Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies

Olivier Keunena,b,⁎, Torfinn Taxtb,c, Renate Grünerc, Morten Lund-Johansen d,e, Joerg-Christian Tonnf, Tina Pavling, Rolf Bjerkviga,b,h, Simone P. Nicloua,⁎⁎, Frits Thorsenb,g,h

a NorLux Neuro-Oncology Laboratory, Department of Oncology, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
b Translational Cancer Research, Department of Biomedicine, University of Bergen, Norway
c Department of Radiology, Haukeland University Hospital, Bergen, Norway
d Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
e Department of Clinical Medicine, University of Bergen, Norway
f Department of Nuclear Medicine, University of Munich, Munich, Germany
g Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
h The Kristian Gerhard Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Norway

A B S T R A C T

The vast majority of malignant gliomas relapse after surgery and standard radio-chemotherapy. Novel molecular and cellular therapies are thus being developed, targeting specific aspects of tumor growth. While histopathology remains the gold standard for tumor classification, neuroimaging has over the years taken a central role in the diagnosis and treatment follow up of brain tumors. It is used to detect and localize lesions, define the target area for biopsies, plan surgical and radiation interventions and assess tumor progression and treatment outcome. In recent years the application of novel drugs including anti-angiogenic agents that affect the tumor vasculature, has drastically modulated the outcome of brain tumor imaging. To properly evaluate the effects of emerging experimental therapies and successfully support treatment decisions, neuroimaging will have to evolve. Multimodal imaging systems with existing and new contrast agents, molecular tracers, technological advances and advanced data analysis can all contribute to the establishment of disease relevant biomarkers that will improve disease management and patient care. In this review, we address the challenges of glioma imaging in the context of novel molecular and cellular therapies, and take a prospective look at emerging experimental and pre-clinical imaging techniques that bear the promise of meeting these challenges.

© 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
2.2. PET ... 101
2.3. Challenges ... 101
3. Experimental approaches to the imaging of gliomas 102
3.1. MRI contrast strategies 102
3.1.1. Exogenous contrast agents 103
3.1.2. Magnetization transfer 103
3.1.3. Spin tagging .. 103
3.1.4. Functional MRI .. 103
3.1.5. Susceptibility weighted imaging 104
3.1.6. Angiography .. 104
3.1.7. Specific tissue signal suppression 104
3.1.8. Elastography .. 104
3.2. Advances in physiological imaging 104
3.2.1. Perfusion .. 104
3.2.2. Diffusion .. 105
3.3. Advances in magnetic resonance spectroscopy 105
3.3.1. Spectral editing .. 105
3.3.2. Multinuclear spectroscopy 106
3.3.3. Hyperpolarization .. 106
3.4. Advances in molecular imaging 106
3.4.1. Proliferation and metabolic activity 106
3.4.2. Cellular death .. 106
3.4.3. Tumor vasculature ... 106
3.4.4. Immune response .. 106
3.4.5. Molecular targets and pathways 106
3.4.6. Drug delivery .. 106
3.4.7. Other molecular imaging approaches 107
4. Technological advances .. 107
4.1. Next generation imaging modalities 107
4.1.1. High field magnets .. 107
4.1.2. Parallel imaging .. 107
4.1.3. Fast imaging protocols 108
4.1.4. Hybrid systems ... 108
4.2. Advances in data analysis 109
4.2.1. Quantitative biomarkers 109
4.2.2. Composite biomarkers 109
4.2.3. Computer-assisted decision making 109
4.2.4. Tumor growth modeling 109
4.2.5. Visualization .. 109
4.2.6. Virtual and augmented reality 109
4.2.7. ‘Omics’ data enrichment 109
5. Perspectives .. 110
Acknowledgments ... 110
References .. 110

Key points

- High grade gliomas are heterogeneous and infiltrative, causing them to relapse after conventional standard therapies. New treatment approaches such as molecular and cellular therapies offer the perspective of a better personalized treatment.
- To provide clinicians with the appropriate information needed to efficiently deal with the treatment of gliomas, neuroimaging would benefit from an evolution from non-specific contrast based protocols to protocols that are oriented toward disease relevant and treatment specific biomarkers.
- Technological advances and the combination of imaging modalities, new contrast mechanisms and advanced data processing techniques will assist in addressing the challenges of tumor imaging in the context of emerging treatment approaches.

1. Introduction

Gliomas are brain tumors that arise from abnormally proliferating glial cells, which normally provide support and protection of neurons in the central nervous system. Glioblastoma (GBM), the focus of the present review, represents the most malignant form of gliomas with a mean patient survival after diagnosis of about 14 months [1]. Despite standard treatment involving surgical resection, radiation therapy and chemotherapy, only very few patients survive more than 5 years [2]. GBMs are highly heterogeneous; when tumors in different patients are compared, they vary in mutation status [3], in putative glial cell lineage, in epigenetic profiles and in histological appearance. Similarly, within single tumors, cell clones with different genetic profiles and even different ploidies co-exist within a microenvironment made up of varying non-neoplastic stromal cells, immune cells and extracellular matrix components. This heterogeneity represents a key challenge in tumor characterization and for the development of effective therapies. Data from high throughput molecular analyses attempts to define subclasses of GBM that differ by their genetic and epigenetic alterations, gene expression profiles, clinical aggressiveness, prognosis and response to treatment [4,5]. Although there is some discrepancy in currently proposed subclasses, the most recent work combines methylaton profiles with specific genetic mutations and patient age group, to propose a classification into 6 distinct subgroups for pediatric and adult GBM [6]. Yet, these molecular classifications have so far not led to a diversification in treatment [7].

Initial diagnosis of GBM is largely based on magnetic resonance imaging or computed tomography, indicating the importance of
neuroimaging right from the start. The clinical management of malignant gliomas typically starts with surgical resection or gross total removal, followed by radiochemotherapy. Although a complete resection of the tumor is usually not achievable because of the infiltrative nature of the disease, the surgical step is critical to reduce the elevated intracranial pressure and for the management of seizures. The neurosurgeon also collects the tissue for neuropathologists to establish the definitive diagnosis that will further determine the treatment. Conventional radiotherapy is administered as fractionated external photon beams, but newer particle therapies, using protons or carbon ions, are also being investigated for their ability to better target tumor tissue while sparing surrounding healthy tissue. Concomitant and adjuvant chemotherapy uses the DNA-alkylating agent Temozolomide. Dosage and schedule of delivery are based on a protocol developed by the landmark study of the EORTC-NCIC [1]. Nevertheless, since all GBMs eventually recur, the aim of the treatment is palliative at best. Currently, many alternative experimental protocols for glioma treatment are being investigated. These include small molecule inhibitors that interfere with aberrant signaling events associated with glioma growth or its adapted metabolism. Angiogenesis inhibitors, immunotherapies, gene and viral therapies, as well as strategies for local delivery of therapeutic compounds are also under development or at different stages of clinical use. These novel therapies were recently reviewed in a special issue of The Cancer Journal [8], and are summarized in Table 1, together with results from recent clinical trials. It is currently unclear if and when these approaches will be implemented in clinical practice, but the focus is to adopt a more personalized approach and tailor the therapy according to the molecular features of the individual tumor.

2. Imaging of gliomas in the clinic

Neuroimaging has, over the years, become invaluable in the management of gliomas. MRI is the preferred modality for glioma imaging, owing to the variety of soft tissue contrasts available, and its ability to provide morphological, physiological and metabolic information about the tumor. MRI is used at all stages of glioma management, from the detection and localization of the tumor, to the planning of neurosurgery and radiotherapy and the assessment of treatment efficacy [9]. Positron emission tomography (PET) can complement MRI by providing access to molecular targets with high sensitivity. Tracers of proliferation and metabolic activity are increasingly being used in pre-therapy assessment and in the monitoring of treatment response [10]. CT often provides the anatomical context in PET studies but can also be used to detect tumors (after injection of contrast) and in perfusion studies [11, 12]. Other modalities less frequently used include single photon emission computed tomography (SPECT), an alternative nuclear imaging technique to PET that uses longer half-life isotopes, which are easier and cheaper to produce, but provides images of lower spatial resolution. The use of ultrasound in brain tumor imaging is hindered by the presence of the skull, limiting its use to specialized applications such as pediatric brain tumors [13] or the assessment of tumor boundaries during surgery [14]. Table 2 provides an overview of some of the most important features of the different modalities used for the imaging of gliomas. The remainder of this chapter presents the MRI and PET protocols that are most commonly used in the clinic and the challenges faced when imaging gliomas.

2.1. MRI

A standard MRI study for GBM patients comprises several anatomical series (Fig. 1A–C): T1 weighted sequences, after the intravenous injection of a gadolinium (Gd) based contrast agent, typically show tumor as a hypointense signal as contrast leaks out of impaired blood vessels and accumulates into tumor tissue (Fig. 1A). T2 weighted sequences (Fig. 1B) can possibly detect non-enhancing tumors since the prolonged T2 relaxation time of tumor tissue makes them appear hyperintense in comparison to normal tissue. T2 weighted fluid attenuated inversion recovery (FLAIR) sequences (Fig. 1C), in which the signal from the cerebrospinal fluid has been suppressed, can also be used to delineate tumors in the vicinity of ventricles or to further highlight areas of non-enhancing tumor, in particular infiltration zones and edema. Perfusion weighted imaging (PWI) after bolus injection of contrast (Fig. 1D) complements these anatomical series by providing access to
Table 2: Features of modalities used for glioma imaging.

<table>
<thead>
<tr>
<th>Modality</th>
<th>Key features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic resonance imaging (MRI)</td>
<td>• Based on the magnetic properties of hydrogen nuclei placed in a high magnetic field (non-ionizing radiations)</td>
</tr>
<tr>
<td></td>
<td>• Versatile modality with wide variety of soft tissue contrasts available</td>
</tr>
<tr>
<td></td>
<td>• High spatial resolution (0.2-1 mm) and fair sensitivity (10^{-5}–10^{-10} mol/l)</td>
</tr>
<tr>
<td></td>
<td>• Provide anatomical, functional and metabolic information</td>
</tr>
<tr>
<td>Positron emission tomography (PET)</td>
<td>• Nuclear imaging technique that uses positron emitting radionuclides with short half-life isotopes such as carbon-11 (20'), oxygen-15 (2') or fluorne-18 (110')</td>
</tr>
<tr>
<td></td>
<td>• High sensitivity (10^{-11}–10^{-12} mol/l) and limited spatial resolution (5-10 mm)</td>
</tr>
<tr>
<td></td>
<td>• Production of radiolabeled isotopes is expensive and requires the proximity of a cyclotron</td>
</tr>
<tr>
<td></td>
<td>• Molecular imaging of targets such as receptors, enzymes or protein sites</td>
</tr>
<tr>
<td></td>
<td>• Biodistribution of tracers may depend on blood–brain barrier, trapping of enzyme substrates, cell surface internalization, protein binding and metabolism</td>
</tr>
<tr>
<td>Single-photon emission computed tomography (SPECT)</td>
<td>• Alternative nuclear imaging technique that uses the direct gamma radiations emitted by longer half-life radioisotopes such as technetium-99 m (6 h) or iodine-123 (13 h)</td>
</tr>
<tr>
<td></td>
<td>• Well established, widely available and cheaper than PET</td>
</tr>
<tr>
<td></td>
<td>• Good sensitivity (10^{-10}–10^{-11} mol/l) and limited spatial resolution (7-15 mm)</td>
</tr>
<tr>
<td></td>
<td>• Simultaneously image several radionuclides (differentiated by their energy)</td>
</tr>
<tr>
<td>Computed tomography (CT)</td>
<td>• Fast, effective and high resolution technique based on X-ray attenuation in tissues</td>
</tr>
<tr>
<td></td>
<td>• Often used to provide the anatomical context in PET or SPECT studies</td>
</tr>
<tr>
<td>Ultrasound (US)</td>
<td>• High temporal resolution technique based on the reflection of sound waves that allows real-time imaging, although its use in brain malignancies is impaired by the presence of the skull.</td>
</tr>
</tbody>
</table>

physiological parameters such as blood volume, blood flow and possibly blood vessel permeability. Blood volume positively correlates with tumor grade [15,16] and has been used to assess treatment efficacy [17] or differentiate recurrence from post-treatment radiation effect [18]. Diffusion weighted imaging (DWI) (Fig. 1E), may help in separating edema from infiltrative tumor cells or distinguish neoplastic regions from abscesses [19]. Longitudinal changes in the mobility of water molecules has been proposed as an early marker of treatment response [20, 21], correlating with time-to-progression and overall survival [22]. Finally, chemical shift imaging (CSI), a magnetic resonance spectroscopy technique, provides access to the spatial distribution of a limited number of abundant metabolites in vivo (Fig. 1F). Ratios such as Choline/N-acetylaspartate and lactate/lipids levels can help to distinguish tumor types and grades [23], predict survival [24], or separate tumor recurrence from radiation necrosis [25,26].

2.2. PET

In some clinical centers, MRI is complemented by PET imaging to visualize molecular processes in gliomas (Fig. 2). PET tracers of cell proliferation based on amino acid metabolism, such as 11C-methionine (11C-MET) (Fig. 2A) and 18F-fluor-ethyl-tyrosine (18F-FET) (Fig. 2B), are the most commonly applied. For the imaging of gliomas they are more useful than 18F-fluorodeoxyglucose (18F-FDG) (Fig. 2A), which produces a high background signal in the brain (because of high glucose consumption) and has limited sensitivity in detecting brain tumors [27–29]. 11C-MET and 18F-FET are superior for the detection of gliomas and the planning of radio-therapy, including in regions of infiltrative tumor cells not detected by MRI [30].

For example, it has been shown that radiotherapy planning using 18F PET data may lead to larger treatment volumes with more precise delineation of active tumor tissue and potentially less “out of field” recurrences [31,32]. Moreover dynamic analysis of the tracer uptake provides more accurate information about the “aggressiveness” of the tumor as reflected by the WHO grading [33]. It has been suggested that with dynamic 18F PET tracing, tumors with unfavorable prognosis can be distinguished even within the same WHO grade [34], and anastatic foci can be identified in otherwise low grade gliomas [35]. 18F PET also appears to be a powerful tool to distinguish tumor recurrence from radiotherapy induced changes [36].

Nucleic acid tracers such as 18F-fluorothyridine (18F-FLT) have also been proposed as markers of proliferation (Fig. 2C). In clinical trials, they have proved to be superior to 18F-FDG and MRI in differentiating low-grade from high-grade gliomas, providing a good correlation with histological proliferation markers [37]. Reduced uptake of 18F-fluorodeoxyglucose (18F-FDG) is thus increasingly being considered to plan and assess the efficacy of radio- and chemotherapy treatment (Fig. 2D) [42,43].

Neuroimaging is increasingly being used for the planning of surgical procedures. Anatomical MRI series can be loaded in neuronavigation systems to establish surgical routes and guide the neurosurgeon during the procedure (Fig. 3A). If available, additional sequences that provide information about the physiological and metabolic state of the tumor can also be included. Advanced sequences such as Diffusion Tensor Imaging tractography can be used to visualize the displacement of white matter tracts that results from the presence of tumors (Fig. 3B), and functional MRI is used to locate eloquent areas in the brain (Fig. 3C). Metabolic imaging with PET tracers may help to locate tumor hot spots that should be targeted by the biopsy (Fig. 3D).

2.3. Challenges

There are a number of challenges associated with brain tumor imaging in the clinic today. Conventional MRI protocols are mostly nonspecific and don’t directly differentiate tumor cells from healthy tissue. This makes it difficult to characterize brain lesions and establish prognosis [44], and limits the detection of the infiltrative compartment of the tumor. Criteria most commonly used in the clinic to assess the treatment efficacy in gliomas were originally established by Mac Donald and colleagues in 1990 [45]. They are mainly based on the changes in tumor size over time, assessed from MRI or CT sequences. Imaging based on T1-weighted sequences acquired after injection of Gadolinium-based contrast agents suffers, however, from the problems of pseudo-progression, that is radiation induced necrosis confounding with recurrent tumors [46], and pseudo-response, that is reduction of contrast uptake, such as after anti-angiogenic therapy, despite tumor progression [47]. These difficulties have prompted a group of experts known as the Response Assessment in Neuro-Oncology (RANO) working group to propose revised criteria in 2010. The new recommendations distinguish contrast enhancement within and outside the area of radiation, and introduce T2 weighted FLAIR to assess edema and tumor infiltration [48]. Still, imaging of this infiltrative compartment remains a challenge for current imaging modalities, and new techniques
for the in situ detection of infiltrating tumor cells in surgical settings may partially address this issue in the future [49,50].

In the context of novel molecular and cellular therapies to come, the treatment of glioma patients would greatly benefit from a better insight into the molecular processes that cause the disease, determining how these molecular processes are affected by a given therapy, and how the putative molecular changes can be detected by MRI and PET. Precise information on general treatment paradigms such as proliferation, angiogenesis, inflammation, infiltration, as well as on specific disease characteristics, such as the presence of receptors, transport proteins or point mutations, would be useful at crucial decision times during treatment. In the following sections, we will describe key imaging technologies, currently in experimental and pre-clinical development, that could assist in addressing these challenges.

3. Experimental approaches to the imaging of gliomas

3.1. MRI contrast strategies

Basic contrast in MRI comes from differences in local water content, which can be modulated by regional differences in the longitudinal (T1) and transversal (T2) relaxation times of the tissues. Although the intrinsic contrast achieved can be sufficient to distinguish anatomical regions and some tissue pathologies, it is often necessary to improve the sensitivity and specificity of diagnosis by the use of exogenous contrast agents or endogenous contrast mechanisms. MRI is a very versatile modality in this regard and the mechanisms through which contrast can be achieved are described in common MRI text books [51]. These include techniques as diverse as those based on inversion recovery, magnetization transfer, spin tagging, chemical shift, iron-induced susceptibility changes, perfusion and water molecule diffusion. In the following paragraphs, we describe how these techniques are being applied to the study of gliomas. Fig. 4 provides recent examples of such techniques.

3.1.1. Exogenous contrast agents

Intravenous administration with subsequent accumulation of low molecular weight contrast agents (<1000 Da) in brain tumors with impaired blood–brain-barrier has represented the cornerstone of brain tumor detection in recent decades. Contrast agents reduce the T1 of tissues in which they accumulate, providing a hyperintense signal in T1-weighted sequences. Their influence on the T2 and T2* of blood in which they circulate is also exploited in perfusion applications via the dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) technique. However, concerns with Gadolinium-based contrast agents are that they are non-specific and can lead to a rare but serious complication in patients with renal diseases, known as nephrogenic systemic fibrosis [52].

Next generation contrast agents, including higher molecular weight agents (>30,000 Da) are thus being investigated to address these challenges. They are usually based on nanoparticles with an iron oxide core with a biostable inert polymer coating that improves contrast in T2- or T2*-weighted sequences by disrupting local magnetic fields. They are often referred to as superparamagnetic iron oxide nanoparticles (SPIO) or ultrasmall superparamagnetic iron oxide nanoparticles (USPIO) depending on their size. They can be used in perfusion and
angiography applications where the contrast agent is expected to remain in the vascular compartment, hence being also referred to as blood pool contrast agents. Such nanoparticles can also be engineered for the imaging of molecular targets, where the homing to the target is achieved by attaching molecules such as standard antibodies or derivatives to the nanoparticle body (Fig. 4A). In pre-clinical models, this principle has for instance been applied to the detection and quantification of receptors strongly modulated in GBMs such as the epidermal growth factor receptor EGFR\[53\], the vascular endothelial growth factor receptor 2 VEGFR-2\[54\] or the cell adhesion receptor integrin $\alpha_v\beta_3$ \[55\].

Nanoparticles can also be engineered for combined diagnosis and therapy\[56,57\].

3.1.2. Magnetization transfer

With chemical exchange saturation transfer (CEST), endogenous diamagnetic agents such as proteins, glycogens or glucosaminoglycans can be used to image their own presence, the presence of other compounds or environmental factors such as pH or temperature. For example, magnetization transfer of the amide protons (Fig. 4B), has been proposed to detect brain tumors even in the absence of impaired blood vessels \[58\] or to differentiate tumor recurrence from radiation necrosis \[59\]. Exogenous paramagnetic agents consisting of lanthanide complexes, termed paramagnetic CEST agents (PARA-CEST), are also being developed that allow a more selective activation of ligand protons and a more pronounced CEST effect. The possibility to design agents that detect and quantify nearly any biologically important metabolite or that respond to changes in environmental conditions, as well as the possibility to monitor several targets simultaneously, make these agents attractive \[60\]. Technical challenges associated with elevated energy absorption and toxicity however have to be addressed before such agents can be used in clinical application \[61\].

3.1.3. Spin tagging

Arterial spin labeling (ASL) is used to obtain 3D blood flow maps of the brain in a short time (Fig. 4C), without the need for exogenous contrast agent injection \[62\]. Technical advances in high magnetic fields and new sequences could also provide access to permeability parameters within ASL experiments in the future \[63\]. Blood flow values calculated with ASL correlate with those obtained by perfusion MRI techniques that use exogenous contrast such as dynamic susceptibility contrast MRI (DSC) \[64\]. Therefore, despite the inherently much lower contrast-to-noise ratio of the ASL technique, many of the DSC applications for brain tumors should also be possible using ASL. Clinical studies have started to show that this technique can be used to differentiate high grade from low grade gliomas and other malignancies \[65,66\], or to distinguish tumor recurrence from radiation necrosis \[67\].

3.1.4. Functional MRI

Blood-oxygenation level-dependent (BOLD) MRI has been used in functional brain imaging studies for a number of years. The technique has now been proposed to image hypoxia \[68,69\] or to assess vascular
maturity, angiogenesis and response to treatment in mixed oxygen-carbogen challenges [70,71].

3.1.5. Susceptibility weighted imaging

Susceptibility weighted imaging (SWI) provides contrast based on the susceptibility differences between blood and tissues. Phase images are used to detect these differences and enhance the contrast of magnitude images, rendering them highly sensitive to venous blood, hemorrhages and iron storage (Fig. 4D). SWI has been used to characterize the angiogenic behavior of tumors [72], micro-hemorrhages after radiotherapy [73], to grade intracranial gliomas [74], and to assess responses to therapy [75].

3.1.6. Angiography

Time resolved magnetic resonance angiography (MRA) performed during contrast-agent injection (Fig. 4E) provides additional information for routine examination of brain tumors, such as vascular anomalies and relationship between lesions and vessels [76].

3.1.7. Specific tissue signal suppression

Double inversion recovery (DIR) sequences nullify the signal associated with the CSF and the white matter simultaneously, allowing better differentiation between tumor and normal brain tissue in comparison to FLAIR sequences [77].

3.1.8. Elastography

Access to tissue viscoelastic constants (tumor stiffness) using magnetic resonance elastography (MRE) may provide a predictive marker of tumor malignancy and contribute to the early non-invasive assessment of suspicious cerebral lesions [78].

3.2. Advances in physiological imaging

3.2.1. Perfusion

Dynamic susceptibility contrast MRI (DSC-MRI) is the most commonly used method for perfusion imaging in the clinic, due to its ease of implementation, short duration and readily accessible biomarkers such as blood volume, blood flow and transit time. It is based on changes in T2 or T2* relaxivity, induced by the first pass of a contrast agent bolus injection. High-speed acquisitions are needed to maintain a good temporal resolution, which can only be achieved at the expense of reduced spatial resolution and signal-to-noise ratio. The accumulation of the contrast agent in tissues at the end of the perfusion series can be exploited afterwards to acquire high-resolution anatomical images.
using dynamic contrast enhanced MRI (DCE-MRI), an alternative method based on changes in T1 relaxivity induced by multiple passages of a contrast agent, is possible to obtain additional parameters related to blood vessel permeability [79]. This however requires longer scan time and more complex pharmacokinetic modeling. The additional parameters obtained can, for example, be used to investigate the vascular changes induced by anti-angiogenic therapies [80]. Recent developments have focused on integrating both methods in dual echo sequences [81,82] and on optimizing the models used to derive quantifiable perfusion parameters [83,84].

3.2.2. Diffusion

Diffusion weighted imaging (DWI) suffers from confounding factors in that increased cellularity (due to tumor cell infiltration) reduces water–molecule diffusion, while vasogenic edema and necrosis increase it. It has therefore been proposed that by using a multifidimensional time acquisition sequence, a technique called Restriction Spectrum Imaging (Fig. 4F), the separation of hindered and less restricted water compartments is possible. This makes it easier to visualize the infiltrative tumor cell compartment [85], interpret tumor response following anti-angiogenic therapy [86], and improve the reconstruction of white matter tracts in regions of peritumoral FLAIR hyperintensity [87].

Also, conventional MRI methods used to assess the apparent diffusion coefficient (ADC) employ relatively long diffusion times and are thus sensitive to diffusion restrictions at the length scale of cellular dimension. Using oscillating gradient diffusion techniques at moderate frequency, it is possible to detect diffusion restrictions at lower length scales, smaller than the diameter of a single cell, resulting in greater sensitivity to sub-cellular structures. Application of this technique to assess the chemotherapeutic-treatment response in animal models of gliomas suggests that early changes in microstructures, such as the reduction in mean nuclear size, can induce diffusion changes that can be detected much earlier than changes in cellular density [88]. Clinical applications have so far been limited to optimizing the technique, and demonstrating its ability to visualize microstructures within the brain [89].

3.3. Advances in magnetic resonance spectroscopy

Single voxel magnetic resonance spectroscopy (MRS) and chemical shift imaging (CSI) are spectroscopy techniques used to detect the presence of metabolites in vivo. In comparison to nuclear magnetic resonance (NMR) of metabolites in solution, proton MRS on conventional clinical systems suffers from high background noise and shimming challenges, which limits the spectral resolution and the sensitivity of detection to a small number of abundant metabolites. Advanced spectroscopy techniques are thus being introduced to address these challenges.

3.3.1. Spectral editing

To improve the separation of overlapping resonances, techniques that have long been used in NMR, such as spectral editing and 2D NMR, are now being investigated in vivo as well. This has for instance been used for the detection of lactate and other metabolites in
astrocytomas [90], and for the detection of 2-hydroxylglutarate in isocitrater dehydrogenase (IDH) mutated gliomas [91].

3.3.2. Multinuclear spectroscopy

Non-proton spectroscopy can also be used to supplement the metabolic information provided by proton spectra. 31P-MRS has for instance been used to assess pH and analyze intracellular energy storage in malignant gliomas [92], and to evaluate response to therapies [93]. The tracing of 13C-labeled molecules and their metabolites is finding applications in preclinical and clinical studies of glucose metabolism [94] and drug biodistribution [95]. Additional hardware, such as coils tuned for multinuclear spectroscopy, is required although typically not included as part of the standard configuration of clinical MR imaging systems.

3.3.3. Hyperpolarization

Hyperpolarization, a magnetic labeling technique used to enhance the signal of exogenous compounds for detection by MRI, currently does not have the sensitivity and the wide range of medicinal tracers that PET has. Yet, it benefits from a number of features that are appealing for the future of metabolic imaging in the clinic. These include the simultaneous detection of a precursor and its metabolites, the absence of radiation, and fast acquisitions that open new avenues to real-time metabolic imaging [96]. Some of the metabolic processes currently under investigation include the conversion of pyruvate to lactate and alanine to assess glycolysis and response to therapy [97–99], or the conversion of fumarate to malate proposed as a marker of cell necrosis [100]. Hyperpolarized compounds for the analysis of extra- and intracellular pH [101], redox state [102], glutaminolysis [103], choline kinase activity [104] and more recently IDH status [105] have also been introduced in experimental settings (Fig. 4G). The simultaneous hyperpolarization of several compounds is possible, enabling for instance the assessment of metabolism, pH, necrosis and perfusion in a single acquisition [106]. However, technical challenges have to be met before hyperpolarized compounds can be deployed in the clinic. The short half-life of the hyperpolarized compounds currently limits their use to fast occurring processes, and specialized sequences and standardized data analysis tools are required to facilitate the implementation of this technology.

3.4. Advances in molecular imaging

In Section 2.2, we have introduced PET tracers that are used in the clinic today. While proliferation and metabolic activity are often the first subject of investigation, other molecular features of glioma that are important for their treatment can also be imaged. PET remains the most popular modality for molecular imaging, owing to its very high sensitivity and the large number of tracers available. In comparison, SPECT tracers have typically suffered from poor spatial resolution that renders quantification difficult. Nevertheless, new technical advances in data reconstruction techniques that allow improved spatial resolution and quantification, associated with the lower cost and longer half-life of SPECT tracers, as well as the possibility to use several tracers simultaneously, could herald a rebirth of this technology. MRI tracers that use nanoparticles are also gaining acceptance because of their non-invasive profile and the prospect of combining molecular imaging with anatomical and physiological imaging in a single modality. In this section, we review key molecular features that are important for the treatment of gliomas and describe some of the approaches that are being developed for their imaging in vivo.

3.4.1. Proliferation and metabolic activity

In addition to the tracers described in Section 2.2, other radiolabeled amino acid tracers are actively being investigated. For example, Fluorodopa (18F-FDOPA), a PET amino acid tracer to detect intracerebral dopamine, appears to be superior to 18F-FDG PET and MRI in detecting recurrence especially in low grade glioma [107–109], and in predicting survival in recurrent glioma treated with bevacizumab [110]. SPECT tracers, such as 131-I-alpha-methyl tyrosine (131-I-IMT), also an amino acid based agent, and 99mTc-glucosephosphate (99mTc-GHA), a glucose analog, have been investigated to plan radiotherapy treatment and differentiate tumor recurrence from radiation induced necrosis [30,111–113].

3.4.2. Cellular death

PET molecular tracers have also been used for the selective detection of apoptosis in vivo. They include radiolabeled derivatives of Annexin V, a naturally occurring ligand specific for the membrane protein phosphatidylserine expressed by apoptotic cells, as well as molecules targeting caspases, the proteolytic enzymes activated in apoptosis to cleave intracellular proteins [114,115].

3.4.3. Tumor vasculature

Various strategies have been developed for the imaging of the deregulated vasculature of tumors. These include the imaging of the VEGF/VEGFR signaling pathway, which plays a pivotal role in angiogenesis [116], and the imaging of integrins, the transmembrane receptors involved in regulating the attachment of cells to the extracellular matrix. Integrin αvβ3 is up-regulated in the tumor vasculature but not by quiescent endothelial cells [117] and its expression correlates with tumor aggressiveness [118], making it a natural target for drug delivery and imaging by nanoparticles labeled for PET or MRI [119–121]. Other peptides and monoclonal antibodies targeting receptors involved in the signaling associated with angiogenesis have also been radiolabeled for PET or SPECT imaging. They have been used to assess the expression of targets such as Ephrin, c-Met and PDGFR in pre-clinical studies on gliomas [122–124]. Changes in transverse relaxivity after injection of blood-pool contrast agents have also been used to determine indexes of vessel size and changes in vascular morphology caused by tumor angiogenesis [125–127].

3.4.4. Immune response

Evidence points at a role of microglia/macrophages in the immunosuppression and promotion of glioma growth [128]. Translocator protein, an outer mitochondrial membrane protein, has been used as a marker of microglial activation. The radiolabeling of its ligand for PET imaging bears potential as a cancer biomarker, correlating with disease progression and survival [129]. MR imaging of phagocytosis, mainly mediated by microglia and brain macrophages, may also be possible following an intravenous injection of iron oxide nanoparticles [130].

3.4.5. Molecular targets and pathways

PET tracers for a number of receptor tyrosine kinases and major downstream signaling components relevant for glioma development, such as endothelial growth factor receptor (EGFR), Akt, p53, and hypoxia inducible factor-1 (HIF-1), are also being tested in preclinical settings. They may have a role in the stratification of patients and the assessment of treatment efficacy in future clinical applications [131].

3.4.6. Drug delivery

New combinatorial formulations are being developed to improve the biodistribution of systemically administered therapeutic agents. Examples include liposomes, polymers, micelles, nanoparticles and antibody systems carrying therapeutic loads, which can be supplement-ed by contrast agents for imaging the homing of the drug to the tumor [132]. The (pre)clinically most relevant applications of these techniques relate to the validation and optimization of drug delivery and the prescreening of patients on the basis of predicted treatment efficacy [133]. Examples of techniques for labeling therapeutic drugs to trace their biodistribution in vivo, include the radiolabeling of Temozolomide for PET detection [134] or its labeling with 11C for detection by MRS [95].
3.4.7. Other molecular imaging approaches

Although nuclear medicine, and to some extent nanoparticles engineered for MRI detection, are at the forefront of molecular imaging, other techniques based on sound and light waves are being investigated for specific applications. Despite not having the sensitivity, tomographic capacity, and depth of penetration of PET and MRI, they provide the benefits of cost and time efficiency, without the need for ionizing radiation. Optical imaging and ultrasonography have, for example, been applied to pediatric tumor imaging [13], intra-operative delineation of tumor margins [14], postoperative detection of residual tumors [135], and the assessment of tumor perfusion [136]. Photoacoustic and thermoacoustic imaging are also being investigated for the functional or molecular characterization of cancer tissue, with potential applications in cancer detection, diagnosis and treatment guidance [137].

While some of these imaging markers are still under development, others are making their way to clinical trials and routine practice. Table 3 provides an overview of the PET/SPECT tracers and MRI protocols most commonly investigated in clinical trials to provide novel molecular and metabolic insight.

4. Technological advances

Recent advances in hardware and data analysis techniques are likely to contribute to the advancement of neuroimaging. Imaging features such as resolution, speed of acquisition, contrast and specificity of tracers will continuously improve, and the combination of multiple information sources should enable the establishment of composite markers that will provide better insight into aspects of the disease that are relevant for its treatment.

4.1. Next generation imaging modalities

4.1.1. High field magnets

In MRI, the strength of the magnetic field determines the amplitude of the net magnetization and the maximum signal strength that can be achieved and used for either improved image quality or reduced scan time. However, higher field magnets come with a higher price and are subject to some limitations. Field homogeneity is difficult to achieve, causing more pronounced susceptibility artifacts and distortions in fast imaging techniques. Sequences have to be re-designed to achieve the same contrast as with lower field magnets and to limit the radiofrequency power deposition in patients. Nevertheless, the improved image quality obtained at these higher fields using diffusion and perfusion techniques appears to enable better diagnostic accuracy in brain tumors [138]. Improved susceptibility weighted imaging may also prove useful to predict responses to anti-angiogenic therapy [139]. Arterial spin labeling (ASL) perfusion imaging may benefit from an increase in signal-to-noise ratio and blood T1 relaxation time available at these higher fields, although counterbalancing effects of increased field inhomogeneity and reduced T2 will have to be considered as well [140]. The physiological effect of a higher field on patients and staff will have to be properly accounted for too.

4.1.2. Parallel imaging

Parallel imaging, using phased array coils and multiple transmitter and receiver channels, has become an integral part of modern clinical MRI. Sequences have been adapted to integrate spatial encoding using an increasing number of read-out channels, allowing for a reduction of scan time and/or an increase in image resolution and quality [141]. With parallel imaging, anatomical series can benefit from a reduction of scan time and associated patient discomfort. Alternatively parallel imaging can provide increased spatial resolution that allows for the detection of smaller lesions, better characterization of larger tumor content (calcification, blood products, cysts) and better delineation of tumor boundaries, important for differential diagnosis and treatment planning [142]. Physiological series, especially those based on fast...
acquisition techniques such as Echo Planar Imaging, also benefit from the improved speed of acquisition, image quality and resolution. These include perfusion MRI [143,144], fMRI and DTI [145,146] and spectroscopic imaging [147,148].

4.1.3. Fast imaging protocols

New sequences are being developed that allow faster acquisitions and new contrast establishment. Ultrashort echo time sequences (Fig. 4H), for example, using non-conventional k-space sampling strategies, make it possible to image structures with very short T2 relaxation times, such as gliosis, hemorrhage, angiomas, and the loss of short T2 components in the white matter surrounding gliomas [149]. Compressed sensing techniques accelerate acquisitions by randomly undersampling k-space data to exploit the sparsity in MR images [150].

4.1.4. Hybrid systems

Hybrid PET/CT systems have become an integral part of the imaging of non-cranial tumors. Whole body 18F-FDG PET/CT has, for instance, proven to be an invaluable tool for the detection of metastatic lesions. In the context of the brain, with MRI being the preferred modality over CT, it is expected that the recently introduced PET/MRI hybrid systems will also play a major role in the future. Immediate benefits for the patient include increased comfort and convenience (by performing MRI and PET exams in a single session) and reduced exposure to radiation in comparison to PET/CT. The simultaneous acquisition of PET and MRI also provides advantages such as improved reconstruction of PET data using anatomical information and motion correction and improved arterial input function characterization (obtained from MRI) for PET kinetic modeling [151]. Improved delineation of tumor extent, by adding PET–PET or MET–PET to MRI physiological imaging, will benefit...
treatment planning and assessment of tumor recurrence [152,153]. The combination of blood flow, vessel permeability, diffusion and metabolite data provided by MRI/MRS with PET tracers for hypoxia, proliferation and necrosis, as well as the development of bimodal tracers, would also enable a more comprehensive assessment of tumor status and an earlier assessment of response to treatment. These unique applications, when clinical experience is established, are expected to drive the wider acceptance of hybrid systems in the future.

4.2. Advances in data analysis

New developments in computer hardware and software promise to continue revolutionizing the field of medical imaging. The same advances in high throughput calculations that have made possible computed tomography of X-ray based scanners and the reconstruction of MR images from signals acquired in k-space, can also be used for the post-processing of acquired raw data and the computation of derived biomarkers that can assist clinicians in the management of gliomas.

4.2.1. Quantitative biomarkers

Clinical standards such as T1-weighted, T2-weighted or FLAIR protocols provide images of tissue contrast that are used for the qualitative assessment of brain tumors. Yet, a quantitative assessment of tumor morphological and physiological parameters could lead to more accurate tumor grading, by avoiding the sampling error that can result from biopsy tissue selection processes. A precise quantitative assessment of tumor spread would also benefit radiotherapy planning and the assessment of the efficacy of treatment [44].

Tissue contrast, in commonly used anatomical scans, depends on the tracer used, the acquisition parameters of the protocol, the hardware used, and the ability of the contrast agent to reach targeted sites, making the delineation of borders of infiltrative tumors challenging in gliomas. Biomarkers derived from physiological scans can be of assistance in this respect, such as those derived from perfusion and water molecule diffusion sequences, absolute concentrations of abundant metabolites and standard uptake values of PET tracers, which are quantitative in nature [154]. Biomarker determination often requires offline processing of the acquired raw data, possibly using complex pharmacokinetic models to account for exchange of tracers between vascular and extra-vascular compartments [155]. Standardization of the mathematical models and algorithms used will be needed to enable inter-institutional comparisons of quantitative biomarkers and end points derived from such studies.

4.2.2. Composite biomarkers

As MRI protocols based on new contrast mechanisms are implemented and complemented with information from other imaging modalities, a growing number of parameters will be made available that can be combined to increase our ability to image relevant features of brain tumors and assess critical treatment information. Computer-based image analysis of such multi-parametric datasets can be used to classify brain tumors by type and grade [156], predict survival [157], detect early progression [158] or identify infiltrated tissue likely to result from tumor recurrence after resection [159]. Computational methods used may include machine learning, multi-parametric segmentation and biophysical modeling of tumors [160].

4.2.3. Computer-assisted decision making

Expert systems are information systems that make decisions based on a complex set of information and rules. They can assist in establishing diagnosis based on symptoms. Neural networks systems, for example, create interaction models that reproduce the type of connections that occur in the brain. After a training period during which parameters that describe the connections are established, new cases are presented to the model for classification. Such techniques have often proven to be superior to conventional manual approaches for the analysis of multi-parametric MR images, in applications such as the classification of brain neoplasms [161,162], glioma cell population discrimination [163], prediction of survival [157], distinction of pseudoprogression from tumor recurrence [164] or assessment of responses to anti-angiogenic therapy [165].

4.2.4. Tumor growth modeling

During the last two decades, a number of mathematical models have been developed to simulate tumor growth. These models may be useful to plan and predict the efficacy of treatment and to develop and test hypotheses that can lead to a better understanding of the biological process involved in tumor development [166,167]. Acquired MRI series can be registered to a brain atlas to help identify abnormal signals in these sequences, or to serve as a basis for growth simulation accounting for cell proliferation and tissue deformations [168].

4.2.5. Visualization

Visualization refers to the rendering of measurements for human interpretation, with the goal to generate insight and develop knowledge beyond the simple display of raw data. In this context, data might take the form of spatially distributed single scalars (such as pixel intensity, blood volume, amino acid uptake ...), vectors or tensors (water molecule diffusion anisotropy), spectroscopic measurements or even biological 'omics' data such as gene expression, signaling pathways, protein interaction networks, etc.

The pathway from data to insight involves several technologies, including computer graphics and display technologies (2D/3D/4D, representations of colors, multimodality image fusion) as well as human vision and perception (viewing angle, image luminance, glare, reflection, ambient light) that can all affect diagnostic accuracy [169]. A number of features of visualization pipelines are important to facilitate the navigation through the data, and the search, qualification and quantification of relevant features. They include pre-processing steps for de-noising and elimination of artifacts, registration of images acquired on different modalities and/or at different time points, segmentation and the classification of tissue types for emphasis of relevant objects. Transfer functions can then be used to map data to visualization parameters such as gray value or opacity. Other visualization techniques include surface and volume rendering, data manipulation for multplanar slice selection, rotation and scaling of 3D volumes, clipping and virtual resection functions (to interactively remove sub-volumes from subsequent visualizations), and illumination to enhance the ability of humans to distinguish objects and their properties. The most common of these features are available in commercial software provided by imaging modality manufacturers, while some of the most advanced ones exist only in specialized software and have been used in other areas of medical imaging [170]. In the context of brain tumor imaging, applications of these visualization techniques could include diagnosis, treatment planning and education [171].

4.2.6. Virtual and augmented reality

Virtual reality is a computer-based technique used to simulate real-world environments. The simulated graphical environment can be rendered on a computer screen or through stereoscopic displays to enhance the visual experience. The technique is for instance used for the training of neurosurgeons [172]. Augmented reality extends this concept by superimposing computer-generated graphics to real world images in real time. Its use in the operating room is appealing as it could provide the neurosurgeon with an interactive atlas of the patient brain, reconstructed from pre-operative images [173]. This could be used to locate in situ tumor infiltrated tissue as well as eloquent areas of the brain that have to be spared during surgery.

4.2.7. Omics' data enrichment

Omnics data, such as DNA, RNA, proteins and metabolite data, generated through high throughput analysis of body fluids and tissue extracts, provides insight into the molecular changes induced in a
given tumor phenotype or by a specific treatment. Although such tech-
iques typically provide limited information on the spatial distribution
of these molecules, they complement and enrich the image biomarkers
by providing novel genetic classification tools and important molecular
biomarkers such as 1p/19q co-deletion, MGMT methylation and IDH
mutation, which have clinical relevance in diagnosis, prognosis and
establishment of treatment strategies [174,175].

Alongside, these technical advances in data management and image
processing techniques could be used in a data management framework
designed to provide physicians with the information needed to support
the decision process during the course of glioma management (Fig. 5).

5. Perspectives

Given the large volume of ongoing cancer research, one may hope
for a better outlook for glioma patients in the near future. New treat-
ment approaches may target the specific features of individual tumors,
and this requires neuroimaging to evolve, in particular, by making use
of multi-modal imaging techniques, molecular probes and quantitative
biomarkers of the disease. MRI is expected to remain the modality of
choice because of the versatility in providing soft tissue contrasts. PET
and possibly SPECT will also continue to contribute to their func-
tional and molecular imaging capabilities, and superior sensitivity.

The integration of data coming from different imaging modalities
and the use of novel and improved contrast by labeling endogenous
and exogenous molecules will provide access to consolidated disease-
relevan biomarkers. The combination of PET tracers targeting amino
acids and cell metabolism with MRI techniques, such as diffusion, perfu-
sion, spectroscopy, and hyperpolarization techniques, could, for
instance, be used to provide an integrated view of cellular proliferation
and metabolic activity of the tumor. The same imaging markers would
also be used for a precise delineation of the tumor extent prior to treat-
ment, or for the identification of the most relevant targets for biopsies.

Water molecule diffusion, changes in vascular structures, metabolite
ratios, protein content detected by magnetization transfer, and nano-
radiopharmaceutical tracers, homing to infiltrating cells, could all contrib-
te to the assessment of tumor cell invasion in the future. Molecular imaging
techniques, using PET tracers or nanoparticles loaded with MR
reporters, could be used to probe pathologically modulated levels of
receptors, cytokines, growth factors and related signaling pathways.

Together with histology, immunohistochemistry and molecular
‘omics’ analyses of tumor biopsies and body fluids, this would help strat-
fify patients to the treatment providing the best prognosis. The avail-
bility of disease relevant biomarkers such as proliferation, efficiency of
drug delivery, cell death, changes in microenvironment, tumor cell inva-
sion, and immune system responses, would make the global assessment
of treatment efficiency more precise than with the non-specific contrast
providing to the right balance between several factors, including completeness of information, scan time, patient
comfort/discomfort and overall cost. Given the growing number of information
sources and the need to integrate them, advanced computerized data
analysis and presentation techniques will be required, ultimately
providing physicians with a set of validated imaging and non-imaging
biomarkers, needed to make properly informed decisions during the course of
the disease.

Acknowledgments

This work was funded by the Centre de Recherche Public de la Santé
(CRP-Santé) of Luxembourg, the University of Bergen and the
Haukeland Hospital of Bergen, Norway.

References

Ludwin, T. Gorlia, A. Allgier, L. Dacomb, J.G. Cairncross, E. Eisenhauer, R.O. Mirimanof,
R. European Organisation for, T. Treatment of Cancer Brain, G. Radio-
therapy, G. National Cancer Institute of Canada Clinical Trials, Radiotherapy plus
coadjuvant and concomitant temozolomide for glioblastoma, N. Engl. J. Med. 350

Ludwin, A. Allgier, B. Fisher, K. Belanger, P. Hau, A.A. Brandes, J. Cijtenbeek, C.
L. Dacomb, J.G. Cairncross, R.O. Mirimanof, R. European Organisation for,
T. Treatment of Cancer Brain, G. Radiation Oncology, G. National Cancer Insti-
tute of Canada Clinical Trials, Effects of radiotherapy with concomitant and adju-
vant temozolomide versus radiotherapy alone on survival in glioblastoma in a ran-
domised phase III study: 5-year analysis of the EORTC–NCICT trial, Lancet Oncol.

S.K. Ellika, R. Jain, S.C. Patel, L. Scarpace, L.R. Schultz, J.P. Rock, T. Mikkelsen, Role of
D. Sturm, S. Bender, D.T. Jones, P. Lichter, J. Grill, O. Becher, C. Hawkins, J. Majewski,
M. Law, S. Yang, H. Wang, J.S. Babb, G. Johnson, S. Cha, E.A. Knopp, D. Zagzag, Gli-
oma grading, sensitivity, specificity, and predictive values of perfusion MR imaging and
proton MR spectroscopic imaging compared with conventional MR imaging,

sion MR imaging in glioma grading and comparison with conventional MR imaging

[6] D.C. Hanwood-Nash, Neuroimaging in oncology: prediction, delineate a paradigm of dise-

identified clinically relevant subtypes of glioblastoma characterized by abnormalities in
PDGFRA, IDH1, EGFR, and NF1, Cancer Cell 17 (2010) 98–110.

Aldepe, C.W. Brennan, N. Jabado, S.M. Pfister, Paediatric and adult glioblastoma: multi-

H. Muro, T. Nihashi, I.J. Dahabreh, T. Terasawa, PET in the clinical management of glioma:

sion MR imaging in glioma grading and comparison with conventional MR imaging

sion MR imaging in glioma grading and comparison with conventional MR imaging

Lavee, K. Aldepe, C.W. Brennan, N. Jabado, S.M. Pfister, Paediatric and adult glioblastoma: multi-

[18] J.M. Rorhaering, Glioblastoma multiforme—new approaches to therapy, Cancer J.

H. Muro, T. Nihashi, I.J. Dahabreh, T. Terasawa, PET in the clinical management of glioma:

[40] S. Gonzalez, M.H. Lev, Glioma recurrence versus radiation necrosis? A pilot compar-

[43] S. De La Fuente, R. Abramovitch, Hemodynamic response imaging: a potential tool for the as-

[44] M. Hernandez-Seara, R.L. Edlow, A. Hoang, J.A. Detre, Min-

