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Abstract

The SKINNY family of lightweight block ciphers is well-researched in terms of standard
cryptanalysis, but little has been done in the field of power analysis attacks. By sequentially
dividing and conquering, univariate Differential Power Analysis attacks are performed against
SKINNY. As the resulting diffusion from MixColumns introduces redundancy in terms of
leakage, we introduce an alternative placement scheme for the tweak material in the related-
tweakey setting to minimize leakage of the key material.
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Chapter 1

Introduction

The most widely used cryptographic algorithms today are RSA and The Advanced Encryp-
tion Standard, AES. RSA is an asymmetric cipher based on the “factoring problem”, which
requires that the device on which RSA is implemented, store a set of two keys: One for
encryption and one for decryption. These keys are large prime numbers, and the required
storage combined with the complexity of the operation, makes RSA a bad candidate for low-
resource embedded systems. AES, on the other hand, is by nature better suited for this than
RSA. As it is a symmetric cipher and only operates with a single key for both encryption
and decryption, the cipher’s operations can be implemented more easily as a circuit. The
encryption and decryption circuits are often similarly constructed, with the decryption being
the inverse of encryption.

While servers, desktop computers, and smartphones are powerful enough to handle con-
ventional cryptographic algorithms, more resource-constrained devices are not. Microcon-
trollers are manufactured to suit a wide array of use-cases. In small microcontrollers of,
e.g., 4-bit, the limited instructions available on the device may require a large number of
computing cycles if they are to execute algorithms like AES and RSA. This, in turn, could
affect the device’s power consumption, speed of computation, or heat-production. Typical
interconnected devices like those used in sensor networks, industrial control systems, RFID,
or IoT are often designed for specific applications and have to communicate wirelessly. As
with all wireless communication, the transmitted messages should be encrypted to ensure
confidentiality and integrity, but the application-specific bounds for resource consumption
make RSA and AES bad candidates for securing these.
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The messages transmitted by these highly-constrained devices are often of short length
and do not necessarily require the traditional cryptosystems’ full capacity. Due to this, the
notion of cryptographic algorithms optimized for low-resource implementations and short
message length has begun gaining momentum. The American National Institute of Standards
(NIST) released the first draft of the NIST Interagency Report (NISTIR-8114[18]) in 2016
where they described an overview of NIST’s work on lightweight cryptography and plans
for the standardization of lightweight cryptographic algorithms. In the following years, a
competition was announced in which researchers submit candidates to be considered for the
next standard of lightweight cryptographic algorithms.

We generally think of one out of two approaches for attacking cryptosystems. An at-
tacker can attack the cryptographic algorithms’ design directly via cryptanalysis. The other
approach is to exploit some characteristics of the device the cryptographic algorithm is im-
plemented on, rather than the algorithm itself. While these so-called “side-channel” attacks
generally exploit the device rather than the cryptographic algorithm itself, they often require
physical access to this. Relevant side-channels could be, e.g., electromagnetic radiation, heat
output, or power consumption. As IoT-devices become increasingly popular, gaining phys-
ical access becomes easier. In some side-channel attacks, the attacker does not necessarily
require access to the specific device they want to attack in the first place, as it is enough
with an identical unit which the attacker then can profile and reverse-engineer.

Physical access to the device allows for a category of side-channel analysis called Power
Analysis attacks. In Power Analysis attacks, the attacker views the power consumption as
a function depending on the data’s size to be encrypted and the operation itself, and char-
acterize the cryptosystem’s behavior by measuring this power consumption. Power Analysis
requires physical access to the device in order to measure the power consumption, but it is
very effective at recovering information about the secret key. The Differential Power Analysis
attack introduced by Paul Kocher in 1999 [19] reduces the search space for the key recovery
of AES to 16× 255, which is dramatically smaller than an exhaustive search for the full key.

AES is the most widely used cryptographic algorithm for low-resource devices and can
thus be considered the standard to beat. While optimizations are done to make it more
suitable for low-resource devices, lightweight cryptosystems like the “SKINNY family of
lightweight block ciphers”, are designed to be equally secure require less computational over-
head. Therefore, it is interesting to see how SKINNY, while claiming to be more efficient
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in terms of implementation complexity and resource use, is inherently more vulnerable to
power analysis attacks than its predecessor.

Our Contribution. In this thesis, we investigate one candidate in NIST’s “lightweight
crypto standardization process”: The “SKINNY family of lightweight block ciphers”, to ex-
amine how resistant it is against a specific type of Power Analysis attacks called Differential
Power Analysis (DPA). We investigate how the algorithm leaks and what an adversary can
learn about the secret key, and whether key recovery is possible. By performing variants of
a univariate DPA-attack on SKINNY, we show that the single-key mode of SKINNY is vul-
nerable and that the key-dependence of the different cells of the internal state leaks more for
some parts of the key than others. After exploring these characteristics, we then present an
alternative placement scheme for key and tweak material to minimize key material leakage.

Organization. This thesis is organized as follows: Chapters 2 to 4 is “background knowl-
edge” about SKINNY, AES and DPA-attacks, while chapter 5 and 6 contains our contribu-
tions. In chapter 2, a general introduction to Differential Power Analysis (DPA) is given,
along with a description of a common category of DPA-attacks based on maximum-likelihood
hypothesis testing. In chapter 3, DPA-attacks against AES is studied in more detail. A brief
description of SKINNY, its round function, and ongoing work cryptoanalysis are presented
in chapter 4. In chapter 5, a DPA-attack is performed on SKINNY-64-64, and the results
are discussed along with a comparison with AES. Chapter 6 contains a discussion about how
the insights in chapter 5 affect SKINNY’s other possible configurations and how to minimize
the leakage of key material when using SKINNY with a tweak. In chapter 7, the thesis is
concluded along with a description of proposed further work.
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Chapter 2

Differential Power Analysis

2.1 Introduction

Differential Power Analysis (DPA) attacks as introduced by Paul Kocher, Joshua Jaffe, and
Benjamin Jun in 1998[19] is a type of side-channel attacks which aims to reveal the secret
keys of cryptographic devices by analyzing a large number of power traces that have been
recorded during encryption or decryption of different blocks of data. Mangard, Oswald, and
Popp[24, p. 120] defines Differential Power Analysis as:

“DPA attacks exploit the data dependency of the power consumption of cryptographic
devices. They use many power traces to analyze the power consumption at a fixed moment
of time as a function of the processed data. ”

In [24, p. 120], they also described a general five-step strategy for DPA attacks:

1. Choosing an intermediate result of the executed algorithm
The first step of a DPA attack is to choose a intermediate result of the algorithm. In
this step the adversary wants to identify a function f(d, k) where d is a known and
non-constant data value (typically either the plain- or ciphertext) and k is a small part
of the key. This function is often the SubBytes/s-box-step. In the case of Kocher’s
papers about power analysis of AES[19][20], the intermediate function is the outputs
of the s-box of the first round:
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Figure 2.1: Target intermediate output of AES

2. Measuring the power consumption
The next step is to measure the device’s power consumption while encrypting or de-
crypting different data blocks. For each encryption, the adversary needs to know the
vector of corresponding data values d = (d1, . . . , dD). di denotes the data of the i-th
run and the power trace that corresponds to a data block di is denoted ti = (t1, . . . , tT ),
where T denotes the length of the trace. This organizes the power traces as lists of
power consumption values per timestep. We order T as a table, where each row Ti

correponds to the power consumption for a sigle trace per timestep i. Each column
of T, t must correspond to the same operation. If the power traces are not aligned,
calculating accurate characteristics of the power consumption of the device is difficult.
A way to ensure that traces are aligned (and to avoid having to align them manually)
is to set the trigger signal of the measurement tool to record the same sequence of
operations for every run.

3. Calculating hypothetical intermediate values
The next step is to calculate hypothetical intermediate values for every possible choice
of k, called a key hypothesis vector k = (k1, . . . , kK), where K denotes the total number
of possible values for k. In the case of AES K = 256, as that is every possible value a
byte can have, while in 64-bit SKINNY, K = 16.

For each block di of data, the adversary calculates a matrix V of hypothetical inter-
mediate power consumption values. Each row of V, vi contains a vector of all possible
intermediate values for f(di, kj):

vi,j = f(di, kj) i = 1, . . . , D j = 1, . . . , K

The DPA attack’s objective is to identify which column of V that has been used in the
encryption run of the device. As K contains all possible values of k, we know that the
hypothetical power consumption values for the correct key hypothesis are contained
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within V. As soon as we learn which column of V that corresponds to the actual power
consumption, we also discover the correct key hypothesis, kcr

4. Mapping intermediate Values to power consumption values
After computing V, the next step of the attack is to map the list of hypothetical
intermediate values V to a list of hypothetical power consumption values H. The
power consumption of each hypothetical intermediate value vi,j is simulated to ob-
tain a hypothetical power consumption value hi,j. How accurate the simulated power
consumption matches the target device’s actual power consumption depends on the
adversary’s knowledge of the device. The better the simulation matches the charac-
teristics of the device, the more effective the attack is. Own Lo, William J. Buchanan
and Douglas Carson addresses two such problems in DPA-attacks [23]. They observed
that it was common practice in open source cryptographic libraries to combine the
four steps of the AES round function into a single operation, thus making it difficult to
accurately observe and determine the output of SubBytes in round 1. Another general
problem with “real-life” DPA-attacks is identifying points of interest in the device’s
power traces, or when, to capture the trace. Different devices and implementations
may behave differently as well, introducing even more complexity. Instrumentation
of the capture device and proper trace alignment is therefore very important for the
success of a DPA-attack against a hardware device.

5. Comparing the hypothetical power consumption values with the power traces
The final step of the DPA-attack is to compare each column hi of H to each column tj
of T. In short this means that the attacker compares the hypothetical power consump-
tion values with the recorded power traces at every position i, j of the matrices. A
distinguisher (or refered to as a selection function) are used to compare the columns hi
and ti, and outputs the results in a matrix R of size K×T . The correct key hypothesis,
kck are then revealed. In correlation power analysis, the distinguishing scores in R are
the correlation coefficients of hi and ti, while for a maximum-likelihood distinguisher,
the score ri,j in R could be the log-likelihoods for Pr(hi = ti).

2.2 Maximum Likelihood Testing

In [1] Agrawal et al. introduced an adverserial model that is based on the concept of gen-
eralized maximum-likelihood testing[17] combined with a CMOS leakage model. In this
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strategy it is assumed that the adversary has L statistically independent sets of signals,
Oi i = 1, . . . , L. Assuming that there are K equally likely hypotheses, and the probability
of observing the signal O given a key hypothesis H: Pr (O|H). The maximum-likelihood
hypothesis test is considered optimal and chooses the hypothesis Hk if:

k = argmax
1≤k≤K

L∏
i=1

Pr (Oi|Hk) (2.1)

The drawback of this approach is that an adversary will need to know the exact distri-
bution of O. However, the adversary can make an assumption that the probabilities for a
given leakage follows a multivariate Gaussian distribution with mean µH and a covariance
matrix ΣH , as stated in [1]. With this assumption, the probability of observing a leakage
vector o of a N-dimensional Gaussian distribution p(·|H) is:

p(o|H) =
1√

(2π)n|ΣH |
exp(−1

2
(o− µH)T )Σ−1H (o− µH)), o ∈ Rn, [1][8]

The Gaussian assumption [28][24] makes it possible to simplify the hypothesis testing con-
siderably as it now only requires a partial characterization of the leakage distributions. In
[1] Agrawal et al. also state that it is “in practice possible to obtain near-optimal results by
making the right assumption about the distribution of the signals”. In the paper “Template
attacks” by Chari, Rao, and Rohatgi [8], such near-optimal results are obtained. This paper
also introduced the notion of “Template attacks”. A template attack is a profiling attack that
is very similar to the maximum-likelihood testing introduced by Agrawal. Chari et al. per-
form a template attack on an implementation of RC4 on a chip-card, where the assumption
of the noise distribution being gaussian is used.

In a template attack, the adversary uses a device identical to the one they attack and
identify a small section of a sample S that often consists of very few traces that only depend
on a few unknown key bits. By experimentation, the adversary builds templates consisting
of the mean signal and noise distributions for every possible value of the unknown key bits of
S. These templates are then used to classify this section of S and thus to narrow the choice
of possible key bits. The templates are then expanded to include a larger section of S until
templates are constructed for the whole trace.
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In any DPA-attack, the measurement consists of two parts: a signal generated by the
operation and noise that can be either intrinsically generated or ambient. The adversary
has to guess both the value of k from the measured signal and the probability distribution
of the noise. While the signal component of the measurement can be identical for repeated
executions, it is difficult to construct a noise distribution that exactly matches the device.
Therefore, an adversary’s best guess is to assume that the noise follows a Gaussian distribu-
tion, and draw random samples from that.

A maximum-likelihood distinguishing function follows the principle of the template attack
to some extent but does not build templates from a single trace of leakage. The adversary
first examines one trace, i.e. a single row of T, ti, and finds the probability for every single
key hypothesis kj, where j = 1, ..., K being correct given ti. Bayes’ Theorem is then used to
calculate the probability Pr (kj | ti), based on the prior probability Pr (kl) and the probability
Pr (ti | kl) for l = 1, . . . , K. [24, p. 155]:

Pr (kj | ti) =
Pr (ti|kj)× Pr (kj)

ΣK
l=1(Pr (ti|kl)× Pr (kl))

The maximum-likelihood approach is considered optimal in the sense that the probability
of error decreases as T grows [24, p. 156]. There is often not enough information in a single
trace to reveal the correct key. This makes it difficult to distinguish kck from the other
hypotheses. By extending this approach to multiple traces we can find the probability of
kj being correct given T, Pr (kj|T). Traces are assumed independently collected, and it is,
therefore, possible to apply Bayes’ theorem iteratively as shown in [24, p. 156]:

Pr (kj|T) =
(
∏D

i=1 Pr (ti|kj))× Pr (kj)∑K
l=1(
∏D

i=1 Pr (ti|kl))× Pr (kl)

The probability of each kj is updated with every new trace analyzed. As the same set
of scores is updated iteratively, trends are easily identified, making this a very effective
distinguisher. The two obvious drawbacks are that this still is a profiling attack and that
as the probabilities get very small, numerical inconsistencies as rounding errors will occur.
This can be mitigated somewhat by using log-likelihoods instead of actual likelihoods. The
probabilities get very small, and replacing multiplications by additions reduces the size of
the number in bytes.
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2.3 Standard Univariate DPA Attacks

The hypothesis test introduced by Agrawal (see eq. 2.1) is very similar to the Bayesian
distinguisher given by Mangard, Oswald and Standaert[25, Eq.2]:

s̃ = argmax
s∗

q∏
i=1

P̂r[li | ms∗
i ] (2.2)

Attacks using Bayes theorem target an approximated probability density function for
the leakages and selected a subkey candidate with maximum likelihood. The leader s̃ is
chosen by taking the argmax for each subkey s∗ when calculating the maximum likelihoods
for observing a given leakage li given a modeled leakage for the subkey ms∗

i .

In this paper, they also describe a “standard univariate DPA-attack”, which follow three
general steps:

1. For different plaintexts and subkey candidates, the attacker predicts some intermediate
values. - For example, s-box outputs.

2. For each predicted value, model the leakage. This could, e.g., be the Hamming Weight
of the predicted values.

3. For each subkey candidate, the attacker compares the modeled leakage with actual
measurements where the same plaintexts and a secret subkey are used. Attacks where
each modeled leakage is independently compared with a single point in the traces, are
reffered to as univariate attacks.

2.4 The Hamming Weight Leakage Model

In power analysis, it is often necessary to map the processed device’s data values to power
consumption values. These power consumption values can be viewed as a power simulation
of the device. In the context of a power analysis attack, the relative differences between the
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simulated power consumption values are important, and not the absolute values themselves.
Due to this fact and that the attacker often has very limited knowledge of the target device,
generic power models like the Hamming-distance and Hamming-weight model are widely
used (see [24, p. 39][25][7][29][12] among others.

The Hamming-distance model is commonly used to describe the power consumption of
the target device’s data buses and registers. The Hamming-weight model is simpler and is
applicable even if the attacker has no knowledge of the target device’s power consumption
[24]. The Hamming Distance model requires either the preceding or succeeding value of the
bus, as the power consumption that is used to change the value on a bus from v0 to v1 is
proportional to HD(v0, v1) = HW (v0 ⊕ v1). The Hamming weight power model does not
require this knowledge. The attacker assumes that the power consumption when processing
a data value is proportional to the number of bits set to 1, thus ignoring the previous and
next data values.

As the power consumption of a CMOS circuit depends on the transitions taking place
rather than the processed data value, the HW-model is poorly suited to describe it. As
0 → 1 and 1 → 0 yields slightly different power consumption values (0 → 1 can have a
bigger power consumption.[24]), the Hamming weight is at least related to the actual power
consumption by a certain degree. Mangard, Oswald, and Popp also states in [24, p.40] that

“Attackers only resort to the Hamming-weight model if the Hamming distance model
cannot be applied.”

In the case of DPA against a pure software implementation, there is no CMOS circuit
to describe. Thus making the Hamming-weight model more relevant as the only thing an
attacker can have any knowledge of is the processed data.

The noisy Hamming weight leakage model. We have a sensitive variable and assume
that the target operation, e.g., the s-box leaks the hamming weight of that sensitive variable
plus noise. The leakage samples are often observed as a fixed constant + the hamming weight
of the sensitive variable + noise. Suppose a leakage sample li can be written as the sum of a
deterministic part and a random part. The random part is independent of the deterministic
part and identically distributed for all messages and subkeys. In that case, it is said to have
additive noise as defined by Mangard, Oswald and Standaert [25]. This ties to the Gaussian
assumption as li is further defined as being assumed Gaussian if it has additive noise and
the random part follows a normal distribution N (µ = 0, σ2

R).
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Chapter 3

Power Analysis attacks against AES

The advanced encryption standard (AES) is a symmetric SPN-cipher created by Vincent
Rijmen and Joan Daemen[9] and is the most commonly used cryptosystem in embedded
systems today. Due to this, AES is also one of the most analyzed cryptosystems in side-
channel analysis. AES is also the target cryptographic algorithm in the first paper on power
analysis attacks, written by Paul Kocher[19]. The “standard” divide and conquer attack
introduced in this paper targets each cell of the internal state individually. The same attack
can be performed against SKINNY as well. However, as the key propagation allows for more
sophisticated attacks, it is interesting to compare how resistant AES and SKINNY are in
regards to DPA-attacks.

Where the Rijndael cipher itself is a flexible block cipher that can operate with different
key and block sizes that can be any multiple of 32 bits[9], AES is specified with fixed
block/key sizes of 128, 196, and 256 bits.

Round function f

AK SB
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x

SR

C ←M× C

x
x

x
x

MC

wi−1 xi yi zi wi

Figure 3.1: The AES round function. Image credit: Jérémy Jean[14]
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The most interesing operations, in the context of DPA-attacks are AddRoundKey and
SubBytes. The linear operations, ShiftRows and MixColumns are executed after SubBytes
and have no impact on a DPA-attack against AES-128. When expanding to other versions of
AES, e.g AES-256, these linear operations have to be executed on the intermediate internal
state, to “clock” round 1 manually.

AddRoundKey The first function of encryption is “AddRoundKey” (see fig. 3.1). At the
start of the first round of encryption, a “pre-whitening” operation is performed, and the
cipher key is xor-ed with the plaintext. The key-whitening increases the complexity when
performing an exhaustive search for the cipher key.

Round keys are then derived from the cipher key, and the intermediate values of the
internal state are xor-ed with the corresponding round key of each round. More formally
ISi = wi ⊕ ki, 0 ≤ i ≤ 15 where wi is the i-th byte of the internal state, and ki the i-th
byte of the corresponding round key.

SubBytes In SubBytes, each byte αi gets substituted with another byte βi according to
an s-box. Every word of the internal state is one-to-one mapped to a different output byte.

3.1 Differential Power analysis of AES

In DPA attacks against AES, the most common intermediate results to target are either
the first or last round, since the attacker knows the input (either the plaintext in round
1 or ciphertext in round n − 1). This makes it possible to distinguish key and data1. In
AES, attacking one of these rounds are sufficient to recover the full cipher key due to the
“pre-whitening” in the first round.

1refers to the data encrypted with the key, either the plaintext or ciphertext
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DPA against AES-128. In DPA attacks against AES, the most common intermediate
results to target are the s-box output of either the first or last round, since the attacker
knows the input (either the plaintext in round 1 or ciphertext in round n− 1) See e.g [20].
This makes it possible to distinguish key and data. In AES, attacking one of these rounds
are sufficient to recover the full cipher key due to the “pre-whitening” in the first round.

The general strategy of DPA attacks against AES is to divide and conquer. Say that the
first round of encryption with AES-128 is targeted. As explained [20]: For a given power
trace i, let ISi denote the 16-byte intermediate internal state of the cipher after SubBytes.
Let the n-th byte of IS state (n ∈ 0, ..., 15) be denoted by li,n, the first roundkey (Whitening
key) denoted K and similarly Xi,n denotes the n-th byte of plaintext. The byte ISi,n only
depend on the single bytes Xi,n and Kn, as shown in:

li,n = S[Xi,n ⊕Kn] (3.1)

The objective of the DPA-attack is to test if a given candidate for Kn is correct. By
dividing and conquering an attacker can solve for each Kn separatly when recovering all 16
Kn bytes of the whitening key. Recovering K requires at most 16× 256 queries, as each byte
Kn only has 256 possible values.

By using eq. 3.1 with a knownKn, ISi,n can be derived for each traceXi,n. The adversary
then uses a distinguishing function based on ISi,n to produce the key hypothesis.

Attacking AES-256 When attacking the initial round of AES-128, each byte of the inter-
nal state depend on an individual byte of the full cipher key. The key whitening in AES-256
spans two “initial rounds ” where 128 bits of the cipher key are XOR-ed with the plaintext.
Recovering the entire 256 bit cipher key of AES-256 from the encryption function therefore
require that the attacker perform a DPA-attack against these two rounds, sequentially by
first recovering the first 128 bits of the key, and then compute the next round’s intermediate
values to recover the second half2. The same principle translates to attacking the decryption,
if only the cipher text is known.

2Known from “side-channel folklore”. There exist very little literature about DPA-attacks against AES-256

15



16



Chapter 4

Description Of SKINNY

4.1 The SKINNY Family Of Block Ciphers

The SKINNY Family of Block Ciphers [6] is a family of tweakable block ciphers designed to
compete with NSA’s lightweight cryptosystem SIMON [5].

The SKINNY family’s lightweight block ciphers have two block sizes: 64-bit and 128-bit,
denoted by n. The internal state is viewed as a 4× 4 matrix for both n = 64 and n = 128.
In the case of n = 64, each cell is populated by a 4-bit nibble instead of an 8-bit byte. The
cell of the internal state in row i and column j is denoted by ISi,j and is zero-indexed. If
the internal state is to be viewed as a vector by concatenating rows, the internal state’s cell
at position i is denoted with a single subscript ISi.

As SKINNY is a flexible tweakable block cipher (further explained in this chapter), it can
be used with key lengths up to three times the block size. The following sizes of SKINNY are
defined in the original specification [6], but other key sizes can be implemented by extending
the Tweakey framework [13].

Block size n z = 1 z = 2 z = 3
64 64 128 192
128 128 256 384

Table 4.1: The 8 configurations of SKINNY introduced in [6]
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Figure 4.1: Round function of SKINNY. Image credit: Jérémy Jean with Tikz[16],

4.2 The SKINNY Round Function

SKINNY is a substitution-permutation network like AES, which applies several rounds of
substitutions and permutations to produce the ciphertext. SKINNY’s round function consists
of the operations SubBytes, AddConstants, AddRoundTweakey, ShiftRows, and MixColums.
In SubBytes, an s-box is applied to mix up the words in the internal state. After this step,
round constants are generated and xor-ed with the internal state, before the top two rows
of the roundTweakey is XORed with the top two rows of the internal state. ShiftRows then
rotates the second, third, and fourth rows to the right by 1, 2, and 3 positions, respectively,
before MixColumns is applied to shift the values column-wise. See Fig.4.1. After only six
rounds, all versions of SKINNY achieve full diffusion.

Block size n 2n 3n
64 32 rounds 36 rounds 40 rounds
128 40 rounds 48 rounds 56 rounds

Table 4.2: Number of rounds for SKINNY-n-t, with n-bit internal state and t-bit tweakey
state. As presented by the authors in[6]

4.2.1 Initialization

The cipher takes as input a plaintext p = p0||p1||...||p14||p15, where pi are s-bit cells where
s = n/16. For 64-bit block SKINNY we have s = 4, and for 128-bit block SKINNY s = 8.
Internal state is set by ISi = pi for 0 ≤ i ≤ 15.

4.2.2 SubCells

Depending on the block size, either a 4- or 8-bit s-box is applied to each Internal state cell.
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x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S4[x] c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f
S−14 [x] 3 4 6 8 c a 1 e 9 2 5 7 0 b d f

Table 4.3: 4-bit Sbox S4 for s = 4

4.2.3 AddConstants

The round constants are generated by a 6-bit affine LFSR, whose state is denoted
(rc5, rc4, rc3, rc2, rc1, rc0), where rc0 is the least significant bit. The LFSR’s update function
is defined as: (rc5||rc4||rc3||rc2||rc1||rc0)→ (rc4||rc3||rc2||rc1||rc0||rc5 ⊕ rc4 ⊕ 1).

The 6 bits are initialized to zero and updated before use in a given round. They are then
arranged into a 4× 4 array, depending on the size of the internal state.

c0 0 0 0

c1 0 0 0

c2 0 0 0

0 0 0 0



with c2 = 0x2 and

(c0, c1) = (rc3||rc2||rc1||rc0, 0||0||rc5||rc4) when s = 4

(c0, c1) = (0||0||0||0||rc3||rc2||rc1||rc0, 0||0||0||0||0||0||rc5||rc4) when s = 8

(4.1)

As shown in the matrix, only the first column of the state is affected by the LFSR. The
round constants are xor-ed with the state, respecting array positioning. The values of the
(rc5, rc4, rc3, rc2, rc1, rc0) constants are given in the following table, encoded to byte values
and rc0 being the least significant bit, as defined by the authors in [6, p. 9]

Rounds Constants
1− 16 01, 03, 07, 0F, 3E, 3D, 3B, 37, 2F, 1E, 3C, 39, 33, 27, 0E

17− 32 1D, 3A, 35, 2B, 16, 2C, 18, 30, 21, 02, 05, 0B, 17, 2E, 1C, 38

33− 48 31, 23, 06, 0D, 1B, 36, 2D, 1A, 34, 29, 12, 24, 08, 11, 22, 04

49− 62 09, 13, 26, 0C, 19, 32, 25, 0A, 15, 2A, 14, 28, 10, 20
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TK s LFSR
TK2 4 (x3||x2||x1||x0)→ (x2||x1||x0||x3 ⊕ x2)
TK2 8 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)
TK3 4 (x3||x2||x1||x0)→ (x2 ⊕ x3||x3||x2||x1)
TK3 8 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

Table 4.4: The LFSRs used to update TK2 and TK3. The TK-parameter gives the number
of tweakey words and the s-parameter gives the size of each cell in bits

4.2.4 AddRoundTweakey

The first two rows of all tweakey arrays are extracted and bitwise xor-ed to the internal state
of the cipher, respecting array positioning. For i = 0, 1 and j = 0, 1, 2, 3 we have:

ISi,j = ISi,j ⊕ TK1i,j when z = 1

ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2

ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3

(4.2)

4.2.5 The TWEAKEY schedule

The tweakey input in SKINNY allows the user to choose how much of the tweakey is used
as the tweak and how much is used as the key. In the specification of SKINNY [6], three
main tweakey sizes are proposed: t = n, t = 2n, t = 3n, where n denotes the block size.
Furthermore, the size of the tweakey/block size ration is denoted z = t/n. It is worth
mentioning that in the specification, the entire tweakey is used as key material, as the
authors while providing recommendations, have not made the tweak schedule a part of the
specification.

The tweakey state is generally viewed as n 4×4 matrices of cells of s bits, where s is either
a nibble or a byte depending on the block size. The Tweakey ratio z determines how many
tweakey words are used in a configuration. If z = 1, we use a single tweakey word, TK1,
and from an adversarial perspective, we denote this scenario the single-key (SK) model. For
z = 2, we use both TK1 and TK2, and for z = 3, we use TK1, TK2, and TK3. This model

20



is referred to as the related-tweakey scenario. The cell of the tweakey state at Row i and Col
j of the z-th tweakey word is denoted TKzi,j. This notation is extended to a single subscript
vector view: TK1i, TK2i, TK3i.

The tweakey arrays are then updated (as illustrated in Fig 4.2). A permutation PT is
applied to on the cell positions of all tweakey arrays: for all 0 ≤ i ≤ 15, we set TK1i ←
TK1PT

[i] with PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. When z = 2, the same
permutation is applied to TK2 as well, and when z = 3, the permutation is applied for
both TK2 and TK3 in addition to TK1. The permutation PT corresponds to the following
reordering of the cells of the internal state, where indices are taken row-wise:

0, . . . , 15
PT−→ (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7)

Then every cell of TK2 and TK3, given that z > 1 are updated individually with the
LFSR given in table 4.4 (as shown in Table 3 of the original SKINNY paper[6])

4.2.6 The TWEAKEY framework

The tweakey framework [13] is a framework aiming to unify the design of tweakable block
ciphers and allows the building of primitives with arbitrary key and tweak sizes. The tweak-
able block cipher is a cryptographic primitive, which has ana additional “tweak ” input in
addition to the plaintext and key. A tweak generally serves the same function as an initial-
ization vector and introduces more randomness into the ciphertext generation. Block ciphers
are deterministic in the sense that a message encrypted with a given key always will produce
the same ciphertext. The introduction of a tweak, therefore introduces variability in a more
elegant way than those mentioned in [21].

Instead of a tweak and key, the TWEAKEY framework takes an input that can be both
tweak or key material. In the case of SKINNY, some parts of the tweakey are used as
key material, while others can be used as a tweak. The TWEAKEY construction makes it
possible to build an n-bit tweakable block cipher, with at-bit tweak and k-bit key. It consists
of two states: A n-bit internal state s and the (t+ k)-bit tweakey state tk. If the amount of
tweak or key material is increased, the authors introduced a TK-p class of tweakable block
ciphers that handles p×n tweakey material. An ordinary non-tweakable cipher with a block
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and key size of n fits in TK1. A cipher with a block key and tweak size of n (or K = 2n) fits
in TK2, and likewise for TK3. The TWEAKEY framework allows for any amount of key
and/or tweak.

Instantiating SKINNY with Tweak material. When there is tweak material, TK1 is
dedicated for this (As this tweakey word is never updated), and xor a bit set to “1” every
round with IS0,2.

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Figure 4.2: TWEAKEY schedule in SKINNY. TK1,TK2,TK3 follows a similar transforma-
tion, except that no LFSR is applied to TK1, as shown in [6, Fig 4]. Image credit: Jérémy
Jean, Tikz[15]

4.2.7 ShiftRows

The second, third and fourth row of the internal state are rotated respectively 1, 2 and 3
positions to the right. More formally, a permutation P is applied to the cells of the internal
state cell array: for all 0 ≤ i ≤ 15, we set ISi ← ISP [i] with

P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]

4.2.8 MixColums

Each column of the cipher state is multiplied by the following binary matrix M:


1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0


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And as represented with row-operations:

IS =


IS0 ⊕ IS2 ⊕ IS3

IS0

IS2 ⊕ IS3

IS0 ⊕ IS2



4.3 Traditional cryptanalysis of SKINNY

The designers of SKINNY have organized several cryptanalysis competitions in order to
inspire researchers to study it. Generally, the research efforts revolve around attacking a
reduced-round version of SKINNY, and results so far indicate that it is fairly resistant to
traditional cryptanalysis. The reduced-round attacks have little transitional value to the
full version of SKINNY. Attacks based on SCA, on the other hand, can attack the full
SKINNY. Even though these attacks are irrelevant to side-channel analysis, it is included
for completeness as it shows how effective SCA can be in comparison.

In terms of analysis of a single key,[27] presents several impossible differential attacks
against 18-round SKINNY when z = 1, 20 rounds for z = 2 and 22 rounds for z = 3,
by extending an 11-round impossible differential distinguisher. In [10], problems with the
11-round impossible differential is examined, and it is revealed that this attack takes 212

times the time, and data first reported (247.5 chosen plaintexts for 18-round SKINNY-64-64
and 262.7 chosen plaintexts for 20-round SKINNY-64-128. [30] presents another impossible
differential attack against 17-round SKINNY-n-n and 19-round SKINNY-n-2n[27] introduced
zero-correlation linear attacks against 14-round SKINNY-64-64 and 18-round SKINNY-64-
128. See Table. 4.5 for the complexity of these attacks.
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Key (bits) Attack Rounsds Time Data Memory Source
64 zero-correlation 14 262 262.58 264 [27]
64 Impossible differential 17 261.8 259.5 249.6 [30]
64 Impossible differential 18 257.1 247.52 258.52 [27]
128 zero-correlation 18 2126 262.68 264 [27]
128 Impossible differential 18 2116 260 2112 [27]([10])
128 Impossible differential 19 2119.9 262 2110 [30]
128 Impossible differential 20 2121.08 247.69 274.69 [27]

Table 4.5: Complexity of traditional cryptanalytic attacks against SKINNY-n-n and
SKINNY-n-2n for SKINNY-64 and SKINNY-128, as first presented by Dunkelman et al.
[10, Table 1]

.

Regarding analysis of related tweakey models, [27] also presents zero-correlation attacks
against 20-round SKINNY(64,64) and 23-round SKINNY(64,192) was presented in [3]. While
[3, Table 1] presents the complexity of other lightweight ciphers there is a considerable
overlap with 4.5 in the example of SKINNY. Among other impossible differential attacks,
[22] presents an attack against 19-round SKINNY for z=1, 23-round for z=2 and 27 round for
z=3, and [2] presents an additional impossible differential attack against 21-round SKINNY-
64-128 as well as two attacks on 22- and 23-round SKINNY-64/128).
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Chapter 5

Differential Power Analysis of
SKINNY-64-64

5.1 Motivation

The most lightweight configuration of SKINNY has block and key sizes of 64 bits. While
this configuration does not fulfill the required minimum key length of 112 bits as set by
NIST [18][4] the small size of the processed data and lightness of computation make this
configuration suitable for operating in highly constrained devices with less strict security
requirements. For SKINNY with a block size of n=64, the following configurations fulfill
these requirements: SKINNY-64-128 with at most 8 bits of tweak material and SKINNY-
64-192 with up to 64 bits of tweak material. The wide use of SKINNY-64-64 “in the wild”
is therefore not expected, but the results in this chapter DPA-attack holds directly for all
versions of SKINNY where z = 1.

In the AddRoundTweakey-operation of the round function, the top rows of each tweakey
word are xor-ed with the top two rows of the internal state. The number of tweakey words
depends on z, the size-ratio between the block- and key-material. In the case of SKINNY’s
most lightweight configuration z = 1 and only a single tweakey-word, TK1 is used. Let
SKi denote the tweakey array TK1r

i , where i = {0, 1}.
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Selecting Intermediate Results. In the first round of SKINNY, there is no key-
dependence in SubBytes. Due to the structure of the round function, it is necessary to
attack round i of SKINNY to reveal the RoundTweakey of round i − 1. By extension,
this requires the adversary to attack both rounds 2 and 3 to recover the full tweakey. Ad-
dRoundTweakey is applied between SubBytes and the linear operations ShiftRows and Mix-
Columns, hence requiring that the cipher complete a full round before the attack. This means
that the following transformation has to be applied to the output, P’ of the first round:
MixCol−1(ShiftRow−1(P ′)) to retrieve AddConstants(SubBytes(P ))) ⊕ SKi, where P is
the known plaintext.

While the intermediate values we target stems from SubBytes, it is, in fact, MixColumns
that makes SKINNY an interesting target. After this operation, we have that three rows of
the internal state depend on SK0, and one row depends on SK1, as shown in eq. 5.1. The
top row of Fig. 5.1 illustrates how the top row of the RoundTweakey propagates through
the linear operations. Row 0,1,3 are fully dependent on SK0, while row 2 depend only SK1,
as shown in the bottom row of Fig. 5.1. This means that we, in theory, should have three
times more leakage for SK0 than SK1.

It should be possible to exploit this redundancy to improve the standard divide and
conquer attack, compared to a DPA-attack against AES where each cell of the internal state
in the first round depends on an individual byte of the key, requiring an adversary to attack
each cell of the internal state individually to recover the full key.

ShiftRow−−−−−→


0 1 2 3

7 4 5 6

10 11 8 9

13 14 15 12

 Mixcol−−−−→


0⊕ 10⊕ 13 1⊕ 11⊕ 14 1⊕ 8⊕ 15 3⊕ 9⊕ 12

0 1 2 3

7⊕ 10 4⊕ 11 5⊕ 8 6⊕ 9

0⊕ 10 1⊕ 11 1⊕ 3⊕ 9


(5.1)
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Figure 5.1: RoundTweakey dependence

After xor-ing SKi with ISi, the key schedule is updated by applying the permutation
to the TK1-array: PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. This permutation shifts
the top two rows of TK1 with the bottom two while shuffling the new top half cells. Cells
are not mixed between the two halves of TK1, thus requiring an adversary to attack multiple
rounds of SKINNY. In the context of a DPA attack, the first two rounds behave similarly.
By dividing and conquering, the increased leakage of the top row of the roundTweakey can
be exploited, such that in total, half (first and third quarter) of TK1 can be retrieved with
increased confidence.

Experimental setup. In this thesis, the experiments are run against a python imple-
mentation of SKINNY created by Calvin McCoy[26]. As this is strictly software-based
implementation, analysis is performed on generated power traces based on noisy Hamming-
weight leakage, as there is no device to characterize. See Appendix A for an overview of the
implementation of the experiments.
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5.2 Methodology

The intermediate results are computed by doing partial encryptions of N plaintexts while
recording the internal state (see Fig. 1). We denote IS ′ the internal state of the cipher post
S(P⊕SK). We denote P ′ as the modified plaintext afterMixCol(ShiftRows(AddConstants(SubBytes(P ))))

has been applied, and TK1′ as the modified tweakey-matrix after the same set of round op-
erations has been applied.

Algorithm 1 Computing intermediate values
1: procedure Compute intermediary(P ,K)
2: TK ′, P ′ ← encrypt(K,P )
3: IS ′ ← S(p′ ⊕K ′)
4: end procedure

Hamming weight traces for each cell of the internal state IS ′ are then generated by
sampling a univariate normal distribution N (µ, σ2) where µ = ISi. (see algorithm 2) and
the amount of simulated gaussian noise is given σ.

Algorithm 2 HW trace generation
1: procedure gen HW trace(IS ′, σ)
2: for all IS ′ do
3: for i← 0, 16 do . For each cell of IS ′
4: µ← HW (IS ′i)
5: ti ← N (µ, σ2)
6: end for
7: T ← T + t
8: end for
9: return T t . List of HW-traces for all IS ′
10: end procedure

5.2.1 The Standard Attack

We denote the univariate standard attack described in [25] as the “standard attack”, and in
our attacks against SKINNY(64,64) a Bayesian distinguisher is used. To avoid numerical
inconsistencies, we choose to take the log-likelihoods instead, as this transformation does not
affect the size distribution of our scores.
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Given a set of plaintext and leakage pairs (P,L), we want to find the probability of key
hypothesis i being equal to the correct key k: Pr(kcr = i | ((P1, l1)∧ (P2, l2)∧ ...∧ (Pn, ln))).
It follows from Bayes theorem that this is equivalent to Pr((P1, l1) ∧ ... ∧ (Pn, ln) | k = i).
As we assume each pair of plaintexts and leakages to be collected independently, the joint
probability can be calculated as Pr((P1, l1)× ...× (Pn, ln) | k = i), transforming our original
equation to:

N∏
j

Pr((Pj, lj) | (k = i))

The probability of observing the pair of plaintext and leakage given that the key hy-
pothesis is correct, Pr((Pj, lj) | (k = i)) can be written as the probability of the hamming
weight of the intermediate value pj xor-ed with the correct key hypothesis i being equal to
the observed leakage lj: Pr(HW (pj ⊕ i) = lj). The equation can then be written as:

∏
j

Pr(HW (pj ⊕ i) = lj)

Since a log-likelihood estimator is used and HW (pj⊕i) = vji, the equation can be further
simplified to: ∑

j

log Pr(HW (pj ⊕ i) = lj) =
∑
j

log Pr(vji = lj)

The correct key hypothesis kck can be then be identified by taking the Argmax of the list
of log-likelihood scores for i = 0 . . . 15.

For the set of HW-traces T, and the matrix of corresponding hypothetical power con-
sumption values V, we compute a score for each keyguess by first computing a probability
density function for the univariate gaussian distribution X ∼ N (µ, σ2), where µ = vi (the
hypothetical power consumption for a key hypothesis i). Then we take the sum of all scores
for each keyguess over every pair of t, v:

∑n
i logPr(X = ti), and take the Argmax of the

list of log-likelihoods to identify kck.

5.2.2 Exploiting The Redundancy In The RoundTweakey

By solving for each nibble of the internal state ISi i = {0, . . . , 15}, we now have candidates
for all 16 key nibbles. Due to the redundancy caused by mixCol (See Fig .5.1), we now
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Algorithm 3 Selection function for a log likelihood distinguisher
1: procedure standard attack(V, T, σ)
2: for k ← 0, 16 do
3: for all t ∈ T, v ∈ V do
4: µ← vk
5: X ∼ N (µ, σ2)
6: scorek ← scorek + log(Pr(X = t))
7: end for
8: end for
9: return Argmax(scores)
10: end procedure

have three guesses for each nibble of SK0 while only having a single guess for each nibble
of SK1. This redundancy can be then be exploited by modifying the distinguisher. In this
subsection, we explore three approaches to leverage this for SK0.

Unanimous Attack. As all three nibbles should reveal the same key candidate, we can
apply a distinguishing function to the three lists of scores and output the key candidate only
if the standard attacks against the three same-key-nibble-dependent cells predict the same
key hypothesis. (See algorithm 4)

Algorithm 4 Unanimous Attack
1: procedure unanimous-selection-function(s0, s1, s2) . Input: the three lists of

same-nibble distinguisher scores
2: if Argmax(s0) == Argmax(s1) == Argmax(s2) then
3: returns0
4: else
5: discard
6: end if
7: end procedure

Majority Vote Attack. Where the unanimous attack discards the key hypothesis if the
key candidates produced by the standard attacks diverges, we now say that at least two
identical predictions are enough, and call a majority vote to determine the most probable
key candidate. (Algorithm 5)
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Algorithm 5 Majority vote Attack
1: procedure majority vote selection-function(s0, s1, s2)
2: leader ←Majority Vote(Argmax(s0),votes(s1),Argmax(s2))
3: if size of Argmax(votes) == 1 then . If the votes are tied, discard
4: discard
5: else
6: return Argmax(votes)
7: end if
8: end procedure

The Simultaneous Attack. Where the Majority voting and anonymous attacks refined
the key candidates produced by running 16 separate standard attacks, it is also possible to
attack the three cells that depend on the same key-nibble simultaneously. Instead of finding
the scores for Pr(l = i) individually, we instead sample a multivariate normal distribution
X ∼ N (µ,Σ), where Σ = σ2 × I3 and µ = E(v1), E(v2), E(v3). We want to find the
probability of observing a given leakage-vector [L0, L1, L3] by sampling a normal distribution
were µ is a vector of corresponding hypothetical power consumption values (See Alg.6).

L0

L1

L2

 ∼ N

(V0V1V2),
σ

2 0 0

0 σ2 0

0 0 σ2




Instead of producing three lists of scores (one for each cell), the simultaneous attack
outputs a single list of scores and then takes the Argmax of that. It is worth noting
that theoretically, this list of scores should be identical to taking the sum of the three lists
produced by attacking the same corresponding cells with standard attacks. No information
is lost between sampling a univariate distribution for each cell X ∼ N (µi, σ

2) i = 0, 1, 2

and sampling a multivariate normal distribution X ∼ N (µ,Σ) µ = [µ0, µ1, µ2]. See table
5.1.

The simultaneous attack should be superior to the other attacks that have been presented
in this section, and it should be three times as effective as the standard attack, as it has
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Algorithm 6 Simultaneous selection function
1: procedure Multivariate selection function(T,P ′) . T : Traces, P ′
2: V = [v0, v1, v2] . For a given triple [0,1,2], of key dependent indices
3: for i← 0, 16 do
4: for all t ∈ T do
5: µ← E(v1), E(v2), E(v3)
6: Σ← σ2 × I3
7: X ∼ N (µ, Σ)
8: T ← [td0 , td1 , td2 ]
9: scorei ← scorei + log Pr(X = T )
10: end for
11: end for
12: return Argmax(score)
13: end procedure

three times the leakage. The majority voting and unanimous attacks offer improvements
over the standarda attacks, depending on whether an attacker wants to reduce the number
of traces that are required for recovering the Tweakey or trade an increase in this number
with increased confidence in correctness of the key hypotheses. However, these attacks simply
improve upon the scores from the standard attacks by consolidating them, so in terms of
performance, they require the execution of three standard attacks nibble of TK1. They
should therefore be outperformed by the simultaneous attack.

5.3 Results And Analysis: Recovery Of The First Half

Of TK1

In this section, the distinguishers’ efficiency is compared by investigating the probability of
RoundTweakey recovery and looking at the success rates to determine the best distinguisher
before attempting recovery of the second half of TK1. Figure 5.2 shows the distinguisher
scores in a standard attack against a single cell as T grows. This trend is found in standard
attacks against all the nibbles of SK. The correct key hypothesis is visually identifiable
after 6 traces (See Appendix B.1 for the distinguishing scores). Thus with maximum-
likelihood testing, the correct key hypothesis, kck, is identified after relatively few traces. So
the standard attack is already quite effective.
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Figure 5.2: Distinguisher scores for the standard attack against TK10,0. The correct key
hypothesis is plotted in black. σ = 0.5,T = 50, X=6

To determine if the simultaneous attack is better than the other distinguishers, we then
compare the success rates from 200 experiments at different noise levels σ = 0.3, 0.5, 0.7, 0.9

(See figure 5.3). As expected, the simultaneous attack is superior to the other distinguishers
and requires the lowest amount of traces for the different SNRs (see also Fig. 5.4). There
is also a slight advantage to be achieved by the majority voting over the standard attack.
However, with the majority vote attack, we risk that the distinguisher might select the wrong
candidate, and this is likely the reason that the standard attack has a higher success rate
than the majority vote attack for < 4 and < 5 traces in figures 5.3c and 5.3d. Generally
σ = 0.5 is used for the experiments, due to two reasons: Figures 5.35.4 show that this sigma
is representative for how the different distringuishers compare to each other. In adition to
this, the low noise makes the computations in the experiments faster.

For a DPA-attack against the first nibble of TK10, we have the following dependent cells
of the internal state: [0, 4, 12]. The first three columns in table 5.1 show the distinguisher
scores of the standard attack performed sequentially against these cells. The fourth row
contains the sum of the three scores for each key hypothesis Ki, and the last row contains
the distinguishing scores from the simultaneous attack against the same Tweakey. The
single list of scores produced by the simultaneous attack is identical to the sum of the three
corresponding standard attacks against the same nibble of TK1.
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(a) σ = 0.3 (b) σ = 0.5

(c) σ = 0.7 (d) σ = 0.9

Figure 5.3: Success rates of the four distinguishers for σ = 0.3, 0.5, 0.7, 0.9 taken over 200
experiments

(a) Success rates of the simultaneous and
standard attacks against a single nibble
TK10,0, the simultaneous attack multiplied
with 3 and the standard attack, σ = 0.5

(b) Standard attack given 3x the traces of
the simultaneous

Figure 5.5: Standard and simultaneous attacks compared
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Figure 5.4: Required number of traces to achieve a success rate of 0.995 when recovering the
first half of TK1, TK1i,j i = {0, 1}, j = {0, . . . , 3}. To be updated with new label

As previously stated, we hypothesize that the success rate of the simultaneous attack
for n traces corresponds to those of the standard attack given 3n traces. In Fig. 5.5a, the
success rates of recovering the first half of TK1 are shown for the simultaneous and standard
attacks. The simultaneous attack shifted three times (the dotted line) should be identical to
the standard attack. Even though the curves are not identical, we are careful to discard the
hypothesis just yet. When comparing the simultaneous attack for n traces with a standard
attack given 3n traces as shown in Fig. 5.5b, we observe conflicting results indicating that
the simultaneous attack is identical to the standard attack given 3x the traces in terms of
success rate, and the conflicting results in Fig. 5.5a can be a result of not running enough
experiments.
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ki TK10 TK14 TK112

∑
i TK1i TK10 simultaneous

0 -92.828 -111.701 -116.761 -321.292 -321.292
1 -9.582 -11.212 -15.648 -36.444 -36.444
2 -146.752 -126.559 -134.544 -407.856 -407.856
3 -75.130 -89.819 -108.715 -273.666 -273.666
4 -66.599 -29.396 -42.465 -138.461 -138.461
5 -92.935 -118.874 -166.741 -378.551 -378.551
6 -102.422 -85.251 -84.876 -272.549 -272.549
7 -81.752 -118.516 -119.373 -319.641 -319.641
8 -111.167 -110.261 -93.669 -315.098 -315.098
9 -84.280 -113.708 -85.165 -283.154 -283.154
10 -136.392 -142.407 -115.559 -394.359 -394.359
11 -49.880 -66.106 -31.771 -147.757 -147.757
12 -99.453 -121.448 -92.286 -313.188 -313.188
13 -104.494 -144.487 -136.537 -385.519 -385.519
14 -92.334 -59.479 -55.155 -206.970 -206.970
15 -96.382 -122.730 -189.185 -408.298 -408.298

Table 5.1: Distinguisher scores for standard attacks against same round-tweakey-nibble de-
pendent cells,
K = 1731513316006295928 |T | = 20 σ = 0.5

5.3.1 Regarding The Confidence Of The Distinguishers

While the simultaneous attack is superior in terms of success rate, the level of confidence
in a produced key candidate is another story. In the worst-case scenario where no clear
leader can be identified from the distinguishing scores, both the standard and simultaneous
attacks sample their candidate from a uniform distribution. An attacker learns nothing of
the correct key hypothesis, as all the hypotheses are equally likely. In the worst-case scenario
of the unanimous and majority vote attacks, the distinguisher discards all the guesses, and
the attacker learns at least that their guess was wrong. The success- and error rates of the
simultaneous and standard attacks are plotted in fig 5.6, while the success, error, and discard
rates of the unanimous and majority vote attacks are plotted in Fig. 5.7.

Thillard et al.[29] Defined the confidence level of an attack recovering a key k0 by appli-
cation of a selection rule R to output a candidate subkey KR as:

c(KR) =
Pr(KR = k0)

Σk∈K Pr(KR = k)
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(a) simultaneous (b) individual

Figure 5.6: Correct and incorrect key candidates for simultaneous and standard attacks.
σ = 0.5

In the same paper, Thillard et al. also remark that the confidence level associated with a rule
R only merges with the notion of success rates if the selection rule always outputs a subkey
candidate. E.g., R0 in [29]: “R0: Output, the candidate, ranked first at the end of the
N-th attack.” While the unanimous attack has the worst success rate of the distinguishers
described in this paper, it has the highest confidence as it only outputs a key candidate when
all three same-key-nibble-dependent key candidates are unanimous. The discarded guess is
most likely incorrect, thus giving the adversary more confidence in a hypothesis being correct
when it outputs a key candidate.

In 5.6, the threshold value of success/error-rates of the standard attack occurs at n = 4,
while it occurs at n = 1 for the simultaneous attack, further strengthening the hypothesis
of the latter has three times the leakage per trace. The same cannot be said about the
majority vote and unanimous attacks. However, it is worth noting that the unanimous
distinguisher output no erroneous key candidates, but at the cost of a considerably higher
discard rate. Thus, it is allowing us to conclude that per the definition presented by Thillard,
the unanimous attack has the highest level of confidence, while also having the lowest success
rate.

A Note About Shorter-than-n Plaintexts. When initializing the internal state, the
plaintext length has to be at least the block size n, which in this case is 64 bits. As SKINNY
is a lightweight block cipher, it is designed for low-resource devices sending short messages.
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(a) majority vote (b) unanimous

Figure 5.7: Correct, incorrect and discarded key candidates for the discarding distinguisher
attacks. σ = 0.5

If such a device running SKINNY with n = 64 sends a message shorter than this, the easiest
way to handle this implementation-wise is to use a zero-padding from the most significant
bit, until the 16 cells of the internal state are filled. This is also the case of the current
implementation[26].

(a) 56-bit plaintext (b) all-zero plaintext.

Figure 5.8: Distinguishing scores for shorter-than-n-plaintexts. σ = 0.5

Fig. 5.8a shows the plots for individual attacks against the entire internal state in round
1 with a 56-bit plaintext. In the plots for s-box 4 and 5, we can observe a clustering different
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from the normal distinguisher pattern in the other plots. In 5.8b, the same individual attack
is executed against a random key and an all-zero vector as plaintext, and the same clustering
observed in plot 4 and 5 of subfig 5.8a can be observed here. This clustering for an s-box
that is only leaking on the keys, as shown in 5.8b, corresponds to the binomial coefficients
of the possible hamming weights of a single nibble.
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From an adversarial perspective, the only information that an attacker can learn from
those plots is the hamming weight of the correct key-nibble, thus narrowing down the
keyspace in an exhaustive search. DPA-attacks are generally more favorable than exhaustive
searches.

5.4 Recovering The Second Half Of TK1

Fig. 5.9a is a plot of the success rates for a sequential divide and conquer attack. The first
and third quarters of TK1 are recovered with simultaneous attacks, and the second and
fourth quarter recovered with standard attacks. The success rates for recovering the second
half of TK1 is slightly lower, but both plots follow the same general shape. This is expected
as the same attack is performed on both rounds, except that the intermediate values used
when recovering the second half are generated with the first’s key hypotheses. Errors in
the first round of the attack then propagate into the second round. The success rate of the
sequential second round of the divide and conquer the success rate of the first, therefore,
bounds attack. The probability of successfully recovering the entire TK1, given that the first
half is correctly recovered, is given in Fig. 5.9b.

5.5 Comparison with AES

When attacking the first round of encryption in AES-128 we have that each byte of internal
state ISi depends only on a single byte of the cipher key Ki. This also means that it is
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(a) The Success rates of recovering the TK12,3
after recovery of TK10,1

(b) Probability of successfully recovering TK12,3
given successfull recovery of TK10,1

Figure 5.9: The probability of recovering the entire TK1 successfully for σ = 0.5

possible to recover the entirety of K by divide and conquer and perform individual DPA
attacks against every internal state cell. The SKINNY framework has no such whitening
step, and SKINNY’s Tweakey schedule makes the internal state of a round r only depend on
a single half of the Tweakey words. While AddRoundKey is performed in the beginning of
the encryption rounds of AES, AddRoundTweakey are located after SubBytes in SKINNY.
While both cipher allows an attacker to choose the output of SubBytes as their intermediate
function, SKINNY require that round r+1 has to be attacked in order to recover SKr. Take
for example the recovery of TK1 in SKINNY-n-n. To recover TK1 an attacker is required
to attack the second and third rounds in order to recover each half of TK1. To recover the
key materal leakage from the s-boxes in SubBytes of SKINNY, one has to apply the linear
operations ShiftRows−1(MixColums−1(P ⊕ K)), to get the correct leakage from TK1i,j.
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While attacking the initial round of AES-128 recovers the full cipher key, attacking the first
round of SKINNY only recovers half of the Tweakey. Full-key recovery of SKINNY resembles
the key recovery of AES-256 rather than AES-128, as both require a DPA to be executed
against at least two rounds to recover both halves of the cipher key.

In both SKINNY and AES-256 it is possible to attack both encryption and decryption The
poor diffusion in the Tweakey schedule of SKINNY allows an attacker to predict all future
positions of a given cell of the tweakey words: TKnr

i,j → TKnr+1
i,j . There is no diffusion

between tweakey halves, thus enabling the tweakey halves to be recovered sequentially. This
is the direct result of the update functions of the tweakey schedule being the permutation
PT and a LFSR which operates on the individual cells. In AES, on the other hand we have
that to compute roundkey ki we are required to know ki−1. While the first 15 words of
the key schedule are the cipher key itself, the remaining key roundkeys are not so easily
predicted as in SKINNY as it, in SKiNNY is possible to combine the attacks against a round
of encryption and a round of decryption.

What separates AES and SKINNY the most in the context of DPA, is the redundancy of
leakage for half of SKINNY’s RoundTweakeys. MixCol perform diffusion in such a way that
three rows of the internal state of a given round depend on the first row of the roundTweakey,
while the last row of the internal state depend on the other. When attacking AES, we
divide and conquer each cell ISi,j i = 0, 3, j = 0, 3 individually, and per power trace,
we only have a single source of leakage per word of the cipher key. In SKINNY, on the
other hand, as in total half of the tweakey leaks thrice per trace, we can improve upon the
standard divide and conquer attack, and drastically improve the probability of key recovery.
The roundTweakey-dependance of MixCol combined with the poor diffusion of the tweakey,
makes unmasked implementations of SKINNY-n-n theoretically more vulnerable to DPA-
attacks than unmasked AES-implementations.
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Chapter 6

Expanding The Attack To Other
Configurations of SKINNY

While the results in chapter 5 holds for all single-key versions of SKINNY, we will now exam-
ine how the insights learned translate to the double and triple-key configurations SKINNY-
n-2n and SKINNY-n-3n.

Recall from section 4.2.4 that in AddRoundTweakey the first two rows of all tweakey
arrays are extracted and bitwise xor-ed to the internal state of the cipher. For i = 0, 1 and
j = 0, 1, 2, 3 we have:

ISi,j = ISi,j ⊕ TK1i,j when z = 1,

ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2

ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3

(6.1)

By disregarding the linear operations associated with each round, the target of the DPA
attack against SKINNY-n-n can be simplified to S(P ⊕ TK1). In this case, both the input
plaintexts and the leakage are known to the attacker, requiring the attacker to determine
TK1. We have SKINNY-n-2n and SKINNY-n-3n with the corresponding simplifications
S(P ⊕TK1⊕TK2) and S(P ⊕TK1⊕TK2). Attacking these configurations with DPA, an
attacker only directly determines the XOR of the tweakey words, which then require more
processing in order to determine TK1, TK2, and TK3.
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6.1 SKINNY-n-2n

6.1.1 SKINNY-n-2n with no tweak material

In SKINNY-n-n, we can recover TK1 by attacking two rounds of encryption. In SKINNY-
n-2n, we have to extend the attack and divide and conquer five encryption rounds. In the
related key versions of SKINNY (SKINNY-n-2n and SKINNY-n-3n), an LFSR is applied
to the top two rows of TK2 each round. We denote L, the application of the LFSR to
TK2i,j i = {0, 2}, j = {0, 4} in SKINNY-n-2n (see 4.4. Equation 6.2 shows how the
tweakey words are affected by the key schedule: In each round, the permutation PT is
applied to each tweakey word, swapping the two halves with each other. Then L is applied
to the cells of the top two rows of the tweakey words. Due to PT , we have that R2 and R4
depend on the top halves of the tweakey words, while R3 and R5 depend on the bottom
halves.

R1 : No key dependence

R2 : (TK1⊕ TK2)

R3 : (PT (TK1)⊕ L(PT (TK2))

R4 : (P 2
T (TK1)⊕ L(PT (L(PT (TK2))))

R5 : (P 3
T (TK1)⊕ L(PT (L(PT (L(PT (TK2))))))

(6.2)

Due to the lack of diffusion in the key schedule, we can exploit two characteristics of this:
As previously stated, there is no diffusion between the two halves of the tweakey words. The
eight cells of each half only get mapped one-to-one during each round, and this mapping is
identical for all the tweakey words. The permutation PT (see section 4.2) is also identical
for each round and known from the specification of SKINNY. Therefore, it is trivial to map
TK1r

i,j to TK1r−1
i,j for i, j = {0, . . . , 3}.

Since alternating rounds of SKINNY depend on the same halves of TK1 and TK2, we
should be able to use the results of R2 and R4 to determine the top two rows of TK2.
Imagine that we can recover the “round tweakeys”, as idealized in Eq.6.2, and wish to
reconstruct the initial Tweakey consisting of TK1 and TK2. First, we recover the top
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halves of TK1 and TK2 by solving TK1 ⊕ TK2 ⊕ (P 2
T (TK1) ⊕ L(PT (L(PT (TK2)))) to

identify the top halves individually. As PT substitutes the cells within each half of the
tweakey words, we have to re-align these cells manually. In R4, PT is applied twice
P 2
T = [1, 7, 0, 5, 2, 6, 4, 3, 8, 9, 10, 11, 12, 13, 14, 15] By applying P 2

T another time, the cells are
placed back at their original indices, and we denote the application of the realignment-
permutation Pm. This cancels out TK1 from the equation (as we get TK1⊕ TK1) and we
are left with (TK2 ⊕ L(L(TK2)))). L is applied to each cell of the top two rows of the
tweakey words individually and is here represented as the invertible transformation A:

A =


L(m0) L(m1) L(m2) L(m3)

L(m4) L(m5) L(m6) L(m7)

m8 m9 m10 m11

m12 m13 m14 m15


The previous equation for recovering TK1 and TK2 can be represented as A× t, where

A is an invertible transformation depending on L and t is a nibble of TK2:

(TK1⊕ TK2)⊕ (P 2
T (TK1)⊕ (PT (L(PT (TK2))))

Pm((TK1)⊕ TK2⊕ (TK1)⊕ (L(TK2)))))

(TK2⊕ L(TK2)) = A⊕ TK2

(6.3)

Retrieving TK2i,j is done by appling the inverse of A: TK2i,j = TK2i,j ⊕A×A−1. This
is done for each TK2i,j, i = {0, 1}, j = {0, . . . , 3}. TK1i,j is then revealed by taking the
XOR of the recovered values of TK2 with the result from R2 (TK1⊕TK2). The bottom half
of TK2 is then recovered in the same manner, except that Pm = P 3

T as it has to be modified
to account for the extra round. The equation which we now have to solve is R3⊕R5:

PT (TK1⊕ L(PT (TK2)))⊕ P 3
T (TK1)⊕ L2(P 3

T (TK2))

While we have three applications of both PT and L in total for round five, only two
applications of L affect the halves we wish to recover, thus requiring us to apply L only
twice.
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6.2 Using SKINNY-n-2n with tweak material

The specification for SKINNY that is given in section 4.2 utilizes the “classical setting” where
no tweak material is used (as described by the authors in [6]). However, The Tweakey-
framework allows the user to use an arbitrary amount of the tweakey as tweak material.
The only constraint is that the amount of key-material must be at least n bits. When
some amount of tweak material is used, the authors recommend dedicating TK1 for this, in
addition to XOR-ing the second bit of IS0,2 with “1”, each round. If the user wants to use
different tweak-sizes when selecting tweak-material, the authors also recommend using some
cells of TK1 to encode the size of the tweak material. Dedicating TK1 to tweak material is
disadvantageous as it reduces the complexity of our DPA-attacks by n bits. If SKINNY-n-2n
is used with n bits of tweak, the difficulty of key recovery is reduced to roughly that of
SKINNY-n-n. As TK1 is considered known, it is trivial to find TK2 from (TK1⊕ (TK2).

The difficulty of recovering each cell of the internal state. Since the key schedule
treats the respective positions of the tweakey words identically (except for the per-cell LFSR
in TK2), we have that TK1i,j and TK2i,j has an equal amount of leakage. So for the sake of
simplicity, we now examine TK1 in isolation. The probability of recovering a cell of TK1r

depends on its previous positions in TK1r−k, where k is the number of previous rounds.
Starting from the second round, we have four possible scenarios: Both TK1r and TK1r−1

leak once, both TK1r and TK1r−1 leak thrice, TK1r leaks thrice while TK1r−1 leak once
and TK1r leaks once while TKr−1 leaks thrice. The one-to-one mapping of cells from TK1r

i,j

to TK1r+1
i,j , makes it possible to trace the amount of leakage in terms of how many times

the value of each tweakey cell leaks from a row of the internal state.

R2 =


3δ 3δ 3δ 3δ

δ δ δ δ

0 0 0 0

0 0 0 0


Where δ denotes the ammount of times each cell of the internal state leak. Eg. In R2,

we have that δ = 3 for the top row, as we have leakage for these cells in three rows of the
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Figure 6.1: The degree of leakage of each cell TKni,j after five rounds. The shades of grey
correspond to the three degrees of leakage uncovered in the previous section, where darker
colour means more leakage.

internal state, while the cells of the second row have δ = 1, as they leak once. If we keep
tracking how many times each cell TK1i leaks during the first five rounds, we get:

R2 =


3δ 3δ 3δ 3δ

δ δ δ δ

0 0 0 0

0 0 0 0

 R3 =


3δ 3δ 3δ 3δ

δ δ δ δ

3δ 3δ δ δ

δ 3δ δ 3δ

R4 =


6δ 6δ 4δ 4δ

2δ 4δ 2δ 4δ

3δ 3δ δ δ

δ 3δ δ 3δ

R5 =


6δ 6δ 4δ 4δ

2δ 4δ 2δ 4δ

4δ 6δ 2δ 4δ

2δ 4δ 4δ 6δ



After the five rounds of SKINNY required to recover TK1 and TK2 in SKINNY-n-
2n, we have that TK0,1,9,15 = 6δ, which means that these cells leak in total 6 times.
TK2,3,5,7,8,11,13,14 = 4δ, and leak four times while TK4,6,10,12 = 2δ and only leak twice.
This means, in other words that TK2,3,5,7,8,11,13,14 and TK0,1,9,15 has two and three times
the leakage of TK4,6,10,12, respectively.

6.2.1 An alternative placement scheme for tweak material

The degree of leakage for each cell of the tweakey words are shown in Fig. 6.2.1. If SKINNY-
n-2n is used with n bits of tweak and n bits of key, the cells that leak the most should be
used for tweak material, while the cells that leak the least should be used as key material.
We therefore propose an alternative placement scheme where the tweak material is placed
in indices [0, 1, 9, 15, 16, 17, 25, 31] and key material at indices [4, 6, 10, 12, 20, 22, 26, 28]. The
remaining cells of the internal state have the same degree of leakage, which is somewhere
between the key and tweak material, and the remaining key and tweak material can be
placed freely in these.
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The authors of SKINNY recommend that some cells of TK1 are used to encode how
much of the tweakey is used as the tweak material. With this alternative placement scheme,
it is impossible to encode such information with ease, but from an adversarial setting, where
the tweak is assumed known, it provides an improvement in terms of leakage reduction.

If we, in SKINNY-n-2n, dedicate the first n cells of the tweakey as tweak material and
the other n cells as key material, and count the number of times a nibble of key material and
a nibble of tweak material leak, we get δ = 64 for both. This means that we have an equal
amount of leakage for both the key and tweak material. If we use the same assumptions
from 5 and assume that the cipher leaks noisy Hamming weights, this means that the noisy
Hamming weights for both the key and tweak material leaks, in total 64 times. With our
scheme, we have δ = 80 and δ = 48 for the tweak and key material, respectively, and the
amount of times key material is leaked is reduced from 64 to 48, indicating a reduction of
25%.

6.3 SKINNY-n-3n

The approach for recovering the full Tweakey of SKINNY-n-3n is very similar to SKINNY-n-
2n. As in section 6.1 we have the operations on the tweakey schedule for round 1 to 5, and let
L denote the application of the block size appropriate LFSR to TK2i,j i = 0, 1, j = 0, . . . , 3,
and M denote the application of the appropriate LFSR to TK3i,j i = 0, 1, j = 0, . . . , 3.

R1 : No key dependence

R2 : (TK1⊕ TK2⊕ TK3)

R3 : (PT (TK1)⊕ L(PT (TK2)⊕M(PT (TK3))

R4 : P 2
T (TK1)⊕ L(PT (L(PT (TK2))))⊕M(PT (M(PT (TK3)))

R5 : P 3
T (TK1)⊕ L(PT (L(PT (L(PT (TK2)))))⊕M(PT (M(PT (M(PT (TK3)))))

(6.4)

The first step of the attack is to construct the permutation vector Pm to align the cells of
the tweakey words. When recovering the first half of the tweakey words, Pm = P 2

T is applied
to R4. When recovering the second half, Pm = P 3

T is applied to R5. Like with SKINNY-n-2n,
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We denote L(TK2i, j) as the invertible transformation A, but also denote M(TK3i, j) as
the invertible transformation B.

TK1i,j ⊕ TK2i,j ⊕ TK3i,j ⊕ TK1⊕ L(TK2i,j)⊕M(TK3i,j)

TK2i,j ⊕ TK3i,j ⊕ A⊕B
(6.5)

As B is constructed in the same manner as A, it is also invertible. To recover either
TK2i,j or TK3i,j, we then apply A−1 or B−1 to eliminate the corresponding tweakey word
from the equation:

TK2i,j ⊕ TK3i,j = A× A−1 × TK2i,j ×B ×B−1 × TK3i,j

Like in SKINNY-n-2n, knowing TK2i,j ⊕ TK3i,j allows us to determine TK1 by substi-
tution. Unfortunately, recovering the individual values TK2i,j and TK3i,j is not possible.
Knowing TK2i,j ⊕ TK3i,j does however reduce the search space of an exhaustive search.
For SKINNY-128-384, we have a complexity of 28 × 28 = 224 compared to a total complex-
ity of 2384 if the entire tweakey are to be recovered with an exhaustive search. While in
SKINNY-64-192 we have a total complexity of 212 compared to 2192.

It is worth noting that if SKINNY-n-2n and SKINNY-n-3n are used with n bits of tweak
material, and the tweak placement scheme proposed in [6] are used, we can assume that TK1
is known, thus reducing the complexity of an attack against TK2 to the complexity of TK1.
For SKINNY-n-3n, the complexity is reduced to that of SKINNY-n-2n, as TK1 is known.
This reduction makes full tweakey recovery possible for SKINNY-n-3n as well.

6.4 Related Work

While section 4.3 gave a brief overview of the state of traditional cryptanalysis done on
SKINNY, there is only a single paper that discusses power analysis attacks against this
cipher in detail. In the article “Power Attack and Protected Implementation on Lightweight
Block Cipher SKINNY”[11] written by Jing Ge et al. the single-key version of SKINNY is
attacked with both correlation and differential power analysis to investigate how resilient
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it is against these power analysis attacks and to calculate the cost of protecting a naive
implementation with a masking scheme. While not including the specific strategy of their
attacks or SKINNY implementation, they find that 20 traces are enough to recover the key
via Correlation Power Analysis (CPA). In comparison, DPA requires more than 80 traces.

6.5 Comparison with AES

When attacking the first round of encryption in AES-128 we have that each byte of internal
state ISi depends only on a single byte of the cipher key Ki. This also means that it is
possible to recover the entirety of K by divide and conquer and perform individual DPA
attacks against every internal state cell. The SKINNY framework has no such whitening
step, and SKINNY’s Tweakey schedule makes the internal state of a round r only depend on
a single half of the Tweakey words. While AddRoundKey is performed in the beginning of
the encryption rounds of AES, AddRoundTweakey are located after SubBytes in SKINNY.
While both ciphers allow an attacker to choose the output of SubBytes as their intermediate
function, SKINNY require that round r+1 has to be attacked in order to recover SKr. Take
for example the recovery of TK1 in SKINNY-n-n. To recover TK1 an attacker is required
to attack the second and third rounds in order to recover each half of TK1. To recover the
key materal leakage from the s-boxes in SubBytes of SKINNY, one has to apply the linear
operations ShiftRows−1(MixColums−1(P ⊕ K)), to get the correct leakage from TK1i,j.
While attacking the initial round of AES-128 recovers the full cipher key, attacking the first
round of SKINNY only recovers half of the Tweakey. Full-key recovery of SKINNY resembles
the key recovery of AES-256 rather than AES-128, as both require a DPA to be executed
against at least two rounds to recover both halves of the cipher key.

In both SKINNY and AES-256 it is possible to attack both the encryption and decryption
operations. The poor diffusion in the Tweakey schedule of SKINNY allows an attacker to
predict all future positions of a given cell of the tweakey words: TKnr

i,j → TKnr+1
i,j . There

is no diffusion between tweakey halves, thus enabling the tweakey halves to be recovered
sequentially. This is the direct result of the update functions of the tweakey schedule being
the permutation PT and a LFSR which operates on the individual cells. In AES, on the
other hand we have that to compute roundkey ki we are required to know ki−1. While the
first 15 words of the key schedule are the cipher key itself, the remaining key roundkeys are
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not so easily predicted as in SKINNY, where it is possible to combine the attacks against a
round of encryption and a round of decryption.

What separates AES and SKINNY the most in the context of DPA, is the redundancy of
leakage for half of SKINNY’s RoundTweakeys. MixCol perform diffusion in such a way that
three rows of the internal state of a given round depend on the first row of the roundTweakey,
while the last row of the internal state depend on the other. When attacking AES, we divide
and conquer each cell ISi,j i = 0, 3, j = 0, 3 individually, and per power trace, we only have
a single source of leakage per word of the cipher key. In SKINNY, on the other hand, as in
total half of the tweakey leaks thrice per trace, we can improve upon the standard divide and
conquer attack, and drastically improve the probability of key recovery. The roundTweakey-
dependance of MixCol combined with the poor diffusion of the tweakey, makes unmasked
implementations of SKINNY-n-n and SKINNY-n-2n theoretically more vulnerable to DPA-
attacks than unmasked AES-implementations.
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Chapter 7

Summary

7.1 Conclusion

In this thesis, we have shown that the lack of diffusion between the halves of the tweakey
words makes SKINNY susceptible to divide and conquer attacks. MixColumns, while pro-
viding efficient diffusion against traditional cryptanalysis, allows an attacker to improve the
standard univariate attack when performing divide and conquer attacks. Even though the
diffusion in SKINNY requires an attacker to attack multiple rounds, it introduces more leak-
age per trace than AES. The whitening step in AES makes each byte of the internal state
depend on an individual byte of the cipher key. When attacking the s-boxes of SKINNY,
multiple cells (bytes or nibbles) depend on a single byte of the Tweakey, thus introducing a
redundancy that can be exploited. We have also demonstrated a multivariate standard attack
that leverages this, and that requires a third of the traces of the univariate standard attack.
This greatly improves the success rates for the affected parts of the Tweakey. A theoretical
expansion of this attack was also presented against the related-key models SKINNY-n-2n
and SKINNY-n-3n. We showed how to recover the entire tweakey for SKINNY-n-2n and
reduce the complexity of full tweakey recovery of SKINNY-n-3n. To reduce the amount of
exploitable key leakage, we have also presented an alternative placement scheme for the tweak
and key material in the tweakey, thereby reducing the key recovery rate by 25% compared
to the tweak placement scheme originally presented by SKINNYs authors.
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7.2 Further Work

In this thesis, only a software implementation of SKINNY was analyzed. Attacking a hard-
ware implementation of SKINNY could be interesting to see how well the simplifications in
this thesis holds. Examining other power models might also be interesting, as the HW-model
is strictly data-dependent. Some improvements can be made by, e.g., using a Hamming dis-
tance model instead. In this thesis, only encryption is analyzed. A possible further work
could be to attack the decryption function, as mixcol−1 also results in the roundTweakey-
dependence phenomenon exploited in this thesis.

It could also be interesting to compare the sequential divide and conquer approach to
extend-and-prune and key-ranking. In our experiments, we operate with “moderate” noise
levels. It could also be interesting to examine a combination of the simultaneous, unanimous,
and majority voting attacks to increase the confidence in some hypotheses in extremely noisy
power traces. While the analysis of masked implementations of SKINNY is out of the scope
of this thesis, it could also be interesting to see how efficient these variants of the univariate
standard attack fare against different masking schemes.
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Nomenclature

N (µ, σ2) The Gaussian Normal distribution

H The matrix of hypothetical power consumption values

K The list of all the

k The key hypothesis vector containing all possible k

R The matrix of size K × T of distinguisher scores

T The list of all the power traces

V The matrix of hypothetical intermediate values

HD Hamming-distance

HW Hamming weight

IS ′ Internal state of the cipher after P ⊕RK

ISi,j The active rows ISi,j i = {0, 1}, j = {0, . . . , 3} of the RoundTweakey

ISi,j The cell of the internal state at position i,j

K The list of all possible key values

P ′ The modified plaintext after round operationsMixCol(ShiftRows(AddConstants(SubBytes(P )))

has been applied

T The length of T

TKn′i The modified i-th Tweakey after operationsMixCol(ShiftRows(AddConstants(SubBytes(RK))))

has been applied
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TKnr
i,j The cell of TKn at position i,j in round r

TK-p A tweakey word of class “p”: Eg TK1, TK2, TK3
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Appendix A

Experimental setup and source code

As the experiments are performed on a software implementation with simulated hamming
weights, some simplifications are made. The round function of SKINNY outputs the internal
state and roundkey of the first two rounds directly for convenience (See Listing A.1). The
code snippets that generate both the internal state matrices, intermediate results and power
traces are found in Listings A.2 and A.3. Listing A.3 Also contains the code for the Bayesian
distinguishers used in the attacks. For the profiling and comparison of the distinguishers, see
Listing A.4 for the source code for the success rate. Listing A.5 is used to generate Fig. 5.4
and the code for figures 5.6, 5.7 are found in Listing A.6.

A.1 The Modified Python Implementation of SKINNY

Listing A.1: Modified SKINNY implementation
from __future__ import pr int_funct ion
from array import array
from operator import xor

class SkinnyCipher :

# Sbox Constants
sbox4 = array ( ’B ’ , [ 1 2 , 6 , 9 , 0 , 1 , 10 , 2 , 11 , 3 , 8 , 5 , 13 , 4 , 14 , 7 , 1 5 ] )
sbox4_inv = array ( ’B ’ , [ 3 , 4 , 6 , 8 , 12 , 10 , 1 , 14 , 9 , 2 , 5 , 7 , 0 , 11 , 13 , 1 5 ] )

sbox8 = array ( ’B ’ , [ 0 x65 , 0x4c , 0x6a , 0x42 , 0x4b , 0x63 , 0x43 , 0x6b , 0x55 , 0x75 , 0x5a , 0x7a , 0x53 , 0x73 , 0x5b , 0x7b ,
0x35 , 0x8c , 0x3a , 0x81 , 0x89 , 0x33 , 0x80 , 0x3b , 0x95 , 0x25 , 0x98 , 0x2a , 0x90 , 0x23 , 0x99 , 0x2b ,
0xe5 , 0xcc , 0xe8 , 0xc1 , 0xc9 , 0xe0 , 0xc0 , 0xe9 , 0xd5 , 0xf5 , 0xd8 , 0xf8 , 0xd0 , 0xf0 , 0xd9 , 0xf9 ,
0xa5 , 0x1c , 0xa8 , 0x12 , 0x1b , 0xa0 , 0x13 , 0xa9 , 0x05 , 0xb5 , 0x0a , 0xb8 , 0x03 , 0xb0 , 0x0b , 0xb9 ,
0x32 , 0x88 , 0x3c , 0x85 , 0x8d , 0x34 , 0x84 , 0x3d , 0x91 , 0x22 , 0x9c , 0x2c , 0x94 , 0x24 , 0x9d , 0x2d ,

57



0x62 , 0x4a , 0x6c , 0x45 , 0x4d , 0x64 , 0x44 , 0x6d , 0x52 , 0x72 , 0x5c , 0x7c , 0x54 , 0x74 , 0x5d , 0x7d ,
0xa1 , 0x1a , 0xac , 0x15 , 0x1d , 0xa4 , 0x14 , 0xad , 0x02 , 0xb1 , 0x0c , 0xbc , 0x04 , 0xb4 , 0x0d , 0xbd ,
0xe1 , 0xc8 , 0xec , 0xc5 , 0xcd , 0xe4 , 0xc4 , 0xed , 0xd1 , 0xf1 , 0xdc , 0 xfc , 0xd4 , 0xf4 , 0xdd , 0xfd ,
0x36 , 0x8e , 0x38 , 0x82 , 0x8b , 0x30 , 0x83 , 0x39 , 0x96 , 0x26 , 0x9a , 0x28 , 0x93 , 0x20 , 0x9b , 0x29 ,
0x66 , 0x4e , 0x68 , 0x41 , 0x49 , 0x60 , 0x40 , 0x69 , 0x56 , 0x76 , 0x58 , 0x78 , 0x50 , 0x70 , 0x59 , 0x79 ,
0xa6 , 0x1e , 0xaa , 0x11 , 0x19 , 0xa3 , 0x10 , 0xab , 0x06 , 0xb6 , 0x08 , 0xba , 0x00 , 0xb3 , 0x09 , 0xbb ,
0xe6 , 0xce , 0xea , 0xc2 , 0xcb , 0xe3 , 0xc3 , 0xeb , 0xd6 , 0xf6 , 0xda , 0xfa , 0xd3 , 0xf3 , 0xdb , 0xfb ,
0x31 , 0x8a , 0x3e , 0x86 , 0x8f , 0x37 , 0x87 , 0x3f , 0x92 , 0x21 , 0x9e , 0x2e , 0x97 , 0x27 , 0x9f , 0x2f ,
0x61 , 0x48 , 0x6e , 0x46 , 0x4f , 0x67 , 0x47 , 0x6f , 0x51 , 0x71 , 0x5e , 0x7e , 0x57 , 0x77 , 0x5f , 0x7f ,
0xa2 , 0x18 , 0xae , 0x16 , 0x1f , 0xa7 , 0x17 , 0xaf , 0x01 , 0xb2 , 0x0e , 0xbe , 0x07 , 0xb7 , 0x0f , 0xbf ,
0xe2 , 0xca , 0xee , 0xc6 , 0 xcf , 0xe7 , 0xc7 , 0 xef , 0xd2 , 0xf2 , 0xde , 0 xfe , 0xd7 , 0xf7 , 0xdf , 0 x f f ] )

sbox8_inv = array ( ’B ’ , [ 0 xac , 0xe8 , 0x68 , 0x3c , 0x6c , 0x38 , 0xa8 , 0xec , 0xaa , 0xae , 0x3a , 0x3e ,
0x6a , 0x6e , 0xea , 0xee , 0xa6 , 0xa3 , 0x33 , 0x36 , 0x66 , 0x63 , 0xe3 , 0xe6 ,
0xe1 , 0xa4 , 0x61 , 0x34 , 0x31 , 0x64 , 0xa1 , 0xe4 , 0x8d , 0xc9 , 0x49 , 0x1d ,
0x4d , 0x19 , 0x89 , 0xcd , 0x8b , 0x8f , 0x1b , 0x1f , 0x4b , 0x4f , 0xcb , 0 xcf ,
0x85 , 0xc0 , 0x40 , 0x15 , 0x45 , 0x10 , 0x80 , 0xc5 , 0x82 , 0x87 , 0x12 , 0x17 ,
0x42 , 0x47 , 0xc2 , 0xc7 , 0x96 , 0x93 , 0x03 , 0x06 , 0x56 , 0x53 , 0xd3 , 0xd6 ,
0xd1 , 0x94 , 0x51 , 0x04 , 0x01 , 0x54 , 0x91 , 0xd4 , 0x9c , 0xd8 , 0x58 , 0x0c ,
0x5c , 0x08 , 0x98 , 0xdc , 0x9a , 0x9e , 0x0a , 0x0e , 0x5a , 0x5e , 0xda , 0xde ,
0x95 , 0xd0 , 0x50 , 0x05 , 0x55 , 0x00 , 0x90 , 0xd5 , 0x92 , 0x97 , 0x02 , 0x07 ,
0x52 , 0x57 , 0xd2 , 0xd7 , 0x9d , 0xd9 , 0x59 , 0x0d , 0x5d , 0x09 , 0x99 , 0xdd ,
0x9b , 0x9f , 0x0b , 0x0f , 0x5b , 0x5f , 0xdb , 0xdf , 0x16 , 0x13 , 0x83 , 0x86 ,
0x46 , 0x43 , 0xc3 , 0xc6 , 0x41 , 0x14 , 0xc1 , 0x84 , 0x11 , 0x44 , 0x81 , 0xc4 ,
0x1c , 0x48 , 0xc8 , 0x8c , 0x4c , 0x18 , 0x88 , 0xcc , 0x1a , 0x1e , 0x8a , 0x8e ,
0x4a , 0x4e , 0xca , 0xce , 0x35 , 0x60 , 0xe0 , 0xa5 , 0x65 , 0x30 , 0xa0 , 0xe5 ,
0x32 , 0x37 , 0xa2 , 0xa7 , 0x62 , 0x67 , 0xe2 , 0xe7 , 0x3d , 0x69 , 0xe9 , 0xad ,
0x6d , 0x39 , 0xa9 , 0xed , 0x3b , 0x3f , 0xab , 0xaf , 0x6b , 0x6f , 0xeb , 0 xef ,
0x26 , 0x23 , 0xb3 , 0xb6 , 0x76 , 0x73 , 0xf3 , 0xf6 , 0x71 , 0x24 , 0xf1 , 0xb4 ,
0x21 , 0x74 , 0xb1 , 0xf4 , 0x2c , 0x78 , 0xf8 , 0xbc , 0x7c , 0x28 , 0xb8 , 0 xfc ,
0x2a , 0x2e , 0xba , 0xbe , 0x7a , 0x7e , 0xfa , 0 xfe , 0x25 , 0x70 , 0xf0 , 0xb5 ,
0x75 , 0x20 , 0xb0 , 0xf5 , 0x22 , 0x27 , 0xb2 , 0xb7 , 0x72 , 0x77 , 0xf2 , 0xf7 ,
0x2d , 0x79 , 0xf9 , 0xbd , 0x7d , 0x29 , 0xb9 , 0xfd , 0x2b , 0x2f , 0xbb , 0xbf ,
0x7b , 0x7f , 0xfb , 0 x f f ] )

round_constants = array ( ’B ’ , [ 0 x01 , 0x03 , 0x07 , 0x0F , 0x1F , 0x3E , 0x3D , 0x3B , 0x37 , 0x2F , 0x1E , 0x3C , 0x39 , 0x33 ,
0x27 , 0x0E , 0x1D , 0x3A , 0x35 , 0x2B , 0x16 , 0x2C , 0x18 , 0x30 , 0x21 , 0x02 , 0x05 , 0x0B ,
0x17 , 0x2E , 0x1C , 0x38 , 0x31 , 0x23 , 0x06 , 0x0D , 0x1B , 0x36 , 0x2D , 0x1A , 0x34 , 0x29 ,
0x12 , 0x24 , 0x08 , 0x11 , 0x22 , 0x04 , 0x09 , 0x13 , 0x26 , 0x0c , 0x19 , 0x32 , 0x25 , 0x0a ,
0x15 , 0x2a , 0x14 , 0x28 , 0x10 , 0x20 ] )

# val id cipher configurations stored :
# block_size :{ key_size : number_rounds}
__valid_setups = {64 : {64 : 32 , 128 : 36 , 192 : 40} ,

128 : {128 : 40 , 256 : 48 , 384 : 56}}

__valid_modes = [ ’ECB’ , ’CTR’ , ’CBC’ , ’PCBC’ , ’CFB ’ , ’OFB’ ]

def int_to_state ( s e l f , va l id_int ) :
byte_state = [ ]
for x in range ( 4 ) :

s h i f t_ l im i t = s e l f . b lock_s ize − s e l f . row_size
sh i f t_va l = sh i f t_ l im i t − ( s e l f . row_size ∗ x )
word = ( va l id_int >> sh i f t_va l ) & (2 ∗∗ s e l f . row_size − 1)
l ine_array = array ( ’B ’ )
for y in range ( 4 ) :

l ine_array . append (word >> (( s e l f . row_size − s e l f . s_val ) − ( y∗ s e l f . s_val ) ) & s e l f . c e l l_ s i z e )
byte_state . append ( l ine_array )

return byte_state

def state_to_int ( s e l f , byte_array_state ) :
s ta te_int = 0
for row in byte_array_state :

for c e l l in row :
s tate_int <<= s e l f . s_val
s ta te_int += c e l l

return s ta te_int

def __init__( s e l f , key , key_size=128 , b lock_s ize =128 , mode=’ECB’ , i n i t =0, counter =0):
"""
I n i t i a l i z e an instance of the Skinny block cipher .
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: param key : Int representation of the encryption key
:param key_size : Int representing the encryption key in b i t s
:param block_size : Int representing the block s i ze in b i t s
:param mode: String representing which cipher block mode the object should i n i t i a l i z e with
:param in i t : IV for CTR, CBC, PCBC, CFB, and OFB modes
:param counter : I n i t i a l Counter value for CTR mode
: return : None
"""

# Setup block/word s i ze
try :

s e l f . pos s ib l e_setups = s e l f . __valid_setups [ b lock_s ize ]
s e l f . b lock_s ize = block_s ize
s e l f . word_size = s e l f . b lock_s ize >> 1

except KeyError :
print ( ’ I nva l i d ␣ block ␣ s i z e ! ’ )
print ( ’ P lease ␣use ␣one␣ o f ␣ the ␣ f o l l ow ing ␣ block ␣ s i z e s : ’ , [ x for x in s e l f . __valid_setups . keys ( ) ] )
raise

# Setup Number of Rounds , and Key Size
try :

s e l f . rounds = s e l f . pos s ib l e_setups [ key_size ]
s e l f . key_size = key_size

except KeyError :
print ( ’ I nva l i d ␣key␣ s i z e ␣ f o r ␣ s e l e c t e d ␣ block ␣ s i z e ! ! ’ )
print ( ’ P lease ␣use ␣one␣ o f ␣ the ␣ f o l l ow ing ␣key␣ s i z e s : ’ , [ x for x in s e l f . pos s ib l e_setups . keys ( ) ] )
raise

# Determine Cel l Bit Size
s e l f . s_val = s e l f . b lock_s ize >> 4

# Calculate Tweakkey type based o f f rat io of key s i ze and block s i ze
s e l f . tweak_size = s e l f . key_size // s e l f . b lock_s ize

s e l f . row_size = s e l f . s_val ∗4
s e l f . c e l l_ s i z e = (2∗∗ s e l f . s_val − 1)
s e l f . block_mask = ((2 ∗∗ s e l f . b lock_s ize ) − 1)

# Parse the given iv and truncate i t to the block length
try :

iv_int = i n i t & s e l f . block_mask
s e l f . i v = s e l f . int_to_state ( iv_int )

except ( ValueError , TypeError ) :
print ( ’ I nva l i d ␣IV␣Value ! ’ )
print ( ’ P lease ␣Provide ␣IV␣as ␣ i n t ’ )
raise

# Parse the given Counter and truncate i t to the block length
try :

s e l f . counter = ( iv_int + counter ) & s e l f . block_mask
except ( ValueError , TypeError ) :

print ( ’ I nva l i d ␣Counter␣Value ! ’ )
print ( ’ P lease ␣Provide ␣Counter␣ as ␣ i n t ’ )
raise

# Check Cipher Mode
try :

p o s i t i o n = s e l f . __valid_modes . index (mode)
s e l f . mode = s e l f . __valid_modes [ p o s i t i o n ]

except ValueError :
print ( ’ I nva l i d ␣ c iphe r ␣mode ! ’ )
print ( ’ P lease ␣use ␣one␣ o f ␣ the ␣ f o l l ow ing ␣ block ␣ c iphe r ␣modes : ’ , s e l f . __valid_modes )
raise

# Parse the given key and truncate i t to the key length
try :

s e l f . key = key & ((2 ∗∗ s e l f . key_size ) − 1)
except ( ValueError , TypeError ) :

print ( ’ I nva l i d ␣Key␣Value ! ’ )
print ( ’ P lease ␣Provide ␣Key␣as ␣ i n t ’ )
raise
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# In i t i a l i z e key s ta te from input key value
key_state = [ ]
for z in range ( s e l f . tweak_size ) :

sub_key = s e l f . key >> (( s e l f . key_size − s e l f . b lock_s ize ) − ( z ∗ s e l f . b lock_s ize ) )
tweakkey = s e l f . int_to_state ( sub_key )
key_state . append ( tweakkey )

# Pre−compile key schedule
# Generate f i r s t round key from base input key
round_key_xor = [ key_state [ 0 ] [ 0 ] , key_state [ 0 ] [ 1 ] ]
for twky in range (1 , s e l f . tweak_size ) :

round_key_xor [ 0 ] = array ( ’B ’ , map( xor , round_key_xor [ 0 ] , key_state [ twky ] [ 0 ] ) )
round_key_xor [ 1 ] = array ( ’B ’ , map( xor , round_key_xor [ 1 ] , key_state [ twky ] [ 1 ] ) )

s e l f . key_schedule = [ round_key_xor ]

# Generate remaining round keys
for x in range ( s e l f . rounds ) :

round_key_xor = [ array ( ’B ’ , [ 0 , 0 , 0 , 0 ] ) , array ( ’B ’ , [ 0 , 0 , 0 , 0 ] ) ]
for y , twky in enumerate ( key_state ) :

# Perform Permutation Step
modifed_key_rows = [ array ( ’B ’ , [ twky [ 2 ] [ 1 ] , twky [ 3 ] [ 3 ] , twky [ 2 ] [ 0 ] , twky [ 3 ] [ 1 ] ] ) ,

array ( ’B ’ , [ twky [ 2 ] [ 2 ] , twky [ 3 ] [ 2 ] , twky [ 3 ] [ 0 ] , twky [ 2 ] [ 3 ] ] ) ]

i f y > 0 : # Perform LFSR step on higher tweakey components
l f s r_rows = [ ]
for mod_row in modifed_key_rows :

l f s r_row = array ( ’B ’ , [ ] )
for c e l l in mod_row :

i f s e l f . s_val == 4 :
i f y == 1 :

l f sr_row . append ( ( ( c e l l << 1) ^ ( ( c e l l >> 3) ^ ( c e l l >> 2) & 1)) & 0xF)
else :

l f s r_row . append ( ( ( c e l l >> 1) ^ ( ( c e l l << 3) ^ c e l l & 0x8 ) ) & 0xF)
else :

i f y == 1 :
l f sr_row . append ( ( ( c e l l << 1) ^ ( ( c e l l >> 7) ^ ( c e l l >> 5) & 1)) & 0xFF)

else :
l f s r_row . append ( ( ( c e l l >> 1) ^ ( ( c e l l << 7) ^ ( c e l l << 1) & 0x80 ) ) & 0xFF)

l f s r_rows . append ( l f sr_row )
modifed_key_rows = l f s r_rows

# Store updated round key data
round_key_xor [ 0 ] = array ( ’B ’ , map( xor , round_key_xor [ 0 ] , modifed_key_rows [ 0 ] ) )
round_key_xor [ 1 ] = array ( ’B ’ , map( xor , round_key_xor [ 1 ] , modifed_key_rows [ 1 ] ) )

# Update key s ta te
key_state [ y ] = [ modifed_key_rows [ 0 ] ,

modifed_key_rows [ 1 ] ,
twky [ 0 ] ,
twky [ 1 ] ]

s e l f . key_schedule . append ( [ round_key_xor [ 0 ] , round_key_xor [ 1 ] ] )
s e l f . t r a c e =[ ]
s e l f . intermediary_values= [ ]
s e l f . intermetiate_values_round_2 =[]

def encrypt ( s e l f , p l a i n t e x t ) :

try :
pt_int = p l a i n t e x t & s e l f . block_mask
p la in t ex t_s ta t e = s e l f . int_to_state ( pt_int )
s e l f . i n s = p la in t ex t_s ta t e

except ( ValueError , TypeError ) :
print ( ’ I nva l i d ␣ P la in t ex t ␣Value ! ’ )
print ( ’ P lease ␣Provide ␣ P la in t ex t ␣ as ␣ i n t ’ )
raise
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# Prepare Based On Mode
i f s e l f . mode == ’ECB’ :

i n t e rna l_s ta t e = p la in t ex t_s ta t e
i n t e rna l_s ta t e = s e l f . encrypt_funct ion ( i n t e rna l_s ta t e )
c i phe r t ex t = s e l f . state_to_int ( i n t e rna l_s ta t e )
return c i phe r t ex t

e l i f s e l f . mode == ’CTR’ :
i n t e rna l_s ta t e = s e l f . int_to_state ( s e l f . counter )
s e l f . counter += 1
in t e rna l_s ta t e = s e l f . encrypt_funct ion ( i n t e rna l_s ta t e )
i n t e rna l_s ta t e = [ array ( ’B ’ , map( xor , p l a in t ex t_s ta t e [ x ] , i n t e rna l_s ta t e [ x ] ) ) for x in range ( 4 ) ]
c i phe r t ex t = s e l f . state_to_int ( i n t e rna l_s ta t e )
return c i phe r t ex t

e l i f s e l f . mode == ’CBC’ :
i n t e rna l_s ta t e = [ array ( ’B ’ , map( xor , p l a in t ex t_s ta t e [ x ] , s e l f . i v [ x ] ) ) for x in range ( 4 ) ]
i n t e rna l_s ta t e = s e l f . encrypt_funct ion ( i n t e rna l_s ta t e )
s e l f . i v = in t e rna l_s ta t e
c i phe r t ex t = s e l f . state_to_int ( i n t e rna l_s ta t e )
return c i phe r t ex t

e l i f s e l f . mode == ’PCBC’ :
i n t e rna l_s ta t e = [ array ( ’B ’ , map( xor , p l a in t ex t_s ta t e [ x ] , s e l f . i v [ x ] ) ) for x in range ( 4 ) ]
i n t e rna l_s ta t e = s e l f . encrypt_funct ion ( i n t e rna l_s ta t e )
s e l f . i v = [ array ( ’B ’ , map( xor , p l a in t ex t_s ta t e [ x ] , i n t e rna l_s ta t e [ x ] ) ) for x in range ( 4 ) ]
c i phe r t ex t = s e l f . state_to_int ( i n t e rna l_s ta t e )
return c i phe r t ex t

e l i f s e l f . mode == ’CFB ’ :
i n t e rna l_s ta t e = s e l f . encrypt_funct ion ( s e l f . i v )
i n t e rna l_s ta t e = [ array ( ’B ’ , map( xor , p l a in t ex t_s ta t e [ x ] , i n t e rna l_s ta t e [ x ] ) ) for x in range ( 4 ) ]
s e l f . i v = in t e rna l_s ta t e
c i phe r t ex t = s e l f . state_to_int ( i n t e rna l_s ta t e )
return c i phe r t ex t

e l i f s e l f . mode == ’OFB’ :
i n t e rna l_s ta t e = s e l f . encrypt_funct ion ( s e l f . i v )
s e l f . i v = in t e rna l_s ta t e
i n t e rna l_s ta t e = [ array ( ’B ’ , map( xor , p l a in t ex t_s ta t e [ x ] , i n t e rna l_s ta t e [ x ] ) ) for x in range ( 4 ) ]
c i phe r t ex t = s e l f . state_to_int ( i n t e rna l_s ta t e )
return c i phe r t ex t

def encrypt_funct ion ( s e l f , i n t e rna l_s ta t e ) :

K= [ ]
# Run Encryption Steps For Appropriate Number of Rounds
for round_num in range ( 3 ) :

p = [ ]
i f round_num > 0 :

p = in t e rna l_s ta t e
i f round_num==1:

s e l f . intermediary_values=[p , K]
i f round_num ==2:

s e l f . intermediate_values_round_2=[p ,K]

i n t e rna l_s ta t e = [ array ( ’B ’ ,map( xor , i n t e rna l_s ta t e [ 0 ] , K[ 0 ] ) ) ,
array ( ’B ’ ,map( xor , i n t e rna l_s ta t e [ 1 ] , K[ 1 ] ) ) ,
array ( ’B ’ ,map( xor , i n t e rna l_s ta t e [ 2 ] , K[ 2 ] ) ) ,
array ( ’B ’ ,map( xor , i n t e rna l_s ta t e [ 3 ] , K[ 3 ] ) )
]

# S−box Layer
i f s e l f . s_val == 4 :

sbox_state = [ array ( ’B ’ , [ s e l f . sbox4 [ state_nib ] for state_nib in state_row ] ) for state_row in i n t e rna l_s ta t e ]
else :

sbox_state = [ array ( ’B ’ , [ s e l f . sbox8 [ state_byte ] for state_byte in state_row ] ) for state_row in i n t e rna l_s ta t e ]
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i n t e rna l_s ta t e = sbox_state

key_state=[ array ( ’B ’ , [ 0 b00000000 , 0 b00000000 , 0 b00000000 , 0 b00000000 ] ) ,
array ( ’B ’ , [ 0 b00000000 , 0 b00000000 , 0 b00000000 , 0 b00000000 ] ) ,
array ( ’B ’ , [ 0 b00000000 , 0 b00000000 , 0 b00000000 , 0 b00000000 ] ) ,
array ( ’B ’ , [ 0 b00000000 , 0 b00000000 , 0 b00000000 , 0 b00000000 ] ) ]

# AddRoundConstant
round_constant = s e l f . round_constants [ round_num ]
c0 = round_constant & 0xF
c1 = round_constant >> 4
c2 = 0x2
in t e rna l_s ta t e [ 0 ] [ 0 ] ^= c0
in t e rna l_s ta t e [ 1 ] [ 0 ] ^= c1
in t e rna l_s ta t e [ 2 ] [ 0 ] ^= c2

# AddTweakKey
key_state [ 0 ] = array ( ’B ’ , map( xor , key_state [ 0 ] , s e l f . key_schedule [ round_num ] [ 0 ] ) )
key_state [ 1 ] = array ( ’B ’ , map( xor , key_state [ 1 ] , s e l f . key_schedule [ round_num ] [ 1 ] ) )

# Shi f t Rows
i n t e rna l_s ta t e = [ i n t e rna l_s ta t e [ 0 ] ,

array ( ’B ’ , [ i n t e rna l_s ta t e [ 1 ] [ 3 ] , i n t e rna l_s ta t e [ 1 ] [ 0 ] , i n t e rna l_s ta t e [ 1 ] [ 1 ] , i n t e rna l_s ta t e [ 1 ] [ 2 ] ] ) ,
array ( ’B ’ , [ i n t e rna l_s ta t e [ 2 ] [ 2 ] , i n t e rna l_s ta t e [ 2 ] [ 3 ] , i n t e rna l_s ta t e [ 2 ] [ 0 ] , i n t e rna l_s ta t e [ 2 ] [ 1 ] ] ) ,
array ( ’B ’ , [ i n t e rna l_s ta t e [ 3 ] [ 1 ] , i n t e rna l_s ta t e [ 3 ] [ 2 ] , i n t e rna l_s ta t e [ 3 ] [ 3 ] , i n t e rna l_s ta t e [ 3 ] [ 0 ] ] ) ]

#separate s h i f t rows for key−s ta te matrix
key_state = [ key_state [ 0 ] ,

array ( ’B ’ , [ key_state [ 1 ] [ 3 ] , key_state [ 1 ] [ 0 ] , key_state [ 1 ] [ 1 ] , key_state [ 1 ] [ 2 ] ] ) ,
array ( ’B ’ , [ key_state [ 2 ] [ 2 ] , key_state [ 2 ] [ 3 ] , key_state [ 2 ] [ 0 ] , key_state [ 2 ] [ 1 ] ] ) ,
array ( ’B ’ , [ key_state [ 3 ] [ 1 ] , key_state [ 3 ] [ 2 ] , key_state [ 3 ] [ 3 ] , key_state [ 3 ] [ 0 ] ] ) ]

# MixColumns
mix_1 = array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ 1 ] , i n t e rna l_s ta t e [ 2 ] ) )
mix_2 = array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ 0 ] , i n t e rna l_s ta t e [ 2 ] ) )
mix_3 = array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ 3 ] , mix_2 ) )

i n t e rna l_s ta t e = [mix_3 , i n t e rna l_s ta t e [ 0 ] , mix_1 , mix_2 ]

mix_1 = array ( ’B ’ , map( xor , key_state [ 1 ] , key_state [ 2 ] ) )
mix_2 = array ( ’B ’ , map( xor , key_state [ 0 ] , key_state [ 2 ] ) )
mix_3 = array ( ’B ’ , map( xor , key_state [ 3 ] , mix_2 ) )

key_state = [mix_3 , key_state [ 0 ] , mix_1 , mix_2 ]
K = key_state

return i n t e rna l_s ta t e

def decrypt ( s e l f , c i phe r t ex t ) :

try :
ct_int = c iphe r t ex t & s e l f . block_mask
c iphe r t ex t_sta t e = s e l f . int_to_state ( ct_int )

except ( ValueError , TypeError ) :
print ( ’ I nva l i d ␣Ciphertext ␣Value ! ’ )
print ( ’ P lease ␣Provide ␣Ciphertext ␣ as ␣ i n t ’ )
raise

# Prepare Based On Mode
i f s e l f . mode == ’ECB’ :

i n t e rna l_s ta t e = c iphe r t ex t_sta t e
i n t e rna l_s ta t e = s e l f . decrypt_funct ion ( i n t e rna l_s ta t e )
p l a i n t e x t = s e l f . state_to_int ( i n t e rna l_s ta t e )
return p l a i n t e x t

e l i f s e l f . mode == ’CTR’ :
i n t e rna l_s ta t e = s e l f . int_to_state ( s e l f . counter )
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s e l f . counter += 1
in t e rna l_s ta t e = s e l f . encrypt_funct ion ( i n t e rna l_s ta t e )
i n t e rna l_s ta t e = [ array ( ’B ’ , map( xor , c iphe r t ex t_sta t e [ x ] , i n t e rna l_s ta t e [ x ] ) ) for x in range ( 4 ) ]
p l a i n t e x t = s e l f . state_to_int ( i n t e rna l_s ta t e )
return p l a i n t e x t

e l i f s e l f . mode == ’CBC’ :
i n t e rna l_s ta t e = s e l f . decrypt_funct ion ( c iphe r t ex t_sta t e )
i n t e rna l_s ta t e = [ array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ x ] , s e l f . i v [ x ] ) ) for x in range ( 4 ) ]
s e l f . i v = c iphe r t ex t_sta t e
p l a i n t e x t = s e l f . state_to_int ( i n t e rna l_s ta t e )
return p l a i n t e x t

e l i f s e l f . mode == ’PCBC’ :
i n t e rna l_s ta t e = s e l f . decrypt_funct ion ( c iphe r t ex t_sta t e )
i n t e rna l_s ta t e = [ array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ x ] , s e l f . i v [ x ] ) ) for x in range ( 4 ) ]
s e l f . i v = [ array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ x ] , c iphe r t ex t_sta t e [ x ] ) ) for x in range ( 4 ) ]
p l a i n t e x t = s e l f . state_to_int ( i n t e rna l_s ta t e )
return p l a i n t e x t

e l i f s e l f . mode == ’CFB ’ :
i n t e rna l_s ta t e = s e l f . encrypt_funct ion ( s e l f . i v )
i n t e rna l_s ta t e = [ array ( ’B ’ , map( xor , c iphe r t ex t_sta t e [ x ] , i n t e rna l_s ta t e [ x ] ) ) for x in range ( 4 ) ]
s e l f . i v = c iphe r t ex t_sta t e
p l a i n t e x t = s e l f . state_to_int ( i n t e rna l_s ta t e )
return p l a i n t e x t

e l i f s e l f . mode == ’OFB’ :
i n t e rna l_s ta t e = s e l f . encrypt_funct ion ( s e l f . i v )
s e l f . i v = in t e rna l_s ta t e
i n t e rna l_s ta t e = [ array ( ’B ’ , map( xor , c iphe r t ex t_sta t e [ x ] , i n t e rna l_s ta t e [ x ] ) ) for x in range ( 4 ) ]
p l a i n t e x t = s e l f . state_to_int ( i n t e rna l_s ta t e )
return p l a i n t e x t

def decrypt_funct ion ( s e l f , i n t e rna l_s ta t e ) :

for round_num in range ( s e l f . rounds − 1 , −1, −1):

# Inverse Mix Columns
mix_1 = array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ 0 ] , i n t e rna l_s ta t e [ 3 ] ) )
mix_2 = array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ 1 ] , i n t e rna l_s ta t e [ 3 ] ) )
mix_3 = array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ 2 ] , mix_2 ) )
i n t e rna l_s ta t e = [ i n t e rna l_s ta t e [ 1 ] , mix_3 , mix_2 , mix_1 ]

# Inverse Sh i f t Rows
i n t e rna l_s ta t e = [ i n t e rna l_s ta t e [ 0 ] ,

array ( ’B ’ , [ i n t e rna l_s ta t e [ 1 ] [ 1 ] ,
i n t e rna l_s ta t e [ 1 ] [ 2 ] ,
i n t e rna l_s ta t e [ 1 ] [ 3 ] ,
i n t e rna l_s ta t e [ 1 ] [ 0 ] ] ) ,

array ( ’B ’ , [ i n t e rna l_s ta t e [ 2 ] [ 2 ] ,
i n t e rna l_s ta t e [ 2 ] [ 3 ] ,
i n t e rna l_s ta t e [ 2 ] [ 0 ] ,
i n t e rna l_s ta t e [ 2 ] [ 1 ] ] ) ,

array ( ’B ’ , [ i n t e rna l_s ta t e [ 3 ] [ 3 ] ,
i n t e rna l_s ta t e [ 3 ] [ 0 ] ,
i n t e rna l_s ta t e [ 3 ] [ 1 ] ,
i n t e rna l_s ta t e [ 3 ] [ 2 ] ] ) ]

# Inverse AddTweakKey
i n t e rna l_s ta t e [ 0 ] = array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ 0 ] , s e l f . key_schedule [ round_num ] [ 0 ] ) )
i n t e rna l_s ta t e [ 1 ] = array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ 1 ] , s e l f . key_schedule [ round_num ] [ 1 ] ) )

# Inverse AddRoundConstant
round_constant = s e l f . round_constants [ round_num ]
c0 = round_constant & 0xF
c1 = round_constant >> 4
c2 = 0x2
in t e rna l_s ta t e [ 0 ] [ 0 ] ^= c0
in t e rna l_s ta t e [ 1 ] [ 0 ] ^= c1
in t e rna l_s ta t e [ 2 ] [ 0 ] ^= c2
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# Inverse S−box Layer
i f s e l f . s_val == 4 :

sbox_state = [ array ( ’B ’ , [ s e l f . sbox4_inv [ state_nib ] for state_nib in state_row ] ) for state_row in i n t e rna l_s ta t e ]
else :

sbox_state = [ array ( ’B ’ , [ s e l f . sbox8_inv [ state_byte ] for state_byte in state_row ] ) for state_row in i n t e rna l_s ta t e ]

i n t e rna l_s ta t e = sbox_state
return i n t e rna l_s ta t e

def deep_copy ( s e l f , inp ) :
copy= [ ]
for i in range ( 4 ) :

row=[]
for j in range ( 4 ) :

row [ i ] [ j ]= inp [ i ] [ j ]
copy [ i ]=row

return copy

i f __name__ == "__main__" :

p = SkinnyCipher (0 x17401096d712b2adcc0143a91dddb11c )
d = p . encrypt (0 x5768de09fd1f69fd2a90de397270597a )
w = p . decrypt (0 x1de2136fb373e0522cc2351306e9f62d )
print ( ’ Encrypt : ’ , format (d , ’#018X ’ ) )
print ( ’ Decrypt : ’ , format (w, ’#018X ’ ) )

A.2 Helper Library

Listing A.2: Helper library for the experiments
import random
import s t r i n g
import matp lo t l ib
import matp lo t l ib . pyplot as p l t
from matp lo t l ib . t i c k e r import StrMethodFormatter
import numpy as np

def hw( int_no ) :

c = 0
while ( int_no ) :

int_no &= ( int_no − 1)
c += 1

return c

def gen_pla intexts (n ) :
p l a i n t e x t s =[ ]
for i in range (n ) :

p l a i n t e x t=""
for j in range ( 1 6 ) :

p l a i n t e x t+=str (np . random . randint (0 , 16))
p l a i n t e x t s . append ( int ( p l a i n t e x t ) )

return p l a i n t e x t s

# Majority voting algorithm
def majority_vote ( votes ) :

# votes = l i s t of integer votes
votes_table = {}
for vote in votes :

i f vote in votes_table :
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votes_table [ vote ] += 1
else :

votes_table [ vote ] = 1
return votes_table

# Get l i s t of a l l corresponding key dependant sboxes
def determine_kdi ( target_nibb le ) :

i f target_nibb le in [ 0 , 4 , 1 2 ] :
return [ 0 , 4 , 1 2 ]

e l i f target_nibb le in [ 1 , 5 , 1 3 ] :
return [ 1 , 5 , 1 3 ]

e l i f target_nibb le in [ 2 , 6 , 1 4 ] :
return [ 2 , 6 , 1 4 ]

e l i f target_nibb le in [ 3 , 7 , 1 5 ] :
return [ 3 , 7 , 1 5 ]

def recover_pk ( va l ) :

# Inverse Mix Col
mix_1 = val [ 0 ] ^ va l [ 3 ]
mix_2 = val [ 1 ] ^ va l [ 3 ]
mix_3 = val [ 2 ] ^ mix_2
in t e rna l_s ta t e = [ va l [ 1 ] , mix_3 ,mix_2 , mix_1 ]

# Inverse Sh i f t Rows
i n t e rna l_s ta t e = [ i n t e rna l_s ta t e [ 0 ] ,

[ i n t e rna l_s ta t e [ 1 ] [ 1 ] , i n t e rna l_s ta t e [ 1 ] [ 2 ] , i n t e rna l_s ta t e [ 1 ] [ 3 ] , i n t e rna l_s ta t e [ 1 ] [ 0 ] ] ,
[ i n t e rna l_s ta t e [ 2 ] [ 2 ] , i n t e rna l_s ta t e [ 2 ] [ 3 ] , i n t e rna l_s ta t e [ 2 ] [ 0 ] , i n t e rna l_s ta t e [ 2 ] [ 1 ] ] ,
[ i n t e rna l_s ta t e [ 3 ] [ 3 ] , i n t e rna l_s ta t e [ 3 ] [ 0 ] , i n t e rna l_s ta t e [ 3 ] [ 1 ] , i n t e rna l_s ta t e [ 3 ] [ 2 ] ] , ]

return i n t e rna l_s ta t e

def plot_mult ip le_attacks ( plot_0 , plot_1 , plot_2 , plot_3 , label_0 , label_1 , label_2 , label_3 , o u t f i l e ) :

#xaxs=np . array ( l i s t ( range (0 , len (plot_0 ) ,1)))
#plot_labe l= "TK1_0 recovery rate | experiments : "+ str ( len ( keys ))+", std : "+str ( std )
p l t . f i g u r e ( )
p l t . y l ab e l ( ’ Success ␣ ra t e ’ )
p l t . x l ab e l ( ’ Traces ’ )
p l t . p l o t (np . array ( plot_0 ) , l a b e l=label_0 , c=" red " )
p l t . p l o t (np . array ( plot_1 ) , l a b e l=label_1 , c="blue " )
p l t . p l o t (np . array ( plot_2 ) , l a b e l=label_2 , c=" green " )
p l t . p l o t (np . array ( plot_3 ) , l a b e l=label_3 , c="black " )
p l t . g r id ( ax i s=’y ’ )
p l t . gca ( ) . xax i s . set_major_formatter ( StrMethodFormatter ( ’ {x : , . 0 f } ’ ) ) # No decimal places
p l t . l egend ( )
p l t . draw ( )
p l t . s a v e f i g ( o u t f i l e )

def plot_mult ip le_attacks ( plot_0 , plot_1 , plot_2 , plot_3 , label_0 , label_1 , label_2 , label_3 , o u t f i l e ) :
plot_0 . i n s e r t (0 , 0 . 0 )
plot_1 . i n s e r t (0 , 0 . 0 )
plot_2 . i n s e r t (0 , 0 . 0 )
plot_3 . i n s e r t (0 , 0 . 0 )
#xaxs=np . array ( l i s t ( range (0 , len (plot_0 ) ,1)))
#plot_labe l= "TK1_0 recovery rate | experiments : "+ str ( len ( keys ))+", std : "+str ( std )
p l t . f i g u r e ( )
p l t . y l ab e l ( ’ Success ␣ ra t e ’ )
p l t . x l ab e l ( ’ Traces ’ )
p l t . p l o t (np . array ( plot_0 ) , l a b e l=label_0 , c=" red " )
p l t . p l o t (np . array ( plot_1 ) , l a b e l=label_1 , c="blue " )
p l t . p l o t (np . array ( plot_2 ) , l a b e l=label_2 , c=" green " )
p l t . p l o t (np . array ( plot_3 ) , l a b e l=label_3 , c="black " )
p l t . g r id ( ax i s=’y ’ )
p l t . gca ( ) . xax i s . set_major_formatter ( StrMethodFormatter ( ’ {x : , . 0 f } ’ ) ) # No decimal places
p l t . l egend ( )
p l t . draw ( )
p l t . s a v e f i g ( o u t f i l e )

def plot_s ing le_attack ( plot_0 , label_0 , o u t f i l e ) :

65



p l t . f i g u r e ( )
p l t . y l ab e l ( ’ Success ␣ ra t e ’ )
p l t . x l ab e l ( ’ Traces ’ )
p l t . p l o t (np . array ( plot_0 ) , l a b e l=label_0 , c="black " )
p l t . l egend ( )
p l t . draw ( )

p l t . s a v e f i g ( o u t f i l e )

def plot_TK_recovery_rates ( success_rate_unanimous , success_rate_majority_vote , success_rate_indiv idua l , succcess_rate_simultanous , o u t f i l e , sigma , keys ) :
# Plot the re su l t s of each experiment and save to f i l e

f i g , axs = p l t . subp lo t s (1 ,4 , f i g s i z e =(28 ,7) , sharey=True )
#f i g . s up t i t l e ( ’ success−discard rate ’)
p l t . subplots_adjust ( bottom=0.2)

axs [ 0 ] . s e t_ t i t l e ( ’ unanimous ’ )
axs [ 1 ] . s e t_ t i t l e ( ’ major i ty ␣ vote ’ )
axs [ 2 ] . s e t_ t i t l e ( ’ i nd i v i dua l ’ )
axs [ 3 ] . s e t_ t i t l e ( ’ s imultanous ’ )

axs [ 0 ] . p l o t (np . array ( success_rate_unanimous ) , l a b e l=" va l i d ␣and␣ co r r e c t " , c=" red " )
axs [ 1 ] . p l o t (np . array ( success_rate_majority_vote ) , l a b e l=" va l i d ␣and␣ co r r e c t " , c=" red " )
axs [ 2 ] . p l o t (np . array ( succes s_rate_ind iv idua l ) , l a b e l=" va l i d ␣and␣ co r r e c t " , c=" red " )

#std_string="experiments : "+str ( len ( keys))+" \n std : "+ str (sigma)
#axs [ 3 ] . p lo t ( [ ] , [ ] , ’ ’ , l a b e l=std_string ) #dir ty hack to get std into legend
axs [ 3 ] . p l o t (np . array ( succcess_rate_simultanous ) , l a b e l=" va l i d ␣and␣ co r r e c t " , c=" red " )

axs [ 3 ] . l egend ( bbox_to_anchor=(1.1 , 1 . 0 5 ) )

for ax in axs . f l a t :
ax . set ( x l ab e l=’ t r a c e s ’ , y l ab e l=’ p r obab i l i t y ’ )

# Hide x l a b e l s and t i c k l a b e l s for top p lo t s and y t i c k s for r igh t p lo t s .
for ax in axs . f l a t :

ax . labe l_outer ( )

f i g . s a v e f i g ( o u t f i l e , bbox_inches=’ t i gh t ’ )

def plot_requi red_traces ( plot_0 , plot_1 , plot_2 , plot_3 , label_0 , label_1 , label_2 , label_3 , o u t f i l e , std ) :
p l t . f i g u r e ( )
p l t . y l ab e l ( ’ Traces ’ )
p l t . x l ab e l ( $\ sigma$ )
p l t . p l o t ( std , np . array ( plot_0 ) , l a b e l=label_0 , c=" red " )
p l t . p l o t ( std , np . array ( plot_1 ) , l a b e l=label_1 , c="blue " )
p l t . p l o t ( std , np . array ( plot_2 ) , l a b e l=label_2 , c=" green " )
p l t . p l o t ( std , np . array ( plot_3 ) , l a b e l=label_3 , c="black " )
p l t . g r id ( ax i s=’y ’ )
p l t . gca ( ) . xax i s . set_major_formatter ( StrMethodFormatter ( ’ {x : , . 0 f } ’ ) ) # No decimal places
p l t . l egend ( )
p l t . draw ( )
p l t . s a v e f i g ( o u t f i l e )

A.3 DPA Utilities

Listing A.3: DPA utilities
import numpy as np
import s c ipy as sp
import matp lo t l ib
import matp lo t l ib . pyplot as p l t
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import math
import sys

import skinny
import he lp e r s

from s c ipy import s t a t s
from array import array
from operator import xor

np . s e t_pr in topt i ons ( th re sho ld=sys . maxsize )

def compute_intemediate_values (P,K) : #Plaintexts l i s t , K int
known_RK=[]
IS =[ ] #List of each p ’ s IS ’
CP=[] #P’

for p l a i n t e x t in P:
#valid_modes = [ ’ECB’ , ’CTR’ , ’CBC’ , ’PCBC’ , ’CFB’ , ’OFB’ ]
c iphe r = skinny . SkinnyCipher (K,64 , 64 ) #TK1
c iphe r . encrypt ( p l a i n t e x t )
p=c ipher . intermediary_values [ 0 ]
RK=c ipher . intermediary_values [ 1 ]

p_xor_k = [ array ( ’B ’ ,map( xor , p [ 0 ] , RK[ 0 ] ) ) ,
array ( ’B ’ ,map( xor , p [ 1 ] , RK[ 1 ] ) ) ,
array ( ’B ’ ,map( xor , p [ 2 ] , RK[ 2 ] ) ) ,
array ( ’B ’ ,map( xor , p [ 3 ] , RK[ 3 ] ) )

]
p_xor_k=np . matrix (p_xor_k)

s =[ ]
sbox4 = array ( ’B ’ , [ 1 2 , 6 , 9 , 0 , 1 , 10 , 2 , 11 , 3 , 8 , 5 , 13 , 4 , 14 , 7 , 1 5 ] )
for x in np . nd i t e r (p_xor_k ) :

s . append ( sbox4 [ x ] )

IS . append (np . matrix ( s ) )
CP. append (np . asmatr ix (p ) . f l a t t e n ( ) )

return [ IS , CP, np . matrix (RK) ]

def gen_traces ( s ta t e s , std ) :
t r a c e s = [ ]
for i in range ( len ( s t a t e s ) ) :

t =[ ]
for j in range ( 1 6 ) :

mu=he lp e r s .hw( s t a t e s [ i ] . item ( j ) )
t . append (np . random . normal (mu, std ) )

t r a c e s . append (np . array ( t ) . f l a t t e n ( ) )
return np . array ( t r a c e s )

# Formulate key hypothesis , V for s ing l e sbox
def compute_v( sbox_index , l ist_of_interm_p ) :

sbox4 = array ( ’B ’ , [ 1 2 , 6 , 9 , 0 , 1 , 10 , 2 , 11 , 3 , 8 , 5 , 13 , 4 , 14 , 7 , 1 5 ] )
V = [ ]
for i in range ( len ( l ist_of_interm_p ) ) :

row=[]
for j in range ( 1 6 ) :

hyp_val = list_of_interm_p [ i ] . item ( sbox_index ) ^ j
row . append ( he lp e r s .hw( sbox4 [ hyp_val ] ) )

V. append ( row )
return V

# Maximum−log−l i k e l i hood dis t inguisher
def d i s t i n g u i s h e r (V, t races , target_nibb le ) :

std=0.5
s c o r e s =[ ]
for i in range ( 1 6 ) :

s co r e=0
for ( t , v ) in zip ( t races ,V) :

mu=v . item ( i )
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d=sp . s t a t s . norm(mu, std )
l=t [ target_nibb le ]
s co r e+= math . l og (d . pdf ( l ) )

s c o r e s . append ( s co r e )
return s c o r e s

# MLL via mult ivariate d i s t r i bu t ion of a l l same−key−dependent s−boxes
def d i s t i ngu i sh e r_mu l t i v a r i a t e (V,T, kdi ) :

V_0=V[ 0 ]
V_1=V[ 1 ]
V_2=V[ 2 ]
std=0.5 #std of d i s t inguisher
s c o r e s =[ ]
cov_matrix= np . i d en t i t y (3) ∗ std ∗∗2

# Select ion function
for i in range ( 1 6 ) :

s co r e=0
for j in range ( len (T) ) :

mu=[V_0[ j ] . item ( i ) ,V_1[ j ] . item ( i ) ,V_2[ j ] . item ( i ) ]
Sigma=cov_matrix
d i s t r i b = sp . s t a t s . mult ivar iate_normal (mu, Sigma )
t r a c e s =[T[ j ] [ kdi [ 0 ] ] ,T[ j ] [ kdi [ 1 ] ] ,T[ j ] [ kdi [ 2 ] ] ]
s c o r e+= math . l og ( d i s t r i b . pdf ( t r a c e s ) )

s c o r e s . append ( s co r e )
return s c o r e s

# Standard univariate DPA attack
def ind iv idua l_atk (T, c lear_text_nibbles , target_nibb le ) :

V = np . matrix ( compute_v( target_nibble , c l ear_text_nibb les ) )
s c o r e s=d i s t i n g u i s h e r (V,T, target_nibb le )

return ( s c o r e s . index (max( s c o r e s ) ) )

def simultanous_atk (T, c lear_text_nibbles , target_nibb le ) :
kdi=he lp e r s . determine_kdi ( target_nibb le )
V = [ ]
s c o r e s =[ ]
for ind in kdi :

V. append (np . matrix ( compute_v( ind , c l ear_text_nibb les ) ) )
s c o r e s=d i s t i ngu i sh e r_mu l t i v a r i a t e (V,T, kdi )

return ( s c o r e s . index (max( s c o r e s ) ) )

def majority_vote_atk (T, c lear_text_nibbles , target_nibb le ) :
kdi=he lp e r s . determine_kdi ( target_nibb le )
V = [ ]
s c o r e s =[ ]
for ind in kdi :

V. append (np . matrix ( compute_v( ind , c l ear_text_nibb les ) ) )
s c o r e s . append ( d i s t i n g u i s h e r (V[ kdi . index ( ind ) ] ,T, ind ) )

argmax_scores = [ s co r e . index (max( s co r e ) ) for s co r e in s c o r e s ]

votes_table = he lp e r s . majority_vote ( argmax_scores )
k_cand = max( votes_table , key=votes_table . get )

i f votes_table . get (k_cand) > 1 :
return k_cand # I f there are a winner , return winner

else :
return −1 # else Discard voting

def unanimous_attack (T, c lear_text_nibbles , target_nibb le ) :
kdi=he lp e r s . determine_kdi ( target_nibb le )
V = [ ]
s c o r e s =[ ]
for ind in kdi :

V. append (np . matrix ( compute_v( ind , c l ear_text_nibb les ) ) )
s c o r e s . append ( d i s t i n g u i s h e r (V[ kdi . index ( ind ) ] ,T, ind ) )
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argmax_scores = [ s co r e . index (max( s co r e ) ) for s co r e in s c o r e s ] #Argmax of l i s t of scores

i f len ( set ( argmax_scores))== 1 :
return argmax_scores [ 0 ]

else :
return −1

# Returning scores , no argmax
# MLL via mult ivariate d i s t r i bu t ion of a l l same−key−dependent s−boxes
def s imultanous_atk_scores (T, c lear_text_nibbles , target_nibb le ) :

kdi=he lp e r s . determine_kdi ( target_nibb le )
V = [ ]
for ind in kdi :

V. append (np . matrix ( compute_v( ind , c l ear_text_nibb les ) ) )
return d i s t i ngu i sh e r_mu l t i v a r i a t e (V,T, kdi )

def majority_vote_atk_scores (T, c lear_text_nibbles , target_nibb le ) :
kdi=he lp e r s . determine_kdi ( target_nibb le )
V = [ ]

for ind in kdi :
V. append (np . matrix ( compute_v( ind , c l ear_text_nibb les ) ) )
s c o r e s . append ( d i s t i n g u i s h e r (V[ kdi . index ( ind ) ] ,T, ind ) )

argmax_scores = [ s co r e . index (max( s co r e ) ) for s co r e in s c o r e s ]

votes_table = he lp e r s . majority_vote ( argmax_scores )
k_cand = max( votes_table , key=votes_table . get )

i f votes_table . get (k_cand) > 1 :
return k_cand # I f there are a winner , return winner

else :
return −1 # else Discard voting

def unanimous_attack_scores (T, c lear_text_nibbles , target_nibb le ) :
kdi=he lp e r s . determine_kdi ( target_nibb le )
V = [ ]
s c o r e s =[ ]
for ind in kdi :

V. append (np . matrix ( compute_v( ind , c l ear_text_nibb les ) ) )
s c o r e s . append ( d i s t i n g u i s h e r (V[ kdi . index ( ind ) ] ,T, ind ) )

a=np . matrix ( s c o r e s )

argmax_scores = [ s co r e . index (max( s co r e ) ) for s co r e in s c o r e s ] #Argmax of l i s t of scores

i f len ( set ( argmax_scores))== 1 :
return a .sum( ax i s=0)

else :
return [−1]

def ind iv idua l_atk_scores (T, c lear_text_nibbles , target_nibb le ) :
V = np . matrix ( compute_v( target_nibble , c l ear_text_nibb les ) )
return d i s t i n g u i s h e r (V,T, target_nibb le )

A.4 DPA Attacks Against SKINNY-64-64

Listing A.4: Attack execution
import numpy as np
import s c ipy as sp
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import matp lo t l ib
import matp lo t l ib . pyplot as p l t
from matp lo t l ib . patches import Rectangle
import math
import sys

import skinny
import he lp e r s
import dpau t i l s

from s c ipy import s t a t s
from array import array
from operator import xor

np . s e t_pr in topt i ons ( th re sho ld=sys . maxsize )

#Parameters as program args
N=int ( sys . argv [ 1 ] ) # 20
std=f loat ( sys . argv [ 2 ] ) # 0.5
number_of_experiments=int ( sys . argv [ 3 ] ) # 200

TK1_0=[0 ,1 ,2 ,3 ] #

keys=np . random . randint (2147483647 , 9223372036854775807 , s i z e=number_of_experiments , dtype=np . int64 )

P=he lp e r s . gen_pla intexts (N)

# Precompute intermediate values and power traces for d i f f e r en t keys

intermediate_values =[ ]
for key in keys :

va l=dpau t i l s . compute_intemediate_values (P, int ( key ) )
interm_values=val [ 0 ]
c l ea r_text=val [ 1 ]
TK1=val [ 2 ] . A1
T = dpaut i l s . gen_traces ( interm_values , std )
intermediate_values . append ( [ interm_values , c lear_text ,TK1,T] )

simultanous_success_rate_pr_n =[]
Ns=l i s t ( range (1 ,N, 1 ) )
for n in Ns :

probs =[ ]

for i , key in enumerate ( keys ) :
c l ea r_text = intermediate_values [ i ] [ 1 ]
TK1 = intermediate_values [ i ] [ 2 ]
T = intermediate_values [ i ] [ 3 ]

TK1_0_guess=[ ]

# Attack TK1 nibb le i ( f i r s t row of TK1)
for i in range ( 4 ) :

t=T [ : n ]
ct=c lear_text [ : n ]
n ibble_guess=dpau t i l s . s imultanous_atk ( t , ct , i )
TK1_0_guess . append ( nibble_guess )

#_____SUCCESS/FAIL_________________
i f (np . array_equal (TK1 [ 0 : 4 ] , TK1_0_guess ) ) :

probs . append (1)
else :

probs . append (0)
simultanous_success_rate_pr_n . append (np . average ( probs ) )

majority_vote_success_rate_pr_n =[]
Ns=l i s t ( range (1 ,N, 1 ) )
for n in Ns :

probs =[ ]

for i , key in enumerate ( keys ) :
c l ea r_text = intermediate_values [ i ] [ 1 ]
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TK1 = intermediate_values [ i ] [ 2 ]
T = intermediate_values [ i ] [ 3 ]
TK1_0_guess=[ ]

# Attack TK1 nibb le i ( f i r s t row of TK1)
for i in range ( 4 ) :

t=T [ : n ]
ct=c lear_text [ : n ]
n ibble_guess=dpau t i l s . majority_vote_atk ( t , ct , i )
TK1_0_guess . append ( nibble_guess )

#_____SUCCESS/FAIL_________________
i f (np . array_equal (TK1 [ 0 : 4 ] , TK1_0_guess ) ) :

probs . append (1)
else :

probs . append (0)
majority_vote_success_rate_pr_n . append (np . average ( probs ) )

unanimous_success_rate_pr_n=[]
Ns=l i s t ( range (1 ,N, 1 ) )
for n in Ns :

probs =[ ]

for i , key in enumerate ( keys ) :
c l ea r_text = intermediate_values [ i ] [ 1 ]
TK1 = intermediate_values [ i ] [ 2 ]
T = intermediate_values [ i ] [ 3 ]
TK1_0_guess=[ ]

# Attack TK1 nibb le i ( f i r s t row of TK1)
for i in range ( 4 ) :

t=T [ : n ]
ct=c lear_text [ : n ]
n ibble_guess=dpau t i l s . unanimous_attack ( t , ct , i )
TK1_0_guess . append ( nibble_guess )

#_____SUCCESS/FAIL_________________
i f (np . array_equal (TK1 [ 0 : 4 ] , TK1_0_guess ) ) :

probs . append (1)
else :

probs . append (0)
unanimous_success_rate_pr_n . append (np . average ( probs ) )

standard_attack_success_rate_pr_n =[]
Ns=l i s t ( range (1 ,N, 1 ) )
for n in Ns :

probs =[ ]

for i , key in enumerate ( keys ) :
c l ea r_text = intermediate_values [ i ] [ 1 ]
TK1 = intermediate_values [ i ] [ 2 ]
T = intermediate_values [ i ] [ 3 ]
TK1_0_guess=[ ]

# Attack TK1 nibb le i ( f i r s t row of TK1)
for i in range ( 4 ) :

t=T [ : n ]
ct=c lear_text [ : n ]
n ibble_guess=dpau t i l s . ind iv idua l_atk ( t , ct , i )
TK1_0_guess . append ( nibble_guess )

#_____SUCCESS/FAIL_________________
i f (np . array_equal (TK1 [ 0 : 4 ] , TK1_0_guess ) ) :

probs . append (1)
else :

probs . append (0)
standard_attack_success_rate_pr_n . append (np . average ( probs ) )

succe s s_rate s= [ simultanous_success_rate_pr_n ,
majority_vote_success_rate_pr_n ,
unanimous_success_rate_pr_n ,
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standard_attack_success_rate_pr_n ]

o u t f i l e="TK1−10−recovery−rate−std−"+str ( std)+" . png"
np . save ( o u t f i l e , succe s s_rate s )

# Plott ing
he lp e r s . p lot_mult ip le_attacks ( simultanous_success_rate_pr_n , majority_vote_success_rate_pr_n ,

unanimous_success_rate_pr_n , individual_attack_success_rate_pr_n ,
" s imultanous " , "major i ty ␣ vote " ,
"unanimous" , " standard " ,
o u t f i l e )

A.5 Power Trace Generation

Listing A.5: Generate required traces
import numpy as np
import s c ipy as sp
import matp lo t l ib
import matp lo t l ib . pyplot as p l t
from matp lo t l ib . patches import Rectangle
from matp lo t l ib . t i c k e r import StrMethodFormatter
import math
import sys
import copy
import he lp e r s
import dpau t i l s

from s c ipy import s t a t s
from array import array
from operator import xor

np . s e t_pr in topt i ons ( th re sho ld=sys . maxsize )

N=20
number_of_experiments=50
keys=np . random . randint (2147483647 , 9223372036854775807 , s i z e=number_of_experiments , dtype=np . int64 )
a l f a =0.005
thre sho ld =0.995

P=he lp e r s . gen_pla intexts (N)

target_nibb le=0

STD=np . arange ( 0 . 1 , 3 , 0 . 1 )

a l l_ inte rmed ia t e =[ ]
for std in STD:

# Precompute intermediate values and power traces for d i f f e r en t keys
intermediate_values =[ ]
r equ i r ed_trace s =[ ]
for key in keys :

va l=dpau t i l s . compute_intemediate_values (P, int ( keys [ 0 ] ) )
interm_values=val [ 0 ]
c l ea r_text=val [ 1 ]
TK1=val [ 2 ] . A1
T = dpaut i l s . gen_traces ( interm_values , std )
intermediate_values . append ( [ interm_values , c lear_text ,TK1,T] )

i=1
while True :

r e s =[ ]
for j , key in enumerate ( keys ) :
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c l ear_text = intermediate_values [ j ] [ 1 ]
TK1 = intermediate_values [ j ] [ 2 ]
T = intermediate_values [ j ] [ 3 ]
t=T [ : i ]
c t=c lear_text [ : i ]
n ibble_guess=dpau t i l s . s imultanous_atk ( t , ct , target_nibb le )

#_____SUCCESS/FAIL_________________
i f (TK1[ target_nibb le ] == nibble_guess ) :

r e s . append (1)
else :

r e s . append (0)

i f np . average ( r e s)>=f loat ( th re sho ld ) :
r equ i r ed_trace s . append ( i )
break

i+=1
i=1
while True :

r e s =[ ]
for j , key in enumerate ( keys ) :

c l ea r_text = intermediate_values [ j ] [ 1 ]
TK1 = intermediate_values [ j ] [ 2 ]
T = intermediate_values [ j ] [ 3 ]
t=T [ : i ]
c t=c lear_text [ : i ]
n ibble_guess=dpau t i l s . majority_vote_atk ( t , ct , target_nibb le )

#_____SUCCESS/FAIL_________________
i f (TK1[ target_nibb le ] == nibble_guess ) :

r e s . append (1)
else :

r e s . append (0)

i f np . average ( r e s)>=f loat ( th re sho ld ) :
r equ i r ed_trace s . append ( i )
break

i+=1
i=1
while True :

r e s =[ ]
for j , key in enumerate ( keys ) :

c l ea r_text = intermediate_values [ j ] [ 1 ]
TK1 = intermediate_values [ j ] [ 2 ]
T = intermediate_values [ j ] [ 3 ]
t=T [ : i ]
c t=c lear_text [ : i ]
n ibble_guess=dpau t i l s . unanimous_attack ( t , ct , target_nibb le )

#_____SUCCESS/FAIL_________________
i f (TK1[ target_nibb le ] == nibble_guess ) :

r e s . append (1)
else :

r e s . append (0)

i f np . average ( r e s)>=f loat ( th re sho ld ) :
r equ i r ed_trace s . append ( i )
break

i+=1

i=1
while True :

r e s =[ ]
for j , key in enumerate ( keys ) :

c l ea r_text = intermediate_values [ j ] [ 1 ]
TK1 = intermediate_values [ j ] [ 2 ]
T = intermediate_values [ j ] [ 3 ]
t=T [ : i ]
c t=c lear_text [ : i ]
n ibble_guess=dpau t i l s . ind iv idua l_atk ( t , ct , target_nibb le )
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#_____SUCCESS/FAIL_________________
i f (TK1[ target_nibb le ] == nibble_guess ) :

r e s . append (1)
else :

r e s . append (0)

i f np . average ( r e s)>=f loat ( th re sho ld ) :
r equ i r ed_trace s . append ( i )
break

i+=1
a l l_ inte rmed ia t e . append ( requ i r ed_trace s )

np . save ( " requ i r ed_trace s " , a l l_ inte rmed ia t e )

A.6 Determining The Confidence Of The Distinguishers

Listing A.6: Modelling distinguisher confidence
import numpy as np
import s c ipy as sp
import matp lo t l ib
import matp lo t l ib . pyplot as p l t
from matp lo t l ib . patches import Rectangle
from matp lo t l ib . t i c k e r import StrMethodFormatter
import math
import sys

import skinny
import he lp e r s
import dpau t i l s

from s c ipy import s t a t s
from array import array
from operator import xor

np . s e t_pr in topt i ons ( th re sho ld=sys . maxsize )

# Take in parameters as args
N=int ( sys . argv [ 1 ] ) #20
std=f loat ( sys . argv [ 2 ] ) #0.5
number_of_experiments=int ( sys . argv [ 3 ] ) #200

TK1_0=[0 ,1 ,2 ,3 ] # 3x traces
TK1_1=[4 ,5 ,6 ,7 ]
TK1_2_unsorted=[0 ,1 ,2 ,3 ] # 3x traces
Tk1_3_unsorted=[8 ,9 ,10 ,11 ]

keys=np . random . randint (2147483647 , 9223372036854775807 , s i z e=number_of_experiments , dtype=np . int64 )

P=he lp e r s . gen_pla intexts (N)

# Precompute intermediate values and power traces for d i f f e r en t keys

intermediate_values =[ ]
for key in keys :

va l=dpau t i l s . compute_intemediate_values (P, int ( key ) )
interm_values=val [ 0 ]
c l ea r_text=val [ 1 ]
TK1=val [ 2 ] . A1
T = dpaut i l s . gen_traces ( interm_values , std )
intermediate_values . append ( [ interm_values , c lear_text ,TK1,T] )

simultanous_success_rate_pr_n =[]
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Ns=l i s t ( range (1 ,N, 1 ) )
for n in Ns :

c o r r e c t =[ ]
i n c o r r e c t =[ ]
d i s carded =[ ]

for i , key in enumerate ( keys ) :
c l ea r_text = intermediate_values [ i ] [ 1 ]
TK1 = intermediate_values [ i ] [ 2 ]
T = intermediate_values [ i ] [ 3 ]

TK1_0_guess=[ ]

# Attack TK1 nibb le i ( f i r s t row of TK1)
for i in range ( 4 ) :

t=T [ : n ]
ct=c lear_text [ : n ]
n ibble_guess=dpau t i l s . s imultanous_atk ( t , ct , i )
TK1_0_guess . append ( nibble_guess )

#_____SUCCESS/FAIL_________________
i f (np . array_equal (TK1 [ 0 : 4 ] , TK1_0_guess ) ) :

c o r r e c t . append (1)
i n c o r r e c t . append (0)

else :
i n c o r r e c t . append (1)
c o r r e c t . append (0)

simultanous_success_rate_pr_n . append ( [ np . average ( c o r r e c t ) , np . average ( i n c o r r e c t ) ] )

majority_vote_success_rate_pr_n =[]
Ns=l i s t ( range (1 ,N, 1 ) )
for n in Ns :

c o r r e c t =[ ]
i n c o r r e c t =[ ]
d i s carded =[ ]

for i , key in enumerate ( keys ) :
c l ea r_text = intermediate_values [ i ] [ 1 ]
TK1 = intermediate_values [ i ] [ 2 ]
T = intermediate_values [ i ] [ 3 ]
TK1_0_guess=[ ]

# Attack TK1 nibb le i ( f i r s t row of TK1)
for i in range ( 4 ) :

t=T [ : n ]
ct=c lear_text [ : n ]
n ibble_guess=dpau t i l s . majority_vote_atk ( t , ct , i )
TK1_0_guess . append ( nibble_guess )

#_____SUCCESS/FAIL_________________
i f (np . array_equal (TK1 [ 0 : 4 ] , TK1_0_guess ) ) :

c o r r e c t . append (1)
d i s carded . append (0)
i n c o r r e c t . append (0)

e l i f −1 in TK1_0_guess :
d i s carded . append (1)
c o r r e c t . append (0)
i n c o r r e c t . append (0)

else :
i n c o r r e c t . append (1)
c o r r e c t . append (0)
d i s carded . append (0)

majority_vote_success_rate_pr_n . append ( [ np . average ( c o r r e c t ) , np . average ( i n c o r r e c t ) , np . average ( d i s carded ) ] )

unanimous_success_rate_pr_n=[]
Ns=l i s t ( range (1 ,N, 1 ) )
for n in Ns :

c o r r e c t =[ ]
i n c o r r e c t =[ ]
d i s carded =[ ]
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for i , key in enumerate ( keys ) :
c l ea r_text = intermediate_values [ i ] [ 1 ]
TK1 = intermediate_values [ i ] [ 2 ]
T = intermediate_values [ i ] [ 3 ]
TK1_0_guess=[ ]

# Attack TK1 nibb le i ( f i r s t row of TK1)
for i in range ( 4 ) :

t=T [ : n ]
ct=c lear_text [ : n ]
n ibble_guess=dpau t i l s . unanimous_attack ( t , ct , i )
TK1_0_guess . append ( nibble_guess )

#_____SUCCESS/FAIL_________________
i f (np . array_equal (TK1 [ 0 : 4 ] , TK1_0_guess ) ) :

c o r r e c t . append (1)
d i s carded . append (0)
i n c o r r e c t . append (0)

e l i f −1 in TK1_0_guess :
d i s carded . append (1)
c o r r e c t . append (0)
i n c o r r e c t . append (0)

else :
i n c o r r e c t . append (1)
c o r r e c t . append (0)
d i s carded . append (0)

unanimous_success_rate_pr_n . append ( [ np . average ( c o r r e c t ) , np . average ( i n c o r r e c t ) , np . average ( d i s carded ) ] )

individual_attack_success_rate_pr_n =[]
Ns=l i s t ( range (1 ,N, 1 ) )
for n in Ns :

c o r r e c t =[ ]
i n c o r r e c t =[ ]

for i , key in enumerate ( keys ) :
c l ea r_text = intermediate_values [ i ] [ 1 ]
TK1 = intermediate_values [ i ] [ 2 ]
T = intermediate_values [ i ] [ 3 ]
TK1_0_guess=[ ]

# Attack TK1 nibb le i ( f i r s t row of TK1)
for i in range ( 4 ) :

t=T [ : n ]
ct=c lear_text [ : n ]
n ibble_guess=dpau t i l s . ind iv idua l_atk ( t , ct , i )
TK1_0_guess . append ( nibble_guess )

#_____SUCCESS/FAIL_________________
i f (np . array_equal (TK1 [ 0 : 4 ] , TK1_0_guess ) ) :

c o r r e c t . append (1)
i n c o r r e c t . append (0)

else :
i n c o r r e c t . append (1)
c o r r e c t . append (0)

individual_attack_success_rate_pr_n . append ( [ np . average ( c o r r e c t ) , np . average ( i n c o r r e c t ) ] )

s imultanous_conf idence=np . matrix ( simultanous_success_rate_pr_n )
c o r r e c t=simultanous_conf idence [ : , 0 ]
i n c o r r e c t=simultanous_conf idence [ : , 1 ]
o u t f i l e=" conf idence_simultanous . png"
p l t . f i g u r e ( )
p l t . p l o t ( co r r ec t , l a b e l=" va l i d ␣and␣ co r r e c t " , c=" red " )
p l t . p l o t ( i n co r r e c t , l a b e l=" va l i d ␣and␣ i n c o r r e c t " , c="blue " )
p l t . g r id ( ax i s=’y ’ )
p l t . gca ( ) . xax i s . set_major_formatter ( StrMethodFormatter ( ’ {x : , . 0 f } ’ ) ) # No decimal places
p l t . l egend ( )
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p l t . draw ( )
p l t . s a v e f i g ( o u t f i l e )

major ity_voting_conf idence=np . matrix ( majority_vote_success_rate_pr_n )
c o r r e c t=major ity_voting_conf idence [ : , 0 ]
i n c o r r e c t=major ity_voting_conf idence [ : , 1 ]
d i s carded=major ity_voting_conf idence [ : , 2 ]
o u t f i l e=" conf idence_major ity_vote . png"
p l t . f i g u r e ( )
p l t . p l o t ( co r r ec t , l a b e l=" va l i d ␣and␣ co r r e c t " , c=" red " )
p l t . p l o t ( i n co r r e c t , l a b e l=" va l i d ␣and␣ i n c o r r e c t " , c="blue " )
p l t . p l o t ( d iscarded , l a b e l=" d i scarded " , c=" green " )
p l t . g r id ( ax i s=’y ’ )
p l t . gca ( ) . xax i s . set_major_formatter ( StrMethodFormatter ( ’ {x : , . 0 f } ’ ) ) # No decimal places
p l t . l egend ( )
p l t . draw ( )
p l t . s a v e f i g ( o u t f i l e )

unanimous_confidence=np . matrix ( unanimous_success_rate_pr_n )
c o r r e c t=unanimous_confidence [ : , 0 ]
i n c o r r e c t=unanimous_confidence [ : , 1 ]
d i s carded=unanimous_confidence [ : , 2 ]
o u t f i l e="confidence_unanimous . png"
p l t . f i g u r e ( )
p l t . p l o t ( co r r ec t , l a b e l=" va l i d ␣and␣ co r r e c t " , c=" red " )
p l t . p l o t ( i n co r r e c t , l a b e l=" va l i d ␣and␣ i n c o r r e c t " , c="blue " )
p l t . p l o t ( d iscarded , l a b e l=" d i scarded " , c=" green " )
p l t . g r id ( ax i s=’y ’ )
p l t . gca ( ) . xax i s . set_major_formatter ( StrMethodFormatter ( ’ {x : , . 0 f } ’ ) ) # No decimal places
p l t . l egend ( )
p l t . draw ( )
p l t . s a v e f i g ( o u t f i l e )

ind iv idua l_con f idence=np . matrix ( individual_attack_success_rate_pr_n )
c o r r e c t=ind iv idua l_con f idence [ : , 0 ]
i n c o r r e c t=ind iv idua l_con f idence [ : , 1 ]
o u t f i l e=" con f idence_ind iv idua l . png"
p l t . f i g u r e ( )
p l t . p l o t ( co r r ec t , l a b e l=" va l i d ␣and␣ co r r e c t " , c=" red " )
p l t . p l o t ( i n co r r e c t , l a b e l=" va l i d ␣and␣ i n c o r r e c t " , c="blue " )
p l t . g r id ( ax i s=’y ’ )
p l t . gca ( ) . xax i s . set_major_formatter ( StrMethodFormatter ( ’ {x : , . 0 f } ’ ) ) # No decimal places
p l t . l egend ( )
p l t . draw ( )
p l t . s a v e f i g ( o u t f i l e )

A.7 Generation Of Second Round Intermediate Values

Listing A.7: Generation of second round intermediate values

import numpy
from array import array
from operator import xor

def l i n ea r_ope ra t i on s ( i n t e rna l_s ta t e ) :
# Reshape internal s ta te info 4x4 matrix
i n t e rna l_s ta t e=np . array ( va l ) . reshape (4 ,4 )

i n t e rna l_s ta t e = [ i n t e rna l_s ta t e [ 0 ] ,
array ( ’B ’ , [ i n t e rna l_s ta t e [ 1 ] [ 3 ] , i n t e rna l_s ta t e [ 1 ] [ 0 ] , i n t e rna l_s ta t e [ 1 ] [ 1 ] , i n t e rna l_s ta t e [ 1 ] [ 2 ] ] ) ,
array ( ’B ’ , [ i n t e rna l_s ta t e [ 2 ] [ 2 ] , i n t e rna l_s ta t e [ 2 ] [ 3 ] , i n t e rna l_s ta t e [ 2 ] [ 0 ] , i n t e rna l_s ta t e [ 2 ] [ 1 ] ] ) ,
array ( ’B ’ , [ i n t e rna l_s ta t e [ 3 ] [ 1 ] , i n t e rna l_s ta t e [ 3 ] [ 2 ] , i n t e rna l_s ta t e [ 3 ] [ 3 ] , i n t e rna l_s ta t e [ 3 ] [ 0 ] ] )
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]

# MixColumns
mix_1 = array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ 1 ] , i n t e rna l_s ta t e [ 2 ] ) )
mix_2 = array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ 0 ] , i n t e rna l_s ta t e [ 2 ] ) )
mix_3 = array ( ’B ’ , map( xor , i n t e rna l_s ta t e [ 3 ] , mix_2 ) )

i n t e rna l_s ta t e = [mix_3 , i n t e rna l_s ta t e [ 0 ] , mix_1 , mix_2 ]

return i n t e rna l_s ta t e

def add_const ( in te rna l_sta te , round_num ) :
i n t e rna l_s ta t e=np . array ( i n t e rna l_s ta t e ) . reshape (4 ,4 )
round_constants = array ( ’B ’ , [
0x01 , 0x03 , 0x07 , 0x0F , 0x1F , 0x3E , 0x3D , 0x3B , 0x37 , 0x2F , 0x1E , 0x3C , 0x39 , 0x33 , 0x27 ,
0x0E , 0x1D , 0x3A , 0x35 , 0x2B , 0x16 , 0x2C , 0x18 , 0x30 , 0x21 , 0x02 , 0x05 , 0x0B , 0x17 , 0x2E , 0x1C , 0x38 ,
0x31 , 0x23 , 0x06 , 0x0D , 0x1B , 0x36 , 0x2D , 0x1A , 0x34 , 0x29 , 0x12 , 0x24 , 0x08 , 0x11 , 0x22 , 0x04 , 0x09 ,
0x13 , 0x26 , 0x0c , 0x19 , 0x32 , 0x25 , 0x0a , 0x15 , 0x2a ,
0x14 , 0x28 , 0x10 , 0x20
] )

round_constant = round_constants [ round_num ]
c0 = round_constant & 0xF
c1 = round_constant >> 4
c2 = 0x2
in t e rna l_s ta t e [ 0 ] [ 0 ] ^= c0
in t e rna l_s ta t e [ 1 ] [ 0 ] ^= c1
in t e rna l_s ta t e [ 2 ] [ 0 ] ^= c2
return i n t e rna l_s ta t e

def compute_intermediate_results_for_round2 ( i n t e rna l_s ta t e ) :
internal_states_post_round_1 =[]
for p in c l ear_text :

s =[ ]
# AddRoundTweakey
p_xor_k=np . bitwise_xor (p ,SK)

# SubBytes
sbox4 = array ( ’B ’ , [ 1 2 , 6 , 9 , 0 , 1 , 10 , 2 , 11 , 3 , 8 , 5 , 13 , 4 , 14 , 7 , 1 5 ] )
for x in np . nd i t e r (p_xor_k ) :

s . append ( sbox4 [ x ] )

# ShiftRows and MixCols then add round constant of the second round
s = l in ea r_ope ra t i on s ( add_const ( s , 1 ) )
internal_states_post_round_1 . append (np . matrix ( s ) )

return internal_states_post_round_1
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Appendix B

Other Appendices

B.1 Distinguishing Scores For Fig.5.2

Listing B.1: Distinguishing scores for fig 5.2

[ [ −10.2 −14.4 −15.75 −16. −16.52 −17.7 −20.37 −27.8 −28.2
−31.74 −33.07 −36.21 −40.79 −41.25 −41.75 −44.26 −48.19 −56.59
−64.94 −65.55 −65.79 −66.29 −74.68 −83.1 −84.55 −85.36 −90.76
−91.26 −91.96 −98.85 −99.09 −106.15 −107.19 −109.54 −110.84 −114.06

−116.34 −116.57 −116.82 −119.44 −121.39 −121.65 −124.05 −124.31 −126.14
−126.61 −127.69 −128.26 −128.59]

[ −3.27 −3.83 −7.19 −7.45 −7.97 −11.62 −11.86 −28.88 −39.65
−40.89 −44.26 −54.23 −55.01 −60.71 −64.71 −64.94 −87.75 −90.07
−92.36 −92.96 −102.02 −103.05 −105.36 −107.68 −114.26 −119.24 −145.51

−151.06 −155.71 −157.3 −164.84 −166.51 −180.65 −189.13 −195.34 −195.67
−197.94 −200.39 −200.64 −202.51 −202.75 −212.11 −214.18 −215.89 −232.88
−233.96 −235.04 −246.9 −248.3 ]

[ −3.27 −7.47 −7.82 −8.07 −8.59 −14.54 −17.21 −24.64 −35.4
−35.79 −42.11 −43.6 −44.27 −49.98 −61.46 −63.97 −67.9 −70.21
−72.5 −73.1 −82.16 −93.61 −102. −104.32 −120.04 −133.18 −138.58

−144.13 −156.73 −163.62 −171.16 −172.83 −173.87 −192.47 −207.6 −210.83
−213.01 −221.68 −221.93 −223.8 −225.75 −226.02 −226.25 −235.61 −237.44
−243.13 −246.97 −258.83 −265.3 ]

[ −1.4 −13.23 −16.6 −25.81 −31.27 −32.45 −34.28 −36.12 −58.06
−59.3 −60.64 −63.78 −64.56 −78.88 −82.88 −84.84 −88.77 −90.91
−93.07 −105.15 −124.62 −125.12 −143.6 −145.73 −152.31 −157.29 −162.69

−168.24 −172.89 −173.18 −190.38 −193.25 −198.84 −207.32 −213.53 −214.95
−217.23 −219.68 −227. −234.5 −242.16 −244.97 −247.04 −247.3 −254.71
−255.79 −256.87 −280.38 −281.78]

[ −3.27 −3.83 −14.2 −16.94 −17.92 −21.57 −21.82 −38.84 −42.42
−48.52 −51.89 −52.21 −57.09 −58.17 −69.66 −69.89 −81.26 −83.58
−85.86 −90.21 −92.86 −96.83 −99.14 −101.46 −101.78 −102.43 −116.26

−130.34 −131.09 −132.68 −134.57 −136.24 −141.83 −142.06 −142.43 −142.76
−145.03 −153.71 −155.49 −155.74 −155.97 −158.79 −166.68 −169.5 −176.91
−180.76 −181.85 −186.06 −189.33]

[ −0.33 −1.26 −1.61 −1.87 −2.38 −2.8 −3.05 −4.89 −5.29
−5.68 −6.03 −9.17 −9.85 −10.31 −10.81 −11.05 −11.53 −11.76

−11.99 −12.59 −12.84 −13.34 −13.56 −13.79 −15.24 −16.05 −17.02
−18.04 −18.74 −20.33 −20.57 −20.84 −21.33 −23.68 −24.97 −25.3
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−25.53 −25.76 −26.01 −28.63 −31.15 −32.86 −33.09 −33.36 −33.6
−34.07 −34.54 −35.1 −35.44]

[ −1.4 −13.23 −13.59 −16.32 −17.31 −18.49 −18.74 −20.58 −24.16
−24.55 −25.89 −26.2 −26.87 −27.96 −50.93 −51.17 −62.54 −64.68
−66.84 −71.18 −73.84 −77.81 −96.29 −98.42 −99.87 −100.68 −114.52

−120.07 −120.77 −122.36 −124.25 −127.12 −132.71 −135.06 −136.36 −136.68
−145. −163.89 −165.68 −165.93 −173.59 −176.4 −176.63 −179.45 −186.86
−187.32 −193.03 −197.24 −197.58]

[ −0.33 −0.9 −1.25 −3.02 −7.07 −7.49 −16.58 −16.83 −27.59
−27.98 −28.34 −29.82 −30.5 −36.2 −47.69 −56.46 −60.39 −60.62
−60.84 −61.71 −70.77 −82.21 −84.52 −84.75 −100.46 −113.61 −119.01

−120.04 −132.63 −148.82 −156.36 −156.64 −162.23 −180.82 −195.95 −206.09
−206.31 −214.98 −217.7 −219.57 −219.81 −222.62 −222.85 −232.22 −239.63
−245.32 −245.78 −257.64 −264.1 ]

[ −3.27 −7.47 −13.8 −14.06 −14.57 −14.99 −17.66 −25.09 −25.49
−36.18 −36.53 −38.01 −50.48 −50.95 −54.94 −57.45 −61.38 −63.69
−65.98 −66.58 −66.83 −78.27 −86.67 −88.99 −117.83 −143.15 −148.55

−162.63 −187.17 −194.06 −194.3 −195.97 −210.11 −242.83 −270.88 −274.11
−274.34 −276.79 −277.04 −279.66 −281.61 −290.97 −299.54 −308.9 −325.89
−340.19 −340.66 −341.22 −356.75]

[ −1.4 −24.87 −26.22 −28.95 −29.94 −33.59 −35.41 −42.84 −46.42
−49.96 −53.33 −56.47 −61.05 −62.13 −66.13 −68.09 −68.57 −70.71
−72.88 −77.22 −79.87 −80.37 −112.93 −115.07 −121.65 −126.63 −127.6

−133.15 −137.8 −138.08 −139.98 −142.85 −169.54 −178.02 −184.23 −185.65
−187.93 −190.38 −192.17 −192.41 −209.79 −229.7 −232.1 −232.36 −262.93
−264.01 −265.1 −269.31 −270.71]

[ −0.33 −4.53 −5.88 −6.13 −6.65 −7.83 −9.66 −17.08 −17.49
−21.02 −22.36 −23.84 −28.42 −28.88 −29.89 −31.86 −35.78 −36.01
−36.24 −36.84 −37.09 −48.53 −56.92 −57.15 −63.73 −68.71 −74.11
−75.14 −79.79 −80.07 −80.31 −80.59 −81.62 −90.1 −96.31 −97.74

−106.06 −108.07 −108.32 −110.94 −112.89 −113.15 −115.55 −124.92 −126.74
−127.82 −133.53 −134.09 −135.49]

[ −1.4 −5.6 −8.96 −10.73 −14.78 −18.43 −25.83 −56.44 −67.21
−68.45 −71.82 −72.14 −72.91 −78.62 −82.61 −90.31 −101.68 −103.81

−105.98 −106.84 −115.9 −119.87 −128.27 −130.4 −136.98 −141.96 −155.8
−161.35 −166. −168.99 −176.53 −179.41 −193.55 −202.02 −208.23 −214.76
−217.03 −219.48 −222.2 −224.07 −226.02 −235.38 −237.45 −240.26 −257.25
−258.33 −259.41 −271.27 −272.67]

[ −6.47 −18.3 −19.64 −22.38 −23.37 −23.78 −24.03 −41.05 −44.63
−48.17 −48.52 −48.84 −53.41 −54.49 −58.49 −58.72 −59.21 −67.26
−75.36 −79.7 −82.36 −86.33 −104.8 −112.84 −114.3 −115.11 −116.08

−142.68 −143.38 −144.97 −146.86 −156.34 −161.93 −164.28 −165.57 −165.9
−174.22 −176.67 −178.46 −178.7 −186.37 −189.18 −191.58 −194.39 −201.8
−202.27 −207.97 −212.19 −212.52]

[ −0.33 −0.9 −1.25 −3.02 −7.07 −7.49 −10.16 −17.59 −21.17
−21.56 −21.91 −28.57 −29.25 −30.33 −30.83 −33.34 −34.38 −34.61
−34.84 −35.7 −38.36 −61.27 −63.58 −63.81 −79.52 −92.67 −93.2

−107.28 −119.88 −126.77 −128.66 −128.93 −143.07 −161.67 −176.8 −180.03
−180.25 −180.49 −183.2 −183.45 −183.68 −193.05 −193.28 −213.2 −230.19
−235.88 −236.34 −240.55 −247.02]

[ −0.33 −12.17 −15.53 −17.31 −21.35 −32.24 −32.49 −49.51 −53.09
−54.33 −64.72 −65.03 −65.81 −66.9 −78.38 −78.62 −89.99 −90.21
−90.44 −91.3 −93.96 −97.93 −116.41 −116.63 −123.22 −128.2 −142.03

−156.11 −160.76 −162.35 −164.24 −164.51 −170.1 −178.58 −184.79 −185.11
−203.48 −212.15 −214.87 −215.11 −222.78 −225.59 −227.65 −230.47 −237.88
−238.96 −253.29 −257.5 −258.9 ]

[ −0.33 −4.53 −4.89 −12.18 −23.76 −24.17 −26. −27.84 −29.06
−29.45 −29.8 −30.11 −30.79 −34.63 −35.13 −37.1 −37.58 −37.81
−38.04 −43.16 −45. −48.97 −57.37 −57.59 −73.31 −86.45 −87.42
−88.44 −101.04 −101.33 −103.92 −104.19 −105.23 −123.82 −138.96 −140.38

−148.7 −148.93 −158.12 −167.11 −169.06 −169.32 −169.55 −172.37 −174.19
−179.88 −185.59 −186.51 −192.97 ] ]

B.2 TK1 Permutations For SKINNY-64-64 (32 rounds)

80



Listing B.2: TK1-permutations for SKINNY-64-64, 1-indexed
−−−−−−−−−−
round : 1
−−−−−−−−−−
[ [ 0 1 2 3 ]
[ 4 5 6 7 ]
[ 8 9 10 11 ]
[ 12 13 14 1 5 ] ]

−−−−−−−−−−
round : 2
−−−−−−−−−−
[ [ 9 15 8 13 ]
[ 10 14 12 11 ]
[ 0 1 2 3 ]
[ 4 5 6 7 ] ]

−−−−−−−−−−
round : 3
−−−−−−−−−−
[ [ 1 7 0 5 ]
[ 2 6 4 3 ]
[ 9 15 8 13 ]
[ 10 14 12 1 1 ] ]

−−−−−−−−−−
round : 4
−−−−−−−−−−
[ [ 1 5 11 9 14 ]
[ 8 12 10 13 ]
[ 1 7 0 5 ]
[ 2 6 4 3 ] ]

−−−−−−−−−−
round : 5
−−−−−−−−−−
[ [ 7 3 1 6 ]
[ 0 4 2 5 ]
[ 15 11 9 14 ]
[ 8 12 10 1 3 ] ]

−−−−−−−−−−
round : 6
−−−−−−−−−−
[ [ 1 1 13 15 12 ]
[ 9 10 8 14 ]
[ 7 3 1 6 ]
[ 0 4 2 5 ] ]

−−−−−−−−−−
round : 7
−−−−−−−−−−
[ [ 3 5 7 4 ]
[ 1 2 0 6 ]
[ 11 13 15 12 ]
[ 9 10 8 1 4 ] ]

−−−−−−−−−−
round : 8
−−−−−−−−−−
[ [ 1 3 14 11 10 ]
[ 15 8 9 12 ]
[ 3 5 7 4 ]
[ 1 2 0 6 ] ]

−−−−−−−−−−
round : 9
−−−−−−−−−−
[ [ 5 6 3 2 ]
[ 7 0 1 4 ]
[ 13 14 11 10 ]
[ 15 8 9 1 2 ] ]

−−−−−−−−−−
round : 10
−−−−−−−−−−
[ [ 1 4 12 13 8 ]
[ 11 9 15 10 ]
[ 5 6 3 2 ]
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[ 7 0 1 4 ] ]
−−−−−−−−−−
round : 11
−−−−−−−−−−
[ [ 6 4 5 0 ]
[ 3 1 7 2 ]
[ 14 12 13 8 ]
[ 11 9 15 1 0 ] ]

−−−−−−−−−−
round : 12
−−−−−−−−−−
[ [ 1 2 10 14 9 ]
[ 13 15 11 8 ]
[ 6 4 5 0 ]
[ 3 1 7 2 ] ]

−−−−−−−−−−
round : 13
−−−−−−−−−−
[ [ 4 2 6 1 ]
[ 5 7 3 0 ]
[ 12 10 14 9 ]
[ 13 15 11 8 ] ]

−−−−−−−−−−
round : 14
−−−−−−−−−−
[ [ 1 0 8 12 15 ]
[ 14 11 13 9 ]
[ 4 2 6 1 ]
[ 5 7 3 0 ] ]

−−−−−−−−−−
round : 15
−−−−−−−−−−
[ [ 2 0 4 7 ]
[ 6 3 5 1 ]
[ 10 8 12 15 ]
[ 14 11 13 9 ] ]

−−−−−−−−−−
round : 16
−−−−−−−−−−
[ [ 8 9 10 11 ]
[ 12 13 14 15 ]
[ 2 0 4 7 ]
[ 6 3 5 1 ] ]

−−−−−−−−−−
round : 17
−−−−−−−−−−
[ [ 0 1 2 3 ]
[ 4 5 6 7 ]
[ 8 9 10 11 ]
[ 12 13 14 1 5 ] ]

−−−−−−−−−−
round : 18
−−−−−−−−−−
[ [ 9 15 8 13 ]
[ 10 14 12 11 ]
[ 0 1 2 3 ]
[ 4 5 6 7 ] ]

−−−−−−−−−−
round : 19
−−−−−−−−−−
[ [ 1 7 0 5 ]
[ 2 6 4 3 ]
[ 9 15 8 13 ]
[ 10 14 12 1 1 ] ]

−−−−−−−−−−
round : 20
−−−−−−−−−−
[ [ 1 5 11 9 14 ]
[ 8 12 10 13 ]
[ 1 7 0 5 ]
[ 2 6 4 3 ] ]
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−−−−−−−−−−
round : 21
−−−−−−−−−−
[ [ 7 3 1 6 ]
[ 0 4 2 5 ]
[ 15 11 9 14 ]
[ 8 12 10 1 3 ] ]

−−−−−−−−−−
round : 22
−−−−−−−−−−
[ [ 1 1 13 15 12 ]
[ 9 10 8 14 ]
[ 7 3 1 6 ]
[ 0 4 2 5 ] ]

−−−−−−−−−−
round : 23
−−−−−−−−−−
[ [ 3 5 7 4 ]
[ 1 2 0 6 ]
[ 11 13 15 12 ]
[ 9 10 8 1 4 ] ]

−−−−−−−−−−
round : 24
−−−−−−−−−−
[ [ 1 3 14 11 10 ]
[ 15 8 9 12 ]
[ 3 5 7 4 ]
[ 1 2 0 6 ] ]

−−−−−−−−−−
round : 25
−−−−−−−−−−
[ [ 5 6 3 2 ]
[ 7 0 1 4 ]
[ 13 14 11 10 ]
[ 15 8 9 1 2 ] ]

−−−−−−−−−−
round : 26
−−−−−−−−−−
[ [ 1 4 12 13 8 ]
[ 11 9 15 10 ]
[ 5 6 3 2 ]
[ 7 0 1 4 ] ]

−−−−−−−−−−
round : 27
−−−−−−−−−−
[ [ 6 4 5 0 ]
[ 3 1 7 2 ]
[ 14 12 13 8 ]
[ 11 9 15 1 0 ] ]

−−−−−−−−−−
round : 28
−−−−−−−−−−
[ [ 1 2 10 14 9 ]
[ 13 15 11 8 ]
[ 6 4 5 0 ]
[ 3 1 7 2 ] ]

−−−−−−−−−−
round : 29
−−−−−−−−−−
[ [ 4 2 6 1 ]
[ 5 7 3 0 ]
[ 12 10 14 9 ]
[ 13 15 11 8 ] ]

−−−−−−−−−−
round : 30
−−−−−−−−−−
[ [ 1 0 8 12 15 ]
[ 14 11 13 9 ]
[ 4 2 6 1 ]
[ 5 7 3 0 ] ]

−−−−−−−−−−
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round : 31
−−−−−−−−−−
[ [ 2 0 4 7 ]
[ 6 3 5 1 ]
[ 10 8 12 15 ]
[ 14 11 13 9 ] ]

−−−−−−−−−−
round : 32
−−−−−−−−−−
[ [ 8 9 10 11 ]
[ 12 13 14 15 ]
[ 2 0 4 7 ]
[ 6 3 5 1 ] ]
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