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Foreword 
In my daily work at the Department of Oncology and Medical Physics, Haukeland University 

Hospital (HUH) as a medical dosimetrist, a part of my job is to prepare radiological image 

material for the oncologist to use for radiotherapy target delineation. The delineation 

determines the area that receives treatment, and it may have a large clinical impact on patient 

outcome and potential side-effects. The procedure might be challenging in many ways. In this 

work, I see first-hand how the radiotherapy software visualization presentation limits the 

image quality and hence the influences the image representation of the affected tissue, which 

again may lead to a poorer tool for treatment decision making.  The applied software for 

delineation takes place is not high-end radiology software for diagnostic purposes, it is a 

radiotherapy planning software. Hence, it does not provide state-of the art image presentation 

tools like gamma grey-scale presentation function, nor does the oncologist have access to 

high-resolution screens for making the delineations. Even if the image-visualization and 

image-interpretation conditions and equipment might have limitations as to depict the true 

extent of the infiltrative malignant tissue in the brain, the oncologists are expected to delineate 

malignant tissue near critical organs with submillimeter precision. Overdiagnosis and 

overtreatment are well-known challenges in radiology. In the context of radiotherapy 

overtreatment means irradiating more tissue than needed for tumor control. When radiological 

material is subject to low specificity due to either imaging or visualization limitations, the 

chance for overtreatment increases. On this basis, the idea of my thesis came to life: if the 

conditions for qualitative interpretation are limited and deficient, could a quantitative machine 

learning approach be helpful?  
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Sammendrag 
Bakgrunn: Stråleterapi målvolum blir tegnet manuelt av onkologer. Ved stråleterapi av 

glioblastom brukes 20 mm isotrop margin fra kontrastoppladende del av tumor fordi (i) det er 

vanskelig å spesifisere den ikke-kontrastoppladende delen av glioblastom i hjernevevet ved 

konvensjonell kvalitativ bildetolkning, og (ii) tilbakefall vanligvis kommer innenfor 20 mm 

fra primærtumor. Ved inntegning av målvolum innehar programvaren begrensninger i 

bildevisualisering, noe som gjør visuell tolkning vanskeligere for onkologene. Samtidig viser 

studier at det å begrense marginen til 10 mm ikke øker faren for hverken kantresidiver eller 

residiver utenfor målvolumet (1-3). Det er behov for en bedre metode for å spesifisere 

lokalisasjonen av tumorvolumet, slik at man kan begrense bivirkninger for pasientene.  

Mål: 1: Å undersøke om tumorvolum segmentert med en robust kvantitativ 

maskinlæringsalgoritme er signifikant geometrisk korrelert med tumorvolum fra manuell 

inntegning, og dermed kan være nyttig som inntegningshjelp. 2: Å undersøke om 

maskinlæringsmodellen innehar prediktiv verdi i form av å inkludere fremtidig lokalisasjon 

for tilbakefall, i større grad enn dagens kliniske margin gjør.  

Metode: Multispektral MRI fra 6 pasienter ble analysert med en tidligere publisert dyplæring 

algoritme, hvor output var to segmenter: a) kontrastoppladende, og b) ikke-

kontrastoppladende tumordel. 1: Output ble sammenlignet med de respektive kliniske 

målvolumene ved bruk av Dice koeffisient. 2: Lokalisasjon av tumors tilbakefall ble 

sammenlignet med prediksjonen fra (i) klinisk målvolum, og (ii) maskinlærings output, ved 

Dice koeffisient. 

Hovedresultat: 1: Gjennomsnittlig Dice koeffisient ble påvirket av gjennomgående 

volumetriske forskjeller, men viste en gjennomsnittlig korrelasjon på 0,54 med en Sann 

Positiv rate på 0,88 (p<0,001). 2: Ingen av metodene viste signifikant prediktiv verdi (p=ns).  

Konklusjon: 1: For pasientene i denne studien var det en signifikant korrelasjon mellom det 

manuelt inntegnede volumet og volumet segmentert ved maskinlæring, målt ved Dice-

koeffisient (DC=54%) (p<0,001). 2: Sammenligning av de respektive metodenes prediktive 

evne til å inkludere fremtidig plassering av tilbakefall viste ingen signifikant forskjell (p=ns). 

Nøkkelord: Glioblastom, Kunstig Intelligens, Maskinlæring, Stråleterapi, Magnetisk 

Resonans 
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Abstract 
Background: Radiotherapy target volume is determined manually by oncologists. For 

glioblastoma, isotropic margin of 20 mm from the visible tumor is used because (i) 

conventional MRI and interpretation methods have limitations as to specify the location of 

non-enhancing infiltrative glioblastoma, and (ii) recurrence commonly occur within 20 mm 

from the primary tumor. Software-related limitations for image visualization in the 

radiotherapy planning program, adds to the challenge of optimal visual interpretation and 

accurate delineation for the oncologists. Also, recurrence pattern studies show that limiting 

margins to 10 mm induce no increase in edge-recurrences or out-target recurrence (1-3). A 

better method is needed to specify the radiotherapy target volume and avoid unnecessary 

neurocognitive defects. 

Aim: Q1: Investigate if a quantitative machine learning model for segmenting malignant 

tissue from multispectral MRI is correlated to the manual delineations, and thereby potentially 

feasible as oncologist support tool. Q2: Investigate if the machine learning model has 

longitudinal predictive value better than the standard manual clinical margin. 

Methods: Multispectral MRI from six patients were analyzed using deep learning, from 

which the enhancing core and non-enhancing glioblastoma compartments were derived and 

compared (using the Dice-coefficient) to the manually delineated target volumes. The Dice-

coefficient correlation between the recurrent tumor site, and (i) the clinical target volume and 

(ii) the machine learning-derived was compared, respectively. 

Main results: Q1: The mean Dice-coefficient showed an agreement of 0.54 with a True 

Positive rate of 0.88 (p < 0.001). Q2: Neither methods showed significant predictive value 

(p=ns).  

Conclusion: Q1: For the six patients in this study, there was a moderate concordance in the 

detected extent of malignant tissue comparing the two methods with Dice-coefficient 

(DC=54%)  (p < 0.001). Q2: For comparing the two method’s ability to include the site of 

tumor recurrence, no discrepancy between methods were detected (p=ns).  

Key words: Glioblastoma, Artificial Intelligence, Machine Learning, Radiotherapy, Magnetic 

Resonance Imaging 
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1 Introduction 
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, and 

every year there are almost 300 new cases diagnosed in Norway (4). Typical focal symptoms 

are related to rapidly increased intracranial pressure, including persistent headache, early 

morning nausea, vomiting, and neurological symptoms dependent on the size and location of 

the tumor (5). Magnetic resonance imaging (MRI) is an important part of the diagnostic 

process and tentative diagnosis is indicated by contrast enhanced MRI. The appearance of 

GBM on MR images is dependent on image weighting. Typical image characteristics reflects 

the underlying pathology are hypodense necrotic core that is surrounded by a peripheral ring 

of contrast-enhancing tumor on post-contrast T1 weighted images. This is often surrounded 

by an area of poorly circumscribed, vasogenic edema and infiltrative malignant tissue 

presented as hyperintense signal on T2/FLAIR-images (6). The final diagnosis is confirmed 

following histopathology and molecular genetic analysis of stereotactic biopsy or resected 

tissue sample (7). The prognosis for patients diagnosed with GBM is dismal, where median 

survival is 14.6 months and 5-year overall survival (OS) is approximately 4.5 % (8).  

The primary treatment for GBM is maximum safe surgical resection, and limited-volume 

external beam radiotherapy (RT) with concurrent Temozolomide chemotherapy (8). Along 

with age, Karnofsky Performance Score (KPS), extent of tumor resection, the promoter 

methylation status of the DNA repair gene O6-methylguanine-DNA methyltransferase 

(MGMT) is the strongest molecular prognostic factor in GBM, as well as predictive marker of 

response to Temozolomide. Patients harboring tumors with an unmethylated MGMT promoter 

have the lowest survival prognosis (9). Treatment efficacy is measured by OS and 

radiographic response in terms of progression-free survival (PFS) (10). In most cases, the 

tumor recur within 20 mm from the primary site (1, 11, 12). GBM is highly resistant to 

radiation, therefore tumor recurrence within the brain regions receiving full RT doses  

remains a challenge to effective management of the disease (13). Nevertheless, RT increases 

survival benefit over surgery alone (14), even though the radioresistant tumor biology is limits 

the prospects of tumor control with RT alone (13, 14),  as a result, treatment is largely 

palliative. There is a need of improved treatment strategies for this patient group, but equally 

important is taking into account that the aggressive radiation treatment approach induce 

severe side-effects due to cerebral radionecrosis. The patients’ quality of life during the 

remaining life expectancy should also be weighted highly. The challenge in radiotherapy 
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remains then to provide treatment that is both limited in terms of sparing normal tissue, and 

effective in terms of tumor control.  

 

There is a strong consensus in both the literature and the community that target delineation is 

the weakest link in RT (15). A review article from 2016 shows great variations in target 

delineation practice between the European treatment institutions (11). In radiotherapy of 

glioblastoma there has not yet been established a definite contouring guideline consensus, but 

there are three major guidelines available; the Radiotherapy and Oncology Group 

(RTOG), the European Organization for Research and Treatment of Cancer (EORTC), and 

the European Society for Radiotherapy and Oncology Advisory Committee on Radiation 

Oncology Practice (ESTRO-ACROP). They vary in how they define the target volumes but 

they have in common that they advise the use of 20 mm margin around the morphologically 

visible pathology on anatomical MRI images. The margin of 20 mm is intended to cover the 

area of infiltrating tumor cells, and is based on histological post-mortem findings, as well as 

tumor recurrence studies which state that 78 % of recurrence occur within 20 mm distance 

from the surgical margin. Moreover, 56% occur within 10 mm of the presurgical margin of 

the primary tumor. A subsequent study of patients diagnosed with grade IV 4 astrocytomas 

treated with radiotherapy for the primary tumor showed that all recurrences were within 20 

mm and that 10% had multifocal recurrences (16).  

 

The rationale for extending the target area with the 20 mm margin is the prediction and 

expectation of tumor recurrence within this area. The margin is meant to cover pre-

morphologic disease and non-enhancing malignant tissue that conventional imaging and 

interpretation methods fall short in specifying the spatial location. The consequence of poorly 

demarcated target area is damage to healthy brain tissue, such as radionecrosis with potential 

long-term neurocognitive deficits. An example of the size relation between the visible 

malignant tissue and the clinical target volume (CTV) is given in figure 1.  
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Figure 1  Schematic CT- treatment plan image showing the relationship between morphologically visible 
pathology (inner red circle) and safety margins including suspect areas and added margins (outer pink 
circle).The axial measurement shows a distance of 2,31cm from the visible tumor area (Gross Target 

Volume) to the area which covers the suspected infiltration (Clinical Target Volume). The CT-image is 
used due to its voxel-vise quantitative information in terms of attenuation coefficient, of which the dose-

estimates in the treatment plan is calculated upon. Co-registered MRI is used for soft-tissue visualization 
support purposes. Illustration: Marianne H Hannisdal (in-study patient). 

 
Traditionally, radiotherapy has been a profession characterized by large, open-field therapy 

volumes, often simulated on 2D-imaging, using large margins. Later years there has been a 

dramatic progress in personalized, high-precision radiation therapy planning and treatment 

conducting possibilities. However, imaging and visualization conditions in radiotherapy still 

have great potential for improvement, and are still not at the same level as for diagnostic 

radiology. At Haukeland University Hospital (HUH) the image visualization software used 

for radiotherapy target delineation (Eclipse Aria Oncology Information Systems (Varian, 

California, USA)) has limitations that is well known in the community. One example is lack 

of the gamma display function, which is a standard grey-scale shift tool in visualization 

software for radiologic interpretation purposes (17)1. Additionally, the lack of computer 

screens with diagnostic-image quality for oncologists, is in contrast to standard radiologist 

equipment. Consequently, the suboptimal linear gray-scale presentation (and more) makes the 

image interpretation and delineation task even harder for the radiation oncologists. The 

background for this study is a need to exploit the full potential in MRI images and detect the 

full in-image representation of glioblastoma for radiotherapy purposes.  

                                                
1 Internal HUH-reference, enclosed in appendix I. 
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The International Society of Radiographers and Radiological Technologists (ISRRT) and 

European Federation of Radiographer Societies (EFRS) has encouraged the role of Artificial 

intelligence (AI) in radiotherapy treatment planning in a joint statement in 2020:  

Radiographers/radiological technologists working in radiation therapy should take 

advantage of AI technology in order to improve planning, deliver consistently high 

quality and personalized planning processes for patients and radiation therapy 

treatment, including organ(s) at risk identification, tumor segmentation, image 

matching and dose stratification. (18) 

The incorporation of AI and machine learning (ML) in MR neuro-oncology imaging could be 

feasible as a decision support tool for the oncologist in non-biased delineation of the tumor 

volume, as algorithms have a potential to distinguish voxel-vise grayscale nuances and not 

limited by a definite grayscale-range perception ability like humans are. Algorithms have the 

ability to process information across a spectrum of image sequences simultaneously, thereby 

extracting characteristic multispectral image features. The feasibility of AI as a method for 

interpretation of MRI images is given by the very nature of MRI images themselves: they are 

not merely pictures, they are datasets. 

Moreover, the Norwegian Directorate of Health has currently sent new guidelines out for 

consideration, where they emphasize that large radiotherapy target volumes should be avoided 

as large volume radiotherapy induce increased risk of radiation induces neurotoxic damage 

(19). This is based on studies showing safe reduction from 20 mm to 10 mm in treating 

glioblastoma, without increased risk of recurrence (1-3). 

This study makes use of quantitative radiological characteristics in multispectral magnetic 

resonance imaging (MRI), also called quantitative radiological biomarkers. The study aims to 

investigate if an artificial intelligence machine learning model for segmenting malignant 

tissue from multispectral MRI is geometrically correlated to the manual delineations, and 

thereby potentially be feasible as an oncologist support method to segment true malignant 

tissue in multispectral MRI with high specificity. The target margin used for radiotherapy 

serves as a representation of radiologic uncertainty, but it also serves as a prediction of 

recurrence. This study also aims to investigate if the machine learning model has longitudinal 

predictive value in terms of including the future tissue site of recurrence better than the 

standard clinical margin. For radiation treatment planning purposes, improving these aspects 
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may lead to better tumor control as well as improved quality of life by sparing normal tissue 

in accordance to the As Low As Reasonable Achievable (ALARA)-principle. 



6 
 

2 Theoretical aspects 

2.1 Gross anatomy of the brain 
The human cerebrum consists of subcortical white matter containing axon nerve fibers, and 

cortical grey matter that consists of the cell bodies or soma of the nerve cells. The cortex is 

divided into several parcellations in which nerve cells have dedicated tasks (20), as 

exemplified in the cortical homunculus-figure below. The spatial location of a brain tumor as 

well as the spatial extent of radiation treatment have direct impact on patient symptoms and 

functionality, in accordance to the regional nerve cells dedicated tasks. 

 

Figure 2  Example showing a cortical homunculus. This illustrates a neurological map of the areas 
controlled by the respective parts of the brain cortex. Illustration: Wikipedia commons (21) 

 

The subcortical white matter, that consist of the nerve cells` myelin-covered axons, makes up 

the communicative “freeway” between the nerve cell bodies in the cortex and the nerve cells 

in the rest of the body.  

Four different types of glial cells in the brain surround and support the nerve cells, namely, 

oligodendrocytes, astrocytes, ependymal cells and microglial cells. These glial cells 

outnumber the nerve cells in the brain, and provide the nerve cells with their environmental 

and existential needs (22). It is believed that astrocytes and oligodendrocyte cells as well as 

neural stem cells, may represent cells of origin for GBM (23). 
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The brain is supplied with blood from the internal carotid arteries and the vertebral arteries, 

and is protected from the influence of the diverse substances in the main blood stream by the 

blood-brain-barrier (20).   

A comprehensive anatomical and physiological description of the human brain is beyond the 

scope of this study. The brain defines who we are, thus, malignant disease herein has 

destructive potential for cognitive, emotional, behavioral and motoric functionality. The 

symptoms the patient experiences are mainly dependent on the location, size and extent of the 

tumor. Figure 3 shows an image of the human brain. 

  
Figure 3 The human brain, sagittal view T1-weighted image showing cerebrum, corpus callosum, 

thalamus, pons, cerebellum, brainstem and proximal spinal cord .  Illustration: Marianne Hannisdal (in-
study patient) 

2.2 Glioblastoma 
Glioblastoma is the most malignant brain neoplasm, assigned the highest malignancy grade 

IV by the World Health Organisation (WHO) (24, 25). It was formerly known as 

Glioblastoma Multiforme (GBM), reflective of its morphological complexity,  intra- and 

intersubjective  genetic heterogeneity (24). Precisely, the heterogeneity in GBM extends from 

tissue- to cellular- and molecular level, and GBM can arise as a primary neoplasm (without 

prior evidence of a less malignant lesion) or as a secondary malignancy (evolving from lower 

grade gliomas) (25). A hallmark feature of GBM is necrosis and microvascular proliferation, 

which are defined by WHO classification system (26), see table below. This classification 
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was upgraded to incorporate molecular genetic characterization to the histological grading in 

order to define the myriad of tumor entities. The molecular classification is defined by 

whether or not the isocitrate dehydrogenase genes (IDH1/2) mutant, not mutated (wildtype) or 

not otherwise stated (NOS), or indeed, whether they represent diffuse midline glioma, H3 

K27M-mutant among other molecular entities (25). 

Table I WHO classification of Diffuse astrocytic and oligodendroglial tumors 
WHO grade Type 

II Diffuse astrocytoma  

o IDH-mutant 

§ gemistocytic astrocytoma  

o IDH-wildtype  

o NOS  

Oligoastrocytoma NOS 

Oligodendroglioma 

o IDH-mutant, 1p19q co-deleted 

o oligodendroglioma NOS 

III Anaplastic astrocytoma  

o IDH-mutant 

o IDH-wildtype 

o NOS 

Anaplastic oligoastrocytoma NOS  

Anaplastic oligodendroglioma  

o IDH-mutant, 1p19q co-deleted 

o anaplastic oligodendroglioma NOS 

IV Glioblastoma 

o IDH wildtype  

§ giant cell glioblastoma  

§ gliosarcoma  

§ epithelioid glioblastoma  

o IDH mutant 

o NOS 

Diffuse midline glioma, H3K27M-mutant  
The main hallmark features of different grade gliomas, revised definitions by WHO in 2016 (27, 28), 

including isocitrate dehydrogenase genes (IDH1/2), 1p/19q codeletion (a genetic loss event), and Histone 
H3 K27M, which is a mutation in the H3F3A gene, encoding for histone H3.3 

 NOS= not otherwise stated  
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The risk factors for developing gliomas has not been fully explained, but exposure to ionizing 

radiation seems to be the main risk factor, along with increasing age (29). Genetic variations 

have also been weakly associated with glioma (30). 

In adults, GBM tends to occur most often in the ages 50-70 years, with a slight overweight of 

men (31), but can occur at all ages (26). GBM occurs most often in the four lobes of the brain; 

frontal (25%), temporal (20%), parietal (13%) and occipital (3%), whereof the remaining 39% 

cases occurs in the brainstem, cerebellum and spinal cord (32). GBM is multifocal in 13 % of 

cases, meaning there is more than two lesions. This can occur as disseminations to meninges, 

diffuse disease (no clear borderline between lesions) or satellite nodules that are clearly 

noncontiguous with the primary lesion. Further, it is radiologically well established that non-

enhancing tumor infiltration on microscopic level extends beyond the visual pathologic 

expression on anatomical MRI-images (26). The radiological expression of glioblastoma will 

be furtherly described in section 2.3.4. 

The cell biological and pathophysiological details of GBM is beyond the scope of this thesis, 

but some main features are described in the following section. Glioblastoma initiation is 

hypothesized to take place in the neural stem cells or mature glial cell through initial 

mutations in tumor suppressor genes and protooncogenes that destabilize the genome and 

confer cell proliferative advantage (33). Further on, tumor micro-environment play an 

important role in pathological impact as tumor-associated parenchymal cells (vascular, 

microglia, peripheral immune cells and neural precursor cells) directly interact with GBM 

cells (33). Advanced interactions triggered by exponential increase in tumor nutrient and 

oxygen demand facilitates tumor growth and simultaneously co-opt the integrity of normal 

vasculature. This deprives normal vascularization in neighboring tissue, compromising 

normal cell function and subsequently, making this neighboring tissue more vulnerable to 

tumor invasion. Such dismantling of normal vascularization integrity further facilitates tumor 

growth in a diffuse and poorly delineated way, while simultaneously increasing treatment 

resistance by inducing hypoxia (34). All patients experience disease progression, and for  

approximately 70%  of individuals, recurrence occurs within the first year after diagnosis 

(26). Such rapid recurrence is made possible by rapid cancer cell invasion to distant sites 

within the brain parenchyma. Tumor cells and glioma stem cells, are able to migrate to 

different brain regions  on pathologically fenestrated blood vessels, allowing colonization of 

healthy  brain tissue (34). This tumor cell invasion  subsequently causes new 
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neovascularization at the new sites of renewed tumor expansive growth , that induces 

vasogenic edema and increased intracranial pressure which further promote malignant 

progression.. 

2.3 Imaging for treatment planning 
Imaging used in treatment planning include both plan-dedicated imaging acquired with RT-

patient positioning, as well as diagnostic imaging co-registered onto the plan-dedicated image 

material.  

In order to administer safe radiation therapy, the dose to be delivered must be planned and 

calculated in detail in order to deliver the optimal therapeutic doses to the target volume while 

protecting organs at risk. Treatment planning is traditionally based on Computer Tomography 

(CT) images, however, MRI has superior soft-tissue resolution compared to that of CT. MRI 

is thus preferentially used as a support tool for target volume delineation by the oncologist 

and for organs-at-risk (OAR) delineation by the medical dosimetrist. CT and MRI imaging 

modalities provide personalized anatomical maps for dose-calculation and tumor visualization 

purposes, respectively, on which one can plan how to deliver highly conformal doses to a 3D 

target volume (35). The combination of different image modalities is called multimodal 

images.  

Positron Emission Tomography (PET) scan can also provide additional imaging information 

for diagnosis and treatment planning. The most commonly used PET tracer is the 2-deoxy-2-

(18F) fluoro-D-glucose (18FDG), whose function is based on glycolytic metabolism. Newer 

amino acid tracers like hybrid 11C-methyl-L-methionine (11C-MET) PET/MRI and O-(2-

(18)F- fluoroethyl)-L-tyrosine (18F-FET) have demonstrated significant accuracy in imaging 

metabolically active tumor compartments (36). PET and PET-MR are however, very limited 

resources in our region, thus their in-depth description is beyond the scope of this study.  

The imaging information provided by CT and MRI for treatment planning is the basis for 

target and OAR delineation. Hence, the accuracy of the treatment plan is limited to the 

sensitivity and specificity of the diagnostic imaging modality.  

2.3.1 Computer Tomography 
Computer Tomography (CT) is the primary imaging modality that is utilized in radiation 

therapy planning as the various tissues’ Hounsfield Units (HU) presents a well-documented 
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and quantitative measure of the tissues’ ability to absorb, hence attenuate the energy from the 

radiation. HU is a description of the linear attenuation coefficient, which quantifies how much 

a matter attenuates the radiation, and the gray scale is calibrated relative to the attenuation of 

air (-1000 HU) and water (0 HU). HU-values in the body’s various anatomical tissues is well 

described, e.g. fat: ~-80 HU, muscle: ~30 HU, and all such values can be extrapolated for use 

in dose calculation (37). The pixel value is expressed by Hounsfield Unit (HU), and is found 

by the linear attenuation coefficient 𝜇S relative to water 𝜇T for every pixel in the volume by 

this relation (35):  

𝐶𝑇	𝑝𝑖𝑥𝑒𝑙	𝑣𝑎𝑙𝑢𝑒	(𝐻𝑈) = (𝜇S − 𝜇T)/𝜇T   

Thus, CT images provide important dose-attenuation information despite poor soft-tissue 

contrast. 

2.3.2 Magnetic Resonance Imaging 
MRI is the main diagnostic imaging tool for GBM, and diagnostic MRI are often co-

registered onto the plan-dedicated CT. The Norwegian Directory of Health recommend that 

MRI used for radiation therapy target delineation should not be older than four weeks (19), 

while ESTRO recommend no older than two weeks (38). 

MRI uses powerful magnets, commonly within a range of 1.5-7 Tesla to create hydrogen 

nuclear spins with a precession frequency according to the applied radiofrequency pulse and 

the tissues intrinsic molecular structure within each voxel. The product of MRI is a spatial 

map of the net magnetization in an image matrix (39), represented by greyscale in an image. 

A set of image parameters such as (but not limited to) repetition times (TR), echo times (TE), 

flip angle, and (if applicable) inversion times (TI) provide specific image weightings often 

called MR-sequences. The combination of various sequences is called multiparametric, or 

multispectral MRI. The minimum consensus recommended sequences for both 1.5 T and 3 T 

MR systems, according to the UCLA Neuro-Oncology Program and UCLA Brain Tumor 

Imaging Laboratory (BTIL) (40), include:  

a) parameter-matched precontrast and postcontrast inversion recovery-prepared, 

isotropic 3D T1-weighted gradient-recalled echo  
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b) axial 2D T2-weighted turbo spin-echo (TSE) acquired after contrast injection and 

before postcontrast 3D T1-weighted images to control timing of images after 

contrast administration 

c) precontrast axial 2D T2-weighted fluid-attenuated inversion recovery (FLAIR) 

d) precontrast, axial 2D, 3-directional diffusion-weighted images, 

whereof a), b) and c) is the most commonly used image series for brain tumor large scale 

machine learning purposes, according to both the widely known Brain Tumor Segmentation 

(BRATS) challenges as well as the HD-GLIO-algorithm used in this study. The latter will be 

more thoroughly explained in section 2.6.3. In the following section I will give a brief 

introduction to the four MRI image sequences used in our study. 

2.3.3 MRI image sequences used in this study 

T1-weighted images 
T1 relaxation time, also called T1 recovery, is defined as the time it takes a tissue to recover 

63 % of its longditunal magnetization, as illustrated in the figure below. This takes place as 

the excited spins deposit energy to the surrounding tissue, a process called spin-lattice 

relaxation (41). The different tissues have different microstructural compositions, quantities 

and concentrations of water, as well as different types of macromolecules and iron-

composites, which all affect relaxation characteristics (42, 43). High concentrations of water 

in tissues increase their T1-time, while fat and iron reduce the T1-time. Thus, myelin-rich 

white matter has significantly shorter T1-time than grey matter that contains more water, as 

does cerebrospinal fluid (CSF) which has longer T1-time. The difference in relaxation times 

between two tissues is illustrated in the figure 4 below, where tissue-a is representative of fat 

and tissue-b water-rich tissue. 
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Figure 4  T1 recovery curve for two different tissues, illustrating how tissue a and b spend different amount 
of time to recover 63 % of the longditunal magnetization, and will therefore induce different voltages at 

signal readout. Illustration: Marianne H. Hannisdal 

T1-weighted images with gadolinium contrast enhancement 
Image contrast and hence image information may be increased by the use of contrast agents 

such as gadolinium chelates. The most commonly used agents are extravascular and 

extracellular agents. In a healthy brain, the contrast agent does not cross the intact blood-

brain-barrier (BBB) and stay intravascular, but in tumors the contrast agent crosses, and are 

able to depict, a disrupted BBB. Gadolinium contain paramagnetic material with unpaired 

electrons that changes the tissues magnetic susceptibility and shortens the T1-relaxation time 

(35). Furthermore, contrast enhancement denotes neovascularization in the interstitial tissue 

and remaining neoplastic tissues, often seen in the outer part of the macroscopic tumor, or 

tumor bed (44, 45). This feature has become a radiologic biomarker, as vessels in the brain 

are not permeable for gadolinium-based contrast agent due to the BBB unless a pathological 

situation is present. The physiological permeability of the blood vessels’ endothelial layer can 

be measured using dynamic contrast enhanced imaging (46). A T1-weighed image, and a 

contrast enhanced T1-weighted image (CET1) is exemplified in figure 5 below. 
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Figure 5 Right: sagittal view T1-weighted image. Left: sagittal view gadolinium enhanced T1-weighted 
image. Both images show a glioblastoma with peritumoral edema, and both uptakes have TE: 29 and TR: 

600. The figure illustrates how the same in-patient-slice show tissue contrast changes with the use of 
gadolinium, keeping all other image parameters constant between uptakes. Illustration: Marianne 

Hannisdal (in-study patient) 

T2-weighted imaging 
T2 relaxation, also called T2 decay, is a parameter that denotes the tissue-specific loss of 

transverse magnetization as a result of energy-exchange with neighboring protons; spin-spin-

relaxation. After the RF-pulse has excited the protons´ net magnetization to the transversal 

plane, the transversal magnetization, derived by the spins coherent precession, will decay in 

an exponential-like curve (46). The time it takes for the respective tissues to lose 63 % of their 

in-phase coherence by spin-spin-relaxation is called T2-time, which is a tissue-specific time 

constant, as illustrated in figure 6. 

 

Figure 6 T2-relaxation. The figure shows how tissue a and tissue b spend different amount of time to lose 
63 % of the transversal magnetization. Illustration: Marianne H. Hannisdal 
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The underlying source of T2-time heterogeneity across tissues is, like for T1, due to intrinsic 

characteristics in tissue microstructure. As previously explained, fat exhibits a molecular 

tumble rate of protons that exchanges energy more rapidly than water. However, the 

magnitude of transverse magnetization in water is much greater than in fat, leaving the signal 

from water with an amplitude superior to fat. Consequently, water will appear hyper-intense 

on the grey-scale while fat will appear dark or hyperdense in the T2-weighted image (41). A 

T2-weighted image is exemplified in figure 7. 

 

Figure 7 Axial view of a T2-weighted image showing a glioblastoma with peritumoral edema, TE: 90 TR: 
5794. Illustration: Marianne Hannisdal (in-study patient) 

 

T2* is also a type of T2-weightening which, in addition to T2 spin-spin-relaxation, denotes 

tissue- and microenvironmental-specific dephasing differences due to field inhomogeneities 

(41). The field inhomogeneities is caused by magnet field imperfections, chemical shift, 

macroscopic susceptibilities, and presence of para- or ferromagnetic substances (46). 

However, the T2*-decay happens much faster than T2, so one has to use a short echo-time 

(TE) to capture the effect, as illustrated in figure 8 below. T2* effect is therefore not present 

in the image-series used in this study. 
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Figure 8  T2*-decay (stapled blue line) and T2-decay (green line) for a tissue. The figure illustrates how 
T2* happens faster than T2-decay as the magnetic inhomogeneities contributes to dephasing as an addition 

to spin-spin-relaxation. Illustration: Marianne H. Hannisdal 

Fluid-Attenuated Inversion Recovery 
Fluid-attenuated inversion recovery (FLAIR) is a T2-weighted spin-echo pulse with an RF 

inverting pulse that provides heavily T2-weighetd images with suppressed signal from fluid 

(47). The inversion pulse is timed to null out the magnetization from cerebrospinal fluid 

(CSF). Nulling the signal from CSF is beneficial for visualizing pathology adjacent to CSF 

without any hyperintense signals from CSF contaminating the visual perception. FLAIR 

provides a hyperintense signal from peritumoral edema, which for treatment-naive patients, 

can be related to tumor infiltration (48). The solid tumor compartment is often not represented 

by the same hyperintense FLAIR-signal. FLAIR-series can thereby provide differentiation 

between edema and tumor (49). A FLAIR image is exemplified in figure 9. 

 

Figure 9 Axial view FLAIR image showing a glioblastoma with peritumoral edema. The image was 
acquired with TE: 293, TR: 4800, TI: 1660. Illustration: Marianne Hannisdal (in-study patient) 
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Other MRI sequences used for GBM characterization 
There are numerous image sequences available, some of those utilized in evaluation of MRI-

biomarker for brain tumors will be briefly mentioned here. Diffusion-weighted imaging 

(DWI) is a much used technique that measures the random thermal motion of water molecules 

in x-,y-, and z-direction in extracellular space (50). In white matter, the diffusion is directional 

as the lipid membranes in myelin form structured boundaries, whereas in grey matter the 

diffusion is more isotropic. In glioblastoma and generally in malignant tumors, diffusion is 

restricted due to increased tumor cellularity (51). The strength and duration of the gradients is 

denoted in B-values, at least 3 B-values are typically used in a DWI-acquisition. As the signal 

intensity can be influenced by T2-shine-through artefact, the DWI images are usually 

interpreted taking the apparent diffusion coefficient (ADC)-map into account (52). This is 

calculated from voxel-wise signal intensities across the range of the applied B-values (50). An 

example of a diffusion-weighted image and ADC-map is given in figure 10.  

 

Figure 10 Left: axial diffusion weighted image showing a glioblastoma with peritumoral edema. Right: 
ADC calculation of the same slice.. Illustration: Marianne Hannisdal (in-study patient) 

 

Diffusion tensor imaging (DTI) is a more advanced diffusion image series that denotes the 

anisotropic direction of the structural water motility from at least six non-collinear directions 

(52, 53) and useful for visualizing tensors depicting white matter fiber tracts. The direction of 

motility is indicated in color-code, whereas one color refers to left-right, another to cranio-

caudal direction etc., as exemplified in figure 11 below. White matter tracts are frequently 

infiltrated or disrupted by glioblastoma (54). In grey matter, the water motility has more of a 

isotropic character, thus the signal is nulled. 
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Figure 11 Diffusion tensor imaging, sagittal view, depicting  reconstructed fiber tracts that run through the 
mid-sagittal plane. Illustration: courtesy of Thomas Schultz (55) 

 

MRI spectroscopy (MRS) is another technique, where one does not acquire an image, but a 

quantitative chart measuring concentration of various metabolites that are present in a tissue. 

The method is based upon electron distribution within the atom, which cause the nuclei in 

different molecules to undergo a slightly different magnetic field. The result is somewhat 

different resonant frequencies, which ultimately results in a slightly different signal (56). 

Typical metabolites that are differentially present in peritumoral areas of glioblastoma and 

used for MRS diagnostic purposes are N-acetyl aspartate (NAA) and choline (Cho). Decrease 

in NAA levels  is related to neuronal viability, and increased levels of Cho is related to 

cellular membrane turnover. These metabolites are therefore used as brain tumor biomarkers 

in spectroscopy (57). MRS is not part of the routine clinical imaging protocol. 

Other parameters affecting image contrast 
Magnetic susceptibility not only affects the image contrast in T2* weighted images but may 

also impact image quality. Macroscopically, large differences in magnetic susceptibility 

between bordering tissues can cause geometrical distortions, as is often present in sinus-near 

areas. However, microscopical susceptibility can also affect the image, especially when 

imaging small structures. The brain is structurally complex, and even with a sub millimeter 

isotropic voxel dimension, the bulk MR-signal from a voxel will be a combination or a 

weighted average of the tissue-types within the voxel. Such partial volume effect decrease 

spatial resolution, causing smudging in homogenous tissues as well as in tissue borders, and 

chemical shift exacerbates this (58). Chemical shift is as a result of the resonance frequency 
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shift between fat and water. It originates from molecular diamagnetic susceptibility, and will 

induce a small error in phase-frequency mapping, resulting in signal read-out error known as 

chemical shift (41). The effect of chemical shift can be reduced with increased bandwidth, 

inverting phase-direction and more, however, it can never be eliminated in full as it originates 

from an intrinsic feature in the tissues’ preconditions for resonance.  

2.3.4 The pathophysiology of glioblastoma related to MRI 
GBM has a heterogenous appearance in MRI, commonly consisting of necrosis, hemorrhage, 

cysts and calcification (6). The GBM central necrotic core is often surrounded by a peripheral 

ring of contrast-enhancing tumor representing high angiogenic activity on T1-images. The 

solid tumor is often surrounded by an area of poorly circumscribed, vasogenic edema and 

infiltrative neoplastic tissue, represented by hyperintense T2/FLAIR-signal, as demonstrated 

in figure 12 below. This surrounding infiltrative component is a mixture of tumor and reactive 

normal cells where contrast enhancement does not occur as the tumor cells have not reached 

morphologic manifest with functioning angiographic structure (6).  

 

Figure 12 Example of a contrast-enhanced T1 (A) and FLAIR (B) series depicting a glioblastoma. 
Illustration: Marianne Hannisdal (in-study patient) 

 
Neoplastic angiogenetic tissue can be distinguished from normal tissue by its characteristic 

pathological architecture of the vasculature. The disrupted blood-brain-barrier is permeable, 

allowing leaked contrast agent to enhance the signal in tumor cells, which is a well-

established radiological feature in treatment-naïve patients. Furthermore, the GBM-cells have 

a higher nuclear-to-cytoplasm ratio than other, low grade gliomas such as astrocytoma, which 
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can be distinguished by lower T2 signal as well as mildly restricted diffusion on DWI (6). 

GBM can be discriminated from other high-grade gliomas by the presence of necrosis 

according to WHO classification system, in addition to other histological characteristics (28, 

59).  

Glioblastoma tissue boundary are hard to distinguish from surrounding normal tissue due to 

its highly infiltrative cellular invasion (60). In fact, this image-diffuse invasion into the 

surrounding healthy tissue has been stated as the most significant characteristic of 

glioblastoma (61). Biological chain-reactions makes the differentiation hard, studies have 

showed that macrophages and microglial cells  that form part of the body’s immune defence, 

infiltrate upto 40 % of the non-enhancing  glioblastoma tumor mass. Their presence 

contribute  to a poorer differentiation of malignant cells  on both T1 and FLAIR images (44). 

However, both macrophages and microglial cells have the ability to phagocytose tissue or 

cellular components identified as damaged or threatening (62). Phagocytosis of red blood 

cells present in the highly angiogenic tumor vasculature leaves hemosiderin residues that 

heavily affect the tissue’s ferromagnetic abilities (44, 63).  

Pseudoprogression is defined as “radiographic evidence of disease progression, typically 

within 3 to 6 months posttreatment, followed by spontaneous resolution or improvement 

without additional treatment” (64). It is termed is termed pseudo (false) progression because 

it presents as a tumor progression on T1 weighted images. Pseudoprogression is mainly 

caused by radiation necrosis, which is a consequence of damage of normal tissue , followed 

by inflammation  upregulation of  vascular endothelial growth factor (VEGF). VEGF is a 

signal protein that stimulates formation of blood vessels, and was formerly called vascular 

permeability factor (VPF) (65). Upregulation of VEGF increases in vessel permeability and 

edema. Studies showed that patients with an unmethylated MGMT promoter infrequently 

present with  pseudoprogression, presumably because the phenomenon is related to 

radiosensitivity, indicating response to treatment. Increased radiation doses correlates with the 

increased probability of pseudoprogression (64), this effect is compliant to the “normal tissue 

complication probability”, as will be explained in section 2.4.1. Pseudoprogression can also 

be suspected after tumor surgical resection, in the form of new contrast enhancement 

associated with subacute ischemia, and is therefore why it is recommended that postoperative 

imaging is acquired  within 48 hours to avoid signal contamination. 
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Progression assessment guidelines 
Several guidelines guidelines are available for assessment of tumor progression by radiology, 

the most recent being the Response Assessment in Neuro Oncology (RANO) guidelines that 

came in 2010, and was modified in 2017 (64). The RANO guidelines take treatment and 

clinical history into account in relation to the radiological measurements. RANO criteria were 

upgraded in 2017 with an aim to increase focus on distinguishing pseudo progression from 

true tumor progression, in particular after immunotherapy According to RANO, new contrast 

enhancing area within the radiation field cannot be diagnosed as true progression within the 

first 12 weeks after radiotherapy, as pseudoprogression stands as an undistinguishable 

differential diagnosis.  

 

2.4 Brief introduction to the physics and 
radiobiology in radiotherapy 
Radiotherapy (RT) can be administered with various techniques but I will focus on external 

beam therapy with megavolt (MV) photons in this thesis. RT utilizes ionizing radiation to 

treat medical conditions, primarily oncological lesions.. The unit for dose is Gray (Gy) and is 

defined as absorbed mean energy in joule per kilogram (J/kg). 1 Gy means that 1 kg of the 

irradiated tissue has absorbed 1 joule radiation energy. 

The energy from MV photons is deposited in radiated tissue by interactions that cause 

ionizations and scattered electrons. The scattered electrons and free radicals have the potential 

to cause damage to cellular DNA, which ultimately induces a range of destructive processes 

such as apoptosis, mitotic catastrophe, radiation induced senescence, autophagy and necrosis 

(66). These effects can deprive tumor cells of their reproductive abilities and lead to cell death 

Radiation can also induce tumor cell necrosis due to enhanced inflammatory responses (67). 

2.4.1 Therapeutic effect 
The objective of radiation therapy is to obtain tumor control without causing unacceptable 

toxicity to normal tissue. Both tumor control probability (TCP) and normal tissue 

complication probability (NTCP) increase with dose and irradiated volume (68). This 

evaluation of “risk-benefit” of the radiotherapy treatment is denoted as “the therapeutic 

window” and relates to the ratio between maximum radiation dose by which tumor cells are 
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controlled and the minimum radiation dose by which cells in normal tissues suffer acceptable 

complications (68), as illustrated in figure 13.  

 

Figure 13 The therapeutic window in radiation therapy; the beneficial ratio between tumor control 
probability and normal tissue complication probability, as a function of increasing dose. Illustration: 

Marianne H. Hannisdal 

2.4.2 Fractionation 
The standard RT course for treatment of  GBM  is a total dose of 60 Gy  administered as 5 

fractions of 2 Gy per week, concomitantly with oral 75mg/m2 temozolomide chemotherapy 

for  6 weeks (8, 69). Dose fractionation defines how the total radiation dose is divided, where 

normally one (or more) fractions are given each day. The fractionation has four main goals; it 

allows normal cells to repair their damaged DNA and cellular repopulation in normal tissue 

between fractions. It also allows tumor cell reoxygenation that is required for generation of 

free radicals, and redistribution of cell cycle kinetics which renders them susceptible to the 

radiation effect (35).  

GBM is notoriously radioresistant (69), that is, the tumor cells responds poorly to radiation, 

and hence the therapeutic window is narrowed. Current fractionation-schemes are limited by 

complications to normal tissue weighted up against  probability of tumor growth control. The 

use of large margins to encompass all the GBM cells inevitably result in complications due to 

damage to normal tissue compartments. The use of margins will be more closely explained in 

section 2.5.2. 
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2.5 Radiotherapy of glioblastoma  

2.5.1 The treatment planning process 
When an oncologist referrers a patient to radiotherapy a defined cascade of processes are 

initiated, whereof the main steps are illustrated in the flow-chart in figure 14.  

 

Figure 14 Flow-chart showing the main steps of a radiation treatment process from referral to therapeutic 
execution 

𝑪𝑻𝒅𝒐𝒔𝒆𝒑𝒍𝒂𝒏: simulation and fixation 

The technology of 𝐶𝑇ghijklmn is the same as for a diagnostic CT-scanner, only with a flat 

table top for positioning-reproducibility purposes, and an extra-large gantry, so-called “big-

bore”, to make room for space demanding patient fixation devices. The images taken on 

𝐶𝑇ghijklmn simulates the treatment position and hereby sets the standard for patient 

positioning for the entire remaining treatment time. Glioblastoma patients are fixated by a 

heated thermal head mask that is molded directly onto the patients` skin, as well as being 

pinned to the table top, as illustrated in figure 15 below. The mask leaves very little room for 

patient movement, and ensures a near-perfect patient-positioning throughout the 30 treatment 

fractions carried out over 6 weeks. 

Refferal 𝐶𝑇ghijklmn MRI co-
registration
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delineation

Treatment 
planning

Oncologist 
approval

Quality 
Assuranse

Radiation 
therapy



24 
 

 

Figure 15 Patient fixated with thermal mask, situated on the treatment table top. Illustration: curtesy of J. 
F. Frantzen, UNN 

Coordinate systems 
When handling images across modalities, across MRI-sequences, and across world space and 

the image space, several coordinate systems come into use. For radiotherapy and in-scanner, 

one needs to relate the in-patient treatment volume to a physical environment and coordinate 

system, the transversal, the vertical and the longditunal plane are referred to as the x,y,z 

dimensions, respectively, where coordinates are points in R3. 

Image space coordinates which does not refer to the physical space, the transversal, vertical 

and longditunal plane are referred to as k,i,j, respectively, where coordinates are integer-

valued voxel locations. The use or denotation of these coordinates thereby distinguishes the 

situation of a voxel in image space and a point in physical space, as often is the case in image 

analysis.  

Co-registration 
Co-registration, also called image registration or spatial alignment refers to the fusion of two 

sets of images into the same coordinate system, meaning they are visualized overlaid 

(aligned) in the same space. The registration thereby hold a second layer of voxel-position 

metadata. The registration can be done manually by rotating and moving one image to 

visually match the other, or automatically, using an algorithm that adjusts and rotates the 

image according to e.g. bone-structures. Manual adjustments can also be made on the  

automatic registration. The rigid co-registration can be done with up to 6 degrees of freedom, 

including translations and rotations. 
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There are two types of co-registration methods; affine and deformable registration. Rigid 

registration, the simplest in the affine category, is the most straight-forward method as it 

simply translates and rotates all voxels in the same way, keeping the relation between image 

voxels constant, as illustrated in figure 16. 

 

Figure 16  Co-registration of two MRI-series taken at different time-points. A) shows the images 
superimposed with their original positioning, the green outline is the body-contour of the patient. B) shows 

the same images superimposed after rigid co-registration. Illustration: Marianne Hannisdal (in-study 
patient) 

 

Deformable image registration (DIR) attempts to correct for changes in the patient between 

scans, such as body weight changes, patient positioning, or displacements in soft tissue 

because of patient motion, or organ changes. This is done by making an elastic grid-map 

between landmarks in one image series and the corresponding landmarks in the second image 

series (70). For patients that have undergone surgery, where brain volume elements have been 

removed from one series to another, or when severe brain atrophy has occurred between series 

as a result of either radiotherapy or evolving pathology, deformable registration is not 

recommended in current clinical practice. 

For glioblastoma patients, it is not standard of care to acquire dedicated MR images for 

treatment planning purposes, so-called 𝑀𝑅𝐼ghijklmn, instead diagnostic MR-images are co-

registered rigidly onto the 𝐶𝑇ghijklmn-images. This is mainly due to limited MRI resources, 

but also partly because (i) nearly all GBM-patients have very recent pre- and post-surgery 

MRI prior to radiotherapy, and (ii)  because the cranium fixates the brain so well that the 

conditions for co-registration is very good. An example of an image registration between a 

𝐶𝑇ghijklmn and a 𝑀𝑅khiopiqrsjrt is given in figure 17. 
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Figure 17  Co-registered CT- and MR-image. A): 𝐶𝑇𝑑𝑜𝑠𝑒𝑝𝑙𝑎𝑛 B):	𝑀𝑅𝑝𝑜𝑠𝑡−𝑠𝑢𝑟𝑔𝑒𝑦 C): A and B co-registered 
weighted 50%-50%, D): A and B co-registered weighted 25% and 75%, respectively. The red circles 

indicate the planning volumes delineated by the oncologist. Illustration: Marianne Hannisdal (in-study 
patient) 

Organs at risk 
To ensure that critical normal tissue does not get radiation doses above tolerance levels we 

define Organ At Risk (OAR) volumes. OAR are delineated by medical dosimetrists before the 

oncologists perform target delineation, and OAR-structures are viewed and approved by the 

oncologists. Figure 18 shows manual digital pencil delineation on an electronic drawing 

board. 

 

 
Figure 18 Manually delineation of organ-at-risk-structures by medical dosimetrists, often done on 

electronic drawing-boards, as shown here. Illustration: curtesy of J. F. Frantzen, UNN.   
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Target delineation 
Target delineation is made on 𝐶𝑇ghijklmn, but soft-tissue visualization is supported by the co-

registered MR-images. The oncologist will often make the delineations by visual 

interpretation of the contrast-enhanced T1-weighted images, for proper distinguishing of any 

remaining tumor fragments, and the T2FLAIR to distinguish the extent of the peritumoral 

edema. The oncologists delineate manually based on the available image material, and 

treatment margins are calculated from this, as will be explained in the next section. 

2.5.2 Volumes in radiotherapy 
Target volumes for radiotherapy is delineated on according to definitions from International 

Commission on Radiation Units and Measurements (ICRU) report 83 (71). There are 

variations in target volumes sizes according to various cancer types and their anatomical 

locations. In the following section I will present those relevant in treating glioblastoma. The 

relevant volumes and their geometrical relations are visualized in figure 19. 

  

Figure 19 Target volumes used in radiotherapy and their relation to each other within the treatment field 
border. Gross Tumor Volume (GTV) in the center, Clinical Target Volume (CTV) surrounding GTV, and 

Planning Target Volume (PTV) surrounding CTV. Organ at risk (OAR) and Planning Organ at Risk 
Volume (PRV) on the side of target volumes.  Illustration: Marianne Hannisdal 

Gross Target Volume 
The macroscopic tumor is defined as the Gross Target Volume and can be the primary tumor 

(GTVp) or recurrent tumor (GTVr). The GTV delineated by the oncologist for the radiation 
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treatment plan is the product of the oncologists qualitative interpretation of the malignant 

tissue`s extent, a subjective decision that is made from the sum of the available radiological 

information. 

Clinical Target Volume 
The area around the GTV with high probability of microscopic tumor infiltration, so-called 

pre-morphological malignant disease, is defined as the Clinical Target Volume (CTV)(38). 

The CTV is very often delineated as a volumetric margin where size is based on studies on 

what anatomical pathways the various cancer types tends to take, and how aggressive or 

infiltrative the cancer type tends to be. Glioblastoma is highly-infiltrative and existing 

contouring guidelines from RTOG, EORTC and ESTRO-ACROP advise the use of 20 mm 

margin around the entire GTV (12). Additionally, clinical considerations by the oncologist in 

respect of localization, natural barriers, radiological expression etc. subjectively defines the 

final CTV.  

A note on CTV-delineation: As of September 2020, the Norwegian Directorate of Health 

has sent new guidelines for consideration to the Norwegian medical community and regional 

Health Trusts, that states:  

Large target volumes should be avoided as radiotherapy up to 60 Gy targeting large 

volumes induce increased risk of radiation induces neurotoxic damage. Recurrence 

pattern studies of glioblastoma show safe GTV to CTV margin reduction to 10 mm 

without increase in edge-recurrences or out-target recurrence. This will reduce the 

radiation exposure of the surrounding normal tissue and thereby reduce the risk of 

late effects. (19)p.27 [own translation]).  

These guidelines are under consideration and are not published yet. 

Planning Target Volume 
To take treatment delivery-related uncertainties into account we add another margin around 

all other volumes called Planning Target Volume (PTV). This is purely a geometric margin to 

ensure that no daily variations in set-up, patient positioning, mechanical delivery techniques 

etc. compromises the planned dose-delivery to the CTV. For Glioblastoma patients positioned 

with fitted mask the PTV-margin is typically 3-5 mm.  
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Organs At Risk 
If the target volume is located near an OAR, the oncologist decides whether the target 

volumes should be reduced in that area to avoid dose to OAR. The Planned organ at Risk 

Volume (PRV) is a geometrical uncertainty margin around OAR accounting for daily 

variations in positioning and dose-delivery, as well as in-patient changes such as 

edema/swelling. The figure 20 illustrates how some of these volumes are presented for 

radiotherapy planning of glioblastoma in CT-images at Haukeland University Hospital 

(HUH). 

 

Figure 20 Example showing volumes in radiotherapy on a sagittal CT-image, with dose (right) and without 
dose (left). The Gross Target Volume (GTV)  is the smallest inner circle in bright red in the frontal lobe. 

The Clinical Target Volume (CTV) shown in a pale pink line is the much larger volume, surrounding GTV 
with a margin of 20 mm. The Planning Target Volume (PTV) is the outer bright red line, surrounding CTV 
with a margin of 5 mm. The brainstem and optic chiasma are delineated as Organs At Risk (OAR) in blue 

and pink, respectively. There is also a 3mm margin surrounding the OAR, called the Planned organ at Risk 
Volume (PRV) with corresponding color. Illustration: Marianne H Hannisdal (in-study patient). 

2.6 Imaging in a quantitative perspective 
The quantitative perspective in imaging refers to the evaluation and analysis of images in an 

objective and quantitative manner, as opposed to qualitative evaluation that comprises visual 

interpretation. 

2.6.1 Image quality 
In MRI there are objective image quality measures. Signal-to-noise ratio (SNR) is used to 

evaluate the general amount of signal in relation to noise in an image, and contrast-to-noise 
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ratio (CNR) is used to evaluate the difference in signal between two tissue-types in relation to 

noise. Low spatial frequency, i.e. loss of contrast between two adjacent tissues in an image is 

caused by insufficient resolution so that more than one tissue type occupies the same voxel, 

causing partial volume effect (58). 

Sensitivity in radiological imaging is defined as the method’s ability to detect abnormal tissue 

or disease processes in a sick patient (true positive), and specificity is defined as the method’s 

ability to not detect abnormal tissue or disease processes in a patient who is not sick (true 

negative) (72). Together, these terms define the method’s ability to distinguish true disease 

from no disease. A limitation to sensitivity and specificity is that they are binary measures; 

true/false or sick/normal, which is less applicable when comparing continuous variables or 

states, such as the pre-morphological to morphological evolution of a cancer in tissue.  

2.6.2 Multispectral MRI and radiological biomarkers 
Radiological biomarkers are also called imaging biomarkers, they can be qualitative as well as 

quantitative, but in this thesis this I will focus only on quantitative biomarkers. 

Kessler et al (2015) defines a quantitative imaging biomarker as: «an objective characteristic 

derived from an in vivo image measured on a ratio or interval scale as an indicator of normal 

biological processes, pathogenic processes or a response to a therapeutic intervention” (73). 

The term quantitative imaging is defined by Sullivan et al., (2015) as “the extraction of 

quantifiable features from medical images for the assessment of normal [findings] or the 

severity, degree of change, or status of a disease, injury, or chronic condition relative to 

normal [findings]” (74). 

In the present study, we use radiological biomarkers in terms of voxel signal intensities from 

the multispectral recordings as vector-valued input (features) to our deep learning 

segmentation procedure. In general, radiological biomarkers aim to reveal correlations 

between radiological features and histological findings (75). Established radiological 

hallmarks state that neoplastic cells differ distinctly from normal tissue, just as glioblastoma is 

radiologically distinct from lower grade gliomas (6). A range of quantitative characteristics 

can be extracted from the MR imaging data, for example, contrast-enhanced T1 provide 

information about signal intensity variation in relation to intra-tumor heterogeneity, while 

diffusion-weighted images can give information related to tumor cellularity (76). It is 

precisely because visual interpretation of qualitative radiological changes can be challenging, 
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that quantitative radiological biomarkers and statistical interpretation methods can add 

diagnostic value. As the technical improvements allow the radiological characteristics to be 

analyzed and systemized in a quantitative matter, the radiological discipline is also shifting 

towards a more computational paradigm. To be able to make use of quantitative information 

in the image datasets, we need proper tools to help us analyze the information in a systematic 

way. This brings us to statistical interpretation methods within artificial intelligence (AI) and 

machine learning (ML). 

2.6.3 Artificial intelligence in analysis of radiological images 
Intelligence can be defined as “a general mental ability for reasoning, problem solving, and 

learning” (77). Textbooks define artificial intelligence as "the study and design of intelligent 

agents, where an intelligent agent is a system that perceives its environment and takes actions 

which maximizes its chances of success” (78).  

Medical imaging can benefit from using artificial intelligence, as has been stated by the 

ISRRT and EFRS:  

Adoption of AI in medical imaging and radiation therapy requires radiographers and 

radiological technologists to adapt their imaging and treatment practices to ensure 

new technology is being implemented, used and regulated appropriately, based on 

high quality research evidence, maximizing benefits to their patient (18). 

Machine learning (ML) is a method in which computers are able to make generalized 

predictions on new and unseen data based on learning from experience (79). A myriad of 

terminologies are used in artificial intelligence and numerous machine learning techniques are 

available. A comprehensive  overview of artificial intelligence is beyond the scope of this 

study, but I will present some key elements to computational image analysis, along with the 

most common algorithm types. In figure 21 major terms are presented in their relation to 

another, in which the essence is that machine learning is a type of artificial intelligence, and 

the various algorithms are different types of machine learning. Take note that machine 

learning is not limited to the listed algorithms, and artificial intelligence is not limited to 

machine learning. 
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Figure 21  The relations between Artificial Intelligence, Machine Learning and algorithms.  

Illustration: Marianne Hannisdal 
 
There is a collective hope that machine learning can learn to detect and distinguish malignant 

tissue from normal tissue better than the human eye. This is simply because the intelligent 

human brain has the capacity to evaluate only a limited range of grey shades - and a limited 

number of MR-sequences - simultaneously, whereas artificial intelligence does not have the 

same limitations. A machine-learning algorithm has the ability to evaluate the same voxel 

represented by numerous MR-image-weightings i.e. vector-valued voxels. Based on this, a 

“signature” prediction of what type of tissue the voxel consists of is made and subsequently 

used for segmentation purposes. The basic principles of segmentation of cerebral MR-images 

is to divide the image into meaningful, homogeneous and non-overlapping regions of similar 

features like signal intensity, depth, color or texture (80). Segments are also referred to as 

classes, whereas to classify means to assign every voxel a tissue type, where the tissue types 

is pre-defined in specific classes (80). Classification results from algorithms can be visualized 

by using feature space, a three- or higher dimensional space where the MRI-sequence-

specific features from the respective classes are presented as data points, as illustrated in 

figure 22.  
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Figure 22  Feature space, illustrating how signal intensities from three different weightings are presented 
as data points, grouping the respective tissue types using color-coding. Illustration: courtesy of Arvid 

Lundervold 
 
In feature space, the data points can be labelled, color-coded, and recognized as tissue classes. 

When this information is associated to voxel locations and mapped back into anatomical 

image space, the result is an interpretable visualization of the various classes, and their spatial 

extent are seen as an image segmentation. Figure 23 shows segmentation of various tissue 

types and structures in the brain. 

 

Figure 23  Coronal view of skull-stripped and segmented T1-weighted image of in-study patient, the 
various colors represent different parts of the brain, segmented with the Freesurfer software. Outer pink 



34 
 

segment is the grey matter in the cerebral cortex, bright green is white matter in right hemisphere, white 
segment is white matter in left hemisphere. We also see bilateral segmentation of the putamen (bright pink), 

the pallidum (dark blue), the thalamus (dark green), the amygdala (light blue) and the hippocampus 
(yellow). Illustration: Marianne Hannisdal 

 
 
In figure 24 below, is a schematic representation of how machine learning segments a tumor 

into four classes, based on contrast enhanced T1, T2, and FLAIR- weighted sequences. 

 

Figure 24 Glioblastoma segmented based on radiological biomarkers. A: T2FLAIR defines the extent of 
edema (yellow), B: T2 adds information about the extent of tumor (red), and C: contrast enhanced T1 

defines the contrast-enhancing part of the tumor (blue), leaving the necrotic core green. D: all the 
segments presented together. Illustration: adopted from Menze et al., 2015 (81) 

 
The image presented by shades of gray in a grid of pixels for human visualization and 

perception purposes, is in fact a matrix of numbers referring to the MRI-derived signal 

intensities, as illustrated in figure 25 below. An MRI image file consists of a data matrix, 

computationally read into a memory block (e.g. a Numpy array) as voxel-wise signal 

intensities. In addition the file contains accompanying metadata related to the acquisition, as 

illustrated in the figure below. The metadata keep track of each voxels in-patient position by 

image coordinates (i-j-k) in relation to in-scanner world coordinates (x-y-z), amongst many 

other things. 

 



35 
 

 
Figure 25 Computational processing of multispectral MRI including a T1-weighted sequence with contrast 

enhancement (T1CE), Fluid Attenuated Inversion Recovery (FLAIR), T2 and T1. The voxels have 
numerical values, and are computationally represented as numerical arrays. Each image contains 

metadata which holds information about the spatial coordinate transform between image space and 
scanner space in addition to sequence-specific information. Illustration: Marianne Hannisdal (MRI image 

from in-study patient) 
 

The term radiological biomarker can in the simplest case refer to a voxel’s appearance (i.e. 

signal intensity) on a single sequence, indicating either normal biological tissue, a 

pathological process or a response to a therapeutic intervention. However, the more 

expressive multispectral biomarkers refer to the voxels signature profile across the spectrum 

of available sequences, as illustrated in figure 26 below. 

 
Figure 26 Multispectral MRI including T1 with contrast enhancement (T1CE), Fluid Attenuated Inversion 
Recovery (FLAIR), T2 and T1. Multispectral profiling for classification of tumor compartments based on 
computational reading of image data. Each sequence is computationally read as a component of a voxel-
based vector. The multispectral combination of these values represents a characteristic numerical profile, 

labelled as e.g. a specific tissue-class. Illustration: Marianne Hannisdal, MRI-image with segments 
adapted from Menze et al., (2015).  
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When using appropriate and relevant sequences, one adds information by contributing with 

sequence-specific markers for the respective tissue classes. One thereby adds discriminative 

information, hence increase the specificity of the class-specific profile. This enables the 

potential to extract information of detailed pathological processes from multispectral MRI-

images. Moreover, when including MRI-sequences sensitive to metabolic processes, the 

potential lies to classify voxels with pathological expressions before a solid morphological 

manifestation has taken place, utilizing predictions of tumor infiltration areas. 

Machine learning algorithms 
It is of great importance to use the most appropriate machine learning algorithm, or set of 

these, suitable to the task and the nature of the available data material. There are two main 

categories of machine learning methods: supervised and unsupervised. 

  

The term supervised learning in our context, means that the user pre-defines tissue-classes 

that hold certain characteristics. For multispectral images, this is done by using a training 

mask of manually labeled (painted) voxels in an appropriate MRI-sequence, allocating the 

voxel’s features across all sequences to one of the pre-defined classes. This results in 

supervised learning or training of the classifier. In the inference part of supervised learning, 

the trained algorithm can be applied to previously unseen voxels, measured with the same 

MRI sequence combination, to predict their class association. Neural Network is a much used 

supervised algorithm that takes use of large amounts of training data, as will be further 

explained in the next section. Other examples of supervised learning algorithms are random 

forest (RF) support vector machines (SVM), or K nearest neighbor (KNN). RF consists of an 

ensemble of decision trees, where every voxel is classified through the algorithm architecture, 

sorted by one sole feature at the time. This one-by-one feature is simple, iterative and 

effective, but leaves the algorithm with low repeatability (82). SVM has another supervised 

approach; it splits the image into classes by finding a 2D or 3D hyperplane with the greatest 

distance from the nearest data point on each side, which best classifies the data. This is done 

with a kernel function, taking the data points into a high-dimensional space for separation 

(83). KNN classification is a very simple supervised classification algorithm, that classifies 

unknown data points by evaluating its features up against neighboring data points. The term 

neighboring refers in this case to resembling features in image space. KNN can however, be 
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ineffective to large, high-dimensional data like multispectral MRI, and sensitive to noise and 

outliers (84). 

Contrary to supervised learning, unsupervised learning is not based on pre-defined features 

and is agnostic to the risk of manual mislabeling which can compromise a training process. 

By its nature, unsupervised learning has the potential to uncover hidden or subtle structures in 

sets of images, or find sub-populations in cohorts (84). By making the use of image features 

like intensity or texture, the unsupervised algorithm will typically group pixels or voxels that 

contain homogeneous attributes together in classes. In K-means, one of the most common 

unsupervised classification algorithms the number of clusters (=K), a so-called 

hyperparameter is decided by the user. There are, however, heuristic methods that are able to 

propose this K to the user for a given dataset. Unsupervised learning can be useful as an 

explorative method and be able to “dissect” the (high-dimensional) data in complicated cases 

(83). 

Deep learning 
Artificial Neural Networks are often referred to as deep learning, or deep neural networks, 

and are the current state-of-the-art machine learning models used in image analysis (79). 

Neural networks (NN) is a type of algorithm in which the structure of the processing path is 

organized by imitating the neurons communicative structure in the human brain. Nielsen et 

al., (2015), describe NN as “a beautiful biologically-inspired programming-paradigm, where 

the machine learns from observational data”. The algorithm is mainly used for supervised 

learning and it learns to recognize key features by training on labeled data. Its learning feature 

of holding experience-based and supervised-confirmed knowledge as a reference when 

evaluating new and unseen data is often referred to as a resemblance of a living being (85). A 

key strength of deep learning is that the voxels’ features are evaluated by the voxels’ own 

circumstances. In multispectral MRI-context this means that a voxel’s appearance in one 

sequence is, as a feature, evaluated by the coinciding voxels at the same in-patient coordinates 

from other sequences. The architectural structure of the algorithm is illustrated in figure 27 

below. 
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Figure 27 Deep Learning Neural network. In this model the input is the MRI sequences, output is the tissue 
classes. The nodes in between input and output are the hidden layers, representing the feature extracting. 
The connections between the nodes describes how the model incorporates the surrounding features, and 
relations between them, into account - much like a human tries to do when interpreting a multispectral 

MRI. Illustration: Marianne Hannisdal 
 

One of the main advantages of deep learning models is that it holds feature learning, meaning 

the model itself determines which features are best feasible for characterization, e.g. if a circle 

is best characterized by counting edges or by other features (86). In multispectral MRI-

contexts, this means that by supervising the algorithm, the user sets the constraints the 

weights in the neural network by labeling confirmed tumor-parts, and then the algorithm 

calculates the weights and make hierarchical feature representations of the input-output 

relationships suitable for future predictions. The name “deep learning” (DL) in neural 

network-algorithms refers to the algorithm being trained hierarchically from features in a 

dataset, structured step-wise by many – hence “deep” – neural layers. Convolutional neural 

networks (CNN) is a branch of NN that employs the mathematical operation convolution (87) 

that is often used in U-Net architecture consisting of a contracting path on one side, and an 

expansive path on the other side.  This will be further illustrated in the next section.   

 

The drawback of all deep learning type algorithms is that they need large and relevant datasets 

to be trained upon, a resource that is not always available. On the other hand, the main 

advantage of the algorithm is that it is very robust because it is trained on large datasets, 

adding validity and feasibility.  

In-study algorithm: HD-GLIO 
The machine-learning algorithm used in this study is a deep learning convolutional neural 

network U-Net. The network architecture is conceptually made of a pooling contracting path 
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and an up-convoluting expansive path, which makes the characteristic U-shaped form, as 

illustrated in figure 28 below. The contracting path is aggregating semantic information at the 

cost of decreased spatial information, which the expansive path then decodes and reconstruct, 

retrieving spatial information including the extracted semantic information.  

 

Figure 28 Illustration of a U-net architecture, U-net architecture (example for 32x32 pixels in the lowest 
resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted 
on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied 
feature maps. The arrows denote the different operations. Figure adapted from Ronneberger et al (2015) 

(88) 
 
The U-net architecture makes the neural networking across the deep layers efficient, 

providing a processing time of approximately 6 minutes per MRI-examination. 

Kickingeder Isensee et al (2019) developed the in-study algorithm as a joint project between 

the Department of Neuroradiology at the Heidelberg University Hospital, Germany and the 

Division of Medical Image Computing at the German Cancer Research Center (DKFZ) 

Heidelberg, Germany, and the developers named this algorithm HD-GLIO (89, 90). When 

developing HD-GLIO the authors used 3220 MRI examinations from 1450 brain tumor 

patients, of which 80% was used for training the algorithm and 20% was used for testing and 

validating the algorithm. All 3220 MRI examinations included pre- and postcontrast T1-

weighted, T2-weighted and FLAIR sequences, and all sequences were brain extracted (by 

their HD-BET) and co-registered. All MRI examinations did also have corresponding targeted 
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“ground-truth” tumor segmentation masks (i.e. enhancing core and non-enhancing tumor). 

This data included the following three datasets: 

1. Heidelberg training dataset and Heidelberg test dataset; a single-institutional 

retrospective dataset with 694 MRI examinations from 495 patients acquired at the 

Department of Neuroradiology, Heidelberg University Hospital, Germany (90) 

2. EORTC-26101 test dataset; a multicenter clinical trial dataset with 2034 MRI 

examinations from 532 patients acquired across 34 institutions in Europe (90) 

3. A single-institutional retrospective dataset with 492 MRI examinations from 423 

patients (80% glial brain tumors, 20% other histological entities) undergoing routine 

MRI at different stages of the disease (including 79 early postoperative MRI scans 

acquired <72h after surgery) at the Department of Neuroradiology, Heidelberg 

University Hospital, Germany (90) 

The output of HD-GLIO contains two segments: enhancing core (EC), and non-enhancing 

tumor (NE). The labeling procedure for these two segments, which is critical for the defined 

task as well as the quality of the training and thus the performance of the classifier, was 

performed by a panel of experienced neuroradiologist.  

The training labeling of the EC compartment of HD-GLIO included volumetric delineation of 

contrast-enhancing tumor, segmentation of the angiogenic part of the tumor. The labeling of 

EC in HD-GLIO is in compliance with the clinical delineation practice of GTV in 

radiotherapy.  

The training labeling of NE compartment in HD-GLIO included T2FLAIR hyperintense 

abnormalities, excluding the contrast-enhancing and necrotic portion of the tumor, resection 

cavity, and obvious leukoaraiosis2 (90). Note that the training labeling of NE in HD-GLIO 

differs from the clinical manual low specificity delineation practice of CTV in radiotherapy.   

2.6.4 Volumetric evaluation – DICE 
The standard tool for reporting the overlap performance of a segmentation in relation to 

ground truth is the Dice-similarity-coefficient (81), often referred to as Dice-coefficient, or 

DC. The Dice-coefficient is a calculation related to spatial overlap between two binary 

                                                
2 White matter changes, not related to glioblastoma 
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segments, whereas similarity is a metric that reflects the strength of relationship between two 

data objects. Dice-coefficient, typically referring to a “ground truth” segmentation versus a 

“predicted” segmentation, uses the spatial extension of true positive (TP), false negative (FN) 

and false positive (FP) regions, as a statistical tool that provides a relative measure of degree 

of overlap between two structures, normalized by the sum of their volumes. TP is used as a 

sensitivity measure that quantifies the portion of voxels that are identified as positive by both 

the ground truth and the segmentation being evaluated (91). Dice-coefficient is expressed by a 

number between 1 and 0, where 1 is a perfect overlap, and 0 is no overlap in this relation (92):  

𝐷𝑖𝑐𝑒	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = (2 ∗ 𝑇𝑃)/(𝐹𝑁 + (2 ∗ 𝑇𝑃) + 𝐹𝑃)  

 

Figure 29: Dice-coefficient. The figure shows the relations between to segments; manual segmentation 
(dark blue) and automated segmentation (light blue), where the manual segmentation is set to be gold 
standard. The Dice-coefficient calculates the similarity between them: TP is the true positive volume, 

detected in both segments, FN (false negative) is the volume falsely labeled as negative by the automated 
segmentation, in relation to the gold standard. FP is the false positive volume which is falsely labeled 

positive in relation to the gold standard. Illustration: Marianne H Hannisdal 
 
Geometrically, this can also be stated as DC = 2 |M Ç A| / (|M| + |A|) where |M Ç A| is the 

number of voxels in the intersection of the Manual segmentation (“ground truth”) and the 

Automated segmentation (“predicted”), and |M|, |A| are the number of voxels in the Manually 

delineated region and the Automatically predicted region, respectively.  

Dice-coefficient is a well-known and much used tool when comparing volumes in context of 

radiotherapy volumes, e.g. for inter-observer delineation variation purposes (92). It can be 

used to measure how well a machine-learning-derived segment matches the manually 

delineated segment, defining the current clinical practice “gold standard” or “ground truth”. 

There lies a potential methodological weakness in defining one method gold standard, in case 

of a hypothetical situation where pathology detected with gold standard does not in fact 
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harmonize with the true morphologic extent. It is still good common practice that makes sure 

new methodology research always build on earlier stated truth. 

Other relevant metrics for evaluating volumetric similarity which was considered for this 

thesis include the Jaccard index (JAC), which defines similarity between two volumes as the 

intersection between them divided by their union. In addition, the ROC curve (Receiver 

Operating Characteristic) could be eligible, which is the plot of the true positive rate (TPR) 

against the false positive rate (FPR). The Hausdorff Distance (HD) which essentially 

calculates the locally maximum distance between two crisp volumes, and the Cohen Kappa 

Coefficient (KAP) which is a measure of agreement between two samples, are other examples 

of metrics that could be used (91). The Dice-coefficient still remains the most commonly used 

metric tool for 3D medical imaging analysis (81) and was found best suitable for the purpose 

in this thesis.  

2.7 Previous research 
Although previous studies comparing manual tumor delineation versus machine-learning 

derived tumor segments exist, the best of my knowledge, no studies comparing clinical 

radiotherapy treatment volumes to machine-learning derived tumor segments exists. There 

has been performed some studies in context of MRI, biomarkers and radiotherapy, mainly 

focusing on feasibility of quantitative assessment in multispectral MRI, in the hope of 

increasing specificity for margin reduction purposes. Baumann et al. (2016) states that 

biomarkers have unexplored potential to predict extent of subclinical infiltration of tumor 

cells, and to help define the clinical target volume. Further, they write that by integrating 

biomarkers in the treatment planning process one could increase the degree of personalized 

radiation therapy beyond already established practice (93). Andreassen et al. (2018) reports in 

their study that multispectral imaging enables more precise therapy planning, and suggest that 

biomarkers be used to identify tumor sub-volumes with high risk of radio-resistance, which in 

turn can provide rationale for an even higher-precision treatment regime (94).  J. Y. Lim and 

Leech (2016) found that automated definition of tumor and OAR in the head and neck-region 

defined by artificial intelligence has great potential in terms of saving time and recourses (95).  

The use of advanced imaging techniques in relation to target delineation for radiation therapy 

has shown promising potential. Lopez et al. (2017) demonstrated how MR-spectroscopy has 

the potential to reveal relevant pre-morphologic information in the terms of tumor metabolism 

indicators. In their study, they found that spectroscopic mapping of NAA was highly 
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correlated to the area included in the manually delineated target volume, while the areas 

containing elevated Choline-values added new radiologic information, which was highly 

correlated to histologically confirmed tumor extension. Rahmat et al., (2020) investigated 

another advanced MRI-technique: DTI, in which anisotropic water motility aligned with 

white matter fibers has been suggested as a fiducial biomarker for the infiltrative component 

of the tumor, quantified by anisotropic diffusion tensor imaging. In their study, they showed a 

personalized reduction in CTV-margins up to 40% when delineating target volume according 

to these findings (53). These image acquisitions, however, are not part of standard imaging 

procedures. As for cost-efficiency, Rathore et al. (2018) showed in his study that machine 

learning with the use of already standardized anatomical MRI-sequences is sufficient, both for 

determining anatomical tumor borders, and for indicating postoperative tumor infiltration in 

the peritumoral edema (96). Their study suggested that the machine learning method was 

applicable to predict areas with high risk of recurrence and suggest clinical implementation of 

non-uniform treatment planning based on their method. 

Several studies have investigated the safety and efficacy of non-individualized CTV margin 

reduction on glioblastoma patients. These studies compared patient outcomes of 

administrating radiotherapy with 10 mm GTV to CTV margin, according to Adult Brain 

Tumor Consortium guidelines (ABTC), to patient outcomes administered radiotherapy with 

conventional 20 mm margin (1, 3, 19, 97-99). The studies found that wider margins had little 

impact on the recurrence patterns, suggesting clinical implementation of limited-margin 

radiotherapy. Findings also included that a reduction of CTV-margin is associated with 

limiting negative immune-effects as well as limiting normal tissue complication, both of 

which associated with better survival (1-3, 98). As for organs at risk, several studies suggest 

that as we work to prolong life expectancy for these patients, the clinicians must also focus on 

post-treatment quality of life as to limiting radiation induces neurotoxity. Another aspect is 

increased feasibility of re-irradiation after relapse, because of better adherence to OAR 

constraints (1, 100). This means a thoroughly considered evaluation of doses allowed to 

critical structures, e.g. the hippocampus, which plays an important role in memory and 

cognitive information processing (100). As dose in OAR is closely related to prescribed dose 

and distance to the target volume, it is consequently affected by the CTVs extent and margin-

size (100). Further, Ali et al. (2014) argues that larger margins pose greater risk of 

complications to normal tissue and the lower specificity and sensitivity in the image material, 

the larger margins must be used. The authors suggest that by constantly improving the 

imaging techniques, one can aim to eliminate delineation insecurities and thereby move to 
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authorize smaller margins without cost of therapeutic ratio (100). The always-present 

uncertainty associated with human imaging-interpretation can also expected to be reduced by 

using machine learning (98).  

Some of the aforementioned studies make base for the new guidelines from the Norwegian 

Directorate of Health which currently is under consideration, emphasizing limitation of 

radiation induced neurotoxic damage due to large CTV margins (19).  

The aforementioned studies does not take MGMT-status into consideration specifically. 

Brandes et al. (2009) have investigated recurrence pattern in relation to MGMT-status, they 

found that from the 95 in-study patients, 85% of those with unmethylated MGMT recurred 

within or at the CTV-margin, compared with 57% of patients with methylated MGMT. For all 

patients, recurrences inside the overall target volume occurred significantly faster than those 

outside (101).  

The use of quantitative radiological biomarkers and machine learning for automated 

segmentation purposes have been investigated in some recent radiotherapy clinical studies as 

well as for the Multimodal Brain Tumor Segmentation (BraTS)-Challenge. The BraTS-

challenge was created in 2012 and is an ongoing annual hackathon3-contest where researchers 

compete about making the best machine learning segmentation algorithm. The algorithms are 

trained on a dataset of preoperative brain tumor MR-images, where results are compared 

against a histologically confirmed ground truth, quantified by Dice similarity coefficient. This 

has been extensively used to demonstrate the efficacy of deep learning applications in 

segmenting glioblastomas (81). Wu et al., (2019) used the BraTS-dataset to develope an 

automatic segmentation method based on T2 sequence, by using a combination several 

machine-learning algorithms. They achieved a Dice-coefficient of 84,9% and suggest the use 

of this segmentation method on both high-grade and low-grade gliomas (82). The use of 

multiple machine learning models is also reported by Feng et al., (2020) who present an 

automatic brain tumor segmentation using a deep learning u-net algorithm with a Dice score 

of 79%, compared to BraTS-ground truth (102). The Cancer Imaging Archive (TCIA) dataset 

is another publicly available source of Big Data eligible for machine-learning training and 

validation purposes. Bakas et al (2017) used the TCIA-dataset for developing their 

“GLISTRboost” algorithm, which won the BraTS-challenge in 2015 with a whole-tumor 

                                                
3 an event, typically lasting several days, in which a large number of people meet to engage in collaborative 
computer programming 
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similarity Dice-coefficient of 95%. The authors advise image based phenotyping through 

machine learning algorithms for radiotherapy planning purposes in their study, which was 

published in Nature (103). 

Kickingereder, Isensee et al (2019) developed the HD-GLIO-algorithm, and aimed to 

engineer a framework relying on artificial neural networks for fully automated quantitative 

analysis of tumor burden in MRI. They used three datasets with 3220 MRI examination in 

total, including pre- and postcontrast T1, T2 and T2FLAIR. With this multispectral MRI-

biomarker approach, they achieved a mean Dice-coefficient of 90% for enhancing tumor, and 

93% for non-enhancing tumor (90). The source code is publicly available on the code hosting 

platform Github ( https://github.com/MIC-DKFZ/HD-BET ) and is the code used in this 

study.  
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3 Aim and research questions 

3.1 Aim 
The overall aim of this study is to investigate whether artificial intelligence with machine 

learning can be useful as a decision support tool for the treating oncologist, as a method in 

analyzing multispectral magnetic resonance imaging (MRI) of glioblastoma for treatment 

planning purposes. The project aims to compare the dual-compartment clinical manually 

delineated tumor volumes (primary GTV and CTV) in each dataset to the dual-compartment 

machine learning-derived tumor volumes (primary EC and NE), as illustrated in figure 30. 

The current clinical practice manual delineated tumor volumes are set to be ground truth, as is 

common practice in method studies and methodology development. If the machine learning 

method is proven highly correlated in terms of spatial overlap, the potential lies in using 

machine learning as an oncologist support tool for both more objective segmentation of the 

tumor volume, and for more quantitative segmentation of true malignant tissue. This is 

especially important with regards to the non-enhancing tumor compartment which is hard to 

differentiate qualitatively. The recent guidelines from the Norwegian Department of Health, 

stating that CTV-margins can be safely reduced to 10 mm for reduction of radiation induced 

neurotoxic damage for diffuse high-grade gliomas also adds to the gain of using a high-

specificity tumor delineation approach (19).  

 

Figure 30  Illustration of tumor volumes in comparison. Red segments represent manual delineated tumor 
volumes; blue segments represent machine-derived tumor volumes. The purpose of this study is to analyze 

the degree of similarity/overlap between the volumes. Illustration: Marianne Hannisdal  
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The dual-compartments approach complies with radiotherapy planning in clinical practice and 

includes the central enhancing tumor volume representing the “gross” tumor compartment, 

and the surrounding non-enhancing tumor area representing the “clinical” infiltrative tumor 

compartment. 

Additionally, the project aims to measure the similarity overlap between the site of recurrence 

to the primary manually- and the machine-derived tumor volume, respectively, as illustrated 

in figure 31. If the machine learning method perform better in predicting recurrence site (i.e. 

including site of recurrence in volume), the method could potentially have predictive value 

that could be taken into account when determining in-cranial tumor treatment site. Also, the 

CTV-margin is meant to include tissue with high probability for recurrence, like a prediction. 

Therefore, it is interesting to quantify to what degree it actually does include the site of tumor 

recurrence. 

 

Figure 31  Illustration of tumor volumes in comparison with recurrent tumor. Red segments represent 
manual delineated tumor volumes, blue segments represent machine-derived tumor volumes, green segment 
represent recurrent tumor. The purpose of this study is to analyze which method has the largest degree of 

overlap with the tissue where the recurrent tumor evolves. Illustration: Marianne Hannisdal 
 
Two MRI-examinations for each patient will be analyzed:	𝑀𝑅𝐼kr��mrt	and 𝑀𝑅𝐼rj�qrrjno. 

Volumes used in this study are named according to their tumor compartment and MRI 

examination. The clinical tumor volumes GTV and CTV correspond to the HD-GLO-volumes 

EC and NE, respectively. 
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3.2 Research questions 
Q1. )    For radiation therapy patients with primary and recurrent glioblastoma: to what extent 

is there a spatial overlap between machine-learning-derived tumor volumes, based on 

quantitative radiological biomarkers derived from multispectral MRI images, and standard 

manual oncologist-delineated target volumes, in terms of Dice-coefficients: 

a) Dice-coefficient between 𝐻𝐷 − 𝐺𝐿𝐼𝑂��_kr��mrt and 𝐺𝑇𝑉kr��mrt 

b) Dice-coefficient between 𝐻𝐷 − 𝐺𝐿𝐼𝑂��_kr��mrt and 𝐶𝑇𝑉kr��mrt 

c) Dice-coefficient between 𝐻𝐷 − 𝐺𝐿𝐼𝑂��_rj�qrrjno and 𝐺𝑇𝑉rj�qrrjno 

 

Q2. ) For radiation therapy patients with primary and recurrent glioblastoma: to what extent 

is there a discrepancy in the inclusion of the recurrent tumor site in the primary target 

volume, when using machine-learning-derived primary tumor volumes, compared to 

standard manual oncologist-delineated target volumes, measured by: 

a) Dice-coefficient between the localization of recurrent glioblastoma, 𝐺𝑇𝑉rj�qrrjno, 

and  𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt  

and 

b) Dice-coefficient between the localization of recurrent glioblastoma, 𝐺𝑇𝑉rj�qrrjno, 

and 𝐶𝑇𝑉kr��mrt 

3.3 Hypothesis 
Based on the research questions raised above, I will approach my analyzing of the data 

material on the following hypothesis: 

𝑄1	𝐻�:   There is a significant spatial overlap between machine-learning-derived tumor 

volumes, based on quantitative radiological biomarkers derived from multispectral 

MRI images, and standard manual oncologist-delineated target volumes, in terms of 

Dice-coefficients. 
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𝑄2	𝐻�:   There is a significant discrepancy in the inclusion of the recurrent tumor site in 

the primary target volume, when using machine-learning-derived primary tumor 

volumes, compared to standard manual oncologist-delineated target volumes. 

 

These stated hypothesis is accompanied by the following null-hypothesis: 

𝑄1	𝐻�:There is no significant spatial overlap between machine-learning-derived tumor 

volumes, based on quantitative radiological biomarkers derived from multispectral 

MRI images, and standard manual oncologist-delineated target volumes, in terms of 

Dice-coefficients. 

𝑄2	𝐻�:There is no significant discrepancy in the inclusion of the recurrent tumor site in the 

primary target volume, when using machine-learning-derived primary tumor volumes, 

compared to standard manual oncologist-delineated target volumes. 
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4 Methods 
This study is an independent part of a larger study 

(https://clinicaltrials.gov/ct2/show/NCT03643549) for recurrent GBM-patients with 

unmethylated O6 methylguanine DNA methyltransferase (MGMT) promoter, called the 

“BORTEM-17-study”, phase 1B (104). MGMT promoter methylation is an epigenetic 

biomarker that is both prognostic and predictive  of the tumor’s response to standard 

temozolomide chemotherapy, where  patients harboring unmethylated MGMT have a poorer 

life-expectancy than patients with methylated MGMT promoter. The BORTEM-17 phase 1B 

study seeks to investigate the benefit and feasibility of pretreatment with the drug bortezomib 

in order to deplete levels of the MGMT DNA repair enzyme prior to temozolomide. The 

BORTEM-17 study also aims to identify radiological biomarkers that can improve 

radiographical volumetric treatment control of recurrent GBM, in which my study is an 

integral part of the overall objective.  

4.1 Research Design 
As the character of the empiric material in this study is numbers in terms of volumetric sizes 

and statistical Dice-coefficient measurements, a quantitative experimental research design 

was chosen. This study is a prospective, methodological study with the major aim to evaluate 

the benefit of a machine-learning approach as a method, in relation to the current standard 

method. A methodological study is designed to refine or develop methods of obtaining, 

organizing or analyzing data (105).  

When it comes to blinding, this study`s quantitative character leaves little room for observer 

interpretation, as the calculated volumetric sizes are empirical numbers. The qualitative target 

delineation	𝐶𝑇𝑉kr��mrt, made by the oncologists as a part of the clinical treatment plan was 

performed prior to start of the study; hence, the machine-derived segment could not induce 

any bias to the oncologist image interpretation. Further on, the delineation of 𝐺𝑇𝑉rj�qrrjno 

was also executed prior to deriving the 𝐻𝐷 − 𝐺𝐿𝐼𝑂rj�qrrjno, so no interpretation bias could 

have taken place.  
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4.2 Patient inclusion and exclusion criteria 
Ten eligible patients with recurrent GBM and unmethylated MGMT promoter-status were 

included prospectively to the BORTEM-17 study phase 1B between 2018-2019, according to 

the BORTEM-17 inclusion criteria. The full inclusion criteria are listed in appendix A. Below 

is listed the major relevant inclusion criteria for this current study: 

1. Histologically confirmed recurrent or progressed WHO grade IV intracranial 
glioblastoma (GBM) 

2. Cranial MRI or contrast CT scan showing tumor relapse ≥ 12 weeks since radiation 
treatment 

3. Measurable recurrent tumor 

4. MRI evidence of recurrence within 14 days prior to enrolment 

5. Available T1-, T2-, T1 with gadolinium enhancement- and T2FLAIR-image series 
with adequate image quality 

6. Must be > 18 years old 

7. Written informed consent for study participation  

8. Estimated GFR ≥ 60 

9. Negative pregnancy test no longer than 14 days prior to enrollment 

In addition to the listed BORTEM-inclusion criteria above, I added the following inclusion 

criteria for my independent study in order for the dataset to be applicable for HD-GLIO 

analysis: 

10. Available pre-radiotherapy MRI-examination including T2, T2FLAIR, and pre- and 

postcontrast T1 

The participants were also selected according to the following exclusion criteria: 

1. Serious medical or psychiatric illness that would interfere with study participation 

2. Unable to lay still for MRI imaging 

3. Another ongoing experimental therapy 
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4.3 Data Collection 
As this study is a part of the BORTEM17- phase 1B study, the candidate was granted access 

to the radiological material of the 10 patients, according to the consent form on which all 

participants signed (Appendix H). All 10 patients had been previously received radiation 

therapy, whereof n=6 received radiation therapy at Haukeland University Hospital (HUH), 

n=2 received radiation therapy at Oslo University Hospital (OUH), and n=2 had received 

radiation therapy at Stavanger University Hospital (SUH).  

4.3.1 Data exploration 
Available image series were explored in Sectra Picture Archiving and Communication 

System (PACS) (Sectra AB, Linköping, Sweden). Image series from SUH were available for 

exploration in HUH PACS, but image series from OUH had to be requested by phone, put 

manually on a safe server, and imported manually into HUS image systems. This was done 

according to the clinical protocol as described in appendix C. The available image series for 

each of the ten patients is marked with +, while missing image series is marked with not 

available “na” in Table II below. The full data exploration details regarding image resolution, 

scanner type and field strength etc., are given in appendix B. 

Table II Pre-radiotherapy image series available for the in-study patients 
Imaging site Patient T1 T1 

gadolineum 
T2 T2FLAIR 

HUH 1 Preoperative + + + + 
 1 Postoperative + + + na 
HUH 2 Preoperative na + na + 
 2 Postoperative + + + na 
OUS 3 Preoperative + + + na 
 3 Postoperative + + na na 
OUS 4 Preoperative na na na na 
 4 Postoperative na + na + 
HUH 5 Preoperative + + + + 
 5 Postoperative + + + na 
HUH 6 Preoperative + + + + 
 6 Postoperative na na na na 
OUS 7 Preoperative na na na na 
 7 Postoperative + + + na 
HUH 8 Preoperative + + + + 
 8 Postoperative na na na na 
SUH 9 Preoperative + + + + 
 9 Postoperative + + + + 
SUH 10 Preoperative + + + + 
 10 Postoperative na na na na 

Table showing available MRI-sequences marked with “+”, and missing image sequences marked “na”(not 
available). 
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All patients in the study had had both surgery and radiation therapy for their primary GBM, 

however, not all MRI examinations were available due to different imaging sites and different 

imaging archive systems. Even though efforts were made to import imaging series from OUS, 

T2FLAIR-series were not available on any of them. Of the 10 patients available, only patient 

9 had full preoperative and postoperative MRI. A total of 6 patients had full preoperative MRI 

including T2, T2FLAIR, and pre-and post-contrast T1, hereafter referred to as 𝑀𝑅𝐼kr��mrt. 

Of these 6, n=4 had received radiotherapy at HUH, and n=2 had received radiotherapy at 

SUH. These 6 eligible patients were assigned patient numbers 1,5,6,8,9,10 according to the 

BORTEM-17 study-enrollment.  

After exploring the data, only the patients with full sets of preoperative image series, i.e. 

patients 1, 5, 6, 8, 9, and 10 were included for further analyses. Patient 2, 3, 4, and 7 were 

excluded from the study due to missing image series. Take note that preoperative in this 

context does not necessarily mean that patients are surgically naïve.  

4.3.2 Acquiring 𝑪𝑻𝑽𝒑𝒓𝒊𝒎𝒂𝒓𝒚 
𝐶𝑇𝑉kr��mrt is used as ground truth in respect of primary tumor, as it is the segment on which 

patients have received radiation therapy according to current clinical practice.  

The six eligible patients were identified in the treatment planning system Eclipse Aria 

Oncology Information Systems. Four patients had received treatment at Haukeland University 

Hospital, two patients had received treatment in Stavanger University Hospital (SUH). Patient 

data from SUH was collected via request in Eclipse, according to protocol described in the 

Elektronisk Kvalitetssystem (EK) (protocol enclosed in appendix C). The 𝑀𝑅𝐼kr��mrt was 

imported as DICOM-sequences from Sectra PACS for all six patients.  

The 𝑀𝑅𝐼kr��mrt was co-registered to the 𝐶𝑇ghijklmn for all six patients. The co-registration 

match was made on T1, rigidly and automatically performed on “Bone” (facial and scull 

structures), supervised and manually corrected if needed, according normal clinical practice. 

The co-registration was done to provide a “bridge” between image coordinates in CT and 

MRI, which is necessary in order to copy the GTV- and CTV-structures from CT onto MRI. 

The copied structures were thereby given MRI-relative i,j,k-coordinates in image space.  
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When the image material data collection was finished, all 6 patients were duplicated into de-

identified study patients by three steps in Eclipse: 

1. “export aria anonymous”-function, putting them in the “anonymous”-folder 

2. they were moved from the “anonymous”-folder to the “DICOM-import”-folder 

3. imported as øzz-study patients, according to EK-procedures (procedure enclosed in 

appendix D) and named “øzz_pt01” - “øzz_pt10”, according to their original inclusion 

number in the BORTEM study. 

4.3.3 Acquiring 𝑯𝑫 − 𝑮𝑳𝑰𝑶𝒑𝒓𝒊𝒎𝒂𝒓𝒚  

The 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt-volumes were acquired from the HD-GLIO brain tumor 

segmentation tool (89, 90). This was done by three main steps; preparing the dataset, running 

the script (full script enclosed in appendix E), and preparing the output-segments for 

comparison, as will be explained in the following sections. 

Preparing the clinical MRI-images (𝑴𝑹𝑰𝒑𝒓𝒊𝒎𝒂𝒓𝒚) for analysis 

After the de-identification duplication described in section 4.3.2, the now de-identified 

𝑀𝑅𝐼kr��mrt was exported to a portable hard drive in DICOM-format. The portable hard drive 

was kept in a locked locker on hospital grounds when not in use, according to research policy 

at HUH. The files were prepared for analysis with HD-GLIO by the following steps: 

1. the de-identified DICOM-sequences were converted into Neuroimaging Informatics 

Technology Initiative (NIFTI)-files, according to HD-GLIO standards This was 

performed using ITK-snap(106) version 3.8.0 by loading the DICOM image series 

and saving them as NIFTI image series. 

2. The NIFTI files were then compressed into nii.gz zipped format by using the [gzip 

filename.nii.gz] command in MacOS terminal (version 2.8.3) 

3. The compressed NIFTI-filename was named according to HD-GLIO standards; 

T1CE, T1, T2, FLAIR with patient-specific numbering prefixes. 

Running the script  
4. Installing HD-GLIO in Python (version 3) with [pip install hd_glio] 
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5. HD-GLIO was then run on 𝑀𝑅𝐼kr��mrt, on a DELL Precision 7540 laptop with 

Ubuntu 18.04 and NVIDIA Quadro RTX 3000 6GB GPU, using the T1CE, T1, T2 

and FLAIR-series on each patient as input. This step was run by my co-supervisor 

Arvid Lundervold at the Mohn Medical Visualisation Senter (MMIV), as I did not 

have access to a machine with the required NVIDIA GPU on minimum 6 GB VRAM 

Output preparation 
6. Output was imported to 3Dslicer (version 4.11) in compressed NIFTI-format (nii.gz) 

and converted to synthetic CT in DICOM-format, using the “create DICOM series”-

module, providing the EC-segment with HU-value=2 and NE-segment with HU-

value=1. 

7. The output DICOM-series was imported to the corresponding de-identified study 

patient in Eclipse. The output DICOM series holds the same image-coordinates as the 

𝑀𝑅𝐼kr��mrt, and is therefore automatically registered to the anatomical image series 

from which it was first derived. 

8. Three volumes were derived from the HD-GLIO output segments in Eclipse, name of 

structure was followed by the patients enrollment number in BORTEM-17 (01-10): 

a. Enhancing Core 𝐸𝐶kr��mrt 

b. Non-enhancing tumor 𝑁𝐸kr��mrt 

c. Fusion of the two volumes above: 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt by bolean operation 

Fitting the data to the model 
9. For patients 1,5,6,9,10: two additional segments were acquired by postprocessing 

command “fill all cavities”: 

a. 𝐸𝐶kr��mrt	including central lesion 

b. 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt including central lesion 

The purpose of these two additional segments described under 9 a-b) was more realistic 

volumetric comparison grounds with 𝐶𝑇𝑉kr��mrt, as the nature of a CTV always includes all 
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cavities and radiotherapy is not given with sparing cavities. When volumes including cavities 

are used in the results-section, this will be explicitly given in the text. “Cavities” only include 

true islands, meaning a cavity had to be surrounded by original segmentation on all sides to 

be defined as a cavity. Example of including a cavity in the volume is illustrated in figure 32 

as follows: 

 

Figure 32  Illustration of segments. In A, B and C on the top row is axial, coronal and sagittal view, 
respectively of ECprimary=Blue, NEprimary=Green. Pink line is the CTV-outline. On the lower row D, E 
and F shows is axial, coronal and sagittal view, respectively, with an addition superimposing segment, in 
which central lesions are included in the segment. Illustration: Marianne H Hannisdal (in-study patient) 

4.3.4 Acquiring 𝑮𝑻𝑽𝒓𝒆𝒄𝒖𝒓𝒓𝒆𝒏𝒕 
The 𝑀𝑅𝐼rj�qrrjno datasets were obtained directly from the BORTEM-17 crew in de-identified 

DICOM format. The recurrent glioblastoma 𝐺𝑇𝑉rj�qrrjno as it occurred on the first MRI-

examination after inclusion in the BORTEM-17 study 𝑀𝑅𝐼rj�qrrjno	, was defined and 

volumetrically quantified on a contrast enhanced T1-weighted high-resolution 3D MP-

RAGE (Magnetization Prepared - RApid Gradient Echo)-sequence with isotropic voxel size 

1 mm3. This was performed using manual labeling in ITK-SNAP version 3.6.0 (106) by in-

painting slice-by-slice on axial slices. The delineation of 𝐺𝑇𝑉rj�qrrjno included all contrast 
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enhanced areas of the tumor, excluding the surgical resection cavity (if any) but included any 

residual enhancing tumor situated along the resection cavity boundary. The delineation was 

supervised and approved by oncologist at HUH. The window level (WL) and window width 

(WW) of all images was kept constant and unchanged throughout the course of the 

delineation process. 

4.3.5 Acquiring 𝑯𝑫 − 𝑮𝑳𝑰𝑶𝒓𝒆𝒄𝒖𝒓𝒓𝒆𝒏𝒕 
I preformed the exact same steps on the 𝑀𝑅𝐼rj�qrrjno datasets as for the 𝑀𝑅𝐼kr��mrt datasets, 

according to the steps numerically listed in section 4.3.3 “acquiring 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt”. 

4.4 Variables and analysis 
The relationships between the output volumes of manual delineation as well as machine-

derived volumes are presented as follows. 

Manually delineated volumes 
The 𝐶𝑇𝑉kr��mrt includes two volumes4: the full 𝐶𝑇𝑉kr��mrt and the inner central 

𝐺𝑇𝑉kr��mrt, according to clinical practice as explained in section 2.5.2. 

The 𝐺𝑇𝑉rj�qrrjno is a single volume including the enhancing part of the recurrent tumor. The 

relation between the volumes in illustrated in figure 33 below. 

                                                
4 Pt 10 did not have GTV in the clinical plan, this is an oncologist-dependent variable 
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Figure 33  Illustration of the relationships between the manually delineated volumes. Colors are in 
identical to those used for volume visualization in following figures. Illustration: Marianne H Hannisdal 

Machine learning-derived volumes 
The 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt include three volumes; the enhancing core (EC), the non-enhancing 

tumor (NE), and the sum of (EC+NE) + cavitation, as described in section 4.3.3, number 8d. 

The 𝐻𝐷 − 𝐺𝐿𝐼𝑂rj�qrrjno include two volumes; the enhancing core (EC) and the non-

enhancing tumor (NE). The relationships between them are given in figure 34. 

 

Figure 34  Illustration of the relationships between the machine learning-derived volumes. Colors are 
identical to those used for volume visualization in following figures. Illustration: Marianne H Hannisdal 

 
 
The relationship between datasets and volumes in total is presented in table III as follows. 
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Table III Datasets with adjacent volumes used for the analysis 

 Datasets 

Primary tumor 

𝑴𝑹𝑰𝒑𝒓𝒊𝒎𝒂𝒓𝒚 

Recurrent tumor 

𝑴𝑹𝑰rj�qrrjno 

T
um

or
 v

ol
um

es
 

 

Clinical tumor 

volume 

𝐶𝑇𝑉kr��mrt 𝐺𝑇𝑉rj�qrrjno 

𝐺𝑇𝑉kr��mrt 𝐶𝑇𝑉kr��mrt 𝐺𝑇𝑉rj�qrrjno 

Machine-derived 

tumor volume 

(HD-GLIO-

algorithm) 

𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt 𝐻𝐷 − 𝐺𝐿𝐼𝑂rj�qrrjno 

𝐸𝐶kr��mrt 𝑁𝐸kr��mrt 𝐸𝐶rj�qrrjno 𝑁𝐸rj�qrrjno 

The 𝐶𝑇𝑉kr��mrt includes two volumes: a Gross Target volume (GTV) and a Clinical target volume (CTV). 
The 𝐺𝑇𝑉rj�qrrjno is a single volume. The 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt include two volumes: Enhancing Core (EC) 
and NonEnhancing tumor (NE). The 𝐻𝐷 − 𝐺𝐿𝐼𝑂rj�qrrjno include two volumes: EC and NE, of which only 

NE is used in this study. 

4.4.1 Analyzing the volumes 
The Dice-coefficients and volumetric sizes results were acquired from the clinical treatment 

planning system Eclipse, using the “statistics”-tool in the “SmartSegmentation” module. 

Manual delineations representing current clinical practice was defined ground truth. 

 

4.4.2 Analyzing the Dice-coefficient results 
All results were analyzed in Prism 8 for macOS (GraphPad Software, version 8.4.3 (471) La 

Jolla, California, www.graphpad.com). The Dice-Coefficient results was analyzed for 

variance by Friedman’s test, as well as successively analyzed for outliers by Grubbs test, and 

analyzed for statistical significance by Wilcoxon test for non-parametric5 data. The Grubbs 

test presumes normal distributed data, so for this non-parametric data the result was carefully 

evaluated manually, confirming the Grubbs results. The alpha value is set to 5% for all 

                                                
5 Not inhabiting gaussian distribution 
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statistical analyses, and sets the standard for how extreme the data must be before the research 

question is answered with a statistically significant result. This gives a level of significance of 

95%, meaning the probability of the observed data has occurred due to an actual measured 

effect is at least 95%, when the p-value is below 0.05. 
 

4.5 Methodological ethical concerns 
The BORTEM-17 study within which this study is an independent part of, has been approved 

by the Regional Ethics Committee in Western Norway, reference number 2017/2084/REK 

vest (Approval letter attached in appendix F). The need for data protection impact assessment 

(DIPA) evaluation for this thesis was discussed with the supervisors of this thesis and found 

to be not necessary. The BORTEM-17 study was reported to the official Data Protection 

Officer (DPO) of HUH (Rapport enclosed in appendix G), and this independent study was 

also discussed with the HUH DPO to ensure all parts of the methodological approach was 

ethically substantial, and that all use of patient data was approved through the BORTEM-17 

study approval and patient information. 

The patients were presented with both oral and written information of the study (Patient 

information letter attached in appendix H), including information of use of radiological data, 

before asked to give informed consent. The patients did not undergo any additional exams or 

additional image sessions, as my study only took use of data material already available. The 

study results have no influence on the participants’ cancer treatment as it only retrospectively 

takes into account the data, investigating the hypothetical volumetric outcome using HD-

GLIO. 

All analysis have taken place on de-identified datasets, but the identification key has been 

available in a locked cabinet. 

I chose to keep the original enrollment numbering according to the BORTEM-17 study to 

ease further analysis of the data material. However, the patients are aware of their enrollment 

number, and a situation could occur where they, or their next of kin, read about their results in 

published rapports. Facial features were masked on 3D-illustrations to prevent recognition.  

Still, the results describe to some detail individual patient disease- and treatment course, 

which for some, could be problematic in respect of retrospective treatment analysis. The fact 

that these patients have undergone aggressive treatment to match the aggressiveness of their 



61 
 

tumors does not come without personal cost for the individual patients. In the same time, 

these patients are well informed that they are part of a research project regarding tumor 

treatment, and have given their consent to their disease and treatment can undergo thorough 

investigation. They are also informed that the results of the research project will be published. 

4.6 Reliability and validity 
Validity is of the essence in good research. Validity is an expression of whether or not the 

findings in the study are unbiased and well grounded, true for the studied population (internal 

validity) and ultimately, if the results are transferable onto other populations (external 

validity). Reliability refers to the accuracy and consistency of measured variables (105).  

The BORTEM-17 study that this thesis is an individual part of was a phase 1 study with 10 

participants. As four of these had to be excluded in this study due to missing 𝑀𝑅𝐼kr��mrt 

image series, the sample size (n=6) is low. However, there are three separate volume-

comparisons for investigating Q1 regarding correlation, giving an effective sample size of 

n=18, hence increasing statistical power. For investigating Q2 regarding the attempt of 

isolating the predictive value of the methods in comparison, there is an actual sample size of 

six patients, but as there are two longitudinal volume comparisons, the overall effective 

sample size of 12. The longditunal nature of the study therefore increases the statistical 

power, hence increases the validity of the study. However, the reliability in terms of grounds 

for generalization to a bigger population is still somewhat limited.  

When comparing HD-GLIO segments derived from 𝑀𝑅𝐼kr��mrt to the ground truth recurrent 

tumor 𝐺𝑇𝑉rj�qrrjno as it appears on the 𝑀𝑅𝐼rj�qrrjno dataset for Q2 investigation, there lies a 

methodological insecurity in tissue localization shift. Potential factors inducing tissue 

localization shift include radiotherapy-related atrophy, pseudoprogression, and recurring 

tumor mass volume compressing effect. E.g. if the ventricles have doubled in size from one 

imaging timepoint to the other, the tissue inhabiting the primary tumor-cells could have been 

displaced, compressed or for some other reason shifted their in-cranial position. The idea of 

doing longitudinal segment comparison is to investigate what has happened with the tissue a 

specific in-image i, j, k -localization over time, and does not take into account that the tissue 

in this voxel may have been replaced by neighboring tissue due to tissue localization shift. 

This theoretical methodological insecurity lies inherent in using rigid co-registration; 
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however, the alternative of using deformable registration would only induce more 

methodological insecurities.  

There lies an inherent methodological weakness in comparing a machine learning-derived 

segment of non-enhancing tumor with theoretically high specificity, to a ground truth 

manually delineated segment in which a large insecurity margin, hence low specificity. The 

intrinsic low specificity in the ground truth can make it hard to isolate an effect in respect of 

accuracy in the comparing method. Because of this, the true positive part of the Dice 

similarity coefficient could be investigated as an indication of specificity, along with the Dice 

similarity coefficient score in general. 
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5 Results 

5.1 Patient characteristics 
Of the ten patients with recurrent glioblastoma in BORTEM-17 phase 1 study, patient number 

1, 5, 6, 8, 9 and 10 had eligible image material available to perform analysis with HD-GLIO 

according to minimum requirements. Mean age at treatment for primary GBM was 44,4 years 

(median=48). Gender distribution was male n=8, female n=2. Patient- and treatment 

characteristics, in addition to structure volumetrics are given in the table below. 
 

Table IV In-study-patients characteristics in MRIprimary	
 

P Tumor 

site* 

Age

** 

Treatment 

site 

Gen

der 

GTV-

size 

CTV-

size 

EC 

size 

HD-GLIO 

size 

Days to 

MRIrecur

rent*** 

1 FL 44 HUH M 6.5 205.7 3.1 222.0 1294 

2 TL-R 52 HUH M 45.2 107.0 -- -- -- 

3 LH 52 OUS M 60.1 103.9 -- -- -- 

4 RH 39 OUS F 72.7 263.8 -- -- -- 

5 FL 33 HUH M 26.0 163.8 0.5 70.5 491 

6 PL 34 HUH F 7.8 223.4 2.4 21.2 312 

7 RH 25 OUS M 241.5 507.1 -- -- -- 

8 FL 56 HUH M 20.5 201.1 0.0 16.6 515 

9 RH 52 SUH M 45.0 299.9 25.4 132.7 239 

10 LH 57 SUH M --6 236.6 16.1 163.5 340 
 

P=Patient number according to enrollment. FL=Frontal Lobe, TL=Temporal Lobe, R=Right side, 
RH=Right Hemisphere, PL=Parental Lobe, LH=Left Hemisphere. M=male, F=female. nf=not found in 
patient journal, patient treated outside HUH. All volumetric sizes is given in cm3. *as listed in patient 

journal. **at time of enrollment. ***Number of days between MRIprimary and MRIrecurrent 
 

All patients were recurrence-free for at least 12 weeks between radiotherapy and enrollment 

to the study. 

 

                                                
6 GTV was not delineated 
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5.2 Q1: Correlation between clinical and machine 
learning-derived tumor volumes 

5.2.1 Primary tumor site segmentation results in 𝑴𝑹𝑰𝒑𝒓𝒊𝒎𝒂𝒓𝒚 
One aim of the study was to compare the manually delineated volumes to the machine-

derived volumes of the primary MRI-examination. The volumes in 𝐶𝑇𝑉kr��mrt and 

𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt that are compared with Dice-coefficient are : 

 Q1-A: 𝐺𝑇𝑉kr��mrt (red    ) versus 𝐸𝐶kr��mrt (dark blue    ) 

 Q1-B: 𝐶𝑇𝑉kr��mrt (pink    ) versus total 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt (cyan    ) 

Due to the heterogenous patient material, image material and small sample size, the 

segmentation results for are presented for each patient to fully illustrate the results, in the 

following figures: 

Patient 1 

 

Figure 35  Segments in Patient 1: Axial view (left -top and bottom), coronary view (middle – top and 
bottom), sagittal view (right – top and bottom). Top row: manual and HD-GLIO segments on their original 

anatomical background, bottom row: segments only. Red line= Gross Target Volume (GTV), Blue 
line=Enhancing Core (EC) compartment of 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt, Pink line=Clinical Target Volume (CTV) 

Light blue=total 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt. Illustration: Marianne H Hannisdal  
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Patient 5 

 

Figure 36  Segments in Patient 5: Axial view (left -top and bottom), coronary view (middle – top and 
bottom), sagittal view (right – top and bottom). Top row: manual and HD-GLIO segments on their original 

anatomical background, bottom row: segments only. Red line= Gross Target Volume (GTV), Blue 
line=Enhancing Core (EC) compartment of 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt, Pink line=Clinical Target Volume (CTV) 

Light blue=total 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt  Illustration: Marianne H Hannisdal  
 

 
Patient 6 

 

Figure 37  segments in Patient 6: Axial view (left -top and bottom), coronary view (middle – top and 
bottom), sagittal view (right – top and bottom). Top row: manual and HD-GLIO segments on their original 

anatomical background, bottom row: segments only. Red line= Gross Target Volume (GTV), Blue 
line=Enhancing Core (EC) compartment of 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt, Pink line=Clinical Target Volume (CTV) 

Light blue=total 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt  Illustration: Marianne H Hannisdal 
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Patient 8 

 
Figure 38  segments in Patient 8: Axial view (left -top and bottom), coronary view (middle – top and 

bottom), sagittal view (right – top and bottom). Top row: manual and HD-GLIO segments on their original 
anatomical background, bottom row: segments only. Red line= Gross Target Volume (GTV), Blue 

line=Enhancing Core (EC) compartment of 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt, Pink line=Clinical Target Volume (CTV) 
Light blue=total 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt  Illustration: Marianne H Hannisdal 

 
Patient 8 had no segmented Enhancing Core by HD-GLIO. 

Patient 9 

 

Figure 39  segments relationships in Patient 9: Axial view (left -top and bottom), coronary view (middle – 
top and bottom), sagittal view (right – top and bottom). Top row: manual and HD-GLIO segments on their 
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original anatomical background, bottom row: segments only. Red line= Gross Target Volume (GTV), Blue 
line=Enhancing Core (EC) compartment of 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt, Pink line=Clinical Target Volume (CTV) 

Light blue=total 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt  Illustration: Marianne H Hannisdal 
 

Patient 10 

 
Figure 40  segments in Patient 10: Axial view (left -top and bottom), coronary view (middle – top and 

bottom), sagittal view (right – top and bottom). Top row: manual and HD-GLIO segments on their original 
anatomical background, bottom row: segments only. Pink line=Clinical Target Volume (CTV) Light 

blue=total 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt  Illustration: Marianne H Hannisdal 
 
Patient 10 had no GTV delineated by oncologist, therefore Enhancing Core compartment of 

HD-GLIO is also excluded from the figure 40 above. 

5.2.2 Dice-coefficient results in 𝑴𝑹𝑰𝒑𝒓𝒊𝒎𝒂𝒓𝒚  
First, the machine learning-derived enhancing core 𝐸𝐶kr��mrt including cavities were 

compared to the ground truth manually delineated gross target volume 𝐺𝑇𝑉kr��mrt by the 

oncologist. Secondly, the total machine learning-derived tumor volume 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt 

including both EC and NE-volumes and cavities, were compared to the ground truth manually 

delineated clinical target volume, 𝐶𝑇𝑉kr��mrt. Dice similarity coefficient results and true 

positive results of these comparisons is presented in table V below.  
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Table V Dice-coefficient and True Positive results in 𝑀𝑅𝐼kr��mrt	 
 

 A 

𝐺𝑇𝑉kr��mrt vs. 𝐸𝐶kr��mrt 

B 

𝐶𝑇𝑉kr��mrt vs. 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt 

 Dice-score True Positive Dice-score True Positive 

Pt 1 0.70 0.94 0.67 0.64 

Pt 5 0.34 0.33 0.57 0.94 

Pt 7 0.54 0.80 0.17 0.98 

Pt 8 -- -- 0.15 1.00 

Pt 9 0.87 0.92 0.60 0.98 

Pt 10 -- -- 0.77 0.93 

Mean 0.49 0.75 0.49 0.97 

median 0.54 0.80 0.58 0.98 

SD 0.34 0.29 0.27 0.03 

SEM 0.15 0.14 0.11 0.05 

p-value 0.125 0.12 0.03 0.01 
All volumetric sizes is given in cm3. 

 –not taken into account. Patient 8 had no Enhancing Core (EC) segmented by HD-GLIO. Patient 10 did 
not have GTVprimary delineated by oncologist. True positive on Patient 1 in dataset B was removed as an 

outlier by Grubbs test. 
 
Grubbs outlier test was performed as described in the method section, and True Positive result 

on patient 1 in dataset B was excluded from further analysis. 
   

5.2.3 Recurrent tumor site segmentation results in 𝑴𝑹𝑰𝒓𝒆𝒄𝒖𝒓𝒓𝒆𝒏𝒕 
 
Majority of GBM patients experience recurrence of tumor after treatment, and another aim of 

this study was to compare the similarity in detection of spatial location of the recurrent tumor 

between manual and machine-derived segmentation. The volumes in 𝑀𝑅𝐼rj�qrrjno that were 

compared with Dice-coefficient are: 

 Q1-C: 𝐺𝑇𝑉rj�qrrjno (magenta    ) versus 𝐸𝐶rj�qrrjno (dark blue    ) 
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Patient 5 

 

Figure 41  Patient 5: Segments in 	𝑀𝑅𝐼rj�qrrjno. Axial view (left -top and bottom), coronary view (middle – 
top and bottom), sagittal view (right – top and bottom). Top row: segments on their original anatomical 
background, bottom row: segments only. Gross Target Volume (GTV) (magenta) and Enhancing Core 

(blue).  HD-GLIO detects the same two lesions that is manually delineated, but HD-GLIO also segments a 
lesion in the frontal lobe that is clinically described as post-operative changes in relation to the meninges 

(ref: patient journal). Illustration: Marianne H Hannisdal 
 
 

Patient 6 

 
Figure 42  Patient 6: Segments in 	𝑀𝑅𝐼rj�qrrjno. Axial view (left -top and bottom), coronary view (middle – 

top and bottom), sagittal view (right – top and bottom). Top row: segments on their original anatomical 
background, bottom row: segments only. Gross Target Volume (GTV) (magenta) and Enhancing Core 

(blue) Illustration: Marianne H Hannisdal  
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Patient 8 

 
Figure 43  Patient 8: Segments in 	𝑀𝑅𝐼rj�qrrjno. Axial view (left -top and bottom), coronary view (middle – 

top and bottom), sagittal view (right – top and bottom). Top row: segments on their original anatomical 
background, bottom row: segments only. Gross Target Volume (GTV) (magenta) and Enhancing Core 

(blue). Illustration: Marianne H Hannisdal 
 
 

Patient 9 

 
Figure 44  Patient 9: Segments in 	𝑀𝑅𝐼rj�qrrjno. Axial view (left -top and bottom), coronary view (middle – 

top and bottom), sagittal view (right – top and bottom). Top row: segments on their original anatomical 
background, bottom row: segments only. Gross Target Volume (GTV) (magenta) and Enhancing Core 

(blue). Illustration: Marianne H Hannisdal  
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Patient 10 

 
 Figure 45  Patient 10: Segments in 	𝑀𝑅𝐼rj�qrrjno. Axial view (left -top and bottom), coronary view (middle 
– top and bottom), sagittal view (right – top and bottom). Top row: segments on their original anatomical 

background, bottom row: segments only. Gross Target Volume (GTV) (magenta) and Enhancing Core 
(blue). Illustration: Marianne H Hannisdal  

 

5.2.4 Dice-coefficient similarity between 𝑮𝑻𝑽𝒓𝒆𝒄𝒖𝒓𝒓𝒆𝒏𝒕 and 𝑬𝑪𝒓𝒆𝒄𝒖𝒓𝒓𝒆𝒏𝒕 
The machine learning-derived enhancing core 𝐸𝐶rj�qrrjno compartment of 𝐻𝐷 −

𝐺𝐿𝐼𝑂rj�qrrjno, was compared to the ground truth manually delineated enhancing tumor 

volume, 	𝐺𝑇𝑉rj�qrrjno.  

Volume sizes, Dice-coefficient similarity and True Positive results is presented in table VII. 
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Table VI Volumetric sizes and Dice-coefficient similarity between  𝐺𝑇𝑉rj�qrrjno and 𝐸𝐶rj�qrrjno 
 

P 𝐺𝑇𝑉rj�qrrjno
size 

𝐸𝐶rj�qrrjno   
size 

Dice-coefficient True Positive 

1 18.5 -- -- -- 

5 2.5 13.9 0.15 0.05 

6 0.9 0.7 0.79 1.00 

8 3.5 1.9 0.71 1.00 

9 10.7 8.0 0.67 0.80 

10 42.6 12.2 0.37 0.87 

mean 13.1 6.1 0.53 0.92 
median 7.1 5.0 0.67 0.94 

All volumetric sizes is given in cm3.  --  missing/not taken into account. –True positive of patient 1 was 
found to be an outlier by Grubbs test, and excluded from further analysis. 

 
Grubbs outlier analysis was performed as described in the method section, and True Positive 

result on patient 5 was excluded from the dataset. 

5.2.5 Q1 Overview and statistical analysis: 
Dice-coefficient similarities between manual delineation and machine-derived segmentation 

on the two MRI-datasets are listed in the table below, along with statistical calculations 

performed in Prism 8. The sample size n is 16: there are six patients undergoing three separate 

measures (n=6*3=18), but patient 1 is missing 𝐸𝐶rj�qrrjno, and patient 10 is missing 

𝐺𝑇𝑉kr��mrt. The A, B, C datasets (A=𝐺𝑇𝑉kr��mrt vs. 𝐸𝐶kr��mrt, B=𝐶𝑇𝑉kr��mrt vs. 

𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt and C=𝐺𝑇𝑉rj�qrrjno vs. 𝐸𝐶rj�qrrjno) was successively analyzed for 

outliers with the Grubbs test, resultingly True Positive-value of patient 1 in dataset B, and 

True Positive value of patient 5 in dataset C was identified as an outlier. These outlier values 

are excluded from further analysis. 

The Dice-coefficient scores and True Positive scores of the segments in comparison are given 

group-wise in figure 46 and 47, respectively.  
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Figure 46  Box-plot of Dice-coefficient group scores for the segments in comparison, respectively. A: 
mean= 0.61, median 0.62 range=0.53 (0.34-0.87). B: mean=0.49, median=0.58, range=0.62 (0.15-0.77). 

C: mean=0.54, median=0.67, range=0.64 (0.15-0.79). 
 
 
 
 

 

Figure 47  Box-plot of True Positive group scores for the segments in comparison, respectively.  
A: mean=0.68, median=0.80, range=0.59 (0.33-0.92). B: mean=0.97, median= 0.98, range 0.07 (0.93-

1.0). C: mean=0.92, median=0.95, range=0.2 (0.80-1.0). 
 
 
The results are also given by patient, group and total in table VIII, below. 

  

0.0 0.2 0.4 0.6 0.8 1.0

C: GTVrecurrent vs ECrecurrent

B: CTVprimary vs NEprimary

A: GTVprimary vs ECprimary

Dice-coefficient scores 

0.0 0.5 1.0

C: TP GTVrecurrent vs ECrecurrent

B: TP CTVprimary vs tot HD-GLIOprimary

A: GTVprimary vs ECprimary

True Positive scores
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Table VII Dice-coefficient results and True Positive scores between volumes in comparison 
 

 A 

𝐺𝑇𝑉kr��mrt vs. 

𝐸𝐶kr��mrt 

B 

𝐶𝑇𝑉kr��mrt vs. 	
𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt 

C 

𝐺𝑇𝑉rj�qrrjno vs. 

𝐸𝐶rj�qrrjno  

Overall 

Dice 

Overall 

True 

Positive 

 Dice-

score 

True 

Positive 

Dice-

score 

True 

Positive 

Dice-

score 

True 

Positive 

  

Pt 1 0.70 0.94 0.67 0.64 -- --   

Pt 5 0.34 0.33 0.57 0.94 0.15 0.05   

Pt 7 0.54 0.80 0.17 0.98 0.79 1.00   

Pt 8 -- -- 0.15 1.00 0.71 1.00   

Pt 9 0.87 0.92 0.60 0.98 0.67 0.80   

Pt 10 -- -- 0.77 0.93 0.37 0.87   

Mean 0.61 0.75 0.49 0.97 0.54 0.92 0.54 0.88 

median 0.62 0.86 0.59 0.98 0.67 0.94 0.60 0.94 

SD 0.23 0.29 0.26 0.03 0.33 0.10 0.24 0.18 

SEM 0.11 0.14 0.11 0.01 0.13 0.05 0.06 0.05 

p-value 0.12 0.12 0.03 0.06 0.06 0.12 <0.001 <0.001 
Overall values are calculated from all results presented in the table. SD=standard deviation, 

SEM=Standard Error of Mean. P value is calculated with Wilcoxon signed-rank test (two tailed, with 
a theoretical median=0).    Excluded as an outlier by Grubbs test.  

 
Because the Dice-coefficient is a statistical measure of similarity, the nature of the results 

does not exhibit a Gaussian distribution and must therefore be analyzed with non-parametric 

tests. The three datasets were scrutinized for variance by Friedman test, which is a one-way 

repeated measures analysis of variance by ranks. The Friedman test result was p>0.99 for 

difference, hence no significant difference between groups (p<0.001). This means the three 

groups can be analyzed as one dataset with 16 samples in terms of similarity between manual 

oncologist delineation and machine-derived segmentation. The n=16 Dice-coefficient results 

was then analyzed for statistical significance with the Wilcoxon signed-rank test. The test was 

made with a hypothetical median of 0, representing the theoretical expectation of the null-

hypothesis. The discrepancy in theoretical and actual median was 0.60 (p <0.001). As the 

actual median of 0.60 is significantly larger than the hypothetical median of 0, the correlation 

between manual and machine-learning-derived segments are statistically significant. 
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The True Positive data is descriptive as to where the machine-derived segment is situated with 

relation to the ground truth. The Friedman test was also used on the ranked True Positive 

datasets, and was not found significantly different (p=0.58), meaning the True Positive results 

can also be viewed as one group. 

 

Because the Dice-coefficient is normalized to the sum of the volumes in comparison, it 

inherently lies in the model that large indifferences between the volumes sizes will affect the 

Dice-coefficient score. The impact of this factor has been analyzed for the specific population 

in this study. In this respect, size here refers to the 3-dimentional volumetric size in cm3. The 

“Relation-In-Size”  factor was found by: 𝐻𝐷 − 𝐺𝐿𝑂	𝑠𝑖𝑧𝑒 𝑔𝑟𝑜𝑢𝑛𝑑	𝑡𝑟𝑢𝑡ℎ	𝑠𝑖𝑧𝑒⁄ , which gave an 

output of a number where 1 is equal size, 0.5 means HD-GLIO is half the size of ground truth, 

2 means HD-GLIO is double the size of ground truth, and 0 means one of the sizes were zero. 

Relevant values are plotted in table VIII below. 
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Table VIII Volumetric sizes and their relation in size        
 

Patient 
number 

Manual   
size (cm3) 

HD-GLIO 
size (cm3) 

Relation-in-size 
factor 

Dice-coefficient 

A: 𝐺𝑇𝑉kr��mrtvs 
𝐸𝐶kr��mrt 

1 6.5 4.0 0.62 0.70 

5 1.2 0.6 0.50 0.34 
 

6 8.1 3.6 0.44 0.54 
 

8 20.5 0.0 0.00 0.00 
 

9 45.5 38.3 0.84 0.87 

B: 𝐶𝑇𝑉kr��mrtvs 
𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt 

1 206.4 222.0 1.08 0.67 

5 164.4 70.5 0.43 0.57 
 

6 224.3 21.2 0.09 0.17 
 

8 201.1 16.6 0.08 0.14 
 

9 300.6 132.7 0.44 0.60 
 

10 237.7 163.5 0.69 0.77 

C: 𝐺𝑇𝑉rj�qrrjnovs 
𝐸𝐶rj�qrrjno 

1 18.5 0.0 0.00 0.00 

5*  2.5 13.9 5.56 0.15 
 

6 0.9 0.7 0.78 0.79 
 

8 3.5 1.9 0.54 0.71 
 

9 10.7 8.0 0.75 0.67 
 

10 42.6 12.2 0.29 0.37 

Mean  93.3 43.5   

Median  31.6 10.1   

Volumetric sizes of manual- and machine learning-derived tumor volumes given in cm3, and their 
relation-in-size factor between volumes in comparison.*patient 5 was ruled out of the further analysis 

as an outlier by Grubbs test.  

In order to analyze how the relation-in-size factor is correlated with the Dice-coefficient 

results for our patients, the correlation coefficient was calculated. First, the data was searched 

for outliers using the Grubbs test and as a result patient 5 in dataset C (recurrent tumor 

volume comparison) was excluded as an outlier based on its relation-in-size factor. As the 

Dice-coefficient is non-parametric, but the relation-in-size factor is based on size which is 
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considered parametric exhibiting gaussian distribution, both Pearson (parametric) and 

Spearman (non-parametric) coefficient was calculated. The two correlation methods gave the 

same result: r=0.89 (p=0.001(two-tailed)). Both correlation coefficient values range between 

-1.0 and 1.0, where a correlation of -1.0 shows a perfect negative correlation, while 

a correlation of 1.0 shows a perfect positive correlation. A correlation above 0.7 is considered 

strong, both positive and negative (107).  

A simple linear regression was calculated to investigate the linear relationship of how 

strongly the Dice-coefficient result is dependent on the relation-in-size factor for our patients: 

R^2=0.80 (p<0.001). Also here, excluding patient 5 in dataset C (recurrent tumor volume 

comparison) as an outlier as earlier described. All plots and linear trendline and are shown in 

figure 48 below. 

 

Figure 48  Graph showing the linear relationship between Dice-coefficient score (dependent variable) and 
relation-in-size factor (independent) between compared volumes; R^2=0.80 (p<0.001). Calculations were 

made excluding patient 5 in dataset C (recurrent tumor volume comparison) as an outlier.  
 
 
For our patients, we therefore see a strong positive relationship between Dice-coefficient and 

relation in size between the compared segments. This means that large differences in 

volumetric size cause low Dice-coefficient scores. The probability of this observed difference 

having occurred by random chance (p-value) is 0.000003, calculated by t-test using t-

distribution with n-2 degrees of freedom. The observed strong correlation findings between 

Dice-score and size-relation are therefore statistically significant. 
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5.3 Q2: Predictive value – primary inclusion of the 
recurrent tumor site 
One aim of this study was to investigate if the machine learning model have longitudinal 

predictive value in terms of including the future tissue site of recurrence better than the 

standard clinical margin. 

5.3.1 Q2 - Segmentation results 
The volumes that are compared across 𝑀𝑅𝐼kr��mrt and 𝑀𝑅𝐼rj�qrrjno with Dice-coefficient 

are: 𝐺𝑇𝑉rj�qrrjno (magenta    ) versus 

A. 𝐶𝑇𝑉kr��mrt (pink    ) , and 

B. total 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt (cyan    ) 

Illustration of the spatial localization of the recurrent tumor (𝐺𝑇𝑉rj�qrrjno) in relation to 

𝐶𝑇𝑉kr��mrt and 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt for all patients is given in figure 49 below. 
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Figure 49  Site of recurrent tumor seen in relation to  A: Axial view of	recurrent tumor (𝐺𝑇𝑉rj�qrrjno) 

(magenta) as delineated on 𝑀𝑅𝐼rj�qrrjno. The Clinical Target Volume (𝐶𝑇𝑉kr��mrt) (pink) and the total 
𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt (cyan) from 𝑀𝑅𝐼kr��mrt is not situated in the same level and is therefore not showing. 
B: 3D-renderd images of 𝐺𝑇𝑉rj�qrrjno, adding (C): 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt and (D): 𝐶𝑇𝑉kr��mrt, respectively. 

Illustration: Marianne H Hannisdal 
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5.3.2 Q2 - Predictive value: Similarity between 𝑪𝑻𝑽𝒑𝒓𝒊𝒎𝒂𝒓𝒚 

and	𝑮𝑻𝑽𝒓𝒆𝒄𝒖𝒓𝒓𝒆𝒏𝒕 
The manually delineated primary tumor site, 𝐶𝑇𝑉kr��mrt was compared to manually 

delineated localization of the recurrent tumor	𝐺𝑇𝑉rj�qrrjno. The purpose of this was to 

quantify to what degree the CTV-margin in the primary radiotherapy treatment plan covered 

the site of recurrence. Overall, we could see that only patient 1 and 5 experienced recurrence 

within the boundaries of the CTV margin, patients 6,8,9,and 10 experienced recurrence in a 

completely different site. The similarity coefficient results are presented in table IX below: 

 
Table IX Volumetric sizes and Dice-coefficient between 𝐶𝑇𝑉kr��mrt and 𝐺𝑇𝑉rj�qrrjno 

 
P 𝐶𝑇𝑉kr��mrt 

size 

𝐺𝑇𝑉rj�qrrjno 

size 

 Dice-coefficient True positive 

1 206.4 18.0 0.13 0.79 

5 164.4 2.5 0.02 0.01 

6 224.3 0.9 0.00 0.00 

8 225.7 3.5 0.00 0.00 

9 300.6 10.7 0.00 0.00 

10 237.7 42.6 0.00 0.00 

mean 226.52 13.03 0.03 0.13 

median 225.00 7.10 0.00 0.00 
All volumetric sizes is given in cm3. The True positive is the volumetric share of GTVrecurrent situated 

inside CTVprimary 

5.3.3 Q2 - Predictive value: Similarity between 𝑯𝑫 − 𝑮𝑳𝑰𝑶𝒑𝒓𝒊𝒎𝒂𝒓𝒚 

and	𝑮𝑻𝑽𝒓𝒆𝒄𝒖𝒓𝒓𝒆𝒏𝒕 
The total machine-derived tumor volume of the primary tumor site 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt was 

compared to the ground truth manually delineated localization of the recurrent tumor 	

𝐺𝑇𝑉rj�qrrjno. The purpose of this was to quantify to what degree the 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt 

included the site of recurrence. Overall, we could see that 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt only included 

the site of recurrence on patient 1. 

 

The similarity coefficient results are presented in table X below: 
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Table X Volumetric sizes and Dice-coefficients between 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt  and 𝐺𝑇𝑉rj�qrrjno 

 
P 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt  𝐺𝑇𝑉rj�qrrjno  Dice-coefficient True positive 

1 220.20 18.00 0.13 0.07 

5 31.90 2.50 0.00 0.00 

6 20.30 0.90 0.00 0.00 

8 16.60 3.50 0.00 0.00 

9 122.70 10.70 0.00 0.00 

10 137.50 42.60 0.00 0.00 

mean 91.53 13.03 0.02 0.01 

Median 77.30 7.10 0.00 0.00 
 

All volumetric sizes is given in cm3. True Positive is the share of 𝐺𝑇𝑉rj�qrrjno situated inside 
𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt 

 

5.3.4 Q2 - Overview and statistical analysis 
Overall, we could see that both methods had poor longitudinal predictive value in terms of 

including the future tissue site of recurrence, as listed in table XI and shown in figure 55 

below. 
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Table XI Dice-coefficient similarities and True Positive scores between volumes compared across 
longitudinal datasets 

 A 

𝐶𝑇𝑉kr��mrt vs. 𝐺𝑇𝑉rj�qrrjno  

B 

𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt vs. 𝐺𝑇𝑉rj�qrrjno 

 Dice-score True Positive Dice-score True Positive 

Pt 1 0.13 0.79 0.13 0.07 

Pt 5 0.02 0.01 0.00 0.00 

Pt 7 0.00 0.00 0.00 0.00 

Pt 8 0.00 0.00 0.00 0.00 

Pt 9 0.00 0.00 0.00 0.00 

Pt 10 0.00 0.00 0.00 0.00 

Mean 0.03 0.13 0.02 0.01 

median 0.00 0.00 0.00 0.00 

SD 0.05 0.32 0.05 0.03 
SEM 0.02 0.13 0.02 0.01 

p-value 0.50  0.99  
discrepancy 0.00  0.00  

SD=standard deviation, SEM=Standard Error of Mean. P value is calculated with Wilcoxon signed-rank 
test (two tailed, with a theoretical median=0). Discrepancy is the calculated difference between the 

calculated median and the theoretical median in the hypothetical case of no difference.  
 
 

 
Figure 50  Box-plot of Dice-coefficient results comparing A: the CTVprimary to GTV recurrent, and B: 

HD-GLIOprimary to GTVrecurrent 
 

The datasets were compared with a non-parametric Wilcoxon matched-paired signed rank 

test. The two sets of Dice-coefficient scores did not differ significantly, but these data are not 

statistically significant (p>0.99) so no further analysis was executed.  

0.0 0.2 0.4 0.6 0.8 1.0

B: HD-GLIO prediction

A: CTV prediction

Dice-coefficient

Q2 Predictive value
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6 Discussion 
In this small-scale study, the potential for using deep learning artificial intelligence in RT 

tumor volume determination was investigated. This was performed by comparing the 

manually delineated tumor volume and machine learning derived tumor volume in terms of 

similarity and predictive value for tumor recurrence. The applied machine learning method 

makes use of established quantitative radiological biomarkers from multispectral MRI. 

Radiation therapy planning is personalized, aiming to administer a target specific as possible 

treatment , based on the best image material and analysis techniques available. Cost-

efficiency, radiological geometric fidelity, and the balance between tumor control and 

inflicting damage to OAR remains the main challenges. Also, imaging and visualization 

conditions in radiotherapy fails to match than in diagnostic radiology. Current clinical 

practice in determining the target volume for glioblastoma radiotherapy is to use 20 mm 

isotropic margin from the radiologically visible pathology. Previous research suggests 

increased focus on preserving quality of life of the remaining life time. This implies that 

smaller margins without cost of therapeutic ratio with specified imaging and optimal image 

analyzing techniques are desirable (1-3, 98, 100). New national guidelines under 

consideration opens for margin reduction in radiotherapy of diffuse high-grade gliomas (19). 

The overall aim of this project was therefore to study the potential of machine learning to 

further improve radiation therapy. This, regarding (i) reduced dose to normal tissue and OAR 

and (ii) the narrow therapeutic window of GBM in radiation therapy.  

6.1 Result discussion – correlation between HD-
GLIO segmentation and manual delineations 
The potential advantage of utilizing machine learning applied to target delineation lies in the 

elimination of inter-oncologist variation and an improvement in specificity, and hence a 

reduction of the amount of unnecessary normal tissue being included in the target area.  

Dice-coefficient comparison between the oncologist`s manually delineated tumor volume and 

the machine learning derived tumor volume showed an overall mean concordance of 0.54 

(median=0.60). The Dice-coefficient is a similarity score, so when speaking of 54% similarity 

one can imagine a scenario like illustrated in figure 51 below. 
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Figure 51  Example of a 0,54 Dice-coefficient similarity score situation when volumes are equally sized. 
 
When we are comparing three manually delineated volumes to their corresponding machine-

learning volumes, we found that the overall mean sizes of manual volumes were twice the 

size of machine learning-derived volumes, with an overall True Positive score of 0.88 

(median=0.94). A general finding in this study is therefore a situation as illustrated in figure 

52 below. 

 

Figure 52  The realistic situation of the 0.54 Dice-coefficient similarity score for the data in this study, 
visualized with authentically congruent size relations. The overall results showed a mean of 88% True 

Positive, and 13%.False Positive. 
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So the Dice-coefficient related to research question 1 (Q1) of mean 0.54 (median=0.60) does 

not represent a scenario of 46% voxel occurrences for which the HD-GLIO detects malignant 

tissue in a different site than 𝐶𝑇𝑉kr��mrt, but rather a scenario where HD-GLIO detects 

malignant tissue situated inside the CTV-margin, but in a smaller volumetric extent. This is 

consistent with our expectations as the very motivation for this study is the search  for a tool 

that can discriminate true malignant tissue more precisely from normal tissue, and hence 

provide higher specificity. This is also interesting in light of new guidelines under 

consideration from the Norwegian Directory of Health, in which avoiding large margins are 

emphasized (19). 

Even if the Dice-coefficient is the most frequently used measure of segmentation similarity or 

degree of overlap, it is not necessarily the overall best measure of volume correspondence. 

Other factors such as volumetric sizes and the True Positive overlapping part contribute to the 

descriptive value. If we had good reasons to be sensitive to local segmentation mismatch 

spatially characterized by “islands”, “peninsulas” or “lagoons”, the Hausdorff Distance (HD) 

metric could have been included for this study. However, HD will likely have given a 

disproportionally poor result on e.g. patient-one and patient-eight, who both had islands 

segmented by HD-GLIO. The results showed a strong positive relationship between Dice-

coefficient and the calculated relation-in-volume factor for the patients in this study, meaning 

that the Dice-coefficient result is strongly affected by incongruences in size between the 

compared volumes. It is, however, important to keep in mind that this project did not presume 

the machine-derived segment to have the same morphologic extent as the manual volume. For 

dataset B (comparing 𝐶𝑇𝑉kr��mrt	to 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt including cavities), this is especially 

important regarding the inherent disparity of the compared volumes, in terms of low 

specificity in the 𝐶𝑇𝑉kr��mrt	 volume, which is serving as a margin. The use of the CTV-

margin as ground truth in this context will be further discussed in the Method Discussion 

Validity and Reliability section below.  

For dataset A (comparing 𝐺𝑇𝑉kr��mrt versus 𝐸𝐶kr��mrt), the premises between comparisons 

are more alike, as they are both based on the gadolinium enhancing tumor tissue, which one 

could speculate is more straight forward in both qualitative and quantitative interpretation 

methods. Therefore it is interesting that the mean volumetric sizes differ between 

𝐺𝑇𝑉kr��mrt	and 𝐸𝐶kr��mrt as much as they do; mean 16.36 cm3 (median 8.1) and 9.3 cm3 

(median=3.6), respectively, so manual delineation includes a bigger volume than HD-GLIO. 

However, the True positive rate of mean=0.92 (median=0.94) means that 𝐸𝐶kr��mrt is mainly 
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situated inside 𝐺𝑇𝑉kr��mrt. There was not sufficient statistical power to ensure statistical 

significance in dataset A (p=0.12), so the trend from this dataset must be interperated in 

context with dataset B and C. The sparseness of the data will be further discussed in the 

method discussion section.  

As for correlation between GTV and HD-GLIO in MRI-recurrent (dataset C), the volumetric 

trend is also that 𝐸𝐶rj�qrrjno is smaller than 𝐺𝑇𝑉rj�qrrjno. The mean Dice-coefficient is 53% 

(median=67%) but the mean True Positive result is 91% (median=93%). This indicates that 

even though 𝐸𝐶rj�qrrjno does not detect as much malignant tissue as the manual delineation 

𝐺𝑇𝑉rj�qrrjno, the volume still had a tendency to be situated in the same site (p=0.06). These 

data were also not statistically powered when analyzed alone. 

When analyzing Dice-coefficient results, it should be acknowledged that a low Dice-

coefficient is not necessarily a negative indication. The CTV-margin contains normal tissue, 

which is not expected to be segmented as malignant tissue, on the contrary. Several margin-

reducing studies have shown good results (1, 3, 19, 97-99) indicating that a better method is 

needed to specify the radiotherapy target and avoid inducing unnecessary neurocognitive side 

effects for the patient. An ideal study would perhaps be to compare two groups, where one 

group received treatment based on traditional manual delineation, and the other group 

received treatment based on segmentations made with HD-GLIO. This might enable the study 

of both treatment outcomes and side-effects between groups. However, due to limited 

knowledge at this time point, it would not be ethically responsible to pursue such a study, but 

with advanced knowledge through further studies and continued development of dynamic 

algorithms, a study of this character could be a goal to aim towards. Again, a specification of 

the radiotherapy target is substantiated by the new guidelines from the Norwegian Directorate 

of Health currently under consideration, emphasizes the limiting of radiation induced 

neurotoxic damage, hence avoiding unnecessary large margins (19).  

6.2 Result discussion – longitudinal predictive value 
When it comes to predictive value, neither 𝐶𝑇𝑉kr��mrt nor 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt had 

significant accuracy for inclusion of the site of the recurrent tumor. Again, large size 

differences was partially the cause of these low Dice-coefficient results, but there is no 

indication that 𝐻𝐷 − 𝐺𝐿𝐼𝑂kr��mrt exhibits a predictive value higher than the inherent 

prediction within the large margin of CTV confers. However, the large CTV-margin did not 
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show significant predictive value either, which in one respect could mean that the 

radiotherapy treatment had worked well, terminating pre-morphologic tumor cells within the 

target area and preventing resurgent growth from occurring in this area. On the other hand, in 

the hypothetical case that the site of recurrence in any case would be situated distant from the 

primary site, the radiation of this large in-margin normal tissue area would be solitarily 

unbeneficial for the patients, only causing complications to the surrounding normal tissue. 

These data, however, did not have enough statistical power to be statistically significant 

(p>0.99).  

It was surprising to see that the recurrent tumors occurred in sites so distant from the primary 

tumor site, which is not in compliance to what we expected based on previous research (11, 

12, 61). As previously mentioned, tissue localization shift in the rigid co-registration process 

could to some degree present a methodological uncertainty, however, manual inspection 

revealed that this does not entirely account for the dispersed spread of tumor sites. The reason 

for unexpected site for recurrence in this study was not thoroughly elucidated but one 

explanation might be due to the highly selected patient group with specific characteristics 

determined by BORTEM-17 inclusion criteria. The model of the study was built on a 

preconception and the expectation that the recurrent tumor would come within the nearest 2-3 

centimeters of the primary tumor site. This preconception founded on previous studies that 

established  this to be true for 85% of all cases in glioblastoma with unmethylated MGMT 

promoter (101), and in roughly 60% of all glioblastomas in total (108). Also, the daily 

practice with making large-margin treatment plans is based on the consensus understanding 

that recurrence within the 2-3cm margin is the common scenario. Therefore, it was quite 

surprising to find that this model only fitted patient 1, whereas 79 % of the recurrent tumor 

site turned out to be situated inside the CTV-margin, giving a Dice similarity coefficient of 13 

%. For patient 5 only 1 % of the recurrent tumor was situated inside the CTV-margin, giving 

a Dice similarity coefficient of 2 %, and as for patient 6,8,9 and 10 the recurrent tumor site 

was in a completely different lobe or hemisphere. As patients with unmethylated MGMT 

promoter respond poorerly to  both radiotherapy and temozolomide (61, 64), this could give 

credence for the  expection that recurrent tumors occur more rapidly than for patients with 

methylated MGMT promoter. Moreover, one of the inclusion criteria was that the patients had 

to be to free of recurrence at least 12 weeks after primary radiotherapy, a criterium that was 

set to be able to isolate the effect of bortezomib pretreatment in the BORTEM-17 study. 

However, this selection criteria could potentially have excluded the patients with the most 

aggressive disease progression.  
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Four patients were excluded in this study due to missing image material and the 6 patients in 

my independent study had a mean disease-free period of 76 weeks (median 59 weeks), 

including an outlier that had 185 disease-free weeks (3.5 years). Stupp et al., (2005) reports 

that median disease-free period for glioblastoma is 6.9 months (8), equivalent to 

approximately 30 weeks. Hence, the patients in this study had a disease-free period almost 

double of the reported. A study of recurrence patterns reported that only 10% of recurrent 

tumors occurred distant7 to the primary tumor site (109), whereas 66% (4/6) of the patients in 

this study had sole distant recurrence. Also, it has been reported that recurrences situated 

outside the radiotherapy target volume occurs significantly slower than recurrences situated 

inside the radiotherapy target volume (101). This can indicate that the 12 weeks recurrence-

free inclusion criteria could possibly have excluded patients with rapid recurrence, having a 

larger statistical chance of in-target volume regrowth. This could mean that the recurrence 

sites in this study might not be representative of the general population with recurrent 

glioblastoma. Also, the low number of patients makes it difficult to make general conclusions 

of whether this is a characteristic of this selected patient group or simply a coincidence. 

Nevertheless, the potential signal intensity changes due to underlying pathology were either 

not detectable by the applied method or they simply were not apparent. Hence, a larger, 

unselected patient group is required in order to isolate the ability of using HD-GLIO to 

predict  site of future recurrence, or indeed , if there is an effect to be detected. 

6.3 Method discussion 
Much research has been done on radiological biomarkers in recent years, especially focusing 

on what type of information they can provide within the various MRI-sequences, and how 

they can help to decipher the true radiologic expression of tumor pathophysiology. However, 

the studies often include high-complexity and time-consuming MRI sequences, hence cost-

efficiency evaluation of the resource often overweighs towards cost, compromising the 

clinical applicability. Rathore, Akbari et al., (2018) proposed the use of already standardized 

image sequences which are available for all scanners, and thereby multispectral MRI-

examinations on all patients could be eligible for machine learning image analysis. In 

developing machine learning algorithms that make use of standardized protocols e.g. the 

BrATS Challenges and HD-GLIO, unnecessary complexity is eliminated, along with 

additional costs and time use in the MR-examination process. At a practical level, established 

                                                
7 Situated minimum 3 cm outside enhancing part of primary tumor, compliant to 3 cm outside GTV 
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timeframes for examination protocols and radiologic interpretation should be taken into 

account. Even if novel image acquisitions and high-dimensional functional uptakes is of 

utmost interest, it is not always available and clinically eligible. However, clinical protocols 

for brain tumor imaging should be updated to fit the minimum of established standards, 

including pre- and postcontrast T1, T2 and T2FLAIR. In this study 40% of the available 

patients had to be excluded due to missing imaging series. 

The scientific ideal in hypothetical deductive research tradition is that truth is achieved by 

logical deduction, and that knowledge can be derived from objective observations and 

experiments. When comparing objective, empirical sizes like tumor volumes, differences 

between variables being compared should be brought to a minimum in the attempt of isolating 

an effect, hence rule out biases. In this respect, one can say that comparing a segment derived 

purely from image biomarkers on a single MRI-examination, to a manual volume delineation 

based on human interpretation of an image spectrum including both CT as well as various 

full- and fractional MRI-examinations - in addition to qualitative clinical assessments, this 

does not fulfill an aim of similar comparison terms. As a consequence, effects could be harder 

to isolate. Still, the essence of this study is to identify a potential effect of a quantitative tumor 

delineation approach, using artificial intelligence. Therefore, it is interesting to evaluate 

current clinical practice based on general tumor infiltration biology experienced by GBM 

patients as a group, up against novel methods proposed in research literature, segmenting the 

tumor infiltration site based on patient-specific imaging parameters and quantitative image-

biomarker exploration.  

When comparing volumetric sizes, the use of the Dice-coefficient is a standardized approach 

(81), which ensures good internal validity. The clinical target volume is by nature a margin in 

which the oncologists are well aware that some normal tissue is included. It is still a 

calculated risk, based on empirical studies stating that most recurrent tumor sites occur within 

this margin on group level. In this respect, there lies a prediction within this margin as to 

where the recurrence is expected to develop. However, when defining this the ground truth 

and comparing with Dice-coefficient, the whole CTV is defined “true positive” when we 

know it is not. The best measure, one could argue, might be to compare HD-GLIO segments 

to multiple radiologist tumor delineations, not including any treatment margin. This would 

give a better picture of the true correlation between manual interpretations of tumor 

extensiveness, to the machine-derived segmentation. Alternatively, in a hypothetical situation; 

performing a full slice-by-slice histological tumor boundary analysis directly after imaging, 
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defining the histological ground truth. Nevertheless, all methods have limitations, and a 

conventional histological analysis is another qualitative analysis, just as a manually delineated 

image-based volume is. Even the training material upon which HD-GLIO has gained its 

robustness and strength, is also delineated manually, and even if delineations are performed 

by experts one can never completely rule out observer-dependent methodological bias. Taking 

into account that all method has inherent methodological insecurities, any ground truth has its 

limitations. So, when measuring one method`s sensitivity and specificity up against a gold 

standard, there will always be a risk that pathological sites detected only by a novel method 

will falsely be interpreted as false-positive. Still - the use of current gold standard clinical 

practice as is common practice in method studies ensures we build new knowledge on top of 

pre-stated scientific truths. 

The volume of recurrent tumor was delineated by me. I have five years of experience 

delineating cerebral structures for radiotherapy planning purposes. All delineations were 

approved by an experienced oncologist. However, increased validity and reliability may have 

been achieved if an experienced radiologist made the delineation. As machine-learning 

segmentation holds the potential to eliminate inter-observer variability, it would also have 

been useful to compare delineations from multiple radiologists, but this was not performed 

due to time and resource constrains. Recurrent tumor delineations were made solitarily on 

contrast enhancing tissue on T1 post contrast images, both because contrast enhancement is a 

well-established hallmark of cancer (44), but also because T2-signal can be affected by post-

irradiation changes. All patients had received radiotherapy for their primary GBM, this makes 

it more complicated to rely on T2 or T2FLAIR images to quantify any tumor progression, as 

radiation treatment-related toxicity represent a common attribue to hyperintense signal in 

these MRI-series (110). For this group, hyperintense T2/FLAIR-signal cannot be solitarily 

related to tumor infiltration or peritumoral edema as a marker of neovascularization or 

vascular endothelial growth factor (VEGF) expression, as when prior radiotherapy is not an 

issue (48), even if GBM harboring unmethylated MGMT promoter might infrequently induce 

pseudoprogression compared to GBM bearing methylated MGMT promoter (64). The visual 

contrast-enhancing tumor part is therefore used as a surrogate to the full tumor burden, and 

therefore also only compared to the “Enhancing Core” segment ‘in HD-GLIO. 

6.3.1 Validity 
The limited statistical power due to low number of participants (n=6) is a major limitation of 

this study in terms of attaining sufficient statistical power to ensure low probability of making 
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a Type II error. Statistical power states the likelihood of detecting an effect when there is an 

effect to be detected (72). Conducting a Type II error is to conclude there is no effect when 

there in fact is one, hence, not rejecting a false null hypothesis. Conducting a Type I-error is 

to conclude one has detected an effect when there in fact is no effect to be detected, hence, 

rejecting a true null-hypothesis. A small sample size affects the ability to make generalizing 

conclusions, transferring the result upon the population in general, limiting the external 

validity of the study. However, I had multiple measurements on the same patients, so the 

effective sample size increased, which ultimatly increased the external validity. Furthermore, 

when working with limited clinical image material and the limited time-frame of the master 

study program, the need for pragmatism and somewhat settle for what is feasible and 

available comes into play. The important thing is still to perform the analyses and critical 

interpretation task in respect of the actual sample size, using suitable methods, and not the 

least - dedicate meaning to the results in accordance to their actual power. Another factor is 

that the trends from small scale studies can break grounds for larger studies, and small-scale 

methodological studies can act as feasibility testing and method-mining purposes. 

When using statistical methods, any scientist should emphasize that statistically significant 

findings is not necessarily the same as a scientifically interesting findings. Statistical 

significance assure that relations observed in a sample are not simply due to chance, but the 

validity of such depends on correct use. The Wilcoxon test used in this study will inherently 

define very small discrepancies between theoretical median (representing the case of the null-

hypothesis) and actual median as statistically significant. Nevertheless, statistical results and 

their importance weighting should always be evaluated with respect to the nature of the data 

material and in context with the nature of the research question. 

The study population is heterogenous in terms of age but not in respect to gender, as 83% 

(n=5) of patients are men and 17% (n=1) women. To my knowledge, there are no gender 

specific radiological features and hence, there are no reason to suspect that lack of gender 

balance affects the internal or external validity of the study .  

The study population is homogenous in relation to MGMT promoter methylation, however, 

there has not been reported that unmethylation MGMT promoter influences image 

interpretation in terms or radiological features. Still, the patients included in this project are 

highly selected for certain characteristics in order to be eligible for inclusion in the 

BORTEM-17 study and these specific biological requirements may affect the results in my 

study. As previously stated, studies show that patients with unmethylated MGMT promoter 
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experience less pseudoprogression, presumably because pseudoprogression is a phenomenon 

related to radiosensitivity, indicating response to treatment (64). Furthermore, as GBM with 

unmethylated MGMT promoter is a particularly treatment-resistant, more infiltrative 

malignant tissue could perhaps be expected, compared to both methylated MGMT-promoter 

glioblastomas, as well as lower grade gliomas. For image analysis, more tumor cells and less 

signal-contamination from pseudoprogression could serve as a beneficial platform for both 

visual interpretation in manual delineation, as well as for machine-learning segmentation. If 

that is the case, this patient group could be especially suitable for detecting an effect if there is 

one, which could increase the internal validity of the study. Furthermore, when comparing 

treatment safety margins versus machine learning-derived segments for this group of MGMT 

unmethylated glioblastoma patients, there could be several biases. There is a possibility that 

since this group is the most treatment-resistant, this group have a definite need of large 

margins, meaning the calculated normal tissue complication probability and tumor control 

probability with 20 mm margins is the correct choice for this specific group. In that case, the 

actual group of glioblastoma patients that has the most spared brain-tissue to gain from 

reduced margins, could in fact be the patient group with methylated MGMT-promoter or even 

lower grade gliomas. If that is the case, this unmethylated group will have a smaller effect to 

be detected, possibly influencing the internal validity. The degree of influence by these 

variables can potentially be controlled by executing the same study on the methylated patient 

group as a control. 

When using machine learning algorithms, it is important that the image material upon which 

the algorithm was trained, is representative for the heterogeneity in glioblastoma patients in 

respect of possible single- or multiple surgeries, radiotherapy treatment, as well as 

medications. Treatment naïve patients will have a different radiological signature than treated 

patients in terms of tumor cavitation, pseudo progression, and altered gadolinium leakage 

features across the blood-brain-barrier due to anti-angiogenic and steroidal medications, 

amongst many other things. So - as intelligent artificial intelligence can be -, it is still only as 

intelligent or robust as it has been given the chance to be by its training master, meaning there 

lays a definite limitation for any trained machine learning algorithm within the training 

material. However, the HD-GLIO algorithm used in this study has been trained upon multi-

institutional MRI-examinations including both treated and treatment naïve patients with 

ground truth reference, including glioblastoma of both methylated and MGMT-unmethylated 

type, which adds to both reliability and validity. It is important in choosing type of algorithm 

that the nature of the algorithm needs to fit the nature of the data. Supervised learning is 
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beneficial to use when the features one wishes to extract are well-defined, but a bias that 

never could be ruled out in supervised learning is label-contamination; when a voxel is 

labeled wrongly by human misinterpretation or lack of human distinguishing abilities, and is 

thereby trained into further misinterpretation. Such potential label contamination-“noise” is 

made less prudent by using a large training material, in the same way as image noise is made 

less prudent by increasing the signal in MRI, thereby increasing SNR.  

The HD-GLIO was found to be the most eligible algorithm for this study based on a thorough 

evaluation and elimination process. Other algorithms of both supervised and unsupervised 

character were considered. HD-GLIO was found to be superior to random forest (RF) since (i) 

RF would depend on de novo local labeling, (ii) HD-GLIO CNN is contextual and can 

evaluate relations between multiple features at the same time, and (iii) RF has multiple 

hyperparameters that could be hard to adjust. HD-GLIO, being a supervised classification 

method, was also found superior to K-means clustering, which is unsupervised (i.e cluster 

interpretation is subjective) and not robust to variations in voxel expression across image 

acquisitions and MRI-machines (106). K-nearest neighbour (KNN) classification was ruled 

out early since (i) it would depend on de novo local labeling, (ii) speed will be slow with large 

training set and feature dimension, (iii) the value of K (number of neighbors) is a 

hyperparameter that is challenging to estimate, (iv) does not perform well on imbalanced data 

(e.g. fraction of tumor-specific voxels are disproportionally small), (v) is sensitive to outliers, 

and (vi) not contextual as CNN, ignoring spatial relationships (cf. (84) for a more detailed 

discussion). In general, deep learning methods have shown to outperform traditional machine 

learning approaches to MRI analysis and pixel/voxel classification tasks (74) both regarding 

prediction accuracy and time consumption (in our case 6 min per MRI exam including 

preprocessing for which HD-GLIO had a run time of only 20 sec). The fact that HD-GLIO is 

developed in a state-of-the-art research environment at Heidelberg University Hospital and 

DKFZ by prominent computer scientists and a panel of experienced radiologists dealing with 

3220 MRI examinations from 1450 brain tumor patients, leading to high-ranked publications 

(e.g. Lancet Oncology) of their algorithm and its performance, also adds credibility our 

methodological choice. 

6.3.2 Reliability 
Reliability refers to the accuracy and consistency of measuring variables (105). In this 

respect, it is relevant to consider if the image material used as base for the volumes in 

comparison is consistent. The image material used for clinical manual delineation of 
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CTVprimary by the oncologist was the sum of pre-and postoperative MRI-examinations in 

addition to CT. What image series most heavily weighted by the oncologist are not specified 

in any journal records to my findings. The image material used for analysis with HD-GLIO 

could be somewhat inconsistent as preoperative MRI does not rule out prior surgery. It was 

not possible to keep this variable constant across the included patients as some have had 

single surgical intervention, and some have had several surgical interventions. Also factors 

inflicting image quality, like image matrixes, was not constant across all MRI-examinations, 

as they were acquired at different sites and in different scanners (complete list is enclosed in 

appendix B). In sum, all these heterogenic factors may very well induce bias as to poor 

reliability, and potentially induce poor reproducibility. This means that it is possible that some 

unknown or random factors in the image material may affect the measurements, influencing 

the degree of effect measured in the study.  

Generally, image quality may interfere with radiological interpretation and the outcome of 

machine learning. As for image quality, there are patient-related aspects regarding patient 

tolerability that could affect the quality, as well as acquisition dependent quality aspects like 

partial volume effect (PVE), SNR and CNR. Image series with suboptimal image acquisition 

have been attempted to be ruled out by visual inspection of the images, but still remains as a 

theoretical methodological insecurity factor. Variability between image acquisitions of the 

patients in the study is present in the form of different scanner types, different hospital sites, 

different field strengths etc. Nevertheless, the image-data on all six patients fulfilled HD-

GLIO minimum requirements, which increases the robustness and applicability of the model. 

The use of “cavity filled” volumes as described in methods section 4.3.3,9d) was performed 

in order to fit the data to the model, hence make it easier to isolate a potential effect. A central 

necrotic or cystic lesion is a diagnostic radiological marker of GBM, however, it is not 

consistent of malignant tissue but a secondary effect due to the strangulating and chaotic in-

tumor dysfunctional vascularization structure. Since the model was made to compare overlap 

in machine learning-detected malignant tissue, which inherently will exclude a cystic or 

necrotic core - to a CTV containing both malignant tissue, surgical cavities and necrotic cores, 

there was a premises-shift between the two methods. If these cavities were not filled, if would 

induce a bias in the form of low Dice-coefficients and low True Positive-rates, which one 

could argue would not be representative for the actual segment volume overlap comparison. 

In literature, segment cavities are also described as one of four basic types of errors in 



95 
 

segmentation metrics (added regions, added background, inside holes and border holes) (111). 

This data-fitting was therefore performed with the intention of increasing the reliability. 

In terms of reliability it is also of the essence to investigate if the image material contains 

other abnormalities than the glioblastoma-malignant tissue. Pathological co-conditions like 

strokes, degeneration, demyelization or other malignant conditions that is not directly 

correlated to the glioblastoma can potential present a variable inconsistency-bias if interpreted 

as glioblastoma-related. Of the total 6 patients, only one patient had a known additional 

condition; a cavernoma situated in his brainstem. However, this was discussed with the 

oncologist, and as the location of the cavernoma was in a definite different place than the 

glioblastoma, this bias could therefore easily be excluded by visually monitor that the 

machine learning segment did not include the cavernoma.  

Reproducibility is an important aspect of reliability. The HD-GLIO algorithm is easily 

accessible, and therefore HD-GLIO -outputs are easily testable. Small difference can occur in 

outputs using different hardware to run the algorithm, this factor is expected to be minimal, 

but could have been quantified by running the algorithm on multiple computers for output 

comparison. It should be mentioned that HD-GLIO and deep learning algorithms in general, 

are not very transparent, meaning there is hard to know which features in the data material 

was most emphasized.  

6.4 Ethical concerns – use of AI in medicine 
Patient-related ethical concerns have been discussed in the method section.  

 

In true hypothetical deductive research tradition, current standards should sometimes be set to 

the test, as it is the only way progress can take place. Still, ethical concerns regarding novel 

techniques in medical science is always important to take into consideration. When 

comparing human competence versus artificial intelligence in general, ethical concerns relates 

to the value of human perception, emotion and cognition, sensitivity to patient’s personal 

wishes, and the high-dimensional “whole clinical picture” (qualitatively and quantitatively 

speaking) decision-making process. In our context, we must also take into consideration that 

the analysis and decision-making based on multi-spectral image data can be very complex and 

often a challenging task for any trained specialist.  
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Artificial intelligence, machine learning, and computer aided detection has during the recent 

years showed promising results as a decision support tool for radiologists in MRI, CT and 

more. The evolving of these technologies has also raised some important questions that is 

worth giving reflection. Some may argue that if humans are proven to be outperformed by 

artificial intelligence in more and more ways, the human side can be put in a degraded 

position where it no longer trust its own performance, thinking that AI could always do a 

better job. If artificial intelligence is taken into more use, there is also a risk that the analyzing 

process can be increasingly non-transparent, and as an extreme scenario: even that radiologist 

get less training within certain areas and thereby loose experience-based radiologic 

interpretation skills. On the other side, there has been an exponential increase in medical 

examinations latter years, combined with high resolution and advanced imaging techniques, 

producing a high-volume multi-dimensional data to be analyzed. Artificial intelligence could 

help make image interpretation more efficient by acting as a decision support tool, optimizing 

the utilization of radiologists and thereby both reducing costs and maximizing the capacity of 

image interpretation. If we were to embrace this new technology as a prolonged part of our 

own intelligence, it has the potential to act as a useful tool for us. To make best use of such a 

tool we should always make sure we understand the algorithms methodology, by carefully 

ensuring we stay up to date, seeking to encounter the algorithms statistical and logical 

approach towards solving human challenges. The joint statement from ISRRT and EFRS 

addresses that radiographers must take an active role in planning, development, 

implementation, use and validations of AI applications:  

The optimal integration of AI into medical safety, clinical imaging and radiation 

therapy can only be achieved through appropriate education of the current and future 

workforce and the active engagement of radiographers and radiologic technologists in 

AI advancements going forwards (18). 

 

Therefore, artificial intelligence should not be seen as a threat to human intelligence, but as a 

product of such. AI can be extremely useful when used with the right training, in the right 

setting, and according to high professional standards and ethical principles. 

6.5 Conclusion  
   

     

   

For the patients in this study, there were a significant overlap in the detected spatial extent of 
malignant tissue using HD-GLIO machine learning algorithm based on multispectral MRI, 
compared to manual delineation. This with respect to tumor volume and location similarity
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measured with the Dice-coefficient (p<0.001). Our 𝑄1	𝐻� is thereby confirmed and 𝑄1	𝐻� is 

rejected. Hence, HD-GLIO can potentially be feasible as an oncologist support tool for 

specific segmentation of enhancing core and non-enhancing tumor, and should therefore be 

tested more excessively on a larger group of patients.  

However, when comparing the two methods ability to include the site of tumor recurrence, 

neither the clinical target volume nor the machine-derived tumor volume showed significant 

predictive value. There were no significant discrepancy in Dice-coefficient between recurrent 

tumor and machine-derived segment, compared to Dice-coefficient between recurrent tumor 

and manual target volume. Hence, 𝑄2	𝐻� cannot be rejected, and 𝑄2	𝐻� cannot be confirmed 

in this study. We suggest further studies, using the HD-GLIO tools (or similar) to a larger 

sample of patients and a broader spectrum of glioblastoma tumors. 

6.5.1 Contribution of knowledge 
This thesis contributes to the ongoing trend of using multispectral recordings and machine 

learning as a method to explore the full diagnostic potential of MR imaging technology. The 

purpose of this study has been improving specificity in target delineation for radiation 

therapy, in compliance to new guidelines under consideration from the Norwegian Directory 

of Heath (19). The study has been performed in compliance with the joint statement from 

ISRRT and EFRS saying that radiographers in radiation therapy should take advantage of AI 

technology in order to improve personalized planning, including tumor segmentation (18).  

The project, being a small-scale exploration comparing the deep learning U-Net based 

algorithm HD-GLIO to manual contours performed by experienced clinicians, has contributed 

with some initial steps towards engineering an updated toolbox for oncologists. We suggest 

that this automated deep-learning segmentation approach should be further investigated when 

deciding patient-specific radiation therapy target volumes based on quantitative image 

markers, emphasizing the ALARA-principle. 

This study has not contributed with knowledge of the potential predictive value of using HD-

GLIO in respect of tumor recurrence site, other than indicating that this method design might 

not be fully eligible for this purpose. We suggest that this research question should be 

emphasized in another study in order to answer this research question. 
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8 Appendix 
 

The following files are enclosed: 

Name Referred to in chapter: Regarding: 

A 4.2 Full BORTEM-17 protocol with inclusion criteria 

B 4.3.1 Data exploration: table of details in MRI-sequences  

C 4.3.2 Electronic quality manual of HUH regarding transfer 

and images and treatment plan from SUS/OUS 

D 4.3.2 Electronic quality manual of HUH regarding 

anonymization of treatment plan data 

E 4.3.3 HD-GLIO script 

F 4.5 REK approval of BORTEM-17 study 

G 4.5 DPO rapport BORTEM-17 study 

H 4.5 BORTEM-17 patient information and consent form 

I 1 Internal HUH-reference regarding image quality in the 

Eclipse software 

 


