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Abstract

In recommender systems, the concept of control is associated with ways users can manipu-

late the system through interactions or by defining parameters in order to be provided more

personal and better recommendations. Other studies in the movie domain have found that

users may have a divergent perception of similarity regarding which features are important

to them when looking for similar movies. This thesis sets out to investigate if these divergent

opinions on similarity can be leveraged by controllability in the multi-lists presentation of

recommendations. This thesis shows that user control did not appear to be evaluated more

positively than a non-control recommender system for the average participant. This thesis

found that multi lists presentation of recommendations without control were generally eval-

uated better than with control by performing a quantitative conditional user evaluation of

the recommender system. When looking at participants’ demographic properties, it may be

that some subgroups consisting of users with a higher level of domain knowledge or simi-

lar system experience may favor control. Furthermore, no significant variances between the

three list sort methods that the system uses to enforce the users’ control were discovered. As

controllability in recommender systems have not been extensively evaluated in the research

corpus, this thesis hopes to be a starting point that can inspire future studies to attempt other

novel approaches in implementing and evaluating controllability in the multi-lists presen-

tation of recommendations to achieve more positive results.
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Chapter 1

Introduction

1.1 Motivation

The popularity of digital streaming platforms for movies has significantly increased through

the last decade, catalyzed both by the increased availability and ease-of-use for consumers

when attempting to find content[22]. The last decade has seen the rise of digital streaming

platforms for movies, made popular by the ease of finding content to consume for users.

However, as these platforms have grown in niches and content, this growth starts to com-

plicate the user experience. A Netflix study reveals that users on their site lose interest after

either 60-90 seconds of idle browsing or investigating 10 to 20 movies [22, 3]. Maintaining

user interest while still providing a substantial library and recommendation section is a cen-

tral point of interest for all parties.

Historically, this consists of improving the accuracy and precision of systems [46]. This ap-

proach can be problematic in a subjective domain as movies where users may have differ-

ent perceptions of similarity and disagree on topics such as what a genre would constitute.

A study on comparing humans versus algorithms found that recommender systems per-

formed best in general [34]. However, when the tested user had niche preferences, humans

severely outperformed the algorithms [34]. Several other studies have revealed that users’

have different ideas on what features are best for similarity calculations [54, 55, 57, 53] and

conflicting results on what methods are best at recommending [13, 12]. The justification for

this topic lies in these reported discrepancies between how recommender systems perceive

similarities and how users do it.
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An interesting area of exploration is investigating if these noted effects could be leveraged

to make recommender systems better. A potential scenario this could be leveraged in is a

controllable multi-lists presentation of recommendations, which is the organization of rec-

ommendations into a structured list based on features or other grouping methods as used

in commercial streaming services such as Netflix [5, 22, 4]. Such multi-lists presentation

of recommendations is not uncommon for commercial services. However, it is restricted

to providing a general overview of content or homepage and is rarely used in similar item

recommendations, as revealed in a commercial evaluation study in this thesis. Multi-lists

presentation of recommendations is suggested by literature to be of use in the context of a

similar item recommendation scenario [11] and suggested to possible to be improved with

control [31].

1.2 Problem

The focal point of this thesis is whether user control of recommendation features can be ben-

eficial or not in the movie domain. The problem is if giving users control over a multi-lists

presentation of recommendations in a similar item recommender system would improve

their experience with the system. While multi-lists is often used for a general overview of

content in a streaming service by grouping recommendations into categories [22, 4, 31, 5],

the context is set to a similar item recommendation scenario where users are looking for

recommendations to a given movie. The selected approach is underexplored both commer-

cially and in research literature [31, 11]. No similar research has attempted to evaluate if

control in a multi-list presentation of recommendation is beneficial to the author’s knowl-

edge. Consequently, the overall problem this thesis explores is summarized as follows:

Does controllability in the multi-lists presentation of recommendation in a similar item

recommendation scenario improve the user experience?
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1.3 Research Questions

Based on the general problem statement, four research questions focus on different aspects

of this problem.

• RQ1: To what extent does controllability in a multi-lists presentation of recommenda-

tion for similar item recommenders improve the users’ experience? Section 4.1 details

pairwise comparison analyses between multi-lists recommendation interfaces with

control and without control performed to see variances in users evaluation.

• RQ2: How do different interaction methods for control affect participant evaluation?

Based on the literature, two interaction methods were selected for control: drag &

drop and clickable arrow buttons. By grouping participants based on which interac-

tion method they primarily used for control, Section 4.2 details comparison analysis

between these groups performed to see if interaction methods impacted the evalua-

tion.

• RQ3: To what extent do different list sort methods for user control impact the user eval-

uation of the recommender system? In Section 4.3, different list sort methods based on

the users’ control of the multi-lists recommendations are compared to see variances

in evaluation based on how the system interpreted user control in terms of list sort

methods.

• RQ4: To what extent do demographic properties and familiarity with similar systems

affect system evaluation? In Section 4.4, the data are divided into groups for statistical

analysis to see if any demographic properties are influential to participants evaluation

of the recommender system.
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1.4 Contributions

The thesis provides the following contributions to the research corpus:

• Insight into how users would interact with such a system RQ2). Two interaction meth-

ods were enabled for control in terms of clickable arrow buttons and drag & drop. Re-

sults show that one-third of the participants never interacted with the system, with

only 13% of all users showing a preference for drag & drop.

• The thesis evaluated three different list sort methods for controllable multi-lists pre-

sentation for recommendations (RQ3). The analysis did not find any significant vari-

ance between the methods, signifying that the list sort method may not play a major

role in user evaluation of such a system.

• Several demographic metrics in similar research were found to impact user evaluation

of recommender systems (RQ4). Evaluating these in the context of this thesis found age

and gender to have little to no influence. However, it was found that user experience

with similar systems and domains appears to impact their evaluation of this system.

• Lastly, the data from the study performed in this thesis, consisting of 300 participants

and 140 metrics, are made available for future research. This data consists of both the

raw JSON files with complete data and cleaned CSV files with the subset of this thesis’s

metrics. A pipeline was created to create CSV files, which can easily be extended to

include additional metrics. In addition, the prototype code is made available. All this

is made open source, detailed in Section 5.4.
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1.5 Thesis Outline

Figure 1.1: A general overview of the thesis structure.

The general outline of this thesis, as visualized in Figure 1.1, is as follows:

• Background. Chapter 2 details the literature found on the three focal points of this

thesis: multi-list presentation of recommendations in Section 2.1, evaluation of com-

mercial services and research on control in Section 2.2, and demographic evaluation

in recommender systems in Section 2.3.

• Methodology. Chapter 3 describes the prototype development in Section 3.1 which

entails the data, similarity functions, and details on the implemented control. Sec-

tion 3.2 elaborates on the methodology concerning the study design, metrics, and how

this relates to providing results for the research questions.

• Results. Chapter 4 presents the results from the statistical analysis performed to ad-

dress the research questions.

• Summary & Conclusions. Chapter 5 discusses and summarizes the findings concern-

ing the research questions postulated based on the results from the previous chapter.

This chapter also entails the limitations of this study, future research suggestions, and

open science.
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Chapter 2

Background

The background chapter provides an overview of previous work relevant to this thesis and is

divided into four sections.

• Section 2.1 investigates studies on multi-lists presentation of recommendations.

• Section 2.2 details relevant research on control in recommender system. Additionally,

an evaluation of control and presentation element in commercial movie streaming ser-

vices are detailed.

• Section 2.3 investigates which demographic properties that may influence the study in

this thesis based on literature.

• Section 2.4 concludes the chapter and elaborates on the critical differences between

the research discussed and this thesis.

2.1 Multi-list Presentation of Recommendations

One of the primary purposes of recommender systems is to reduce the choice overload that

comes with selecting from an extensive catalog [44, 7]. The resulting overload often leads

to the paradox of choice, in which user satisfaction is often higher when the user has a

choice between a few items rather than many [43]. Scheibehenne et al. [49] performed a

meta-analysis on several previously performed experiments on choice overload and found

non-reproducible results and an average effect across all evaluated experiments of zero,



8 CHAPTER 2. BACKGROUND

with many conflicting results concerning user satisfaction when interacting with long lists.

Scheibehenne et al. [49] note in their study that the choice overload appeared to be present,

but no causal link could be established as to what exactly causes this effect [49]. Bollen

et al. [7] followed this study to analyze the effect in the movie domain, testing out differ-

ent lengths of top-n recommendations with no evaluation difference found between the list

length. Bollen et al. argue that while a more extensive list may demand a higher cogni-

tive load for a decision, it also increases satisfaction when used as the recommendations are

more diverse, proposing that a constant tradeoff between cognitive load and utility exists

that stays somewhat neutral as the list size changes [7]. What may be surmised from this is

that choice overload is not just about how much information is presented to the user, but

the presentation, the users’ own goals, and the tools available to them may tip the balance

between utility and cognitive load to either be beneficial or detrimental to user satisfaction.

Figure 2.1: Excert from Nanou et al. study [41], top-N(left) presentation of recommenda-
tions versus structured overview of recommendation results(right), which was evaluated to
be better by participants.

A typical recommender system has the end goal of producing a top-N list of recommenda-

tions for a user [46, 32, 30], regardless of how many different features and algorithms it takes

into consideration [46, 32, 30]. There have been suggestions of splitting such top-n lists into

multiple lists, often denoted as a multi-lists presentations based on increased diversity [31],

user satisfaction [52] and ease of browsing [5]. Some insight into why this may be preferable

is presented by Alvino & Basilico of the Netflix research team that elaborated in a blog post

on why they use a multi-lists presentation of recommendation for their home page [3]. Their

evaluation is that users only need to look at a few entries and the row label to decide whether

they wish to investigate the current row further or move on. The organized row display may

be considered a more intuitive way to quickly browse larger item segments than a simple
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top-n list or grid [22].

Several studies found have evaluated and experimented with multi-lists presentation of rec-

ommendations. One such study by Nanou et al. [41] looked at recommendation presen-

tation utilizing the movieSTAR framework in which different visualization strategies were

employed. One of the favorable presentation from their study was what they coined struc-

tured view, in which recommendations were organized by genre and evaluated positively by

users [41], visualized in Figure 2.1. Pu et al. [29] performed a study on the amazon store

where top-N recommendations were compared to dividing the recommendations into dif-

ferent tabs, based on similar users, price, content, or popularity. The results were that users

had a higher preference for the tab-split recommendation presentation than the top-N pre-

sentation. Participants also noted a higher level of diversity in the tab-split interface, even

when the content of both interfaces contained the same level of measurable diversity [29].

This can lead one to conclude that the presentation may affect how users perceive diver-

sity or evaluate more items. Pu & Chen also published a paper reviewing the literature to

postulate possible guidelines for the development of recommender systems, which includes

multi-list presentation [11]. Another study is the RealCode framework, which, among other

historical and social features, splits the top-N recommendation into chronological lists,

allowing users to browse through release years and look at previously historically viewed

movies [10].

Having a multi-lists presentation of recommendation does add a new layer of complexity to

the recommendation process by needing a function to rank and order the lists. Concern-

ing RQ3, it of interest to investigate different ways to interpret the users’ control over the

multi-lists presentation in terms of list sort methods. However, no similar research investi-

gated this problem in conjunction with the multi-lists presentation, so the focus on similar

research was to look at the literature on different ranking similarity functions and methods in

a hybrid top-N recommendation list. Such topics may include weight application [55], user

algorithm selection [12, 9], or content sorting [36, 21], which, while not a multi-list presen-

tation in itself, does lend some knowledge transfer in regards to shared goals and methods.

An example of this is a content-based system that utilizes feature weight implicitly learned

from the features of a movie that a user has consumed to predict new recommendations [55].

Another identified approach is to use defeasible argumentation to adjust weights and algo-

rithms for a given user, based on previous history [9].
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Figure 2.2: How Viaplay presents recommendations as multi-lists in a similar recommenda-
tion scenario. Screenshot from 24th of August 2020.

While some commercial streaming services are already utilizing similar presentation [22] for

their general browsing page, an evaluation carried out by this study as seen in Table 2.1 found

only one service that provides a multi-list presentation of recommendation in a related item

context. The service was Viaplay1 which split the recommendations in a similar item sce-

nario into movies and series when possible.

The most similar study found in terms of controllable multi-lists presentation of rec-

ommendation is an experiment ran by Ekstrand et al. on the MovieLens platform. In

this experiment, users could choose which algorithm to provide them with recommenda-

tions [20]. This experiment was based on a previous user evaluation study on different

methods [19]. Participants were randomly assigned to one of four recommendation meth-

ods with non-descriptive names, which hid their functionality. Two of the algorithms were

non-personalized as most popular and random, while two were based on collaborative fil-

tering. Participants assigned to the non-personalized ones switched the most, and partic-

ipants generally switched between a few before settling, fairly divided between the two CF

methods [21]. It is noted that only 25% of the participants ever made a switch [20]. Based

on these studies, a follow-up paper argued for user control in algorithm selection and how

this could improve both satisfaction and accuracy in systems based on results from this and

other studies [18].

To summarize, several studies find the multi-lists presentation of recommendation an im-

provement over one list top-N recommendation presentation [45, 41, 51, 31, 10, 11] and sev-

1Viaplay is a Nordic streaming service by Viasat. www.viaplay.no

www.viaplay.no
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eral studies that find positive effects in feature weight adjustments [55, 9], no commercial

services in the movie domain utilize them. The most interesting missing feature in all of the

studies investigated is that none of them includes control in their multi-lists. While some

postulate that control has utility [31, 11], no studies investigated has set out to evaluate this

through prototyping and user evaluation. Since no similar studies are found that have eval-

uated control in multi-lists, we are forced to look into the general domain of recommender

systems to gather more knowledge on implementation and evaluation of control.

2.2 Control Elements

Control in the context of recommender systems are elements that enable users to manip-

ulate how their recommendations are presented or by providing feedback that the sys-

tem comprehends [31]. Most recommender systems rely on behavioral data such as click-

through rate or by users rating items [46, 31, 30], which offer users some small control in

terms of direct feedback. However, more elements and aspects of recommendation are pos-

sible to be controlled. Reorganization, setting parameters, and exclusions are examples of

direct control elements in a recommender system. As preparatory work for the thesis, an

evaluation study in commercial streaming services was conducted. The goal was to uncover

what kind of control and presentation elements are currently used in commercial services.

Services were selected based on their availability in Norway as either international or na-

tional. This survey was carried out on the 24th of August 2020.

As seen in Table 2.1, control is rarely a feature in commercial services. None of the elements

utilized in this thesis evaluation study detailed in Chapter 3 are present. Why control is rarely

enabled in these services is unknown and can only be speculated on as the literature argues

that control elements are potential of high utility [18, 25, 8, 45, 2]. While some of the services

displayed ratings from either IMDb or Rotten Tomato2, none provided users the ability to

rate movies in their services outside of the binary system in Netflix and Hulu, which may be

explained in a Cosley et al. study [14].

2IMDB and Rotten Tomato are communities for rating and critiquing movies.
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Table 2.1: Evaluation results from commercial streaming services regarding which control
and presentation elements are present in their systems. Performed 24. August 2020.

Service Likert Binary Remove Rearrange Seen M-List

Netflix3 X

TV2 Sumo (NO)4 X

Dplay (NO)5

HBO Nordic6

NRK TV(NO)7

Viaplay(NO)8 X

Prime Video9

Strim(NO)10

Blockbuster11

Disney+12

Hulu13 X X

Likert: Users can rate movies on a Likert-scale.

Binary: Users can rate movies in binary terms.

Remove: Users can remove a recommendation provided.

Rearrange: Users can rearrange the recommendations.

Seen: Users can mark a recommendation as already seen.

M-List: Service has a multi-lists presentation of recommendations in a similar item
scenario.

To begin discussing related research on control in recommender systems is a McNee et al.

study on the cold start problem [39]. A typical solution that is sometimes used on this prob-

lem is to task a new user with rating a certain amount of movies before letting the user use

the service [30, 46]. In this scenario, McNee et al. compared users who had to manually

search for movies to rate with users who were provided a random set of movies suggested by

3Netflix: https://www.netflix.com/
4TV2 Sumo: https://sumo.tv2.no/
5Dplay: https://www.dplay.no/
6HBO Nordic: https://no.hbonordic.com/
7NRK: https://tv.nrk.no/
8Viaplay: https://viaplay.no/
9amazon Prime Video: https://www.primevideo.com/

10Strim: https://www.strim.no/
11Blockbuster: https://blockbuster.no/
12Disney+: https://www.disneyplus.com/
13Hulu: https://www.hulu.com/

https://www.netflix.com/
https://sumo.tv2.no/
https://www.dplay.no/
https://no.hbonordic.com/
https://tv.nrk.no/
https://viaplay.no/
https://www.primevideo.com/
https://www.strim.no/
https://blockbuster.no/
https://www.disneyplus.com/
https://www.hulu.com/
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the system to rate [39]. The result was that users had a higher preference for searching for

movies to rate in opposition to being given a selection, even if the recommendation’s initial

accuracy was lower in comparison, and the temporal and cognitive cost increased [39]. This

points towards the possibility that users value more control rather than the system having

more accuracy.

One control element is recency and popularity modifiers. Harper et al. [25] conducted a

study utilizing arrow buttons that adjusted movie recommendations in a top-N list. No infor-

mation was given to the participants on the buttons’ functionality, but secretly adjusted the

recency or popularity weight on the recommendations [25]. Participants were tasked with

adjusting the list with these buttons until they were satisfied with the recommendations.

The results were that participants not only utilized these buttons but had wildly different pa-

rameters set when they evaluated their list to be at its optimal stage [25]. The results show

that users may have different opinions on what features are best; some may enjoy popularity

while others may be unfamiliar with newer movies and prefer old ones. Commercially, this

type of control element is also utilized in the video game sales platform named Steam, albeit

as sliders instead of buttons 14.

14Utilized in the discovery section of the Steam video game platform. www.steampowered.com

www.steampowered.com
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Figure 2.3: The Tasteweight recommender system control interface from the Bostandjiev et
al. study [8].

One extensive framework on music recommendation called Tasteweight [8] allows users to

control several different parameters of the recommendation process as seen in Figure 2.3.

The evaluation study on this framework reported that users enjoyed control with a positive

impact on accuracy and user satisfaction [8]. Another framework found is the uRank frame-

work for literature search, which allowed users to set parameters from keywords through

drag & drop [16]. The available pool of keywords was suggested by the system based on oc-

currences in the reference document or custom queried from the user [16]. An alternative

framework in the same domain is SetFusion by Parra [44]. This tool for literature recommen-

dation provides users with the ability to adjust feature weights using sliders. It presents the

results in a Venn diagram, which allows users to assess the relevancy of the articles [44], dis-

played in Figure 2.4. Keyword weight and frequency could also be adjusted through sliders.

Kveton & Berkovsky [36] utilized similar filtering control elements by users clicking on tags

to prune their recommendation list in their study on minimal interaction recommendation

system [36].
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Figure 2.4: Setfusion framework for literature recommendation visualization taken from
Parra study [44]. Users could control their recommendations by adjusting weights and saw
recommendations organized in a Venn diagram.

A counterpoint to enabling controllability is that users may not have a correct understand-

ing of what factors influence them. Odic et al. [42] tasked users with evaluating how they

thought different factors influenced what movie they were going to watch next and com-

pared this with statistical testing on rating data. The results found only a low level of overlap.

An example is that users evaluated that weekdays had little impact on their movie selection,

while the statistical analysis revealed it to be a significant factor [42]. Thus, too much con-

trol may be detrimental, as users do not necessarily have an accurate understanding of their

decisions. Divergent opinions are also noted by Yao & Harper [57] who tasked participants

of their study to rate what features mostly impacted their decision on what to watch next.

The results displayed in Figure 2.5 shows that while some factors are generally important for

all, divergent opinions may imply that different users have different needs and goals when

interacting with a recommender system [57].
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Figure 2.5: Feature importance results taken from Yao & Harper study [57]. Rating given by
participants in the study on feature importance when deciding on what movie to watch.

The preceding research highlights how several different interaction methods such as sliders,

buttons, and drag & drop have been used for control in recommender systems, which is of

interest to RQ2. While no experiments or frameworks on controllable multi-lists presenta-

tion as investigated in this thesis was found, control elements appear to be beneficial to a

recommender system [18, 25, 8, 45, 2]. However, specific examples need to be evaluated to

verify their utility.

2.3 Demographics and Recommender Systems

Another area of interest is investigating if users’ demographic properties may affect their

evaluation or use of the system, as per RQ4. This section goes into similar research and

experiments uncovered that relate to demographic topics in recommender systems.
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Figure 2.6: User demography of datasets taken from Ekstrand study [21] that highlight de-
mographic distribution in commonly used datasets in research. LFM1k and LFM360k is
two published datasets from the last.fm music community, ML1M is a published movieLens
dataset.

A study by Ekstrand et al. in 2018 looked into recommender accuracy and user retention rate

in services such as the music platform of last.fm and the MovieLens movie recommendation

platform. Openly available datasets from these platforms were often used by researched was

analyzed for their demographic distribution [21]. This was achieved by looking at the de-

mographic data behind the ratings and consumption and running offline evaluations with

nDCG. As displayed in Figure 2.6, there is a clear overweight in the movieLens dataset ML1M

of both young adults and males. The median consumption is also slightly higher per user of

these segments [21] and was evaluated to have a higher retention rate and nDCG. Reducing

the popularity bias of the data also had an impact on reducing demographic evaluation dif-

ferences, though while the effect is still somewhat noted in all data sources, a causal link was

not established [21].

Outside of evaluating the data, the Movielens demographic data can be used for setting up

demographic recommender systems. In a study by Al-Shamri [1], different user profiling

methods that utilized demographic data were evaluated. It is noted in the findings that while

there are benefits of utilizing each of the demographic properties alone, they work best in
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unison to compensate each other [1]. Other studies on the subject also found a demographic

discrepancy in the results. A study on a German dataset of movies found that gender had a

high positive impact on precision when highlighting similarities to other same-sex users,

but little in terms of city and age [48]. In contrast, a study investigating Docear, a German

research literature recommendation service, found that the click-through rate on recom-

mendations increased significantly with age [6]. The click-through rate also increased with

the number of recommendations provided to the user and how often a user had previously

used the system.

While there is a lack of studies that evaluate the results directly based on demographic data,

some studies infer or are directly provided demographic data to increase recommendation

accuracy [46, 30]. The value is that if including age as a factor in recommendation increases

accuracy, then age may be implied to be a factor. One study that investigated this is a study

by Sun et al. [50] that investigated how to use demographic information to sort cold start

problems while preserving privacy. They found that users who provided demographic infor-

mation when starting to use their system had improved accuracy over users who withheld

information [50].

In the domain of online cooking communities, a Rokicki et al. study was carried out to in-

vestigate if prejudices and assumptions regarding male and female cooking habits were fac-

tual [47]. Through data mining of online recipe sites, it was discovered that gender signifi-

cantly impacted what recipes were investigated, the ingredients utilized, and the response

given to authors. Additionally, using this in a simple recommender prioritizing same-gender

data for a recommendation between a user and recipe author evaluated positivly [47]. In

terms of presentation and control, the Storytime framework for a book recommendation to

children showed that specialized design and simple interaction elements were highly ap-

pealing to children [40] which may suggest that different recommender systems and frame-

works appeal more to different demographic segments.

The research highlights how demographic properties are a factor that can impact recom-

mendation when utilized either as a feature or when determining neighborhoods [1, 35, 56,

50]. Furthermore, demographic properties seem to affect both what type of content a user

consumes and design preferences [40, 47, 21, 6, 48]. Based on the discussed literature, four

properties seem to have some effect on participants evaluation and use of recommender
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systems: Age [21, 6, 40], gender [48, 47], experience with similar systems [6, 35] and experi-

ence in the domain [6, 40]. However, results do differ between domains, so it is of interest to

further investigate which are influential in the movie domain for RQ4.

2.4 Summary and Key Differences

The first prominent aspect is that controllability in the multi-lists presentation of recom-

mendations is a completely novel approach with no similar research existing to the au-

thor’s knowledge. Concerning RQ1, general implementations of control appear to be ben-

eficial in other recommendation contexts [18, 20, 8, 44, 25, 31, 39, 36, 16, 11], with multi-lists

presentation of recommendation being implied to be of high utility both from theoretical

[45, 51, 52, 7, 31, 57] and from evaluation studies [41, 10, 29, 11]. For RQ2, no studies com-

pared interaction methods for control, but some literature analysis set guidelines for im-

plementation [11, 31, 51, 52]. For RQ3 and potential list-sort methods, weight ranking and

persistent sort seem the most promising [57, 55, 12, 9, 54, 11]. Finally, for RQ4, the topic

of how demographic properties may influence recommender system evaluation is not suf-

ficiently explored, with some metrics selected for evaluation in this study based on similar

research [21, 40, 47, 6, 48]. This thesis concludes from this background investigation that

while no comparative studies have been performed on the subjects this thesis investigates,

the literature supports the thesis from a theoretical standpoint and provides viability to the

prototype developed for evaluation in Chapter 3.
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Chapter 3

Methods

The methodology for evaluating the defined research questions is detailed in this chapter.

This chapter begins with Section 3.1 that describes the controllable multi-lists presentation

of recommendations in a similar item scenario prototype developed for this thesis. This

section includes a description of the dataset, similarity functions, technical details, design,

and the final prototype. With the controllable multi-lists recommender system described,

Section 3.2 elaborates on the research design. It begins by providing a general overview of

the quantitative conditional study before elaborating on the conditions selected, a step by

step description of the study process for participants, metrics selected, and concludes with

an overview of the statistical analysis methods.

3.1 Prototype

The prototype description begins by describing the data and similarity functions used to

provide recommendations. The interface is then described in terms of the implementation

of a controllable multi-lists presentation of recommendation. During the development, sev-

eral quick and dirty qualitative trials [11, 28, 23] of the prototype were performed with par-

ticipants from the local student population of the university. The primary goal was quality

assurance and bug testing, but feedback on implementation was welcomed and impacted

development.
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3.1.1 Dataset

The utilized dataset stems from the research by Trattner & Jannach [54]. This is a modified

version of the open MovieLens dataset1 by GroupLens [24]. The version utilized is the latest

full version updated 01.09.2018. The dataset is modified from the original full version by re-

ducing the total number of movies from 58 000 to 2512 [54] by focusing on the most rated

movies in the dataset. This pruning was performed to make sure the movies in the system

are more familiar to the average participant to evaluate the prototype better. Such pruning

actions are noted to be shared in similar research [57, 45, 53, 19]. Outside of the Movie-

Lens dataset, the image covers of the movies are retrieved from The Movie Database2. The

available attributes in the dataset used for similarity calculations can be seen in Table 3.1.

Table 3.1: Movie attributes available in the movieLens dataset for use in similarty measur-
ments.

Attribute Description
Title Title of the movie.
Cover Cover image of the movie (From TMBD).
Plot Plot summary description.
Stars List of main actors.
Genres Classified genre(s).
Release Date Date of first public release.
Ratings Ratings data by movieLens members.
Director Director(s) of movie.
Tag Tags given my movieLens members.

3.1.2 Similarity Functions

In the preliminary research of Trattner & Jannach [54], similarity calculations was performed

on the dataset described. These similarity calculations have with permission been appropri-

ated for this study. An overview of these similarity calculations are viewed in Table 3.3.

Functions were selected to cover as many movies attributes as available for the multi-lists

presentation of recommendations, as suggested by the literature [41, 31, 29, 11]. If more

than one calculation was available for any given attribute, they were combined in a hybrid.

Outside of these, one baseline was created that selected random movies. In total, eleven dif-

1MovieLens dataset location: https://grouplens.org/datasets/movielens/latest/
2TMDb: The movie database https://developers.themoviedb.org/3

https://grouplens.org/datasets/movielens/latest/
https://developers.themoviedb.org/3
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Table 3.2: Table over the similarity functions that constitute recommendation lists selected
from Table 3.3.

Function Description
Baseline Random unique pick from the 2512 movies in the dataset
All Hybrid of all functions listed below
Title Hybrid of the 5 different title similarity functions
Image Hybrid of the 6 different image similarity functions
Plot Hybrid of the 2 different plot similarity functions
Genre Hybrid of the 2 different genre similarity functions
Director Jaccard-based similarity function on director
Date Release date distance based similarity function
Stars Jaccard-based similarity function on actors
SVD SVD-based similarity on tags
Tags Tag metadata cosine

ferent similarity calculation functions were selected. An overview of the selected calculations

can be seen in Table 3.2.
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Table 3.3: Overall pool of available similarity functions, taken with permission Trattner &
Jannach study [54].

Name Metric Elaboration

Title:JW si m(ri ,r j ) = 1−|di st JW (ri ,r j )| Title Jaro-Winkler
Distance based similarity

Title:LV si m(ri ,r j ) = 1−|di stLEV (ri ,r j )| Title Levenshtein
Distance based similarity

Title:LCS si m(ri ,r j ) = 1−|di stLC S (ri ,r j )|
Title Least Common
Subsequence Distance-
based similarity

Title:BI si m(ri ,r j ) = 1−|di stB I (ri ,r j )| Title Bi-Gram Distance-
based similarity

Title:LDA si m(ri ,r j ) = LD A(T i t le(ri ))·LD A(T i t le(r j ))
||LD A(T i t le(ri ))||||LD A(T i t le(r j ))||

Title LDA Cosine-based
similarity

Image:BR si m(ri ,r j ) = 1−|BR(ri )−BR(r j )| Image Brightness Distance-
based similarity

Image:SH si m(ri ,r j ) = 1−|SH(ri )−SH(r j )| Image Sharpness Distance-
based similarity

Image:CO si m(ri ,r j ) = 1−|CO(ri )−CO(r j )| Image Contrast Distance-
based similarity

Image:COL si m(ri ,r j ) = 1−|COL(ri )−COL(r j )| Image Colorfulness Distance-
based similarity

Image:EN si m(ri ,r j ) = 1−|E N (ri )−E N (r j )| Image Entropy Distance-
based similarity

Image:EMB si m(ri ,r j ) = E MB(ri )·E MB(r j )
||E MB(ri )||||E MB(r j )||

Image Embedding Cosine-
based similarity

Plot:LDA si m(ri ,r j ) = LD A(Plot (ri ))·LD A(Plot (r j ))
||LD A(Plot (ri ))||||LD A(Plot (r j ))||

Plot LDA Cosine-
based similarity
(LDA = LDA vector)

Plot:COS si m(ri ,r j ) = T F I DF (Plot (ri ))·T F I DF (Plot (r j ))
||T F I DF (Plot (ri ))||||T F I DF (Plot (r j ))||

Plot Text Cosine-
based similarity
(TFIDF = TF-IDF
weighted vector)

Genre:JACC si m(ri ,r j ) = {Gen(ri )}∩{Gen(r j )}
{Gen(ri )}∪{Gen(r j )}

Genre Jaccard-
based similarity

Genre:LDA si m(ri ,r j ) = LD A(Gen(ri ))·LD A(Gen(r j ))
||LD A(Gen(ri ))||||LD A(Gen(r j ))||

Genre LDA Cosine-
based similarity
(LDA = LDA vector)

Dir:JACC si m(ri ,r j ) = {Di r (ri )}∩{Di r (r j )}
{Di r (ri )}∪{Di r (r j )}

Director(s) Jaccard-
based similarity

Date:MD si m(ri ,r j ) = 1−|di std ay s (ri ,r j )
Release Date distance-
based similarity
(unit = days)

Act:JACC si m(ri ,r j ) = {Act (ri )}∩{Act (r j )}
{Act (ri )}∪{Act (r j )}

Actors Jaccard-
based similarity

SVD si m(ri ,r j ) = svd(ri ,r j )
SVD-based similarity
based on ratings Tag

Tags si m(ri ,r j ) = Tag (ri )·Tag (r j )
||Tag (ri )||Tag (r j )||

Tag Genome Cosine-
based similarity
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3.1.3 Technical Details

While the framework is developed from the ground up for this thesis, several aspects are

inspired by the preliminary study work of Trattner & Jannach. [54]. These aspects include

the visual design of the interface and the structure of the study. With these elements pre-

defined, the framework was developed to focus on the controllable multi-lists presentation

of similar recommendations. The prototype is a web application developed using the Vue.js

Javascript framework, with MongoDB Atlas handling data storage. The framework was de-

veloped as a single-page application, which entails that participants could only progress for-

ward throughout the study. This design decision was made to disallow participants in the

study to return to previous study steps and redo answers to make the study flow more simi-

lar to a scenario of regular browsing.

3.1.4 Recommendation Interface

This description of the prototype is divided into two parts. First, details of the multi-lists pre-

sentation of recommendations based on the previous section’s similarity functions are dis-

cussed. Second, the details of the interaction elements for controllability are elaborated. The

list sort methods concerning system interpretation of control are elaborated in the research

design section, under conditions in Section 3.2.1. The controllable multi-lists recommender

system can be seen in Figure 3.1.

Multi-lists presentation. As a multi-lists presentation of recommendations, each similarity

function constitutes a top-N list of movies. As list length is not considered to be substantially

important [7] and to reduce the cognitive load for the participants when evaluating all these

lists [31, 49], as well as noting standard practices in other studies[5, 41, 29], each list only

contains five of the movies with the highest similarity score in context to the reference movie

selected. The same movie may show up in multiple lists, which is also typical of commercial

services such as Netflix and Amazon, and shown to be beneficial in a Zhao et al. study [58].

Each list is also labeled and displayed above each row, identical to the function name given

in Table 3.2 with two exceptions. The "baseline" label is replaced with "Miscellaneous" when

presented to the participants to avoid possible bias [23, 15]. The second exception was based

on observations made during the limited test trials in which participants struggled to under-
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stand what the label "SVD" entailed. As such, this was labeled as "Community Preference".

Figure 3.1: The controllable multi-lists presentation of similar recommendations. The two
interaction elements for control can be seen right of lists. More recommendation lists can
be viewed by scrolling.
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Interaction for control. The interaction elements that enable users to enforce their con-

trol on the system are the arrows seen in Figure 3.1. As guided by RQ1, the intended goal is

to allow users control over feature importance, which is implemented by having a multi-list

presentation of recommendations in which each list is based on a unique feature or method.

Based on an investigation into literature, no studies were found investigating control and

user interaction in such a context. Therefore, the selection is based on the theoretical foun-

dation and suggestions made by literature review on similar topics [31, 11, 52, 51, 27, 39, 45]

to provide more grounded assumptions on selected controls utility and ease of handling in

this context.

To this end, two interaction method was selected for user enforcement of control. The first

interaction method included was drag & drop, in which users can drag a list to any position

by a handle, which is the double-sided arrow seen in Figure 3.1. This interaction method was

selected based on an assumption of utility in this context and inspired by how it was utilized

in the uRank system by C. Di Sciascio et al. [16]. A second alternative was also incorporated,

which constitutes simple buttons shaped like arrows, which moves a list of one index in the

arrow’s direction, which is noted to have been used in some similar fashion in a Harper et al.

study [25].

3.2 Research Design

This section details the research design for evaluating the prototype following the research

questions. It begins by providing a general summary of the conditional quantitative study

before detailing the conditions selected and further describing each step of the study. Fol-

lowing this, the metrics of this study are described, and this section ends with an overview of

the statistical analysis methods.
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Figure 3.2: General overview of the study, with associated screenshots of the study for each
step. Full views of these screens are available in the Appendix A.

The prototype described forms the core of the study and is expanded to include relevant

functionality. A visual flowchart of the study can be seen in Figure 3.2. At the start, the par-

ticipant is presented to the study and given a complete list of instructions. After confirming,

the primary study loop that lasts for five iterations begin. Here, participants search and select

a reference movie and are then given a multi-lists presentation of recommendations. How

the system orders the list, and if control is enabled are conditional dependent and further

detailed in Section 3.2.1, but in any condition, the participant first evaluates the list order.

This browsing ends when participants one of the recommended movies to watch later in

which the user is tasked with searching for a new reference movie. After five iterations, the

participants are given a questionnaire and tasked with evaluating the system. When this is

handed in, the study is complete.
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3.2.1 Conditions

The study method is a quantitative conditional evaluation to find variances with pairwise

comparison to answer research questions. With this in mind, the study is divided into sev-

eral conditions depending on the research questions. For evaluating controllability in the

multi-lists presentation of recommendation (RQ1), two conditions are needed in terms of

the prototype with and without controllability. For the effect of different list sort methods

(RQ3), three methods were selected as sub-conditions, meaning that the study totals six con-

ditions. An overview of all conditions can be seen in Table 3.4

Table 3.4: Overview of conditions and names.

Conditions on control

No control (A) Control (B)

Sub-conditions
on list sort
method

Random sort (1) No control random sort (A-1) Control random sort (B-1)

Fixed sort (2) No control fixed (A-2) Control fixed sort (B-2)

Weighted sort (3) No control weight sort (A-3) Control weight sort (B-3)

The following is an elaboration of the list sort methods chosen for this study. Pragmatically,

the list sort methods are just different methods for the system to reorder the hierarchical

order of the lists in a multi-list presentation based on the user control.

The first list ordering chosen method is a random Fisher-Yates shuffle [17] that is performed

per iteration step. This means that the user control has no effect on the system and is cho-

sen as a baseline comparison. This shuffling method is also employed in the other sub-

conditions’ first iteration to provide an unbiased starting point [23].

The second method chosen is fixed sort. In this method, after the first shuffle, no further

sorting is done by the system. If control is enabled, the order provided by participants is

preserved between iterations. This interaction can be described as a Markov Chain as the

only dependent state is the previous state [38].

Weight sort is the final method. This method, which has been utilized in different forms in

discussed studies [44, 36, 8] takes the way of applying weights to list based on index positions

of each list per iteration. The weight for any given list is calculated based on this formula:

wl =
z∑

i=1

1+ y −x

y
where z is the iteration, y is the total number of lists present in the system,

and x is the index value of the list counting from the top. An exception to this algorithm is
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that the list from which a participant selects a movie is always considered the top position.

As a reference guide based on Table 3.4, the conditions on controllability is referred to as fol-

lows: no control (A) and control (B). The list sort conditions consist of data from both con-

trollability conditions and are referred to with integers with (1) representing random sort, (2)

fixed sort, and (3) weighted sort. Specific conditions may be referred to based on control-

lability and list sort methods, such as no control (A-3) for an interface without control with

weighted sort or control (B-1) for an interface with control and random sort.

3.2.2 Study Details

Mturk3, Amazon’s crowdsourcing platform, was opted for as the tool to collect the quanti-

tative data needed through a user study. This platform has been utilized in the preliminary

study by Trattner & Jannach [54]. Additionally, a previous study by Hauser & Schwarz [26]

on the quality of participants’ work supports its use in this study [26]. As the focus of this

study is to evaluate the viability of a controllable multi-list presentation of recommenda-

tions, participants could only partake in the study on a personal computer. This limitation

is put into place to have a homogenous testing environment and prevent different platforms

with other interactive elements such as touchscreens and smaller visual displays from dis-

torting results [23, 52]. Participants had to have a Mturk score above an arbitrary threshold

to reduce potential inattentiveness [54, 26]. The average completion time was 12.6 minutes,

in which participants have been compensated one dollar for their efforts.

The study structure is based on the preliminary study [54] with a key difference in that several

iterations are included. The number of iterations settled on was five, which is both assumed

to be enough to measure some results while still short enough to be both economical and

practical. The number of iterations required by participants is explained in the introduction,

and the current iteration is always displayed to the participants.

3Mturk platform: https://www.Mturk.com

https://www.Mturk.com
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Figure 3.3: Overview of the sample distribution per condition of this study.

The study was performed in batches as visualized in Figure 3.3. Each batch consisted of

50 participants focusing on one condition. A total of 300 participants was recruited for this

study. To ensure the independence of samples, participants from previous batches are ex-

cluded from future participation. Due to some technical errors, some entries had to be omit-

ted due to incomplete data. This consisted of three participants for A-1, two for A-2, and

one for B-2. A supplement run to fill these data gaps was performed by recruitment among

the student populace with no prior knowledge or engagement with the project. As the sup-

plement sample size is small compared to the total sample size, any bias induced by local

recruitment is considered negligible.

3.2.3 Study Phases

The following paragraphs detail each of the four main phases of the study; instructions,

search phase, browsing phase, and survey phase.
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Instruction Phase. The first step of the study after a participant is redirected from Mturk is

the introduction screen. On this page, the participants are presented with the surrounding

context and general task, an overview of the study, and their general instructions. These

instructions are identical across conditions except that elaboration on control is omitted

from the no control (A) conditions. Additionally, the participants are informed that their

inputs will influence future recommendations without any further elaboration, influenced

by Harper et al. study [25].

Participants then move on by confirming that they have read the instructions. An atten-

tion check for filtering purposes was implemented here by writing instructions to click on a

button hidden in the text rather than the large button at the bottom, but the results found

only 27% of all participants passed this test and was therefore dropped for being too strict.

Screenshot of the instruction screen can be seen in the Appendix A as Figure A.1.

Search Phase. When a participant navigates from the instruction screen, the main study

loop begins, a two-step process that lasts for five iterations. The first step is the search phase.

In this phase, participants are tasked with searching for a reference movie for which the sys-

tem will provide recommendations. While time demanding, this has been shown in the Mc-

Nee et al. study [39] to increase user satisfaction. Participants are not allowed to select a

reference movie more than once. This page is visualized in the Appendix A under Figure A.2.
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Browsing Phase. When a reference movie is selected, the next step is the browsing phase.

Here, the participants are presented with a multi-lists presentation of recommendations

based on the selected reference movie. Instructions are reiterated and elaborated on top

of the screen, following an information screen that displays the meta-information of the se-

lected reference movie. Under these, the eleven rows that constitute the multi-list presen-

tation of recommendations are displayed. Based on feedback from the trial, a zoom button

that shrinks the recommendations view by 50% is implemented to provide participants with

an optional overview of all recommendations.

The first task given to the participants here is to rate the order of the lists on a five-point

Likert scale from "very unsatisfied" to "very satisfied". Participants may not perform any

control action or continue from this phase before answering this question. If attempted, a

visual error trigger. Following this, participants n the control (B) conditions are tasked with

reordering the lists from the top (positive) to the bottom (negative). When they are satisfied

with the order, they select a movie from one of the lists to "watch later". The no control (A)

participants do the same after rating the order. This page is visualized in the Appendix A

under Figure A.4.

One additional element to the browsing phase included for the control (B) participants in the

first iteration only is one more instruction screen. This screen provides a tutorial of how par-

ticipants can use control to rearrange the list order by showcasing the control elements using

.gifs and describing possible actions. This screen can be seen in Appendix A as Figure A.3.

Survey Phase. Participants move between the search phrase and the browsing phase.

When five iterations have passed, the participants are redirected to an end of study question-

naire. In this survey phase, participants are tasked with evaluating the study by answering

questions, further described in Section 3.2.4. When done, the study ends.

To summarize and provide an overview of the study, detailed process charts that elaborate

on the study structure per condition are detailed in Figure 3.4 for the no control conditions

(A) and Figure 3.5 for the control conditions (B).
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Figure 3.4: Process chart highlighting the operations of no control (A).
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Figure 3.5: Process chart highlighting the operations of control (B).
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3.2.4 Metrics

The metrics selected for the study are detailed in the following, which includes the tracked

activity of participants and the evaluation questions given. These questions are organized

into categories [33] based on evaluating certain aspects of the system and are selected based

on the preliminary study [54] and similar research. A complete list of the questions can be

seen in Table 3.5. The elaboration begins by describing each question category in relation to

the associated research questions.

System usability. This category consists of the commonly used system usability scale [37,

23], which is selected for this study as a holistic evaluation of the system. This is used for

RQ1, RQ2, and RQ4. The system usability scale is made up of ten Likert-scale and a final

score based on these[37]. The principal metric here is the overall score, but the questions

themselves are included in the statistical analysis for a higher granular view of the results.

Recommendation quality. Participants’ subjective view of the recommendations provided

may differ depending on conditional properties, as noted in Pu et al. study [29]. For this, five

metrics are selected based on important evaluation aspects of the recommender system,

such as serendipity, relevancy, diversity, and novelty [54, 57, 25]. These are of interest to RQ1,

RQ2, and RQ4. In addition, list order satisfaction is included as a measurement of participant

satisfaction with the current list ordering per iteration. This metric is the primary metric to

gauge the effect of list sorting methods and are included for RQ3.

System satisfaction. This category consists of questions selected to evaluate specific parts

of the implemented controls, such as the usefulness of sorting functions, recommendation

improvement over time, and participants’ evaluation of the usefulness of control. These are

of interest to RQ1, RQ2, and RQ4.

Demographic Similar works have shown that demographic properties users may influence

user evaluation of recommender system [21, 6, 40, 48, 47, 6, 35]. These are included for RQ4

to discover if these factors are influential when evaluating controllability. These are the age

and gender of the participants, experience with similar systems, and domain knowledge.
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Table 3.5: Overview of the questions posed in the questionnaire at the end of the study, or-
ganized by metric group. Includes metric name, possible values and exact question posed.

Metric Options Question

System Usability

SUS Score - Calculated score based on questions the below [37] .

Wish to use Likert-Scale 1-5 I think that I would like to use this system frequently.

Complexity Likert-Scale 1-5 I found the system unnecessarily complex.

Easy to use Likert-Scale 1-5 I thought the system was easy to use.

Assistance need Likert-Scale 1-5 I think that I would need the support of a technical person

to be able to use this system.

Functions integration Likert-Scale 1-5 I found the various functions in this system well integrated.

Inconsistencies Likert-Scale 1-5 I thought there was too much inconsistency in this system.

Easy to learn Likert-Scale 1-5 I would imagine that most people would learn to use

this system very quickly.

Cumbersome Likert-Scale 1-5 I found the system very cumbersome to use.

Confidence using Likert-Scale 1-5 I felt very confident using the system.

A lot to learn Likert-Scale 1-5 I needed to learn a lot of things before I could get

going with this system.

Recommendation Quality

List order satisfaction N** Likert-Scale 1-5 Please report on a scale from very
unsatisfied (1) to very satisfied (5) on
how you happy you are with the
current list order, from top to bottom.

List order satisfaction** Avg Mean value of list order satisfaction after five iterations

Diversity Likert-Scale 1-5 The movies presented to me were diverse.

Novelty Likert-Scale 1-5 I was able to discover new movies.

Serendipity Likert-Scale 1-5 I was pleasantly suprised by the recommendations.

Relevance Likert-Scale 1-5 All of the presented movies were similar to my reference movies.

System Satisfaction

Recommendation sim Likert-Scale 1-5 Searching for similar movies took a lot of time.

Difficult selecting movie Likert-Scale 1-5 Deciding between a large number of options was difficult.

Recommendation Improved Likert-Scale 1-5 The recommendations improved over time.

Felt in control Likert-Scale 1-5 I felt in control of the recommendations.

Sorting function useful Likert-Scale 1-5 The sorting functions were useful.

Demographic

Streaming service usage Daily(1)-Once a week/Once a
month(2)*-Once every three
months(3)-Hardly(4)

Which of the following statements
best describes your use of online
movie services (e.g, Netflix, IMDB,
etc.)?

Movies per week Option range: 0 to 7 On average, on how many days per week do you watch a movie?

Age category Between 18 and 100 Your age

Gender Female(1) - Male(2) - Other (3) Your gender

* The option of "Once a month" was available in the study but due to a technical error the value was registered as once a week.
** List order satisfaction are not asked during the survey phase, but during each browse phase.

Outside of these four main categories of questions, tracked activity by participants are also a

group of metrics. These metrics are the logged activity of participants. For control elements,

this is the number of interactions performed using the control elements and position of lists

selected, as it is of interest to evaluate the two interaction methods chosen for control in

RQ2. These logged activity-based metrics are summarized in table 3.6
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Table 3.6: Overview of the tracked activity metrics used in this study.

Metric Value Explanation

Total list ordering Avg value The distance a list have been moved in terms of
absolute value of index change.

Click list ordering Avg value The distance a list have been moved using clicks in
terms of absolute value of index change.

Drag&Drop list ordering Avg value The distance a list have been moved using drag&drop
in terms of absolute value of index change.

Times click was used Avg value Number of times clicks was utilized

Times drag&drop was used Avg value Number of time a drag&drop operation was performed

Movie index in list Avg value When participants select a movie, it’s index in a list is stored

Selected list index Avg value When participants select a movie, the index of the list is stored

Preferred Control Element 0 = No preference, Categorical variable based on which interaction
method a participant utilized the most, based on
distance of each control.

1 = Drag & Drop

2 = Click

Based on the background research, the metrics were selected primarily due to their relevance

in evaluating the research questions and on other noted practices [23]. A single sample con-

sisting of one participant will tally a total of 140 metrics based on tracked activity and data

per iterations, with only the ones relevant to the research questions included in this study.

As such, the data gathered are available for future research. For more information on this,

Section 5.3 detail unexplored regions of the dataset and Section 5.4 details information on

accessing this dataset.

3.2.5 Statistical Analysis

The method for statistical analysis is to look at statistically significant variances between

conditions on associated metrics. To this end, two main statistical methods are chosen. The

student t-test is utilized for pairwise comparison between conditions, with Cohen’s d to cal-

culate the effect. For a comparison between several groups, the one-way analysis of variance

(ANOVA) is utilized with omega squared (ω2) as the effect metric. For the ANOVA test that

returns a statistically significant value (p < 0.05), the Tukey-HSD post hoc test is used with

Cohen’s d for effect. The following is an organized description of how each analysis was per-

formed in relation to research questions.
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RQ1: Evaluating controllability in multi-lists. The principle analysis is t-tests is per-

formed between no control(A) and control (B) conditions on the discussed metrics in Sec-

tion 3.2.4. These pairwise comparison analyses are also performed between sub-conditions

to isolate list-sort methods. Finally, an ANOVA test between list-sort methods is performed

on the metric groups to detect if an interaction effect is present between control and list sort

conditions.

RQ2: Evaluating selected interaction methods. To analyze if the selected interaction

methods impact participant evaluation of the system, the participants are grouped by which

interaction method they ordered the lists with the most. A pairwise comparison using the

t-test is then performed between click and drag & drop users on the selected metric groups.

RQ3: Evaluating list-sort methods. The primary metric to analyze is the list order satisfac-

tion reported by participants, both per iteration and the average value. A one-way ANOVA

achieves this by looking for variances between the three list sort conditions. The analysis was

performed on both aggregated and separated control condition data. The one-way ANOVA

on interaction effect performed for RQ1 is also relevant here to look at possible variances in

other metrics.

RQ4. Evaluating demographic influences. The final set of statistical analyses are a com-

parison analysis between groups based on demographic metrics. This begins with including

demographic variables in all previous analyses to verify distribution among conditions. A

comparative analysis is performed on the evaluation metrics to see if any demographic prop-

erties impact the system’s evaluation. A t-test is utilized if a demographic metric consists of

only two categories, one-way ANOVA if several are present.

3.2.6 Data Filtering

A total of 300 participants conducted the research tasks (Figure 3.3). Based on common prac-

tice [26, 54], participants who failed an attention check are omitted from the data analysis.

Initially, it was planned to utilize an attention check presented at the beginning of the study

to filter it. However, only it was considered too conservative with only 25% passing. Due to
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Table 3.7: Sample size overview for the conditions.

List sort conditions No control conditions Control conditions
Total Filtered Total Filtered Total Filtered

N1 = 100 N1 = 94 NA−1 = 50 NA−1 = 47 NB−1 = 50 NB−1 = 47
N2 = 100 N2 = 88 NA−2 = 50 NA−2 = 46 NB−2 = 50 NB−2 = 42
N3 = 100 N3 = 80 NA−3 = 50 NA−3 = 52 NB−3 = 50 NB−3 = 38

this issue, the selection criteria were modified only to utilize the secondary attention check,

where an arithmetic question was present in the survey. Based on this filtering, the remain-

ing samples per condition used for the statistical analysis can be viewed in Table 3.7.
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Chapter 4

Results

This chapter details the results from the statistical analysis performed on the study data. It

is organized by which research question the analysis pertain to as follows:

• RQ1: Section 4.1 details the analysis results performed to evaluate controllability in

multi-lists presentation of recommendations.

• RQ2: Section 4.2 details analysis results on how evaluation differed between interac-

tion methods.

• RQ3: Section 4.3 details analysis results on how list sort methods affected the partici-

pants’ list order satisfaction.

• RQ4: Section 4.4 details the analysis performed to evaluate if demographic aspects of

the participants influenced their evaluation of the system.
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4.1 Evaluation of Control Elements (RQ1)

Pairwise comparisons between the no control (A) and control (B) groups were performed

between the conditions as a whole and organized by sub-conditions on list-sort methods.

The results showed persistent trends across all t-tests, yet the number of statistically signif-

icant metrics decreased as list-sort method complexity increased. A one way ANOVA was

performed on list sort methods as a whole and list-sort sub-conditions under control condi-

tions to discern if this diminishing effect signified an interaction effect. The ANOVA test did

not find any significant variances, so no interaction effect is assumed to take place even if

weighted sort (Table B.3) had barely any significant statistical variances as opposed to ran-

dom sort (Table B.1). The sub-conditional t-tests are available in Appendix B.1.2 with the

ANOVA for interaction effect in Appendix B.1.3. Following the table is an elaboration of re-

sults per metric category.
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Table 4.1: Pairwise comparison with t-test between no control and control overall. Means are
displayed with standard error and are underlined in metrics where objective better values are
present. N denotes sample size. Note: † = significant metric, *p<.05, **p<.01, ***p< .001.

NA = 135 NB = 127
System Usability MeanA MeanB p Cohen’s d
SUS Score† 73.7±1.60 65.4±1.76 >.001*** .43
Wish to use 3.640.10 3.50±0.11 .305 .13
Complexity† 2.1±0.11 2.59±0.11 .002** -.40
Easy to use† 4.18±0.09 3.89±0.09 .019* .29
Assistance need† 1.71±0.11 2.06±0.12 .031* -.27
Functions integration 3.72±0.08 3.54±0.10 .163 .17
Inconsistencies† 2.39±0.11 2.73±0.12 .039* -.26
Easy to learn† 4.18±0.08 3.79±0.08 >.001*** .41
Cumbersome† 2.12±0.11 2.74±0.12 >.001*** -.48
Confidence using 4.01±0.08 3.89±0.09 .349 .12
A lot to learn† 1.92±0.11 2.33±0.12 .010* -.32
Participant Activity
Movie index in list† 1.86±0.07 1.55±0.07 >.001*** .41
Selected list index† 2.15±0.14 1.50±0.18 .004** .35
Recommendation Quality
List order satisfaction 3.93±0.07 3.86±0.07 .450 .09
Diversity† 3.94±0.08 3.70±0.08 .034* .26
Novelty 3.88±0.09 3.74±0.10 .292 .13
Serendipity 3.72±0.09 3.52±0.09 .124 .19
Relevance 3.37±0.10 3.30±0.10 .626 .06
System Satisfaction
Recommendation sim† 2.27±0.11 2.69±0.12 .009** -.32
Difficult selecting movie 2.65±0.11 2.79±0.11 .400 -.10
Recommendation Improved 3.26±0.10 3.38±0.10 .395 -.11
Felt in control 3.41±0.11 3.24±0.10 .263 .14
Sorting function useful 3.47±0.10 3.54±0.10 .625 .06
Demographic
Age category 2.81±0.09 2.80±0.09 .927 .01
Streaming service usage 1.67±0.06 1.69±0.06 .831 -.03
Gender 1.53±0.04 1.57±0.05 .603 -.06
Movies per week 3.10±0.17 2.91±0.16 .433 .10
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System evaluation. In terms of system evaluation, Table 4.1 shows a statistical significant

negative variance in SUS score when control is implemented(p < 0.001, d = .43). Through

a further investigation into the questions that form the overall system evaluation score, it

is made clear that no control was more positively evaluated, with 7/10 questions posed as

statistically significant. These differences become less significant when sub-conditions are

paired based on list-sort methods, but at no point is control (B) evaluated more positively

than no control (A). Control therefore appears to have an adverse effect on system usability.

Recommendation quality. Participants found the no control (A) recommendations more

diverse (p = .048, d = .63) with no other metrics statistically significant. Surprisingly, list

order satisfaction did not improve in control (B). In short, control does not appear to affect

participant evaluation of recommendation quality.

System satisfaction. While there are no significant variances found in terms of participants

reporting that recommendations were improving, felt more in control, or that the sorting

functions were useful, control was evaluated to provide more similar recommendations (p =

0.009, d -0.32). It is also noted that in the pairwise comparison with weighted sort as seen in

Table B.3, participants also reported that the recommendations improved much more than

no control participants (p = 0.038, d -0.47). To summarize, control appears to affect some

aspects of system satisfaction positively.

Summary. Compared to the no control interface, control was negatively evaluated by par-

ticipants in terms of overall system evaluation, appeared to have a negligible effect on rec-

ommendation quality, and some positive effects on some aspects of system satisfaction.

Other results. It is noted that participants in the no control (A) condition had a tendency

to select movies both deeper further down in the multi-list presentation (p <.001, d = -0.41)

and further down the list (p = .004, d -0.35).
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4.2 Evaluation Variances by Interaction Preference (RQ2)

Subsequently, a pairwise comparison between drag & drop(DD) and click(C) was. The com-

parison is on participants’ utilization of each interaction method, based on the assumption

that the method with the highest move distance by a user indicates a preference. For this

purpose, all participants who did not interact with the system are omitted from the analysis.

There were no noted occurrences where distance was equal between methods for any par-

ticipant. The data for this analysis is based on the entirety of control(B). The pairwise t-test

results can be viewed in Table 4.2.

The first aspect noted is that among the 150 participants in the no control(B), 51 never inter-

acted with the controls; 76 mostly utilized the buttons while only 23 preferred drag & drop.

This low sample size of drag & drop users may impact the reliability of the results.

Based on the mean values and statistical significance noted, drag & drop users occasion-

ally interacted with the arrow buttons with an average interaction count of 2.47(DD) versus

7.6 (C), yet click users would barely use the drag & drop functionality with 3.16(DD) ver-

sus 0.29(C). While differences are expected when grouping users based on which interaction

method they primarily used, the low value of the alternative interaction method signifies a

tendency to pick one method and stick with it. Drag & Drop users also moved lists more than

click users, with an average index reorganization of 12.15(DD) versus 8.27(C).

While the differences in participant activity are significant, this does not seem to affect the

overall system evaluation, recommendation quality, and system experience evaluation to

any significant degree. These results may be due to the low sample size of DD preference

users. However, it is noted that in terms of demographic, drag & drop users tended to be

more experienced with similar systems than their counterparts.
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Table 4.2: Pairwise comparison with t-test between utilization of control elements by partic-
ipants. DD = Drag & Drop users, C = Click users. Means are displayed with standard error
and are underlined in metrics where objective better values are present. N denotes sample
size. Note: † = significant metric, *p<.05, **p<.01, ***p< .001.

NDD = 22 NC = 70
System Usability MeanDD Mean MeanC p Cohen’s d
SUS Score 70.0±4.92 65.3±2.38 .357 -.23
Wish to use 3.18±0.29 3.41±0.14 .438 .19
Complexity 2.14±0.27 2.6±0.15 .144 .36
Easy to use 4.09±0.22 3.77±0.12 .190 -.32
Assistance need 1.64±0.25 1.83±0.13 .477 .17
Functions integration 3.41±0.23 3.44±0.13 .898 .03
Inconsistencies 2.77±0.34 2.53±0.14 .449 -.19
Easy to learn† 4.14±0.20 3.64±0.12 .043* -.50
Cumbersome 2.45±0.32 2.69±0.15 .475 .18
Confidence using 4.09±0.22 3.77±0.13 .228 -.30
A lot to learn 1.91±0.29 2.27±0.15 .247 .28
Participant Activity
Total list ordering† 12.15±1.39 8.27±0.77 .016* -.6
Click list ordering† 2.47±0.67 7.60±0.68 >.001*** .99
Drag&Drop list ordering† 9.67±1.11 0.67±0.23 >.001*** -30
Times click was used† 2.47±0.67 7.60±0.68 >.001*** .99
Times drag&drop was used† 3.16±0.39 .29±0.10 >.001*** -2.49
Movie index in list 1.50±0.13 1.51±0.09 .948 .02
Selected list index 1.55±0.38 1.09±0.21 .271 -.27
Recommendation Quality
List order satisfaction 3.48±0.18 3.81±0.09 .090 .42
Diversity 3.77±0.16 3.64±0.11 .559 -.14
Novelty 3.73±0.22 3.64±0.14 .768 -.07
Serendipity 3.32±0.27 3.43±0.12 .675 .10
Relevance 3.23±0.23 3.13±0.13 .715 -.09
System Satisfaction
Recommendation sim 2.41±0.33 2.63±0.15 .510 .16
Difficult selecting movie 2.59±0.30 2.69±0.15 .760 .07
Recommendation Improved 3.27±0.27 3.23±0.12 .870 -.04
Felt in control 3.09±0.23 3.14±0.13 .844 .05
Sorting function useful 3.59±0.29 3.43±0.13 .577 -.14
Demographic
Age category 2.50±0.17 2.93±0.13 .086 .42
Streaming service usage† 1.32±0.10 1.77±0.10 .014* .61
Gender 1.73±0.12 1.61±0.06 .362 -.22
Movies per week 3.09±0.43 2.79±0.21 .488 -.17
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4.3 List Sort Methods Impact on System Satisfaction (RQ3)

The following analysis was performed to evaluate the effect of different system enforcement

of control in list-sort methods (RQ3). Results from the interaction effect analysis of Sec-

tion 4.1 exhibited no effect between control and list sort method on other metrics, which

also pertain to list sort methods not affecting this selection of metrics.

With these initial results in mind, this statistical analysis focuses on the list order satisfaction

given by participants each iteration and the mean value across all iterations, which was com-

pared without considering control, and when considering control. Overview of participants’

evaluation of list order can be seen in Figure 4.1 with mean values and standard error. There

appear to be some noted differences in the figure, but a one-way ANOVA analysis found no

significant variances as seen in Table 4.3. Consequently, the list sort method does not ap-

pear to have any effect on list order satisfaction as seen in this section, or any other metric

explored as seen in Appendix B.5 and Appendix B.4.

Table 4.3: One-Way ANOVA on users’ list order satisfaction score between conditions and
sub-conditions.All metrics are rounded to nearest third decimal for p-value and second dec-
imal for omega squared. It. denotes iteration number

List Sort No Control Control
(1, 2, 3) (A-1, A-2, A-3) (B-1, B-2, B-3)
N1 = 94 NA−1 = 47 NB−1 = 47
N2 = 88 NA−2 = 46 NB−2 = 42
N3 = 80 NA−3 = 52 NB−3 = 38

p ω2 p ω2 p ω2
List order satisfaction it.1 .930 -.01 .341 .00 .410 -.00
List order satisfaction it.2 .963 -.01 .431 -.01 .347 .00
List order satisfaction it.3 .306 .00 .791 -.01 .287 .00
List order satisfaction it.4 .760 .00 .331 -00 .807 -.01
List order satisfaction it.5 .775 -.01 .923 -.01 .378 -.00
List order satisfaction average .798 -.01 .693 -.01 .250 .01
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Figure 4.1: Line plot showing how the mean satisfaction score changed per iteration between
conditions. Error bars measured in standard error.



4.4. DEMOGRAPHIC EFFECTS ON EVALUATION (RQ4) 51

4.4 Demographic Effects on Evaluation (RQ4)

This section details the results from the analysis performed to gauge if the selected demo-

graphic properties affect participant evaluation of the system (RQ4). The first step taken

before looking at demographic preferences is to ensure that they are not disproportional be-

tween conditions. This was achieved by including these in previous comparison analysis, as

they are stored as continuous variables. Based on previous comparative analysis performed

between conditions on these metrics in Tables 4.1, B.1, B.2, B.3 and B.5, demographic values

are assumed to be normally distributed between conditions. The following test is performed

on the whole set of data available, meaning all 300 initial samples.

Table 4.4: Original distribution of samples across the demographic metrics(left) and the re-
organized categories used for more even sample sizes..

Original Data Distribution Utilized distribution
Movies Watched 0 1 2 3 4 5 6 7 0to1 2to3 4+
All 8 51 81 49 45 30 14 22 59 130 111
Attention 8 50 75 41 29 27 10 22 58 116 88
Age 18-24 25-34 35-44 45-54 55+ 18-34 35-44 45+
All 8 140 85 40 27 148 85 67
Attention 8 119 74 37 24 127 74 61
Gender Other Female Male Female Male
All 3 137 160 137 160
Attention 3 121 138 121 138
Streaming Usage Daily Weekly+ Quarterly Hardly Daily Rarer
All 123 162 5 10 123 177
Attention 109 139 4 10 109 153

The next step is to investigate the sample size of the demographic metrics to ensure the

reliability of the results. Since some options had too low samples to be considered reliably

utilized as a categorical variable, the groups were reorganized to provide more even groups

with higher samples. The focus was on preserving as much granularity as possible. Original

and utilized distribution can be seen in Table 4.4. Alternative errorbar plots can be seen in

Appendix B.3.1, Figure B.11 Since streaming usage and gender were reduced to two options,

it was decided to use a T-test for pairwise comparison. For domain experience and age with

three options, one-way ANOVA with Tukey-HSD post hoc test was selected.
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4.4.1 Similar System Experience

Table 4.5: Pairwise comparison with t-test on participants who used similar services daily
versus rarer. Means are displayed with standard error and are underlined in metrics where
objective better values are present. N denotes sample size. Note: † = significant metric,
*p<.05, **p<.01, ***p< .001.

NDai l y = 109 NRar er = 139
System Usability Daily MeanDai l y MeanRar er p Cohen’s d
SUS Score† 74.6±1.89 66.8±1.60 .002** .40
Wish to use 3.71±0.12 3.55±0.09 .279 .14
Complexity† 2.03±0.12 2.53±0.11 .002** -.40
Easy to use 4.18±0.10 3.97±0.08 .097 .21
Assistance need 1.74±0.12 1.99±0.11 .145 -.19
Functions integration 3.70±0.10 3.60±0.08 .446 .1
Inconsistencies† 2.24±0.12 2.75±0.11 .003** -.39
Easy to learn† 4.15±0.10 3.90±0.08 .046* .26
Cumbersome† 2.21±0.13 2.55±0.11 .048* -.25
Confidence using 4.07±0.10 3.91±0.09 .198 .17
A lot to learn† 1.75±0.11 2.37±0.11 >.001*** -.49
Participant Activity
Click list ordering 2.25±0.42 2.06±0.36 .737 .04
Drag&Drop list ordering† 1.55±0.38 0.64±0.21 .028* .28
Times click was used 2.25±0.42 2.06±0.36 .737 .04
Times drag&drop was used 0.47±0.12 0.27±0.08 .161 .18
Movie index in list 1.62±0.08 1.75±0.06 .182 -.17
Selected list index 1.69±0.19 1.93±0.15 .298 -.13
Recommendation Quality
List order satisfaction 3.92±0.07 3.93±0.07 .997 0.0
Diversity 3.92±0.09 3.73±0.08 .118 .20
Novelty 3.92±0.11 3.71±0.09 .14 .19
Serendipity 3.71±0.10 3.58±0.09 .329 .13
Relevance 3.39±0.11 3.35±0.10 .745 .04
System Satisfaction
Recommendation sim† 2.17±0.12 2.65±0.11 .004** -.37
Difficult selecting movie† 2.46±0.13 2.89±0.11 .009** -.34
Recommendation Improved 3.41±0.11 3.23±0.09 .211 .16
Felt in control 3.48±0.11 3.23±0.10 .098 .21
Sorting function useful 3.59±0.11 3.45±0.09 .335 .12
Demographic
Age category† 2.61±0.09 2.93±0.09 .015* -.31
Gender 1.50±0.05 1.58±0.04 .225 -.16
Movies per week† 4.03±0.19 2.41±0.11 >.001*** .98

Based on the results from the t-test in Table 4.5, participants who used streaming services

daily gave a higher SUS score than users who used these services less often. As noted when
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analyzing interaction preference in Table 4.2, they were also more likely to utilize drag &

drop. No significant variances were found on recommendation quality. While finding the

recommendations less similar, they had fewer difficulties finding movies with the system. In

correlation with other demographic variables, participants with daily usage of streaming ser-

vices tended to be younger and watch significantly more movies. To summarize, participants

with more system experience evaluated the systems more positively.

4.4.2 Gender

Full results from the t-test statistical analysis are available in Appendix B.4.1. Very few vari-

ances were found when analyzing if gender affected participant evaluation of the system.

With the analysis seen in Table B.6, there are only a few metrics with statistically significant

variances, which has somewhat high p-values. As such, gender does not appear to have any

particular effect on participant evaluation of the system.
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4.4.3 Age

The one-way ANOVA analysis of age and movie based on the statistical significant values

found in the ANOVA Table B.7 in Appendix B.4.1.

Following the one-way ANOVA results, a Tukey-HSD post hoc test was performed with results

shown in Table 4.6. The statistically significant results was that recommendation relevance

was higher among the 18-34 group than 45+. The youngest segment also felt more in control

as opposed to the oldest segment. Both of the younger segments used similar services more

often than the oldest. Overall, age seems to have some minor influence on system evalua-

tion, but not particularly strong effects are noted.

Table 4.6: Post hoc Tukey-HSD analysis results from the statistical significant metrics found
in the ANOVA Table B.7 regarding age category of participants. Means are displayed with
standard error and are underlined in metrics where objective better values are present. Note:
*p<.05,**p<.01,***p< .001.

Group1 Group2 Mean1 Mean2 p Cohen’s d
Assistance need 18-34 35-44 2.09±0.13 1.69±0.13 .078 -.31

18-34 45+ 2.09±0.13 1.66±0.14 .072 -.35
35-44 45+ 1.69±0.13 1.66±0.14 .900 -.03

Relevance 18-34 35-44 3.51±0.10 3.34±0.14 .559 -.15
18-34 45+ 3.51±0.10 2.97±0.14 .008** -.48
35-44 45+ 3.34±0.14 2.97±0.14 .158 -.32

Recommendation sim 18-34 35-44 2.65±0.12 2.16±0.15 .027* -.37
18-34 45+ 2.65±0.12 2.46±0.16 .593 -.15
35-44 45+ 2.16±0.15 2.46±0.16 .385 .24

Felt in control 18-34 35-44 3.54±0.10 3.19±0.15 0.106 -.29
18-34 45+ 3.54±0.10 3.07±0.14 .027* -.43
35-44 45+ 3.19±0.15 3.07±0.14 .793 -.10

Streaming service 18-34 35-44 1.63±0.06 1.58±0.08 .866 -.07
usage 18-34 45+ 1.63±0.06 1.89±0.09 .046* .37

35-44 45+ 1.58±0.08 1.89±0.09 .029* .45
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4.4.4 Analyzing Movie Usage

Based on the statistical significant values found in the ANOVA Table B.7, a Tukey-HSD post

hoc test was performed with results shown in Table 4.7. What is noted is that participants

who watch fewer movies per week (0-1) had a lower list order satisfaction than the partici-

pants who watch more. They also found recommendations to improve less over time, be less

surprised with the recommendations, or find them as relevant as participants who watched

many movies( 4+) a week. (4+) did also find the sorting function more useful. Overall, do-

main experienced has a large impact on participant system satisfaction and recommenda-

tion quality.

Table 4.7: Post hoc Tukey-HSD analysis results from the statistical significant metrics found
in the ANOVA Table B.7 on how many movies participants watched per week. Means are
displayed with standard error and are underlined in metrics where objective better values
are present. Note: *p<.05,**p<.01,***p< .001.

Group1 Group2 Mean1 Mean2 p Cohen’s d
Wish to use 0-1 2-3 3.14±0.17 3.58±0.11 .046 .36

0-1 4+ 3.14±0.17 3.85±0.11 .001 .61
2-3 4+ 3.58±0.11 3.85±0.11 .207 .25

Assistance need 0-1 2-3 1.55±0.14 1.78±0.11 .491 .21
0-1 4+ 1.55±0.14 2.22±0.16 .006** .52
2-3 4+ 1.78±0.11 2.22±0.16 .044* .32

List order satisfaction 0-1 2-3 3.59±0.10 3.94±0.07 .015* .44
0-1 4+ 3.59±0.10 4.03±0.07 .002** .59
2-3 4+ 3.94±0.07 4.03±0.07 .641 .13

Serendipity 0-1 2-3 3.33±0.15 3.67±0.10 .111 .31
0-1 4+ 3.33±0.15 3.76±0.10 .037* .42
2-3 4+ 3.67±0.10 3.76±0.10 .764 .10

Relevance 0-1 2-3 3.07±0.15 3.29±0.12 .460 .19
0-1 4+ 3.07±0.15 3.57±0.12 .032* .46
2-3 4+ 3.29±0.12 3.57±0.12 .221 .23

Recommendation 0-1 2-3 3.02±0.14 3.28±0.11 .319 .23
Improved 0-1 4+ 3.02±0.14 3.57±0.11 .010* .53

2-3 4+ 3.28±0.11 3.57±0.11 .152 .26
Felt in control 0-1 2-3 3.07±0.13 3.21±0.12 .720 .12

0-1 4+ 3.07±0.13 3.66±0.12 .008** .55
2-3 4+ 3.21±0.12 3.66±0.12 .017* .38

Sorting function useful 0-1 2-3 3.22±0.15 3.47±0.10 .350 .22
0-1 4+ 3.22±0.15 3.72±0.12 .027* .43
2-3 4+ 3.47±0.10 3.72±0.12 .283 .22

Streaming service usage 0-1 2-3 2.22±0.12 1.64±0.04 .001** -.83
0-1 4+ 2.22±0.12 1.36±0.06 .001** -1.16
2-3 4+ 1.64±0.04 1.36±0.06 .001** -.52
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Chapter 5

Discussion, Summary & Future Work

5.1 Discussion

The principal goal of this thesis was to evaluate if controllability in the multi-lists presen-

tation of recommendations in a similar item scenario is beneficial. This research began by

looking at similar studies and found none that have evaluated this approach. However, much

was learned from other studies on multi-lists presentation of recommendations and other

control implementations, including how demographic metrics may affect evaluation. Find-

ings from other studies were then utilized to develop a prototype for a controllable multi-lists

recommender system. This prototype was then evaluated in a large user study, and extensive

statistical analysis was performed to address the research question set. The following is a re-

view of the analysis results and findings relating to each research question, with a summary

and conclusions at the end.

5.1.1 Evaluating Control (RQ1)

Controllable multi-lists presentation of recommendations was assumed to be beneficial

based on other studies on control potentially, [41, 29, 10, 18, 8] and suggestions its utility in

the context of multi-list presentation [2, 31]. With controllability in multi-lists presentations

having not been evaluated in other studies, many assumptions had to be employed when

developing the prototype and rigorously tested to provide a baseline for future research.

Based on the results detailed in Section 4.1, the response to RQ1 is that controllability ap-
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pears to have an adverse effect on system usability, with some minor improvements on sys-

tem satisfaction. As such, it does not appear to improve the user experience for the general

participant. It does seem dependent on which list sort method was employed, but no inter-

action effect was found as evidence to this.

5.1.2 Evaluating Different Interaction Methods (RQ2)

A primary finding when looking at variances in evaluation based on participants’ most-used

interaction element for control is the lack of engagement by participants. While it was not

found as low as in [25] on users selecting recommendation methods, a third of the partici-

pants never interacted with the system. Drag& drop was the method chosen the least, with

only 23 of 150 participants using this the most, with 76 participants using the click arrows.

Most users would prefer to use clickable arrows to reorder the lists if given a choice.

There are some indicators that drag & drop users have a better system evaluation than click

users. This may be correlated to the noted finding that participants with higher weekly movie

consummation and streaming service usage also had higher enjoyment of the study. How-

ever, possibly due to the low sample size, none of these indicators was statistically signifi-

cant, and no conclusion can therefore be made on the subject. It may be speculated that un-

familiar users trended towards the interactions method they had previous experience with,

which may have been the prototype’s inferior choice.

Overall, the response to RQ2 is that interaction chosen by a user may affect participants’

evaluation of the system, but due to the low sample size, this thesis can make no conclusions

on this topic.

5.1.3 The Effect of List-sort Methods (RQ3)

Incorporating control in a recommender system entails some form of system interpretation

of user feedback. To this end, three methods were selected. One baseline for investigation if

interpretation did not matter, fixed sort, and weighted sort based on literature suggestions[9,

31, 55].

Based on the ANOVA analysis performed on list-order satisfaction, no statistically significant

variances between the list sort method were found, neither total nor inter-conditional in
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control. No particular variances were found when looking at the other metric categories in

the interaction effect analysis of RQ1. The conclusion is that there is no statistical significant

discernible differences between the three methods employed in this study and that list order

methods may not matter. It may be that the multi-lists presentation of recommendations is

enough, that participants do not care about the ordering or notice any differences between

the methods, or merely the effect of the study design that influences this.

5.1.4 The Effect of Demographics (RQ4)

The demographic analysis of the selected demographic properties was performed to detect

any of these influenced participants’ evaluation of the system. While gender has shown to

impact evaluation in other studies [21, 48, 47], both in the movie and other domains, gender

had no particular effect on in this context. Age was reported to have mixed effects in other

studies [21, 6] and had some minor impact on participants’ evaluations in this study.

However, the two metrics that were not found to be evaluated or particularly considered in

discovered related literature had the most considerable impact on participation evaluation.

System experience and domain experience significantly impacted participants’ evaluation of

the system, with more experienced users providing a more positive evaluation. As no similar

literature was discovered on the topic, it is unknown if this is limited to this study or has

broader implications.

5.1.5 Summary of Findings

Based on the sum of findings, it may be speculated that controllable multi-lists presentation

of recommendations is not beneficial to the general user. However, based on the demo-

graphic analysis, it may be possible that some niches such as knowledgeable or experienced

users would find such a system useful, but more research is needed for this. The following is

a summary of the significant findings of this study.

• Controllability in multi lists presentation of recommendations is overall not evaluated

to be beneficial to users and has a detrimental effect on system usability. There is, how-

ever, evidence that suggests that this might be demographically dependent in terms of
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user experience with the domain and similar systems and may therefore be beneficial

to a subset consisting of experienced users.

• 13% used drag & drop as their primary interaction method for control, but there are

indicators these users had a more positive view of the system. These users also tended

to be more familiar with similar systems. The sample size is too small for any indicators

to be conclusive.

• No variances on list order satisfaction was found between any of the three used list

sort methods. No significant variances were detected when expanding into the general

metric set of this study. Based on this, list sort methods evaluated do not appear to

significantly impact the user experience as they do not deviate significantly from the

baseline.

• Gender and age did not appear to have any particular effect on participant evaluation

of the system; however, similar systems and domain experience greatly influenced par-

ticipants’ evaluation of the system.

5.2 Limitations

There are multiple limitations to this thesis. One notable limitation is that the study is run on

Mturk and not an existing platform, which may influence the results. Additionally, this thesis

only covers the movie domain, so it is uncertain whether this thesis’s findings will transfer

to other domains such as food recipes or online shopping. The study was also aimed at

personal computer users, and a potential discrepancy of results with other platforms such

as TV or mobile users was not explored. Finally, the sample size is relatively small in some

aspects, particularly when analyzing interaction preferences, which could have resulted in

some undiscovered findings.
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5.3 Future Research

Section 3.2.4 describes how a participant run study tallied 140 individual logged metrics. Not

all of these metrics fell within the scope of the research questions of this thesis. An example

of unexplored metrics is the index of lists per iterations, which lists participants selected and

which movie participants selected to watch later. To enable future research into these topics,

the study results are made available for future work. An example of possible analysis is the

index of different lists, which are extensively stored in terms of how participants rearranged

these lists and how different conditions affected participants’ pick of lists and average order.

Other metrics include which movie participants tended to choose and preferred to operate

in a zoomed-in environment or keep the recommendations in its original size.

Based on results generated through the conducted work, it is made clear that more research

is needed for control and list ordering to be beneficial for users in a multi-list environment.

More extended studies that measure effect over a longer time, design aspects, and other al-

ternative control techniques are encouraged. The results related to system experience and

domain experience as strong influential components to participants’ evaluation of the sys-

tem also warrant more research to verify these findings. A plausible indication from this

study is that the general user finds control unfavorable, but the more experienced user might

find it appealing. While this study did not find controllability as a positive influence in multi-

lists presentation, other alternative implementations may prove it to be beneficial.

5.4 Open Science

One of this study’s contributions is to make the prototype and study results open to the scien-

tific community as a part of open science. Both of these are available in a Github repository1.

The shared repository includes the source code for the prototype. Since this data was ex-

ternally received from the preliminary research authors, Trattner & Jannach [54], explicit

consent is needed to receive a copy. It is, however, possible to use the MovieLens database2

and modify the createDatabase.py script in conjunction with custom similarity calculations

located in the repository to recreate the database.

1Repository location: https://github.com/Daedalusish/Thesis-Project last updated 30.11.20
2MovieLens dataset location https://grouplens.org/datasets/movielens/latest/

https://github.com/Daedalusish/Thesis-Project
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The results are divided into multiple categories. At the root level, a folder named "Study

result"s contains two versions. The result used in this thesis is available in the "Cleaned data"

folder as CSV files organized by condition. The "Raw data" is unprocessed results from the

study with more metrics than those available in the .csv files, but due to the nature of Mturk,

many entries are incomplete. The jsontojson.py script can easily be modified to create new

cleaned CSV files with additional metrics if desired.
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Appendix A

Screenshots

This appendix contains screenshots from each step of the Mturk study carried out in this

thesis.
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Figure A.1: Screenshot showing the introductions provided to participants as the first step of
the study.
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Figure A.2: Screenshot showing the search screen. This the search results display, the evi-
dence provided and how participants select movies
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Figure A.3: Supplement introductions added for condition B to clarify and showcase instruc-
tions. The images are animated .gifs showcasing how to order.
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Figure A.4: A screenshot of the browse screen where participants are given their recommen-
dations, in this case the control condition (B). Note that recommendation continue below
and page is zoomed out to fit content in view
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Figure A.5: Screenshot of the final survey given to participants, zoomed out to fit more on
screen.
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Appendix B

Statistics

This appendix chapter contains statistics not included in the result chapter. It is organized

by which research question the content pertain to, with sub categories on context.

B.1 RQ1

B.1.1 Errorbar Plots RQ1

These are errorbar comparison plots between conditions for RQ1 with the mean value and

standard error for each metric.
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Figure B.1: System usability metrics used in RQ1 in Section 4.1. Comparison plot with mean
values and standard error.
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Figure B.2: Activity metrics used in RQ1 in Section 4.1. Comparison plot with mean values
and standard error.

Figure B.3: Recommendation quality metrics used in RQ1 in Section 4.1. Comparison plot
with mean values and standard error.
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Figure B.4: System satisfaction metrics used in RQ1 in Section 4.1. Comparison plot with
mean values and standard error.

Figure B.5: Demographic metrics in Section 4.1. Comparison plot with mean values and
standard error.
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B.1.2 Sub Condition t-tests for RQ1

This section contains additional pairwise t-tests performed on sub-conditions for RQ1.
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Table B.1: Pairwise comparison with t-test between no control and control when list order is
randomized. Means are displayed with standard error and are underlined in metrics where
objective better values are present. N denotes sample size. Note: † = significant metric,
*p<.05,**p<.01,***p< .001.

NA−1 = 47 NB−1 = 47
System Usability MeanA−1 MeanB−1 p Cohen’s d
SUS Score† 73.72±2.42 62.82±2.85 .004** .60
Wish to use† 3.77±0.16 3.17±0.17 .013* .52
Complexity 2.21±0.18 2.66±0.20 .102 -.34
Easy to use 4.21±0.13 3.83±0.15 .050 .41
Assistance need 1.85±0.19 2.04±0.18 .469 -.15
Functions integration 3.79±0.11 3.53±0.15 .175 .28
Inconsistencies† 2.28±0.18 2.89±0.20 .024* -.47
Easy to learn† 4.21±0.13 3.74±0.13 .011* .53
Cumbersome† 2.21±0.18 2.91±0.21 .013* -.52
Confidence using 4.11±0.11 3.81±0.16 .134 .31
A lot to learn 2.04±0.18 2.45±0.20 .135 -.31
Participant Activity
Movie index in list 1.81±0.11 1.51±0.11 .063 .39
Selected list index 2.42±0.25 1.7±0.34 .096 .35
Recommendation Quality
List order satisfaction 4.01±0.12 3.72±0.13 .098 .35
Diversity 4.02±0.14 3.77±0.11 .158 .29
Novelty 3.98±0.14 3.74±0.16 .264 .23
Serendipity† 3.87±0.15 3.40±0.15 .031* .45
Relevance 3.47±0.18 3.15±0.15 .175 .28
System Satisfaction
Recommendation sim† 2.17±0.18 2.81±0.20 .018* -.50
Difficult selecting movie 2.57±0.19 3.02±0.18 .092 -.35
Recommendation Improved 3.49±0.16 3.34±0.14 .495 .14
Felt in control† 3.72±0.15 3.23±0.17 .034* .44
Sorting function useful 3.79±0.14 3.55±0.15 .253 .24
Demographic
Age category 2.74±0.16 2.79±0.14 .841 -.04
Streaming service usage 1.68±0.08 1.70±0.12 .879 -.03
Gender 1.68±0.07 1.57±0.08 .332 .20
Movies per week 2.94±0.27 3.02±0.26 .823 -.05
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Table B.2: Pairwise comparison with t-test between no control and control when list order is
fixed. Means are displayed with standard error and are underlined in metrics where objec-
tive better values are present. N denotes sample size. Note: † = significant metric, *p<.05,
**p<.01, ***p< .001.

NA−2 = 46 NB−2 = 42
System Usability MeanA−2 MeanB−2 p Cohen’s d
SUS Score 7.49±2.91 63.51±3.08 .103 .35
Wish to use 3.57±0.15 3.62±0.20 .830 -.05
Complexity† 2.15±0.19 2.83±0.20 .013* -.54
Easy to use 3.98±0.16 3.81±0.16 .455 .16
Assistance need 1.67±0.18 2.10±0.21 .128 -.33
Functions integration 3.57±0.13 3.40±0.18 .468 .16
Inconsistencies 2.67±0.20 2.81±0.21 .643 -.10
Easy to learn† 4.04±0.16 3.60±0.16 .049* .42
Cumbersome† 2.22±0.19 2.76±0.19 .047* -.43
Confidence using 3.80±0.15 3.81±0.17 .982 -.00
A lot to learn 2.04±0.20 2.33±0.20 .312 -.22
Participant Activity
Movie index in list† 1.93±0.10 1.59±0.11 .024* -.49
Selected list index† 2.03±0.23 1.27±0.29 .038* -.45
Recommendation Quality
List order satisfaction 3.88±0.12 4.00±0.11 .475 -.15
Diversity 3.78±0.14 3.50±0.15 .174 .29
Novelty 3.80±0.17 3.74±0.18 .789 .06
Serendipity 3.61±0.15 3.57±0.16 .864 .04
Relevance 3.24±0.18 3.36±0.19 .651 -.10
System Satisfaction
Recommendation sim 2.50±0.19 2.74±0.19 .380 -.19
Difficult selecting movie 2.78±0.20 2.64±0.19 .611 .11
Recommendation Improved 3.24±0.19 3.29±0.18 .861 -.04
Felt in control 3.15±0.21 3.14±0.15 .971 .01
Sorting function useful 3.24±0.17 3.64±0.17 .095 -.36
Demographic
Age category 2.98±0.15 2.90±0.17 .746 .07
Streaming service usage 1.57±0.09 1.81±0.12 .096 -.36
Gender 1.41±0.07 1.60±0.08 .090 -.37
Movies per week 3.35±0.28 2.62±0.25 .057 .41
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Table B.3: Pairwise comparison with t-test between no control and control when list order
is weighted. Means are displayed with standard error and are underlined in metrics where
objective better values are present. N denotes sample size. Note: † = significant metric,
*p<.05, **p<.01, ***p< .001.

NA−3 = 42 NB−3 = 38
System Usability MeanA−2 MeanB−2 p Cohen’s d
SUS Score 77.26±3.04 7.66±3.20 .139 .33
Wish to use 3.60±0.19 3.76±0.18 .528 -.14
Complexity 1.90±0.17 2.24±0.18 .191 -.30
Easy to use 4.36±0.16 4.05±0.15 .160 .32
Assistance need 1.60±0.18 2.03±0.24 .144 -.33
Functions integration 3.81±0.18 3.71±0.17 .692 .09
Inconsistencies 2.21±0.19 2.45±0.21 .420 -.18
Easy to learn 4.29±0.15 4.05±0.15 .263 .25
Cumbersome† 1.90±0.19 2.50±0.21 .036* -.48
Confidence using 4.12±0.17 4.08±0.14 .861 .04
A lot to learn 1.64±0.16 2.18±0.23 .052 -.44
Participant Activity
Movie index in list 1.85±0.13 1.56±0.12 .122 .35
Selected list index 2.00±0.25 1.52±0.30 .215 .28
Recommendation Quality
List order satisfaction 3.89±0.12 3.86±0.12 .872 .04
Diversity 4.02±0.14 3.84±0.14 .366 .20
Novelty 3.86±0.18 3.74±0.17 .627 .11
Serendipity 3.67±0.16 3.61±0.19 .802 .06
Relevance 3.40±0.18 3.42±0.20 .952 -.01
System Satisfaction
Recommendation sim 2.12±0.20 2.47±0.22 .240 -.26
Difficult selecting movie 2.60±0.20 2.66±0.23 .838 -.05
Recommendation Improved† 3.02±0.16 3.53±0.18 .038* -.47
Felt in control 3.33±0.19 3.37±0.19 .897 -.03
Sorting function useful 3.36±0.20 3.39±0.21 .896 -.03
Demographic
Age category 2.71±0.15 2.71±0.17 .987 .00
Streaming service usage 1.76±0.14 1.53±0.08 .151 .32
Gender 1.50±0.09 1.53±0.08 .825 -.05
Movies per week 3.00±0.33 3.11±0.32 .821 -.05
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B.1.3 Interaction Effect Analysis RQ1

This section contains the one-way ANOVA performed performed between list-sort methods.

It is used for evaluating if an interaction effect is present for RQ1 and if list sort methods

affected other metrics besides list order satisfaction in RQ3.

Table B.4: Tukey-HSD post hoc test result for statistical significant values found in the one-
way ANOVA Table B.5

.

Post-hoc on list-sort methods in all control conditions (1, 2, 3)
Group Group Mean

Group1 Group2 Mean1 Mean2 p Cohen’s d
SUS Score Random Fixed 68.3±1.94 67.2±2.13 .900 -.06

Random Weighted 68.3±1.94 74.1±2.22 .120 .30
Fixed Weighted 67.2±2.13 74.1±2.22 .060 .35

Post-hoc on list-sort methods in no control conditions (A-1, A-2, A-3)
Sorting function Random Fixed 3.79±0.14 3.24±0.17 .051 -.53
useful Random Weighted 3.79±0.14 3.36±0.20 .170 -.38

Fixed Weighted 3.24±0.17 3.36±0.20 .860 .10
Gender Random Fixed 1.68±0.07 1.41±0.07 .030* -.55

Random Weighted 1.68±0.07 1.50±0.09 .220 -.35
Fixed Weighted 1.41±0.07 1.50±0.09 .680 .17
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Table B.5: One-Way ANOVA on list conditions. Means are displayed with standard error and
are underlined in metrics where objective better values are present. Note: † = significant
metric, *p<.05, **p<.01, ***p< .001.

List Sort No Control Control
(1, 2, 3) (A-1, A-2, A-3) (B-1, B-2, B-3)
N1 = 94 NA −1 = 47 NB −1 = 47
N2 = 88 NA −2 = 46 NB −2 = 42
N3 = 80 NA −3 = 52 NB −3 = 38

System Usability p ω2 p ω2 p ω2
SUS Score .050* .02 .240 .01 .150 .01
Wish to use .500 .00 .660 -.01 .060 .03
Complexity .070 .01 .460 .00 .100 .02
Easy to use .120 .01 .190 .01 .470 .00
Assistance need .760 -.01 .610 -.01 .970 -.02
Functions integration .210 .00 .400 .00 .450 .00
Inconsistencies .130 .01 .190 .01 .280 .00
Easy to learn .070 .01 .480 .00 .090 .02
Cumbersome .150 .01 .420 .00 .350 .00
Confidence using .170 .01 .220 .01 .420 .00
A lot to learn .190 .01 .230 .01 .670 -.01
Participant Activity
Total list ordering .270 .00 N/A N/A .240 .01
Click list ordering .710 -.01 N/A N/A .750 -.01
Drag&Drop list ordering .160 .01 N/A N/A .170 .01
Times click was used .710 -.01 N/A N/A .750 -.01
Times drag&drop was used .190 .00 N/A N/A .210 .01
Movie index in list .660 .00 .750 -.01 .890 -.01
Selected list index .330 .00 .390 .00 .610 -.01
Recommendation Quality
Diversity .080 .01 .370 .00 .190 .01
Novelty .850 -.01 .730 -.01 1.00 -.02
Serendipity .940 -.01 .430 .00 .640 -.01
Relevance .780 -.01 .650 -.01 .520 -.01

System Satisfaction
Recommendation sim .270 .00 .300 .00 .490 .00
Difficult selecting movie .680 .00 .710 -.01 .290 .00
Recommendation Improved .570 .00 .170 .01 .590 -.01
Felt in control .160 .01 .080 .02 .660 -.01
Sorting function useful† .180 .01 .049* .03 .620 -.01
Demographic
Streaming service usage . 960 -.01 .640 -.01 .440 .00
Movies per week .920 -.01 .380 .00 .210 .01
Age category .310 .00 .420 .00 .700 -.01
Gender† .190 .01 .040* .03 .840 -.01
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B.2 RQ2

This section contains appendix material relating to RQ2 analysis performed

B.2.1 Errorbar Plots for RQ2

These are errorbar comparison plots between interaction methods for RQ2 with the mean

value and standard error for each metric.

Figure B.6: System metrics used for RQ2 in Section 4.2. Comparison plot with mean values
and standard error.
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Figure B.7: Activity metrics used for RQ2 in Section 4.2. Comparison plot with mean values
and standard error.

Figure B.8: Recommendation Quality metrics used for RQ2 in Section 4.2. Comparison plot
with mean values and standard error.
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Figure B.9: System satisfaction metrics used for RQ2 in Section 4.2. Comparison plot with
mean values and standard error.

Figure B.10: Demographic metrics used for RQ2 in Section 4.2. Comparison plot with mean
values and standard error.
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B.3 RQ3

B.3.1 Errorbar Plots for RQ3

This section contains mean and standard error for list order satisfaction comparison for RQ3,

included in appendix as alternative view of the values in Figure 4.1.
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Figure B.11: List order satisfaction values alternative plot for RQ3 in Section 4.3. Comparison
plot with mean values and standard error.
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B.4 RQ4

B.4.1 Demographic Variances Analysis Results RQ4

These are additional analysis performed on demographic variables not included in the result

chapter based on relevance.
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Table B.6: Pairwise comparison with t-test between the genders of the participants. Means
are displayed with standard error and are underlined in metrics where objective better values
are present. N denotes sample size. Note: † = significant metric, *p<.05, **p<.01, ***p< .001.

NFemal e = 121 NM al e = 138
System Usability MeanFemal e MeanM al e p Cohen’s d
SUS Score 67.8±1.99 71.1±1.49 .178 -.17
Wish to use 3.45±0.11 3.68±0.10 .119 -.19
Complexity 2.42±0.12 2.28±0.10 .358 .11
Easy to use 3.98±0.10 4.09±0.08 .405 -.10
Assistance need 1.85±0.12 1.92±0.11 .669 -.05
Functions integration 3.59±0.10 3.67±0.08 .529 -.08
Inconsistencies 2.67±0.13 2.47±0.11 .233 .15
Easy to learn† 3.85±0.10 4.1±0.07 .040* -.26
Cumbersome 2.51±0.13 2.36±0.10 .342 .12
Confidence using 3.83±0.10 4.04±0.08 .098 -.21
A lot to learn 2.14±0.12 2.12±0.11 .880 .02
Participant Activity
Total list ordering 3.12±0.59 3.28±0.45 .828 -.03
Click list ordering 2.19±0.44 2.31±0.36 .834 -.03
Drag&Drop list ordering 0.92±0.30 0.97±0.24 .915 -.01
Times click was used 2.19±0.44 2.31±0.36 .834 -.03
Times drag&drop was used 0.27±0.09 0.37±0.09 .409 -.10
Movie index in list 1.67±0.07 1.77±0.07 .321 -.12
Selected list index 1.83±0.16 1.87±0.17 .868 -.02
Recommendation Quality
List order satisfaction 3.88±0.08 3.91±0.06 .769 -.04
Diversity 3.83±0.09 3.84±0.08 .959 -.01
Novelty 3.80±0.11 3.83±0.09 .815 -.03
Serendipity 3.66±0.10 3.59±0.09 .607 .06
Relevance 3.3±0.11 3.36±0.10 .661 -.05
System Satisfaction
Recommendation sim 2.64±0.12 2.33±0.11 .051 .24
Difficult selecting movie† 2.9±0.12 2.56±0.11 .035* .26
Recommendation Improved 3.25±0.10 3.39±0.10 .309 -.13
Felt in control 3.25±0.12 3.39±0.09 .330 -.12
Demographic
Sorting function useful 3.42±0.11 3.56±0.09 .336 -.12
Age category 2.81±0.09 2.83+0.09 .900 -.02
Streaming service usage 1.60±0.06 1.72±0.06 .800 -.18
Movies per week 2.92±0.17 3.10±0.16 .433 -.01



96 APPENDIX B. STATISTICS

Table B.7: One-Way ANOVA on movies watched per week and age category of partici-
pants.Means are displayed with standard error and are underlined in metrics where objective
better values are present. Note: † = significant metric, *p<.05, **p<.01, ***p< .001.

Movies watched per week Age category of participant
System Usability p ω2 p ω2
SUS Score .885 -.01 .174 .01
Wish to use* .001** .04 .209 .00
Complexity .812 -.01 .071 .01
Easy to use .131 .01 .652 .00
Assistance need* .005** .03 .030* .02
Functions integration .493 .00 .458 .00
Inconsistencies .762 -.01 .247 .00
Easy to learn .422 .00 .385 .00
Cumbersome .729 -.01 .457 .00
Confidence using .274 .00 .800 -.01
A lot to learn .094 .01 .231 .00
Participant Activity
Total list ordering .423 .00 .478 .00
Click list ordering .248 .00 .064 .01
Drag&Drop list ordering .537 .00 .566 .00
Times click was used .248 .00 .064 .01
Times drag&drop was used .578 .00 .808 -.01
Movie index in list .492 .00 .447 .00
Selected list index .813 -.01 .098 .01
Preferred Control Element .595 .00 .305 .00
Recommendation Quality
List order satisfaction* .003** .04 .794 -.01
Diversity .697 .00 .493 .00
Novelty .341 .00 .423 .00
Serendipity* .041* .02 .110 .01
Relevance* .037* .02 .012* .03
System Satisfaction
Recommendation sim* .888 -.01 .036* .02
Difficult selecting movie .816 -.01 .114 .01
Recommendation Improved* .013* .03 .339 .00
Felt in control* .004** .03 .018* .02
Sorting function useful* .035* .02 .260 .00
Demographic
Streaming service usage* >.001*** .20 .023* .02
Movies per week N/A N/A .390 .00
Age category .543 .00 N/A N/A
Gender .193 .00 .911 -.01
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