Focus paper

Four billion years of ophiolites reveal secular trends in oceanic crust formation

Harald Furnes a, *, Maarten de Wit b, Yildirim Dilek c, d

a Department of Earth Science and Centre for Geobiology, University of Bergen, Allegt. 41, 5007 Bergen, Norway
b AEON and Earth Stewardship Science Research Institute, Nelson Mandela Metropolitan University 7791, Port Elizabeth 6031, South Africa
c Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA
d State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China

A B S T R A C T

We combine a geological, geochemical and tectonic dataset from 118 ophiolite complexes of the major global Phanerozoic orogenic belts with similar datasets of ophiolites from 111 Precambrian greenstone belts to construct an overview of oceanic crust generation over 4 billion years. Geochemical discrimination systematics built on immobile trace elements reveal that the basaltic units of the Phanerozoic ophiolites are dominantly subduction-related (75%), linked to backarc processes and characterized by a strong MORB component, similar to ophiolites in Precambrian greenstone sequences (85%). The remaining 25% Phanerozoic subduction-unrelated ophiolites are mainly (74%) of Mid-Ocean-Ridge type (MORB type), in contrast to the equal proportion of Rift/Continental Margin, Plume, and MORB type ophiolites in the Precambrian greenstone belts. Throughout the Phanerozoic there are large geochemical variations in major and trace elements, but for average element values calculated in 5 bins of 100 million year intervals there are no obvious secular trends. By contrast, basaltic units in the ophiolites of the Precambrian greenstones (calculated in 12 bins of 250 million years intervals), starting in late Paleoproterozoic to early Mesoproterozoic (ca. 2.0–1.8 Ga), exhibit an apparent decrease in the average values of incompatible elements such as Ti, P, Zr, Y and Nb, and an increase in the compatible elements Ni and Cr with deeper time to the end of the Archean and into the Hadean. These changes can be attributed to decreasing degrees of partial melting of the upper mantle from Hadean/Archean to Present. The onset of geochemical changes coincide with the timing of detectible changes in the structural architecture of the ophiolites such as greater volumes of gabbro and more common sheeted dyke complexes, and lesser occurrences of ocelli (varioles) in the pillow lavas in ophiolites younger than 2 Ga. The global data from the Precambrian ophiolites, representative of nearly 50% of all known worldwide greenstone belts provide significant clues for the operation of plate tectonic processes in the Archean.

© 2014, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Ophiolites are “suites of temporally and spatially associated ultramafic to felsic rocks related to separate melting episodes and processes of magmatic differentiation in particular oceanic tectonic environments” (Dilek and Furnes, 2011). Their geochemical characteristics, internal structure, and thickness are strongly controlled by spreading rate, proximity to plumes or trenches, mantle temperature, mantle fertility, and the availability of fluids”. In this new definition, ophiolites are categorized in subduction-unrelated and subduction-related groups. The subduction-unrelated ophiolites include continental margin-, mid-ocean-ridge- (plume-proximal,
plume-distal, and trench-distal subtypes), and plume (plume-proximal ridge and oceanic plateau subtypes) type ophiolites, whereas the subduction-related ophiolites include supersubduction zone (backarc to forearc, forearc, oceanic backarc, and continental backarc subtypes) and volcanic arc types. The subduction-unrelated ophiolites represent the constructional stage (rift-drift to seafloor spreading) of oceanic crust formation and contain predominantly mid-ocean-ridge basalts. The subduction-related ophiolite types represent destructive stages of ocean floor recycling (subduction with or without seafloor spreading), and their magmatic products are characterised by showing variable geochemical fingerprints, indicating subduction influence.

In this paper, we summarize the lithological and geochemical characters of 118 representative Phanerozoic ophiolites, as well as four young examples (Tihama Asir; Macquarie; Taitao and Iceland) unrelated to orogenesis (Fig. 1 and Table 1). Using well-established geochemical discrimination diagrams based on stable trace elements, we interpret our global geochemical dataset in light of the new ophiolite classification of Dilek and Furnes (2011). We also use our extensive dataset on the Precambrian greenstone sequences (de Wit and Ashwal, 1997; Furnes et al., 2013), in an attempt to synthesise oceanic crust evolution over 4 billion years of Earth history. Our choice of selected ophiolites and greenstone belts is largely restricted to those from which we have sufficient field observations and geochemical data for a comparative study, though a few well-known ophiolites for which we have not found appropriate geochemical data for this classification are mentioned (shown in italics).

2. Phanerozoic orogenic belts and selected ophiolites

We provide below a short description of the Phanerozoic orogenic belts in which different ophiolite types occur (Fig. 1). For a more complete overview, we refer the reader to Dilek and Robinson (2003), and the literature under the description of each orogenic belt and Table 1. The Paleozoic orogenic belts we describe below are represented by collisional and accretionary types (Isozaki, 1997; Condie, 2007; Windley et al., 2007; Cawood et al., 2009; Wilhem et al., 2011). The examples of the collisional orogenic type include: The Caledonian-Appalachian belt, the Hercynian belt, the Uralian belt, the Maghrebian-Alpine-Himalayan belt, and the Qinling/Qilian/Kunlun belts. The examples of the accretionary type are: The Uralian belt, the Maghrebian-Alpine-Himalayan belt, and the Qinling/Qilian/Kunlun belts. The Indonesian-Myanmar belt is currently in a transitional position from subduction-accretion in the west to intra-continental rifting.

2.1. Caledonian-Appalachian belt

The tectonic history of the Scandinavian Caledonides (e.g., Roberts et al., 1985, 2007; Stephens et al., 1985; Roberts, 2003; Gee, 2005; Gee et al., 2008; Andersen et al., 2012; Hollocher et al., 2012) demonstrates a “Wilson Cycle” evolution (e.g., Dewey, 1969; Dewey and Spall, 1975), lasting over a time period of ca. 200 million years (Gee et al., 2008), starting around 600 Ma with rifting and sedimentation, separating Baltica from Rodinia. For about 80 million years (ca. 500–420 Ma) magmatism associated with oceanic crust and island arc construction took place in the Iapetus Ocean. The first and main oceanic crust-building period was between ca. 500–470 Ma that resulted in the formation of several major ophiolite complexes, and a second but short-lived event during ca. 445–435 Ma that generated two ophiolites (Dunning and Pedersen, 1988; Pedersen et al., 1991; Dilek et al., 1997; Furnes et al., 2012a). The oldest generation is represented by the Lyngen, Leka, Trondheim area, Gulfjell and Karmøy ophiolites, and the youngest generation is represented by the Sulitjelma and Solund-Stavfjord ophiolites (Fig. 1, Table 1).

The northern Appalachians, even though in some respects different from the Scandinavian Caledonides (e.g., Dewey and Kidd, 1974; van Staal et al., 2009; Zagorevski and van Staal, 2011), show much the same timing of oceanic crust and island arc construction processes (e.g., Anniopsquoth, Bay of Islands, Betts Cove, Lac Brompton, Thetford Mines) as those in Ireland (the Clew Bay ophiolite, e.g., Chew et al., 2010, and Tyronne Igeous Complex, e.g., Hollis et al., 2013), Scotland (Ballantrae, e.g., Leslie et al., 2008; Sawaki et al., 2010), the Unst ophiolite in the Shetlands (Flinn et al., 1979; Prichard, 1985; Cutts et al., 2011) and Scandinavia (Fig. 1, Table 1).

2.2. Hercynian belt

The Hercynian (or Variscan) orogenic belt (e.g., Zwart, 1967) extends from western Europe (Portugal) in the west to the Czech Republic in central Europe and to Turkey in the eastern Mediterranean region (Fig. 1). It represents a complex subduction-accretion-collision belt, developed during the closure of a series of Paleozoic basins during the Ordovician to early Carboniferous, as a result of the convergence of Gondwana and Laurussia (e.g., Matte, 1991; Kroner and Romer, 2013). The Variscan orogeny lasted for about 110 million years (410–300 Ma). Subduction-accretion processes occurred between 410 Ma and 330 Ma, and during this time period ophiolite-, island arc-, continental intra-plate and granitoid magmatism took place; subsequent final magmatic activity was dominated by post-kinematic granitoids (Kroner and Romer, 2013; Uysal et al., 2013). Rifting of the Gondwana margin resulted in bimodal magmatism in the early Paleozoic (e.g., Furnes et al., 1994; Crowley et al., 2000; Floyd et al., 2002), and in the development of small ocean basins (e.g., Finger and Steyerl, 1995). Three of the Hercynian ophiolites, the early Ordovician Internal Ossa-Morena Zone ophiolite sequences (IOMZOS) in SE Spain, and the late Silurian Kazcawa Mts. and the early Devonian Slezsa sequences in Poland (Fig. 1, Table 1) are included in our synthesis. Another important magmatic complex is the Lizard Complex in SW England, for which we do not have appropriate geochemical data for our magmatic evaluation. Kirby (1979) interpreted this complex of massive and layered gabbro, dikes and peridotites as an ophiolite, whereas Floyd (1984) interpreted it as a fragment of oceanic crust formed in a rifted continental margin. Nutman et al. (2001) suggested that it represents a magmatic complex formed as a result of intra-continental rifting.

2.3. Uralian belt

The Uralides (Fig. 1) define an arc-continent collision orogenic belt (e.g., Zonenshain et al., 1985; Ryazantsev et al., 2008) that is >4000 km long, and extend from the Kara Sea (north) to Kazakhstan (south). The remnants of the early Paleozoic subduction-accretion complexes occur along a suture zone between the East European and the West Siberian cratons (Spadec and D’Antonio, 2006; Pushkov, 2009). We have included three Uralian ophiolites, the Nurali, Magnitogorsk and Kempersay (Fig. 1, Table 1), in this synthesis.

2.4. Maghrebian-Alpine-Himalayan belt

The Maghrebian-Alpine-Himalayan belt, also referred to as the Alpides, extends from Morocco in the west, through the European Alps, the Anatolides, Zagros, Makran, and the Himalayas in the east, defining an orogenic belt with a length of ca. 9000 km. The
production of the ophiolites and island arc sequences and the tectonic processes that shaped this extensive orogenic belt are essentially of Mesozoic–Cenozoic age. The development of this belt occurred during the evolution of the Tethyan Ocean through a prolonged and complicated process whereby the opening and closure of Paleotethys and Neotethys and the production of several backarc basins overlapped in time and space (Dilek et al., 1990; Stampfli and Borel, 2002; Stampfli and Hochard, 2009). Silurian rifting of the northern Gondwana margin adjacent to the Proto-Tethyan Ocean (Rheic and Asiatic oceans) produced the Hun Superterrane. Continued extension led to the opening and development of the Paleo-Tethyan Ocean between the northern

Figure 1. Map showing the global distribution of major Phanerozoic orogenic belts on a north polar projection (modified from Dilek and Furnes, 2011). Blue labelled dots show the location of the Phanerozoic ophiolites listed in Table 1 and red and grey dots show the location of Proterozoic and Archean greenstone sequences, respectively, as investigated in Furnes et al. (2013). Acronym: IBM = Izu-Bonin-Mariana arc-trench rollback system.
Table 1
Summary of selected ophiolite sequences.

<table>
<thead>
<tr>
<th>Ophiolitic magmatic complexes</th>
<th>Orogenic belt</th>
<th>Age (Ma)</th>
<th>Lithological components</th>
<th>Suggested tectonic setting</th>
<th>Main references to geology/geochronology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caledonian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyngen (Ly)</td>
<td>Norway</td>
<td>ca. 480</td>
<td>Basaltic and boninitic pillow lava and mafic volcaniclastic rocks, dykes and gabbro, tonalite intrusions</td>
<td>Incipient oceanic arc</td>
<td>Selbekk et al. (1998); Kvassnes et al. (2004); H. Furnes (unpubl. data)</td>
</tr>
<tr>
<td>Leka (Lk)</td>
<td>Norway</td>
<td>497</td>
<td>Basaltic and boninitic pillow lava, sheeted dykes, plagiogranite, gabbro, ultramafic cumulates, mantle peridotites</td>
<td>Intraoceanic subduction</td>
<td>Furnes et al. (1988, 1992)</td>
</tr>
<tr>
<td>Suldjelma (Sj)</td>
<td>Norway</td>
<td>437</td>
<td>Basalt pillow lava, sheeted dykes, varitextured and layered gabbro</td>
<td>Marginal basin</td>
<td>Pedersen et al. (1991)</td>
</tr>
<tr>
<td>Trondheim area (Ta)</td>
<td>Norway</td>
<td>493–481</td>
<td>Basaltic pillow lava, sheeted dykes, plagiogranite, gabbro, ultramafic cumulates</td>
<td>Island arc/backarc</td>
<td>Heim et al. (1987); Grenne (1989); Slagstad (2003)</td>
</tr>
<tr>
<td>Solund-Stavfjord (SS)</td>
<td>Norway</td>
<td>442</td>
<td>Basaltic pillow and massive lava, sheeted dykes, gabbro</td>
<td>Suprasubduction zone</td>
<td>Furnes et al. (2012a)</td>
</tr>
<tr>
<td>Gulfjell (Gf)</td>
<td>Norway</td>
<td>498</td>
<td>Basaltic and boninitic pillow lava, sheeted dykes, plagiogranite, gabbro, mantle peridotites</td>
<td>Forearc</td>
<td>Heskestad et al. (1994)</td>
</tr>
<tr>
<td>Karmoy (Ko)</td>
<td>Norway</td>
<td>497–470</td>
<td>Basaltic and bon. pillow lava, sheeted dykes, pl. granite, gabbro, ultram. cum.</td>
<td>Island arc/arc basin</td>
<td>Pedersen and Hertogen (1990)</td>
</tr>
<tr>
<td>Ballantrae (Bt)</td>
<td>Scotland</td>
<td>470</td>
<td>Basaltic and boninitic pillow lava, dolerite dykes, gabbro, trodhenite, wehrlite, harzburgite, dunite</td>
<td>Backarc basin</td>
<td>Smellie et al. (1995); Oliver and McAlpine (1998)</td>
</tr>
<tr>
<td>Tyrone Igneous Complex (Tr)</td>
<td>Ireland</td>
<td>490–475</td>
<td>Tyrone Igneous Complex (oldest): layered and isotropic gabbro, basaltic dykes, pillow lava; Tyrone Volc. Group (youngest): basaltic to rhyolitic volcanic rocks</td>
<td>Forearc accretionary complex Suprasubduction zone</td>
<td>Sawaki et al. (2010)</td>
</tr>
<tr>
<td>Appalachian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birchy Complex (BiC)</td>
<td>Nfld, Canada</td>
<td>557</td>
<td>Basaltic lava, sediments, serpentinites</td>
<td>Rift-related</td>
<td>van Staal et al. (2013)</td>
</tr>
<tr>
<td>Annieopsquotch (Ao)</td>
<td>Nfld, Canada</td>
<td>480</td>
<td>Basaltic and boninitic pillow lava, sheeted dykes, gabbro</td>
<td>Suprasubduction - backarc</td>
<td>Lissenberg et al. (2005)</td>
</tr>
<tr>
<td>Bay of Islands (BI)</td>
<td>Nfld, Canada</td>
<td>485</td>
<td>Basaltic and boninitic pillow lava, sheeted dykes, gabbro</td>
<td>Marginal basin-arc</td>
<td>Kurth-Velz et al. (2004)</td>
</tr>
<tr>
<td>Betts Cove (BC)</td>
<td>Nfld, Canada</td>
<td>488</td>
<td>Basaltic and bon. pillow lava, sheeted dykes, gabbro, px.nite, lay.cum, peridotites</td>
<td>Suprasubduction zone</td>
<td>Bédard (1999)</td>
</tr>
<tr>
<td>Lac Brompton (LB)</td>
<td>Quebec, Canada</td>
<td>480</td>
<td>Boninitic volcanic rocks, gabbro, pyroxenite, harzburgite</td>
<td>Forearc seafloor</td>
<td>De Souza et al. (2008)</td>
</tr>
<tr>
<td>Thetford Mines (TM)</td>
<td>Quebec, Canada</td>
<td>479</td>
<td>Basaltic and boninitic pillow lava, basaltic to rhyolitic volcanic rocks, gabbro, peridotites</td>
<td>Spreading in forearc</td>
<td>Olive et al. (1997); Page et al. (2009)</td>
</tr>
<tr>
<td>Uralian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurali (Nr)</td>
<td>Russia</td>
<td>468–483</td>
<td>Basaltic lava (cut by dykes), gabbro, peridotite, set in a melange</td>
<td>Int. oc. arc/cont. marg.</td>
<td>Gaggero et al. (1997)</td>
</tr>
<tr>
<td>Magnitogorsk (Mg)</td>
<td>Russia</td>
<td>ca. 400–385</td>
<td>Basaltic and boninitic pillow lava, hyaloclastite, dykes, diorite</td>
<td>Forearc region</td>
<td>Spadea et al. (1998, 2002); Spadea and Scarrow (2000)</td>
</tr>
<tr>
<td>Kempersay (Kp)</td>
<td>Kazakhstan</td>
<td>470–485</td>
<td>Basalt lava, sheeted dykes, gabbro, harzburgite, ilherzolite</td>
<td>Marginal basin, oceanic crust</td>
<td>Savelieva et al. (1997); Savelieva (2011)</td>
</tr>
<tr>
<td>Central Asian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayankhongor (Bkh)</td>
<td>Mongolia</td>
<td>210–298</td>
<td>Sheeted dykes, leuco- and prophyritic gabbro</td>
<td>Mid-ocean ridge</td>
<td>Buchan et al. (2001, 2002); Jian et al. (2010)</td>
</tr>
<tr>
<td>Xiaohuangshan (Xh)</td>
<td>China</td>
<td>340</td>
<td>Basalt, gabbro, serpentinized ultramafic rocks</td>
<td>Arc-basin system</td>
<td>Zheng et al. (2013)</td>
</tr>
<tr>
<td>Hegenshan (Hs)</td>
<td>China</td>
<td>400–350</td>
<td>Sparse basaltic lava and dykes; gabbro, serpentinized ultramafic rocks</td>
<td>Island arc-marginal basin</td>
<td>Robinson et al. (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>333–354</td>
<td>Lherzolite dominated group</td>
<td>Mantel upwelling in a subcontinental setting</td>
<td>Jian et al. (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125–142</td>
<td>Harzburgite-dominated group</td>
<td></td>
<td>Jian et al. (2012)</td>
</tr>
<tr>
<td>Qingling-Qilian-Kunlun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dongcaohe (Dc)</td>
<td>China</td>
<td>497</td>
<td>Basaltic pillow lava, gabbro, keratophyre, dunite, harzburgite</td>
<td>Oceanic crust</td>
<td>Teng et al. (2007)</td>
</tr>
<tr>
<td>Yushigou (Yg)</td>
<td>China</td>
<td>550</td>
<td>Basaltic pillow lava, gabbro, keratophyre, dunite, harzburgite, dunite</td>
<td>Backarc basin, oc.crust</td>
<td>Hou et al. (2006)</td>
</tr>
<tr>
<td>Jiugequan (Jq)</td>
<td>China</td>
<td>490</td>
<td>Basaltic pillow lava, sheeted dykes, gabbro, serpentinites</td>
<td>Backarc basin</td>
<td>Xia and Song (2010)</td>
</tr>
<tr>
<td>Ophiolitic magmatic complexes</td>
<td>Orogenic belt</td>
<td>Age (Ma)</td>
<td>Lithological components</td>
<td>Suggested tectonic setting</td>
<td>Main references to geology/geochemistry</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Kudi (Ki)</td>
<td>China</td>
<td>ca. 458</td>
<td>Pillowed and massive lava, diabase dykes, cum. gabbro, px.nite, harzb., dunite</td>
<td>Backarc basin</td>
<td>Wang et al. (2002); Xiao et al. (2002)</td>
</tr>
<tr>
<td>Buqingshan (Bq)</td>
<td>China</td>
<td>ca. 470</td>
<td>Pillowed and massive basalt lava, diabase, gabbro, peridotite</td>
<td>Mid-ocean ridge</td>
<td>Bian et al. (2004)</td>
</tr>
<tr>
<td>Bangong-Nujiang Suture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ailaoshan (As)</td>
<td>China</td>
<td>ca. 387–374</td>
<td>Ophiolitic melange containing basalt, diabase, gabbro, peridotite</td>
<td>Mid-ocean ridge</td>
<td>Jian et al. (2009)</td>
</tr>
<tr>
<td>Jinhaijiang (Jh)</td>
<td>China</td>
<td>346–341</td>
<td>Ophiolitic melange containing basalt, diabase, gabbro, peridotite</td>
<td>Mid-ocean ridge</td>
<td>Jian et al. (2009)</td>
</tr>
<tr>
<td>Changning-Menglian (C-M)</td>
<td>China</td>
<td>270–264</td>
<td>Ophiolitic melange containing basalt, diabase, gabbro, peridotite</td>
<td>Suprasubduction zone</td>
<td>Jian et al. (2009)</td>
</tr>
<tr>
<td>Qiangtang (Qt)</td>
<td>Tibet</td>
<td>ca. 355</td>
<td>Basalt, gabbro, trondhjemite</td>
<td>Mid-ocean ridge</td>
<td>Zhai et al. (2013)</td>
</tr>
<tr>
<td>Sleza (Sl)</td>
<td>Poland</td>
<td>ca. 400</td>
<td>Basaltic pillow lavas, sheeted dykes, isotropic and layered gabbro</td>
<td>Mid-ocean ridge</td>
<td>Floyd et al. (2002)</td>
</tr>
<tr>
<td>Kaczawa Mts. (Kz)</td>
<td>Poland</td>
<td>ca. 420</td>
<td>Pillowed and massive basalt lava and dykes</td>
<td>Rift type</td>
<td>Furnes et al. (1994)</td>
</tr>
<tr>
<td>IOMZOS (IZ)</td>
<td>Spain</td>
<td>ca. 480</td>
<td>Basalt dykes, gabbro, dunite, wehrlite, pyroxenite</td>
<td>Mid-ocean ridge</td>
<td>Pedro et al. (2010)</td>
</tr>
<tr>
<td>Betic ophiolitic Unit (BU)</td>
<td>SE Spain</td>
<td>185</td>
<td>Pillow lava and gabbro (eclogites and amphibolites), ultramafic rocks</td>
<td>Mid-ocean ridge, ultralow</td>
<td>Charlot-Prat (2005); Manatschal et al. (2011)</td>
</tr>
<tr>
<td>Chenaillet (Cn)</td>
<td>France-Italy</td>
<td>165–153</td>
<td>Basaltic pillow lava, gabbro, serpentinites</td>
<td>Mid-ocean ridge, ultralow</td>
<td>Charlot-Prat (2005); Manatschal et al. (2011)</td>
</tr>
<tr>
<td>Zermatt-Saas (ZS)</td>
<td>Switzerland-Italy</td>
<td>164</td>
<td>Basaltic pillow lava, gabbro, serpentinites</td>
<td>Mid-ocean ridge</td>
<td>Kramer et al. (2003)</td>
</tr>
<tr>
<td>External Ligurides (EL)</td>
<td>North Italy</td>
<td>ca. 170–180</td>
<td>Basalt, gabbro, subcontinental mantle</td>
<td>Mid-ocean ridge</td>
<td>Montanini et al. (2008); Ortonello et al. (1984); Rampone et al. (1998) Liberi et al. (2006); Tortorici et al. (2009)</td>
</tr>
<tr>
<td>Internal Ligurides (IL)</td>
<td>North Italy</td>
<td>ca. 170</td>
<td>Basaltic pillow lava, gabbro, peridotites</td>
<td>Mid-ocean ridge</td>
<td>Montanini et al. (2008); Ortonello et al. (1984); Rampone et al. (1998) Liberi et al. (2006); Tortorici et al. (2009)</td>
</tr>
<tr>
<td>Calabrian (Cb)</td>
<td>South Italy</td>
<td>150–140</td>
<td>Mafic and ultramafic rocks in melanges</td>
<td>Rift stage</td>
<td>Montanini et al. (2008); Ortonello et al. (1984); Rampone et al. (1998) Liberi et al. (2006); Tortorici et al. (2009)</td>
</tr>
<tr>
<td>Corsica (Cr)</td>
<td>Corsica</td>
<td>ca. 160</td>
<td>Schistes Lustres Complex: Pillow lava, peridotites</td>
<td>Rift stage to ocean opening</td>
<td>Saccani et al. (2008)</td>
</tr>
<tr>
<td>Mirdita (Md)</td>
<td>Albania</td>
<td>165</td>
<td>Basalt and boninitic pillow lava, sheeted dykes, gabbro, ultramafic cumulates, harzburgite and dunite. Felsic and boninitic lavas on top of sequence</td>
<td>Suprasubduction zone</td>
<td>Dilek and Polat (2008)</td>
</tr>
<tr>
<td>Pindos (Pd)</td>
<td>Greece</td>
<td>165</td>
<td>Basalt and boninitic pillow lava, sheeted dykes, gabbro, ultramafic cumulates, harzburgite and dunite. Felsic and boninitic lavas on top of sequence</td>
<td>Suprasubduction zone</td>
<td>Pe-Piper et al. (2004); Dilek and Furnes (2009)</td>
</tr>
<tr>
<td>Troodos (Td)</td>
<td>Cyprus</td>
<td>92</td>
<td>Basaltic and boninitic pillow lava, sheeted dykes, gabbro, ultramafic cumulates, harzburgite and dunite</td>
<td>Suprasubduction zone initation setting</td>
<td>Rautenschlein et al. (1985); Pearce and Robinson (2010) Dilek and Thy (2009)</td>
</tr>
<tr>
<td>Kizildag (Kd)</td>
<td>Turkey</td>
<td>92</td>
<td>Basaltic and boninitic pillow lava, sheeted dykes, gabbro, ultramafic cumulates, harzburgite and dunite</td>
<td>Suprasubduction zone</td>
<td>Goodenough et al. (2010)</td>
</tr>
<tr>
<td>Oman (Om)</td>
<td>Oman</td>
<td>96</td>
<td>Basaltic and boninitic pillow lava, sheeted dykes, gabbro, ultramafic cumulates, peridotites (harzburgite and dunite)</td>
<td>Suprasubduction zone</td>
<td>Goodenough et al. (2010)</td>
</tr>
<tr>
<td>Masirah (Ms)</td>
<td>Oman</td>
<td>140</td>
<td>Basaltic pillow lava and sheet flows, sheeted dykes, layered and isotropic gabbro, dunite, wehrlite, trondhjemite, felsic and boninitic lavas on top of sequence</td>
<td>Opening of ocean basin</td>
<td>Abbotts (1981); Mahoney et al. (1998); Peters and Mercoll (1998)</td>
</tr>
<tr>
<td>Sevan (Sw)</td>
<td>Armenia</td>
<td>165</td>
<td>Pillowed and massive basalt flows, gabbro and peridotites</td>
<td>Slow-spreading oc.crust</td>
<td>Galayan et al. (2009)</td>
</tr>
<tr>
<td>Khoi (Kh)</td>
<td>Iran</td>
<td>ca. 140–130</td>
<td>Pillowed and massive basaltic lava, gabbro (layered and isotropic), mantle lherzolite and harzburgite</td>
<td>Ocean spreading centre</td>
<td>Hassanipak and Ghazi (2000); Khalatbari-Jafari et al. (2006)</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 1 (continued)

<table>
<thead>
<tr>
<th>Ophiolitic magmatic complexes</th>
<th>Orogenic belt</th>
<th>Age (Ma)</th>
<th>Lithological components</th>
<th>Suggested tectonic setting</th>
<th>Main references to geology/geochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band-e-Zeyarat/Dar Anar (BZ)</td>
<td>Iran</td>
<td>142–141</td>
<td>Basaltic pillow lava, sheeted dykes, gabbro, set in melange</td>
<td>Mid-ocean ridge</td>
<td>Ghazi et al. (2004)</td>
</tr>
<tr>
<td>Dehshir (Di)</td>
<td>Iran</td>
<td>ca. 100</td>
<td>Basaltic pillow lava, sheeted dykes, pl.granite, gb., ultram.stream., harzb., dunitie</td>
<td>Suprasubduction zone</td>
<td>Shafaii Moghadam et al. (2010)</td>
</tr>
<tr>
<td>Baft-Nain (B-N)</td>
<td>Iran</td>
<td>ca. 100</td>
<td>Pulloved and massive basalt lava, sheeted dykes, gabbro, harzburgite</td>
<td>Small backarc basin</td>
<td>Shafaii Moghadam et al. (2008)</td>
</tr>
<tr>
<td>Sabzevar (Sz)</td>
<td>Iran</td>
<td>ca. 100–66</td>
<td>Basalts, bas.and., dacite, rhyolite, basanite, gabbro, harzb., dunitie, lherzolite</td>
<td>Mid-ocean ridge</td>
<td>Shojaat et al. (2003)</td>
</tr>
<tr>
<td>Neyriz (Ny)</td>
<td>Iran</td>
<td>92</td>
<td>Volcanic and volcaniclastic rocks, sheeted dykes, rh.dac., pl.granite, gb., perid.</td>
<td>Suprasubduction zone</td>
<td>Babaie et al. (2006)</td>
</tr>
<tr>
<td>Nehbandan (Nb)</td>
<td>Iran</td>
<td>ca. 100–60</td>
<td>Basaltic and boninitic pulloved and massive lava, high-level and cumulate gabbro, mantle tectonite</td>
<td>Mid-ocean ridge to suprasubduction zone</td>
<td>Saccani et al. (2010)</td>
</tr>
<tr>
<td>Muslim Bagh (MB)</td>
<td>Pakistan</td>
<td>157–118</td>
<td>Lower nappe of pillow lava and sediments in melange, upper nappe of gabbro and dolerite dykes</td>
<td>Island arc/mid-ocean ridge</td>
<td>Khan et al. (2007a)</td>
</tr>
<tr>
<td>Waziristan (Ws)</td>
<td>Pakistan</td>
<td>ca. 100</td>
<td>Basaltic pillow lava, harzburgite</td>
<td>Island arc/mid-ocean ridge</td>
<td>Khan et al. (2007b)</td>
</tr>
</tbody>
</table>

Yarlung-Zangbo

<p>| Dras (Ds) | India | ca. 135 | Basaltic and andesitic lava, mantel tectonites | Intraoceanic arc | Clift et al. (2002) |
| Spontang (St) | India | 130–110 | Basaltic pillow lava, dykes, gabbro | Intracrustal arc | Mahéo et al. (2004) |
| Nidar (Nr) | India | 130–110 | Basaltic pillow lava, dykes, gabbro | Intracrustal arc | Mahéo et al. (2004) |
| Xinguagou (Xg) | Tibet | ca. 125 | Mafic sills, diabase, harzburgite | Backarc basin | Bezdard et al. (2011) |
| Saga (Sg) | Tibet | 155–130 | Basalt lava, sills and dykes, gabbro, harzburgite, lherzolite | Backarc basin | Bédard et al. (2009) |
| Sangsang (Ss) | Tibet | 155–130 | Basalt lava, gabbro, harzburgite | Backarc basin | Bédard et al. (2009) |
| Jiding (Jd) | Tibet | 125 | Minor basaltic pillow lava, dykes and sills, gabbro, harzburgite, lherzolite | Backarc basin | Dubois-Côté et al. (2005) |
| Beimaran (Br) | Tibet | 125 | Minor basaltic pillow lava, dykes and sills, gabbro, harzburgite, lherzolite | Backarc basin | Dubois-Côté et al. (2005) |
| Qunrang (Qr) | Tibet | 125 | Minor basaltic pillow lava, dykes and sills, gabbro, harzburgite, lherzolite | Backarc basin | Dubois-Côté et al. (2005) |
| Beinang (Ba) | Tibet | 125 | Minor basaltic pillow lava, dykes and sills, gabbro, harzburgite, lherzolite | Backarc basin | Dubois-Côté et al. (2005) |
| Dazhugu (Dh) | Tibet | 125 | Minor basaltic pillow lava, dykes and sills, gabbro, harzburgite, lherzolite | Backarc basin | Dubois-Côté et al. (2005) |
| Jinglu (Jl) | Tibet | 125 | Minor basaltic pillow lava, dykes and sills, gabbro, harzburgite, lherzolite | Backarc basin | Dubois-Côté et al. (2005) |
| Loubusa (Lb) | Tibet | 175 | Minor basaltic pillow lava, dykes and sills, gabbro, harzburgite, lherzolite | Suprasubduction zone | Malpas et al. (2003), Yang et al. (2007) |
| Zedong (Zd) | Tibet | 170–80 | Minor basaltic pillow lava, dykes and sills, gabbro, harzburgite, lherzolite | Intra-oceanic arc | Malpas et al. (2003) |
| Xigaze (Xz) | Tibet | 125–110 | Basaltic and boninitic sheeted dykes, gabbro, harzburgite | Suprasubduction zone | Chen and Xia (2008) |
| Curacao (Cc) | Caribbean | 90 | Basalts and dolerite sills | Oceanic plateau | Klaver (1987); Kerr et al. (1996a) |
| Jamaica | Caribbean | 90 | Pillowed and massive lava, dolerite and gabbro | Oceanic plateau | Hastie et al. (2008) |
| (Bath-Dunrobin Fm) (Jm) | Caribbean | 95–86 | Pillowed and massive basaltic lava, gabbro and minor plagiogranites | Oceanic plateau | Hauff et al. (2000) |
| Nicoya-Herradura (N-H) | Caribbean | 115 | Basalts, andesite, dacite/rhyolite lavas and equivalent intrusives | Subduction initiation | Escuder-Viruete et al. (2008), Escuder-Viruete et al. (2011) |
| Central Hispaniola (CH1) | Caribbean | 79–68 | Massive submarine lava flows, dolerite dykes and sills | Plume-related | Kerr et al. (2009) |
| Central Hispaniola (CH2) | Caribbean | ca. 81 | Basalt flows | Plume-related | Kerr et al. (2009) |
| ODP, Leg 165, site 1001 | Caribbean | 100–73 | Pillowed and massive mafic lava, dolerite, gabbro, ultramafic rocks | Oc. spreading centre/plume | Kerr et al. (1997) |
| Western Colombia (WC) | Colombia | ca. 125–120 | Basalt lava and breccias, gabbro, wehrlite | Suprasubduction zone | Spada et al. (1987) |
| La Tetilla (LT) | Colombia | ca. 90–76 | Basalt and komatiite, gabbro, peridotites | Oceanic plateau | Kerr et al. (1996b); Revillon et al. (2000) |
| Gorgona Isl. (Gg) | Colombia | ca. 140 | Metabasalts (eclogites), peridotites | Oc. plateau/mid-ocean ridge | Bosch et al. (2002); John et al. (2010) |</p>
<table>
<thead>
<tr>
<th>Ophiolitic magmatic complexes</th>
<th>Orogenic belt</th>
<th>Age (Ma)</th>
<th>Lithological components</th>
<th>Suggested tectonic setting</th>
<th>Main references to geology/geochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sierra del Tigre (ST)</td>
<td>Argentina</td>
<td>ca. 150</td>
<td>Basalt and gabbro</td>
<td>Rifted margin</td>
<td>Gonzáles-Menéndez et al. (2013)</td>
</tr>
<tr>
<td>Chuscho Fm (ChF)</td>
<td>Argentina</td>
<td>ca. 450</td>
<td>Basaltic pillow lavas, dykes and sills</td>
<td>Backarc basin</td>
<td>Ramos et al. (2000); Fauqué and Villar (2003)</td>
</tr>
<tr>
<td>Sarmiento (Sm)</td>
<td>Chile</td>
<td>150</td>
<td>Pillowed and massive basalt lava, sheeted dykes, layered gabbro</td>
<td>Marginal basin</td>
<td>Saunders et al. (1979); Stern (1980); Stern and Elthon (1979)</td>
</tr>
<tr>
<td>Tortuga (To)</td>
<td>Chile</td>
<td>150</td>
<td>Pillowed and massive basalt lava, sheeted dykes, layered gabbro</td>
<td>Marginal basin</td>
<td>Stern (1979, 1980); Elthon (1979)</td>
</tr>
<tr>
<td>Cordilleran and Western Pacific</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Llanda (Ld)</td>
<td>California, USA</td>
<td>ca. 160</td>
<td>Gabbro and harzburgite</td>
<td>Suprasubduction zone</td>
<td>Giaramita et al. (1998)</td>
</tr>
<tr>
<td>Black Mountain (BM)</td>
<td>California, USA</td>
<td>ca. 160</td>
<td>Basalt lava and sheeted dykes, gabbro, harzburgite</td>
<td>Suprasubduction zone</td>
<td>Giaramita et al. (1998)</td>
</tr>
<tr>
<td>Ingalls (Ig)</td>
<td>Washington, USA</td>
<td>161</td>
<td>Pillow lava and breccia, sheeted dykes, minor gabbro, mantle tectonite</td>
<td>Backarc basin</td>
<td>MacDonald et al., 2008</td>
</tr>
<tr>
<td>Elder Creek (EC)</td>
<td>California, USA</td>
<td>ca. 170</td>
<td>Volcanic rocks, sheeted dykes, gabbro, layered ultramafic rocks, mantel tectonites, abundant felsic plutonic rocks</td>
<td>Suprasubduction zone</td>
<td>Shervais (2008)</td>
</tr>
<tr>
<td>Angayucham (Ay)</td>
<td>Alaska, USA</td>
<td>ca. 210–170</td>
<td>Pillow basalt, diabase, gabbro</td>
<td>Oceanic plateau</td>
<td>Pallister et al. (1989)</td>
</tr>
<tr>
<td>Brooks Range (BR)</td>
<td>Alaska, USA</td>
<td>ca. 165</td>
<td>Pillow basalt, diabase dykes, ultramafic/mafic/intermediate intrusions, layered and isotropic gabbro, ultramafic cumulates</td>
<td>Interarc basin</td>
<td>Harris (1995)</td>
</tr>
<tr>
<td>Resurrection Peninsula (RP)</td>
<td>Alaska, USA</td>
<td>57</td>
<td>Basalt pillow lava, sheeted dykes, gabbro, trondhjemite, ultramafic rocks</td>
<td>Arc-like mid-ocean ridge</td>
<td>Lytwyn et al. (1997); Kusky and Young (1999)</td>
</tr>
<tr>
<td>Aluchin (Ac)</td>
<td>NE Russia</td>
<td>226</td>
<td>Basalt dykes and gabbro</td>
<td>Backarc basin</td>
<td>Ganelin (2011)</td>
</tr>
<tr>
<td>East Kamchatka (EK)</td>
<td>NE Russia</td>
<td>ca. 110–60</td>
<td>Basalt pillow lava, sheeted dykes, gabbro, peridotites</td>
<td>Suprasubduction zone</td>
<td>Tskanov et al. (2007)</td>
</tr>
<tr>
<td>Mineoka (Mo)</td>
<td>Japan</td>
<td>66</td>
<td>Basaltic lava and serpentinitized peridotite (dominant)</td>
<td>Subduction and within-plate</td>
<td>Hiran et al.(2003); Y. Ogawa (pers.com.)</td>
</tr>
<tr>
<td>Mino-Tamba (M-T)</td>
<td>Japan</td>
<td>200–185</td>
<td>Massive and pillowed basaltic lava</td>
<td>Intraoceanic plume</td>
<td>Ichiyama et al. (2008)</td>
</tr>
<tr>
<td>Yakuno (Yk)</td>
<td>Japan</td>
<td>280</td>
<td>Massive and pillowed basaltic lava, dolerite, gabbro, troctolite</td>
<td>Backarc basin</td>
<td>Ichiyama and Ishiwatari (2004)</td>
</tr>
<tr>
<td>Zambales (Zb)</td>
<td>Philippines</td>
<td>44–48</td>
<td>Basaltic pillow lava, dyke complex, layered and massive gabbro, serpentinitized tectonic ultramafic rocks</td>
<td>Backarc basin</td>
<td>Geary and Kay (1989); Yumul et al. (2000)</td>
</tr>
<tr>
<td>Calaguas (Cg)</td>
<td>Philippines</td>
<td>ca. 100</td>
<td>Basaltic pillow lava and dykes, gabbro, harzburgite</td>
<td>Mid-ocean ridge</td>
<td>Geary and Kay (1989); Geary et al. (1989)</td>
</tr>
<tr>
<td>Bohol (Bh)</td>
<td>Philippines</td>
<td>ca. 100</td>
<td>Basaltic and boninitic lava, sheeted dykes, gabbro, harzburgite</td>
<td>Marginal basin</td>
<td>Faustino et al. (2006)</td>
</tr>
<tr>
<td>Darvel Bay (DB)</td>
<td>Malaysia</td>
<td>ca. 140</td>
<td>Basaltic volcanic rocks, dykes, gabbro, plagiogranites</td>
<td>Suprasubduction zone</td>
<td>Shariff et al. (1996)</td>
</tr>
<tr>
<td>Cyclops (Cy)</td>
<td>New Guinea Isl.</td>
<td>43–20</td>
<td>Basaltic and boninitic pillowed and massive lava, sheeted dykes, layered and isotropic gabbro, dunite, harzburgite</td>
<td>Forearc to backarc</td>
<td>Monnier et al. (1999a)</td>
</tr>
<tr>
<td>Milne Terrain (MT)</td>
<td>Papua New Guinea</td>
<td>55</td>
<td>Basalts and minor gabbro, ultramafic rocks</td>
<td>Mid-ocean ridge</td>
<td>Smith (2013)</td>
</tr>
<tr>
<td>Koh (K)</td>
<td>New Caledonia</td>
<td>220</td>
<td>Basaltic and boninitic pillow lava, gabbro, plagiogranite, serpentinite</td>
<td>Backarc basin</td>
<td>Meffre et al. (1996)</td>
</tr>
<tr>
<td>Northland (NL)</td>
<td>New Zealand</td>
<td>32–26</td>
<td>Basalt and boninite, gabbro, diorite, plagiogranite</td>
<td>Backarc basin</td>
<td>Whattam et al. (2006)</td>
</tr>
<tr>
<td>Tangihua (Th)</td>
<td>New Zealand</td>
<td>ca. 100</td>
<td>Basaltic pillow lava, massive flows and breccias, sheeted dykes, layered gabbro and ultramafic rocks; wehrlite and serpentinite</td>
<td>Suprasubduction zone</td>
<td>Nicholson et al. (2000)</td>
</tr>
<tr>
<td>Indonesian-Myanmar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manipur (M)</td>
<td>NE India</td>
<td>ca. 70</td>
<td>Dykes and gabbro</td>
<td>Mid-ocean ridge</td>
<td>Singh et al. (2012)</td>
</tr>
<tr>
<td>(continued on next page)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gondwana margin and the Hun Superterranne, at the same time as the Rhetic Ocean closed during Devonian time. The renewed Permian rifting of the northern margin of Gondwana, with detachment of the Cimmerian continent, led to the development of the Neo-Tethyan Ocean and the contemporary closure of Paleo-Tethys in the Triassic (for details, see Stampfli and Borel, 2002).

The Himalayan-Tibetan orogen developed as a result of the collision of India with Eurasia (e.g., Allegre et al., 1984; Dewey et al., 1989; Yin and Harrison, 2000; Searle et al., 2006; Guilmette et al., 2009). This collision started about 65 million years ago (Klootwijk et al., 1992), and the amalgamation of the involved continental blocks (e.g., Klootwijk et al., 1992; Matte et al., 1997; Yin and Harrison, 2000) occurred along the Yarlung-Zangbo Suture Zone. The central Asian orogenic belt (Fig. 1) is situated between the Tibetan plateau and the Himalaya. The collision of India with Eurasia (e.g., Almas et al., 1984; Dewey et al., 2012) started about 65 million years ago (Klootwijk et al., 1992). This collision started about 65 million years ago (Klootwijk et al., 1992). Some of the ophiolites along this suture zone (e.g. the Loubusa ophiolite) contain in-situ diamonds and ultra high-pressure minerals in their upper mantle peridotites and chromitites (Yang et al., 2007).

The ophiolite occurrences in the Alpine belt (as included in this study) represent different types (continental margin, mid-ocean ridge to SSZ types) and are related to the opening, rift-drift development and closure of Neotethys (Whitechurch et al., 1984; Dilek and Delaloye, 1992; Dilek and Eddy, 1992; Lagabrielle and Lemoine, 1997; Dilek et al., 1999b; Robertsson, 2000; Malpas et al., 2003; Garfunkel, 2004; Manatschal and Müntener, 2009; Sarafkiooglu et al., 2013). They are principally of two age groups (Table 1), an older group around 170–140 Ma (Betic, Chalvet, Zermatt-Saas, External and Internal Ligurides, Calabrian, Corsica, Mirdita, Pindos, Eldivan, Refahiye, Sevan, Khoy, Band-e-Zeyarat/Dar Anar, Muslim Bagh, Saga, Sanga) and a younger group around 125–90 Ma (Troodos, Kizildag, Oman, Neyriz, Nehbandan, Muslim Bagh, Waziristan, plus most of the examples of the Yarlung-Zangbo Suture Zone).

2.5. Caribbean region

The Caribbean region is characterized by a Cretaceous large igneous province (LIP) (e.g., Hauff et al., 2000; Kerr et al., 2009; Escuder-Viruete et al., 2011). This LIP was built during three main phases of magmatism, i.e. 124–112 Ma, 94–83 Ma, and 80–72 Ma (Escuder-Viruete et al., 2011, and references therein). The on-land remnants of LIP-related ophiolites that we have examined in this study include (Fig. 1, Table 1), from the oldest to the youngest include: central Hispaniola (115 Ma), Nicoya-Herradura, Curacao, Jamaica (95–86 Ma), central Hispaniola (younger sequence, 79–68 Ma). In addition, we have included some geochemical data from the core samples recoved from the ODP Leg 165, Site 1001 in our database (Table 1).

2.6. Central Asian-Qingling/Qilian/Kunlun belts

The central Asian orogenic belt (Fig. 1) is situated between the Siberian and North China cratons (Tarim and Sino-Korean cratons). Its development involved the accretion of a series of island arcs, ophiolites and continental blocks to the bounding cratons during the evolution of the paleo-Asian Ocean from the late Mesoproterozoic to the Mesozoic (Kröner et al., 2008; Jiao et al., 2010; Wakita et al., 2013; Zheng et al., 2013). We have included in our synthesis three ophiolite complexes, i.e., the younger part (210–298 Ma) of the Bayankhongur (the older part is ca. 645 Ma), the

Table 1 (continued)

<table>
<thead>
<tr>
<th>Ophiolitic magmatic complexes</th>
<th>Orogenic belt</th>
<th>Age (Ma)</th>
<th>Lithological components</th>
<th>Suggested tectonic setting</th>
<th>Main references to geology/geochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andaman (A)</td>
<td>Andaman isl.</td>
<td>95</td>
<td>Basaltic volcanic rocks, intrusive, cumulate peridotites and gabbro</td>
<td>Mid-ocean ridge</td>
<td>Pedersen et al. (2010)</td>
</tr>
<tr>
<td>Meratus (Mt)</td>
<td>SE Borneo</td>
<td>ca. 120</td>
<td>Gabbro, diorite, plagiogranite, ultramafic rocks</td>
<td>Forearc</td>
<td>Monnier et al. (1999b)</td>
</tr>
<tr>
<td>Timor-Tanimbar (T-T)</td>
<td>Timor</td>
<td>3–6</td>
<td>Basaltic pillow lava, dykes, gabbro, peridotites</td>
<td>Forearc</td>
<td>Ishikawa et al. (2007)</td>
</tr>
<tr>
<td>Seram-Ambon (S-A)</td>
<td>Central Indonesia</td>
<td>ca. 20–10</td>
<td>Basaltic lava, dykes, gabbro, peridotites</td>
<td>Marginal basin</td>
<td>Monnier et al. (2003)</td>
</tr>
<tr>
<td>Camilaroi Terrane (CT)</td>
<td>SE Australia</td>
<td>ca. 390–360</td>
<td>Lower felsic volcanic rocks and associated sediments, upper basalt flows, intrusive rocks and sediments</td>
<td>Intraoceanic island arc</td>
<td>Aitchison and Flood (1995)</td>
</tr>
<tr>
<td>Jamieson-Licola (J-L)</td>
<td>SE Australia</td>
<td>ca. 500</td>
<td>Basalts, andesite, boninite and rhyolite volcanic rocks, gabbro</td>
<td>Backarc to forearc</td>
<td>Foster et al. (2009)</td>
</tr>
<tr>
<td>Tihama Asir (TA)</td>
<td>Red Sea, Saudi Arabia</td>
<td>23–19</td>
<td>Basalt lava and dykes, isotropic and layered gabbro, granophyre</td>
<td>Rift stage, incipient oc.crust</td>
<td>Y. Dilek and H. Furnes (unpublished data)</td>
</tr>
<tr>
<td>Macquarie (Mq)</td>
<td>Macquarie Island</td>
<td>10</td>
<td>Basaltic pillow lava, sheeted dykes, gabbro, troctolite, wehrlite, dunite, harzburgite</td>
<td>Oc.crust, N to E-MORB</td>
<td>Kanenetsky et al. (2000); Varne et al. (2000)</td>
</tr>
<tr>
<td>Taitao (Tt)</td>
<td>Chile</td>
<td>6</td>
<td>Basaltic pillow lava and breccia, sheeted dykes, gabbro with dykes, ultramafic rocks</td>
<td>Mid-ocean ridge</td>
<td>Le Moigne et al. (1996); Guivel et al. (1999); Velozo et al. (2005)</td>
</tr>
<tr>
<td>Iceland</td>
<td>Mid-Atlantic Ridge</td>
<td><1</td>
<td>Mainly basaltic lava</td>
<td>Plume/mid-ocean ridge</td>
<td>Hemond et al. (1993)</td>
</tr>
</tbody>
</table>

Abbreviations: bon = boninite/boninitic; pl.granite = plagiogranite; ultram.cum. = ultramafic cumulate; px.nite = pyroxenite; lay.cum.perid. = layered cumulate peridotite; cont.marg. = continental margin; Int.oc. = intra-oceanic; oc.crust = oceanic crust; harzhb. = harzburgite; gb = gabbro; bas.and. = basaltic andesite; rh.dac. = rhyodacite.
Xiaohuangshan (340 Ma) and the Hegenshan (Table 1). The Hegenshan ophiolite consists of four different mafic-ultramafic massifs (Jian et al., 2012), which consist of two lithological groups with different crystallization ages, one Iherzolite-dominated early Carboniferous group (354–333 Ma) and the other harzburgite-dominated early Cretaceous group (142–125 Ma). However, there are contrasting viewpoints on the origin of the Hegenshan magmatic complex: Robinson et al. (1999) interpreted it as an ophiolite, whereas Jian et al. (2012) interpreted it as in-situ intrusive complex that was emplaced during episodic mantle upwelling and melting in a subcontinental setting.

The Qiling-Qilian/Kunlun fold belt (Fig. 1), also known as the central China orogenic belt, extends ca. 5000 km in a W–E direction and is located between the North China and Tarim cratons to the North and the Yangtze Craton to the South. This orogenic belt developed during the closure of the Qilian Ocean, which evolved following the late Proterozoic break-up of Rodinia. The Cambrian to Ordovician backarc ophiolites and island arcs formed during the latest stages of the evolution of this ocean (Song et al., 2013). We have chosen the following five ophiolite sequences from this belt in our synthesis: Dongcaoche, Yushigou, Jiugequan, Kudi and Buqingshan (Fig. 1, Table 1).

The ~1200-km-long Beigong–Nuijiang Suture Zone (Fig. 1) in central Tibet is situated between the southern Lhasa and the northern Qingtang blocks. It is an E–W-trending, discontinuous belt of Paleozoic melanges and ophiolites. We have examined the Paleotethyan Ailaoshan, Jinshajiang, Changning-Menglian, Qingtang ophiolites, ranging in age from ca. 380–270 Ma (Table 1) in this study (Jian et al., 2009).

2.7. Gondwanide-Tasmanide belt

The Tasmanides (Fig. 1) occupy approximately one third of the eastern Australian continent and include a collage of orogenic belts that formed during a time span of nearly 500 million years. The break-up of the Rodinia supercontinent during 750–525 Ma was followed by ca. 300 million years of mainly convergent margin tectonics and magmatism (e.g., Glen, 2005). We have investigated two main ophiolites from the Tasmanides, the early Ordovician Jamieson-Licola sequence of the Lachlan orogeny, and the Devonian Camilaari Terrane of the New England orogen (Fig. 1, Table 1).

2.8. Andean belt

The Andean belt (Fig. 1), stretching over more than 8000 km between the Caribbean to the north and the Scotia Seas to the south, represents the largest active orogenic system developed by oceanic subduction along a continental margin for nearly 600 myrs, beginning soon after the break-up of Rodinia in the late Proterozoic (Oncken et al., 2006; Ramos, 2009). In the Paleozoic a number of exotic terranes accreted to this continental margin, whose geologic history includes an intricate record of accretion, collision, and subduction of different types of oceanic lithosphere (Ramos, 2009). The Andean system is divided up into the northern, central, and southern Andes. The northern and southern segments are characterized by Jurassic and Cretaceous metamorphic rocks as well as diverse occurrences of oceanic crust emplaced into the continental margin. The central Andes constitute the type locality of an Andean-type orogen and lack Mesozoic and Cenozoic metamorphic and ophiolitic rocks. They formed by subduction of oceanic crust and associated overlying mantle-wedge processes.

2.9. Western Pacific and Cordilleran belts

The Circum-Pacific orogenic system, referred to here as the western Pacific and the Cordilleran belts of western North America, extends along a great circle for more than 25,000 km in the Pacific Rim (Fig. 1). At an early stage in the Cordilleran evolution was the Neoproterozoic rifting of Rodinia. The characteristic features of the Circum-Pacific orogenic system stem largely from a long-term subduction of the Pacific oceanic lithosphere, from Triassic time onwards, along the active continental margins and island arc systems (e.g., Dickinson, 2004). Most of the early models invoke a Jurassic–Cretaceous eastward-dipping subduction zone, with oceanic crust being subducted underneath the continental margin (Burchfiel and Davis, 1975; Saleeby, 1983; Harper and Wright, 1984). More recent models envision, however, a series of fringing Triassic–Jurassic arc systems and backarc basins with opposite subduction polarities off the coast of North America that collapsed into the continental margin through arc-trench collisions in the latest Jurassic (e.g., Coleman, 2000; Dilek, 1989; Dilek et al., 1991; Dickinson et al., 1996; Godfrey and Dilek, 1999; Ingersoll, 2000). Collisional models in which the leading edge of the North American continent was subducted to the west beneath ensimatic arc systems have also been proposed (Moores and Day, 1984; Hildebrand, 2009, 2013). In Japan the subduction history has been shown to go back to ca. 500 Ma (Isozaki et al., 2010).

We show some of the most salient ophiolites along the Pacific Rim in Fig. 1. These are (Table 1): Llanda, Black Mountain, Ingalls, Eder Creek, Josephine, Angayucham, Brooks Range and Resurrection Island (USA); Aluchin, East Kamchatka (Russia); Mineoka, Mino-Tamba, Yakuno (Japan); Zambeles, Calaguas, Bohol (Philippines); Darvel Bay (Malaysia); Cyclops, Milne Terrain (New Guinea), Koh (New Caledonia); Northland, Tanghua (New Zealand).

2.10. Indonesian-Myanmar belt

The Mesozoic–Cenozoic Indonesian-Myanmar orogenic belt (Hall, 2012) reveals a complex magmatic and tectonic history that evolved during the closure of the Meso-Tethyan Ocean. Continental blocks, rifted from East Asia (Luconia-Dangerous Grounds) and western Australia (Banda — SW Borneo and Argo — East Java and West Sulawesi) in the late Jurassic—early Cretaceous became part of the Sundaland region at a later stage. During much of the Cenozoic subduction has occurred under most of the Indonesian region. Rollback of subduction zones at different times has opened up backarc basins such as the Celebes and Philippine Seas (starting at ~45 Ma) and the Banda Sea (starting at ca. 15 Ma). For a complete picture of the reconstruction of the tectonic evolution of the Indonesian region, the reader is referred to the comprehensive work of Hall (2012). The ophiolites included in this synthesis
sequences are shown in Table 1 of Furnes et al. (2013).

Figure 2. Age distribution of investigated greenstone sequences through geological time. Data for the Phanerozoic ophiolites are listed in Table 1, and the Precambrian greenstone sequences include (Table 1): Manipur (India); Andaman; Meratus (SE Borneo); Timor-Tanimbar (Timor); East Sulawesi; Seram-Ambon (Central Indonesia).

3. Phanerozoic and Precambrian ophiolites

3.1. Age distribution

The age distribution of the investigated greenstone sequences (Fig. 2) displays pronounced maxima during the time intervals 50–200 Ma (particularly the 100–150 Ma), 450–1000 Ma, and 2500–2750 Ma. The second most abundant greenstone complexes occur in the time intervals 0–50 Ma, 2000–2250 Ma, and 2750–3500 Ma. A third group is represented by the ophiolite complexes of 350–400 Ma, 1000–1500 Ma, and 1750–2000 Ma. The remaining complexes, defined in the time intervals, 200–300 Ma, 1500–1750 Ma, 2250–2500 Ma, and >3500 Ma, are rare. This variation in the temporal distribution is to some degree artificial, since only the greenstone sequences with reliable and easily accessible geochemical data have been chosen in this study; but it may also reflect the time periods when less greenstone material was preserved (Furnes et al., 2013).

3.2. Components of the investigated greenstone sequences

Composite stratigraphic columnar sections of the most representative Archean (10), Proterozoic (7) greenstone sequences, Phanerozoic (6) ophiolites, and two in-situ oceanic crustal sequences (represented by the Izu-Bonin-Mariana system and the Macquarie Island) are shown in Fig. 3. The Precambrian greenstone belts are dominated by pillowed to massive basaltic lava flows, with komatiitic rocks commonly represented, albeit in minor amounts in the 2.7 Ga and older sequences. Boninite-like rocks are minor constituents in the Precambrian greenstone sequences, but they have been reported from the amphibolites of the 3.8 Ga Isua supracrustal belt, SW Greenland (Polat et al., 2002; Furnes et al., 2009; Hoffmann et al., 2010) and the 3.12 Ga Whudo greenstone sequence of western Australia (Smithies et al., 2005)(Fig. 3). However, the origin of komatiite formation is controversial. In one model, Arndt et al. (2008) envisioned komatiites to have formed by high degrees of melting of dry peridotites through mantle plume activity, whereas Parman and Grove (2004) regarded komatiites as the Archean equivalent of modern boninites formed during partial melting of hydrated mantle. Thus, if some of the komatiitic rocks represent the boninite affinity, the magmatic evolution of some of the Archean greenstone sequences may be the equivalents of subduction-related Proterozoic ophiolites.

Intermediate to felsic volcanic and intrusive rocks are widespread in some Phanerozoic ophiolites and also in the Archean greenstone sequences, as documented for example from the IOG, Whundo, Kustomuksha and Wawa greenstone sequences (Fig. 3). Chert and BIFs are interlayered with the lava piles of the 3.0 Ga and older sequences. Sheeted dyke complexes are more common in the 2.7 Ga and younger sequences (Fig. 3), but they have been also reported from the Archean greenstone belts, i.e., the 3.8 Ga Isua and 2.7 Yellowknife complexes (Fig. 3), as well from the ca. 2.6 Ga Point Lake Greenstone Belt (e.g., Kusky, 1990).

The available lithological data from some Phanerozoic and Precambrian greenstone sequences are summarized in Fig. 4. In the Phanerozoic examples (Fig. 4A) mafic volcanic rocks have been reported from nearly all sequences (average 92%), with sparse occurrence of felsic rocks. Boninitic rocks are represented in variable amounts, from scarce (particularly in the 150–100 Ma interval) to abundant (in the 500–450 Ma interval), and on the average make up ca. 21%. The occurrences of sheeted dyke complexes are highly variable, ranging from zero to ca. 50% (average 34%), whereas individual dykes or dyke swarms are more common. Gabbro is a common lithology in most of the Phanerozoic greenstone complexes, as well as peridotites, on average 83% and 68% (respectively). Fig. 4B shows the lithology of the investigated greenstone sequences (this work and Furnes et al., 2013) through all times (Archean–Proterozoic–Phanerozoic). Mafic volcanic rocks are by far the most common lithology represented in most time windows, and felsic rocks are common in the Archean and lower Proterozoic greenstone sequences. Similarly, komatiites are commonly described from the Archean and lower Proterozoic greenstone complexes, but they are hardly reported in rocks younger than 2 billion years. In contrast, boninitic magmatic rocks have been reported throughout the 4 billion years investigated here. Sheeted dyke complexes are more common in the 2.7 Ga and younger sequences (Fig. 3), but they have been also reported from the Archean greenstone belts, i.e., the 3.8 Ga Isua and 2.7 Yellowknife complexes (Fig. 3), as well from the ca. 2.6 Ga Point Lake Greenstone Belt (e.g., Kusky, 1990).

The available lithological data from some Phanerozoic and Precambrian greenstone sequences are summarized in Fig. 4. In the Phanerozoic examples (Fig. 4A) mafic volcanic rocks have been reported from nearly all sequences (average 92%), with sparse occurrence of felsic rocks. Boninitic rocks are represented in variable amounts, from scarce (particularly in the 150–100 Ma interval) to abundant (in the 500–450 Ma interval), and on the average make up ca. 21%. The occurrences of sheeted dyke complexes are highly variable, ranging from zero to ca. 50% (average 34%), whereas individual dykes or dyke swarms are more common. Gabbro is a common lithology in most of the Phanerozoic greenstone complexes, as well as peridotites, on average 83% and 68% (respectively). Fig. 4B shows the lithology of the investigated greenstone sequences (this work and Furnes et al., 2013) through all times (Archean–Proterozoic–Phanerozoic). Mafic volcanic rocks are by far the most common lithology represented in most time windows, and felsic rocks are common in the Archean and lower Proterozoic greenstone sequences. Similarly, komatiites are commonly described from the Archean and lower Proterozoic greenstone complexes, but they are hardly reported in rocks younger than 2 billion years. In contrast, boninitic magmatic rocks have been reported throughout the 4 billion years investigated here. Sheeted dyke complexes are more common in the 2.7 Ga and younger sequences (Fig. 3), but they have been also reported from the Archean greenstone belts, i.e., the 3.8 Ga Isua and 2.7 Yellowknife complexes (Fig. 3), as well from the ca. 2.6 Ga Point Lake Greenstone Belt (e.g., Kusky, 1990).
complexes are scarce, and gabbro and peridotites are minor lithological constituents in the Archean greenstone complexes; but these rock units become more abundant in ophiolite complexes younger than 2 billion years.

In the basaltic pillow lavas, ocelli (or alternatively referred to as “varioles”) are common and striking features in the Archean and early Proterozoic ophiolites (e.g., Gelinas et al., 1976; de Wit and Ashwal, 1997; Sandstæ et al., 2011). These mm- to cm-sized leucocratic globular objects are uncommon in younger ophiolites and in modern oceanic crust (Upadhyay, 1982; Kerr et al., 1996a). The origin of these features is controversial and has been explained as representing immiscible liquids, mingling of felsic and mafic liquids, or the result of secondary alteration (see summary and appropriate references in Sandstæ et al., 2011). However, the shape, distribution, texture and composition of well-preserved ocelli in the interior part of pillow lavas of the Barberton greenstone belt in South Africa (e.g., de Wit et al., 2011; Furnes et al., 2011) indicate an origin by spherulitic crystallization of plagioclase from highly undercooled basalt melt and glass during rapid cooling (Sandstæ et al., 2011). This interpretation suggests that the absence of gabbro and dolerites may be related to higher rates of cooling of mafic magmas in the Archean.

4. Geochemistry

We consider only the mafic rocks; all intermediate to felsic rocks as well as rocks regarded as cumulate units have been omitted from the geochemical plots presented here. Also, among Archean rocks, silicification of mafic and ultramafic volcanic rocks is a common phenomenon, and the analytical data representing such units have been excluded in our plots. We define intermediate to felsic rocks primarily as high SiO₂ (>55%), low MgO (<3%) magmatic units. For mafic-ultramafic volcanic rocks that underwent silicification, both SiO₂ and MgO, Ni and Cr concentrations are high. For the komatiites that we regard as cumulates (mainly olivine), we have set an upper MgO limit of 35%, and for the gabbroic rocks (mainly plagioclase) an upper Al₂O₃ limit of 20% has been chosen.

Numerous studies have been completed to evaluate the element behaviour during low-temperature alteration and greenschist to amphibolite grade metamorphism of basaltic rocks. A general conclusion is that Ti, Al, P, Cr, Ni, Sc, Co, V, Y, Zr, Nb, REE (particularly HREE) and Th are relatively stable (e.g., Scott and Hajash, 1976; Staudigel and Hart, 1983; Seyfried et al., 1988; Komiya et al., 2004; Hofmann and Wilson, 2007; Dilek et al., 2008; Furnes et al., 2012b). For this study we have used the major oxides TiO₂, Al₂O₃, FeO, Na₂O and P₂O₅, the incompatible trace elements Sr, Y, Zr, Nb, and the compatible trace elements Cr, Ni, Sc to characterize the concentration levels as a function of age. For the discrimination diagrams, we have used the elements Ti, Y, Zr, Nb, V, Yb, Th, in the combinations of Zr/Ti–Nb/Y, Th/Yb–Nb/Yb, V–Ti/1000, and TiO₂/Yb–Nb/Yb. Na and Sr are generally reported as highly mobile; however, it is interesting to note (see description below) that in our study they show the same patterns as defined by the stable incompatible elements.

4.1. Age-related geochemical patterns

Fig. 5A shows the concentration of the major oxides TiO₂, Al₂O₃, FeO, Na₂O and P₂O₅ plotted against time. There is a large spread in their concentration at any given age. For TiO₂, Na₂O and P₂O₅ the spread increases with decreasing age: for Al₂O₃ the spread appears highest in the Archean rocks, whereas for FeO there is no particular trend. For the Phanerozoic (0–517 Ma) and Precambrian analyses, averages of 100 and 250 million years, respectively, have been calculated. Apart from the two oldest greenstone sequences, i.e. Isua (SW Greenland) and Nuvvuagittuq (NE Canada), the average concentrations of the major oxides show rather small variations. There is a decrease in TiO₂, Na₂O and P₂O₅ with increasing age, a feature also demonstrated for the incompatible trace elements Sr, Zr, Y and Nb (Fig. 5B). This relationship is best demonstrated by Sr and Nb. During the Phanerozoic and Proterozoic eons there are only minor changes in the average concentrations of incompatible trace elements. There is, however, some variability in the concentration of the stable elements Ti, Zr and Nb during the first 400 million years of the Phanerozoic that relate to the predominant basalt type represented within the following time intervals: the high Ti, Zr and Nb contents in the time interval 100–200 Ma (Fig. 5A and B) reflect the high proportion of subduction-unrelated basalts in the time interval 150–200 Ma (Fig. 8A); the low average Nb contents in the time interval of 200–400 Ma (Fig. 5A and B) can be explained, on the other hand, by the predominance of subduction-related magmatism during that period (Fig. 8); the low average contents of Al₂O₃ in the 2750–3000 Ma, 3250–3500 Ma and 4000 Ma (Fig. 5A) may be attributed to relatively high content of ultramafic magmatism during these time intervals. However, when taking the average concentrations of the above-mentioned incompatible elements for the Archean greenstones, i.e. for TiO₂, Zr and Nb, we find that these are lower compared with the average Phanerozoic values. For the compatible elements Cr and Ni, there is a marked increase in their concentrations in the older sequences, particularly in Archean examples in which the average values are about three times higher than for those of the Phanerozoic greenstones. The elements Sc and Co, on the other hand, do not show any particular trend with increasing age.

These average secular geochemical changes may reflect variations in the degree of partial melting. Since the heat production in the upper mantle was higher in the Archean than today, it is generally assumed that melting of the Archean mantle was more extensive than today, yielding hotter and greater volumes of oceanic lithosphere (e.g., Foley et al., 2003; Komiya, 2004; Korenaga, 2006; Herzberg et al., 2010). Exactly how much higher the temperatures may have been in the Archean than that of the modern mantle, is conjectural. Komiya (2004) suggested 150–200 °C, whereas Grove and Parman (2004) proposed even lower (<100 °C) temperatures. Tholeiitic melts are produced by 5–25% partial melting of mantle peridotites (e.g., McDonough et al., 1985); by contrast komatiitic basalts are modelled to be generated at 30–50% partial melting of the mantle peridotites (e.g., Arndt, 2003; Maier et al., 2003).

In order to evaluate the cause of the observed decrease in the incompatible elements and the increase in the compatible elements, we have performed partial batch melting modelling (Brownlow, 1996) of spinel and garnet peridotite with respect to Ni, Cr, Co, Sc, Y, Zr and Nb, and with bulk distribution coefficients of 8, 4, 2, 0.5, 0.05, 0.02, 0.01, respectively (Pearce and Parkinson, 1993). For Co, Sc, Y, Zr and Nb the differences in the average concentrations of the Phanerozoic and Archean greenstones could be modelled by 20% and 40% partial melting, respectively. The concentrations of Ni and Cr, on the other hand, are too high in the Archean rocks to be compatible with this modelling, and a possible explanation is that many of the komatiites, particularly those with more than 35% MgO, represent cumulates and that their high Ni and Cr do not represent the values of true magmatic liquids.

Exactly when and why the decrease in the incompatible elements took place is difficult to pinpoint. But judging on the basis of Ti and Nb (in particular), this appears to commence at around 2 Ga or somewhat later. At about this time, there were also major changes in the lithological composition of the greenstone complexes, i.e. in complexes older than 2 Ga, komatiites are more common, sheeted dyke complexes are rare, and gabbro is
4.2. Discrimination diagrams

In addition to the filtration of the geochemical data as outlined above, we have applied the Zr/Ti–Nb/Y diagram of Floyd and Winchester (1975) in order to better group the data that truly represent basaltic compositions (Fig. 6A). The use of the Th/Yb–Nb/Yb discrimination of Pearce (2008) further separates subduction-related basalts from the subduction-unrelated basalts (Fig. 6A). Samples that plot above the MORB-OIB array are analysed using the V–Ti plot of Shervais (1982). The V/Ti ratio can be used as a proxy for supra-subduction zone (SSZ) melting, and the V–Ti diagram, as modified by Pearce (in press), can be subdivided into fields defined by boninites, island arc tholeiites (IAT), and MORB, the latter being the most distal to the subduction zone (Fig. 6A). Samples that plot within the MORB-OIB array are further analysed in a TiO$_2$/Yb–Nb/Yb diagram in which the TiO$_2$/Yb ratio is a proxy for the depth of melting. Since Yb is an element that is highly partitioned into garnet, the Ti/Yb ratio in a melt is sensitive to whether or not garnet is present in the residue after melting; it is high if garnet is present.

Figure 3. Selected stratigraphic columnar sections from ten Archean and seven Proterozoic greenstone belts, seven Phanerozoic ophiolite complexes, and the oceanic in-situ Izu-Bonin-Mariana sequence. Data from: Isua, Greenland (Furnes et al., 2009); IOG, India (Makhopadhyay et al., 2012); Barberton, South Africa (de Wit et al., 2011; Furnes et al., 2012b; Whind, Australia (Smithies et al., 2005); Kooyananbong, Australia (Angleer et al., 2013); Kustromulshka, Karelia, Russia (Puchtel et al., 1998); Belingwe, South Africa (Hofmann and Kusky, 2004); Taishan, China (Polat et al., 2006); Wawa, Canada (Polat et al., 1998); Yellowknife, Canada (Cercoran et al., 2004); Birimian, West Africa (Sylvester and Attoh, 1992); Purtunig, Canada (Scott et al., 1992); Flin Flon, Canada (Lucas et al., 1996); Jormua, Finland (Peltonen et al., 1996); Payson, North America (Dana, 1997); Fawakhir, Egypt (Abd El-Rahman et al., 2009); Tulu Dimtu, Ethiopia (Tadesse and Allen, 2005); Leka, Norway (Furnes et al., 1988); Mirida, Albania (Dilek and Furnes, 2009); Sarmiento and Tortuga, Chile (de Wit and Stern, 1978); Dagzhuaka, Tibet (Xia et al., 2003); ESO (East Sulawesi Ophiolite), Indonesia (Kadarusman et al., 2004); Nehbandan, Iran (Saccani et al., 2010); I-B-M (Izu-Bonin-Mariana), southwestern Pacific Ocean (Ishizuka et al., in press); Macquarie Island, southern Pacific Ocean (Goscombe and Evesard, 1999).
Hence, the Ti/Yb ratio may function as a proxy for the depth of melting (Fig. 6A).

In Fig. 6B–D, the Phanerozoic, Proterozoic and Archean geochemical data are plotted in the various discrimination diagrams as outlined above. On all diagrams the vast majority of the investigated ophiolites plot in the subalkaline basalt field. The Th/Yb–Nb/Yb diagram reveals that the majority of the data are subduction-related, with the highest proportion in the Archean. In the V–Ti/1000 diagram, the subduction-related data show a large spread through the boninite, island arc tholeiite (IAT) and mid-ocean-ridge basalt (MORB) fields indicating different tectonic settings of subduction-related melt generation above the Benioff Zone. All the geochemical data are approximately equally distributed between the OIB and MORB arrays (i.e., deep and shallow melting regimes, respectively) in the TiO2/Yb–Nb/Yb diagram.

5. Classification of ophiolites through time

We are aware of the short-comings in providing a waterproof classification of the ophiolites, particularly the oldest, and we are also aware of the many conflicting views regarding many of the Precambrian greenstone sequences, and also some of the Phanerozoic examples. For most of the sequences it is probably difficult, if not impossible, to meet all the criteria 100%. We have used the available geochemical data for greenstone sequences that have been (at least by some authors) considered to represent some sort of oceanic crust, and then applied the geochemical approach to classify them according to the recently introduced ophiolite classification of Dilek and Furnes (2011).

Using the compilation of the geochemical data presented in Fig. 6 and regional tectonics, and lithological characters of the ophiolites summarized in Table 1, we provide combined analyses of the Phanerozoic and Precambrian ophiolite complexes in which we first divide the data into subduction-related and subduction-unrelated sequences (Table 2 and Fig. 7). This analysis shows that 75% and 85% of the Phanerozoic and Precambrian greenstone sequences, respectively, are subduction-related. The subduction-related ophiolites are further divided into SSZ-backarc, SSZ-backarc to forearc, SSZ-forearc, and SSZ to Volcanic Arc, and the estimated percentage of each type is shown in Fig. 7. The SSZ-backarc type, represented by a predominance of MORB-type greenstones, is by far the dominant Phanerozoic ophiolites (56%), as are also for the

Figure 4. (continued).

H. Furnes et al. / Geoscience Frontiers 5 (2014) 571–603
Figure 5. All geochemical data plotted against age. Yellow, red, and grey circles represent Phanerozoic, Proterozoic and Archean greenstones, respectively. References to the Phanerozoic greenstones are listed in Table 1 of this paper, whereas those for Precambrian age are shown in Table 1 of Furnes et al. (2013). (A) Major elements, (B) incompatible trace elements, and (C) compatible trace elements.
Precambrian greenstones (45%). The SSZ-backarc to forearc, represented by the sequences that show approximately equal proportions of MORB, IAT and Boninites (Table 2), are the second most abundant group of the Phanerozoic ophiolites (27%), and are also well represented (22%) with the Precambrian greenstone sequences. The SSZ-forarc ophiolite type, characterized by the sequences consisting of boninites, is of minor abundance among the Phanerozoic and Precambrian greenstones. The ophiolites classified as SSZ to Volcanic Arc type have a dominant continental arc signature in the Th/Yb–Nb/Yb diagram (see Fig. 6), but variable character in the V–Ti discrimination diagram (Table 2). This type is rarely represented among the Phanerozoic ophiolites, but defines a significant proportion (26%) among the Precambrian examples (Fig. 7).

The subduction-unrelated ophiolites, classified as Rift/Continental Margin-, MORB- and Plume-types, are much less abundant than the subduction-related types both in the Phanerozoic and in the Precambrian. We consider that the stages from rift-drift to seafloor spreading (Dilek and Rowland, 1993; Dilek et al., 2005) represent a continuous development from the incipient dyke and gabbro intrusions in continental crust through super-extension into fully developed oceanic crust that in turn also may show differences depending on the spreading rates. Here, we have combined the two types into one single class. Amongst the Phanerozoic ophiolites the MORB type is the dominant (74%), whereas for the Precambrian greenstones there is an equal distribution of the three types (Fig. 7).

6. Time-related distribution of ophiolite types

Fig. 8 shows the relationship between the types of the investigated ophiolitic greenstone sequences and time. The undifferentiated subduction-related and subduction-unrelated ophiolites are shown in Fig. 8A. This compilation indicates that the highest proportion of subduction-unrelated greenstone sequences are represented during the time intervals 0–50, 50–100, 150–200, and 2000–2250 million years. For the remaining time intervals, subduction-unrelated sequences are sparsely represented, or absent. Among the subduction-related ophiolites (Fig. 8B), the backarc type, i.e. those with a high proportion of MORB component, are the dominant for most of the time intervals, backarc to forearc types pre-dominate among those older than 2750 Ma. This observation suggests a stronger subduction influence in the magmatic evolution of the Archean greenstone sequences. In Fig. 8C we show the subdivided subduction-unrelated ophiolites. This compilation suggests that the MORB type is the pre-dominant among the Phanerozoic to late Proterozoic sequences, whereas Rift/Continental Margin- and Plume-types are the dominant ones in the Archean.

7. Degree of subduction-influence upon the ophiolites

7.1. Variations within the Phanerozoic orogens

The extent of subduction-influence detected in the greenstones of the investigated ophiolites varies significantly along and across the orogenic belts. This is demonstrated in Fig. 9, where each point represents the average subduction-influence of individual ophiolite occurrences, taken from Table 2. In this compilation, for example, the majority of all of the greenstone samples of the Appalachian ophiolites are subduction-influenced, whereas those of the Caledonian orogen show a much larger range, though none appears to be subduction-unrelated. The ophiolites of the Alpine-Himalayan orogen, the Cordilleran and the western Pacific orogens, the Uralian/Asian and the Indonesian-Myanmar orogens demonstrate a complete variation from zero to 100% subduction-influence. Those of the Hercynian and Andean orogenic belts show less variation from subduction-unrelated to those which are only sparsely subduction-related. Surprisingly, the four Andean ophiolite examples on which we could estimate the subduction-influence (Table 2) gave the average lowest value (Fig. 9).
Figure 6. Zr/Ti – Nb/Y, Th/Yb – Nb/Yb, V – Ti/1000, and TiO2/Yb – Nb/Yb diagrams for rock classification and tectonic setting (after Shervais, 1982; Pearce, 2008, in press). (A) Templates for the above-mentioned diagrams; (B) plots of all Phanerozoic greenstone analyses used in this paper; (C) and (D) plots of Proterozoic and Archean greenstone analyses (from Furnes et al., 2013).
7.2. Subduction-signals through time

Fig. 10 shows the average subduction-influence against time for the greenstones from each of the investigated ophiolite complexes. For Phanerozoic ophiolites (Table 2, Fig. 10A) the highest proportion of subduction-unrelated ophiolites are among those younger than 200 Ma. When all the greenstone complexes, i.e. the Phanerozoic data from this work (Table 2), and the Proterozoic and Archean data from Furnes et al. (2013) are plotted against time, a pattern of increasing subduction-influence with increasing age appears (Fig. 10B). The reason for this variation is not immediately obvious, but one suggestion may be that this is either because less total continental margins may have been present in the early Archean, although this may be counter-intuitive if we think that the average size of tectonic plates was smaller then (e.g., Abbott and Hoffman, 1984; Pollack, 1997; de Wit, 1998), or that continental margin ophiolites are more prone to recycling/subduction than other plate boundary ophiolites.

Archean igneous rocks commonly show arc signature by the enrichment of LILE (large ion lithophile elements) over HFSE (high field strength elements), and have been interpreted as subduction-related (e.g., van Hunen and Moyan, 2012). The invariably common arc signature in basaltic rocks can be explained by (1) melt production from depleted mantle in a subduction setting; or (2) contamination of mantle-derived magmas (without having been subduction-influenced) by continental crust. It is conceivable that

Figure 7. Pie-diagram showing the proportion of subduction-related and subduction-unrelated greenstone sequences, subdivisions of the subduction-related, and the subduction-unrelated investigated greenstone sequences. (A) Compilation of Phanerozoic greenstone sequences based on the information provided by the lithological (Table 1) and the geochemical data summarized in Table 2. (B) Precambrian greenstone sequences (modified from Furnes et al., 2013).
high-MgO magma with high liquidus temperature on its passage through continental crust can partially melt the host, and may thus acquire an arc-like signature through contamination. This is a possible scenario that has been discussed widely in the literature (e.g., Redman and Keays, 1985; Arndt and Jenner, 1986; Barley, 1986; Puchtel et al., 1997; Polat et al., 2006). In the Archean komatiites of the Taishan greenstone belt of the north China craton, for example, Polat et al. (2006) found strong linear relationships between negative Nb anomalies (represented as Nb/Nb* ratios, calculated from N-MORB normalised values, and Nb* = (La + Th)/2) and the major oxides TiO₂, MgO and Al₂O₃, a feature regarded as diagnostic for crustal contamination. We have

Figure 8. Histograms showing the age-related distinction of greenstone sequences divided into (A) subduction-related and subduction-unrelated types; (B) the division of subduction-related into four different subtypes; and (C) the division of subduction-unrelated into three different subtypes. The data on the Phanerozoic greenstones are all from Table 2 of this account, whereas all the Precambrian data are from Table 2 in Furnes et al. (2013).
Ophiolitic magmatic complex	Orogenic belt	Age (Ma)	% Subd. infl.	% Subduction for subduction (%)	V vs. Ti-proxy for SSZ melting (%)	Ti/Yb-proxy for plume melting (%)	Suggested ophiolite type and tectonic environment on the basis of the various proxies shown.
<p>| Caledonian | | | | | | | |
| Lyngen (Ly) – 29 | Norway | c. 480 | 55 | 45 | 17 | 31 | 7, 19, 25, 56, 92, 8, SSZ-backarc to forearc to VA + major MORB |
| Leka (Lk) – 16 | Norway | 497 | 81 | 19 | 12 | 69 | 8, 23, 69, 67, 33, SSZ-backarc to forearc + minor MORB & OIB |
| Sulaite (Sl) – 7 | Norway | 437 | 14 | 86 | 14 | 7 | 11, 89, 80, 20, SSZ-backarc + major MORB |
| Trondheim area (Ta) – 26 | Norway | 493–481 | 42 | 58 | 12 | 23 | 7, 11, 89, 80, SSZ-backarc + major MORB |
| Solund-Stavfjord (SS) – 27 | Norway | 442 | 30 | 70 | 30 | 6 | 100, 78, 11, SSZ-backarc + major MORB |
| Gulfefjellet (GF) – 15 | Norway | 498 | 73 | 27 | 20 | 47 | 100, SSZ-backarc + moderate MORB |
| Karmøy (Ke) – 10 | Norway | 497–470 | 70 | 30 | 20 | 10 | 40, 20, 40, SSZ-backarc to forearc |
| Ballantrae (Bt) – 10 | Scotland | 470 | 90 | 10 | 90 | 10 | 40, 25, SSZ-forearc |
| Tyrone Ig. Comp. (Tr) – 76 | Ireland | 490–475 | 67 | 33 | 20 | 26 | 16, 5, 6, 55, 29, SSZ-backarc to forearc + moderate OIB |
| Appalachian | | | | | | | |
| Birchy Complex (BC) | Nfld, Canada | 557 | 80 | 20 | 72 | 10 | 15, 858, 100, SSZ-backarc + moderate MORB |
| Annieoquoquet (Ao) – 46 | Nfld, Canada | 480 | 80 | 20 | 72 | 10 | 15, 858, 100, SSZ-backarc + moderate MORB |
| Bay of Islands (BI) – 7 | Nfld, Canada | 485 | 86 | 14 | 29 | 29 | 28, 25, 75, 100, SSZ-backarc to forearc + minor MORB |
| Betts Cove (BC) – 23 | Nfld, Canada | 488 | 91 | 9 | 13 | 56 | 22, 78, 12, 100, SSZ-forearc |
| Lac Brompton (LB) – 7 | Quebec, Canada | 480 | 100 | 29 | 29 | 13 | 29, 100, SSZ-forearc |
| Therford Mines (TM) – 19 | Quebec, Canada | 479 | 100 | 11 | 32 | 57 | 57, 75, 17, 8, SSZ-backarc to forearc + moderate OIB |
| Uralian | | | | | | | |
| Nurali (Nr) | Russia | 468–483 | 80 | 20 | 72 | 10 | 15, 858, 100, SSZ-backarc + moderate MORB |
| Magnitogorsk (Mg) – 13 | Russia | c. 400–385 | 100 | 23 | 46 | 31 | 7, 73, 20, SSZ-forearc |
| Kempersay (Kp) | Kazakhstan | 470–485 | 91 | 9 | 13 | 56 | 22, 78, 12, 100, SSZ-forearc |
| Central Asian | | | | | | | |
| Bayankhongor (Bkh) – 5 | Mongolia | 210–298 | 0 | 100 | 100 | | 100, MORB-type |
| Xiaohuangshan (Xh) – 9 | China | 340 | 100 | 33 | 11 | 56 | 100, SSZ-backarc to forearc |
| Hegenshan (Hs) | China | 400–350 | 100 | 33 | 11 | 56 | 100, Island arc-marginal basin |
| Qingling-Qilian-Kunlun | | | | | | | |
| Dongcaohe (Dc) – 3 | China | 497 | 33 | 67 | 33 | 100 | |
| Yushigu (Yg) | China | 550 | 55 | 90 | 490 | | |
| Jiugequian (Jq) – 15 | China | 458 | 100 | 7 | 20 | 73 | 100, SSZ-backarc + major MORB |
| Kudi (Kl) – 15 | China | 470 | 43 | 57 | 43 | | |
| Buqingshan (Bq) – 14 | China | 470 | 43 | 57 | 43 | | |</p>
<table>
<thead>
<tr>
<th>Location</th>
<th>Country</th>
<th>Age (Ma)</th>
<th>M/50</th>
<th>S/50</th>
<th>50/50</th>
<th>20/20</th>
<th>10/10</th>
<th>5/5</th>
<th>0/0</th>
<th>MORB-type/rift</th>
<th>Other MORB-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangong-Nujiang Suture</td>
<td>China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MORR-B type</td>
<td>SSZ-backarc/MORB-type</td>
</tr>
<tr>
<td>Jinshajiang (Jb) – 5</td>
<td>China</td>
<td>c. 387–374</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>SSZ-backarc</td>
<td>moderate MORB</td>
</tr>
<tr>
<td>Changning-Menglian (C-M)</td>
<td>China</td>
<td>346–341</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Qiangtang (Qt) – 19</td>
<td>Tibet</td>
<td>c. 355</td>
<td>63</td>
<td>37</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Sleza (Sl) – 8</td>
<td>Poland</td>
<td>c. 400</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>MORR-B type</td>
<td></td>
</tr>
<tr>
<td>Kaczawa Mts. (Kz) – 7</td>
<td>Poland</td>
<td>c. 420</td>
<td>43</td>
<td>57</td>
<td>14</td>
<td>29</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>IOMZOS (IZ) – 36</td>
<td>Spain</td>
<td>c. 480</td>
<td>8</td>
<td>92</td>
<td>8</td>
<td>13</td>
<td>33</td>
<td>15</td>
<td>39</td>
<td>MORR-B type/Plume (?)</td>
<td></td>
</tr>
<tr>
<td>Ailaoshan (As) – 4</td>
<td>China</td>
<td>270–264</td>
<td>80</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Jinshajiang (Jh) – 3</td>
<td>China</td>
<td>346–341</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Changning-Menglian (C-M)</td>
<td>China</td>
<td>270–264</td>
<td>80</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Qiangtang (Qt) – 19</td>
<td>Tibet</td>
<td>c. 355</td>
<td>63</td>
<td>37</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Sleza (Sl) – 8</td>
<td>Poland</td>
<td>c. 400</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>MORR-B type</td>
<td></td>
</tr>
<tr>
<td>Kaczawa Mts. (Kz) – 7</td>
<td>Poland</td>
<td>c. 420</td>
<td>43</td>
<td>57</td>
<td>14</td>
<td>29</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>IOMZOS (IZ) – 36</td>
<td>Spain</td>
<td>c. 480</td>
<td>8</td>
<td>92</td>
<td>8</td>
<td>13</td>
<td>33</td>
<td>15</td>
<td>39</td>
<td>MORR-B type/Plume (?)</td>
<td></td>
</tr>
<tr>
<td>Ailaoshan (As) – 4</td>
<td>China</td>
<td>270–264</td>
<td>80</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Jinshajiang (Jh) – 3</td>
<td>China</td>
<td>346–341</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Changning-Menglian (C-M)</td>
<td>China</td>
<td>270–264</td>
<td>80</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Qiangtang (Qt) – 19</td>
<td>Tibet</td>
<td>c. 355</td>
<td>63</td>
<td>37</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Sleza (Sl) – 8</td>
<td>Poland</td>
<td>c. 400</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>MORR-B type</td>
<td></td>
</tr>
<tr>
<td>Kaczawa Mts. (Kz) – 7</td>
<td>Poland</td>
<td>c. 420</td>
<td>43</td>
<td>57</td>
<td>14</td>
<td>29</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>IOMZOS (IZ) – 36</td>
<td>Spain</td>
<td>c. 480</td>
<td>8</td>
<td>92</td>
<td>8</td>
<td>13</td>
<td>33</td>
<td>15</td>
<td>39</td>
<td>MORR-B type/Plume (?)</td>
<td></td>
</tr>
<tr>
<td>Ailaoshan (As) – 4</td>
<td>China</td>
<td>270–264</td>
<td>80</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Jinshajiang (Jh) – 3</td>
<td>China</td>
<td>346–341</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Changning-Menglian (C-M)</td>
<td>China</td>
<td>270–264</td>
<td>80</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Qiangtang (Qt) – 19</td>
<td>Tibet</td>
<td>c. 355</td>
<td>63</td>
<td>37</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Sleza (Sl) – 8</td>
<td>Poland</td>
<td>c. 400</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>MORR-B type</td>
<td></td>
</tr>
<tr>
<td>Kaczawa Mts. (Kz) – 7</td>
<td>Poland</td>
<td>c. 420</td>
<td>43</td>
<td>57</td>
<td>14</td>
<td>29</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>IOMZOS (IZ) – 36</td>
<td>Spain</td>
<td>c. 480</td>
<td>8</td>
<td>92</td>
<td>8</td>
<td>13</td>
<td>33</td>
<td>15</td>
<td>39</td>
<td>MORR-B type/Plume (?)</td>
<td></td>
</tr>
<tr>
<td>Ailaoshan (As) – 4</td>
<td>China</td>
<td>270–264</td>
<td>80</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Jinshajiang (Jh) – 3</td>
<td>China</td>
<td>346–341</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Changning-Menglian (C-M)</td>
<td>China</td>
<td>270–264</td>
<td>80</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Qiangtang (Qt) – 19</td>
<td>Tibet</td>
<td>c. 355</td>
<td>63</td>
<td>37</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Sleza (Sl) – 8</td>
<td>Poland</td>
<td>c. 400</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>MORR-B type</td>
<td></td>
</tr>
<tr>
<td>Kaczawa Mts. (Kz) – 7</td>
<td>Poland</td>
<td>c. 420</td>
<td>43</td>
<td>57</td>
<td>14</td>
<td>29</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>IOMZOS (IZ) – 36</td>
<td>Spain</td>
<td>c. 480</td>
<td>8</td>
<td>92</td>
<td>8</td>
<td>13</td>
<td>33</td>
<td>15</td>
<td>39</td>
<td>MORR-B type/Plume (?)</td>
<td></td>
</tr>
<tr>
<td>Ailaoshan (As) – 4</td>
<td>China</td>
<td>270–264</td>
<td>80</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Jinshajiang (Jh) – 3</td>
<td>China</td>
<td>346–341</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Changning-Menglian (C-M)</td>
<td>China</td>
<td>270–264</td>
<td>80</td>
<td>20</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>25</td>
<td>75</td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
<tr>
<td>Qiangtang (Qt) – 19</td>
<td>Tibet</td>
<td>c. 355</td>
<td>63</td>
<td>37</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSZ-backarc/MORB-type</td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Ophiolitic magmatic complex</th>
<th>Orogenic belt</th>
<th>Age (Ma)</th>
<th>% Subd. infl.</th>
<th>Th/Yb-proxy for subduction (%)</th>
<th>V vs. Ti-proxy for SSZ melting (%)</th>
<th>Ti/Yb-proxy for plume melting (%)</th>
<th>Suggested ophiolite type and tectonic environment on the basis of the various proxies shown.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orogenic belt Age (Ma) % Subd. infl. Various subduction signal Joint Oa-ca Bon IAT MORB N T E Thol. Alk.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saga (Sg) – 13</td>
<td>Tibet</td>
<td>155–130</td>
<td>23</td>
<td>77</td>
<td>15</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Sangsang (Ss) – 10</td>
<td>Tibet</td>
<td>155–130</td>
<td>30</td>
<td>70</td>
<td>20</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Jiding [Jd] & Beinarang (Br) & Qunrang (Qr) – 8</td>
<td>Tibet</td>
<td>125</td>
<td>62</td>
<td>38</td>
<td>50</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Beinang (Ba) & Dazhugu (Db) – 8</td>
<td>Tibet</td>
<td>125</td>
<td>75</td>
<td>25</td>
<td>50</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>Jining (Jn) & Loubasa (Lb) & Zedong (Zd) – 7</td>
<td>Tibet</td>
<td>125</td>
<td>43</td>
<td>57</td>
<td>14</td>
<td>29</td>
<td>100</td>
</tr>
<tr>
<td>Xigaze (Xz) – 16</td>
<td>Tibet</td>
<td>125–110</td>
<td>69</td>
<td>31</td>
<td>69</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Curacao (Cc) – 21</td>
<td>Caribbean</td>
<td>90</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jamaica – 17</td>
<td>Caribbean</td>
<td>90</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicoya-Herradura (N-H) – 26</td>
<td>Caribbean</td>
<td>95–86</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Hispaniola (CH1) – 32</td>
<td>Caribbean</td>
<td>115</td>
<td>41</td>
<td>59</td>
<td>22</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Central Hispaniola (CH2) – 8</td>
<td>Caribbean</td>
<td>79–68</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODP, Leg 165, site 1001 – 14</td>
<td>Caribbean</td>
<td>c. 81</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andean</td>
<td>Colombia</td>
<td>100–73</td>
<td>8</td>
<td>92</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Colombia (WC) – 13</td>
<td>Colombia</td>
<td>c. 125–120</td>
<td>89</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Lattila (LT)</td>
<td>Colombia</td>
<td>c. 90–76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gorgona Isl. (Gg)</td>
<td>Ecuador</td>
<td>140</td>
<td>50</td>
<td>50</td>
<td>15</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Raspas (Rp) – 13</td>
<td>Argentina</td>
<td>c. 150</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierra del Tigre (ST) – 13</td>
<td>Argentina</td>
<td>c. 450</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chucho Fm (ChF) – 9</td>
<td>Argentina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarmiento (Sm)</td>
<td>Chile</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tortuga (To)</td>
<td>Chile</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cordilleran and Western Pacific</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Llanada (Ld) – 7</td>
<td>California, USA</td>
<td>c. 160</td>
<td>57</td>
<td>43</td>
<td>57</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Black Mountain (BM) – 13</td>
<td>California, USA</td>
<td>c. 160</td>
<td>31</td>
<td>69</td>
<td>31</td>
<td>69</td>
<td>31</td>
</tr>
<tr>
<td>Ingalls (Ig) – 8</td>
<td>California, USA</td>
<td>161</td>
<td>25</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Elder Creek (EC)</td>
<td>California, USA</td>
<td>c. 170</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>67</td>
</tr>
<tr>
<td>Josephine (Jph) – 10</td>
<td>Oregon, USA</td>
<td>164–162</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>67</td>
</tr>
<tr>
<td>Angayucham (Ay) – 34</td>
<td>Alaska, USA</td>
<td>c. 210–170</td>
<td>6</td>
<td>94</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brooks Range (BR)</td>
<td>Alaska, USA</td>
<td>c. 165</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resurrection Peninsula (RP) – Alaska</td>
<td>Alaska, USA</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluchin (Ac) – 10</td>
<td>NE Russia</td>
<td>226</td>
<td>60</td>
<td>40</td>
<td>10</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>Location</td>
<td>Region</td>
<td>Age (Ma)</td>
<td>Width (km)</td>
<td>Length (km)</td>
<td>Width (km)</td>
<td>Length (km)</td>
<td>Age (Ma)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>East Kamchatka</td>
<td>NE Russia</td>
<td>c. 110–60</td>
<td>33</td>
<td>67</td>
<td>14</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>Mineo-Ka (Mo)</td>
<td>Japan</td>
<td>66</td>
<td>6</td>
<td>94</td>
<td>4</td>
<td>2</td>
<td>83</td>
</tr>
<tr>
<td>Min-Tam (M-T)</td>
<td>Japan</td>
<td>200–185</td>
<td>10</td>
<td>90</td>
<td>10</td>
<td>100</td>
<td>69</td>
</tr>
<tr>
<td>Yakuno (Yk) – 5</td>
<td>Philippines</td>
<td>c. 44–48</td>
<td>100</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Zambales (Zb) – 11</td>
<td>Philippines</td>
<td>c. 100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Calaguass (Cq) – 7</td>
<td>Philippines</td>
<td>c. 100</td>
<td>58</td>
<td>42</td>
<td>8</td>
<td>33</td>
<td>17</td>
</tr>
<tr>
<td>Bohol (Bh) – 12</td>
<td>Philippines</td>
<td>c. 100</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Darvel Bay (DB)</td>
<td>Malaysia</td>
<td>c. 43–20</td>
<td>25</td>
<td>75</td>
<td>13</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>Cyclops (Cy) – 8</td>
<td>New Guinea Isl.</td>
<td>43–20</td>
<td>25</td>
<td>75</td>
<td>13</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>Milne Terrain (MT)</td>
<td>New Guinea</td>
<td>55</td>
<td>6</td>
<td>94</td>
<td>6</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Koh (K)</td>
<td>New Caledonia</td>
<td>220</td>
<td>40</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Northland (N) – 9</td>
<td>New Zealand</td>
<td>32–26</td>
<td>78</td>
<td>22</td>
<td>78</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Tangihua (Th) – 10</td>
<td>New Zealand</td>
<td>ca.100</td>
<td>40</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Indonesian-Myanmar

<table>
<thead>
<tr>
<th>Location</th>
<th>Region</th>
<th>Age (Ma)</th>
<th>Width (km)</th>
<th>Length (km)</th>
<th>Width (km)</th>
<th>Length (km)</th>
<th>Age (Ma)</th>
<th>Width (km)</th>
<th>Length (km)</th>
<th>Width (km)</th>
<th>Length (km)</th>
<th>Age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manipur (M) – 9</td>
<td>NE India</td>
<td>c. 70</td>
<td>0</td>
<td>100</td>
<td>33</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andaman (A)</td>
<td>Andaman isl.</td>
<td>95</td>
<td>60</td>
<td>40</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Meratus (Ml) – 10</td>
<td>SC Borneo</td>
<td>c. 120</td>
<td>40</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Timor-Tanimbar (T-T)</td>
<td>Timor</td>
<td>3–6</td>
<td></td>
</tr>
<tr>
<td>East Sulawesi (ES)</td>
<td>Sulawesi</td>
<td>80–120</td>
<td>80</td>
<td>20</td>
<td>60</td>
<td>20</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seram-Ambon (S-A) – 13</td>
<td>Central Indonesia</td>
<td>c. 20–10</td>
<td>100</td>
<td>92</td>
<td>8</td>
<td>71</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tasmanide</td>
<td>SE Australia</td>
<td>c. 390–360</td>
<td></td>
</tr>
<tr>
<td>Camilcaro Terrane</td>
<td>SE Australia</td>
<td>c. 500</td>
<td>29</td>
<td>71</td>
<td></td>
<td>14</td>
<td>15</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unrelated to orogenic belts

<table>
<thead>
<tr>
<th>Location</th>
<th>Region</th>
<th>Age (Ma)</th>
<th>Width (km)</th>
<th>Length (km)</th>
<th>Width (km)</th>
<th>Length (km)</th>
<th>Age (Ma)</th>
<th>Width (km)</th>
<th>Length (km)</th>
<th>Width (km)</th>
<th>Length (km)</th>
<th>Age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tihama Asir (TA) – 19</td>
<td>Red Sea</td>
<td>23–19</td>
<td>0</td>
<td>100</td>
<td></td>
<td>6</td>
<td>26</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macquarie (MQ) – 12</td>
<td>Saudi Arabia</td>
<td>10</td>
<td>0</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taitao (T) – 5</td>
<td>Chile</td>
<td>6</td>
<td>0</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>Mid-Atlantic Ridge</td>
<td><1</td>
<td>0</td>
<td>100</td>
<td></td>
<td>68</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Subd. in fl. = subduction influence; oc = oceanic arc; ca = continental arc; Bon = boninite; IAT = island arc tholeiite; MORB = mid-ocean-ridge basalt; OIB = ocean island basalt; N = normal; T = transitional; E = enriched; Thol = tholeiitic; Alk = alkaline.
tested these relationships for each of the Phanerozoic, Proterozoic and Archean sequences presented in this work, and have calculated the least squares regression (R^2) values, in which $R^2 = 1$ represents perfect correlation and $R^2 = 0$ shows no correlation. The relationship between Nb/Nb* versus TiO$_2$, Al$_2$O$_3$ and MgO show poor correlation, i.e. ca. 90% of the sequences define $R^2 << 0.5$. This observation suggests that the vast majority of the examined sequences were unaffected by crustal contamination, and that the basalts with "subduction-signal" indeed represent melts from recycled lithosphere and metasomatically-influenced mantle segments above subduction zones.

8. Early onset of subduction processes

Processes that sustain plate tectonics include seafloor spreading to generate new oceanic crust and OPS (ocean plate stratigraphy), and subduction as its dominant driver that also recycles lithosphere back to the mantle. But, the search for compelling geological evidence documenting the initiation of modern plate tectonics is a challenging task, and the timing for the onset of plate tectonics ranges over more than 3 billion years, from as far back as ca. 3 to 3.2 Ga (Van Kranendonk, 2007, 2011; Wyman et al., 2008; Shirey and Richardson, 2011), to 3.6 Ga (Nutman et al., 2007). 3.8 Ga (Furnes et al., 2007; Dilek and Polat, 2008; Maruyama and Komiya, 2011), 4.0 Ga (de Wit, 1998; Friend and Nutman, 2010), 4.2 Ga (Cavosie et al., 2007), and even 4.4 Ga (Harrison et al., 2008; Maruyama et al., 2013), to as late as 1.0 to 0.5 Ga (e.g., Bickle et al., 1994; Hamilton, 1998, 2007, 2011; Stern, 2005, 2008; Maurice et al., 2009).

The presence or absence of ophiolites, arc-backarc sequences, accretionary prisms and ocean plate stratigraphy (OPS), blueschists and ultra high-pressure metamorphic rocks in the rock record of deep time in earth history have been thoroughly discussed in the recent literature (e.g., Condie and Kröner, 2008). Here, we focus specifically on the lithological character of some of the early Archean greenstone complexes, and the geochemical fingerprints of their greenstones. Important in this context is the "lithological character" of the oldest greenstone belt, containing all the components of a subduction-related ophiolite, including the presence of a sheeted dyke complex (e.g. the 3.8 billion-years old Isua sequence in SW Greenland; Furnes et al., 2007, 2009; Fig. 3). The preservation of an accretionary prism complex in the Isua greenstone belt (Komiya et al., 1999) provides an independent line of evidence for subduction and obduction tectonics in the evolution of this early Archean greenstone belt (e.g., de Wit and Furnes, 2013).

In a previous compilation of Cenozoic to early Archean relics of oceanic crust and OPS, Kusky et al. (2013) have found consistent similarities in all complexes with respect to structural style, major rock components, sequence of accretion and trace element geochemistry, and have concluded that there is a 3.8 billion years history of sea-floor spreading, subduction and accretion. Thus, they were able to trace plate tectonic processes back to the early Archean. This extrapolation is consistent with the geochemical compilation shown in Figs. 6D, 8B and 10B. Particularly, the greenstones of the three oldest complexes (see Table 1 in Furnes et al., 2013), i.e. the 3.51 Ga Southern Iron Ore Group (Singhbhum Craton, NE India), the 3.8 Ga Isua supracrustal complex (SW Greenland), and the 3.8–4.3 (?) Ga Nuvvuagittuq greenstone complex (NE Canada), are all strongly subduction-influenced (Figs. 8B and 10B), indicating that subduction-like processes were operative in the Archean. Thus, if the Nuvvuagittuq greenstone complex truly is of Hadean age (>4 Ga), as proposed by O’Neil et al.
(2008, 2011) and Adam et al. (2012), but questioned by Cates et al. (2013), it is plausible that subduction-like processes were operative already by the end of the Hadean Aeon.

9. Greenstone data synthesis

One of the most striking features of the Archean ophiolites is the near-absence of sheeted dyke complexes, as well as the scarcity of gabbro in ophiolites older that ca. 1.8—2.0 Ga. Absence of a sheeted dyke complex is frequently used to dismiss a greenstone sequence as an ophiolite (e.g., Stern, 2005). However, a sheeted dyke complex is not a necessary component of a greenstone sequence for being classified as an ophiolite (Robinson et al., 2008). Among the Phanerozoic SSZ-type ophiolites (Table 1), the occurrence of a sheeted dyke complex has only been reported for 47% of them.

The Archean greenstone sequences (Fig. 3) generally define a layered structure of thick basaltic (and occasionally komatiitic) lava accumulation (commonly with sills, as for example in the Barberton greenstones). Sheeted dyke complexes are more abundant in 2.0 Ga and younger ophiolites, although they do occur in the 3.8 Ga Isua and 2.7 Ga Yellowknife (Fig. 3). Thus, the physical conditions during the Archean apparently were less favourable to meet those that produced sheeted dykes complexes, as compared to Proterozoic and Phanerozoic times. Further, from the evaluation of the ophiolite types (Fig. 8) and the time-related subduction influence (Fig. 10) it appears that subduction-related ophiolites are the most common type throughout the Archean, in accordance with the suggestion of Santosh (2010), that the first 2 billion years of Earth history was dominated by subduction-related processes in the oceanic environment.

The lesser amount of gabbro preserved in the Archean greenstone sequences, compared to those of Proterozoic and Phanerozoic ages (Figs. 3 and 4B), is the other marked secular feature, which, together with the scarcity of the sheeted dykes complexes,

Figure 10. Percentage samples within each greenstone complex that is subduction-influenced. (A) Phanerozoic ophiolites (data from Table 2), (B) Phanerozoic and Precambrian (Proterozoic—Archean) ophiolites. The Precambrian data are taken from Table 2 of Furnes et al. (2013).
probably relates to the thermal conditions during the Archean. Even without absolute constraints on the temperature conditions of the Archean mantle (on which there is no general consensus, as discussed above), it is reasonable to conclude that higher heat fluxes would result in greater magma production and greater mantle flux to the surface. We suggest that this physical scenario prevented stagnation and solidification of magma chambers, and hence reduced potential for gabbro formation and sheeted dyke complexes. Instead, the magmas erupted predominantly as lavas and formed accumulations with ocelli (e.g., Sandström et al., 2011) as ubiquitous in the extrusive sequences of the Archean greenstones.

Our analyses shows that 85% of the Precambrian greenstone sequences are subduction-related, including those from the oldest belts, and that of the total related backarc ophiolites nearly 50% are MORB-type. Thus, there is no evidence that (deep) plume activity was the dominant driving force of surface tectonic processes over the last 4 billion years. Even in today's plate-tectonic environment some of the largest volcanos in our solar system formed as oceanic plateau built on oceanic crust (e.g., Sager et al., 2013). The lack of abrupt changes in our geochemical data also precludes that episodic mantle overturn ‘reset’ the chemistry of the global oceanic lithosphere (e.g., Davis, 2007; Kump et al., 2001). Thus, the most conservative interpretation is that subduction processes, as inferred from the geochemical proxies in our datasets covering the ca. 4 billion years, were counterbalanced by upper mantle influenced spreading processes. By inference then, modern style plate tectonic processes likely dominated over this period. However, subtle but detectable changes that occurred around 2 billion years ago, as reported here in both the lithological make up of ophiolites and the incompatible elements such as Ti, P, Zr, Y and Nb, and compatible elements Ni and Cr, may well reflect linked changes in oxidation states of both the mantle and atmosphere at that time (cf., Kump et al., 2001). Further examination of the chemistry of the relevant basalts is needed to test this inference.

10. Summary and conclusions

We present a geological and geochemical compilation of 118 Phanerozoic ophiolite complexes and 111 ophiolite-like sequences from 106 Precambrian greenstone belts worldwide. The following are the main observations and conclusions of this global study:

- The most important ophiolite sequences are preserved in the time intervals of 50–200 Ma, 450–1000 Ma, and 2500–2750 Ma. The next abundant group is represented in the time intervals 0–50 Ma, 2000–2250 Ma, and 2750–3500 Ma.
- In terms of their lithological make-up the Phanerozoic and Precambrian ophiolites are relatively similar until ca. 2 Ga. Prior to 2 Ga, ophiolites contain notably less gabbro, dykes (sheeted dyke complexes and dyke swarms). Further, ocelli-bearing komatiites and basalts are common in the Archean and lower Proterozoic lavas, and rare in the younger occurrences. This observation is consistent with magma formation and crust development without long residence time in magma chambers.
- Over 4.0 Ga, ophiolite complexes show variations in their geochemical character. The average values of incompatible and compatible elements at 100 million-year time intervals (for the Phanerozoic ophiolites) and 250 million-year time intervals for the Precambrian ophiolites, change around 2–1.8 Ga. Before then, from 2.0 to 4.0 Ga there is a notable decrease in the incompatible elements and increase in the compatible elements. This geochemical change can be linked to an increasing degree of partial melting of the mantle in the Archean and into the early Proterozoic; it also coincides with a broad change in the lithological construction of ophiolites.
- The Phanerozoic ophiolites are predominantly (75%) of the subduction-related type and the majority (56%) of these ophiolites can be attributed to the generation of ancient oceanic lithosphere in a backarc tectonic environment, similar to the major Precambrian ophiolite division.
- The subduction-signal of the greenstones generally shows a large variation among the Phanerozoic orogenetic belts from 0 to 100%.
- In general, there appears to be a tendency of increasing subduction-signal as the ophiolite complexes get older. For the oldest (the 3.8 Ga Isua in SW Greenland and the 3.8–4.3 (?) Ga Nuvvuagittuq in NE Canada) greenstones, nearly all the geochemical indicators show subduction-influence, suggesting that these oldest ophiolites were generated as a result of processes at convergent plate margins. Throughout the Archean these were counterbalanced by at least 50% MORB-like sequences, suggesting modern-like plate tectonic processes as the most conservative interpretation for surface tectonics for near 4 billion years of earth history.

Acknowledgements

We express our sincere thanks to the Co-Editor-in-Chief, Professor M. Santosh, for the invitation to write this contribution as a Focus Review paper for Geoscience Frontiers. Financial support over many years of fieldwork in Phanerozoic ophiolites and Precambrian greenstone belts, and numerous geochemical analyses have been supported by the Norwegian Research Council and the Meltzer Foundation at the University of Bergen (HF), the National Research Foundation of South Africa (MdeW), and the National Science Foundation (NSF) and Miami University, USA (YD). Jane Ellingsen helped with some of the illustrations. We acknowledge the insightful and constructive reviews for the journal by Brian Windley and Tim Kusky that helped us improve the paper. This is AEON publication No. 121.

References

Tadesse, G., Allen, A., 2005. Geology and geochemistry of the Neoproterozoic...
Sylvester, P.J., Attoh, K., 1992. Lithostratigraphy and composition of 2.1 Ga green...
Stern, C., Elthon, D., 1979. Vertical variations in the effects of hydrothermal meta-
van Staal, C.R., Chew, D.M., Zagorevski, A., McNicoll, V., Hibbard, J., Skulski, T.,
Staudigel, H., Hart, R., 1983. Alteration of basaltic glass: mechanism and signi-
602
van Hunen, J., Moyan, J.-F., 2012. Archean subduction: fact or...
Syvitski, J.P.M., Borel, G.D., 2002. A plate tectonic model for the Paleozoic and...
Tseng, C.-Y., Yang, H.-J., Yang, H.-Y., DunYi, L., Tsai, C.-L., HanQuan, W., GuoChao, Z.,
Tortorici, L., Catalano, S., Monaco, C., 2009. Ophiolite-bearing mélanges in southern...
Tsai, C.-L., HanQuan, W., GuoChao, Z., Wang, Z., Sun, S., Li, J., Hou, Q., 2002. Petrogenesis of tholeiite associations in Kudi...
Maarten Johan de Wit was born in Holland, went to school in Holland and Ireland, and completed his BSc/MA in Ireland (Trinity College, Dublin), and his PhD in England (Cambridge University), and was a postdoc at the Lamont Doherty Earth Observatory, Columbia University, USA, and at the BPI Geophysics University of the Witwatersrand, Johannesburg, South Africa. Presently he holds the chair of Earth Stewardship Science at the Nelson Mandela Metropolitan University in Port Elizabeth, South Africa. He was the Founding Director of AEON (Africa Earth Observatory Network), a trans-disciplinary research institute (www.aeon.org.za). His scientific interests lie in how the Earth works (particular in its youthful stage); in global tectonics; the evolution of Africa and Gondwana; the origin of continents, life and mineral resources; and in the economics of natural resources and sharing of the ‘commons’. He has mapped in the Barberton Greenstone Belt since 1979.

Yildirim Dilek is a Distinguished Professor of Geology at Miami University (USA), and the Vice President of the International Union of Geosciences (IUGS). He received his PhD from the University of California. He has been a Visiting Professor at Ecole Normal Superieur in Paris-France, University of Bergen-Norway, University of Tsukuba-Japan, University of Kanazawa-Japan, and China University of Geosciences in Beijing. He has worked extensively on the Phanerozoic ophiolites in the Alpine-Himalayan, North American Cordilleran and Caledonian orogenic belts. His other research interests include Precambrian tectonics, mantle dynamics and magmatism in collisional orogenic belts, extensional tectonics and metamorphic core complex development, and accretionary convergent margin tectonics. Recently, he has been studying the structural architecture and geochemical make up of the Mesozoic ophiolites and suture zones in Iran, Tibet and the Qinling-Qilian orogenic belt in China.