : S - S and ensure that identity specification morphisms are
left and right neutral with respect to composition.

23

2. Diagram Predicate Framework

Proposition 2 (Specification morphisms and category of instances). For
any specification morphism @ : S - S5 we have @"(Inst(SY) [CIhst(S);
i.e., the functor @* : Inst(SY - Inst(S) restricts to a functor @~ : Inst(S" -
Inst(S).

S Inst(S) <——Inst(S) S
<Pl ¢'T = Ttp' ltp
s Inst(SY <—— lInst(SH st

Proof. The proof is given by the result that the composition of two pull-
backs is again a pullback [12] and by the assumption that [t]* is closed
under isomorphisms (see Definition 8), as shown in [31].

50
5;
(1) —>>§ — > 81 aZ(m) ——2 - s5
1{ P.B. Tl PB. TID |'T P.B. TID
_ . > o
° U ! O g
0

2.5 Specification transformation

In this thesis, specification transformation is based on transformation rules [36,

47]. A transformation rulet = L <L KR consists of three specific-
ations L, K and R. L and R are the left-hand side and right-hand side of
the transformation rule, respectively, while K is their interface. L \ I(K)
describes the part of a specification which is to be deleted, R \ K describes
the part to be added, and K describes the part which has to exist to apply
the rule, in which only renaming modifications are possible. Note that
the specification morphism | : K - L is injective in order to allow for
renaming. An application of transformation rule means finding a match for
the left-hand side L in a source specification S and replacing L with R,
leading to a target specification T.

Definition 15 (Transformation rule). A transformation rule

t= L<— KR consists of specifications L, K and R, called left-hand side,
interface and right-hand side, respectively, an injective specification morphism
I: K - L and an inclusion specification morphismr : K 3 R.

24

2.5. Specification transformation

Definition 16 (Application of transformation rule). Given a transformation

ruet= L <— KR , a specification S and an injective specification mor-
phism m : L - S, called the match, an application of transformation rule

ST froma specification S to a specification T is given by the follow-
ing double-pushout (DPO) [36], where (1) and (2) are pushouts in the category
Spec(Z) (see Propositions 6 and 7):

| r

L KC R
m l () l k @ l n
C
S ; D 3 T

Definition 17 (Specification transformation). A specification transformation
S ==L SUconsists of a sequence of applications of transformation ruleson S.

When an application of a transformation rule t via a match m is per-
formed, all nodes, arrows and atomic constraints which are in the image
of m but not in the image of I; m are deleted from the specification S. In
general, the deleted part does not need to be a valid specification, but the
remaining specification D := (S \ m(L)) Cm(K) still has to be a valid spe-
cification with no dangling arrows or dangling atomic constraints. This
means that the match m has to satisfy a gluing condition [36], which ensures
that the gluing of L\ K and D isequal to S.

Definition 18 (Gluing condition). Given a transformation rule

t= L<— KR , a specification S andamatchm: L - S:

e The gluing points GP consist of the nodes and arrows in L which are not
deleted by t, i.e., GP = In(Kn) CIA(Ka) = I(K).

= The dangling arrow points DAP consist of the nodes in L whose images
under m are the source or target of an arrow in S which does not belong
to m(L), i.e., DAP = {X [y | F1-Sa \ ma(La) : src(f) = mn(X) or
trg(f) = mn(X)}

e The dangling atomic constraint points DACP consist of the nodes and
arrows in L whose images under m are in the image of the graph homomor-
phism & of an atomic constraint (1, 8) in CS which does not belong to m(L),
i.e., DACP = {X [| (@, &) CAS \m(C") : my(X) Cak(a(m))} A
La | £, 8) CO° \m(Ch) : ma(f) Cak(a(m))}.

The transformation rule t and the match m satisfy the gluing condition if all
identification points and all dangling points are also gluing points, i.e., DAP [1
DACP [GP.

25

2. Diagram Predicate Framework

Definition 19 (Applicability of transformation rules). A transformation rule

t= L<— KR is applicable to a specification S viaamatchm: L - S
if there exists a context specification D such that (1) is a pushout in the category
Spec().

Remark 5 (Existence and uniqueness of context specification). Given a

transformation rule t = L <— K"~ R , & specification S and a match m :
L - S, the context specification D together with the pushout (1) exist if and
only if the gluing condition is satisfied. If D exists, it is unique up to isomorphism.

The proof of the existence and uniqueness of context specification can
be provided by extending the results in [36] from graph transformation to
DPF.

A specification transformation may show two kinds of non-determin-
ism [36]. Firstly, there may be more than one applicable transformation
rule. Secondly, there may be more than one match for a transformation
rule in the source specification. In both cases, the choice may be arbitrary.
Some degree of determinism may be achieved by controlling the flow of
the application of transformation rules.

In addition to these two kinds of non-determinism, a specification
transformation is, in general, non-terminating [36]. A specification trans-

formation S ==T s terminating if no more transformation rules can be
applied to T. However, given a set of transformation rules, there may
be two specification transformations S = T0and s =4 1@ leading to
two non-isomorphic target specifications T™and T™ A set of transform-
ation rules is confluent if, for each pair of specification transformations

S=.TUand S =5 T there exists a specification X together with

specification transformations TEEE X and TEEE X .

A specification transformation which is terminating and confluent is
said to have functional behaviour [36]. The formalisation of termination and
confluence in view of DPF is outside the scope of this thesis and will be
investigated in future work (see Section 2.8)

26

2.6. Specification entailment

Among techniques for controlling the application of transformation
rules and achieving functional behaviour are the negative application condi-
tions (NACs) [36, 80]. NACs are used to forbid applications of a transform-
ation rule. Since non-deleting transformation rules (i.e., transformation
rules which do not delete any specification element) can be applied mul-
tiple times via the same match, it is necessary to require that the right-hand
side of each transformation rule always defines a NAC for the transforma-
tion rule itself. This is to ensure that a transformation rule is applied only
once via a given match.

Another technique for controlling the application of transformation
rules is the layering of transformation rules [36, 80]. In this technique, each
transformation rule is assigned to a numbered layer based on its order of
application. The transformation rules at each layer are applied before the
transformation rules at the next layer.

2.6 Specification entailment

Recall that a specification consists of an underlying graph together with
a set of atomic constraints which are specified by means of predicates of
a signature. Due to Definition 9, for any specification S = (S,CS: %), the
atomic constraints {(1y, 81), .. ., (Tth, 8,)} = CS are implicitly conjunctively
connected.

In addition to this implicit conjunction, it would be desirable to define
other relations between atomic constraints. Defining these relations can be
regarded as describing properties of the semantic interpretation of predic-
ates of a signature. For example, according to the semantic interpretation
[[mult(m, n)]]* of the signature X (see Table 2.1), a valid instance of the
atomic constraint ([mult(2,3)],) is also a valid instance of (or satisfies)
the atomic constraint ([mult(l,4)],d). This kind of relation is called pre-
dicate dependency in [31, 89]. However, defining relations between single
atomic constraints may not be su [cieht.

In this thesis, specification entailments are used to express relations
between conjunctively connected sets of atomic constraints. A specific-
ation entailment has the structure Left [Right, where both premise (Left)
and conclusion (Right) are specifications with the same underlying graph.

Definition 20 (Specification entailment). A specification entailmente = L []
R consists of two specifications L = (L,C-:3) and R = (R, CR: %), called the
premise and the conclusion, respectively, with the same underlying graph L = R,
called the context graph.

27

2. Diagram Predicate Framework

a(rmy) a (M) a(p1) e a(pn)

\\//

A specification entailment is valid if and only if all instances of the
premise are also instances of the conclusion.

Definition 21 (Semantic interpretation and specification entailment). A
specification entailment e = L R, withL = (L,C~:Z) and R = (R,CR:%), is
valid for a semantic interpretation [[..]* of a signature X if and only if Inst(L) [
Inst(R).

The following example illustrates the usage of specification entailments
to express relations between multiplicity and surjectivity constraints.

Example 11 (Specification entailment). Building upon Example 8, Figure 2.6
shows a specification entailment e = L [R with:

= (L, ct = {([mult(,n)],d1), ([inverse], d,), ([surjective], d3)}: %)
= (R,CR ={([mult(1,n)], &), ([inverse],), [surjective],)} : %)

L=R= X Y
~—_
g
One can show that according to the semantic interpretation [[..]7* of the sig-

nature > (see Table 2.1) the requirement Inst(L) [IAst(R) is satisfied:

Since g is surjective: XX Ly1y: x Caly)
f, g inverse gives [IXITX LyIdrY :y [CTKx)
f total gives [IIXT X :|f(x)|=1

Note that for the specification entailment above, it is trivial to prove that also
Inst(L) [CIAst(R), concluding that Inst(L) = Inst(R).

As mentioned, each specification entailment is defined over a given
context graph. From these specification entailments, one may induce
transformation rules, which can be applied to existing specifications.

28

2.6. Specification entailment

L=R
Figure 2.6: A specification entailmente = L [R

Proposition 3 (Specification entailment and transformation rule). Each
specification entailment e = L R, with L = (L,C*:X) and R = (R,CR: %),

induces a transformation rule t = L <— K"~ R , with K = (K, CK: %), where
K=L=RandCK =Cl nCR.

The following example illustrates the transformation rule which is in-
duced by the specification entailment for multiplicity and surjectivity con-
straints.

Example 12 (Specification entailment and transformation rule). Building

upon Example 11, Table. 2.4 shows the transformation rulet = L <L KSR
induced by the specification entailmente = L [R.

Table 2.4: The transformation rulet = L ~ K [@ R induced by the
specification entailmente = L [R

Rule

L

K

R

[sur]

f
[inv]

9

[0..n]

[sur]]

f
[inv]

9

[surj]

f
[inv]

g

[1..n]

29

2. Diagram Predicate Framework

Proposition 4 (Embedding of specification entailment). Given a transform-

ationrulet= L <— K& R induced by a specification entailmente = L [R,
and a specification S = (S, CS: %) together with a matchm : L — S, each ap-

plication of transformation rule S =™, STinduces a specification entailment
S [S$Hwith St= (SHCSTy).

L——— R

S——SH

Given asemantic interpretation [[..]]* of asignature =, an induced specification
entailment S $Hs valid as long as L [R is valid.

Proof. The proofisgivenbyshowingthatifinst(L) [CIdst(R)thenInst(S) [
Inst(SY.

Firstly, we have to show that (1%, 1%) Ch(CY) implies that (15,15) Cm(CR).

Suppose that (15, 1%) Cm(C“). By Proposition 2 this holds if and only if
m"(15,15) Q. The specification entailment L R implies that m*(15, 1) []
CR. Proposition 2 implies that (15, 15) Cm(CR).

Secondly, we have to show that (I5,1%) [h(CR) implies that (15,1°5) [
m(CS.

Suppose that (1%,1%) [TS; i.e., (15,1%) Cm(CY) and (15,1%) LTS \ m(Ch).
This implies that (15,1%) Ch(CR) and (1%,1°%) TS \ m(C"). Proposition 8
implies that CS”'= CS \ m(Cl) Cm(CR); i.e., (I%,15) Ch(CS). 1

30

2.6. Specification entailment

The following example illustrates the embedding of the specification
entailment for multiplicity and surjectivity constraints.

Example 13 (Embedding). Building upon Examples 8 and 11, Figure 2.7 shows
the specification entailment S S induced by the application of the transforma-

. <tm>
tionrule S == SH

[—— | []

L e

() (b)
Figure 2.7: An embedding S 3 of the specification entailment L R

According to the semantic interpretation [[mult(m, n) J] of the signature =
(see Table 2.1), the set of valid instances of the atomic constraint ([mul t(0,4)], 1)
QS is larger than the set of valid instances of the atomic constraint ([mul t(1,4)],
31) CaS". However, because of the implicit conjunction of the atomic constraints,
the set of valid instances of CS and CS"are equal.

31

E-graphs

Graph
constraints

Algebraic
specifications

2. Diagram Predicate Framework

2.7 Related work

The formalisation of diagrammatic modelling has been extensively dis-
cussed in the literature.

The work in [35, 36] uses E-graphs to represent models and metamod-
els. An E-graph is a generalisation of an attributed graph [34] and consists
of two sets of graph and data nodes, respectively, and three sets of graph
arrows, node attribute arrows and arrow attribute arrows, respectively.
The assignment of attributes to nodes is done by adding node attribute
arrows from the graph nodes to the data nodes. The assignment of attrib-
utes to arrows is done by adding arrow attribute arrows from the graph
arrows to the data nodes. Attributes of nodes and arrows are used to de-
scribe properties of nodes and arrows, which is similar to how attributes
of classes in the UML metamodel are used to describe properties of model
elements. Attributes of nodes can be represented in DPF by arrows from
these nodes to nodes representing data types. The adoption of E-graphs
rather than directed multi-graphs may represent a natural next step in the
development of DPF.

The work in [36] also uses graph constraints to express properties
for graphs. A graph constraint is of the form a : Premise — Conclusion
where a is a graph homomorphism. In case a is surjective, a graph con-
straint can be seen to correspond to a first-order implication of the form
xd P(X) - Q(X) where X denotes a list of variables. In case a is not surject-
ive, however, a graph constraint corresponds to a first-order implication
of the form X1 P(X) - ([t Q(X,y)). For some of our predicates the se-
mantics can be described by these first-order implications. This is the case,
for example, for the predicates [surjective] and [inverse]. In such a
way, some atomic constraints at metamodel level give rise to graph con-
straints at model level. For example, in Figure 2.4(a) the atomic constraint
([surjective], d3) on the arrow uStuds represents a graph constraint c; in
Table 2.5, while the atomic constraint ([inverse], 8;) on the arrows sUnivs
and uStuds represents the graph constraints ¢, and cs in Table 2.5.

The work in [18] proposes an algebraic semantics for MOF to formal-
ise the concepts of models, metamodels and conformance between them.
Models are represented by terms while metamodels are represented by spe-
cifications in membership equational logic (MEL). This formal semantics
is made executable by using Maude [24], which directly supports MEL
specifications.

1The graph constraints in Table 2.5 come with negative constraints to avoid duplication
of the conclusion; this detail is omitted.

32

2.7. Related work

Table 2.5: Graph constraints represented by the atomic constraints
([surjective], d3) and ([inverse], ;)

Premise | Conclusion
C1: uStuds is surjective

:uStuds - -
s:Student s:Student <

Co: uStuds is inverse of sUnivs and
:sUnivs :sUnivs

| s:Student | | u:University | | s:Student | | u:University |

:uStuds

cs3: sUnivs is inverse of uStuds

:sUnivs

| s:Student | | u:University | | s:Student | | u:University |
:uStuds :uStuds

The work in [76] exploits the higher-order nature of constructive type
theory to uniformly treat the syntax of models, metamodels, as well as
MOF itself. Models are represented by terms (token models) and can also
be represented by types (type models) by means of a reflection mechanism.
This formal semantics ensures that correct typing corresponds to provably
correct models and metamodels.

Epsilon (Extensible Platform of Integrated Languages for mOdel maN-
agement) [54] is a family of consistent and interoperable task-specific pro-
gramming languages which can be used to interact with EMF models.
The core of Epsilon is the Epsilon Object Language (EOL), an imperative
language that combines the procedural style of JavaScript with the query-
ing capabilities of OCL. In addition, Epsilon provides several task-specific
languages for performing code generation, model transformation, model
validation, etc. One of these task-specific languages is the Epsilon Val-
idation Language (EVL). EVL extends OCL conceptually (as opposed to
technically) to provide a number of features such as support for constraint
dependency management and access to multiple models conforming to
di [erent metamodels.

Alloy [2] is a modelling language which is capable of expressing com-
plex structural and behavioural constraints. Model analysis in Alloy is
based on the usage of first order logic to translate specifications into
boolean expressions which are automatically evaluated by a boolean sat-
isfiability problem (SAT) solver. Given a logical formula, Alloy attempts
to find a model which satisfies the formula. Alloy models are checked by
using the Alloy analyser which attempts to find counterexamples, within
a limited scope, that violate the constraints of the system. Even though
Alloy cannot prove the system’s consistency in an infinite scope, the user
receives immediate feedback about the system’s consistency.

33

Constructive
type theory

Epsilon

Alloy

2. Diagram Predicate Framework

2.8 Conclusion and future work

In this chapter, we outlined DPF along with a formalisation of some of
the fundamental concepts in MDE. DPF is an adaptation of the categorical
sketch formalism, where the constraining constructs of modelling lan-
guages are represented by user-defined signatures in a more intuitive
and adequate way. In particular, DPF is an extension of the Generalised
Sketches formalism and aims to combine mathematical rigour with dia-
grammatic modelling.

This chapter is an adaptation of the formalisation of modelling and
model transformation published in [79, 80, 82, 84]. Compared to the previ-
ous work, the specification transformation is extended to support deleting
transformation rules. Moreover, the embedding of specification entail-
ments is also revised to adopt deleting transformation rules.

Specification transformations constitute the basis for several techniques
presented in this thesis. In future work, we will analyse termination and
confluence in view of DPF.

Specification entailments are used to characterise relations between
sets of conjunctive connected atomic constraints. In future work, we will
investigate a deduction calculus which would give rise to more complex
deductions such as new specification entailments from given ones.

A prototype tool for DPF [13] is available at [15]. The tool is imple-
mented in Java as an Eclipse plug-in and relies on EMF and the Graphical
Editing Framework (GEF) [44]. In future work, we will perform empirical
studies to determine whether the benefits of DPF and its formal approach
to MDE are observable.

34

CHAPTER

Constraint-Aware Model
\Versioning

In the previous chapter, we outlined DPF along with a formalisation of
some of the fundamental concepts in MDE. In this chapter, we describe
a formal approach to constraint-aware model versioning based on DPF;
i.e., a formal approach to model versioning which handles constraints in
model merging, conflict detection and conflict resolution.

3.1 Introduction

In MDE, models are first-class entities of software development and un-
dergoacomplex evolution during their life-cycles. Asaconsequence, there
is a growing need for techniques and tools to support model management
activities such as version control.

In optimistic version control, each developer has a local (or working)
copy of a software artefact. These local copies are modified independently
and in parallel and, from time to time, local modifications are merged
together. In the centralised® approach to optimistic version control, local
modifications of each developer are merged into a central repository. In
the distributed approach, in contrast, local modifications of each developer
are merged into other developers’ local copies. In both cases, the merge
is performed using a three-way merging technique [62], which attempts to
merge two versions of a software artefact relying on the common ancestor
version from which both versions originated. This technique facilitates

1 Also referred to as copy-modify-merge [75, 78].

35

Evolution of
models

Optimistic
version control

Text-based VCS

Graph-based VCS

Constraint-
aware model
versioning

3. Constraint-Aware Model Versioning

conflict detection. Roughly speaking, conflicts may arise when the modi-
fications are contradictory. They are resolved either manually or, when
applicable, automatically.

Mainstream version control systems (VCSs), e.g., Subversion [4] and
Git [40], target text-based artefacts. Hence, underlying techniques such
as merging, conflict detection and conflict resolution are based on a per-
line textual comparison [50]. Since the underlying structure of models is
graph-based rather than text-based, these techniques are not suitable for
MDE.

To cope with this problem, a few prototype VCSs have been developed
that target graph-based structures, e.g., [19, 64]. However, a uniform form-
alisation of model merging, conflict detection and conflict resolution in
MDE isstill debated in the literature. Research has lead to a number of find-
ings in this field [62]. The interested reader may consult [22, 26, 78, 87, 88]
for di Lerent approaches to model merging, conflict detection and conflict
resolution. Unfortunately, these techniques consider only model elements
and their conformance to the corresponding modelling language, e.g.,
well-formedness constraints. However, these techniques should also con-
sider constraints added to model elements, e.g., multiplicity constraints.
An interesting challenge is then to extend the current techniques by en-
abling version control of constraints.

In this chapter, we describe a formal approach to constraint-aware
model versioning based on DPF; i.e., a formal approach to model version-
ing which handles constraints in model merging, conflict detection and
conflict resolution.

The remainder of the chapter is structured as follows. Section 3.2
introduces model versioning through a running example. Section 3.3
discusses the calculation and representation of di Lerknces in view of DPF.
Section 3.4 presents a synchronisation procedure which includes conflict
detection and conflict resolution. In Section 3.5, the current research in
model versioning is summarised. In Section 3.6, some concluding remarks
and ideas for future work are presented.

3.2 Model versioning

The following example illustrates a usual scenario of concurrent develop-
ment in MDE. Note that the example is intentionally kept simple, retaining
only the details which are relevant for the discussion. The following nota-
tion is employed:

= Specification V;j: a version of a specification in the repository, e.g., V>

e Local copy Uj, with U for user: a local copy of the specification V;j,
e.g., Ay, with A for Alice.

36

3.2. Model versioning

Example 14 (Model versioning and conflict detection scenario). Let us
consider an information system for the management of students, universities
and projects. Suppose that two software developers, Alice and Bob, adopt an
optimistic, centralised VCS. Figure 3.1 illustrates the interaction between Alice,
Bob and the repository. Figure 3.2 shows the di [erent versions of the specification
being developed, while Table 3.1 shows the signature used to specify the atomic
constraints in these specifications.

1 2 3

Repository — — . >
Alice Y[1v — : v >
1 1 2 H 2
v ; (=
Bob y [v >
2 2 3
v

Figure 3.1: The timeline of the version control scenario

Table 3.1: The signature >

I o (m) Proposed vis. | Semantic interpretation

[mult(m,n)] 1—>2 | [X]-—=[v] | BOCX : m < [f(X)] < n,

fm-.n] with0<m<nandn=1

[injective] 1—>2 | [X]——=[¥] | KA : f(x) = F(xY im-

[in]

plies x = x™
[jointly- 1—2-2 ! KKECN : f(x) = f(xY and
injective] bl i g(x) = g(xYimplies x = x™
9
3

. f .
[surjective] 1—=2 W YIY XX : y CTKx)
f

[inverse] 1 2 finv] XX, /CY : y CH(x) if
g and only if x [Cg(y)

37

3. Constraint-Aware Model Versioning

P]

@ 1 (b) -

@) » © s
Figure 3.2: The specifications V1, V3, V3 and A;

Alice creates a local copy A; of the specification V; in the repository (see
Figure 3.2(a)). This is done in a check-out step. She modifies her local copy by
adding the node PhDStud as a subtype of Student. These modifications take place
in an evolution step. Since other developers may have updated the specification
V1, she needs to synchronise her local copy with the repository in order to merge
other developers’ modifications. This isdone inasynchronisation step. However,
no modifications of the specification V1 have been made in the repository while
Alice has been modifying it. Hence, the synchronisation is completed without
changing her local copy A;. Finally, Alice commits her local copy, which will be
labelled V5 in the repository (see Figure 3.2(b)). This is done in a commit step.

Afterwards, Bob checks out a local copy B, of the specification V, from the
same repository. He considers Postdoc as a di [erent subtype of student. To avoid
the pollution of subtypes in the specification, he deletes the PhDStud node and
refactors the specification by adding a node Enrolment together with the arrows
eStud and eUniv. Then, he synchronises his local copy with the repository. This
synchronisation is also completed without changing his local copy B,. Finally,

38

3.3. Calculation and representation of di [erknces

Bob commits his local copy, which will be labelled V3 in the repository (see
Figure 3.2(c)).

Alice continues modifying her local copy A, which is now out-of-date since
it is a copy of the specification V5, while the latest specification in the repository
(containing Bob’s modifications) is V3. She adds a node Project together with
the arrows pPhds and pUnivs (see Figure 3.2(d)). Moreover, she adds the atomic
constraints ([mult(1,4)1], 31), ([inverse], d;) and ([surjective], d3) on the
arrows sUnivs and uStuds. Then, she synchronises her local copy with the repos-
itory. This time the synchronisation procedure detects conflicting modifications;
e.g., Alice has added an arrow to the node PhDStud which Bob has deleted.

In the following, the underlying techniques of the proposed approach
to model versioning are analysed. Furthermore, several examples, built
upon Example 14, are used to illustrate the application of our techniques.
The notation is extended by adopting some keywords from [75]:

« Base specification Vg, with B for BASE: the last checked out or syn-
chronised specification prior to any modification; i.e., the pristine
version of a local copy, e.g., V> is the base specification for A,

e Head specification Vy, with H for HEAD: the latest (or most recent)
specification in the repository, e.g., V3

Note that the head specification is the same for all users. In contrast,
the base specification is bound to the local copy and may di [erl from user
to user.

3.3 Calculation and representation of di [erénces

In version control, the identification of commonalities between (versions
of) artefacts is necessary to calculate their dilerences. For example, a
solution to the longest common subsequence problem [50] is typically
implemented in di [erencing algorithms for text-based artefacts.

Various techniques for the identification of commonalities in MDE can
be found in the literature. A rudimentary technique is based on persistent
identifiers, such as Universally Unique Identifiers (UUID) [51]; in this
technique, elements with equal identifiers are seen as equal elements (hard-
linking) [73]. While this technique would work e [ciehtly within specific
tools, it is not general enough to function as a generic technique. This is
because persistent identifiers are di [erent for every environment. Another
technique for the identification of commonalities is based on metrics such
as structural similarity; in this technique, elements that have the same
features are seen as equal elements (soft-linking) [59]. This technique has
the benefit of being general, but it is slightly resource greedy.

In this thesis, a di Lerent technique for the identification of commonal-

39

Hard- vs.
soft-linking

Recording of
modifications

3. Constraint-Aware Model Versioning

ities is proposed. Specification elements which are not modified during
an evolution step are recorded in a common specification; i.e., a specification
which represents the commonalities between two subsequent versions of
a specification. The common specification is defined as follows:

Definition 22 (Common specification). Given specifications S = (S,CS: %)
and T = (T, CT: %), a common specification of S and T consists of a specification
C := (C,C: %), an injective specification morphism injs : C - S and an
inclusion specification morphisminct :C 3 T.

C
in y “T
S T

In this work, the contribution of common specifications is twofold:

= For each pair of specifications V; and Vi1, a common specification
Cii+1 of Vi and Vi, is stored in the repository. Ciji.; is called the
common specification of V; and Vi1 (see Figure 3.3(a)).

= For each pair of base specification Vg and local copy Ug, a local com-
mon specification UCg of Vg and Ug is maintained by the VCS. UCg
is called the common specification of Vg and Ug (see Figure 3.3(b)).

Cii+ uc

Vi Vi1 Vs Us
(@) (b)
Figure 3.3: (a) The common specification C; j+1 of the specifications V; and

Vis+1; (b) The local common specification UCg of the specifications Vg and
Us

Note that the specification morphisminjs : C — S isinjective in order
toallow for renaming. Moreover, the specification morphisminct :C 3 T
is inclusion so that common specifications always contain the new names.
An illustration of renaming is presented in Example 17.

40

3.3. Calculation and representation of di [erknces

The following example illustrates the usage of common specifications.

Example 15 (Common specification). Building upon Example 14, Figure 3.4(c)
shows the common specification C, 3 for the specifications V; and V.

I .

©) 23

@ (b)

Figure 3.4: The common specification C, 3 of the specifications V, and V3

As mentioned, the identification of commonalities is necessary in order
to calculate the dilerknces between artefacts. The calculation and repres-
entation of di Lerknces focuses on identifying the modifications which have
taken place in an evolution step.

Various techniques for the calculation and representation of di [erknces
in MDE can be found in the literature [22, 59, 73, 77]. These techniques
di[erin that they analyse the modifications which a specification under-
goes; e.g., change or update are given diLerent and ambiguous semantics.
Moreover, the terminology in these techniques is not consistent; e.g., the
terms “add”, “create” and “insert” are frequently used to refer to the same
modification. In this work, modifications are classified as in Table 3.2.

The calculation of the di [erknce between two subsequent versions of
a specification, i.e., the information about which elements are common,
added, deleted and renamed, requires the comparison of the old and the
new version with their common specification. For example, all the nodes
and arrows which are present in the new version but not in the common
specification are identified as added. Similarly, all the nodes and arrows

41

Terminology

Calculation of
differences

Representation
of differences

3. Constraint-Aware Model Versioning

Table 3.2: The classification of the modifications

Term Definition Alternative terms
add an element is added to a | create, insert
specification
delete an element is deleted from | remove
a specification
rename | an element is renamed in a | special case of change or up-
specification date

which are present in the old version but not in the common specification are
identified as deleted. In this work, the di [erence between two subsequent
versions of a specification is implicitly given by a span of common, old
and new specifications. In addition, the same information is explicitly
represented by a di[erknce specification; i.e., a specification which contains
all common, added, deleted and renamed elements. The underlying graph
and the set of atomic constraints of the di Lerknce specification are obtained
by the pushout construction [12, 38], which can be regarded as a slight
generalisation of union — since only injective and inclusion morphisms are
considered in this thesis. The methodological motivation behind adopting
di[erknce specifications in addition to spans of common, old and new
specifications is that, as will be clear later, gathering all these elements
in one specification facilitates the application of transformation rules to
automatically detect and resolve conflicts.

Due to the diagrammatic nature of specifications, the representation
of di [erknces such as added, deleted and renamed is expressed by a dia-
grammatic language. The diagrammatic language for the representation
of di[erknces is given by a tag signature A, which has the same structure
of a signature but no semantic counterpart. A tag signature A = (0%, a?®)
consists of a set of tags 8 A%, each having an arity a®(8) and a proposed
visualisation. In particular, the set of tags @* = @® [&F consists of the
union of two sets ©¢ and .

The set ©F is fixed and consists of tags for annotating nodes and arrows
of the underlying graph of a specification (see Table 3.3).

The set ©% is generated from the signature X (see Table 3.1) and consists
of tags for annotating atomic constraints specified by means of predicates
of the signature > (see Table 3.4). The generation of tags is defined as
follows:

42

3.3. Calculation and representation of di [erknces

Table 3.3: The subset of the signature A for the annotation of the underlying

graph
06 [O° a’(0) Proposed visual. | Alternative visual.
<adg>" 1
<delete>N 1 T
<rename(x, v)>" 1 [Y krx B v>
<conflict>\ 1 X<
<adg>* 2 | 0 | @
<delete>* 1—>2 | x]—=[v] =S

g

<conflict" 1—=2 | [xX]—=[v] x5 [V]

Definition 23 (Generation of ©%). Given asignature = = (1%, a%), the set of

tags © is constructed as follows:

I
S

[<add>" with o (<add>") = o () | m C1%}
<delete>" with o® (<delete>") = o () | m (1%}
[<conflict>" with o®(<conflict>") = a* () | m (1%}

Note that the tag <conflict> is not used in the di[erkence specifica-
tions of two subsequent specifications; it is used to annotate conflicting
modifications in the synchronisation procedure (see Section 3.4).

Remark 6 (Multiple visualisations). Two visualisations for the tags in A are
proposed. The default visualisation is based on colour-coding while the alternative
visualisation is based on labels. In this work, colour-coding is preferred over labels
since it is the authors’ experience that colouring makes it easier to understand
modifications. However, labels can be adopted in case of black and white printing.

43

3. Constraint-Aware Model Versioning

Table 3.4: The subset of the signature A for the annotation of atomic

constraints

6 [O

a®(8)

Proposed visual.

Alternative visual.

<add>[mult(m,n)]

1—2>2

%

A>[m n]

<del ete>[mu It(mn)]

1—252

<conflict>[mItmm]

D>[m n
C>[m n

<add>[injective]

[lﬂJ]

<A>[|nj

<del ete>[i njective]

mJ]

<conflict>liniectivel

Bl brer
- <D>[|n]
X

[|n <C>[Iﬂj
<addsliointly-injective] 1—2.9 f f
bl] 9
:
[Jointly-
<delete>iniective] 1—25 9 f f
bl] 9
3

(2] (2]

__Dointly- a f
<conflict>iniective]) m

—

(2] (2]

<add>[suriective] 1 a 2

[SUI'J <A>[5urj

B emrEa
-<D>[Sul'] -
B~k

<conflict>suriectivel | 43,

>

<delete>[suriective] 1 & 2 - [-
surj]

g

[SUI’]] <C>[SUI’]]

a f
<add>[inverse] 17 (i [x] E?f
~_ 7
b 9
a f
- RN
<delete>linverse] 1 2 finv]] [|nv
7
b 9
a f
) - R
<conflict>linversel 1 2 finv] [x] i~ [|nv
~_ 7
b 9

44

3.3. Calculation and representation of di [erknces

An annotated specification S = (S, CS: %, AS: A) consists of a specification
S together with a set of annotations AS which are specified by means of
a tag signature A. A graph annotation (8,y) consists of a tag 8 [®*
and a graph homomorphism y : 0®(8) - S, while an atomic constraint
annotation consists of a tag 8 [®” and a graph homomorphism n :
o2(B) - a*(m).

Definition 24 (Graph annotation). Given a tag signature A = (0%, a?), an
annotation (8,y) on a graph S consists of a tag symbol 8 [®* and a graph
homomorphismy : o®(8) — S.

Y

T

a®(8) s

Definition 25 (Atomic constraint annotation). GivenasignatureZ = (MN%, o),
atag signature A = (@, a®) and a graph S, an annotation (8, n); 8) on an atomic
constraint (11,) with & : a* () — S consists of a tag symbol 8 @ and a graph
homomorphism n : a®(8) — o (1) such that the following diagram commutes:

n

@O — > aT(m —>—=5S

n:d

Definition 26 (Annotated specification). Givenasignature >~ = (M*, a*) and
a tag signature A = (@4, a®), an annotated specification S = (S,CS: 3, AS:A)
is a specification S together with a set AS of:

= graph annotations (6, y) on S and

= atomic constraint annotations (8, n; 3) on CS
with @ [@%,y :0®(8) -~ S, n:0?(8) — a*(m) and (m,d) [aS.

Y

L i

@) ———o*(m)————=S

n;d

45

3. Constraint-Aware Model Versioning

Considering the calculation and representation approaches described
above, the di [erkence specification is defined as follows:

Definition 27 (Di Lerence specification). Given a common specification C of
specifications S and T, the di [erence specification of S and T consists of an an-
notated specification D := (D, CP: 3, AP:A), an injective specification morphism
injp : S — D and an inclusion specification morphism incp : T [3 D, where
(D, CP:%) is constructed as the pushout (D, injp : S - D, incp : T 3 D) of

inct

injs R . ..
the span S <— C&— T in the category Spec(X), according to Proposition 7.

C
inis/ “T
S P.O. T
in& A
D

In addition, the set of annotations AP is constructed as follows:

AP :g—{(<add>", y) with y(a®(<add>N)) = X| X [Ty \ Cn}
—{(<add>*, y) with y(c® (<add>*)) = f| f CTa \ Ca}
—(<deletex},y) with y(a®(<deletex)) = X | X [S\ \ Cn}
:I(<delete>A, y) with y(o?® (<delete>?)) = f| f CSa \ Ca}

[(<rename(injs(Y), Y)>N,y) with
I:’/(O(A(<renameﬁnjs(Y), Y)>N) = Y| Y Sk and Y CiAjs(Y)}
(<rename(injs(g), g)>", y) with
—Y(@*(<rename(injs(g), g)>*)) = g | g [Sh and g Cifjs(g)}
{(<add>", n; 5) with
—fi(@®(<add>")) = o*(m) | (, 3) AT\ C}
[(<delete>", n; 8) with

n(o?(<delete>")) = o*(m) | (m,8) [AS \C}
The following example illustrates the usage of di [erence specifications.

Example 16 (Di Lerence specification). Building upon Example 14, Figure 3.5(d)
shows the di [erence specification D for the specifications V; and V3.

The nodes Enrolment, the arrows eStud and eUniv, and the atomic constraint
([Jointly-injective], d,) have been added to the specification V3. These
elements are annotated with the tag <add> in the di [erence specification D. This
annotation is visualised by green colouring (or as a label <A> if adopting the
alternative visualisation of A).

46

3.3. Calculation and representation of di [erknces

(©) 22

@ - ®)
N

(d)
Figure 3.5: The di [erkence specification D for the specifications VV, and V3

47

3. Constraint-Aware Model Versioning

With regard to the <rename(old, new)> tag, once a node (arrow) X []
S is renamed to Y [T, the common specification C and the diLerence
specification D will contain Y with injs(Y) = X, incr(Y) = VY, injp(X) =Y
and incp (Y) = Y. Moreover, the node (arrow) Y will be annotated with the
tag <rename(X, Y)>.

Recall that the specification morphismsinjs : C - Sandinjp : S - D
are injective in order to allow for this renaming. Moreover, the specific-
ation morphisms incr : C (3 T and incp : T [3 D are inclusions so
that common and di Lerkence specifications always contain the new names.
The following example illustrates the usage of dilerknce specifications
containing a rename.

Example 17 (Di Lerence specification and rename). Building upon Example 14
and 16, Figure 3.6(d) shows the dilerence specification D for the specifications
V> and V3.

In addition to the modifications presented in Example 16, the node Student
has been renamed to Person in V3. The node Person is annotated with the tag
<rename(Student, Person)> in the di [erknce specification D. This annotation
is visualised as <R:Student 3 Person>. The injective specification morphism
injy, : C23 — V3 contains an explicit mapping Person B Student; analogously,
the injective specification morphism injp : Vo, — D contains an explicit mapping
Student B Person.

3.4 Synchronisation

To enable concurrent development, a mechanism for specification syn-
chronisation is necessary. In this section, a synchronisation procedure is
presented. This synchronisation procedure exploits the identification of
commonalities and the calculation/representation of di Lerences presented
in the previous section.

Whenever a local copy Ug is to be synchronised with the head specific-
ation Vy from the repository, two cases are considered:

= If nobody has updated the head specification Vy; i.e., if the head
specification Vy and the base specification Vg are identical, then the
local copy is not a [edted by the synchronisation procedure.

= |f someone has updated the head specification Vy; i.e., if the head
specification Vy and the base specification Vg are di Lerkent, then the
modifications made by others will be merged into the local copy and
possible conflicts will be detected.

48

3.4. Synchronisation

(€) 22

@ - (b) s

(d)

Figure 3.6: The di Lerknce specification D for the specifications V, and V3,
containing a renaming

49

3. Constraint-Aware Model Versioning

The synchronisation procedure takes as input the following specifica-

tions:

* The local copy Ug and the local common specification UCg, which

are stored locally.

* The head specification Vy, the base specification Vg and their in-

termediate common specifications Cgg+1 . . . Cy-1.4, Which are stored
remotely in the repository.

Furthermore, the synchronisation procedure is divided into the follow-
ing steps:

1.

o o ~ w

Construct the common of commons for the base specification and the
head specification.

. Construct the di[erence specification for the base specification and

the local copy, and the di Lerknce specification for the base specifica-
tion and the head specification.

Construct the merge of di [erences.
Detect conflicts.
Resolve conflicts.

Construct the synchronised local copy and the synchronised local common
specification.

3.4.1 Construct the common of commons

The common specifications stored in the repository represent the common-
alities between subsequent versions of a specification. However, common
specifications for specifications which are not subsequent versions of each
other have to be considered as well. This is because the synchronisation
procedure will construct the di [erkence specification of the base specifica-
tion Vg and the head specification Vi which may have an arbitrary number
of intermediate specifications Vg+1...Vy-1. This common specification,
called the common of commons, can be constructed from the common spe-
cifications Cgg+1 . . . Cy—1,n Of the intermediate specifications. One possible
way to construct the common of commons is defined as follows:

50

3.4. Synchronisation

Definition 28 (Common of commons). Given specifications C; j, Cjx, Vi, Vj
and V, the common of commons consists of a specification C;y := (Cjy, C¢ix: %),
an injective specification morphism f := inj;;;inj; and an inclusion specifica-
tion morphism g := incjy; inc, constructed as the pullback (Ciy, injij : Cix —
Cij, incjk : Cix 3 Cjx) of the co-span Ci,j& Vj Sl Cjx in the category
Spec(X), according to Proposition 5.

C

ik
|ry wk
Ci,j P.B. Cj,k
NN
Vi Vj V

For numbers i,k with (k — i) > 2, there are di[erent possible ways to
construct a corresponding common of commons by a sequence of pullback
constructions. However, all these di[erent sequences will produce the
same result, as discussed in Remark 11. Thus, one can talk about the
common of commons and use the notation C;y for this. The following
example illustrates the usage of common of commons.

k

Example 18 (Common of commons). Building upon Example 14, Figure 3.7(f)
shows the common of commons Cj 3 of the common specifications C;, and Cy 3,
which is the common specification for the specifications V1 and V3.

Remark 7 (Identities of elements). For all i, k such that i < k, elements which
are deleted in V; and added to \ are considered distinct elements even if they have
the same name. For example, a node Student which is deleted from V; and a node
Student which is added in V1 are distinct nodes and they will not be identified in
the common specification C; 19. Similarly, elements which are added by di lerent
users are considered distinct elements even if they have the same name.

51

4

() 13

L 1 1]

() 12 (e) 23

7N 7N

e

@ (b) » (d) 3

Figure 3.7: The common specification Cy 3 of the common specifications C;, and Cy 3

BUILOISISA [9POIA S4eMy-1UIedISU0) 'S

3.4. Synchronisation

3.4.2 Construct the di Cerénce specifications

Once the common of commons Cg y is available, the diLerkence specific-
ations UD and D of Vg, Ug and Vg, Vy, respectively, are constructed,
according to Definition 27.

my *\,B |ry m
U'(’k\ AUD m /

3.4.3 Construct the merge of di [Cerénces

Once the di [erknce specifications UD and D are available, they are merged
in the merge of dilerences MD. The merge of di[erknces is defined as
follows:

Definition 29 (Merge of di Lerknces). Given specifications UD, D and V3, the
merge of di [etences consists of a specification MD := (MD, CMP: 3, AMP: A) and
injective specification morphisms uinjyp : UD — MD and injyp : D - MD,
constructed as the pushout (MD, uinjyp : UD - MD, injyp : D - MD)

uinjup injp

of the span UD <— Vg — D in the category Spec(Z [A), according to

Proposition 8.
ulry \\mj
ulnm A/ID

The sets of annotations AYP and AP are merged into AMP by the
pushout construction. While some of these annotations are identified
(see Remark 13), some elements may be annotated with a pair of tags from
A. However, only some combinations are possible. This is justified as
follows:

- Itisimpossible to have an annotation (<add>N"A, y) together with any
other annotation on the same node or arrow in MD because elements
added by di [erent users are considered distinct even if they have the
same name (see Remark 7).

53

3. Constraint-Aware Model Versioning

- Itisimpossible to have two annotations (<delete>""A y) on the same
node or arrow in MD because they are identified by the pushout
construction (see Proposition 8).

T m)
! ¥ L
uD i wpdd>NA | <delete>VA | <rename(old, new)>\A

<add>""A Impossible | Impossible Impossible
<delete>VA Impossible | Identified Possible
<rename(old, new)>""2 | Impossible Possible Possible

« It is impossible to have two annotations (<add>", n;d) on the same
atomic constraint in MD because they are identified by the pushout
construction (see Proposition 8).

e |tisimpossible to have two annotations (<delete>", n; d) on the same
atomic constraint in MD because they are identified by the pushout
construction (see Proposition 8).

=}
D
cyuo Fcadd>" <delete>"
<add>" Identified | Impossible
<delete>" Impossible | Identified

3.4.4 Detect conflicts

The merge of di [erences MD is then processed in order to detect conflicts.
In this work, two kinds of conflicts are distinguished, namely standard
conflict and custom conflict. A standard conflict occurs when concurrent
modifications compete on the same elements of a specification, while a
custom conflict occurs when concurrent modifications lead to semantic
inconsistencies.

Standard and custom conflicts are specified by conflict detection rules.
A conflict detection rule consists of a non-deleting transformation rule,
where the left-hand side L is a specification representing the conflict, and
the right-hand side R is a specification where the conflicting elements are
annotated. The interface K is equal to L since non-deleting transformation
rules do not delete any specification elements. The conflict detection rule
is defined as follows:

Definition 30 (Conflict detection rule). A conflict detection rule consists of a

transformation rule ¢ = L <— K<'> R , Where L = K (see Definition 15).

54

3.4. Synchronisation

Detecting a conflict consists of applying a conflict detection rule by
finding a match for the left-hand side L in the merge of di[erences MD,
leading to a target merge of di[erences MD™ where the conflicting ele-
ments are annotated. Hence, MD is processed by applying all conflict
detection rules, as follows:

conflict detection>

MD MD™

Standard conflict detection

Standard conflict detection rules are divided into two sets. The first set is
fixed and consists of rules for detecting conflicts on the underlying graph
of a specification:

a,b A node or arrow is concurrently renamed and deleted.
¢,d A node or arrow is concurrently renamed twice.

e, f A node is deleted while an arrow having the same node as source or
target is added (dangling arrows).

Table 3.5 shows these standard conflict detection rules.

Table 3.5: The standard conflict detection rules for detecting conflicts on
the underlying graph of a specification

Rule L=K R
a [X krxovs X KRxavs
f f
b e i
R:X3Y: :
¢ :R:xg z: :E;S;
f f
d <R:fd g><R:f3 h> <R:f3 g><R:f0 h>
¢ — —
P =[]]

The second set is generated from the signature = and consists of rules
for detecting conflicts on atomic constraints of a specification; i.e., a part
of the underlying graph is deleted while an atomic constraint having the
same part as target is added (dangling atomic constraints). The generation
of conflict detection rules is defined as follows:

2The choice of the notation MD™rather than MD=will become clear in Section 3.4.5.

55

3. Constraint-Aware Model Versioning

Definition 31 (Generation of conflict detection rules). Given signatures 2~ =
(M*,0*)and A = (02, a?), aset of conflict detection rules is generated as follows:

L=K=R:= of(<add>") | <add>" Q"
Cb=CK=CR:= {(m,3)|58(c>(m) =L}
ALl = AK :t£(<delete%,y1) | yi(o? (<deletex?)) = f (1A}
((<add>", n1; 8) | n1; 8(a® (<add>"™)) = L}
AR . AK

T
I:E(<conflict>/*, v2) | y2(a®(<conflict)) = f [T}
[(<conflict>", n,; 8) | n2; 8(02 (<conflict>")) = L}

Table 3.6 shows the standard conflict detection rules which are gener-
ated from the signature > (see Table 3.4).

Table 3.6: The standard conflict detection rules generated from X for de-
tecting conflicts on atomic constraints of a specification

Rule L=K R
h f [inj] f [inj]
i f f
g [ii] g [ii]
J f [surj] f [surj] -
f f
[¢] g

The following example illustrates the application of standard conflict
detection rules.

Example 19 (Merge of di Lerences and standard conflict detection). Build-
ing upon Example 14, Figure 3.8(h) shows the merge of di[erknces MD for the
di Lerknce specifications UD and D, while Figure 3.8(i) shows the merge of di [ler-
ences MD™after the application of conflict detection rules.

56

3.4. Synchronisation

|]

®) (d)
merge of differences\

conflict
detection
—_—

(h) (6]

Figure 3.8: The merge of di [erences MD and the merge of di [erknces MD™
after the application of conflict detection rules

In MD the node PhDStudand the arrow pPhds are annotated with <delete>N
and <add>", respectively. In MD™these nodes and arrows are additionally an-
notated with <conflict>according to rule f (see Table 3.6). Moreover, in MD
the arrows sUnivs and uStuds and the atomic constraints ([mult(1,4)],01),
([inverse], d,) and ([surjective], &3) and are annotated with <delete>",
<deletex”, <delete>[™1tMM] <deJete>linversel and <delete>[suriective]
respectively. In MD™these arrows and atomic constraints are additionally an-
notated with <conflict>according to rules g, k and j (see Table 3.6).

Figure 3.9(j) shows how the synchronised local copy Az would appear if
constructed from the conflicting merge of di [efences MD™

The specification As is invalid since it contains dangling arrows and dangling
atomic constraints. Note that this specification will not be constructed by the
synchronisation procedure; i.e., the presence of annotations (<conflict>,y) and
(<conflict>n;d) in AMDmprevents the synchronisation procedure from creat-
ing As.

57

3. Constraint-Aware Model Versioning

0 3
Figure 3.9: An invalid local copy Az

Custom conflict detection

So far, only concurrent modifications which compete on the same elements
of a specification are detected as conflicts; i.e., conflicts related to concur-
rent renaming as well as dangling arrows and dangling atomic constraints.
However, concurrent modifications which lead to semantic inconsistencies
can also be detected as conflicts. These conflicts are domain-specific and
are specified as custom conflict detection rules on demand. The following
example illustrates this alternative scenario of concurrent development in
MDE.

Example 20 (Custom conflict detection scenario). Let us consider a variant
of the scenario in Example 14. Figure 3.11 shows the dilerknt versions of the
specification being developed.

Bob and Alice check out local copies B, and Ay, respectively, of the specification
V, from the repository. Bob adds the atomic constraint ([mult(0, 3)], 61) on the
arrow and sUnivs, while Alice adds the atomic constraint ([mult(l,4)], 1)
on the same arrow sUnivs. The synchronisation procedure detects conflicting
modifications. This is because Alice has added a multiplicity constraint which
is semantically inconsistent with the one added by Bob; i.e., according to the
semantic interpretation [[..]]* of the signature = (see Table 3.1), the set of valid
instances of the multiplicity constraints are dilerent. Figure 3.10(a) shows an
instance which is valid for ([mult(1,4)1], d;) but invalid for ([mult(0,3)], 41).
Similarly, Figure 3.10(b) shows an instance which is valid for ([mul€(0,3)], 1)
but invalid for ([mult(1,4)], d1).

In order to detect conflicts which are caused by concurrent modific-
ations (or additions) of multiplicity constraints, it is possible to define a
custom conflict detection rule such as the one shown in Table 3.7.

58

3.4. Synchronisation

UnivAQ UnivAQ

UoB UoB

=

Alessandro Alessandro
\
UniMarburg UniMarburg
UAM UAM
(@ (b)

Figure 3.10: (a) An instance valid for ([mult(l,4)],6:) but invalid for
([mult(0, 3)], 61): [sUnivs| > 3; (b) An instance valid for ([mult(0, 3)], 61)
but invalid for ([mult(1,4)], d1): |sUnivs| < 1

Table 3.7: The custom conflict detection rule for conflicts on multiplicity
constraints

Rule L=K R

| [nfh--nl] [mz--nz] [r:l--nl] [mz--nz]

The rule | detects a conflict if two di Lerent multiplicity constraints are
added to the same arrow.

The following example illustrates the application of custom conflict
detection rules.

Example 21 (Merge of di Lerences and custom conflict detection). Building
upon Example 20, Figure 3.11(h) shows the merge of dilerences MD, while
Figure 3.11(i) shows the merge of di [efences M D ™after the application of conflict
detection rules.

In MD the atomic constraints ([mult(0,3)], 1) and ([mult(1,4)], 1) are
annotated with <add>[™!tMM1 1n MD M these atomic constraints are addition-
ally annotated with <confl ict>[™"tMM1 according to rule | (see Table 3.7).

59

3. Constraint-Aware Model Versioning

L

@ 2

e N

L 1 []

® (d)

merge of differences\ /

conflict

— [

(h) (@)

Figure 3.11: The merge of dilerences MD and the merge of di Lerknces
MD ™after the application of conflict detection rules

3.4.5 Resolve conflicts

Depending on the structure and semantics of the modifications, some
conflicts may be automatically resolved. In this work, several resolution
strategies [22] may be possible for a given conflict. These strategies are
specified by conflict resolution patterns. A conflict resolution pattern consist
of a transformation rule, where the left-hand side L is a specification
representing the conflict, the right-hand side R is a specification where
the resolution is applied, and K is their interface. The conflict resolution
pattern is defined as follows:

Definition 32 (Conflict resolution pattern). A conflict resolution pattern con-

sists of a transformation rulep = L < KSR

60

3.4. Synchronisation

Resolving a conflict consists of applying a conflict resolution pattern
by finding a match for the left-hand side L in the merge of di[erknces
MD™ leading to a target merge of di [erences MD™' Hence, in addition
to conflict detection rules, the merge of dilerknces MD is processed by
applying all conflict resolution patterns, as follows:

MD conflict detection MDI conflict resolution

MD™

As mentioned, some of the modifications which are detected as conflicts
are dangling arrows. In order to resolve dangling arrows, it is possible to
define two conflict resolution patterns. The first “liberal” pattern a_ is to
keep the node which is targeted by the arrow. The second “conservative”
pattern ac is to remove the dangling arrow. Table 3.8 shows these conflict
resolution patterns.

Table 3.8: The conflict resolution pattern for dangling arrows

Rule L K R
a | =[] | 0] |][]
ac | b~ | J—=[v] | J—~[]

Similarly, in order to resolve conflicts detected by custom conflict de-
tection rules, such as those on multiplicity constraints, it is possible to
define two conflict resolution patterns. The first “liberal” pattern b is to
remove the conflicting multiplicity constraints and add a constraint which
is the union of the two. The second “conservative” pattern bc is to remove
the conflicting multiplicity constraints and add a constraint which is the
intersection of the two. Table 3.9 shows these conflict resolution patterns.

Table 3.9: The conflict resolution pattern for conflicts on multiplicity con-
straints

Rule L K R

b, [l‘:lunl] [m3.n7] f [min(my, mzf)--max(nlv ny)]
bc [mfl..nl] [M3..n2] f [max(ml,mi)“min(nl, ny)]

In b, according to the semantic interpretation [[mult(m, n)]]* of the
signature X (see Table 3.1), the set of valid instances of the atomic constraint
([mult(min(m¢, m,), max(ny, n2))], 8:) AR is equal to the union of the set
of valid instances of the atomic constraints ([mult(mg, n1)], 61),
([mult(m,, ny)],8,) CA-. This is justified as follows:

61

3. Constraint-Aware Model Versioning

(Imult(myg,ny)],8) Cmult(m;y, ny)],9d) =

[mult(my,nx)],0) if m<my<n,<ng
[mult(my,n)],0) if my<mi<ni<n
[mult(my,n)],0) if m<smy<ni<n
[mult(my,nx)],0) if mysmi<n,<ng

Similarly, in bc, the set of valid instances of the atomic constraint
([mult(max(m¢, my), min(ny, n2))],8;) CGR is equal to the intersection of
the set of valid instances of the atomic constraints ([mult(my, n1)], 81),
([mult(my,, ny)],8,) CAt. This is justified as follows:

([mult(my,ny)],0) C@mult(m;y, ny)],0) =

[mult(my,n)],0) if m<smy<sn,<ng
[mult(my,nx)],0) if my<mi<ni<n
[mult(my,nx)],0) if m<my<ni<n
[mult(my,n)],0) if mysmi<ny<ng

Note that the conflict resolution patterns b, and bc can be applied only
under the condition that the range of the multiplicity constraints overlap,
i.e., if ny = my or m; < ny. This could be formulated as a NAC.

The following example illustrates the application of conflict resolution
patterns.

Example 22 (Conflict resolution). Building upon Example 20, Figure 3.12(i)
shows the merge of di [erences MD™ while Figures 3.12(j) and 3.12(k) show the
merge of dilefences MD™after the application of the liberal and conservative
conflict resolutions patterns, respectively.

In MD™the atomic constraints ([mult(0,3)],8:) and ([mult(1,4)], 1)
are annotated with <add>[™Tt™M M1 and <conflict>[™"* ™M1 |n MD™hese
atomic constraints are replaced with a new atomic constraint ([mult(0,4)1], d1),
according to pattern by, or ([mult(1,3)],01), according to pattern bc (see
Table 3.6).

Normalisation, Conflict Detection and Conflict Resolution

Recall that the merge of dilerences MD is constructed as the pushout
of the dilerknce specifications UD and D. In general, MD is a valid
specification by construction, but it may not be in normal form; i.e., single
atomic constraints of the specification may hide constraints that are given
by the conjunction of the atomic constraints in a specification. Performing
conflict detection on a merge of di Lerknces MD which is not in normal form
may lead to a merge of di[erences MD™containing false negatives [62];
i.e., containing actual conflicts which are not annotated with <conflict>.

62

3.4. Synchronisation

conflict

I —— deteeion
—_—
(h) 0}
liberal conflict resolution/ lconservative conflict resolution

[— | []

0] (k)

Figure 3.12: The merge of di [erences MD™and the merge of di [erkences
MD™after the application of the conflict resolution patterns

Moreover, performing conflict resolution on the merge of di [erknces MD™
which is not in normal form may lead to a merge of dierences MD™
which is also not in normal form. The following example illustrates this
alternative scenario of concurrent development in MDE.

Example 23 (Alternative custom conflict detection scenario). Let us consider
a variant of the scenario in Example 20. Figure 3.13 shows the di [erknt versions
of the specification being developed.

In addition to the atomic constraint ([mult(1,4)], 1) on the arrow sUnivs,
Alice adds the atomic constraints ([surjective], d3) on the arrows uStuds and
([1nverse], d;) on the arrows sUnivs and uStuds.

Figure 3.13(h) shows the merge of dilerences MD, Figure 3.13(j) shows the
merge of di [erences MD ™after the application of conflict detection rules, while
Figures 3.13(k) and 3.13(1) show the merge of di [efences MD ™ after the applica-
tion of the liberal and conservative conflict resolutions patterns, respectively.

The application of the conflict resolution pattern b, for multiplicity constraints
(see Table 3.9) leads to a merge of di [erences MD™which is not in normal form.
This is because it is possible to find a match for the left-hand side L of the

transformation rulet = L <— K= R induced by the specification entailment
e =L [R (see Section 2.6). Indeed, the atomic constraint ([mult(0,4)], 1) on
the arrow sUnivs has cardinality between zero and four (see Figure 3.13(k)), while
the function sUnivs has cardinality between one and four due to the surjectivity
of the inverse function uStuds. The application of the transformation rule t
induced by the specification entailment e would replace the atomic constraint
([mult(0,4)7],8;) with ([mult(1,4)],31), leading to the normal form of MDT™

63

3. Constraint-Aware Model Versioning

sUnivs
Student _
uStuds

@ »
sUnivs [1..4 sUnivs [0..3
Student [Jlinv] "|University Student [|University
surj] uStuds uStuds
(@ (d)
merge of differences\ /
[0..3] conflict g [0.37"
sUnivs [1..4 detection : sUnivs [1..4]r
Student [Jinvl——universiy Student [Jfinv]
surj] uStuds surj] uStuds
(h) 0]
liberal conflict resolution/ lconservative conflict resolution
sUnivs [0..4 sUnivs [1..3

Student [Jlinvl “|University Student [Jlinv]
surj] uStuds j

(k) 0]

Figure 3.13: The merge of di [erences MD, the merge of di [erences MD™
after the application of conflict detection rules and the merge of di Lerences
MD ™after the application of the conflict resolutions patterns

64

3.4. Synchronisation

The previous example shows that single atomic constraints of a spe-
cification may hide constraints that are given by the conjunction of the
atomic constraints in a specification. These hidden constraints can be
made explicit by means of normalisation of the specification, leading to a
normal form of the specification. In this work, normalisation consists of a
sequence of applications of transformation rules induced by specification
entailments. More precisely, given a specification S = (S,CS: %) and a
set of transformation rules induced by specification entailments, a norm-

alisation consists of a specification transformation S & SH leading to a
normal form S*

Definition 33 (Normalisation). Given a specification S = (S,CS: A) and a
set of transformation rules induced by specification entailments, a normalisation

S ==L SUconsists of aspecification transformation S =L SBwhere no further
transformation rules are applicable to the specification S

In this work, normalisation is assumed to be terminating and confluent;
i.e., each specification can be transformed to a unique normal form by
specification transformation.

Remark 8 (Termination and confluence of normalisation). The identifica-
tion of the conditions under which a set of specification entailments guarantees
termination and confluence of the normalisation is outside the scope of this work
and will be investigated in future work (see Section 3.6).

In order to ensure that conflict detection and conflict resolution behave
as expected, they have to be performed on a merge of dilerences MD
in normal form. Hence, the process of the merge of dilerence has to
be revised by adding normalisation before conflict detection and conflict
resolution, as follows:

normahsatm)nMDD conflict detectlon> MD,Econfllct resolutlon>

MD MD ™

The following example illustrates the usage of normalisation.

Example 24 (Normalisation, conflict detection and conflict resolution).
Building upon Example 23, Figure 3.14(i) shows the merge of di [efences MD™
after the normalisation, Figure 3.14(j) shows the merge of di [efences MD ™after
the application of conflict detection rules, while Figures 3.14(k) and 3.14(l) show
the merge of di [erences MD ™ after the application of the liberal and conservative
conflict resolutions patterns, respectively.

The normalisation replaces the atomic constraint ([mult(0,3)1], ;) in MD
with ([mult(1,3)],8,) in MDY As a consequence, the application of the conflict
resolution pattern b, (see Table 3.9) leads to a merge of di[erences MD™\which
is in normal form.

65

3. Constraint-Aware Model Versioning

=

@ -
e N

L | []

(9) (d)
merge of differences\ /

L]

(h)

lnormalisation

conflict :

detﬂ:lion :
[—/— 17 [=g |

(M) @

liberal conflict resolution/ lconservative conflict resolution

sUnivs [1.. sUnivs [1..3
Student — Student —
surj] uStuds surj] uStuds

() U}

Figure 3.14: The merge of di[erknces MD, the merge of di [erences MD™
after the normalisation, the merge of di [erknces MD ™after the application
of conflict detection rules and the merge of di[erences MD™after the
application of the conflict resolution patterns

66

3.4. Synchronisation

Remark 9 (Alternative sequences to process the merge of dilerknces).
There are alternative sequences that could be adopted to process the merge of
dilerknces MD. An alternative sequence could have the normalisation performed
after conflict detection and resolution, as follows:

conflict detection conflict resolution icati
DU _ MijnormaIlsatloQ

> MD™
This sequence has not been adopted since conflict detection may lead to false
negatives when performed on a merge of dilerences MD which is not in normal
form.
Another alternative sequence could include a loop, as follows:

conflict detection conflict resolution icati
DU _ MijnormaIlsatloQ

> MDI]]]]

<

This loop may be necessary if certain conflict resolution patterns actually
solve a conflict but introduce others. The conditions under which a set of conflict
resolution patterns guarantees that no new conflicts are introduced is outside the
scope of this work and will be investigated in future work (see Section 3.6).

3.4.6 Construct the synchronised specifications

Should the merge of di [erences MD ™ tontain annotations (<conflict>, y)
or (<conflict>, n;d), the synchronisation procedure will stop and the de-
veloper will be asked to resolve conflicts manually. Otherwise, the syn-
chronisation procedure will create the synchronised local copy Uy and
the synchronised local common specification UCH. Note that while the
merge of di [erknces is an annotated specification, the synchronised local
copy and and the synchronised local common specification are plain spe-
cifications; i.e., they do not have the set of annotations AY+ and AY®,
respectively.

Definition 34 (Synchronised local copy). Given a non-conflicting merge of
di ferences MD™ the synchronised local copy consists of a specification Uy :=
(Un, CY%: %) and an injective specification morphism injypm : Uy — MDT
constructed by applying the following transformation rules to MD™(see Ta-
ble 3.10):

67

3. Constraint-Aware Model Versioning

Table 3.10: The transformation rules for extraction of synchronised local
copy

Rule L K R
ext;
]———[v]
extg <R:XQY>
9 9
e | I | O—~1]

Definition 35 (Synchronised local common specification). Given specifica-
tions Vi and Uy, the synchronised local common specification consists of a spe-
cification UCy := (UCy, CY°+: 3), an injective specification morphism uinjy,, :
UCh — Vu and an inclusion specification morphism incy, : UCy 3 Uy, con-
structed as the pullback (UCy, uinjy,, : UCH — V4, incy, : UCH 3 Up)

incp;injmp ;se;cd;cr injympm

of the span Vy MD ™ Uy in the category
Spec(), according to Proposition 5.

Ch, H+
uiry uinjvg Iijv/ ‘NA InJ\,H N\/:ﬂ

UB VH+1

umJVH
uincyp uinjup m inco
|ncUH
umJMD injup

MDY MDH MD™

cd cr iNjypm

Figure 3.15: The synchronisation procedure

Finally, when all the building blocks for synchronising the local copy
with the head specification are in place, the synchronisation can be fulfilled.
The synchronisation is defined as follows (see Figure 3.15):

Definition 36 (Synchronisation). Given specifications Ug, Vg, Vi, UCg and
Cgpg+1- - - Ch-1H, thesynchronisationsync : (Ug, Vg, Vi, UCg, Cg+1...CH-1H)
— (Un,UCy, incy, : UCy 3 Uy, uinjy,, : UCy — Vy) is a procedure which
generates a synchronised local copy Uy and a synchronised local common spe-
cification UCy, according to the following procedure:

68

O©CO~NOOUAWNE

3.4. Synchronisation

if B<H
given Vg, Ug and UCg, construct the difference specification UD;
if H>B+1)
given Vg, Vy and Cggs1...Ch1q, construct the common of commons Cgp ;
else
the common specification Cgy is given;
given Vg, Vy and Cgy, construct the difference specification D;
given Vg, UD and D construct the merge of the differences MD;
given MD
construct MD" by normalising MD;
construct MD™ by conflict detection on MDY
construct MD™ by conflict resolution on MD™}
if (<conflict>,y), (<conflict>n;3) CAMP™
given MD™ construct the synchronised local copy Uy and the synchronised
Iocal common specification UCy;
else
display MD™Z%
ask for manual conflict resolution;
else
the local copy is already synchronised;

Once the synchronisation is performed, the synchronised local copy
may be committed to the repository. The committed specification will be
the new head specification, labelled V.1 in the repository. In addition,
the commit will add the synchronised local common specification as the
common specification of Vi and V.1, labelled Cy 41 in the repository.
The commit is defined as follows (see Figure 3.15):

Definition 37 (Commit). Given a synchronisation sync : (Ug, Vi, VH, UCg,
CB,B+1---CH—1,H) — (UH, UCH,inCUH s UCH B UH,uinjVH cUCH - VH),
the commit com : (Un, UCh, incy,,, Uinjy,,) > (Vh+1, Crp+1, INCyy,,
Chn+1 B Vha1, injyy, : Chner — V) is an operation which adds the spe-
cifications Uy and UCy to the repository as V+1 and UCy, respectively, and the
specification morphisms incy,,, Uinjy,, as iNCyv,,,,, iNjyv,,, respectively.

The following example illustrates all the steps of a synchronisation
procedure.

Example 25 (Synchronisation procedure). Building upon Example 24, Fig-
ure 3.16 shows the complete execution of the synchronisation procedure.

69

3. Constraint-Aware Model Versioning

© . @ » (®) s

(©) (d)
merge of differences

[]

(h)
| normatisation
conflict
z@ i E}:i]
(i) 0]
liberal conflict resolution | conservative conflict resolution

sUnivs [1.. sUnivs [1..3
E e R e — e T
Surj]_ustuds Sun]_ustuds

(k) 0}

Figure 3.16: The complete execution of the synchronisation procedure

70

3.5. Related work

3.5 Related work

Model versioning has been greatly discussed in the literature. A first
strand of research focuses on the problem of representation of di [erknces.
Three categories of representation of di[erknces can be distinguished in
the literature:

« As models which conform to a di [erence metamodel. The di [erknce
metamodel can be generic [77], or obtained by an automated trans-
formation [21]. These models are in general minimalistic (i.e., only
the necessary information to represent the di [erkence is presented),
transformative (i.e., each di Lerence model induces a transformation),
compositional (i.e., di Lerknce models can be composed sequentially
or in parallel) and typically symmetric (i.e., the inverse of a given
representation of di Lerences can be computed).

e As a model which is the union of the two compared models, with
the modified elements highlighted by colours, tags, or symbols [73].
The adoption of this technique is typically beneficial for the designer,
since the rationale of the modifications is easily readable. However,
these benefits apply only if the base models are not large and not
too many updates apply to the same elements, since the di [erknce
model resorts to both base models to denote the di [erknces.

* As a sequence of transformations describing how the initial model
has been procedurally modified [1]. While this technique has the
great advantage of being e Lcieht, the representation of di [erknces
is neither readable nor intuitive. In addition, the sequence of trans-
formations do not follow the “everything is a model vision” [16].
They are suitable for internal representations but quite ine [edtive
for documenting modifications in MDE environments.

According to this classification, our representation of di [erknces falls
into the second category. The dilerence between models is presented
in a dierknce model where the modified elements are annotated (and
coloured to enhance readability).

A second strand of research focuses on the problem of model merging.
Di [erent formalisations can be found in the literature:

e The work in [22] introduces a domain-specific modelling language
for the definition of weaving models which represent patterns of
conflicting modifications. A resolution criteria for these patterns can
be specified through OCL expressions.

71

Representation
of differences

Difference
metamodel

Annotations

Sequence of
transformations

Model merging

Weaving models

Set theory and
predicate logic

Category theory
and graph
transformation

Sequence of
transformations

Heterogeneous
synchronisation

3. Constraint-Aware Model Versioning

= The work in [88] presents a formal approach to the three-way mer-
ging of Ecore [86] models based on set theory and predicate logic.
It is based on formally defined merge rules which can handle ad-
ditions, deletions and renames of model elements and, in addition,
moves of contained model elements. Moreover, it detects and re-
solves conflicting modifications of the same element and of di [erknt
interdependent elements. Finally, the approach guarantees that the
resulting merged model is a well-formed model.

* The work in [87] proposes a formal approach to the merging of typed
attributed graphs based on graph transformations and category the-
ory. In this approach, two kinds of conflicts are defined based on
the notion of graph modifications: operation-based and state-based
conflicts. On the one hand, operation-based conflicts are detected by
first extracting minimal rules from modifications and thereafter, if
possible, selecting pre-defined operation rules. Conflict detection is
then based on parallel dependence of graph transformations and ex-
traction of critical pairs. On the other hand, state-based conflicts are
detected by checking the merged graphs against graph constraints.

* The work in [26] proposes a technique for obtaining automatically
generated repair plans for a given inconsistent model. Repair plans
are sequences of concrete modifications to be performed over a given
model that fix existing inconsistencies without introducing new ones.
The technique is based on Praxis, which is a model inconsistency de-
tection approach. In Praxis, the model is represented as the sequence
of actions executed by the user in order to build it.

In contrast to our approach, the above mentioned approaches do not
take constraints on model elements into account. However, the approaches
in [26, 87, 88] include checking the well-formedness of the result of mer-
ging. This is an important dimension of model versioning which has not
been explored yet in our approach.

A third strand of research focuses on the problem of heterogeneous syn-
chronisation. In [3] the authors propose a tutorial which aims at explor-
ing the design space of heterogeneous synchronisation. The term hetero-
geneous synchronisers is used by the authors to denote procedures that
automate — fully or in part — the synchronisation process for (software)
artefacts which are expressed in di [erent languages. Various approaches
to synchronisation of heterogeneous software artefacts are analysed and
compared. In particular, the tutorial covers both the simpler synchron-
isation scenarios where some artefacts are never edited directly but are
re-generated from other artefacts, and the more complex scenarios where
several artefacts that can be modified directly need to be synchronised.

72

3.5. Related work

Heterogeneous modelling languages and metamodelling are important
dimensions of MDE. However, in the present thesis we have not fully
explored these dimensions. Our synchronisation procedure takes as input
homogeneous models expressed in one modelling language. The aim
of the proposed formalisation is to cover all aspects of optimistic version
control and provide formal definitions of these aspects in terms of category-
theoretical constructs.

Finally, research has lead to a number of prototype tools that support
model versioning:

e DSMDi [[b9] and EMF Compare [37] are two model di[erencing
tools which are based on a similar technique. Di[Lerknce calculation
is divided in two phases. The first focuses on model mappings,
where all the elements of the two input models are compared us-
ing measures like signature matching and structural similarity. The
second phase determines di [erknces, detecting all the additions, de-
letions and changes. The benefit of this approach is that it is general,
but this is at the price of it being slightly resource greedy.

e In [19], the authors present AMOR, a VCS which can deal with ar-
bitrary modelling languages based on Ecore. AMOR is built around
Subversion in order to provide a centralised approach to optimistic
version control, but reuses an extended version of EMF Compare for
diLerknce calculation. AMOR provides conflict detection features
which may be enhanced with user-defined operations. Moreover,
it provides collaborative conflict resolution features, which allow
the implementation of conflict resolution policies. If the resolution
is performed manually, it is analysed in order to derive resolution
recommendations for similar situations which occur in future scen-
arios.

In contrast to our approach, the above mentioned tools do not provide
a formal treatment of conflict detection and resolution. An implementa-
tion of our formalisation of model versioning is just in its initial stage of
development (see Section 3.6). Once a prototype tool will be available,
case studies will be performed to compare the existing tools with our tool.

73

Prototype tools

DSMDiff and
EMF Compare

AMOR

3. Constraint-Aware Model Versioning

3.6 Conclusion and future work

In this chapter, we described a formal approach to model versioning based
on DPF. Firstly, we defined the identification of commonalities and calcu-
lation of di Lerknces as pullback and pushout constructions, respectively.
Secondly, we defined the representation of di [erknces; i.e., the information
added, deleted and renamed, as a set of annotations which are specified
by means of a tag signature. Thirdly, we introduced a synchronisation
procedure which includes normalisation, conflict detection and conflict
resolution. Specification entailments are adopted to describe properties of
the semantic interpretation of predicates of a signature. The normalisation
of a specification is then formalised as the embedding of these specifica-
tion entailments to obtain the normal form of a specification. Moreover,
transformation rules are used to represent conflicts and, when applicable,
their resolution patterns. The conflict detection and resolution are then
formalised as the application of these transformation rules. Note that the
approach handles atomic constraints in all the steps of the synchronisation,
including normalisation, conflict detection and conflict resolution.

To the best of our knowledge, this work is the first attempt to clarify
each step of a work cycle in a centralised approach to optimistic model
versioning; i.e., checkout a local copy, make modifications on a local copy,
synchronise a local copy, resolve conflicts and commit modifications to
a repository. Moreover, this work also constitutes the first attempt to
formalise and illustrate constraint-awareness in model versioning.

Specification transformations constitute the basis for normalisation,
conflict detection and conflict resolution. In future work, we will analyse
termination and confluence in view of DPF. This will facilitate the iden-
tification of the conditions under which a set of specification entailments
guarantees termination and confluence of the normalisation. Similarly, it
will facilitate the identification of the conditions under which a set of con-
flict resolution patterns guarantees that no new conflicts are introduced.

This chapter further develops the formal approach to model version-
ing published in [78, 81]. Compared to the previous work, the theoretical
foundation and the underlying techniques are extended to handle con-
straints. Moreover, new examples are added to illustrate how model
merging, conflict detection and conflict resolution handle constraints. The
findings of this work have already been submitted to a journal for evalu-
ation.

74

CHAPTER

Deep Metamodelling

In this chapter, we present a formal approach to deep metamodelling
based on DPF; i.e., a formal approach to metamodelling which supports
deep characterisation, double linguistic/ontological typing and linguistic
extension.

4.1 Introduction

Models can be specified using general-purpose languages like UML, but
to fully unfold the potential of MDE, models are specified using domain-
specific languages (DSLs) which are tailored to a specific domain of con-
cern. One way to define DSLs in MDE is by specifying metamodels. In
this approach, a system is specified using models at two metalevels: a
metamodel defining allowed types and a model instantiating these types.
However, this approach may have limitations [7, 10, 42], in particular when
the metamodel includes the type-object pattern [7, 10, 42], which requires
an explicit modelling of types and their instances at the same metalevel.
In this case, deep metamodelling (also called multi-level metamodelling) using
more than two metalevels yields simpler models [10].

Deep metamodelling was proposed in the seminal works of Atkinson
and Kuhne [7], and several researchers and tools have subsequently adop-
ted this approach [5, 6, 27]. However, there is still a lack of formalisation of
the main concepts of deep metamodelling such as deep characterisation,
double linguistic/ontological typing and linguistic extension. Such form-
alisation is needed in order to explain the main aspects of the approach,
study the di[erent semantic variation points and their consequences, as
well as to classify the di Lerent semantics found in the tools implementing
them [5, 6, 11, 27, 57].

75

Domain-specific
languages

Deep
metamodelling

Traditional
metamodelling
stack

OMG’s 4-layer
hierarchy

4. Deep Metamodelling

In this chapter, we present a formal approach to deep metamodelling
based on DPF; i.e., a formal approach to metamodelling which supports
deep characterisation, double linguistic/ontological typing and linguistic
extension. The proposed formalisation helps in reasoning about the dif-
ferent semantic variation points in the realisation of deep metamodelling
as well as in classifying the existing tools according to these options.

The remainder of the chapter is structured as follows. Section 4.2 il-
lustrates the limitations of traditional metamodelling through an example
in the domain of component-based web applications. Section 4.3 intro-
duces deep metamodelling. Section 4.4 explains dilerknt concepts of
deep metamodelling through its formalisation in DPF. Section 4.5 shows
how deep metamodelling relates to traditional metamodelling by means
of flattening constructions. In Section 4.6, the current research in deep
metamodelling is summarised. In Section 4.7, some concluding remarks
and ideas for future work are presented.

4.2 Metamodelling

In a traditional metamodelling stack (or hierarchy), models at each metalevel
conform to the corresponding metamodel of the modelling language at the
adjacent metalevel above (see Figure 4.1). This pattern is often referred to
as linear metamodelling in the literature [8]. Moreover, in strict metamodel-
ling, amodel element at each metalevel has exactly one type at the adjacent
metalevel above. The top-most model of a traditional metamodelling stack
may not conform to any model or may be a reflexive model, i.e., a model
which conforms to itself. The length (or depth) of a traditional metamod-
elling stack is fixed (i.e., it cannot change depending on the requirements)
and the metalevels are conventionally numbered from 1 onwards starting
from the bottom-most.

For instance, in the 4-layer hierarchy [17] developed by the OMG [66],
models conform to the metamodel of UML (see Figure 4.2). The metamodel
of UML, in turn, conforms to the metamodel of MOF [68], and the latter
is reflexive. Please note that meta- is a relative term, so that the UML
metamodel is a model as well, while the MOF metamodel is a meta-
metamodel with respect to the models.

The OMG’s 4-layer hierarchy is the one most widely adopted in prac-
tice, but the designer is restricted to working with models at two metalevels
only: a metamodel at metalevel M, corresponding to the modelling lan-
guage (e.g., UML or an appropriate DSL), and a model at metalevel M;
conforming to this metamodel. The following example illustrates that, on
some occasions, the restriction to two metalevels leads to the introduc-
tion of accidental complexity, which could be avoided if the models were
organised using more than two metalevels.

76

4.2. Metamodelling

Linear stack Metalevel

Modelling] metamodel of
language

conforms to

conforms to
Modelling] metamodel of i+1
language

A

conforms to
Modelling | metamodel of i
language

conforms to

conforms to

1

Figure 4.1: Pattern in a linear metamodelling stack

4-layer hiearachy Metalevel
conforms to

M
conforms to
UML/DSL [«Netamodel of 1y, rodel M,
A
conforms to

Model M,

A
represepted by

Original (@)

Figure 4.2: OMG’s 4-layer hierarchy

77

4. Deep Metamodelling

Example 26 (A DSL for component-based web applications). The MeT-
EOriC project [63] aims at the model-driven engineering of web applications.
Here we describe a small excerpt of one of the modelling problems encountered in
this project.

In MeTEOTiIC, a DSL is adopted to define the mash-up of components (like
Google Maps and Google Fusion Tables) to provide the functionality of a web ap-
plication. A simplified version of this language can be defined using the metalevels
M, and M; of the OMG’s 4-layer hierarchy (see Figure 4.3).

The metamodel at metalevel M, corresponds to the DSL for component-based
web applications. In this metamodel, the metaclass Component defines com-
ponent types having a type identifier, whereas the metaclass Cinstance defines
component instances having a variable name and a flag indicating whether it
should be visualised. Moreover, the metaassociation datalink defines the data link
types between component types, whereas the metaassociation dlinstance defines
the data link instances between component instances. Finally, the metaassociation
type defines the typing of each component instance.

The model at metalevel M; represents a component-based web application
which shows the position of professors’ o [ced on a map. In this model, the classes
Map and Table are instances of the metaclass Component and represent com-
ponent types, whereas the classes UAMCamp and UAMProfs are instances of the
metaclass Clnstance and represent component instances of Map and Table, re-
spectively. The association geopos is an instance of the metaassociation datalink
and represents the allowed data link between the component types Map and Table,
whereas the association offices is an instance of the metaassociation dlinstance
and represents the actual data link between the component instances UAMCamp
and UAMProfs. Finally, the associations camptype and profstype are instances
of the metaassociation type and represent the typing of the component instances
UAMCamp and UAMProfs, respectively.

The type-object relation between component types and instances is represented
explicitly in the metamodel by the metaassociation type between the metaclasses
Component and Cinstance. However, the type-object relation between allowed
and actual data links is implicit since there is no explicit relation between the
metaassociations datalink and dlinstance, and this may lead to several problems.
Firstly, it is not possible to define that the data link instance offices is typed by
the data link type geopos, which could be particularly ambiguous if the model
contained multiple data link types between the component types Map and Table.
Moreover, it could be possible to specify a reflexive data link instance from the
component instance UAMProfs to itself, which should not be allowed since the
component type Table does not have any reflexive data link type. Although these
errors could be detected by complementing the metamodel with attached OCL
constraints, these constraints are not enough to guide the correct instantiation of
each data link, in the same way as a built-in type system would do if the data link
types and instances belonged to two di [erent metalevels.

78

4.2. Metamodelling

Metamodel
Model

Figure 4.3: A two-metalevel DSL for component-based web applications

In the complete definition of the DSL, the component types can define features
which need to be correctly instantiated in the component instances. This leads
to even more cluttered models (see Figure 4.4). In the model, the class Scroll is
associated to the class Map and represents the zooming capabilities of the map
component. The definition of the class UAMScroll and its association to both
the classes UAMCamp as well as Scroll has to be done manually. Moreover, the
conformance check that the value true assigned to the attribute value is actually
a boolean has to be done manually as well. Hence, either one builds manually the
needed machinery to emulate the existence of two metalevels within the same one,
or this two-metalevel solution eventually becomes convoluted and hardly usable.

In the following, we show that organising the models in three meta-
levels results in a simpler DSL.

79

08

Metamodel

Model

Figure 4.4: Extension of the two-metalevel DSL adding component features

Buijepowelsiy dea@ v

4.3. Deep metamodelling

4.3 Deep metamodelling

This section introduces the main concepts of deep metamodelling, illus-
trating how they overcome the problems of the two-metalevel approach
when defining DSLs which incorporate the type-object pattern.

4.3.1 Deep characterisation

The first ingredient of deep metamodelling is deep characterisation: the abil-
ity to describe structure and express constraints for metalevels below the
adjacent one. In this work, we adopt the deep characterisation approach
described in [7]. In this approach, each element has a potency. In the ori-
ginal proposal of [7], the potency is a natural number which is attached
to a model element to describe at how many subsequent metalevels this
element can be instantiated. Moreover, the potency decreases in one unit
at each instantiation at a deeper metalevel. When it reaches zero, a pure
instance that cannot be instantiated further is obtained. In Section 4.4, we
provide a more precise definition for potency.

The following example illustrates the usage of deep characterisation.
Note that in deep metamodelling, the elements at the top metalevel are
pure types, the elements at the bottom metalevel are pure instances, and
the elements at intermediate metalevels retain both a type and an instance
facet. Because of that, they are all called clabjects, which is the merge of the
words class and object [10]. Note also that since in deep metamodelling
the number of metalevels may change depending on the requirements, we
find it more convenient to number the metalevels from 1 onwards starting
from the top-most, in contrast to the traditional metamodelling stack (see
Figure 4.1).

Example 27 (A DSL for component-based web applications in three meta-
levels). Compared to Example 26, the DSL for component-based web applications
can be defined in a simpler way using deep metamodelling (see Figure 4.5).

The model M; contains the definition of the DSL. In this model, the clabject
Component has potency 2, which denotes that it can be instantiated at the two
subsequent metalevels. Its attribute id has potency 1, which denotes that it can be
assigned a value when Componentis instantiated at the adjacent metalevel below.
Its other two attributes name and visualise have potency 2, which denotes that
they can be assigned a value only two metalevels below. The association datalink
also has potency 2, which denotes that it can be instantiated at the two subsequent
metalevels. The DSL in Figure 4.5 is simpler than the one in Figure 4.3, as it
contains less model elements to define the same DSL.

81

4. Deep Metamodelling

& & #
$h&
$%- “‘:' #
Model M,
1
Model M,
Model M,

Figure 4.5: A three-metalevel DSL for component-based web applications
corresponding to the DSL in Figure 4.3

The deep characterisation is very useful in the design of this DSL. For in-
stance, in the model My, the designer can specify the attributes name and visu-
alise which should be assigned a value in indirect instances of Component, i.e.,
UAMCamp and UAMProfs. Moreover, the model My does not need to include a
clabject Cinstance or an association dlinstance since the clabjects UAMCamp
and UAMProfs are instances of the clabjects Map and Table, respectively, which
in turn are instances of the clabject Component.

4.3.2 Double typing and linguistic extension

The dashed grey arrows in Fig. 4.5 denote the ontological typing for the
clabjects, as they represent instantiations within a domain; e.g., the clab-
jects Map and Table are ontologically typed by the clabject Component. In
addition, deep metamodelling frameworks usually support an orthogonal
linguistic typing [10, 27] which refers to the metamodel of the metamodel-
ling language used to specify the models.

82

4.3. Deep metamodelling

Figure 4.6 shows the scheme of this double linguistic/ontological typ-
ing. Moreover, it shows a simplified linguistic metamodel, which contains
some of the metaclasses needed to specify models, e.g., clabjects, attributes
and associations.

Ontological stack Metalevel

Linguistic metamodel

conforms|to (onto.)

conforms|to (onto.)

— < conforms to

(ling.) Model
T conforms|to (onto.)

confgrms of \odel
(ling)
conforms|to (onto.)

i+1

conformsjto (onto.)

Figure 4.6;: Metamodelling stack with double linguistic/ontological typing

In Figure 4.5, the clabjects Component, Map and UAMCamp are linguis-
tically typed by the metaclass Clabject, whereas the attributesid, name and
visualise are linguistically typed by the metaclass Attribute. The availab-
ility of a double linguistic/ontological typing has the advantage that one
can uniformly treat all clabjects independently of their ontological type
and metalevel. This enables the specification of generic model manipula-
tions typed by the linguistic metamodel, which then become applicable to
models at any metalevel.

The double linguistic/ontological typing also enables so-called linguistic
extensions [27]. The crucial observation is that any model in an ontological
stack conforms linguistically to the linguistic metamodel. Hence, one can
add clabjects which are only linguistically typed, or add new attributes
to existing clabjects which are ontologically typed. Figure 4.7 shows the
scheme of linguistic extensions. All models in the ontological stack con-
form linguistically to the linguistic metamodel, but only portions of them
conform ontologically to the model at the adjacent metalevel above.

Linguistic extensions are a useful mechanism to design extensible deep
DSLs. These extensions are necessary to address new requirements at
lower metalevels which could not be foreseen or addressed at the top-
most metalevel. The following example illustrates the usage of linguistic
extensions. 83

Double linguist-
ic/ontological

typing

Linguistic
extension

4. Deep Metamodelling

Ontological stack Metalevel

conforms to 1

conforms|to (onto.)

A
fonforms]to (onto.

o {ono)
conforms to Onto. i
(ling.) instance

Ling. e>‘(ten5|on

conforms|to (onto.
-ontorms

;

conforms to Onto.
" (ling.) instance

Ling. extension

J

Linguistic metamodel

{

conforms|to (onto.)

conforms|to (onto.)

conforms to
(ling.)

Figure 4.7: Metamodelling stack with double linguistic/ontological typing
and linguistic extension

Example 28 (Extended DSL for component-based web applications in three
metalevels). Asdiscussed in Example 26, the component types can define features
which need to be correctly instantiated in the component instances. These new
features can be naturally expressed as linguistic extensions in the model M, (see
Figure 4.8). In particular, the clabject Map is extended with an attribute scroll
of type Boolean. The attribute scroll has potency 1, which denotes that it can be
assigned a value in the model M.

Figure 4.8 also shows that potency can be attached to constraints as well. The
attached OCL constraint in the model M; forbids to reflexively connect indirect
instances of Component. This constraint has potency 2, which denotes that it
has to be evaluated in the model M3 only.

Regarding the handling of features of component types, the solution
presented in Example 28 has two main advantages with respect to the solu-
tion in Example 26. Firstly, linguistic extensions enable the use of a built-in
type system to check the conformance of feature types and instances; e.g.,
the conformance check that the value true assigned to the attribute scroll is
actually a boolean. Secondly, the built-in type system is used to guide the

84

4.3. Deep metamodelling

.y

Model M,

w'-
=
[

Model M,

Model M,

Figure 4.8: Linguistic extension of the three-metalevel DSL adding com-
ponent features

instantiation of clabjects; e.g., when the clabject Map is instantiated, all its
attributes are instantiated as well. In Example 26, the correct instantiation
was done either manually or by additional machinery needed to emulate
the existence of two metalevels within the same one.

In the following, we discuss some open questions in deep metamodel-
ling.

4.3.3 Some open questions in deep metamodelling

Deep metamodelling allows a more flexible approach to metamodelling
by introducing richer modelling mechanisms. However, their semantics
have to be precisely defined in order to obtain sound, robust models. Even
if the literature (and this section) permits grasping an intuition of how
these modelling mechanisms work, there are still open questions which
require clarification.

Some works in the literature give di Lerent semantics to the potency of
associations. In Example 28, the associations are instantiated like clabjects.
In this case, the association datalink with potency 2 in the model M; is

85

Potency on
associations

Potency on
constraints

Flattening of
deep
metamodelling

4. Deep Metamodelling

first instantiated as the association geopos with potency 1 in the model
M,, and then instantiated as the association offices with potency 0 in the
model M3 (see Figure 4.8); i.e., the instantiation of offices is mediated
by geopos. In contrast, the attributes name and visualise with potency
2 in the model M; are assigned a value directly in the model M3 (see
Figure 4.8); i.e., the instantiation of nhame and visualise is not mediated.
Some frameworks such as EMF [32, 86] represent associations as Java
references, so the associations could also be instantiated like attributes.
In this case, the association datalink would not need to be instantiated in
the model M, in order to be able to instantiate it in the model M3. This
would have the e [edt that one could add an association between any two
component instances in the model M3, not necessarily between instances
of Table and instances of Map.

Another ambiguity concerns constraints, since some works in the lit-
erature support potency on constraints [27] but others do not [11]. In
Example 28, the attached OCL constraint in the model My is evaluated in
the model M3 only; i.e., it is not evaluated in the model M. In other cases,
it might be useful to have a potency which denotes that a constraint has to
be evaluated at every metalevel. In Example 28, none of the multiplicity
constraints has potency and they are all evaluated at the adjacent metalevel
below. In other cases, it might be useful to attach a potency to multiplicity
constraints. For instance, a potency 2 on the multiplicity constraints of
the association datalink would have the e [edt that one could control the
number of data link instances in the model Ms.

Finally, another research question concerns the relation between meta-
modelling stacks with and without deep characterisation. One could
define constructions to flatten deep characterisation; e.g., given the three-
metalevel stack of Example 28, one could obtain another three-metalevel
stack without potencies but with some elements replicated along meta-
levels, making explicit the semantics of potency. This would allow the
migration of deeply characterised systems into tools that do not support
deep characterisation. One could also define further constructions to flat-
ten multiple metalevels into two or to eliminate the double typing.

Altogether, we observe a lack of consensus and precise semantics for
some of the aspects of deep metamodelling. The contribution of this work
is the use of DPF to provide a neat semantics for the di [erknt aspects of
deep metamodelling: double linguistic/ontological typing, linguistic ex-
tension and deep characterisation through potency. As a distinguishing
note, we propose two possible semantics of potency for each model ele-
ment, i.e., clabjects, attributes, associations and constraints. To the best
of our knowledge, this is the first time that the two semantics have been
recognised and formalised.

86

4.4. Formalisation of deep metamodelling

4.4 Formalisation of deep metamodelling

This section presents a formalisation of deep metamodelling based on
DPF. This formalisation is presented stepwise by defining and illustrating
double linguistic/ontological conformance, linguistic extension and deep
characterisation.

4.4.1 Double metamodelling stack

Recall that in a metamodelling stack which supports double linguistic/on-
tological conformance — hereafter called double metamodelling stack —, mod-
els at each metalevel conform linguistically to the corresponding meta-
model of a fixed linguistic modelling language and conform ontologically
to the model at the adjacent metalevel above (see Section 4.3).

The metamodel of the linguistic modelling language of a deep metamod-
elling stack can be represented in DPF by a specification LM = (LM, C-M:
2) which consists of an underlying graph LM and a set of atomic con-
straints C-M specified by means of a predicate signature .

A model at metalevel i of a double metamodelling stack can be repres-
ented in DPF by a specification S; = (S;, Ci: Q) which consists of an under-
lying graph S; and a set of atomic constraints C; specified by means of a
predicate signature Q. Moreover, S; conforms linguistically to the specific-
ation LM; i.e., there exists a total linguistic typing morphism A; : S; - LM
such that (Sj, A;) is a valid instance of LM. Furthermore, S; conforms
ontologically to the specification S;i_3; i.e., there exists a total two-level on-
tological typing morphism w; : Sj —» Sj—; such that the ontological typing
is compatible with the linguistic typing and (S;, w;) is a valid instance of
Si-1.

First, in order to enable reuse later in the chapter, the linguistic portion
of the double metamodelling stack is defined as follows:

Definition 38 (Linguistic metamodelling stack). Given:
= signatures = = (M*,a%), Q = (N2, a?)
= aspecification LM = (LM, C-M: %)

A linguistic metamodelling stack with length I consists of:
= specifications S; = (S;, Ci: Q), forall 1 <i <

= total linguistic typing morphisms A; : Sj — LM, forall 1 < i < I, such
that:

— (Si, A)) CImst(LM)

87

4. Deep Metamodelling

Note that a linguistic metamodelling stack is similar to a traditional lin-
ear metamodelling stack with two metalevels, where each specification S;
conformsto the specification LM. Based on this, the double metamodelling
stack is constructed by adding ontological typing morphisms w; : Sij — Sij—1
to the linguistic metamodelling stack, as follows:

Definition 39 (Double metamodelling stack). A double metamodelling stack
with length | is a linguistic metamodelling stack with length | together with:

 total two-level ontological typing morphisms w; : Sj —» Sj-1,forall2 <i <
I, such that:

- Wi;Ai-1 = A
- (Si, wi) CInst(Si-1)

88

4.4. Formalisation of deep metamodelling

The following example illustrates the usage of a double metamodelling

stack.

Example 29 (Double metamodelling stack). Building upon Example 27, Fig-
ure 4.9(a) shows the specification LM and Figures 4.9(b), (c) and (d) show the
specifications S;, S, and Sg3, respectively, of a double metamodelling stack.
Moreover, Figure 4.9 shows the ontological typing morphisms w, and w3 as
dashed grey arrows. Tables 4.1 and 4.2 show the signatures > and Q, respect-

ively.

The specification LM corresponds to a metamodelling language for object-
oriented structural modelling similar to the one in Figure 4.6. The interested
reader may consult [80] for details about the semantics of inheritance in DPF.

Table 4.1: The signature >

n > a>(m) | Proposed vis. | Semantic interpretation
A
[irreflexive] | 1 XTI X : x CT(x)
Table 4.2: The signature Q
n CO° a®?(m) Proposed vis. | Semantic interpretation
f
[mult(m,n)] 122 W DACX :m < [f(X)] < n,
with0<sm<nandn=1
[irr] f
a
[irreflexive] p XX : x CF(X)

The specifications Sy, S, and S3 conform linguistically to LM; i.e., there exist
linguistic typing morphisms A; : S; - LM, A2 :S; - LM and A3 : S3 -~ LM
such that (S1, A1), (S2, A2) and (Sz, A3) are valid instances of LM. The linguistic
typing morphisms A1, A2 and Az are defined as follows:

Ai1(Component) = Clabject
Ai(datalink) = Reference
A1 (id) = Attribute

A1 (String) = DataType
A2(Map) = \y(Table) = Clabject
N2(geopos) = Reference

A2 (idMap) = N (idTable) = Attribute
A2 (“GoogleMaps™ = A, (“FusionTable”) = DataType
A3(UAMCamp) = A3(UAMProfs) = Clabject

As(offices) = Reference

89

06

Yod) s

()

(@) (d) s
Figure 4.9: The specifications LM, S3, S, and S3 together with the ontological typing morphisms w, and w;

Buijepowelsiy dea@ v

4.4. Formalisation of deep metamodelling

Moreover, S; and S3 conform ontologically to S; and S, respectively; i.e.,
there exist total two-level ontological typing morphisms w; : S, - S; and
w3 : Sz — Sy such that (S, w2) and (Ss, w3) are valid instances of S; and S,
respectively, and commute with the linguistic typing morphisms. The ontological
typing morphisms w, and w3 are defined as follows:

w2(Map) = wy(Table) = Component

w2 (geopos) = datalink

w2 (idMap) = w,(idTable) = id

w2 (“GoogleMaps™) = w,(“FusionTable”) = String
w3(UAMCamp) = Map

w3(UAMProfs) = Table

ws(offices) = geopos

The proposed double metamodelling stack conveniently represents lin-
guistic and ontological typing, but lacks support for linguistic extension
and deep characterisation.

Firstly, in Example 28, the attribute scroll constitutes a linguistic exten-
sion of the model at metalevel 2 as this element is only typed linguistically.
In Example 29, in contrast, S, can not include an attribute scroll which is
not ontologically typed by an element in S;. This is because the proposed
double metamodelling stack has total ontological typing morphisms rather
than partial ones.

Moreover, in Example 28, the deep characterisation of the elements
Component and datalink at metalevel 1 forbids that these elements are
instantiated at metalevel 4 or below. In Example 29, in contrast, one could
add a specification S, including elements that are ontologically typed by
elements in Ss.

Furthermore, in Example 28, the deep characterisation of the attribute
name at metalevel 1 allows that this element is instantiated (i.e., it is
assigned a value) at metalevel 3. In Example 29, in contrast, S; can not
include elements which are ontologically typed by a possible attribute
name in S; since Sz is ontologically typed by S, but not by S;.

Finally, in Example 28, the deep characterisation of the OCL constraint
ensures that this constraint is evaluated at metalevel 3. In Example 29, in
contrast, the atomic constraint ([irreflexive], d;) corresponding to the
OCL constraint above is evaluated in S, but not in S3. This is because S,
conforms ontologically to S;, while S3 conforms ontologically to S, but
notto S;.

In the following, we revise the definition of the double metamodelling
stack to support linguistic extension as well as di [erent mechanisms of
deep characterisation.

91

4. Deep Metamodelling

4.4.2 Partial double metamodelling stack

Recall that in a metamodelling stack which supports double linguistic/on-
tological conformance and linguistic extension — hereafter called partial
double metamodelling stack —, models at each metalevel conform linguisti-
cally to the metamodel of a fixed linguistic modelling language, but only
a portion of the same models conform ontologically to the model at the
adjacent metalevel above (see Section 4.3); i.e., there can be elements in a
model which are only linguistically typed.

In analogy to the double metamodelling stack, a model at metalevel i
of a partial double metamodelling stack can be represented in DPF by a
specification S; = (S;, Ci: Q) which conforms linguistically to the specific-
ation LM. In contrast to the double metamodelling stack, however, only a
subgraph of S; conforms ontologically to the specification Si_;; i.e., there
exists a partial two-level ontological typing morphism w;j : Sj —> Sj—;
which is given by a subgraph I; [Sjrepresenting the domain of definition
of w; (see Definition 47) and a total two-level ontological typing mor-
phisms w; : I; - Sj-1, such that the ontological typing is compatible with
the linguistic typing and (l;, w;) is a valid instance of S;_;.

The partial double metamodelling stack is defined as follows:

Definition 40 (Partial double metamodelling stack). A partial double meta-
modelling stack with length | is a linguistic metamodelling stack with length |
together with:

e partial two-level ontological typing morphisms w; : Sj —= Sj—; , for all
2 <i <, which are given by:

— domain of definition subgraphs I; [S]
— total two-level ontological typing morphisms w; : I; - Sj—1

such that:

- wi; Ai-1 [A]
- (lj, wj) COIhst(Si-1)

92

4.4. Formalisation of deep metamodelling

SO

Si~—;

Note that partial two-level ontological typing morphisms wy :
Sk —= Sy—1 can be composed to obtain a partial multi-level ontological
typing morphism m{(: S¢—=Sj, forall 1 =i < k < 1, which is given
by a subgraph IL Sk representing the domain of definition of coL and a
total multi-level ontological typing morphism w, : I, — Sj, where w, =
Wi - Wi-, 1= (W) 7H(S) ChJand I} . LIS = I (see Definition 47).

Example 30 (Partial double metamodelling stack). Figure 4.10(a) shows the
specification LM and Figures 4.10(b), (c) and (d) show the specifications Sy,
S, and Sj, respectively, of a partial double metamodelling stack. Moreover,
Figure 4.10 shows the ontological typing morphisms w, and w3 as dashed grey
arrows.

Compared to Example 29, the specification S, is extended with an attribute
scroll with data type Boolean, while the specification S; is extended with a
corresponding data value true. The linguistic typing morphisms Ay, A, and Az
are extended with the following mappings:

A2(scroll) = Attribute
A2(Boolean) = DataType
As(scrollUAM) = Attribute
As(true) = DataType

93

¥6

e g - -

N ()

% &

()

(@) (d) s
Figure 4.10: The specifications LM, S;, S, and S3 together with the ontological typing morphisms w,; and w3

Buijepowelsiy dea@ v

4.4. Formalisation of deep metamodelling

Moreover, the subgraphs I, and |3 of the specifications S, and S, respectively,
conform ontologically to S; and S, respectively; i.e., there exist partial two-level
ontological typing morphisms w; : S, » S; and w3 : S3 —» Sy such that (I, w,)
and (I3, w3) are valid instances of S; and S,, respectively. Note that in this case,
the subgraph I3 is equal to the underlying graph Sz, meaning that the ontological
typing morphism wj is actually total. Compared to Example 29, the ontological
typing morphism w3 is extended with the following mappings:

wsz(scrollUAM) = scroll
ws(true) = Boolean

The proposed partial double metamodelling stack adds support for
linguistic extension, but still lacks support for deep characterisation.

In the following, we further revise the definition of the partial double
metamodelling stack to support di Lerent mechanisms of deep character-
isation.

4.4.3 Deep metamodelling stack

Recall that in a metamodelling stack which supports double linguistic/on-
tological conformance, linguistic extension and deep characterisation —
hereafter called deep metamodelling stack —, models at each metalevel con-
form linguistically to the corresponding metamodel of a fixed linguistic
modelling language and a portion of the same models conform ontologic-
ally to the models at the metalevels above according to the deep charac-
terisation of elements in these models (see Section 4.3).

A mechanism for deep characterisation is potency, for which di [erknt
interpretations are possible. In this work, two kinds of potency are dis-
tinguished, namely multi- and single-potency, denoted by the symbols [
and [p.Irespectively.

A multi-potency [pbn a clabject/reference at metalevel i denotes that
this clabject/reference can be instantiated at all metalevels fromi+1toi+p
(see Figure 4.11), where the instantiation of this clabject/reference has to
be mediated and the multi-potency has to be decreased at each metalevel;
e.g., a clabject with multi-potency 0 at metalevel i + 2 which is an instance
of a clabject with multi-potency 2 at metalevel i must also be an instance
of a clabject with multi-potency 1 at metalevel i + 1 which in turn is an
instance of the considered clabject with multi-potency 2 at metalevel i
(see Figures 4.12 and 4.13). Most deep metamodelling approaches assume
multi-potency semantics for clabjects [5, 6, 11, 27, 57]. A multi-potency
[pbn an atomic constraint at metalevel i denotes that this constraint is
evaluated at all metalevels from i+ 1 to i+ p. Finally, attributes only retain
either a type or an instance facet but not both; therefore, the multi-potency
on attributes can not be considered.

95

Multi-potency

4. Deep Metamodelling

Metalevel Clabject Reference

i A A]
A A | A
| | I |

i+1 (e]— %[0]
A A | A
| | | |
i i i i
| | ‘ |

i+p-1 o —5——[]
A A | A
‘ | ! |

i+p Cw ———[z]

Figure 4.11: Intuition on the semantics of multi-potency

96

4.4. Formalisation of deep metamodelling

Metalevel Clabject Reference
i A]—5%——[]
A A [A
| | I |
i+1 ! ! [o]
| A ‘ A
| | ! |
i+2 [)——

Figure 4.12: Invalid instantiation: an element with multi-potency 0 at
metalevel i+2 can not be a direct instance of an element with multi-potency

2 at metalevel i

Metalevel Clabject Reference
i (][]
A A [A
| \ ! |
i+1 [— %[o]
A A [A
| | ‘ |
i+2 []— -

Figure 4.13: Invalid instantiation: an element with multi-potency 1 at
metalevel i + 2 can not be an instance of an element with the same muilti-
potency at metalevel i + 1

97

Single-potency

4. Deep Metamodelling

A single-potency [pbn a clabject/reference at metalevel i, in contrast,
denotes that this clabject/reference can be instantiated at metalevel i + p
only (see Figure 4.14). A single-potency [pbn an attribute at metalevel i
denotes that this attribute can be instantiated (i.e., can be assigned a value)
at metalevel i + p only. A single-potency [pbn an atomic constraint at
metalevel i denotes that this atomic constraint is evaluated at metalevel

i+ponly.
Metalevel Clabject Reference Attribute
i A]—F [—
1 A / A A / 1
[| T | | T |
| | . . | |
| | . | \
\ A \ A A \ |
\ [Lm [[Lm \
i+p (v] ———[=] | [m] —"—

Figure 4.14: Intuition on the semantics of single-potency

Each element in a model has either a multi-potency or a single-potency.
However, some combinations of potencies on interdependent elements
may lead to contradictions. Tables 4.3, 4.4 and 4.5 show the contradictory
combinations of multi- and single-potencies.

Table 4.3: Contradictory combinations of multi-potencies on interdepend-

ent elements

(A ——[]
A]— ["™]

p > g: possible to instantiate the
reference a only at metalevels i +
1,...,i+q

a'@l el

p > q: possible to evaluate the atomic
constraint 1t only at metalevels i +
1,...,i+q

98

4.4. Formalisation of deep metamodelling

Table 4.4: Contradictory combinations of single-potencies on interdepend-

ent elements

Ut

A]——[™]

p gl impossible to instantiate the
reference a

A | —— ot |

p gl impossible to instantiate the
attribute a

aled el

p [impossible to evaluate the
atomic constraint 1t

Table 4.5: Contradictory combinations of multi- and single-potencies on

interdependent elements

(A — =[]
A]— @]

p gl impossible to instantiate the
reference a

p = g: possible to instantiate the ref-
erenceaonlyifp=q=1

[
A] — [@]

p > q. impossible to instantiate the
reference a

A]——[or]

p > q. impossible to instantiate the
attribute a

ﬂ p g impossible to evaluate the
atomic constraint 1t
p = @: possible to evaluate the atomic
constrainttonly ifp=q=1
ald! el

p > . impossible to evaluate the
atomic constraint 1t

99

4. Deep Metamodelling

In analogy to the partial double metamodelling stack, a model at meta-
level i of a deep metamodelling stack can be represented in DPF by a
specification S; = (S;, Ci: Q) which conforms linguistically to the specifica-
tion LM. In contrast to the partial double metamodelling stack, however,
the specification S; supports deep characterisation; i.e., it is compliant
with the following requirements, forall1 <i< j<k<I, witho=j—iand
p=k-—i:

1. Elements in specifications from S;;; to Sy can be ontologically typed
by elements with multi-potency p in a specification S;.

2. Elementsin a specification Sy can be ontologically typed by elements
with single-potency p in a specification S;.

3. Elements in specifications from S;i; to Sy satisfy the atomic con-
straints with multi-potency p in a specification S;.

4. Elements in a specification Sy satisfy the atomic constraints with
single-potency p in a specification S;.

The multi- and single-potency of each clabject, reference and attribute
in a specification S; can be represented by considering type-facet subgraphs
T:‘ [S] (see Figure 4.15). Elements with multi-pote_ncy p in a specification
S; are included in the type-facet subgraphs from Ti'+1 to Tik only. Similarly,
elements with single-potency p in a specification S; are included in the
type-facet subgraph T¥ only.

Figure 4.15: A venn diagram illustrating the partitioning of the underlying
graph S3 of a specification S3 into possible type-facet and instance-facet
subgraphs

100

4.4. Formalisation of deep metamodelling

Similarly, the multi- and single-potency of each atomic constraint in
a specification S; can be represented by considering subsets of atomic con-
straints Cf [C]. Atomic constraints with multi-potency p in a specification
S; are included in the subsets from Ci*l to C:‘ only. Similarly, atomic
constraints with single-potency p in a specification S; are included in the
subset C¥ only.

The instantiation in a specification Sy of elements with multi- and
single-potency p in a specification S; can be represented by considering
partial multi-level ontological typing morphisms co{(. Sy —=Sj ,whichare
given by instance-facet subgraphs Ili(S} (see Figure 4.15) together with total
multi-level ontological typing morphisms oo:(: Ili(- Sj (see Figure 4.16).

The partitioning of a specification into possibly overlapping type-facet
subgraphs and instance-facet subgraphs follows the rationale behind the
term clabject, namely that elements in a specification of a deep metamod-
elling stack can retain both a type (class) and instance (object) facet.

Spec. Multi-potency Single-potency

Si [a2] o]

Ah A, A)
/ | i+1 / ‘ i+1 | |
/ / | I
/
mi] 'I' 1A miJ | A | ‘ m;
\I 7 | ! | I
/ I eyi-1 I i-1 \
\ wj ! ©j |
”< \ v | |
N | | Feol |
N N k |
S, .\
\ A
\\wwl

Sy

Figure 4.16: Partial multi-level ontological typing morphisms

Note that since the instantiation of elements with single-potency can
jump over several metalevels, the multi-level ontological typing mor-
phisms w, and their domains of definition I, can not be obtained by com-

101

4. Deep Metamodelling

posing the two-level ontological typing morphisms as was the case for
partial double metamodelling stacks; they have to be defined explicitly.
Moreover, these jumps mean that the instantiation is no longer monotonic,
i.e., Il 1. LT does not hold.

The requirements 1 and 2 that all the elements in a specification Sy that
are ontologically typed by elements in a specification S; actually have to
be ontologically typed by elements in the type-facet subgraph Tik can be
represented by the condition (w})™*(T¥) = I;.

The requirements 3 and 4 that all the elements in a specification S
that are ontologically typed by elements in the type-facet subgraph Tik also
have to satisfy the atomic constraints in the subset Cf can be represented by
the condition that (1!, coL) is a valid instance of the type-facet subspecification

TE=(Tk CkQ) [S..

The partitioning of a specification into type-facet subspecifications en-
sures that only valid combinations of potencies are allowed. This is be-
cause the contradictory combinations of potencies presented in Table 4.3,
4.4 and 4.5 would lead to dangling arrows or dangling atomic constraints
and hence to invalid type-facet subspecifications.

The requirements above, however, are not su [cieht to represent all
the aspects of the semantics of deep characterisation. A specification S;
of a deep metamodelling stack has to be compliant with the following

additional requirements:

5. Elements in specifications from Sy, to S; can not be ontologically
typed by elements with multi-potency p in a specification S;j; i.e.,
the instantiation of elements with multi-potencies stops when the
multi-potency is zero.

6. Elements in specifications from Sj,; to Sy-; and from Sy,; to S can
not be ontologically typed by elements with single-potency p in a
specification S;.

The multi- and single-potency of each clabject, reference and attribute
in a specification S; can be distinguished by considering additional multi-
potency subgraphs MP¥ [T and single-potency subparts SP¥ = (TK\MP¥) LT}
(see Figure 4.17).

The require 5 can be represented by the condition (co:()‘l(MPﬁ< \
MP}‘“) LS\ (:% where S, \ (k@ka includes all the elements in Sy

which do not retain a type-facet; i.e., which are not instantiated at any
metalevel. _
The requirement 6 can be represented by the conditions (u)'j)‘l(SPf) =[]

and (w})}(SPY) Esg\(k;:“’Cjka .

102

4.4. Formalisation of deep metamodelling

1

Figure 4.17: A venn diagram illustrating the partitioning of the type-facet
subgraph T;‘ of a specification S3 into the multi-potency subgraph MPg

and the single-potency subpart SP%, respectively

Furthermore, a specification S; of a deep metamodelling stack has to
be compliant with the following additional requirements:

7. Elements in a specification Sy which are ontologically typed by ele-
ments with multi-potency p in a specification S; must also be ontolo-
gically typed by elements with multi-potency o < p in a specification
S; which in turn are ontologically typed by the considered elements
with multi-potency p in the specification S;; i.e., the instantiation of
elements with multi-potency is mediated.

8. Elements with multi-potency g in a specification Sy can not be ontolo-
gically typed by elements with multi-potency p < g in a specification
S;j; i.e., the multi-potency of elements is decreased at each instanti-
ation.

The requirement 7 can be represented by the conditions MP:(. 1
MP!*L, wlj(;w‘j o (ie. (wi)-l(lg) [T and (w})*(MPY) CT1 |

The requirement 8 can be represented by the condition (u)'j)‘l(MPE< \
MP*!) CIMPS \ MP*),

Finally, a specification S; of a deep metamodelling stack has to be
compliant with the following additional requirements:

9. Elements in a specification have either a multi-potency or a single-
potency, but not both.

10. The ontological typing is compatible with the linguistic typing.

The requirement 9 can be represented by the condition SPij n T:(=[]
The requirement 10 can be represented as usual by the condition w! ; A; 1
Ak
Taking into account all these conditions, the deep metamodelling stack
is defined as follows:

103

4. Deep Metamodelling

Definition 41 (Deep metamodelling stack). A deep metamodelling stack with
length I is a linguistic metamodelling stack with length | together with:

104

type-facet subspecifications T¥ = (T¥, Ck Q) [S;, forall 1<i<k<|
multi-potency subgraphs MP:‘ I:[f forall 1 <i <k <1, such that:
MP¥ 1. CMP!* (requirement 7)

single-potency subparts SP¥ = (TK\ MP¥) [Tf, forall 1 <i < k <1, such
that:

- SPij nTE= CHorall j CKI (requirement 9)

partial multi-level ontological typing morphisms wL o S —=S§j, for all
1 <i <k <1, which are given by:

— instance-facet subgraphs IL Sy
— total multi-level ontological typing morphisms w, : I, - S

suchthatforalll<i<k<landalli<j<k:

- (@)HTH=1, (requirements 1 and 2)
- (I}, w}) CThst(TY) (requirements 3 and 4)
_ (@) H(MPS\MPE) CS)\ (k@kTE J (requirement 5)

- (@) TSP = [(requirement 6)

- (wL)‘l(SP:() CS]\ (I(@kaQ) (requirement 6)

- colj(; w‘j Lo (ie. (wl‘;)‘l(lg)) (requirement 7)

- (@) 7H(MPY) D}? (requirement 7)

- (m;)—l(MPik\MPik”) CIMPS\MPK™) (requirement 8)

- 0N A (requirement 10)

4.4. Formalisation of deep metamodelling

Example 31 (Deep metamodelling stack). Building upon Example 30, Fig-
ure 4.18(a) shows the specification LM and Figures 4.18(b), (c) and (d) show
the specifications S;, S, and S3. Moreover, Figure 4.18 shows the ontological
typing morphisms m% and mg as dashed grey arrows. Figure 4.19 shows the same
specifications and the ontological typing morphism wé.

In analogy to Example 30, S;, S, and S3 conform linguistically to LM.

In contrast to Example 30, however, the multi-potency [Zbn the clabject
Component and the reference datalink denotes that these elements are in both
type-facet subgraphs Tf and Tf (as well as the multi-potency subgraphs MP%
and MP%). Moreover, the single-potency [I-dn the attribute id denotes that this
element is in the type-facet subgraph Tf only (as well as the single-potency subpart
SPf), while the single-potency [Ién the atomic constraint ([mult(1,1)], d3) on
the same attribute denotes that this element is in the subset of atomic constraints Cf
only. Furthermore, the single-potency [Z@n the attribute name denotes that this
element is in the type-facet subgraph Tf only (as well as the single-potency subpart
SPf), while the single-potency [Zén the atomic constraint ([mult(1,1)], d4) on
the same attribute denotes that this element is in the subset of atomic constraints
C3 only.

105

4. Deep Metamodelling

The specification S, conforms ontologically to S; i.e., there exists a partial
multi-level ontological typing morphism w} : S, —=S; such that (12, w}) is a
valid instance of the type-facet subspecification T = (T2, C2 Q). The ontological
typing morphism co% is defined as follows (see Figure 4.18):
w%(Map) = w%(TableT) = Component
w5 (geopos) = datalink
m%(idMap) = wy(idTable) = id
wi(“GoogleMaps’) = w%(“FusionTable”) = String
The specification Sz conforms ontologically to both S, and Si; i.e., there
exists partial multi-level ontological typing morphisms u)§ : S3—=3S, and
wj © S3—=>S; such that (13, w3) and (I3, w3) are valid instances of the type-
facet subspecifications T3 = (T3,C3: Q) and T3 = (T3, C3: Q), respectively. The
ontological typing morphisms u)§ and co% are defined as follows (see Figures 4.18
and 4.19):
w2(UAMCamp) = Map

w%(UAMProfs) = Table

mg(ofﬁces) = geopos

wg(scroIIUAM) = scroll
wg(true) = Boolean
w3 (UAMCamp) = wj(UAMProfs) = Component
wz(offices) = datalink
w;(nameMapUAM) = wi(nameTableUAM) = name
w3 (“UAMCampus”) = w;(“UAMProfs” = String

It is straightforward to show that this sample deep metamodelling stack satis-
fies all the conditions in Definition 41.

In this section, we presented a formalisation of deep metamodelling
based on DPF from a structural point of view.

In the following, we switch to an operational point of view and show
how to flatten deep characterisation by transforming a deep metamodel-
ling stack into a partial double metamodelling stack.

106

L0T

Inheritance
. A2
Lirr] g [0..1] — igal [1..1]1 .
Clabject De data”nkQCComponent E String
.% ot v name®2: [1..1]A2’ ¥
o « |(b) UL
= 1 :
o y
£ 1 s dMap®
R =1 - \ -
< Boolean scroll Map I ap . Sggg’e
DataType geopos*?
; al] A0 “:, :
idTable Fusion
Table Table”
(© .
0 0 20 g
true scrollUAM UAMCamAp nameMapUAM c UAM 5
ampus
offices40
UAMProfAso nameTableUAMA0 “UAM
Profs”
(@ (d) s

Figure 4.18: The specifications LM, S;, S, and S3 together with the ontological typing morphisms w% and cog

Buijjapowelsw dasp Jo uonesijewlod vy

80T

Inheritance
[irr]

Clabject

Attribute

DataType

@)

O

Reference

[0--1]A2 — idAl [1“1]A1
datalink‘ZCCOmponent String
lirr]2. o name“? [1..1]*? ;
(b) .]
al T idMap®. "Google -
Boolean scroll Map P Mg:’g"ea
: (geopost? P
L T idTable0 “Fusion
Table Table”
()
20 O . .‘:AO m
true scrollUAM UAMCam‘p na{neMapUAM{ CarL\Jq,;l:J/ls”
officess
UAMProf|_nameTableUAM:C [~ “UAM
Profs”
(d) s

Figure 4.19: The specifications LM, S;, S; and S3 together with the ontological typing morphism wé

Buijepowelsiy dea@ v

4.5. Flattening of a deep metamodelling stack

4.5 Flattening of a deep metamodelling stack

Recall that in a deep metamodelling stack, an element with single-potency
0 at metalevel k may be ontologically typed by an element with single-
potency p = k — i at metalevel i; i.e., there may be p metalevels between
an instance and its type. In a double metamodelling stack, in contrast, an
element at metalevel k can only be ontologically typed by an element at
metalevel k — 1. In order to better illustrate the semantics of deep charac-
terisation, we show how to flatten deep characterisation by transforming a
deep metamodelling stack into a partial double metamodelling stack. This
flattening is defined by multiple replication rules and an extraction rule.

The replication rules rco, rry, ra; and rac, follow a general pattern which,
for each element with single-potency p = 2 at metalevel i, adds to metalevel
k — 1 a replica of the considered element with single-potency decreased to
1. Similar to the layering of transformation rules in specification trans-
formation (see Section 2.5), the subscripts from 0 to 2 denote the layer to
which a rule belongs, so that rules of layer 0 are applied before rules of
layer 1, etc.

The replication rule rcy adds to metalevel k — 1 a replica with single-
potency 1 of a clabject with single-potency p at metalevel i, as follows?:

Definition 42 (Replication rule rcy for clabjects). Given a deep metamodelling
stack with length |, forall L<i<k<landk=i+2;

- for each A [SP¥

- for each B [Ij such that w (B) = A

K=1 — 1k— - — A’
- 1% =1 [Bland wf(B) = A

1T‘1f_1 and IDik_1 denote the state of the type- and instance-facet subgraphs Tl‘j_l and Ili<—1’
respectively, after the application of the rule.

109

4. Deep Metamodelling

Spec. Input Output
s | 7] | Lam]
A A A
| / |
: // :wi“
| esi L |
[R
e |
I L=
| NI
sc | @] | [&®]

The replication rule rr; adds to metalevel k — 1 a replica with single-
potency 1 of a reference with single-potency p at metalevel i, as follows:

Definition 43 (Replication rule rry for references). Given a deep metamodel-
ling stack with length I, forall 1 <i<k<landk=i+2:

- foreach (A3 N) [SP

— foreach L, Y [T)_, suchthatw, (L) = Aandw}_,(Y)=N
k- a

Ij.rk—l _Tt_l Em_—’ Y)

O, =1, 02 vandol ,(LE VN=(AS N)

- foreach (M2 2) [T} such that w; (M 22=3N), Wit (M) = Land

=Y

1= el WS Zand WM 2 2 = (L L Y)

110

4.5. Flattening of a deep metamodelling stack

Spec. Input Output
tal e
s | A | A]
A A | A A A A | A A
7 | 7 7 , A
! Lo ! ! Do ! Voi 1 \Q)Lfl ! Do
/ | k1 | i/ |k |/ | k—1’ i / | k1
RS b { P S PRI S P
| | | | |
\
Sia |\ 0 N N~]
hger | A et Ager N 16T At
N b‘“” N N ‘ NI
Sk (M |——[z]| [m |——[2z]

Remark 10 (Identity of data types). Recall that, similar to E-graphs [35, 36],
attributes of nodes can be represented in DPF by arrows from these nodes to nodes
representing data types. Nodes representing data types can be regarded as having
a “global identity” in a deep metamodelling stack. Therefore, we assume that all
nodes representing data types are implicitly available in each specification S; of
the deep metamodelling stack.

The replication rule ra; adds to metalevel k — 1 a replica with single-
potency 1 of an attribute with single-potency p at metalevel i, as follows:

Definition 44 (Replication rule ra; for attributes). Given a deep metamodel-
ling stack with length |, forall 1 <i<k<landk=i+2:

- for each (A 3 DT) [SP¥
— for each L, DT [Tj_, such that w!_ (L) = A
N
DT‘I‘;I—l = Tll:—l L@~ D7)
O, =1, c@ DNandwi_ (LS D) =(AS D)

- foreach (M 2 DV) [T) such that w, (M 2 bvy=(A3 DD, WL(M) = L
and wf"*(DV) = DT

_ b _ b !
—1F =1 W = DV)and w{"*(M = DV) = (L < DT)

111

4. Deep Metamodelling

Spec. Input Output
at?! ath
s | Al -[or] | [al—4—[or]
1A | » 1 A | »
/ | | / / | | /
A . i) W,/
/ | Dt L / Q!
li | \w:‘lmi li | V\wL | i
\K ‘ ‘ \K \K ‘ \\ ‘I:D \K
\ \ \ 2
SO N v BN v N s R 7
A,\k—l ! A,\k—l A,‘k—i \ ooy A,\k—l
NI bLU NN NI ! N
S« | [m]——[o] | [m]———[0o]

The replication rule rac, adds to metalevel k — 1 a replica with single-
potency 1 of an atomic constraint with single-potency p at metalevel i, as

follows:

Definition 45 (Replication rule rac, for atomic constraints). Given a deep
metamodelling stack with length |, forall 1 <i<k<landk=i+2:

- foreach (A3 N) CTK and (11, 8) COX where 5(a® (1)) = (A S N)

— foreach (LS Y) [{T¥_)suchthatwi (L3 ¥)= (A3 N)
b
Ecmkl—l = Ct_l (1, 5% where 8o (n)) = (L = V)

Spec. Input Output
't ntA
S | [a]—F—[w (A]—
4 A 7 A\ 4 A 4 A 7\ 4 A
I /o I I /o I
NP A P A B A
/ | kY “*"k-{ | / | k1 “*"k—l/ | k-1
| i |l 1 T | o | T | o |
L P T by U
\ \ m
Sia N =0] N — =]
A kol LN A okl A ool LN A gkl
N Nl | K K NG NG
c c
S | [m |J——[=¢ [w |———[2z]

112

4.5. Flattening of a deep metamodelling stack

Note that the rule rac, for the replication of atomic constraints is pro-
posed as a proof-of-concept only. This is because this rule is designed

a

to work with the predicates having arities p and 1—2>2, eg,
[irreflexive] and [mult(m,n)] from the signature Q (see Table 4.2).
However, predicates may have arbitrary arities and semantics which may
not enable replication of atomic constraints at all. The conditions under
which a predicate enables replication of atomic constraints is outside the
scope of this work and will be investigated in future work (see Section 4.7).

According to this layering, the application of the rules adds a replica
of a reference only after it adds a replica of a clabject. This ensures that the
rule which adds a replica of a reference matches both clabjects with multi-
potency and their instances as well as clabjects with single-potency and
their replicas. Moreover, this ensures that the replica of the reference has as
source and target an instance of the considered clabject with multi-potency
or a replica of the considered clabject with single-potency. The layering of
rules for attributes and atomic constraints follow the same rationale.

The extraction rule e; projects out the types at each metalevel i and
the corresponding instances at metalevel i + 1 as the elements in each
specification of the target partial double metamodelling stack, as follows:

Definition 46 (Extraction rule e3). Given a deep metamodelling stack with
length I, a double metamodelling stack with length | is extracted as follows:

= S1=(T{,CLN)
e forall2<i<I-1,S;=(T" 01, C* N, 07
- S = (A, w)

Example 32 (Flattening of a deep metamodelling stack). Building upon
Example 31, Figures 4.20(b), (c) and (d) show the specifications S1, S, and S3
of the deep metamodelling stack, after the application of the replication rules.
Moreover, Figure 4.20(c) shows the replicated elements in green colour. Note that
the attribute scroll, the data type Boolean and the corresponding instances are
omitted from Figure 4.20 due to space constraints.

Firstly, the application of ra; adds to Tg the attributes nameMap and
nameTable with single-potency [1. Moreover, it adds the following mappings
to the ontological typing morphism mg:

w2(nameMapUAM) = nameMap
wg(nameTableUAM) = nameTable

wg(“UAMCampus’) = m%(“UAMPrOfs’) = String

113

1T

I ¢

@)

Figure 4.20: The specifications LM, S;, S; and S3 together with the ontological typing morphisms co% and wg, after the

ne [
s & %C 9 v #S
s - T
() ‘
1
#$ =
Y o
= "FU
© -
- 20' 5
UAM § rjameMapUAM Y UAMCamAp
Campus |
; offices?
— 20 0]
PE(?;V'I' nameTableUAM UAMProfs
(d) s

application of the replication rules

Buijepowelsiy dea@ v

4.5. Flattening of a deep metamodelling stack

Secondly, the application of rac, adds to Tg the atomic constraints
([mult(,1)],61), ([mult(1,1)],62)and ([mult(1,1)], d3)withsingle-poten-
cy [Ibn the reference geopos and the attributes nameMap and nameTable,
respectively.

Figures 4.22(b), (c) and (d) show the specifications S, S, and S3 of the partial
double metamodelling stack resulting from the application of the extraction rule.
Moreover, Figure 4.21(b) shows the discarded elements in red colour.

Theapplication of e; discards from S; the atomic constraints ([mult(0,1)], 81)
and ([mult(l1,1)],d4) on datalink and name, respectively. In this way, these
atomic constraints are not evaluated at metalevel 2. Moreover, it discards from
S; the attribute name. In this way, it is not possible to instantiate name at
metalevel 2.

The presented flattening of the deep characterisation enables the trans-
formation of a deep metamodelling stack into a partial double metamod-
elling stack. Obviously, part of the deep characterisation information is
lost in the transformation. For instance, in Example 31, the multi-potency
[Z°bn the elements Component and datalink in S; forbids that these ele-
ments are ontologically typed by elements in a possible specification S, or
below. In Example 32, in contrast, a possible specification S, may include
elements which are ontologically typed by elements in Ss.

In addition to the flattening of the deep characterisation, it is possible
to define the flattening of the double linguistic/ontological conformance
which enables the transformation of a partial double metamodelling stack
into a traditional metamodelling stack. This could be done by adding the
specification LM on top of the ontological stack, and adding a replica of
all elements in LM in all the specifications S;, forall i < |- 2.

115

9TT

I ¢

@)

Figure 4.21: The specifications LM, S3, S, and S3 together with the ontological typing morphisms co% and wg, before the

v [
s & %C 9 v #S
e - T
() ‘
11
#$ =
= "FU
(© »
- , 20' 5
UAM § rjameMapUAM Y UAMCamAp
Campus |
; offices?
— 20 0]
PE(?;V'I' nameTableUAM UAMProfs
(d) 3

application of the extraction rule

Buijepowelsiy dea@ v

LTT

e
P - Q | '
' (b) .
"
$" % p
(€ »
“UAIV,I’ nameTableUAM UAMProfs
Profs
(@ (d) s

Figure 4.22: The specifications LM, S;, S; and S3 together with the ontological typing morphisms w; and w,, after the
application of the extraction rule

Moe1s Buljjspowelaw dasp e jo buluane|4 Gy

Multi-level
metamodelling

Deep
characterisation

4. Deep Metamodelling

4.6 Related work

Deep metamodelling is a relatively new technique, and some of its aspects
are still debated in the literature. A first strand of research focuses on
multi-level metamodelling.

Early forms of multi-level metamodelling can be traced back to know-
ledge-based systems like Telos [65] and deductive object base managers
like ConceptBase [52].

More recent forms include the works in [6, 23, 41]. In [41], MOF is
extended with multiple metalevels to enable XML-based code generation.
Nivel [6] is a double metamodelling framework based on the weighted
constraint rule language (WCRL). XMF [23] is a language-driven develop-
ment framework allowing an arbitrary number of metalevels.

Another form of multi-level metamodelling can be achieved through
powertypes [42, 72], since instances of powertypes are also subtypes of
another type and hence retain both a type and an instance facet. Multi-level
metamodelling can also be emulated through stereotypes [71], although
this is not a general modelling technique since it relies on UML to emulate
the extension of its metamodel. The interested reader can consult [10] for
a thorough comparison of potencies, powertypes and stereotypes.

In contrast to our approach, none of the above mentioned works sup-
port deep characterisation; i.e., the ability to describe structure and express
constraints for metalevels below the adjacent one.

A second strand of research focuses on deep characterisation. Deep
characterisation through potency is included in the works in [5, 11, 27, 46,
57]. Deeplava [57] is a superset of Java which extends the object-oriented
programming paradigm to feature an unbounded number of metalevels.
The work in [46] describes the problems arising from the way in which
connectors (e.g., associations, links, generalisations, etc.) are supported
in mainstream modelling languages such as UML and why they are not
suitable for deep metamodelling. The work in [11] presents a prototype
implementation of a modelling infrastructure which provides built-in sup-
port for multiple ontological as well as linguistic metalevels. The work
in [5] proposes a deep metamodelling framework which extends the ba-
sic notion of clabject for handling connector inheritance and instantiation.
metaDepth [27] is a deep metamodelling framework which supports po-
tency, double linguistic/ontological typing and linguistic extension.

While these works agree on that clabjects are instantiated using the
multi-potency semantics, they dilerl in other design decisions. Firstly,
some works are ambiguous about the instantiation semantics for associ-
ations. In[57], the associations can be represented as Java references; hence
we interpret that they are instantiated using the single-potency semantics.
In [46], the connectors are explicitly represented as clabjects but their in-
stantiation semantics is not discussed; hence we interpret that they are

118

4.6. Related work

instantiated using the multi-potency semantics. Secondly, not all works
adhere to strict ontological metamodelling. In [5], the ontological type
of an association does not need to be in the adjacent metalevel above, but
several metalevels above. Note that our single-potency semantics makes it
possible to retain strict metamodelling for associations through a flattening
construction that replicates these associations. Finally, some works di [er
in how they tackle potency on constraints and methods. Potency on con-
straints is not explicitly shown in [11] and not considered in [5], whereas
potency on methods is only supported by DeepJava and metaDepth.

Table 4.6 shows a summary of the particular semantics for deep char-
acterisation implemented by the above mentioned works and compares it
with the semantics supported by our formalisation. It is worth noting that
no tool recognises the fact that multiplicity constraints are constraints as
well and hence can have a potency.

Table 4.6: Comparison of di [erknt deep characterisation semantics

Clabjects | Associations| Strictness | Constraints | Mult. constraints
Deeplava [57] 1 1 yes 1 N.A.
Atkinson et al. [11] 1 1 yes 1 11
Aschauer et al. [5] 1 1 no N.A. 11
metaDepth [27] [L1 yes 1 11
DPF formalisation [[yes [[

119

4. Deep Metamodelling

4.7 Conclusion and future work

In this chapter, we presented a formal approach to deep metamodelling
based on DPF. Firstly, we illustrated the limitations of traditional metamod-
elling through an example in the domain of component-based web applic-
ations. Secondly, we introduced deep metamodelling through the same
example. Thirdly, we defined double linguistic/ontological typing and lin-
guistic extension in view of DPF. Fourthly, we formalised deep character-
isation and defined two di [erkent semantics for potency, namely multi- and
single-potency. Finally, we showed how to flatten deep characterisation
by transforming a deep metamodelling stack into a double metamodelling
stack.

To the best of our knowledge, this work is the first attempt to clarify
and formalise some aspects of the semantics of deep metamodelling. In
particular, this work explains di [erent semantic variation points available
for deep metamodelling, points out new possible semantics, currently
unexplored in practice, as well as classifies the existing tools according to
these options. The findings of this work have already been submitted to a
journal for evaluation.

In future work, we will investigate the e [edts of overriding the potency
of a clabject using inheritance, as this may lead to additional contradictory
combinations of potencies.

120

CHAPTER

Conclusion

This thesis provides a formalisation of concepts in MDE based on DPF, a
formal diagrammatic specification framework which was already under
development before this work was initiated. In particular, this thesis aims
to consolidate DPF and provide a formalisation of two novel techniques
in MDE, namely model versioning and deep metamodelling.

In Chapter 1, we introduced MDE along with a discussion regarding
some of its fundamental concepts, techniques and standards.

In Chapter 2, we outlined DPF along with a formalisation of some
of the fundamental concepts in MDE. DPF is an adaptation of the cat-
egorical sketch formalism, where the constraining constructs of modelling
languages are represented by user-defined signatures in a more intuitive
and adequate way. In particular, DPF is an extension of the Generalised
Sketches formalism and aims to combine mathematical rigour with dia-
grammatic modelling.

Chapter 2 is an adaptation of the formalisation of modelling and model
transformation published in [79, 80, 82, 84]. Compared to the previous
work, the specification transformation is extended to support deleting
transformation rules. Moreover, the embedding of specification entail-
ments is also revised to adopt deleting transformation rules.

In Chapter 3, we described a formal approach to model versioning
based on DPF. Firstly, we defined the identification of commonalities and
calculation of di Lerknces as pullback and pushout constructions, respect-
ively. Secondly, we defined the representation of dilerknces; i.e., the
information added, deleted and renamed, as a set of annotations which
are specified by means of a tag signature. Thirdly, we introduced a syn-
chronisation procedure which includes normalisation, conflict detection

121

5. Conclusion

and conflict resolution. Specification entailments are adopted to describe
properties of the semantic interpretation of predicates of a signature. The
normalisation of a specification is then formalised as the embedding of
these specification entailments to obtain the normal form of a specifica-
tion. Moreover, transformation rules are used to represent conflicts and,
when applicable, their resolution patterns. The conflict detection and res-
olution are then formalised as the application of these transformation rules.
Note that the approach handles atomic constraints in all the steps of the
synchronisation, including normalisation, conflict detection and conflict
resolution.

To the best of our knowledge, this work is the first attempt to clarify
each step of a work cycle in a centralised approach to optimistic model
versioning; i.e., checkout a local copy, make modifications on a local copy,
synchronise a local copy, resolve conflicts and commit modifications to
a repository. Moreover, this work also constitutes the first attempt to
formalise and illustrate constraint-awareness in model versioning.

Chapter 3 further develops the formal approach to model versioning
published in [78, 81]. Compared to the previous work, the theoretical
foundation and the underlying techniques are extended to handle con-
straints. Moreover, new examples are added to illustrate how model
merging, conflict detection and conflict resolution handle constraints. The
findings of this work have already been submitted to a journal for evalu-
ation.

In Chapter 4, we presented a formal approach to deep metamodel-
ling based on DPF. Firstly, we illustrated the limitations of traditional
metamodelling through an example in the domain of component-based
web applications. Secondly, we introduced deep metamodelling through
the same example. Thirdly, we defined double linguistic/ontological typ-
ing and linguistic extension in view of DPF. Fourthly, we formalised deep
characterisation and defined two di [erknt semantics for potency, namely
multi- and single-potency. Finally, we showed how to flatten deep char-
acterisation by transforming a deep metamodelling stack into a double
metamodelling stack.

To the best of our knowledge, this work is the first attempt to clarify
and formalise some aspects of the semantics of deep metamodelling. In
particular, this work explains di [erkent semantic variation points available
for deep metamodelling, points out new possible semantics, currently
unexplored in practice, as well as classifies the existing tools according to
these options. The findings of this work have already been submitted to a
journal for evaluation.

122

Inthisthesis, the formalisation of model versioning and deep metamod-
elling have been treated as two independent research strands. Considering
that the formal approaches to model versioning and deep metamodelling
share DPF as the formal underpinning, model versioning in the context of
deep metamodelling may represent a natural next step in this research.

DPF is a general and open framework still under development and
with potential applications in many areas of software engineering and
informatics. In this thesis, DPF has been adopted as a formal foundation
for two novel techniques in MDE. The intention of writing a monograph
was to consolidate and present the current state of the development of DPF,
especially by adopting precise and consistent terminology and notation as
well as practical examples in MDE. We hope that we have convinced the
reader that DPF has the potential to support the foundation and the further
development of MDE.

123

APPENDIX

This appendix details the constructions adopted in this thesis.

Proposition 5 (Pullback). Given specifications M = (M,CM:3), S = (S, CS:
>), T = (T,C": %) and injective specification morphismsn : S - M, m :
T - M, one can construct a specification C = (C,C®: X) and an injective
specification morphism m™ C - S such that C [CTland the resulting diagram
is commutative and a pullback in the category Spec(X).

N
\/

The graph C is defined as follows:

Cn = {X I | mn(X) Coh(Sn)}
Ca ={f [Ta [ma(f) [OA(SA)}
srcC(f) := srcT(f) for all f [Qa
trg®(f) := trg" () for all f CQa
Moreover, the graph homomorphism m™ C - S is defined as follows:
my(X) = nt (mn (X)) for all X [Qy
ma{(f = nt(ma(h) for all f LT

125

A. Appendix

Finally, the set of atomic constraints C® is defined as follows:
C€ :={(m,d) A" | (@, OICQS with &;m = [}

Remark 11 (Uniqueness of pullback). The pullback (C,m™: C — S, n™:
C @ T) in Proposition 5 is unique since the specification morphism n™is an
inclusion.

In the following, the notation S.x refers to the element x in the spe-
cification S, where S is considered the name (unique identifier) of the
specification. This notation is used to resolve possible name conflicts; i.e.,
to ensure disjoint union.

Proposition 6 (Pushout). Given specifications C = (C,C¢:%), S = (S, CS:%),
T = (T,C": %) and injective specification morphismsm:C - S,n:C - T,
one can construct a specification M = (M,CM: 3) and injective specification
morphisms n¥: S ~ M, mY: T — M such that the resulting diagram is
commutative and a pushout in the category Spec(X).

c
/ \
s PO. T
R A
M

The graph M is defined as follows:

My = {S.X| X LS\ \mn(Cn)} CCh X | X L \ nn(Cn)}
Ma :={S.9| g LSA \ma(Ca)} LCh L{T.g| g LTa \ Na(Ca)}
: if f=S.g,mn(Y) = src®(g) [hin(Cn)
X, if f=S.g, X = srcS(g) [mn(Cn)
sreM(f) .= EareC(f), if f [Qa

, if f=T.g,nn(Y) = src™(g) [ok(Cn)
X, if f=T.g9,X=src"(g) Cok(Cn)

trgM(f) is defined analogously

Moreover, the graph homomorphisms n™:' S . M, m™: T — M are defined as
follows:

126

-
Y, ifX=mn(Y) Chn(Ch)
(X) = _SX if X mS(CN) e

- Y if X=nn(Y) Cok(Cn)
my(X) = TXifX oy

= 9 if f=ma(g) [ma(Ca)
A Sfif f CH(Ch)

-
— 9 iff=na(g) COa(Ca)
M= T rrmacy)

Finally, the set of atomic constraints CM is defined as follows:
cY :={(m,&;nY| (m,8) CA®} L{(p, Gin'Y| (p, DICAT}

Remark 12 (Uniqueness of representatives). The Y’s and g’s in Proposition 6
are uniquely determined since the specification morphisms m and n are assumed

to be injective.

In case of inclusion specification morphisms, the pushout construction

can be simplified:

Proposition 7 (Pushout for inclusion specification morphisms).

IfC O

there will not be name conflicts between C and T. In this case, the specification
morphism m™s assumed to be inclusion, which simplifies the construction of M.

AN
SOA

The graph M is defined as follows:
My = {S.X| X SN \ mn(Cn)} T

Ma ={S.g| g LSA\ ma(Ca)} LTA
: if f=S.g,mn(Y) = src(g) [Min(Cn)
sreM(f) = BE8.X, if f=S.g, X = src(g) Cmin(Cn)
rcT(f), if f CTa

trgM(f) is defined analogously

Finally, the set of atomic constraints CM is defined as follows:

cM = {(m, 5;nY| (m,8) CaS} LT

127

A. Appendix

Proposition 8 (Pushout for annotated specifications). Given specifications
C =(C,C°:5,A%:A), S =(5C5:5,AS:A), T =(T,C":3,AT: A) and
injective specification morphisms m : C - S, n: C — T, one can construct
a specification M = (M, CM: 3=, AM: A) and injective specification morphisms
n=®'S - M, m™ T - M such that the resulting diagram is commutative and
a pushout in the category Spec(z [CA).

The graph M, the graph homomorphismsn™= S — M, m= T - M, and the
set of atomic constraints CM are defined as is Proposition 6.

Finally, the set of atomic constraints AM is defined as follows:

AM = {(8,5;n'Y | (6,58) CAS} [{, G'Y| (v, DICAT}

Remark 13 (Identification of atomic constraints and annotations). Two
atomic constraints (11, 8) [CS and (mr, DO CC" such that §;mP= [are
identified and will be mapped to the same atomic constraint (T, &; mY = (mt, G [
CM: i.e., for all atomic constraints (p, y) [QC we obtain just one atomic constraint
(p,y;n;mY = (p,y; m;nY CAM. The same applies to annotations (8, 5) CAS.

Definition 47 (Partial map). A partial map f : A —= B between two sets
A and B is given by the domain of definition dom(f) [—A and a total map
f : dom(f) - B. For any subset Ag [A, the image of the subset Ay under f
is defined as f(Ag) = {f(a) | a Ay and a [_dom(f)} [f(A) [B. For any
subset By B the inverse image of the subset By under f is defined as f~1(Bg) =
{a Cdom(f) | f(a) [Bo} CIr'(B) [A. The composition of two partial maps
f: A—=B andg: B—= C isdefined by dom(f;g) = f~*(dom(g)) [ddm(f)
and (f; g)(a) = g(f(a)), for all a Cdbm(f; g).

It is straightforward to check that: the composition of partial maps is
associative; for any subset Co [Clwe have (f;g)™1(Co) = g7*(f7(Cy)); for
any subsetB, [Blwe have f(f1(By)) [Bband hence f(dom(f;g)) Cddm(g).

Definition 48 (Partial order over partial maps). A partial order [aver the set
of all partial maps from the set A to the set B can be defined as: given two partial
maps f,g: A —=B, f [glifand only if dom(f) [Cdém(g) and f(a) = g(a), for
all a Cdbm(f).

128

(1]

(2]
(3]

[4]

(5]

(6]

[7]

(8]

Bibliography

Marcus Alanen and Ivan Porres. Dilerknce and Union of Models.
In Perdita Stevens, Jon Whittle, and Grady Booch, editors, Proceed-
ings of UML 2003: 6" International Conference on The Unified Modeling
Language, Modeling Languages and Applications, volume 2863 of Lecture
Notes in Computer Science, pages 2-17. Springer, 2003. ISBN 978-3-540-
20243-1. DOI 10.1007/978-3-540-45221-8 2.

Alloy. Project Web Site. http://alloy.mit.edu/community/.

Michat Antkiewicz and Krzysztof Czarnecki. Design Space of Het-
erogeneous Synchronization. In Ralf Lammel, Joost Visser, and Jodo
Saraiva, editors, Proceedings of GTTSE 2007: Generative and Transforma-
tional Techniques in Software Engineering Il, International Summer School,
volume 5235 of Lecture Notes in Computer Science, pages 3—-46. Springer,
2008. ISBN 978-3-540-88642-6. DOI 10.1007/978-3-540-88643-3_1.

Apache Subversion. Project Web Site. http://subversion.apache.
org/.

Thomas Aschauer, Gerd Dauenhauer, and Wolfgang Pree. Multi-level
Modeling for Industrial Automation Systems. In Proceedings of EUR-
OMICRO 2009: 35" EUROMICRO Conference on Software Engineering
and Advanced Applications, pages 490-496. IEEE Computer Society,
2009. ISBN 978-0-7695-3784-9. DOI 10.1109/SEAA.2009.46.

Timo Asikainen and Tomi Mannistd. Nivel: a metamodelling lan-
guage with a formal semantics. Software and Systems Modeling, 8(4):
521-549, 2009. DOI 10.1007/s10270-008-0103-2.

Colin Atkinson and Thomas Kuhne. Rearchitecting the UML infra-
structure. ACM Transactions on Modeling and Computer Simulation, 12
(4):290-321,2002. DOI 10.1145/643120.643123.

Colin Atkinson and Thomas Kuhne. Profiles in a strict metamodel-
ing framework. Science of Computer Programming, 44(1):5-22, 2002.
DOI 10.1016/S0167-6423(02)00029-1.

129

http://dx.doi.org/10.1007/978-3-540-45221-8_2
http://alloy.mit.edu/community/
http://dx.doi.org/10.1007/978-3-540-88643-3_1
http://subversion.apache.org/
http://subversion.apache.org/
http://dx.doi.org/10.1109/SEAA.2009.46
http://dx.doi.org/10.1007/s10270-008-0103-2
http://dx.doi.org/10.1145/643120.643123
http://dx.doi.org/10.1016/S0167-6423(02)00029-1

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

130

Colin Atkinson and Thomas Kihne. Model-Driven Development:
A Metamodeling Foundation. IEEE Software, 20(5):36-41, 2003.
DOI 10.1109/MS.2003.1231149.

Colin Atkinson and Thomas Kiihne. Reducing accidental complexity
in domain models. Software and Systems Modeling, 7(3):345-359, 2008.
DOI 10.1007/s10270-007-0061-0.

Colin Atkinson, Matthias Gutheil, and Bastian Kennel. A Flexible
Infrastructure for Multilevel Language Engineering. IEEE Transactions
on Software Engineering, 35(6):742-755,2009. DOI 10.1109/TSE.2009.31.

Michael Barr and Charles Wells. Category Theory for Computing Science
(2" Edition). Prentice Hall, 1995. ISBN 978-0-13-323809-9.

@yvind Bech. DPF Editor: A Multi-Layer Modelling Environment
for Diagram Predicate Framework in Eclipse. Master’s thesis, De-
partment of Informatics, University of Bergen, Norway, May 2011.

@yvind Bech and Dag Viggo Lokgen. DPF to SHIP Validator
Proof-of-Concept Transformation Engine. http://dpf.hib.no/code/
transformation/dpf_to_shipvalidator.py.

Bergen University College and University of Bergen. Diagram Predic-
ate Framework Web Site. http://dpf.hib.no/.

Jean Bézivin. Onthe unification power of models. Software and Systems
Modeling, 4(2):171-188, 2005. DOI 10.1007/s10270-005-0079-0.

Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the
OMG/MDA Framework. In Proceedings of ASE 2001: 16™ IEEE Inter-
national Conference on Automated Software Engineering, pages 273-280,
2001. ISBN 978-0-7695-1426-0. DOI 10.1109/ASE.2001.989813.

Artur Boronat and José Meseguer. Algebraic Semantics of OCL-
Constrained Metamodel Specifications. In Manuel Oriol, Bertrand
Meyer, Wil Aalst, John Mylopoulos, Michael Rosemann, Michael
J. Shaw, and Clemens Szyperski, editors, Proceedings of TOOLS
2009: 47™ International Conference on Objects, Components, Models
and Patterns, volume 33 of Lecture Notes in Business Information
Processing, pages 96-115. Springer, 2009. ISBN 978-3-642-02571-6.
DOI 10.1007/978-3-642-02571-6_7.

Petra Brosch, Gerti Kappel, Martina Seidl, Konrad Wieland, Manuel
Wimmer, Horst Kargl, and Philip Langer. Adaptable Model Version-
ing in Action. In Gregor Engels, Dimitris Karagiannis, and Hein-
rich C. Mayr, editors, Modellierung 2010, volume 161 of Lecture Notes
in Informatics, pages 221-236. Gl, 2010. ISBN 978-3-88579-255-0.

http://dx.doi.org/10.1109/MS.2003.1231149
http://dx.doi.org/10.1007/s10270-007-0061-0
http://dx.doi.org/10.1109/TSE.2009.31
http://dpf.hib.no/code/transformation/dpf_to_shipvalidator.py
http://dpf.hib.no/code/transformation/dpf_to_shipvalidator.py
http://dpf.hib.no/
http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1109/ASE.2001.989813
http://dx.doi.org/10.1007/978-3-642-02571-6_7

Bibliography

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Cambridge. Dictionaries Online. http://dictionary.cambridge.
org.

Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio.
A Metamodel Independent Approach to Dilerence Representa-
tion. Journal of Object Technology, 6(9):165-185, October 2007.
DOI 10.5381/jot.2007.6.9.a9.

Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. Man-
aging Model Conflicts in Distributed Development. In Krzysztof
Czarnecki, lleana Ober, Jean-Michel Bruel, Axel Uhl, and Markus
Vélter, editors, Proceedings of MoDELS 2008: 11™ International Confer-
ence on Model Driven Engineering Languages and Systems, volume 5301
of Lecture Notes in Computer Science, pages 311-325. Springer, 2008.
ISBN 978-3-540-87874-2. DOI 10.1007/978-3-540-87875-9_23.

Tony Clark, Paul Sammut, and James Willans. Applied Metamodelling:
A Foundation for Language Driven Development (2" Edition). Ceteva,
2008.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Nar-
ciso Marti-Oliet, José Meseguer, and Carolyn L. Talcott, editors. All
About Maude - A High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture
Notes in Computer Science, 2007. Springer. ISBN 978-3-540-71940-3.
DOI 10.1007/978-3-540-71999-1.

Krysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley Professional, June
2000. ISBN 978-0-201-30977-5.

Marcos Aurélio Almeida da Silva, Alix Mougenot, Xavier Blanc,
and Reda Bendraou. Towards Automated Inconsistency Hand-
ling in Design Models. In Barbara Pernici, editor, Proceedings
of CAISE 2010: 22" International Conference on Advanced Informa-
tion Systems Engineering, volume 6051 of Lecture Notes in Computer
Science, pages 348-362. Springer, 2010. ISBN 978-3-642-13093-9.
DOI 10.1007/978-3-642-13094-6_28.

Juan de Lara and Esther Guerra. Deep Meta-modelling with Meta-
Depth. In Jan Vitek, editor, Proceedings of TOOLS 2010: 48" Interna-
tional Conference on Objects, Components, Models and Patterns, volume
6141 of Lecture Notes in Computer Science, pages 1-20. Springer, 2010.
ISBN 978-3-642-13952-9. DOI 10.1007/978-3-642-13953-6_1.

Zinovy Diskin. Practical foundations of business system specifications,
chapter Mathematics of UML: Making the Odysseys of UML less

131

http://dictionary.cambridge.org
http://dictionary.cambridge.org
http://dx.doi.org/10.5381/jot.2007.6.9.a9
http://dx.doi.org/10.1007/978-3-540-87875-9_23
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-642-13094-6_28
http://dx.doi.org/10.1007/978-3-642-13953-6_1

Bibliography

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

132

dramatic, pages 145-178. Kluwer Academic Publishers, 2003. ISBN
978-1-4020-1480-2.

Zinovy Diskin and Jurgen Dingel. Mappings, Maps and Tables: To-
wards Formal Semantics for Associations in UML2. In Oscar Nier-
strasz, Jon Whittle, David Harel, and Gianna Reggio, editors, Pro-
ceedings of MoDELS 2006: 9™ International Conference on Model Driven
Engineering Languages and Systems, volume 4199 of Lecture Notes in
Computer Science, pages 230-244. Springer, 2006. ISBN 978-3-540-
45772-5. DOI 10.1007/11880240_17.

Zinovy Diskin and Boris Kadish. Generic Model Management. In
Encyclopedia of Database Technologies and Applications, pages 258-265.
Idea Group, 2005. ISBN 978-1-59140-560-3.

Zinovy Diskin and Uwe Wolter. A Diagrammatic Logic for Object-
Oriented Visual Modeling. In Proceedings of ACCAT 2007: 2" Work-
shop on Applied and Computational Category Theory, volume 203/6 of
Electronic Notes in Theoretical Computer Science, pages 19-41. Elsevier,
2008. DOI 10.1016/j.entcs.2008.10.041.

Eclipse Modeling Framework. Project Web Site. http://www.eclipse.
org/emf/.

Eclipse Platform. Project Web Site. http://www.eclipse.org.

Hartmut Ehrig, Gregor Engels, Hans-J6rg Kreowski, and Grzegorz
Rozenberg. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 2: Applications, Languages, and Tools. World
Scientific Publishing Company, 1999. ISBN 978-981-02-4020-2.

Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental
Theory for Typed Attributed Graph Transformation. In Hartmut
Ehrig, Gregor Engels, Francesco Parisi-Presicce, and Grzegorz Rozen-
berg, editors, Proceedings of ICGT 2004: 2" International Conference
on Graph Transformations, volume 3256 of Lecture Notes in Computer
Science, pages 161-177. Springer, 2004. ISBN 978-3-540-23207-0.
DOI 10.1007/978-3-540-30203-2_13.

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Springer, March 2006.
ISBN 978-3-540-31187-4. DOI 10.1007/3-540-31188-2.

EMF Compare. Project Web Site. http://www.eclipse.org/emft/
projects/compare/.

José Luiz Fiadeiro. Categories for Software Engineering. Springer, May
2004. ISBN 978-3-540-20909-6.

http://dx.doi.org/10.1007/11880240_17
http://dx.doi.org/10.1016/j.entcs.2008.10.041
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://www.eclipse.org
http://dx.doi.org/10.1007/978-3-540-30203-2_13
http://dx.doi.org/10.1007/3-540-31188-2
http://www.eclipse.org/emft/projects/compare/
http://www.eclipse.org/emft/projects/compare/

Bibliography

[39] David S. Frankel and John Parodi. The MDA Journal: Model Driven
Architecture Straight From The Masters. Meghan-Ki [erl Press, 2004.
ISBN 978-0-929652-25-2.

[40] Git. Project Web Site. http://git-scm.com/.

[41] Ralf Gitzel, Ingo Ott, and Martin Schader. Ontological Extension to
the MOF Metamodel as a Basis for Code Generation. Computer Journal,
50(1):93-115, 2007. DOI 10.1093/comjnl/bx1052.

[42] Cesar Gonzalez-Perez and Brian Henderson-Sellers. A powertype-
based metamodelling framework. Software and Systems Modeling, 5
(1):72-90, 2006. DOI 10.1007/s10270-005-0099-9.

[43] Cesar Gonzalez-Perez and Brian Henderson-Sellers. Metamodelling
for Software Engineering. Wiley, 2008. ISBN 978-0-470-03036-3.

[44] Graphical Editing Framework. Project Web Site. http://www.
eclipse.org/gef/.

[45] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software
Factories: Assembling Applications with Patterns, Models, Frameworks,
and Tools. Wiley, 2004. ISBN 978-0-471-20284-4.

[46] Matthias Gutheil, Bastian Kennel, and Colin Atkinson. A Systematic
Approach to Connectors in a Multi-level Modeling Environment. In
Krzysztof Czarnecki, lleana Ober, Jean-Michel Bruel, Axel Uhl, and
Markus Vélter, editors, Proceedings of MoDELS 2008: 11 International
Conference on Model Driven Engineering Languages and Systems, volume
5301 of Lecture Notes in Computer Science, pages 843-857. Springer,
2008. ISBN 978-3-540-87874-2. DOI 10.1007/978-3-540-87875-9_58.

[47] Reiko Heckel. Graph Transformation in a Nutshell. Elec-
tronic Notes in Theoretical Computer Science, 148(1):187-198, 2006.
DOI 10.1016/j.entcs.2005.12.018.

[48] Wolfgang Hesse. More matters on (meta-)modelling: remarks on
Thomas Kihne’s “matters”. Software and Systems Modeling, 5(4):387-
394, 2006. DOI 10.1007/s10270-006-0033-9.

[49] Dag Hovland, Federico Mancini, and Khalid A. Mughal. The SHIP
Validator: An Annotation-Based Content-Validation Framework for
Java Applications. Technical Report 389, Department of Informatics,
University of Bergen, Norway, September 2009.

[50] James W. Hunt and M. D. Mcllroy. An Algorithm for Di Lerkntial File
Comparison. Technical Report 41, Bell Laboratories, Murray Hill, NJ,
USA, 1976.

133

http://git-scm.com/
http://dx.doi.org/10.1093/comjnl/bxl052
http://dx.doi.org/10.1007/s10270-005-0099-9
http://www.eclipse.org/gef/
http://www.eclipse.org/gef/
http://dx.doi.org/10.1007/978-3-540-87875-9_58
http://dx.doi.org/10.1016/j.entcs.2005.12.018
http://dx.doi.org/10.1007/s10270-006-0033-9

Bibliography

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

134

Internet Engineering Task Force. RFC4122: A Universally Unique IDen-
tifier (UUID) URN Namespace, July 2005. http://www.ietf.org/rfc/
rfc4122 txt.

Matthias Jarke, Rainer Gallersdorfer, Manfred A. Jeusfeld, and Martin
Staudt. ConceptBase - A deductive object base for meta data man-
agement. Journal of Intelligent Information Systems, 4(2):167-192, 1995.
DOI 10.1007/BF00961873.

Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The
Model Driven Architecture: Practice and Promise. Addison-Wesley Pro-
fessional, 2003. ISBN 978-0-321-19442-8.

Dimitrios S. Kolovos, Louis M. Rose, and Richard Paige. The Epsilon
Book. http://www.eclipse.org/gmt/epsilon/doc/book/.

Thomas Kithne. Matters of (meta-)modeling. Software and Systems
Modeling, 5(4):369-385, 2006. DOI 10.1007/s10270-006-0017-9.

Thomas Kiuhne. Clarifying matters of (meta-)modeling: an au-
thor’s reply. Software and Systems Modeling, 5(4):395-401, 2006.
DOI 10.1007/s10270-006-0034-8.

Thomas Kihne and Daniel Schreiber. Can Programming be Liberated
from the Two-Level Style? Multi-Level Programming with DeepJava.
In Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and
Guy L. Steele Jr., editors, Proceedings of OOPSLA 2007: 22" Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications, pages 229-244. ACM, 2007. ISBN 978-1-
59593-786-5. DOI 10.1145/1297027.1297044.

Ivan Kurtev, Jean Bézivin, and Frédéric Jouault andPatrick Valduriez.
Model-Based DSL Frameworks. In Proceedings of OOPSLA 2006: 21%
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 602-616. ACM, 2006. ISBN
978-1-59593-491-8. DOI 10.1145/1176617.1176632.

Yuehua Lin, Je CQray, and Frédéric Jouault. DSMDi [_A Di Lerknti-
ation Tool for Domain-Specific Models. European Journal of Information
Systems, 16(4, Special Issue on Model-Driven Systems Development):
349-361, 2007. DOI 10.1057/palgrave.ejis.3000685.

Michael Makkai. Generalized Sketches as a Framework for Com-
pleteness Theorems. Journal of Pure and Applied Algebra, 115(1):49-79,
179-212, 214-274,1997. DOI 10.1016/S0022-4049(96)00007-2.

http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc4122.txt
http://dx.doi.org/10.1007/BF00961873
http://www.eclipse.org/gmt/epsilon/doc/book/
http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1007/s10270-006-0034-8
http://dx.doi.org/10.1145/1297027.1297044
http://dx.doi.org/10.1145/1176617.1176632
http://dx.doi.org/10.1057/palgrave.ejis.3000685
http://dx.doi.org/10.1016/S0022-4049(96)00007-2

Bibliography

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72]

Federico Mancini, Dag Hovland, and Khalid A. Mughal. Investig-
ating the Limitations of Java Annotations for Input Validation. In
Proceedings of ARES 2010: 5" International Conference on Availability,
Reliability and Security. IEEE Computer Society, 2010. ISBN 978-1-
4244-5879-0. DOI 10.1109/ARES.2010.29.

Tom Mens. A State-of-the-Art Survey on Software Merging.
IEEE Transactions on Software Engineering, 28(5):449-462, 2002.
DOI 10.1109/TSE.2002.1000449.

MeTEOriC: Meta-Tool Environments for Model-Oriented Collaborat-
ive Web Applications. Project Web Site. http://ishtar.ii.uam.es/
meteoric/.

Leonardo Murta, Chessman Corréa, Jodo Gustavo Prudéncio, and
Claudia Werner. Towards odyssey-VCS 2. improvements over
a UML-based version control system. In Proceedings of CVSM
2008: International workshop on Comparison and Versioning of Soft-
ware Models, pages 25-30. ACM, 2008. ISBN 978-1-60558-045-6.
DOI 10.1145/1370152.1370159.

John Mylopoulos, Alexander Borgida, Matthias Jarke, and Manolis
Koubarakis. Telos: Representing Knowledge About Information Sys-
tems. ACM Transactions on Information Systems, 8(4):325-362, 1990.
DOI 10.1145/102675.102676.

Object Management Group. Web site. http://www.omg.org.

Object Management Group. MDA Guide, June 2003. http://www.
omg.org/cgi-bin/doc?omg/03-06-01.

Object Management Group. Meta-Object Facility Specification, January
2006. http://www.omg.org/spec/MOF/2.0/.

Object Management Group. XML Metadata Interchange Specification,
December 2007. http://www.omg.org/spec/Xm1/2.1.1/.

Object Management Group. Object Constraint Language Specification,
February 2010. http://www.omg.org/spec/0CL/2.2/.

Object Management Group. Unified Modeling Language Specification,
May 2010. http://www.omg.org/spec/UML/2.3/.

James Odell. Power Types. Journal of Object-Oriented Programming, 7
(2):8-12,1994.

135

http://dx.doi.org/10.1109/ARES.2010.29
http://dx.doi.org/10.1109/TSE.2002.1000449
http://ishtar.ii.uam.es/meteoric/
http://ishtar.ii.uam.es/meteoric/
http://dx.doi.org/10.1145/1370152.1370159
http://dx.doi.org/10.1145/102675.102676
http://www.omg.org
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/XMI/2.1.1/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/UML/2.3/

Bibliography

[73] Dirk Ohst, Michael Welle, and Udo Kelter. Dilerences between
versions of UML diagrams. In Proceedings of ESEC/FSE 2003:
11™ ACM SIGSOFT Symposium on Foundations of Software Engin-
eering 2003, pages 227-236. ACM, 2003. ISBN 978-1-58113-743-5.
DOI 10.1145/940071.940102.

[74] OMG Model Driven Architecture. Web Site. http://www.omg.org/
mda/.

[75] C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick.
Version Control with Subversion (2" Edition). O’Reilly Media, October
2008. ISBN 978-0-596-51033-6.

[76] Iman Poernomo. A Type Theoretic Framework for Formal Metamod-
elling. In International Seminar on Architecting Systems with Trust-
worthy Components, volume 3938 of Lecture Notes in Computer
Science, pages 262-298. Springer, 2006. ISBN 978-3-540-35800-8.
DOI 10.1007/11786160_15.

[77] José E. Rivera and Antonio Vallecillo. Representing and Op-
erating with Model Dilerences. In Richard F. Paige, Bertrand
Meyer, Wil Aalst, John Mylopoulos, Michael Rosemann, Michael
J. Shaw, and Clemens Szyperski, editors, Proceedings of TOOLS
2008: 46" International Conference on Objects, Components, Models
and Patterns, volume 11 of Lecture Notes in Business Information Pro-
cessing, pages 141-160. Springer, 2008. ISBN 978-3-540-69823-4.
DOI 10.1007/978-3-540-69824-1_9.

[78] Alessandro Rossini, Adrian Rutle, Yngve Lamo, and Uwe Wolter. A
formalisation of the copy-modify-merge approach to version control
in MDE. Journal of Logic and Algebraic Programming, 79(7):636—-658,
2010. DOI 10.1016/j.jlap.2009.10.003.

[79] Alessandro Rossini, Adrian Rutle, Khalid A. Mughal, Yngve Lamo,
and Uwe Wolter. A Formal Approach to Data Validation Constraints
in MDE. In Marcel Kyas, Sun Meng, and Volker Stolz, editors, Pro-
ceedings of TTSS 2011: 5™ International Workshop on Harnessing Theories
for Tool Support in Software, pages 65-76, September 2011. ISBN 82-
7368-371-0.

[80] Adrian Rutle. Diagram Predicate Framework: A Formal Approach to
MDE. PhD thesis, Department of Informatics, University of Bergen,
Norway, 2010.

[81] Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter.
A Category-Theoretical Approach to the Formalisation of \Version
Control in MDE. In Marsha Chechik and Martin Wirsing, editors,

136

http://dx.doi.org/10.1145/940071.940102
http://www.omg.org/mda/
http://www.omg.org/mda/
http://dx.doi.org/10.1007/11786160_15
http://dx.doi.org/10.1007/978-3-540-69824-1_9
http://dx.doi.org/10.1016/j.jlap.2009.10.003

Bibliography

(82]

(83]

(84]

(85]

(86]

(87]

(88]

Proceedings of FASE 2009: 12 International Conference on Fundamental
Approaches to Software Engineering, volume 5503 of Lecture Notes in
Computer Science, pages 64—-78. Springer, 2009. ISBN 978-3-642-00592-
3. DOI 10.1007/978-3-642-00593-0_5.

Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. A
Diagrammatic Formalisation of MOF-Based Modelling Languages.
In Manuel Oriol, Bertrand Meyer, Wil Aalst, John Mylopoulos, Mi-
chael Rosemann, Michael J. Shaw, and Clemens Szyperski, editors,
Proceedings of TOOLS 2009: 47" International Conference on Objects,
Components, Models and Patterns, volume 33 of Lecture Notes in Business
Information Processing, pages 37-56. Springer, 2009. ISBN 978-3-642-
02571-6. DOI 10.1007/978-3-642-02571-6_4.

Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter.
A Formalisation of Constraint-Aware Model Transformations. In
David Rosenblum and Gabriele Taentzer, editors, Proceedings of
FASE 2010: 13" International Conference on Fundamental Approaches
to Software Engineering, volume 6013 of Lecture Notes in Com-
puter Science, pages 13-28. Springer, 2010. ISBN 978-3-642-12028-2.
DOI 10.1007/978-3-642-12029-9 2.

Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. A
formal approach to the specification and transformation of constraints
in MDE. Journal of Logic and Algebraic Programming, To appear.

Ed Seidewitz. What Models Mean. IEEE Software, 20(5):26-32, 2003.
DOI 10.1109/MS.2003.1231147.

Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework 2.0 (2" Edition). Addison-Wesley
Professional, 2008. ISBN 978-0-321-33188-5.

Gabriele Taentzer, Claudia Ermel, Philip Langer, and Manuel Wim-
mer. Conflict Detection for Model Versioning Based on Graph Modi-
fications. In Hartmut Ehrig, Arend Rensink, Grzegorz Rozenberg,
and Andy Schiirr, editors, Proceedings of ICGT 2010: 5™ International
Conference on Graph Transformations, volume 6372 of Lecture Notes in
Computer Science, pages 171-186. Springer, 2010. ISBN 978-3-642-
15927-5. DOI 10.1007/978-3-642-15928-2_12.

Bernhard Westfechtel. A Formal Approach to Three-Way Merging of
EMF Models. In Proceedings of IWMCP 2010: 15t International Workshop
on Model Comparison in Practice, pages 31-41. ACM, 2010. ISBN 978-
1-60558-960-2. DOI 10.1145/1826147.1826155.

137

http://dx.doi.org/10.1007/978-3-642-00593-0_5
http://dx.doi.org/10.1007/978-3-642-02571-6_4
http://dx.doi.org/10.1007/978-3-642-12029-9_2
http://dx.doi.org/10.1109/MS.2003.1231147
http://dx.doi.org/10.1007/978-3-642-15928-2_12
http://dx.doi.org/10.1145/1826147.1826155

Bibliography

[89] Uwe Wolter and Zinovy Diskin. The Next Hundred Diagrammatic
Specification Techniques — An Introduction to Generalized Sketches.
Technical Report 358, Department of Informatics, University of Ber-
gen, Norway, July 2007.

[90] Uwe Wolter and Zinovy Diskin. From Indexed to Fibred Semantics
— The Generalized Sketch File. Technical Report 361, Department of
Informatics, University of Bergen, Norway, October 2007.

138

	Preface
	Scientific Environment
	Abstract
	Model-Driven Engineering
	Introduction
	Diagrammatic modelling
	Metamodelling
	Constraints
	Typing and conformance

	Diagram Predicate Framework
	Graph and graph homomorphism
	Signature and specification
	Typing and conformance
	Specification morphism
	Specification transformation
	Specification entailment
	Related work
	Conclusion and future work

	Constraint-Aware Model Versioning
	Introduction
	Model versioning
	Calculation and representation of differences
	Synchronisation
	Construct the common of commons
	Construct the difference specifications
	Construct the merge of differences
	Detect conflicts
	Resolve conflicts
	Construct the synchronised specifications

	Related work
	Conclusion and future work

	Deep Metamodelling
	Introduction
	Metamodelling
	Deep metamodelling
	Deep characterisation
	Double typing and linguistic extension
	Some open questions in deep metamodelling

	Formalisation of deep metamodelling
	Double metamodelling stack
	Partial double metamodelling stack
	Deep metamodelling stack

	Flattening of a deep metamodelling stack
	Related work
	Conclusion and future work

	Conclusion
	Appendix

