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Abstract The permeability of the oceanic crust exerts a primary influence on the vigor of hydrothermal circu-
lation at mid-ocean ridges, but it is a difficult to measure parameter that varies with time, space, and geological
setting. Here we develop an analytical model for the poroelastic response of hydrothermal exit-fluid velocities
and temperatures to ocean tidal loading in a two-layered medium to constrain the discharge zone permeability
of each layer. The top layer, corresponding to extrusive lithologies (e.g., seismic layer 2A) overlies a lower perme-
ability layer, corresponding to intrusive lithologies (e.g., layer 2B). We apply the model to three basalt-hosted
hydrothermal fields (i.e., Lucky Strike, Main Endeavour and 98460N L-vent) for which the seismic stratigraphy is
well-established, and for which robust exit-fluid temperature data are available. We find that the poroelastic
response to tidal loading is primarily controlled by layer 2A permeability, which is about 3 orders of magnitude
higher for the Lucky Strike site (�10210 m2) than the 98460N L-vent site (�10213 m2). By contrast, layer 2B per-
meability does not exert a strong control on the poroelastic response to tidal loading, yet strongly modulates
the heat output of hydrothermal discharge zones. Taking these constraints into account, we estimate a plausible
range of layer 2B permeability between�10215 m2 and an upper-bound value of�10214 (98460N L-vent) to
�10212 m2 (Lucky Strike). These permeability structures reconcile the short-term response and long-term ther-
mal output of hydrothermal sites, and provide new insights into the links between permeability and tectono-
magmatic processes along the global mid-ocean ridge.

1. Introduction

Circulation of hydrothermal fluids through young oceanic crust at mid-ocean ridges (MORs) accounts for up to
�10% of Earth’s internal heat loss (Elderfield & Schultz, 1996; Sclater et al., 1980; Stein & Stein, 1992; Williams &
Von Herzen, 1974), controls the thermo-mechanical state and degree of hydration of newly formed oceanic lith-
osphere (e.g., Emmanuel & Berkowitz, 2006; Iyer et al., 2010), profoundly affects the chemistry of the oceanic lith-
osphere and global ocean (e.g., Edmond et al., 1979; Elderfield & Schultz, 1996; Humphris et al., 1995; Wolery &
Sleep, 1976), and provides a unique habitat for complex chemosynthetic ecosystems (e.g., Kelley et al., 2002;
Lutz et al., 2008; Marcon et al., 2013; Nees et al., 2008; Shank et al., 1998). All of these hydrothermal systems pro-
cesses are modulated by the permeability structure of the elastic matrix hosting fluid flow (e.g., Coumou et al.,
2008; Driesner, 2010), which is a heterogeneous tensor field that varies in time and space, locally, and with geo-
logical context, globally. Constraining the matrix permeability structure is a fundamental problem for virtually all
fields of hydrothermal research, but placing meaningful constraints on the parameters is technically difficult and
often extremely costly (e.g., ocean drilling), which helps explain why permeability is probably the most poorly
constrained hydrologic parameter for the oceanic crust (Fisher, 2004).

Direct in situ measurements (e.g., borehole packers) and indirect estimates and inferences (e.g., borehole tem-
peratures, seafloor heat flow) for oceanic crust permeability are highly variable and span many orders of magni-
tude, with values as high as 10211 m2 near the seafloor to values lower than 10218 m2 at the base of the upper
crust (e.g., Becker & Davis, 2003; Becker & Fisher, 2008; Davis et al., 2010; Fisher, 1998; Fisher et al., 2008; Winslow
et al., 2013). The decreasing trend with depth is thought to reflect the closure of cracks and pores due to increas-
ing lithostatic pressure and changes in crustal lithology. Although ocean crust permeability measurements and
estimates from direct and indirect in situ methods vary widely, convection models of hydrothermal circulation at
MORs suggest that the ‘‘effective permeability’’ of all discharge zones is in the range of 10215–10212 m2 (e.g.,
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Coumou et al., 2008; Driesner, 2010; Hasenclever et al., 2014; Lowell & Germanovich, 2004; Lowell et al., 2013).
The effective permeability represents the permeability that a single layer stretching between the magma cham-
ber and the seafloor would have to have in order to match the thermo-chemical output observed at a hydro-
thermal field. The effective permeability thus represents an average in some sense over the entire layered
crustal section between the magma chamber and the seafloor, immediately below the venting sites. It is note-
worthy that the range of effective permeabilities estimated by Lowell et al. (2013) is considerably narrower than
the variability documented by in situ measurements and indirect estimates. Therefore, the applicability of bore-
hole measurements carried out mostly off-axis and at the sample scale is questionable for crustal-scale convec-
tion on-axis, where very few subseafloor in situ measurements have been made (Wilcock & Fisher, 2004).

These considerations have motivated a variety of innovative approaches for constraining matrix permeability
over meaningful length scales and in young crust (e.g., Crone et al., 2011; Davis et al., 2010; Lowell & Germano-
vich, 2004; Theissen-Krah et al., 2011; Wilcock & Fisher, 2004; Wilcock & McNabb, 1996; Winslow et al., 2013),
including the use of vent exit-fluid temperature and ocean tide (bottom pressure) time series data to model the
poroelastic response of the matrix to tidal loading (Barreyre & Sohn, 2016; Barreyre et al., 2014a). These sorts of
passive techniques that do not require sampling rocks from below the seafloor provide a cost-effective way to
constrain permeability, but to this point it has been difficult to separate variability due to methods from that
due to site-specific geology and hydrology.

In this paper, we investigate the permeability structure of the discharge zone of hydrothermal systems from a
variety of geological settings on the global MOR system using two approaches. First, we develop a multilayer
model for the poroelastic response to ocean tidal loading. We focus on the case of two layers of decreasing per-
meability with depth, which is consistent with the lithostratigraphy of volcanic crust formed at MORs. This
approach allows us to compare the poroelastic response from sites with known and variable lithostratigraphies,
and allows us to constrain the depth intervals over which the poroelastic response is controlled. Second, we
attempt to reconcile our estimates of permeability layering with the observed heat output of hydrothermal sites
using an analytical framework derived from Driesner (2010). Our analysis shows that the poroelastic response to
ocean tidal loading is controlled by the permeability structure of extrusive layer 2A, which varies considerably
across sites along the global MOR, while the effective permeability of the system and the efficiency of convective
heat transfer is primarily controlled by the permeability structure of intrusive layer 2B. Taken together, these
results improve our understanding of how the permeability structure for deep-sea hydrothermal systems varies
across MOR spreading rates, and how it modulates the vigor of hydrothermal exchanges.

2. A Model for Tidal Modulation of Hydrothermal Systems With Depth-Dependent
Permeability

We begin by presenting a 1-D model aimed at predicting the perturbations of the pressure, temperature, and
velocity of fluids moving through a layered oceanic upper crust subjected to periodic fluctuations in seafloor
pressure, imposed by tidal cycles (Figure 1). Our model is a generalization of the homogeneous permeability
model of Jupp and Schulz (2004), and it extends the preliminary approach of Xu et al. (2017), who derived two-
layer solutions for the phase lag of vent temperatures relative to tides but did not completely analyze the system
behavior and solution space.

2.1. Fundamental Concepts and Equations of Poroelasticity
When a porous medium (e.g., the oceanic crust) is placed under an external load (e.g., ocean tides), the resulting
stress is borne partly by the solid matrix and partly by the interstitial fluid, where it manifests as a change in fluid
pressure, often referred to as a pore pressure perturbation. The partitioning of the total stress between the fluid
and the solid matrix is a function of the elastic properties of the system and the porosity. It is thus possible for a
locally uniform seafloor load to produce a time-periodic, spatially variable pressure perturbation field when there
are gradients in these properties. The associated pressure gradients can drive interstitial fluid flow and perturb
the background flow pattern (e.g., a hydrothermal convection cell). By perturbing the advection of mass and
heat in regions of background fluid upwelling, the tidal forcing can, in principle, produce a phase lag between
the loading function (seafloor pressure) and the velocity and temperature of the exit-fluids, which depends upon
the poroelastic parameters of the system (e.g., Crone & Wilcock, 2005; Jupp & Schultz, 2004; Wang & Davis, 1996).

The equations governing the temporal (t) and spatial (z) evolution of pore pressure perturbation (p, departure
from a reference pressure) within a porous, fluid-saturated domain consisting of N layers of uniform physical
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properties (Biot, 1941; van der Kamp & Gale, 1983; Wang & Davis, 1996), and subjected to variations in surface
load rB tð Þ is:

@2pj

@z2
5

1
gj

@pj

@t
2cj

@rB

@t

� �
; (1)

where the notation for this and subsequent equations is given in Table 1, and subscript j (j51; 2; . . . ;

N 2 1;N) refers to the properties of the jth layer, numbered downward. Parameters g and c are the hydraulic
diffusivity and loading efficiency, respectively. The hydraulic diffusivity is defined as:

g5
k
lS
; (2)

where l is the dynamic viscosity of the pore fluid, k is the permeability of the porous medium, and S is the
uniaxial storage compressibility, defined as:

S5 K212K21
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� �
; (3)

where K is the matrix drained bulk modulus, Ks is the solid grain bulk modulus, Kf is the fluid bulk modulus,
/ is the porosity of the medium, and w is the dimensionless poroelastic stress coefficient (Detournay &
Cheng, 1993). Detailed expressions for drained parameters K , determined by Gassmann’s equation (Gass-
mann, 1951), and for dimensionless coefficient w are given in the Appendix A.

The loading efficiency c is defined as:

c5
b 11mð Þ

3 12mð Þ22ab 122mð Þ ; (4)

where m is the drained Poisson’s ratio, a is the Biot-Willis parameter, and b is the Skempton’s coefficient, all
defined in the Appendix A.

Wang and Davis (1996) rewrite equation (1) in terms of an instantaneous pore pressure perturbation com-
ponent pi

j

� �
and a diffusive pore pressure perturbation component pd

j

� �
, which emphasizes the role c and

g play in characterizing the solution:

pi
j5cjrB; (5)
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j
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50; (6)

where

pj5pd
j 1pi

j: (7)

Note that equation (6) has the form of a linear diffusion equation with diffusivity a piece-wise constant function
of depth.

Figure 1. (a) Conceptual illustration of the perturbation exerted on hydrothermal upflow by tidal loading. (b, c) Setup of
the 1-D poroelastic model used to relate the phase lag between vent temperatures and tides to the permeability of the
oceanic crust. (b) Single-layer model (Jupp & Schulz, 2004); (c) two-layer model (this study). AML refers to the axial melt
lens providing the heat to drive hydrothermal circulation.
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2.2. Analytical Solutions for 1-D Multilayer (and Multifrequency) Model
In the following subsections, we outline the general solution for each parameter of interest in layer j,
namely: pore pressure perturbation, vertical velocity, and temperature. These solutions rely on generic coef-
ficients (e.g., aj, bj, Aj, Bj, and Cj) that are determined by applying appropriate boundary conditions (BCs) to
equation (6).
2.2.1. Pore Pressure
Tidal loading at the seafloor can be described as a periodic function of time:

rB tð Þ5pT eixt; (8)

where pT and x are the amplitude and angular frequency of the tidal loading (e.g., corresponding to a 12 and
24 h period for the M2 and K1 tides, respectively). With this type of harmonic forcing, the solution for pore pres-
sure perturbation pj z; tð Þ

� �
in a multilayer system can be written:

Table 1
Summary of Parameter Notations

a, b 2N complex coefficients.
A, B Complex coefficients function of complex coefficients a and b and medium and fluid parameters.
C Coefficient determined relative to the boundary condition on temperature perturbation.
D Skin depth mð Þ.
f Tidal forcing frequency s21ð Þ.
g Gravitational acceleration m:s22ð Þ.
G Shear modulus (GPa).
h Depth (m).
j Subscript denoting properties in layer j (j51; 2; . . . ;N 2 1;N).
k Permeability of the porous medium m2ð Þ.
K Matrix drained bulk modulus GPað Þ.
Ks Solid grain bulk modulus GPað Þ.
Kf Fluid bulk modulus GPað Þ.
l Complex constant equal to 11i.
p Pore pressure perturbation Pað Þ.
pi Instantaneous pore pressure perturbation component Pað Þ.
pd Diffusive pore pressure perturbation component Pað Þ.
pT Tidal loading function amplitude Pað Þ.
r Ratio of heat capacities.
S Uniaxial storage compressibility Pa21ð Þ.
t Time sð Þ.
T Steady temperature (8C).
DT Temperature perturbation (8C).
u Vertical Darcy velocity perturbation m:s21ð Þ.
U Steady Darcy velocity m:s21ð Þ.
VP P wave velocity m:s21ð Þ.
VS S wave velocity m:s21ð Þ.
z Vertical coordinate mð Þ.
a Biot-Willis parameter.
b Skempton’s coefficient.
c Loading efficiency.
C Background temperature gradient �C:m21ð Þ.
g Hydraulic diffusivity m2:s21ð Þ.
l Dynamic viscosity of the pore fluid Pa:sð Þ.
m Drained Poisson’s ratio.
q Bulk density kg:m23ð Þ.
qf Fluid density kg:m23ð Þ.
qs Rock density kg:m23ð Þ.
qsw Seawater density kg:m23ð Þ.
rB Loading function (e.g., oceanic tides) Pað Þ.
/ Porosity of the medium.
u Phase angle (8).
w Dimensionless poroelastic stress coefficient.
x Angular frequency of tidal forcing rad:s21ð Þ.
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pj z; tð Þ5 aj e
l:p:z=Dj 1bje

2l:p:z=Dj 1cj

h i
pT eixt; (9)

where l is a complex constant equal to 11i, and D is the skin depth defined as

Dj5

ffiffiffiffiffiffiffi
pgj

f

r
; (10)

and aj and bj denote 2N complex coefficients. These are determined using the Fourier-transformed BCs, which
involves solving a system of 2N complex algebraic equations. In the simplest case with N 5 2 (Figure 1), BCs for
the pore pressure perturbation solution (equation (9)) are:

1. pd
1 0; tð Þ5 12c1ð ÞrB,

2. Continuity of pressure across layers: pd
1 2h1; tð Þ1c1rB5pd

2 2h1; tð Þ1 c2rB,

3. Continuity of velocities across layers:
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where h1 and h2 denote the depth to the bottom of layers 1 and 2, respectively. The corresponding system of
complex algebraic equations (combination of BCs and equation (9)) writes:

1 1 0 0
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2
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3
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:

The complex coefficients a1; b1; a2; and b2 are then determined by solving the two complex algebraic
equations systems above using MATLAB’s Symbolic Math Toolbox.
2.2.2. Velocity
The perturbation in vertical fluid velocity uj z; tð Þ

� �
due to tidal loading can be modeled as a Darcy velocity

driven by gradients in pore pressure perturbation (pj):

uj z; tð Þ52
kj

l
@pj

@z
: (11)

The analytical solution for velocity in a multilayer system is obtained through a spatial derivative of equa-
tion (9):

uj z; tð Þ52
kjlp
lDj

aje
l:p:z=Dj 2bj e

2l:p:z=Dj

� �
pT eixt: (12)

Note that the velocity perturbation at the seafloor (z50) is of particular interest since it can be measured
by seafloor instruments such as a direct flow meter (e.g., Germanovich et al., 2015) or camera systems
that use image analysis methods (e.g., Crone et al., 2010; Mittelstaedt et al., 2010, 2012, 2016). It is
expressed as:

u1 0; tð Þ52
k1lp
lD1

a12b1ð ÞpT eixt : (13)
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The phase lag of the velocity perturbation at the seafloor u1 0; tð Þð Þ relative to the tidal loading at the sea-
floor rB tð Þð Þ is given by:

Duu5arg u1 0; tð Þð Þ2arg rB tð Þð Þ 62np½ �; (14)

where n can be any integer.
2.2.3. Temperature
So far, we have considered the pore pressure change pj z; tð Þ

� �
and velocity perturbation uj z; tð Þ

� �
due to

tidal loading. However, recording time series of these quantities at the seafloor (i.e., in hydrothermal vent
exit fluids) is technically challenging. By contrast, it is much simpler to measure temperature fluctuations in
fluids discharging at the seafloor DT1 0; tð Þð Þ (e.g., Barreyre & Sohn, 2016; Barreyre et al., 2014a, 2014b; For-
nari et al., 1998; Larson et al., 2009; Lilley et al., 2003; Scheirer et al., 2006; Sohn, 2007; Tivey et al., 2002). We
therefore complement our previous solutions with an analytical expression for temperature fluctuations
due to tidal loading DTj z; tð Þ

� �
.

Our assumption of 1-D geometry means that we must ignore lateral flow and instead consider the idealized
case of uniform vertical flow across the permeable layers, which is an acceptable approximation for a region
of hydrothermal upwelling that underlies seafloor vent fields. We define a characteristic vertical velocity Uj

and temperature Tj for the background upwelling flow that is perturbed by tidal loading, and introduce cor-
responding perturbation quantities (uj and DTj , respectively). We further assume a linear background
(steady) temperature Tj5T02Cj z, with C the background temperature gradient (Jupp & Schultz, 2004), and

approximate the steady upwelling velocity as Uj5
kj

lj
qsw2qfð Þg, where qsw is the density of background sea-

water and qf the hydrothermal fluid density.

Assuming that tidally induced changes in the fluid density and adiabatic cooling are negligible, the advec-
tion of temperature under tidal loading is expressed as:

@ Tj1DTj
� �
@t

1r Uj1uj
� � @ Tj1DTj

� �
@z

52rCjUj; (15)

where the right side represents a 1-D approximation of the rate at which upwelling fluids are cooled con-
ductively and adiabatically (Jupp & Schultz, 2004). This equation can be linearized and rewritten as:

@DTj

@z
1

1
rUj

@DTj

@t
5

Cj

Uj
uj : (16)

Assuming that the velocity perturbation solution is given by equation (12), we solve equation (16) and
express the solution for temperature perturbation as follows:

DTj z; tð Þ5Cj e
2 ix

rUj
z

eixt1Aj e
l:p:z

Dj 1Bj e
2l:p:z

Dj ; (17)

where Aj and Bj are two complex coefficients written as functions of the complex coefficients aj and bj

defined earlier, and of various medium/fluid parameters:

Aj52
Cjkj lp
Ujlj Dj

1
lp
Dj

1 ix
rUj

pT eixt aj

and

Bj51
Cjkj lp
Ujlj Dj

1
2lp

Dj
1 ix

rUj

pT eixt bj :

The third coefficient Cj is determined using the following BCs for temperature perturbation (equation
(17)):

• DT1 2h1; tð Þ5DT2 2h1; tð Þ

• DT2 2h2; tð Þ50:
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For the two-layer case with an impermeable lower boundary at z 5 –h2, the C coefficients are:

C15 2e
ix

rU2
h12h2ð Þ A2e

2lph2
D2 1B2e

lph2
D2

� �
1A2e

2lph1
D2 1B2e

lph1
D2 2A1e

2lph1
D1 2B1e

lph1
D1

h i
3e2 ix

rU1
h1 e2ixt

and

C252e2 ix
rU2

h2 A2e
2lph2

D2 1B2e
lph2
D2

� �
e2ixt:

The two-layer temperature perturbation at the seafloor i:e:; DT1 0; tð Þ5C11A11B1ð Þ is then obtained by
inserting expressions of C1, A1, and B1 in equation (17), where z 5 0. This yields:

DT1 0; tð Þ5 C12
C1k1lp
U1l1D1

1
lp
D1

1 ix
rU1

a11
1

2lp
D1

1 ix
rU1

b1

 !" #
pT eixt: (18)

Further, the phase lag of the temperature fluctuation at the seafloor DT1 0; tð Þð Þ relative to the ocean tide
rB tð Þð Þ is given by:

DuT 5arg DT1 0; tð Þð Þ2arg rB tð Þð Þ 62np½ �; (19)

where n can be any integer. This solution for phase lag is of particular interest and will be used in the
remainder of this study to infer permeability layering in real systems, using time series of seafloor vent tem-
peratures. Before doing so, however, we briefly describe how this phase lag varies as a function of layer
geometry and permeability. In the following, we restrict ourselves to the two-layer case, which is appropri-
ate for typical upper oceanic crust comprising an upper layer (2A, j 5 1 in Figure 1) of extrusives and a lower
layer (2B, j 5 2 in Figure 1) of sheeted dikes. Figure 2b provides an example solution of phase lag DuT as a
function of k2A and k2B, and compares it to the single layer solution (Figure 2a).

2.3. Effect of Heterogeneous Permeability
In order to gain insight into the underlying physics of poroelastic modulation due to periodic loading in a
two-layer system, we define four distinct system behaviors (regimes in Figure 2c), which depend on both
the permeability (k2A, k2B) and geometry of the layers (thicknesses H2A, H2B), as follows:

1. Regime 1 (R1) corresponds to low permeabilities in layer 2B, and a wide range of permeabilities in layer
2A. Low permeability makes layer 2B behave as an impermeable boundary at the base of 2A, which
effectively decouples the two layers. This regime is thus analogous to a shallow single-layer system
where the poroelastic behavior is entirely controlled by the layer 2A thickness and permeability (Figures
2a and 2b).

2. Regime 2 (R2): Wide, intermediate range of permeabilities for both layer 2A and 2B. This transitional
regime describes a system where the overall poroelastic behavior reflects strong coupling between the
parameters of both layers, and maps in (k2A, k2B) space (Figure 2c) as a ‘‘funnel-shaped’’ pattern in phase
lag contours. Layer geometry exerts a strong modulation on this pattern (not shown in Figure 2c). The
lower the ratio of H2A/H2B (i.e., H1/H2 in Figure 2c), the more the funnel-shaped phase lag pattern is
pushed toward greater layer 2A permeabilities, and vice versa. Thicker H2B (i.e., H2 in Figure 2c) shifts the
funnel-shaped pattern toward greater layer 2B permeabilities, and vice versa.

3. Regime 3 (R3): Layer 2A and 2B have relatively similar, high permeability. This regime describes a uni-
form system where the poroelastic behavior is therefore controlled by the uniform permeability of layer
2A and 2B, as well as the overall thickness of the system, following the single layer solutions of Jupp and
Schulz (2004).

4. Regime 4 (R4): A wide range of permeabilities for Layer 2B, and high permeabilities for layer 2A. Layer
2A has such a high permeability that it poses no resistance to the tidal modulation (signals diffuse
through it very efficiently). This manifests as a decoupling of the two layers where a ‘‘ghost’’ layer 2A has
very little influence. This regime describes a system where the poroelastic behavior is therefore con-
trolled by the permeability and thickness of layer 2B.
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This basic exploration of parameter space demonstrates that combining knowledge of the crustal structure
(e.g., H2A and H2B from seismic profiles) with phase lag estimated between time series of in situ exit-fluid
temperature and tidal pressure can place strong constraints on the poroelastic regime experienced by the
layered system, and therefore on its first-order permeability structure.

While permeability controls the temperature-tide phase lag to first order, Figures 2d and 2e further explore
the sensitivity of phase lag to the geometry of the system (i.e., layer 2A and 2B thickness–Figure 2d) and the
thermodynamic properties of the fluids (primarily modulated by the temperature and pressure of the fluid–
Figure 2e, Table 2). This is done over a large range of layer 2A and 2B permeability spanning 6 orders of
magnitude. In Figures 2d and 2e, we specifically outline the combinations of (k2A, k2B) that can explain two
phase lag values: 2108 (red) and 1608 (blue), which represent two commonly observed values of phase lag
reported by Barreyre and Sohn (2016). Different line shading and shapes represent different model assump-
tions (e.g., different fluid temperature/pressure, or layer 2A/2B thickness), which are detailed in the caption
of Figures 2d and 2e. Figure 2d shows the relative importance of the geometry of the system in controlling
the phase lag under fixed fluid temperature and pressure. In particular, the thickness of layer 2A exerts an
important control on phase lag, and increasing H2A from 100 to 600 m (with every other parameter fixed)

Figure 2. Controls on the phase lag between vent temperatures and M2 tides. (a) In a single layer (2A) of thickness
155 m, a phase lag of 2078 requires a permeability of �10213 m2 (thick contours). (b) By contrast, in a two-layer model of
total thickness 1,500 m, the same phase lag requires a specific combination of layers 2A and 2B permeabilities. The
two-layer model asymptotes the single-layer model as k2B decreases. (c) Typical phase lag map illustrating the four key
regimes (R1–R4) described in section 2.3. (d) Sensitivity of 2 phase lag contours (2108 in red and 1608 in blue) to changes
in the thickness of the layers. (e) Sensitivity of the same contours to changes in the assumed average pressure and
temperature that set the thermodynamic properties of the fluid in both layers (see section 2.3).
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can significantly change the values of (k2A, k2B) required to explain a given phase lag, primarily toward
greater values of k2A (by up to 2 orders of magnitude) with small changes in k2B. Figure 2e illustrates the
effect of fluid properties on phase lag for a fixed system geometry. The combinations of (k2A, k2B) that are
required to explain a given phase lag appear less sensitive to changes in fluid properties, as they change by
less than 1 order of magnitude, when pressure-temperature conditions are varied within a reasonable
range. Greater sensitivity is observed for temperatures approaching 4008C, which reflects the high sensitiv-
ity of fluid properties to changes in temperature and pressure near the triple point of water.

In summary, layer permeability and thickness, particularly in layer 2A (i.e., H2A and k2A), control the tempera-
ture phase lag to first order, while fluid properties exert a second-order control. This exploration of parame-
ter space gives us confidence that if layer geometry is well constrained by seismological techniques,
measurements of temperature-tide phase lags can be used to constrain combinations of layers 2A and 2B
permeabilities within �1 order of magnitude, and that greater phase lags generally provide a more robust
constraint on k2B.

3. Available Data Sets of Exit-Fluid Temperature and Pressure Lags

3.1. Obtaining Estimates of Temperature-Tide Phase Lags
We use the phase lag estimates for exit-fluid high temperature versus tidal pressure published by Barreyre
and Sohn (2016) as the basis for our analyses. These phase lag estimates represent the most robust values
obtained from a comprehensive analysis of the complete set of publicly available (Marine Geoscience Data
System, PANGAEA, European Multidisciplinary Seafloor and water column Observatory, and Ocean Net-
works Canada) exit-fluid high-temperature time series data for vents at the Lucky Strike Hydrothermal Field
(LSHF), the Main Endeavour Field (MEF), and the East Pacific Rise (EPR) 98460N sites (e.g., Barreyre et al.,
2014b; Fornari et al., 1998; Larson et al., 2009; Scheirer et al., 2006; Tivey et al., 2002). These hydrothermal
sites are located on MORs spanning a large range of spreading rates, from slow to fast (MAR: 2.2 cm yr21

(Cannat et al., 1999); JdFR: 6 cm yr21 (Riddihough, 1984); EPR: 11 cm yr21 (Carbotte & Macdonald, 1994)).
Coherency and phase lag between tidal pressure at the seafloor (i.e., data generated with the GOT4.7 global
ocean tide model (Ray, 2013) as described in Barreyre & Sohn, 2016), and exit-fluid high temperatures are
estimated by applying multitaper (Thomson, 1982) cross-spectral methods with adaptive weighting (Per-
cival & Walden, 1993) to time series data (see details in Barreyre & Sohn, 2016). After applying stringent

Table 2
Baseline Fluid and Poroelastic Parameters

Fluid and poroelastic parameters Symbols Values

M2 tidal angular frequency xM2 (rad s21) 1.408 3 1024

K1 tidal angular frequency xK1 (rad s21) 7.2921 3 1025

Density of seawater q0 (kg m23) 1,047.3a

Density of hydrothermal fluids qf (kg m23) 700.5b

Fluid viscosity l (Pa s) 7:931025c

Layer 2A Layers 2B/2C
Ratio of heat capacities R 1.5 1.3
P wave velocity Vp (m s21) 2,200d 5,500e

S wave velocity Vs (m s21) 431 2,940
Porosity U 0.2f 0.03g

Bulk density q (kg m23) 2,500.1 2,882.5
Grain bulk modulus Kg (GPa) 50h 70i

Fluid bulk modulus Kf (GPa) 0.29j 0.29j

Matrix (drained) bulk modulus Km (GPa) 10.6 53.4
Storage compressibility for 1-D loading S1 (Pa21) 7.46 3 10210 1.05 3 10210

aDensity of seawater calculated for pressure at 330 bar and background seawater temperature at 38C; from
Holzbecher (1998); Rabinowicz et al. (1999); and Fontaine et al. (2001). bDensity of hydrothermal fluids calculated for
pressure at 330 bar and hydrothermal fluid temperature at 3508C; from Holzbecher (1998); Rabinowicz et al. (1999); and
Fontaine et al. (2001). cCalculated for hydrothermal fluid temperature at 3508C; from Fontaine et al. (2001). dSohn
et al. (2004). eVera et al. (1990). fLuyendyk (1984). gBecker (1985). hCarmichael (1966) and Christensen and
Salisbury (1972). iPros et al. (1962). jComputed from the equations of state for pressure at 330 bar and hydrothermal
fluid temperature at 3508C.
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criteria for phase analysis (e.g., coherency c2ð Þ � 0:85) to maximize the signal-to-noise ratio, Barreyre and
Sohn (2016) provided a highly coherent and stable data set of phase lag estimates consisting of two records
(�2.4 years of recording) for the EPR-98460N, 30 records (�27 years of recording) for the LSHF, and two
records (�0.8 years of recording) for the MEF. The corresponding average values of phase lag and the asso-
ciated uncertainty for each site/time series are listed in Table 3.

3.2. Background Information on the Hydrothermal Sites From Our Compilation
3.2.1. East Pacific Rise 98500N Field (EPR-98500N)
The 98500N hydrothermal field is located on a volcanically active segment of the fast-spreading EPR (11 cm
yr21, Carbotte & Macdonald, 1994) that has experienced recent volcanic/magmatic activity in 1991 (Haymon
et al., 1993; Rubin et al., 1994), 2005–2006 (Tolstoy et al., 2006), and possibly in 1995 (Germanovich et al.,
2011). Because a considerable amount of seismic work has been carried out at the EPR (e.g., Detrick et al.,
1987; Sohn et al., 2004; Xu et al., 2014), we have reliable constraints on the depth of the axial melt lens
(AML) beneath the hydrothermal field (�1,500 m, Detrick et al., 1987) and on the relatively low thickness of
layer 2A (�150 m, Christeson et al., 1996; Harding et al., 1993; Sohn et al., 2004; Vera & Diebold, 1994). We
have phase lag data for a specific vent within the 98500N field: L-vent. Cross-spectral analysis yields phase
lag estimates at this vent of 2078 6 58 at M2 frequency and 1888 6 78 at K1 frequency (Barreyre & Sohn,
2016).
3.2.2. Lucky Strike Hydrothermal Field (LSHF)
The Lucky Strike hydrothermal field is located above a volcanic center on the slow-spreading Mid-Atlantic
Ridge (MAR, 2.2 cm yr21; Cannat et al., 1999), and provides the most extensive set of hydrothermal dis-
charge time series data acquired to date. Seismic studies have also provided strong constraints for both the
magma chamber depth (�3,400 m) and the thickness of the extrusive layer 2A (�600 m) (Arnulf et al., 2011;
Crawford et al., 2013; Seher et al., 2010; Singh et al., 2006). It has been shown that there exists a difference
in phase lag between vents located on the west (1558 6 58 at M2 frequency—no estimate at K1 frequency)
versus the east (1738 6 48 at M2 frequency and 1688 6 78 at K1 frequency) side of the LSHF (Barreyre &
Sohn, 2016). The two sets of vents are separated by a solidified lava lake (� 300 m in diameter) that forms
an impermeable cap on the extrusive layer (Barreyre et al., 2012; Fouquet et al., 1995; Ondr�eas et al., 2009).
Note that we had to lower the coherency threshold to c2ð Þ � 0:7 at the K1 frequency for LSHF-E in order to
obtain a phase lag estimate. While less stringent than in all other sites of the compilation, this criterion still
ensures a coherent and stable result.
3.2.3. Main Endeavour Field (MEF)
The Main Endeavour Field is located on the intermediate-spreading Juan de Fuca Ridge (JdFR, 6 cm yr21;
Riddihough, 1984) at 478N. Seismic studies provide estimates for both the magma chamber depth
(�2,300 m) and the extrusive layer 2A thickness (�460 m) (Van Ark et al., 2007). Intrafield variability is also
evident at the MEF, where the Grotto site exhibits phase lags of 2178 6 2.58 at M2 frequency (and 2018 6 48

at K1), which exceeds the phase lag at the S&M site by �408 (178.58 6 1.58 at M2 frequency and 1608 6 58 at
K1). These differences are much larger than the phase lag uncertainties and intersite variability, indicating
that they arise from deterministic differences in the subsurface permeability structure.

Table 3
Average Phase Lag (/̂) and Errors (�e/̂ ) Estimates at M2 Semidiurnal Frequency and K1 Diurnal Frequency Estimated From Spectral Analysis Following the Methodology
Described in Barreyre and Sohn (2016)

Hydrothermal fields /̂M2
�ð Þ �e/̂M2

�ð Þ /̂K1
�ð Þ �e/̂K1

�ð Þ H2A mð Þ H2B mð Þ k2A m2ð Þ k2B m2ð Þ

LSHF
(MAR)

West 155 5 300b 3,400c �1.5 3 10210 – 1029 �10215 – 1.5 3 10212

East 173 4 168a 7a 600b �7 3 10211 – 2 3 10210 �10215 – 5 3 10213

MEF
(JdFR)

South (S&M) 178.5 1.5 160 5 460d 2,300d �1.5 3 10210 �10215 – 1.5 3 10213

North (Grotto) 217 2.5 201 4 �6 3 10213 – 8 3 10213 �10215 – 7 3 10214

98500N Field
(EPR)

L-vent 207 5 188 7 155e 1,500f �1.5 3 10213 – 2.5 3 10213 �10215 – 2 3 10214

Note. Phase lag angles are estimated for coherency c2ð Þ � 0:85 at the M2 frequency for LSHF, MEF, and EPR and at the K1 frequency for MEF and EPR; and for
coherency c2ð Þ � 0:7 at the K1 frequency for LSHF.

aEstimated for lower coherency c2ð Þ � 0:7. bArnulf et al. (2011). cSingh et al. (2006); Crawford et al. (2013). dVan Ark et al. (2007). eSohn et al. (2004).
fDetrick et al. (1987).
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4. Results

It is important to note that the permeabilities estimated below and discussed throughout this paper are
interpreted as corresponding specifically to discharge zone permeabilities, and therefore, cannot be inter-
preted as whole crustal permeabilities. In layer 2A the flow to a vent field is likely the result of flow within a
limited volume and thus, may not be representative of layer 2A as a whole (Cann & Strens, 1989; Fontaine
et al., 2007), since the very presence of the vent field could result from an anomalously permeable underly-
ing crust (e.g., Crone et al., 2011).

4.1. Inverting for Discharge Zone Permeability Layering at Hydrothermal Fields
Using the model described above, we computed the predicted phase lag of vent temperature relative to
tidal pressure at the seafloor as a function of the permeabilities of layer 2A and 2B (Figure 3). We assumed
that the respective thickness of the layers beneath each hydrothermal site was known from previous seis-
mic studies summarized in the previous section, and in Table 3. We then used our phase lag estimates at
both the M2 and K1 frequencies to constrain the model and reduce the permissible solution space to nar-
row contours (black contours in Figure 3) for each site.

Figure 3 highlights a key dichotomy previously reported by Barreyre and Sohn (2016), between high layer
2A permeability systems (k2A>�10211 m2: LSHF-W and LSHF-E and MEF-S&M), and low layer 2A permeabil-
ity systems (k2A< �10211 m2: EPR-Lvent and MEF-Grotto). Our two-layer model, however, reveals previously
unknown effects due to coupling with a less permeable layer 2B (e.g., bending of the solution contour for
higher layer 2B permeability). Overall, we find that the phase lag between exit-fluid temperature and tidal
loading is relatively insensitive to the permeability of layer 2B, with the range of permeabilities that fit the
phase lag data spanning several orders of magnitude (i.e., up to 3).

In order to further constrain our permeability estimates, we only retained combinations of (k2A, k2B) that
could jointly explain the observed phase lag at both the M2 and K1 tidal frequencies (except for LSHF-W,
where robust phase lag estimates at the K1 frequency could not be obtained). Final constrained permeabil-
ity ranges for layers 2A and 2B are shown in Figure 4 and summarized in Table 3. Our estimates are in broad
agreement with previous studies, but provide further insight into the systematic variability of permeability
layering at MOR hydrothermal sites (Figure 4b).

At the EPR, where the base of layer 2A is located at the relatively shallow depth of �155 mbsf (Sohn et al.,
2004), the phase lag estimates for L-vent (2078658 @ M2 and 1888678 @ K1) require a permeability for layer
2A ranging from �1.5 3 10213 to 2.5 3 10213 m2 and from �10215 to 2 3 10214 m2 for layer 2B.

By contrast, at the LSHF the smaller phase lags (1558 6 58 @ M2 for LSHF-W and 1738 6 48 @ M2 and 1688 6

78 @ K1 for LSHF-E) require a much higher effective permeability for layer 2A ranging from �1.5 3 10210 to
1029 m2 for LSHF-W and �7 3 10211 to 2 3 10210 m2 for LSHF-E. They also constrain layer 2B permeability
between �10215 and 1.5 3 10212 m2 for LSHF-W and between �10215 and 5 3 10213 m2 for LSHF-E.

Intermediate behaviors are observed at the MEF where the extrusive layer thickness is �450 m (Van Ark et al.,
2007). At Grotto vent, the phase lags of 2178 6 2.58 @ M2 and 2018 6 48 @ K1 require an effective permeability
ranging from �6 3 10213 to 8 3 10213 m2 for layer 2A and from �10215 to 7 3 10214 m2 for layer 2B, whereas
the smaller phase lags observed for S&M vent (178.58 6 1.58 @ M2 and 1608 6 58 @ K1) require an effective per-
meability of �1.5 3 10210 m2 for layer 2A and ranging from�10215 to 1.5 3 10213 m2 for layer 2B.

Note that the estimated permeability ranges above are bounded by a minimum permeability of 10215 m2

for layer 2B. This cutoff permeability of 10215 m2 is an outcome of the coupling between layers in our
model, and corresponds to the minimum permeability at which layer 2B exerts some influence on the
observed phase lag. For any lower k2B, layer 2B becomes too impermeable and the model behaves like a
single-layer, homogenous model with an effectively impermeable boundary at the base of layer 2A (Figures
2a and 2b). In section 5.3, we propose a lower bound on k2B using heat flow constraints.

4.2. Effect of Layer Thickness on the Poroelastic Response at the Field Scale
In the previous section, we estimated the permeability structure for several hydrothermal fields that have
well-constrained layer thicknesses from seismic studies. Here, we focus on variability within individual fields,
and the potential contribution of changes in layer 2A/2B thickness to this variability. At the LSHF, the
difference in phase lags estimated for the western (1558 6 58 @ M2 for LSHF-W) versus eastern
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Figure 3. Contours of measured phase lags at the Lucky Strike Hydrothermal field (LSHF, Western and Eastern vents), the
East Pacific Rise (EPR, L-vent), and the Main Endeavour Field (MEF, S&M, and Grotto vents), plotted as a function of k2A

and k2B assuming layers 2A and 2B geometries summarized in Table 3. The left and right columns correspond to M2 and
K1 tidal frequencies, respectively.
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(1738 6 48 @ M2 and 1688 6 78 @ K1 for LSHF-E) vents is consistent with a change in the extrusive layer
thickness that has been imaged seismically (300 m for the west vents versus 600 m for the east vents,
Arnulf et al., 2011). Figure 5 shows the effect of layer 2A thickness on the M2 phase lag assuming a per-
meability of 10214 m2 in layer 2B and a range of permeabilities for layer 2A. Systematic phase lag differ-
ences are observed between vent sites hosted on the east versus west side of the LSHF, which can be

explained entirely by a change in 2A thickness and requires no
change in 2A permeability.

On the other hand, intermediate behaviors are observed at the MEF
where the extrusive layer thickness is �450 m (Van Ark et al., 2007).
Since the seismic data indicate the extrusive layer thickness is the
same for both of these vents (Van Ark et al., 2007), at the MEF the
phase lag difference between the two sites appears to result from a
variation in layer 2A permeability rather than layer 2A thickness. Mag-
netic data suggest that the S&M and Grotto vents, which are sepa-
rated by a distance of �150 m, are fed by distinct fluid upwelling
zones (Tivey & Johnson, 2002), and our results suggest these zones
have different layer 2A permeabilities.

5. Discussion

5.1. Preamble: Limitations of the 1-D Poroelastic Modulation
Model
Our multilayer poroelastic model makes several key assumptions that
we briefly review. Firstly, the 1-D formulation does not account for
horizontal gradients in fluid pressure, matrix displacement, or matrix

Figure 4. (a) Combined constraints on layers 2A and 2B permeability for each site obtained by combining phase lag data at M2 and K1 frequencies, whenever
available. (b) Synthesis of our results compared with permeability estimates from previous studies. keff denotes an effective permeability that is not explicitly tied
to either layers 2A nor 2B permeabilities.

Figure 5. Effect of layer 2A thickness on the M2 phase lag, assuming a
permeability of 10214 m2 in layer 2B and a range of permeabilities for layer 2A.
Squares indicate measured values. See section 4.2 for details.
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properties, which precludes any tidally induced horizontal flow. Secondly, the use of a multilayer model
with uniform permeability for each layer does not fully account for the progressive decrease in permeability
with depth (e.g., cracks progressively closing with increasing depth, Carlson, 2014) nor heterogeneities.
Thirdly, the model assumes that the hydrothermal fluid and the matrix are in thermal equilibrium at all
depths. Fourthly, we assume that the steady state temperature gradient C results from adiabatic cooling
alone (because of depressurization on ascent—i.e., without any heat exchange between the upwelling zone
and adjacent rocks), because lateral conductive heat loss cannot be incorporated into a 1-D model, and ver-
tical conductive heat loss is negligible in a thermal plume (Phillips, 1991). Finally, we assume that the prop-
erties of the interstitial fluid are those of pure (liquid) water. These last three assumptions preclude a
discussion of how the temperature distribution inside a real convection cell might complicate the flow.

The first two assumptions dealing with spatial homogeneity are common to most permeability estimates
and models, even though the matrix hosting hydrothermal circulation at MORs is fractured, faulted, fissured,
and brecciated to high degrees (e.g., Escart�ın et al., 2007; Wright et al., 2002), which can impart significant
heterogeneity to the permeability structure. To this point, most models, including that employed here,
address this issue by considering length scales much larger than the heterogeneity scale, which allows the
system to be characterized by an effective permeability that implicitly averages heterogeneities. Incorporat-
ing heterogeneous permeability fields into flow models is complex, computationally expensive, and more
importantly, ad hoc, lacking in situ reliable constraints (particularly at depth). On the other hand, incorporat-
ing multiple layers into poroelastic flow models is more straightforward. The third assumption regarding
thermal equilibrium is necessary, because we are using exit-fluid temperature fluctuations (as opposed to
velocity fluctuations, for example) to constrain permeability (Jupp & Schultz, 2004) and is justified by the
fact that the thermal diffusion length scale over a tidal cycle (�16 cm @ M2 and �20 cm @ K1) is less than
the spacing of flow paths (i.e., faults and cracks) (e.g., Bohnenstiehl & Carbotte, 2001; Wright et al., 2002).
The fourth assumption is valid in situations where there is little-to-no heat exchange between upwelling flu-
ids and the surrounding matrix, which appears to be a valid assumption for the hydrothermal fields dis-
cussed in this study based on exit-fluid chemistry (e.g., Langmuir et al., 1997; Pester et al., 2012). The last
assumption regarding fluid properties is justified as long as there are no phase changes in the tidally
pumped flow regime because the fluid dynamic properties of hydrothermal fluids are similar to those of
pure water.

5.2. Measured Range of Layers 2A and 2B Permeability and Comparison With Previous Work
Hydrothermal systems exhibiting phase lags between tidal loading and exit-fluid temperature greater than
�2008 are generally well explained by a poroelastic model in which the shallow (extrusive) crust has a mod-
erate permeability (k2A � 10213 – 10212 m2). By contrast, systems with phase lags� 1808 require a higher
layer 2A permeability (k2A� 10210 m2). The dichotomy observed in layer 2A arises from the sensitivity of
phase lag to extrusive layer permeability (Figures 2c and 2d), and suggests that phase lag constitutes a first-
order proxy for the permeability of the shallowest portion of the upflow zone underlying a given hydrother-
mal site. This is consistent with the results of Barreyre and Sohn (2016).

High permeability in the shallow crust (�10210 m2)—as we infer beneath Lucky Strike and the S&M site of
the MEF—has previously been proposed for the Endeavour segment near the Raven field �1 km north of
the MEF through a quantitative analysis of seafloor fissuring (Hearn et al., 2013). Such high permeabilities
are similar to those measured through borehole flow calculations in shallow subaerial Hawaiian basalts
(10211–1029 m2) (Ingebritsen & Scholl, 1993), and upper igneous oceanic crustal units (Becker & Davis,
2004, and references therein). They are similar to in situ permeability measurements in shallow submarine
wellbores (yielding values as large as 10211 m2) (Fisher, 1998), and in wellbores from sedimented ridge
flanks of both the MAR and the JdFR (�10210 m2) (Davis et al., 2000). Permeabilities inferred from pressure
diffusion along borehole transects of CORKs (i.e., Circulation Obviation Retrofit Kits) yield similarly high val-
ues (10210–1029 m2) (Davis et al., 2001), and so do large-scale numerical models of fluid flow and heat
transport (10211–1029 m2) (e.g., Stein & Fisher, 2003), and ophiolite studies (10212–1028 m2, Nehlig &
Juteau, 1988; Van Everdingen, 1995).

Interestingly, our model predicts lower 2A permeability beneath the Grotto site (�10212 m2), located
between S&M and Raven. This suggests that layer 2A permeability can vary substantially from one discharge
zone to the next, even zones separated by less than a km. Our model also predicts lower permeability
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(�10213 m2) in layer 2A beneath EPR’s L-vent (98460N), which is in agreement with the 10213.2 m2 estimated
by Marjanović et al. (2017) from seismic velocities and porosity/permeability relationships (Carlson, 2014).
This contrasts with the high permeability values (�10210–1029 m2) proposed by Crone et al. (2011) for the
upflow zone beneath the 98500N cluster of vents located �10 km north of L-vent. This estimate was
obtained by assuming that the timing of microearthquakes directly reflects the diffusion of poroelastic
stresses related to tidal cycles. This approach yielded a ‘‘background’’ permeability of the crust close to
10212 m2, and locally as low as 10214 m2. Significantly higher permeability (�10210–1029 m2) was found
within narrow areas of hydrothermal upflow and downflow, which highlighted the high lateral heterogene-
ity of the crust on length scales< 3 km. This model, however, as the one used by Marjanović et al. (2017)
did not make a distinction between layers 2A and 2B permeability.

The more moderate permeability values in the 10213–10212 m2 range, which we propose for layer 2A
beneath the L-vent (EPR) and Grotto (MEF) sites are consistent with estimates of 3 3 10213–6 3 10212 m2

derived by modeling flow rate perturbations generated by earthquake swarms near the MEF (Crone et al.,
2010). They also fall within the range determined through drill-string packer experiments at the eastern
flank of the JdFR (3 3 10214–2 310211 m2; Becker and Fisher, 2000).

Our two-layer model places less stringent constraints on layer 2B permeability, but does provide reliable upper
bounds that increase with decreasing spreading rate: �2 3 10214, �10213, and �10212 m2 at L-vent (EPR),
MEF, and Lucky Strike, respectively (Figure 4). These lower values are closer to (but generally slightly lower
than) the estimates of Lowell et al. (2013) who used a simple single-pass convection model to infer the effec-
tive, depth-averaged permeability of discharge zones based on heat flow estimates at hydrothermal sites. This
suggests that the effective permeability that sets the pace of heat extraction represents some average of
layers 2A and 2B permeability that is primarily influenced by layer 2B (Rosenberg et al., 1993). We further
explore this notion in the following section. It should of course be noted that all the above permeability esti-
mates, including ours, were derived by fitting a model to an observable (e.g., phase lag, heat flow, earthquake
distribution). The accuracy of these estimates largely relies on the model applicability and accuracy.

5.3. Reconciling Permeability Estimates From Tidal Modulation With the Heat Output of
Hydrothermal Fields
By definition, permeability sets the Darcy velocity of hydrothermal fluids subjected to a given pressure gra-
dient (equation (11)). Permeability thus exerts a very strong modulation on the thermo-chemical fluxes
associated with hydrothermal circulation (Lowell & Germanovich, 2004), as well as on venting temperature
(Driesner, 2010). Here we explore the possibility of further constraining layers 2A and 2B permeability by
constructing a model that jointly accounts for (1) the tidal response of hydrothermal systems, (2) their
steady-state heat flow, and (3) the associated venting temperatures. We adapt the theoretical framework
developed by Driesner (2010) to calculate the heat flow that would be transported by upwelling fluids in a
stratified hydrothermal discharge zone of known k2A and k2B. In our conceptual model, buoyant upflow is
fueled by an imposed heat flux resulting from the accretion of hot, crystallizing crust, and leads to venting
of a total flux Q at the seafloor. In low-permeability layer 2B, the upflow is assumed to occur within a cylin-
drical zone of radius R2B. In layer 2A, the upflow is likely faster and thus occupies a narrower area (radius
R2A) (Rosenberg et al., 1993). Under the assumption of steady-state heat transfer, the heat flow through
layer 2A (q2A, in W m22) and 2B (q2B) must match the venting flux (Q 5 pR2

2A q2A 5 pR2
2B q2B). We write TH

and PH the temperature and pressure of fluids at the base of layer 2B, and assume that the properties of flu-
ids upwelling throughout layer 2B are well described by that of seawater at (TH, PH). Likewise, we assume
that the temperature (T*� TH) and pressure (P*� PH) that characterize the interface between layers 2B and
2A provide a reasonable approximation of the properties of fluids throughout layer 2A, and that T* can be
considered a reasonable proxy for the seafloor venting temperature.

The temperature difference driving the flow through layer 2A is that between the hot fluid at temperature
T* and the ocean (TC, at seafloor pressure PC). The heat flow through layer 2A thus writes:

q2A5
k2Ag qC2q�ð Þ

l�
q� h�2hCð Þ; (20)

where l is the dynamic viscosity of the fluid, q is its density, and h is its enthalpy (in J	kg21). Likewise, the
heat flow through layer 2B is
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q2B5
k2Bg q�2qHð Þ

lH
qH hH2hCð Þ: (21)

In equations (20) and (21), subscripts ‘‘H’’, ‘‘*’’, and ‘‘C’’ refer to pressure-temperature conditions (PH, TH), (P*,
T*), and (PC, TC).

For simplicity, we assume that TH is known, and for a given Q solve equations (20) and (21) to obtain combina-
tions of k2A and k2B that satisfy Q 5 pR2

2A q2A 5 pR2
2B q2B. Each (k2A, k2B) pair is associated with a unique value of

T* in the region of parameter space considered. This procedure is carried out using the tabulated thermody-
namic properties of pure water and steam (IAPWS-IF97, Wagner et al., 2000), which constitute a reasonable
approximation for hydrothermal fluid properties. Viscosity is estimated based on the tables of International
Association for the Properties of Water and Steam (2003; Revised release on the IAPS formulation 1985 for the vis-
cosity of ordinary water substance). Seafloor conditions are taken as TC 5 48C and PC 5 230 bar. P* and PH are
chosen as 244 and 299 bar, respectively, but their exact value has little influence on the result compared to the
choice of TH. We choose TH 5 4508C but recognize that any value between 420 and 6008C would be equally
acceptable as modeling studies have shown that this range of basal temperatures is compatible with observed
seafloor venting temperatures (Fontaine & Wilcock, 2007; Fontaine et al., 2001). Finally, to simplify our explora-
tion of a vast parameter space, we consider two cases with R2B 5 500 and 100 m, and assume R2A 5 R2B/10.

Using this relatively simple model, we constrain combinations of k2A and k2B that are consistent with three values
of Q which we consider representative of EPR’s L-vent (160 MW), MEF (450 MW), and Lucky Strike (600 MW) (Low-
ell et al., 2013 and references therein). Of course, these estimates have large error bars, potentially larger than
650%. Further, we must use the estimated heat output of the EPR 98500N hydrothermal field as a proxy for heat
flow in the neighboring L-vent area, as no estimate of the heat output of that region is currently available. The
exercise attempted here should therefore be considered as a proof-of-concept for a methodology that reconciles
the permeability constraints of tidal modulation, steady-state heat transfer and venting temperature. It is how-
ever useful in this context to compare the characteristics of various hydrothermal sites in a quantitative fashion.

Figure 6 shows two sets of curves indicating which permeability combinations can explain the observed heat
outputs under two distinct assumptions for the radius of the cylindrical upflow zone in layer 2B: R2B 5 500
and 100 m. Focusing first on the R2B 5 500 m case, which is consistent with the structure of upflow zones
inferred from microseismicity studies at EPR 98500N (Marjanović et al., 2017; Tolstoy et al., 2008), it is apparent
that heat flow is primarily sensitive to the permeability of layer 2B, which is consistent with earlier studies
(e.g., Rosenberg et al., 1993). Further, this permeability is likely greater than 10215 m2 as a lower value would
not permit the observed heat fluxes. At L-vent, a permeability of 6 3 10215 m2 in layer 2B and 2 3 10213 m2

in layer 2A (red star in Figure 6) would enable a heat flow of 160 MW over a 50 m radius upwelling zone in
layer 2A, while also producing the observed phase lag between tidal loading and vent temperature. Interest-
ingly, a much higher permeability (�10210 m2) as suggested by Crone et al. (2011) throughout the crust
beneath EPR 98500N would likely result in unrealistically high heat flow and potentially lower temperature dis-
charge (Driesner, 2010). More targeted studies of the fine permeability structure of EPR will be required to
assess the applicability, sensitivity, and potential biases of each approach.

Similarly, k2B 5 10214 m2 and k2A 5 7 3 10213 m2 would be a plausible combination for the Grotto site of the
MEF. Our model is in both cases compatible with a shallow upwelling temperature in excess of 3008C, which is
consistent with high-temperature venting occurring at both sites. By contrast, models satisfying heat flow and
tidal modulation constraints at S&M and Lucky Strike require much greater layer 2A permeability (on the order of
10210 m2), and layer 2B permeabilities similar to those inferred beneath L-vent and Grotto (between 10214 and
10215 m2). However, such models would predict moderate-to-low venting temperatures (<1508C) instead of the
high temperatures observed at these sites. Alternatively, one can assume a narrower upwelling zone throughout
the crust (R2B 5 100 m), in which case models can jointly explain the phase lag, heat output and venting tempera-
tures in excess of 2008C with higher k2B values (�2 3 10213 m2, blue and green stars in Figure 6).

Large uncertainties on TH, Q, and the size of crustal-scale upflow zones preclude any definitive estimate of
k2A and k2B at the hydrothermal sites considered. However, the methodology outlined here could be
applied at a more local scale beneath a particular venting site, where permeability layering could be better
constrained. In the context of our study, this method provides useful guidelines to evaluate the plausibility
of our permeability estimates. The most important one is that layer 2B permeability is likely greater than
�10215 m2. This lower bound common to all sites provides a reasonably narrow range of permeability for
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layer 2B beneath L-vent at the EPR: 10215 – 2 3 10214 m2. Figure 6 shows that layer 2B permeability could
fall within that same low range at all other sites and satisfy the heat flow constraint. In that scenario, the var-
iability in permeability structure from site to site—and potentially across spreading rates—would be primar-
ily confined to layer 2A, with moderate-to-low k2A at the fast-spreading EPR, both high and low k2A in
neighboring upflow zones on the intermediate-spreading JdFR, and high k2A at the slow-spreading MAR.
However, as the model also shows, high 2A permeabilities are difficult to reconcile with high-temperature
venting (Driesner, 2010), unless upwelling zones are relatively focused (radius� 100 m). If that were the
case, greater 2B permeability (�10213 m2) could enable greater venting temperatures at the intermediate
and slow-spreading sites, and a greater Rayleigh number characterizing the convection system, which
would be consistent with narrower upflow zones (Fontaine & Wilcock, 2007; Lowell & Germanovich, 2004). In
that alternate scenario, both layers 2A and 2B permeability would increase with decreasing spreading rate.

An increase in upflow zone permeability at slower spreading rates is broadly consistent with the tectono-
magmatic conditions that prevail in such settings, especially with regards to layer 2A. Along slow-spreading
MORs (e.g., at the LSHF), the upper crust and its extrusive portion (i.e., layer 2A) are relatively thick (Cannat,
1996; Hooft et al., 2000; Hussenoeder et al., 2002; Smith & Cann, 1993) and tectonized by faults and fissures
that accommodate a large fraction (>0.5) of plate separation (Behn & Ito, 2008; Buck et al., 2005). A greater

Figure 6. Joint constraints on layers 2A and 2B permeability. Colored areas mark possible combinations of k2A and k2B

compatible with the observed phase lag between tidal loading and vent temperatures. Colored lines indicate combina-
tions of k2A and k2B compatible with a heat flow of 160, 450, or 600 MW in a cylindrical upflow zone of radius R2B and R2A,
under the model assumptions presented in section 5.3. Two cases are shown—i.e., for R2B 5 500 and 100 m. Lines are
color-coded by the associated venting temperature T*. Colored stars indicate possible combinations of k2A and k2B that
jointly satisfy constraints from tidal modulation and heat flow.
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degree of faulting likely results in more widespread damage zones, which increases the matrix permeability.
By contrast, at fast-spreading ridges (e.g., the EPR), magmatic processes accommodate a greater fraction of
plate spreading (Behn & Ito, 2008; Buck et al., 2005; Cowie et al., 1993), resulting in a thinner, less tectonized
upper crust and a layer 2A that is frequently repaved by lava flows (e.g., Fornari et al., 2004, 2012). Robust
magmatism at fast-spreading ridges thus hinders the formation of high-permeability upflow zones, poten-
tially providing a simple explanation for the differences in phase lag and permeability structure observed
between the LSHF and the EPR vent fields. This simple conceptual framework is illustrated in Figure 7.

It is of course difficult to infer general trends in permeability layering versus spreading rate with the limited
data set at our disposal. This is particularly true given that our estimates for the JdFR suggest considerable var-
iability in upflow zone permeability between neighboring upflow zones. Such short-wavelength (< 1 km) het-
erogeneity is unlikely to reflect changes in tectono-magmatic conditions, and may instead relate to
hydrothermal alteration and mineralization processes active on a local scale. In any case, applying the method-
ology presented in this study to many other sites along the global MOR system will provide meaningful con-
straints on the natural variability of upflow zone permeability and its possible correlation with spreading rate.

6. Conclusions

We have developed an analytical multilayer poroelastic model and applied it to a comprehensive data set
of in situ exit-fluid temperature time series data from sites where the phase lag between these data and

Figure 7. A conceptual model for changes in permeability layering and effective heat output in basalt-hosted systems
across ridge spreading rates. Schematic cross sections represent typical upper oceanic crust stratification with
corresponding permeabilities. In this interpretation, the variability in layer 2A upflow zone permeability across spreading
rates primarily reflects the pervasiveness of tectonic processes in the shallow extrusive layer.
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ocean tidal loading can be robustly constrained, and the first-order crustal layering is well-constrained by
seismic data. Applying our model to these data allows us to constrain the depth-dependent permeability
structure of upflow zones across MOR hydrothermal fields. Our main conclusions are as follows:

1. Overall, we model the shallow crust beneath vents with phase lags� 2008 as a low-permeability
k2A � 10213210212 m2
� �

extrusive layer 2A, and the shallow crust beneath vents with phase lags� 1808

as a relatively high-permeability k2A � � 10210 m2
� �

extrusive layer 2A.
2. Our model and methodology places less stringent constraints on deeper crust (i.e., layer 2B) permeability,

but does provide reliable upper bounds: �10214, �10213, and �10212 m2 at L-vent (EPR), MEF, and
Lucky Strike, respectively, and plausible lower bound of �10215 m2 to satisfy heat flow constraints.

3. Our results are compatible with a scenario in which both layers 2A and 2B upflow zone permeability
increase with decreasing spreading rate. This is consistent with the tectono-magmatic conditions that
characterize different spreading rates (i.e., a greater degree of faulting at slow-spreading MORs increas-
ing matrix permeability, and a greater degree of magmatism at fast-spreading MORs likely resulting in a
less tectonized crust that is frequently repaved by lava flows.)

Appendix A: Synthesis of Relevant Poroelastic Parameters

Here, we list the equations used to estimate the properties of the hydrothermal fluid and oceanic crust
(elastic matrix):

1. Bulk density: q5/qf 1 12/ð Þqs.
2. Shear modulus: G5qV2
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4. Fluid bulk modulus: Kf 5qf
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, H is specific enthalpy and P is the steady state pore pressure (Pa).

5. Dimensionless poroelastic stress coefficient (Detournay & Cheng, 1993): w5
a 1 2 2mð Þ

2 12mð Þ .
6. Drained Poisson’s ratio of the matrix frame: m5 3K22G

2 3K1Gð Þ.
7. Biot-Willis parameter—coefficient of effective stress—defined as a measure of the relative magnitude of

the matrix and grain bulk moduli (Nur & Byerlee, 1971): a512 K
Ks

.

8. Skempton’s coefficient: b5a a1/K 1
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2 1
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� �h i21
.
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