
Hitting Topological Minor Models in Planar Graphs is Fixed
Parameter Tractable

Petr A. Golovach∗,†,‡ Giannos Stamoulis §,¶ Dimitrios M. Thilikos ‡,‖,∗∗

Abstract
For a finite collection of graphs F , the F-TM-Deletion
problem has as input an n-vertex graph G and an integer k
and asks whether there exists a set S ⊆ V (G) with |S| ≤ k

such that G\S does not contain any of the graphs in F as a
topological minor. We prove that for every such F , F-TM-
Deletion is fixed parameter tractable on planar graphs. In
particular, we provide an f(h, k) · n2 algorithm where h is
an upper bound to the vertices of the graphs in F .

Keywords: Topological minors, irrelevant vertex tech-
nique, treewidth, vertex deletion problems

1 Introduction
1.1 The P-deletion problem and its variants In
general, a P-deletion problem is determined by some
graph class P and asks, given an n-vertex graph G and
an integer k, whether G can be transformed to a graph
in P after the deletion of k vertices. In other words, the
class P represents some desired property that we want
to impose to the input graph after deleting k vertices.
This is a general graph modification problem with great
expressive power as it encompasses many problems, de-
pending on the choice of the property P. Unfortunately
for most instantiations of P, this problem is not ex-
pected to admit a polynomial time algorithm. Lewis
and Yannakakis showed in [23] that for any non-trivial
and hereditary graph class P, the P-vertex deletion
problem is NP-complete. Given this hardness result, an
attractive alternative is to consider the standard param-
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eterized version of the problem, called p -P-deletion
where the parameter is the number k of vertex deletions.
In this case the challenge is to investigate for which
instantiations of P, p -P-deletion is fixed parameter
tractable (or, in short, is FPT), i.e., it can be solved
by an Ok(nc)-time algorithm1 (or FPT-algorithm), for
some constant c. There is a long line of research on this
general question. In many cases, this concerns particu-
lar properties and possible optimizations of the contri-
bution of k in the function hidden in the “Ok” notation
(see e.g. [5]). However, it is interesting to notice that
FPT-algorithms exist for general families of properties.
In this direction the more general (and compact) results
concern properties P that can be characterized by the
exclusion of some finite set F of graphs (i.e., of size
bounded by some constant h) with respect to some par-
tial ordering relation ≤. We define

PF,≤ = {G | ∀H ∈ F : H 6≤ G}

and ask whether p -PF,≤-deletion is FPT. Let us now
consider the general status of this problem for the main
known instantiations of the partial ordering relation ≤.

(1) ≤ is the contraction2 relation: then there are graphs
H such that P{H},≤-deletion is NP-complete even for
the case where k = 0. For instance one may take H to
be the path on 4 vertices, as indicated in [7]. Using the
terminology of fixed parameter complexity, this implies
that there are choices of F such that p -PF,≤-deletion
is para-NP-complete.

(2) ≤ is the induced minor3 relation: as in the previous
case there are choices of F such that p -PF,≤-deletion
is para-NP-complete. For instance, one may consider F
to contain the graph in [12, Theorem 4.3].

(3) ≤ is the subgraph or the induced subgraph relation:
because of the result of Cai in [8], p -PF,≤-deletion

1Let (x1, . . . , xl) ∈ Nl and χ, ψ : N→ N. We use the notation
χ(n) = Ox1,...,xl (ψ(n)) to denote that there exists a computable
function φ : Nl → N such that χ(n) = O(φ(x1, . . . , xl) · ψ(n)).

2A graph G is a contraction of a graph G′ if G can be obtained
from G by applying edge contractions.

3A graph G is an induced minor of a graph G′ if G can be
obtained from some contraction of G′ after removing vertices.
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is FPT, for every F . In particular, the result in [8]
implies an O(hknh+1)-time algorithm for both these
problems. However, if instead we parameterize PF,≤-
deletion by h, then there are instantiations of F for
which the problem is W[1]-hard even for k = 0: just
take F = {Kh} to generate the p-Clique problem.

(4) ≤ is the minor4 relation: again p -PF,≤-deletion
is FPT, for every F . To see this, observe that, for every
k, the set of YES-instances of this problem is closed
under taking of minors. On the other hand, Robertson
and Seymour [27] proved that graphs are well-quasi-
ordered with respect to the minor relation. These two
facts together imply that there is a finite set Bk (whose
size depends on k and h) such that (G, k) is a YES-
instance if and only if G contains no graph in Bk as a
minor. As minor checking for a graph on c vertices can
be done in Oc(n3)-steps [26], we derive the existence of
an Ok,h(n3)-step algorithm.

1.2 Our contribution. Interestingly, we are not
aware of other partial ordering relations where p -PF,≤-
deletion is FPT, for every F . Among the possible
candidates, the most relevant one is the topological mi-
nor relation, denoted by �: a graph H is a topological
minor of a graph G if G contains as a subgraph some
subdivision5 of H.

In this paper we make a first step on the study
of the p -PF,�-deletion problem, also called F-TM-
Deletion, and we conjecture that it is FPT. Unfor-
tunately, there are no known meta-algorithmic results,
similar to those of the case of minors, that permit a
straightforward resolution of this conjecture, as graphs
are not well-quasi-ordered under topological minors. On
the positive side, there is an algorithm that checks topo-
logical minor containment in Oh(n3)-time [15] and this
result would be a special case of our conjecture for the
case where k = 0. In this paper we prove that this con-
jecture is true, when we are restricted to planar graphs.
Moreover, we develop results and techniques that may
serve as the base of its full resolution.

Given a finite set F of graphs, we use h(F) for the
maximum size of a graph in F . We also write F � G
to denote the fact that none of the graphs in F is a
topological minor of G. We define pF (G) = min{k |
∃S ⊆ V (G) : |S| ≤ k ∧ F � G \ S}. The main result of
this paper is the following:

Theorem 1.1. There exists an algorithm that given a
finite set of graphs F , a k ∈ N, and a planar graph G,

4A graph G is an minor of a graph G′ is G is the contraction
of some subgraph of G′.

5A graph G is a subdivision of a graph G′ if G can be obtained
from G′ if we replace its edges by paths with the same endpoints.

outputs whether pF (G) ≤ k in Oh,k(n2) steps, where
h = h(F).

We stress that the algorithm of Theorem 1.1 can be
straightforwardly modified so to output a set S of size
≤ k that intersects all models of the graphs in F .

1.3 High level description of our algorithm Our
main approach towards proving Theorem 1.1 is the ap-
plication of the so-called irrelevant vertex technique.
This technique was introduced for the first time by
Roberston and Seymour in [26] for the design of an
FPT-algorithm for the Disjoint Paths problem, pa-
rameterized by the number of terminals. Subsequently,
its was applied, in diverse ways, for the design of FPT-
algorithms for several graph-theoretical problems and
is now considered as a powerful technique of parame-
terized algorithm design [1, 11, 13, 14, 16–21, 24, 25]. We
also refer to [10, Chapter 7] for a high-level overview of
the irrelevant vertex technique. The general algorith-
mic paradigm of the irrelevant vertex technique takes
advantage of some structural characteristic of the in-
put graph in order to detect, in FPT-time, some vertex,
called irrelevant, whose removal from G generates an
equivalent instance of the problem. By recursing on the
produced equivalent instance we end up with a graph
where the structural parameter is bounded (by some
function of k), a fact that permits the resolution of the
problem with other techniques – typically by dynamic
programming. In most of the times, this structural pa-
rameter is treewidth (see §2 for the formal definition)
and this is the one that we use in this paper. Towards
proving Theorem 1.1, the application of the irrelevant
vertex technique is based on the following theorem.

Theorem 1.2. There exists a function f1 : N → N,
and an algorithm with the following specifications:
Find_Irrelevant_Vertex(k, h,G)
Input: k, h ∈ N≥0 and an n-vertex planar graph G
Output:

1. an (irrelevant) vertex v ∈ V (G) such that, for
every graph class F where h(F) ≤ h, it holds that
pF (G) ≤ k ⇐⇒ pF (G \ v) ≤ k or

2. a tree decomposition of G of width at most f1(h) ·k.

Moreover, this algorithm runs in Ok,h(n) steps.

After applying the algorithm of Theorem 1.2 at
most n times, the problem is reduced to instances of
bounded treewidth. As topological minor containment
can be expressed by a MSOL formula and vertex dele-
tion to some MSOL definable property can also be ex-
pressed in MSOL, it follows from the Theorem of Cour-
celle [9] (see also [2,6,30]) that the problem for reduced
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instances can be solved in Ok,h(n) steps. Theorem 1.1
follows. The version of the algorithm that outputs a cer-
tificate of the solution follows again from the version of
the Theorem of Courcelle that returns such a certificate,
if exists.

In the rest of this section we give an outline on how
Theorem 1.2 is proved. All combinatorial concepts used
in this description are presented in an intuitive way;
formal definitions can be found in §2. Given a tuple
of variables x = (x1, . . . , xq) by the term x-big/small
we refer to a quantity that is lower/upper bounded by
some (unbounded) function of x. Alternatively, we use
the term x-many/few that is defined analogously. We
work on some embedding of G in the plane.

Walls and annuli. An important combinatorial object
is the one of a r-wall , as the one in Figure 1, that can
be seen as the union of r horizontal paths intersected
by r vertical paths. The layers of a wall W are defined
as indicated in Figure 1.

Figure 1: A 17-wall and its 8 layers.

We call the outermost layer perimeter of the wallW .
Using a result of [13] we know that if the treewidth of a
planar graph is (k, h)-big, then G contains a (k, h)-big
wall such that the subgraph of G, called the compass of
W , inside the closed disk defined by the perimeter ofW
has (k, h)-small treewidth (see Proposition 2.1). This
additional property will permit us to answer queries
expressed by MSOL sentences on subgraphs of the
compass of W .

The next step is to detect some more structure in
the wall W that is intuitively depicted in the left side
of Figure 2. We first distinguish the collection C of
the (k, h)-many outmost layers, drawn in yellow, and
then we consider in the rest of W a packing of (k, h)-
many (h)-big walls, drawn in green. This is done in
Lemma 2.1.

We now work on the “annulus” of the (k, h)-many
outer layers of W . For this, it is convenient to see those
cycles as “crossed” by a collection P of disjoint paths
(that are monotone subpaths of the horizontal/vertical
paths of W ) called rails. We call this system of cycles

P3

P4P5

P6

P7

P8 P1

P2D5

Figure 2: Left: The partition of a wall into a yellow
annulus and several green subwalls. Right: An example
of a (5, 8)-railed annulus depicted in yellow; its inner
disk D5 is depicted in green.

and rails railed annulus, denoted by A = (C,P). (See
the right side of Figure 2 for an example of a railed
annulus with 5 cycles and 8 rails).
Taming topological minor models. Notice that if
H is a topological minor of a graph G, then this is
materialized by a pair (M,T ) where M is a subgraph
of G and T is a set of vertices of M , called branches,
such that all vertices of V (M)\T have degree 2. We say
that (M,T ) is a topological minor model of H in G if a
graph isomorphic to H is created after dissolving in M
all vertices in V (M) \ T (which means deleting every
such vertex and making its two neighbors adjacent).
For simplicity, assume that F = {H} and recall that
pF (G) ≤ k if there is a set S ⊆ V (G), |S| ≤ k, called
from now on solution set, that intersects all topological
minor models of H in G.

Our next aim is to analyze how topological minor
models of H may cross the cycles and the rails of a
railed annulus A = (C,P). For this we dedicate §5
to the proof of a general theorem stating that if the
branches of (M,T ) are situated outside the annulus
and the annulus is (h)-big then it is possible to find
an alternative “rail-tamed” model (M ′, T ′) of G, whose
intersection with the “middle cycle” of A consists only
of (h)-few rail vertices. We refer to this theorem as
the “model taming theorem” (Theorem 2.1). As it has
independent combinatorial interest, we present it in
a slightly more general form that will appear useful
on further algorithmic applications. The proof of this
theorem is technical and it is based on the so-called
unique linkage theorem by Robertson and Seymour
in [28, 29] (also appeared in an alternative form as the
unique-linkage theorem in [22]).
Representations of topological minor models.
Using the model-taming theorem, we can pick a (h)-
small collection P ′ of the rails of A for which the
following holds: for every topological minor model
(M,T ) of H that crosses A, there is a disk ∆ bounded
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by some cycle C of A and a “tamed” (through P ′)
version (M ′, T ′) of (M,T ) that represents (M,T ) in the
sense that a set of vertices that are “not so close” to
C, intersects M ∩∆ iff the same set intersects M ′ ∩∆.
From now on we refer to the instantiations of M ′ ∩ ∆
as the inner tamed models of A and we can see them
as models representing the “inner part” of all annulus-
crossing models.

Reducing the solution space. The next step is
to compute, for every cycle C of A, a set SC of
at most (k, h)-many vertices intersecting each possible
inner tamed model of A (it is possibe that SC is an
empty set) This computation can be done in Ok,h(n)-
time as this question can be expressed in MSOL and
concerns subgraphs of the compass ofW that has (k, h)-
small treewidth. Let ∆in be the disk bounded by
the innermost cycle of C (cycle C5 in Figure 2). We
then compute Sin = ∆in ∩ (

⋃
C∈C SC) and observe

that Sin has (k, h)-small size. Based on the fact that
the inner tamed models represent the inner part of all
models crossing A and the fact that all these models
are intersected by subsets of at most k vertices whose
restriction in ∆in is in Sin, we prove that if G \ S does
not contain any topological minor model of H, then we
can replace S ∩ ∆in by vertices of Sin to obtain a new
solution that is not larger than S (Lemma 3.1). This
is an important restriction of the solution space of the
problem in what concerns its intersection with ∆in. As
the (h)-big sub-walls packed inside ∆in are (k, h)-many,
there is a sub-wall whose compass can be avoided by all
possible solution sets. In the above, H can might any
graph on h vertices, however its is more convenient to
think about some specific planar graph H in F .

Finding an irrelevant vertex. We now fix our
attention to the solution-free compass of some (h)-big
subwall of W . Once again, we see this wall as a railed
annulus A′ and use the model taming theorem in order
to represent all ways topological minor models of H can
“invade” the compass ofW by tamed topological models
going through the rails of A′. This in turn permit us to
detect a vertex v of the solution-free compass ofW such
that if a solution set S intersects a topological minor
model that contains v, then it should also intersect
some representation of it that avoids v, therefore v is
irrelevant (Lemma 3.2).

2 Definitions and preliminaries
We denote by N the set of all non-negative integers.
Given an n ∈ N, we denote by N≥n the set containing
all integers equal or greater than n. Given two integers
x and y we define by [x, y] = {x, x + 1, . . . , y − 1, y}.
Given an n ∈ N≥1, we also define [n] = {1, . . . , n}. Let

U be a set, r ∈ N≥1, and A = [A1, . . . , Ar] ⊆ (2U )r,
B = [B1, . . . , Br] ⊆ (2U )r. We say that A ⊆ B if
for all i ∈ [r], Ai ⊆ Bi. Also, if S ⊆ U we denote
A ∩ S = [A1 ∩ S, . . . , Ar ∩ S].

2.1 Basic concepts on Graphs All graphs in this
paper are undirected, finite, and they do not have loops
or multiple edges. If G1 = (V1, E1) and G2 = (V2, E2)
are graphs, then we denote G1∩G2 = (V1∩V2, E1∩E2)
and G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2). Also, given a graph
G and a set S ⊆ V (G), we denote by G \ S the graph
obtained if we remove from G the vertices in S, along
with their incident edges. Given a graph G, we say that
the pair (A,B) is a separation of G if A ∪ B = V (G)
and there is no edge in G with one endpoint in A \ B
and the other in B \A. A path (cycle) in a graph G is a
connected subgraph with all vertices of degree at most
(exactly) 2. A path is trivial if it has only one vertex
and is empty if it is the empty graph (i.e., the graph
with empty vertex set).

Partially disk-embedded graphs. A closed disk
(resp. open disk) ∆ is a set homeomorphic to the set
{(x, y) | x2 + y2 ≤ 1} (resp. {(x, y) | x2 + y2 < 1}).
A disk of ∆ is a closed or an open disk of ∆. We
use bor(∆) to denote the boundary of ∆ and int(∆)
to denote the open disk ∆ \ bor(∆). When we embed
a graph G in the plane or in a disk, we treat G as a
set of points. This permits us to make set operations
operations between graphs and sets of points. We
say that a graph G is partially disk-embedded in some
closed disk ∆, if there is some subgraph K of G that
is embedded in ∆ such that bor(∆) is a cycle of K
and (V (G) ∩ ∆, V (G) \ int(∆)) is a separation of G.
From now on, we use the term partially ∆-embedded
graph G to denote that a graph G is partially disk-
embedded in some closed disk ∆. We also call the graph
K compass of the partially ∆-embedded graph G and
we always assume that we accompany a partially ∆-
embedded graph G together with an embedding of its
compass in ∆ that is the set G ∩∆.

Let G be a partially ∆-embedded graph and let
C = [C1, . . . , Cr], r ≥ 2, be a collection of vertex-
disjoint cycles of the compass of G. We say that the
sequence C is a ∆-nested sequence of cycles of G if
every Ci is the boundary of an open disk Di of ∆
such that ∆ ⊇ D1 ⊇ · · · ⊇ Dr. From now on,
each ∆-nested sequence C will be accompanied with the
sequence [D1, . . . , Dr] of the corresponding open disks
as well as the sequence [D1, . . . , Dr] of their closures.
Given x, y ∈ [r] where x ≤ y, we call the set Dx \ Dy

(x, y)-annulus of C and we denote it by ann(C, x, y).
Finally, we say that ann(C, 1, r) is the annulus of C and
we denote it by ann(C).
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Grids and Walls. Let k, r ∈ N. The (k × r)-grid
is the Cartesian product of two paths on k and r
vertices, respectively. An elementary r-wall, for some
odd r ≥ 3, is the graph obtained from a (2r × r)-grid
with vertices (x, y), x ∈ [2r] × [r], after the removal of
the “vertical” edges {(x, y), (x, y + 1)} for odd x + y,
and then the removal of all vertices of degree one.
Notice that, as r ≥ 3, an elementary r-wall is a planar
graph that has a unique (up to topological isomorphism)
embedding in the plane such that all its finite faces
are incident to exactly six edges. The perimeter of
an elementary r-wall is the cycle bounding its infinite
face. Given an elementary wall W, a vertical path of
W is one whose vertices, in ordering of appearance, are
(i, 1), (i, 2), (i+ 1, 2), (i+ 1, 3), (i, 3), (i, 4), (i+ 1, 4), (i+
1, 5), (i, 5), . . . , (i, r−2), (i, r−1), (i+1, r−1), (i+1, r),
for some i ∈ {1, 3, . . . , 2r − 1}. Also a horizontal path
of W is one whose vertices, in ordering of appearance,
are (1, j), (2, j), . . . , (2r, j), for some j ∈ [2, r − 1],
or (1, 1), (2, 1), . . . , (2r− 1, 1) or (2, r), (2, r), . . . , (2r, r).
(see Figure 1).

An r-wall is any graphW obtained from an elemen-
tary r-wall W after subdividing edges. We call the ver-
tices that were added after the subdivision operations
subdivision vertices. The perimeter of W is the cycle of
W whose non-subdivision vertices are the vertices of the
perimeter of W . Also, a vertical (resp. horizontal) path
of W is a subdivided vertical (resp. horizontal) path of
W . An r′-subwall W ′ of a wall W is any r′-wall that
is a subgraph of W and whose horizontal/vertical paths
are subpaths of the horizontal/vertical paths of W .

A subgraph W of a graph G is called a wall of G if
W is an r-wall for some odd r ≥ 3 and we refer to r as
the height of the wall W . The layers of an r-wall W are
recursively defined as follows. The first layer of W is its
perimeter. For i = 2, . . . , (r−1)/2, the i-th layer ofW is
the (i− 1)-th layer of the subwall W ′ obtained from W
after removing from W its perimeter and all occurring
vertices of degree one. Notice that each (2r + 1)-wall
has r layers.
Treewidth. A tree decomposition of a graph G is a pair
(T, χ) where T is a tree and χ : V (T )→ 2V (G) such that

1.
⋃
t∈V (T ) χ(t) = V (G);

2. for every edge e of G there is a t ∈ V (T ) such that
χ(t) contains both endpoints of e and

3. for every v ∈ V (G), the subgraph of T induced by
{t ∈ V (T ) | v ∈ χ(t)} is connected.

The width of (T, χ) is defined as

w(T, χ) := max
{
|χ(t)| − 1 | t ∈ V (T )

}
.

The treewidth of G is defined as tw(G) :=
min

{
w(T, χ)

∣∣ (T, χ) is a tree decomposition of G
}
.

The following result from [13] intuitively states that
given a q ∈ N and a graph G with “big” enough
treewidth, we can find a q-wall of G whose compass
has “small” enough treewidth.

Proposition 2.1. ( [13]) There exists a constant c1
and an algorithm with the following specifications:
Find_Wall(G, q)
Input: a planar graph G and a q ∈ N.
Output:

1. A q-wall W of G whose compass has treewidth at
most c1 · q or

2. A tree decomposition of G of width at most c1 · q.

Moreover, this algorithm runs in Oq(n) steps.

2.2 Railed annuli Let r ∈ N≥3 and q ∈ N≥3.
Assume also that r is an odd number. An (r, q)-
railed annulus of a partially ∆-embedded graph G is
a pair A = (C,P) where C = [C1, . . . , Cr] is a ∆-
nested collection of cycles of G and P = [P1, . . . , Pq] is
a collection of pairwise vertex-disjoint paths in G such
that

• For every j ∈ [q], Pj ⊆ ann(C).

• For every (i, j) ∈ [r] × [q], Ci ∩ Pj is a non-empty
path, that we denote Pi,j .

We refer to the paths of P as the rails of A and to the
cycles of C as the cycles of A.

Let A = (C,P) be an (r, q)-railed annulus of a
partially ∆-embedded graph G. We call Dr (resp. D1)
the inner (resp. outer) disk of A. We also extend the
notion of an annulus and we say that the annulus of
A = (C,P) is the annulus of C.

We now prove the following lemma which intuitively
states that there is an algorithm that given a “big
enough” wall, outputs a collection of railed annuli
whose number and size will be useful in the proof of
Theorem 1.2.

Lemma 2.1. There exists a function f2 : N3 → N and
an algorithm with the following specifications:
Find_Collection_of_Annuli(x, y, z,∆, G,W )
Input: two odd integers x, y ∈ N≥3, an integer z ∈ N,
a partially ∆-embedded graph G and a q-wall W of the
compass of G whose perimeter is the boundary of ∆ and
such that q ≥ f2(x, y, z).
Output: a collection A = {A0,A1, . . . ,Az} of railed
annuli of the compass of G such that
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• A0 is a (x, x)-railed annulus whose outer disk is ∆
and whose inner disk is ∆′,

• for i ∈ [z], Ai is a (y, y)-railed annulus of G ∩∆′,
and

• for every i, j ∈ [z] where i 6= j, the outer disk of Ai
and the outer disk of Aj are disjoint.

Moreover, this algorithm runs in O(n) steps and
f2(x, y, z) = O(x+ y

√
z).

Proof. Let y′ := y+d(y−2)/4e and assume that y′ is an
odd integer (otherwise, make it odd by adding 1) and
let f2(x, y, z) = x + max{d(x − 2)/4e, d

√
z/2e · y′} + 1.

We argue that the following holds:

Claim: Let p ∈ Z≥3. If H is an h-wall of G, where
h ≥ p + d(p − 2)/4e, then H contains a (p, p)-railed
annulus A = (C,P), where C = [C1, . . . , Cp] and for
every i ∈ [p], Ci is the i-th layer of H.

Proof of Claim: Let H be an h-wall of G, where
h ≥ p+ d(p− 2)/4e. We define the ∆-nested collection
C = [C1, . . . , Cp] of cycles of G, where, for every i ∈ [p],
Ci is the i-th layer of H. Let P̂ be the collection of
the vertical and horizontal paths of H that intersect
Cp. Observe that for every i ∈ [p − 1], every path in
P̂ also intersects Ci and that P̂ ∩ ann(C) is a collection
of pairwise-vertex disjoint paths of G. Also, notice that
since h−p ≥ d(p−2)/4e then P̂∩ann(C) contains at least
p paths. Let P := [P1, . . . , Pp] be a subset of P̂ ∩ann(C).
Then, P is a collection of pairwise vertex-disjoint paths
of G and it holds that for every j ∈ [p], Pj ⊆ ann(C) and
for every (i, j) ∈ [p]× [p], Ci ∩ Pj is a non-empty path.
Therefore, H contains a (p, p)-railed annulus A = (C,P)
of G and the claim follows.

Following the claim above, for H := W , h := q, and
p := x, since q ≥ x+d(x−2)/4e, we deduce the existence
of a (x, x)-railed annulus A0 whose inner disk is Dx and
whose outer disk is D1 - that is ∆. Observe that since
q−x ≥ d

√
z/2e · y′+ 1, then there exists an r-wall Ŵ of

G for some odd r ∈ Z≥3 such that r ≥ d
√
z/2e · y′ and

Ŵ ⊆ G ∩Dx.
Now, notice that Ŵ contains a collection W =

{W ′1, . . . ,W ′z} of z y′-subwalls of W such that, for every
i, j ∈ [z], i 6= j, K(W ′i ) ∩ K(W ′j) = ∅. Therefore,
for every i ∈ [z], applying again the claim above for
H := W ′i , h := y′ and p := y, we deduce the existence
of a (y, y)-railed annulus Ai of W ′i . Furthermore, for
every i, j ∈ [z], i 6= j, recall that K(W ′i ) ∩ K(W ′j) = ∅
which implies that the outer disk of Ai and the outer
disk of Aj are disjoint. The proof concludes by setting
A = {A0,A1, . . . ,Az}.

2.3 Rerouting topological minors We say that
(M,T ) is a tm-pair if M is a graph, T ⊆ V (M), and
all vertices in V (M) \ T have degree two. We denote
by diss(M,T ) the graph obtained from M by dissolving
all vertices in V (M) \ T . A tm-pair of a graph G is a
tm-pair (M,T ) where M is a subgraph of G. Given two
graphs H and G, we say that a tm-pair (M,T ) of G, is
a topological minor model of H in G if H is isomorphic
to diss(M,T ). We call the vertices in T branch vertices
of (M,T ).
Topological minor models in railed annuli. Let
G be a partially ∆-embedded graph, let H be a graph,
A = (C,P) be a (r, q)-railed annulus ofG. Let r = 2t+1.
Let also s ∈ [r] where s = 2t′ + 1. Given some I ⊆ [q],
we say that a topological minor model (M,T ) of H in
G is (s, I)-confined in A if

M ∩ ann(C, t+ 1− t′, t+ 1 + t′) ⊆
⋃
i∈I

Pi.

Intuitively, the above definition demands that M tra-
verses the “middle” (s, q)-annulus by intersecting it only
at the rails of A.

Our algorithms are strongly based on the following
combinatorial result, whose proof is postponed to §5.

Theorem 2.1. (Model Taming) There exist two
functions f3, f4 : N≥0 → N≥0 such that if

• s is a positive odd integer,

• H is a graph on g edges,

• G is a partially ∆-embedded graph,

• A = (C,P) is a (r, q)-railed annulus of G, where
r ≥ f4(g) + 2 + s and q ≥ 5/2 · f3(g),

• (M,T ) is a topological minor model of H in G such
that T ∩ ann(A) = ∅, and

• I ⊆ [q] where |I| > f3(g),

then G contains an topological minor model (M̃, T̃ ) of
H in G such that

1. T̃ = T ,

2. M̃ is (s, I)-confined in A and

3. M̃ \ ann(A) ⊆M \ ann(A).

Apart from being the combinatorial base of our
results, the Model Taming Theorem will appear useful
in other results using the irrelevant vertex technique
(see [3]).
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2.4 Boundaried graphs and folios Let t ∈ N. A
t-boundaried graph is a triple G = (G,B, ρ) where G
is a graph, B ⊆ V (G), |B| ≤ t, and ρ : B → [t] is an
injective function. We call B the boundary of G and
we call the vertices of B the boundary vertices of G.
We also call G the underlying graph of G. Moreover,
we call |B| the boundary size of G. We say that the t-
boundaried G′ = (G′, B′, ρ′) is a subgraph of G if G′ is
a subgraph of G, B′ = B ∩ V (G′), and ρ′ = ρ|B′ . Also,
for S ⊆ V (G), we define G \ S to be the t-boundaried
graph (G′, B′, ρ′) where G′ = G\S, B′ = B\S and ρ′ =
ρ|B′ . Two t-boundaried graphs G1 = (G1, B1, ρ1) and
G2 = (G2, B2, ρ2) are isomorphic if G1 is isomorphic
to G2 via a bijection φ : V (G1) → V (G2) such that
ρ1 = ρ2 ◦ φ|B1

, i.e., the vertices of B1 are mapped via φ
to equally indexed vertices of B2. A boundaried graph
is any t-boundaried graph for some t ∈ N.

We also define the treewidth of a boundaried graph
G = (G,B, ρ), denoted by tw(G) as the minimum
width of a tree decomposition (T, χ) of G for which
there is some t ∈ V (T ) such that B ⊆ χ(t). Notice
that the treewidth of a t-boundaried graph is always
lower bounded by its boundary size.
Topological minors of boundaried graphs. If
M = (M,B, ρ) is a boundaried graph and T ⊆ V (M)
with B ⊆ T , we call (M, T ) a btm-pair and we define
diss(M, T ) = (diss(M,T ), B, ρ) (notice that we consider
all boundary vertices to be branch vertices, therefore we
do not permit their dissolution). If G = (G,B, ρ) is a
boundaried graph and (M,T ) is a tm-pair of G where
B ⊆ T , then we say that (M, T ), where M = (M,B, ρ),
is a btm-pair ofG = (G,B, ρ). LetGi = (Gi, Bi, ρi), i ∈
[2]. We say that G1 is a topological minor of G2,
denoted by G1 � G2, if there is a btm-pair (M, T ) of
G2 such that diss(M, T ) is isomorphic to G1. We call
diss(M, T ) the representation of the btm-pair (M, T ) of
G.
Folios. Let h, t ∈ N where h ≥ t. We denote by B(t)h
the set of all (pairwise non-isomorphic) t-boundaried
graphs with at most h vertices. We set the function
f5 : N2 → N such that f5(t, h) = |B(t)h |. Given a t-
boundaried graph G and an integer h ∈ N, we define the
h-folio of G, denoted by F (t)

h (G), as the set containing
all t-boundaried graphs in B(t)h that are representations
of the btm-pairs of G. Notice that |F (t)

h (G)| ≤ f5(t, h).
Given that topological minor containment can be

expressed in Monadic Second Order logic, the next
lemma follows from Courcelle’s theorem.

Lemma 2.2. There is an algorithm with the following
specifications:
Compute_Folio(h,w, t,G)

Input: h,w, t ∈ N, where h ≥ t and a t-boundaried
graph G of treewidth at most w.
Output: the set F (t)

h (G).
Moreover, this algorithm runs in Oh,w(n) steps.

3 The two main subroutines of the algorithm
In this section, we provide two main subroutines that
will be useful in the proof of Theorem 1.2. From now
on, functions f3, f4 will always denote the functions of
Theorem 2.1.
Boundaried graphs in railed annuli. Let A =
(C,P) be a (r, q)-railed annulus of a partially ∆-
embedded graph G. We can see each path Pj in P
as being oriented towards the “inner” part of ∆, i.e.,
starting from an endpoint of P1,j and finishing to an
endpoint of Pr,j . For every (i, j) ∈ [r] × [q], we define
ri,j as the first vertex of Pj that appears in Pi,j while
traversing Pj according to this orientation.

Given an i ∈ [r] and a t ∈ [q], we define the t-
boundaried graph Gi,t = (Gi, Ri,t, ρi,t) where Gi =
G∩Di, Ri,t = {ri,1 . . . , ri,t} and, for j ∈ [t], ρ(ri,j) = j.

3.1 Reducing the solution space We now prove
the following lemma that intuitively states that there is
an algorithm that given a graph G and a “big enough”
railed annulus A of G, it “reduces” the set of vertices
that are candidates to the hitting set S.

Lemma 3.1. There exists an algorithm with the follow-
ing specifications:
Reduce_Solution_Space(k, h, g,∆, G,w, C,P)
Input: three integers k, h, g ∈ N≥0, a partially ∆-
embedded graph G whose compass has treewidth ≤ w
and an (r, q)-railed annulus A = (C,P) of G, where
r = (k + 1)(h+ 1)(f4(g) + 3) and q ≥ 5/2 · f3(g).
Output: a set R ⊆ Dr ∩ V (G) such that

• |R| ≤ f5(f3(g) + 1, h+ f3(g) + 1)h+1 · k(k + 1) and

• for every h-vertex and g-edge graph H and every
S ⊆ V (G), if |S| ≤ k and H � G \ S, then there is
some S′ ⊆ (V (G) \Dr) ∪R such that |S′| ≤ k and
H � G \ S′.

Moreover, this algorithm runs in Oh,w(n) steps.

Proof. We set µ := f4(g) + 3 and λ := f3(g). Given
an i ∈ [k + 1], we use notation Ai as a shortcut to
ann(C, (i − 1)(h + 1)µ + 1, i(h + 1)µ) and for every
j ∈ [h+ 1] we define Bi,j = ann(C, (i− 1)(h+ 1)µ+ (j−
1)µ+ 1, (i− 1)(h+ 1)µ+ jµ). Intuitively, we partition
C in k + 1 sets of consecutive cycles (i.e., the cycles of
Ai, i ∈ [k+1]) and then, for every i ∈ [k+1] we partition
the set of cycles of Ai into h+1 sets of consecutive cycles
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(i.e., the cycles of Bi,j , j ∈ [h+1]). Notice that for every
i, j ∈ [k + 1]× [h+ 1], |Bi,j ∩ C| = µ.

C(i−1)(h+1)µ+1

C(i−1)(h+1)µ+(j−1)µ+1 C(i−1)(h+1)µ+jµ

C(i−1)(h+1)µ+(j−1)µ+dµ/2e

Ci(h+1)µ

Ai

Bi,1 Bi,j Bi,h+1

Figure 3: Visualization of the partition of the cycles of
A in sets Ai, i ∈ [k + 1] and of the partition in sets
Bi,j , i, j ∈ [k + 1]× [h+ 1].

Also, we define for every (i, j) ∈ [k+ 1]× [h+ 1] the
(λ+ 1)-boundaried graph

Ĝi,j = G(i−1)(h+1)µ+(j−1)µ+dµ/2e,λ+1.

To get some intuition, notice that the boundary ver-
tices of Ĝi,j lie on the “middle” cycle of Bi,j – see
Figure 3. Let i ∈ [k + 1]. For every collection
Fi := [F1, . . . ,Fh+1] ∈ (B(λ+1)

h+λ+1)h+1, let Si,Fi be the
minimum-size subset of V (G) ∩ D(i−1)(h+1)µ+1 of at
most k vertices such that, for every j ∈ [h+ 1], it holds
that F (λ+1)

h+λ+1(Ĝi,j \ Si,Fi) ∩ Fj = ∅. If such a set does
not exist, then we set Si,Fi = ∅. We define

R = (
⋃

i∈[k+1]

Fi∈(B(λ+1)
h+λ+1

)h+1

Si,Fi) ∩Dr

Notice that as each Ĝi,h+1, that is the underlying
graph of Ĝi,h+1, is a subgraph of the compass of G,
it has treewidth at most w. Moreover, the set Si,Fi
can be expressed in MSOL and, again from Courcelle’s
theorem, each Si,Fi , and therefore R as well, can be
computed in Ok,g(|G|) steps.

Let H be h-vertex graph and g-edge graph and
S ⊆ V (G) such that |S| ≤ k and H � G \ S.
As r = (k + 1)(h + 1)µ and |S| ≤ k, then by the
pigeonhole principle there is some ` ∈ [k + 1] such
that S ∩ A` = ∅. (In case there are many such `’s,
we take the minimum one.) Let Sin = S ∩ D`(h+1)µ

and Sout = S \D(`−1)(h+1)µ+1. Let also kin := |Sin| and
kout := |Sout| and keep in mind that kin+kout = |S| ≤ k.
Let H be the set of all topological minor models of H in
G and notice that for every (M,T ) ∈ H, S∩V (M) 6= ∅,
i.e., S intersects at least one vertex of each graph in H.
Let H` be the members of H that are intersected only
by vertices in Sin.

The next claim shows that there is a collection of
cycles of A such that for each tm-pair (M,T ) ∈ H`
there exists a cycle C of this collection and a tm-pair
(M̃, T̃ ) ∈ H` that is equivalent to (M,T ) and is “tamed
in C” in the sense that M ∩C is a subgraph of the rails
of A.
Claim: For every (M,T ) ∈ H`, there is an jM ∈ [h+1]
and a topological minor model (M̃, T̃ ) in H`, such
that M̃ \ A` ⊆ M \ A` and whose intersection with
CyM is the union of the paths {PyM ,cM1 , . . . , PyM ,cMzM }
where yM = (` − 1)(h + 1)µ + (jM − 1)µ + dµ/2e and
{cM1 , . . . , cMzM } ⊆ [λ+ 1] (see Figure 4).

A`

B`,1 B`,jM B`,h+1

A`

B`,1 B`,jM B`,h+1

Figure 4: Visualization of the statement of the Claim.
(M,T ) is depicted in the left figure, while (M̃, T̃ ) is
depicted in the right figure.

Proof of Claim: Let (M,T ) ∈ H` and notice that Sin∩
V (M) 6= ∅. As |T | = h, there is some jM ∈ [h+ 1] such
that T ∩ B`,jM = ∅ (if many such jM ’s exist, take the
minimum one). We use notation A(M) = (C(M),P(M))
instead of A ∩ B`,jM . We can now apply Theorem 2.1
for s = 1, A := A(M), and I = [λ + 1] and obtain a
topological minor model (M̃, T̃ ) of H in G such that
T̃ = T , M̃ is (1, I)-confined in A(M) and M̃ \ B`,jM ⊆
M \ B`,jM , which implies that M̃ \ A` ⊆ M \ A`. Let
yM = (` − 1)(h + 1)µ + (iM − 1)µ + dµ/2e. Notice
that (M̃, T̃ ) is a topological minor model in H` whose
intersection with CyM is the union of some of the paths
in {PyM ,1, . . . , PyM ,λ+1}. Suppose that these paths are
{PyM ,cM1 , . . . , PyM ,cMzM } where {c

M
1 , . . . , c

M
zM } ⊆ [λ + 1].

The claim follows.
Following the above claim, for every (M,T ) ∈

H` we define the (λ + 1)-boundaried graph GM =
(GM , BM , ρM ) where GM = (M̃ ∩ DyM ) ∪ (BM , ∅)
(i.e. the graph M̃ ∩ DyM together with the vertices
BM ), BM = {ryM ,1, . . . , ryM ,λ+1}, and for d ∈ [λ + 1],
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ρM (ryM ,d) = d.
We now define, for every j ∈ [h + 1], the set

Fj = {diss(GM , T ∪ BM ) | jM = j and (M,T ) ∈ H`}
and we set FS = [F1, . . . ,Fh+1].

Notice that Sin is a subset of V (G)∩D(`−1)(h+1)µ+1

of kin vertices such that, for every j ∈ [h + 1], it holds
that F (λ+1)

h+λ+1(Ĝ`,j \ Sin) ∩ Fj = ∅. Clearly, |S`,FS | ≤
|Sin|. We now set S′ = S`,FS ∪ Sout. Observe that
S`,FS ∩ Dr ⊆ R and therefore S′ ⊆ (V (G) \ Dr) ∪ R.
Since |S′| ≤ k, it remains to prove that H � G \ S′.

Suppose to the contrary that the graph G \ S′
contains some topological minor model (M,T ) of H as
a subgraph. Since H � G \S, then it holds that (M,T )
is intersected only by vertices in Sin - thus (M,T ) ∈ H`.
According to the claim above, there is an jM ∈ [h + 1]
and a topological minor model (M̃, T̃ ) ∈ H` such that
M̃ \ A` ⊆ M \ A` and whose intersection with CyM
is the union of the paths {PyM ,cM1 , . . . , PyM ,cMzM } where
yM = (` − 1)(h + 1)µ + (iM − 1)µ + dµ/2e + 1 and
{cM1 , . . . , cMzM } ⊆ [λ+1]. Therefore diss(GM , T ∪BM ) ∈
FjM , which contradicts the definition of S`,FS .

3.2 Finding an irrelevant area Before we proceed
with the proof of the second result of this section we
need some more definitions. Let A = (C,P) be an (r, q)-
railed annulus of a partially ∆-embedded graph G.

P3

P4P5

P6

P7

P8
P1

P2

Figure 5: An example of a (5, 8)-railed annulus A,
the set FA (depicted in green), and the graphs L2,5→7

(depicted in red), R2→4,1 (depicted in yellow), and
∆3,5,2,5 (depicted in blue).

For every i ∈ [r], we define F (i)
A as the edge set

of the unique (Pi,q, Pi,1)-path that does not contain
any vertex from P2. We also set FA =

⋃
i∈[r] F

(i).
Let (i, j, j′) ∈ [r] × [q]2 where j 6= j′. We denote by

Li,j→j′the shortest path in Ci starting from a vertex of
Pi,j and finishing to a vertex of Pi,j′ and that does not
contain any edge from FA. Let (i, i′, j) ∈ [r]2×[q] where
i 6= i′ (see Figure 5). We denote by Ri→i′,j the shortest
path in Pj starting from a vertex of Pi,j and finishing
to a vertex of Pi′,j . Let (i, i′, j, j′) ∈ [r]2× [q]2 such that
i < i′ and j < j′. We define ∆i,i′,j,j′ as the closed disk
bounded by the unique cycle in the graph

Pi,j ∪ Li,j→j′ ∪ Pi,j′ ∪Ri→i′,j′ ∪
Pi′,j′ ∪ Li′,j′→j ∪ Pi′,j ∪Ri′→i,j .

The next lemma intuitively states that there exists
an algorithm that given a partially ∆-embedded graph
G and a “big enough” railed annulus of G, then there
exists a bidimensional area ∆′ ⊆ ∆ such that for every
hitting set S outside ∆, ∆′ ∩ V (G) is an irrelevant part
of the instance.

Lemma 3.2. There exists an algorithm with the follow-
ing specifications:
Find_irrelevant_area(h, g, b,∆, G,w, C,P)
Input: three integers h, g ∈ N≥1 and b ∈ N≥2, a partially
∆-embedded graph G whose compass has treewidth at
most w, and an (r, q)-railed annulus A = (C,P) of G,
where r = f5(f3(g) + 1, h+ f3(g) + 1) ·

(
(h+ 1)(f4(g) +

3) + b+ 1
)
and q = max{5/2 · f3(g), f3(g) + b}.

Output: a closed disk ∆′ ⊆ ∆ such that

• tw(G ∩∆′) ≥ b and

• for every h-vertex and g-edge graph H and for every
S ⊆ V (G) \∆, if H � (G \ (∆′ ∩ V (G))) \ S then
H � G \ S.

Moreover, this algorithm runs in Oh,w(b · |G|) steps.

Proof. Let t := f3(g)+1, µ := f4(g)+3, ` := (h+1)µ+
b+1. Using this notation we have that r = f5(t, h+t)·`.

We consider the t-boundaried graphs Gi,t, i ∈ [r].
As the underlying graph of each Gi,t is a subgraph
of the compass of G, we have that tw(Gi,t) ≤ w +
t = Oh(w). For each i ∈ [r], we call the algorithm
Compute_Folio(h+ t, t,Gi,t, w+ t) and compute the
(h + t)-folio of Gi,t which, from now on, we denote by
Fi. According to Lemma 2.2 Fi, for all i ∈ [r] can
be computed in Oh,w(r · |G|) = Oh,w(b · |G|) steps.
We observe that if 1 ≤ i ≤ i′ ≤ r, then Fi′ ⊆ Fi.
This, together with the fact that |B(t)h | = f5(t, h + t),
implies that there is an i′ ∈ [r − ` + 1] such that
Fi′ = Fi′+1 = . . . = Fi′+`−1. We define

∆′ = ∆i′+µ(h+1),i′+`−2,t+1,t+b

and notice that G∩∆′ contains a (b×b)-grid as a minor,
therefore tw(G ∩ ∆′) ≥ b (see Figure 6). Also keep in
mind that ∆′ does not intersect the cycle Ci′+`−1.
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C1 Ci′
Ci′+µ(h+1) Ci′+`−1

Cr

b

`

∆′

Pt+b

Pt+1

Figure 6: An example showing the disk ∆′.

Let now H be a h-vertex and g-edge graph and
S ⊆ V (G) \∆ such that H � (G \∆′) \ S. It remains
to prove that H � G \ S. Suppose to the contrary
that the graph G \ S contains some topological minor
model (M,T ) of H as a subgraph. As |T | = h and
` = µ · (h + 1) + b + 1 there is some i′′ ∈ [i′, i′ + ` − µ]
such that T ∩ ann(C, i′′, i′′ + µ− 1) = ∅.

We consider the (µ, q)-railed annulus A′ = (C′,P)
of G \ S where

• C′ = [C ′1, . . . , C
′
µ] := [Ci′′ , . . . , Ci′′+µ−1] and

• P ′ = [P ′1, . . . , P
′
q] := [P1 ∩ ann(A′), . . . , Pq ∩

ann(A′)]. (See Figure 7.)

A′

C1 Ci′
Ci′′ Ci′′+µ−1 Ci′+`−1

Cr

µ

∆′

Figure 7: An example showing the (µ, q)-railed annulus
A′.

We are now in position to apply Theorem 2.1 for
s := 1, H, G := G \ S, A := A′, r := µ, M , and I = [t].
We deduce the existence of a topological minor model
(M̃, T̃ ) of H in G \ S such that T̃ = T , M̃ is (1, I)-
confined in A′, and M̃ \ ann(A′) ⊆ M \ ann(A′) (see
Figure 8).

A′

Ci′′ Ci′′+µ−1 Ci′+`−1

∆′

Figure 8: An example of (M̃, T̃ ), the result of applying
Theorem 2.1 in the railed annulus A′.

Let y = i′′ + bµ/2c. Notice now that M̃ ∩ Cy
is the union of some of the paths in {Py,1, . . . , Py,t}.
Suppose that these paths are {Py,c1 , . . . , Py,cµ} where
{c1, . . . , cµ} ⊆ [t]. We consider the boundaried graph
My = (My, By, ρy) where My = (M̃ ∩ Dy) ∪ (By, ∅)
(i.e. the graph M̃ ∩ Dy together with the isolated
vertices By), By = {ry,1, . . . , ry,t}, and for every d ∈
[t], ρy(ry,d) = d. We also define M̂y = M̃ \ Dy \⋃
d∈[t](V (Py,cd) \ ry,cd). Keep in mind that M̂y does

not intersect the disk ∆′ (see Figure 9).

Cy

ry,c1

ry,c2

Cy

ry,c1

ry,c2

Figure 9: The graphs My (depicted in red) and M̂y

(depicted in blue).

Now consider the t-boundaried graph diss(My, T ∪
By) and notice that it is isomorphic to a member
F ∈ Fy. We set y′ = i′ + ` − 1. Recall that F ∈ Fy′ ,
as Fy = Fy′ . This means that Gy′ contains as a
subgraph a model My′ = (My′ , By′ , ρy′′) of F where
By′ = {ry′,1, . . . , ry′,t}, and for every d ∈ [t], ρy(ry′,d) =

d. Notice that My′ does not intersect ∆′. Let M̂y′ be
the graph obtained fromMy′ after removing the vertices
ry′,j , j ∈ [t] \ {c1, . . . , cµ}. For every d ∈ [µ], we define
P ∗d = Py,cd ∪ Ry→y′,cd and observe that none of the
paths in P∗ = {P ∗d | d ∈ [µ]} intersects ∆′. Consider
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now the graphM0 := M̂y∪M̂y′ ∪
⋃⋃⋃⋃⋃⋃⋃⋃⋃
P∗ and observe that

(M0, T ) is a topological minor model of H in G\S such
that V (M0) ∩ ∆′ = ∅. Therefore H � (G \ ∆′) \ S, a
contradiction (see Figure 10).

A′

Ci′′ Ci′′+µ−1 Cy′
Cy

∆′ M ′y

P ∗1

P ∗2

Figure 10: Visualization of the last part of the proof.

4 Proof of the main result
Now we have all necessary results in order to prove
Theorem 1.2.

Proof. [Proof of Theorem 1.2] Let g :=
(
h
2

)
, µ :=

f4(g) + 3, and λ := f3(g). Also, let

x :=(k + 1)(h+ 1)µ,

y :=f5(λ+ 1, h+ λ+ 1) · ((h+ 1)µ+ 1) , and

z :=f5(λ+ 1, h+ λ+ 1)h+1 · k(k + 1) + 3.

For q := f2(x, y, z), we call the algorithm
Find_Wall(G, q) of Proposition 2.1 which outputs ei-
ther a q-wall W of G whose compass has treewidth at
most c1 ·q or a tree decomposition of G of width at most
c1 · q. We consider the first case.

Let ∆ be the closed disk defined by the
compass of W . Then, we call the algorithm
Find_Collection_of_Annuli(x, y, z,∆, G,W )
of Lemma 2.1 which outputs a collection
A = {A0,A1, . . . ,Az} of railed annuli of the com-
pass of G such that

• A0 is a (x, x)-railed annulus whose outer disk is ∆
and whose inner disk is ∆′,

• for i ∈ [z], Ai is a (y, y)-railed annulus of G ∩∆′,
and

• for every i, j ∈ [z] where i 6= j, the outer disk of Ai
and the outer disk of Aj are disjoint.

Then, we call the algorithm
Reduce_Solution_Space(k, h, g,∆, G,w, C,P) of

Lemma 3.1 for (C,P) := A0 and w := c1 · q which
outputs a set R ⊆ ∆′ ∩ V (G) such that

• |R| ≤ f5(λ+ 1, h+ λ+ 1)h+1 · k(k+ 1) = z− 1 and

• for every graph H on at most h vertices and g edges
and every |S| ≤ k andH � G\S, then there is some
S′ ⊆ (V (G) \ ∆′) ∪ R such that |S′| ≤ k and and
H � G \ S′.

Since |R| < z then there exists a
j ∈ [z] such that R ∩ ann(Aj) = ∅. Let
(C(j),P(j)) := Aj . Now, for b := 2, the algorithm
Find_irrelevant_area(h, g, b,∆, G,w, C(j),P(j)) of
Lemma 3.2 computes a closed disk ∆′ ⊆ ∆ such that

• tw(G ∩∆′) ≥ b, and

• for every graph H on at most h vertices and g edges
and every S ⊆ V (G)\∆, ifH � (G\(∆′∩V (G)))\S
then H � G \ S.

As the graphs in F have at most h vertices and g =
(
h
2

)
,

we conclude that there exists a vertex v ∈ V (G) ∩ ∆′

such that pF (G) ≤ k ⇐⇒ pF (G \ v) ≤ k.

5 Proof of the Model Taming Theorem
This section is devoted to the proof of Theorem 2.1 that
is the base of the correctness of both algorithmic results
of the previous section.

5.1 Linkages in railled annuli A linkage in a graph
G is a subgraph L of G whose connected components
are all non-trivial paths. The paths of a linkage are its
connected components and we denote them by P(L).
The size of L is the number of its paths and is denoted
by |L|. The terminals of a linkage L, denoted by T (L),
are the endpoints of the paths in P(L), and the pattern
of L is the set{

{s, t} | P(L) contains some (s, t)-path
}
.

Two linkages L1, L2 of G are equivalent if they have the
same pattern and we denote this fact by L1 ≡ L2.We
say that a linkage L of a graph G is vital if V (L) = V (G)
and there is no other linkage of G that is equivalent to
L.

Let G be a partially ∆-embedded graph, let A =
(C,P) be a (r, q)-railed annulus of G and L be a linkage
of G. If L is a linkage of a partially ∆-embedded graph,
and D ⊆ ∆, then we say that L is D-avoiding if
T (L)∩D = ∅. We also say that L is D-free if D∩L = ∅.
We also say that L is A-avoiding if it is ann(C)-avoiding
(see Figure 11).

Copyright © 2020 by SIAM
Published under the terms of the Creative Commons CC BY 4.0 license.



D

Figure 11: An example of a railed annulus A, a closed
disk D (depicted in blue) and a linkage L (depicted in
red) that is D-free and A-avoiding.

Let r = 2t + 1. Let also s ∈ [r] where s = 2t′ + 1.
Given some I ⊆ [q], we say that a linkage L is (s, I)-
confined in A if

L ∩ ann(C, t+ 1− t′, t+ 1 + t′) ⊆
⋃
i∈I

Pi.

Our purpose is to prove the following.

Theorem 5.1. There exist two functions f3, f4 :
N≥0 → N≥0 such that for every odd s ∈ N≥1 and ev-
ery k ∈ N≥0, if G is a partially ∆-embedded graph, A =
(C,P) is a (r, q)-railed annulus of G, where r ≥ f4(k)+s
and q ≥ 5/2 · f3(k), L is an A-avoiding linkage of size
at most k, and I ⊆ [q], where |I| > f3(k), then G
contains a linkage L̃ where L̃ ≡ L, L̃ is A-avoiding,
L̃ \ ann(C) ⊆ L \ ann(C), and L̃ is (s, I)-confined in A.

We say that a function is even if its images are even
numbers. We state the following result.

Proposition 5.1. ( [22,28]) There exists an even
function f3 : N≥0×N≥0 → N≥0 such that if G is a graph
and L is a vital linkage of G, then tw(G) ≤ f3(|L|).

In the above proposition, f3 is a non-decreasing
function that is important for the statement of many
of the results of this paper. For this reason, for now on,
f3 will always denote the function of Proposition 5.1.

5.2 Taming a Linkage LB-pairs. Given a graph
G, a LB-pair of G is a pair (L,B) where B is a subgraph
of G with maximum degree 2 and L is a linkage of G.
We define cae(L,B) = |E(L) \ E(B)| (i.e., the number
of linkage edges that are not edges of B).

Lemma 5.1. Let (L,B) be an LB-pair of a G. If
tw(L∪B) > f3(|L|), then G contains a linkage L′ where

1. cae(L′, B) < cae(L,B),

2. L′ ≡ L,

3. L′ ⊆ L ∪B.

Proof. Let H = L ∪ B. From Proposition 5.1, L
is not a vital linkage of H, therefore, H contains a
linkage L′ such that L 6= L′ and L′ ≡ L. Notice that
E(L′) \ E(B) ⊆ E(L) \ E(B). It remains to prove that
this inclusion is proper.

Let {x, y} be a member of the common pattern of
L and L′ such that the (x, y)-path P of L is different
than the (x, y)-path P ′ of L′. Clearly, P and P ′,
when oriented from x to y, have a common part P ∗.
Formally, this is the connected component of P ∩ P ′
that contains x. Let e be the (m + 1)th edge of P ,
starting from x, where m is the length of P ∗. Notice
that e ∈ E(L) \ E(B), while e 6∈ E(L′) \ E(B).

We conclude that E(L′) \ E(B) ( E(L) \ E(B),
therefore |E(L′) \ E(B)| < |E(L) \ E(B)|, as required.

Minimal linkages. Let G be a partially ∆-embedded
graph, C be a ∆-nested cycle collection of G, D ⊆ ∆, L
be a ann(C)-avoiding and D-free linkage of G. We say
that a linkage L′ of G is (C, D, L)-minimal if, among all
the ann(C)-avoiding linkages of G that are equivalent to
L and are subgraphs of L ∪ (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \ D), L′ is one where

the quantity cae(L′,
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D) is minimized.

Lemma 5.2. Let G be a partially ∆-embedded graph, C
be a ∆-nested cycle collection of G, D ⊆ ∆, L be an
ann(C)-avoiding and D-free linkage of G, and L′ be a
(C, D, L)-minimal linkage of G, then tw(L′∪(

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C\D)) ≤

f3(|L′|).

Proof. Let B =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D and observe that (L′, B) is an

LB-pair of G. Assume, towards a contradiction, that
tw(L′ ∪ B) > f3(|L′|). From Lemma 5.1, G contains a
linkage L′′ that is equivalent to L′ where cae(L′′, B) <
cae(L′, B) and L′′ ⊆ L′∪B. This contradicts the choice
of L′ as a (C, D, L)-minimal linkage of G.

Streams, rivers, mountains, and valleys. Let G be
a partially ∆-embedded graph, C = [C1, . . . , Cr] be ∆-
nested cycle collection of G, and L be a ann(C)-avoiding
linkage of G. A (C, L)-stream of G is a subpath of L
that is a subset P of ann(C) and such that V (P ∩ C1)
consists of the one endpoint of P and V (P ∩Cr) consists
of the other. A disjoint collection of (C, L)-streams of
G is a collection R of (C, L)-streams such that

⋃⋃⋃⋃⋃⋃⋃⋃⋃
R is a

linkage of G. A (C, L)-river of G is a (C, L)-stream that
is a subpath of a connected component of L ∩ ann(C)
that has one of its endpoints in C1 and the other in Cr.
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Notice that not each (C, L)-stream of G is a (C, L)-river
and any collection of (C, L)-rivers is a disjoint collection
of (C, L)-streams (see Figure 12).

Figure 12: An example of a (C, L)-stream (depicted in
solid red) and a (C, L)-river (depicted in solid blue).

Let i ∈ [r] and D ⊆ ∆. An (C, D, L)-mountain
(resp. (C, D, L)-valley) of G based on Ci is a non-trivial
subpath P of some path of L where

1. P ⊆ Di (resp. P ⊆ ∆ \Di),

2. P ∩Dr = ∅ (resp. P ∩ (∆ \D1) = ∅),

3. P ∩ Ci has two connected components, each con-
taining exactly one of the endpoints of P ,

4. if D′ is the closure of the connected component of
Di\P (resp. (∆\Di)\P ) that does not contain Dr

(resp. ∆\D1), then D′∩T (L) = ∅ and D′∩D = ∅.

Clearly, in (4), D′ is a closed disk. We call it, the disk of
the (C, D, L)-mountain (resp. valley) P and we denote
it by disk(P ).Notice that there is no (C, D, L)-mountain
based on Cr and there is no (C, D, L)-valley based on
C1.

A (C, D, L)-mountain (resp. (C, D, L)-valley) of G
is any (C, D, L)-mountain (resp. (C, D, L)-valley) of G
based on some of the cycles of C.

The height (resp. depth) of a (C, D, L)-mountain
(resp. (C, D, L)-valley) P that is based on Ci is the max-
imum j such that Ci+j−1 (resp. Ci−j+1) intersects P
and, in both cases, we denote it by dehe(P ). Moreover,
the height (resp. depth) of P is at least 1 and at most
r.

Notice that if a (C, L)-stream P of G is a subpath
of a (C, D, L)-mountain P ′ or a (C, D, L)-valley P ′ of G
then dehe(P ′) = r. Moreover, if a (C, L)-stream P of
G is not a subpath of some (C, D, L)-mountain or some
(C, D, L)-valley of G, then P is a (C, L)-river of G.

We say that a (C, D, L)-mountain (resp. (C, D, L)-
valley) P based on Ci, is tight if dehe(P ) = d ≥ 2 and
there is a sequence [P2, . . . , Pd] of (C, D, L)-mountains
(resp. (C, D, L)-valleys) based on Ci such that

• P = Pd,

D

C1

C5

Figure 13: An example of a (C, D, L)-valley (depicted
in solid red), and some (C, D, L)-mountains (depicted
in solid colors). Notice that the (C, D, L)-mountain
depicted in green is tight.

• ∀j ∈ [2, d], dehe(Pj) = j, and

• ∀j ∈ [2, d− 1], Pj ⊆ disk(Pj+1) (see Figure 13).

Lemma 5.3. Let G be a partially ∆-embedded graph, C
be a ∆-nested cycle collection of G, D ⊆ ∆, L be a
ann(C)-avoiding and D-free linkage of G. Let also L′ be
a (C, D, L)-minimal linkage of G. Then all (C, D, L′)-
mountains (resp. (C, D, L′)-valleys) of G are tight.

Proof. Let B =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \ D. We present the proof for the

case of (C, D, L′)-mountains as the case of (C, D, L′)-
valleys is symmetric.
Claim: Let i ∈ N≥1, j ∈ N≥2. If Pj is a (C, D, L′)-
mountain of G based on Ci such that dehe(Pj) = j,
then there exists a (C, D, L′)-mountain P ′ based on Ci
such that dehe(P ′) = j − 1 and P ′ ⊆ disk(Pj).
Proof of Claim: Suppose to the contrary that there
does not exist a (C, D, L′)-mountain P ′ based on Ci
such that dehe(P ′) = j − 1 and P ′ ⊆ disk(Pj). Let
P

(j−1)
j = (Pj \ Di+(j−1)−1) ∪ (Ci+(j−1)−1 ∩ disk(Pj))

and notice that dehe(P (j−1)
j ) = j − 1 (see Figure 14).

Ci

Ci+j−2

Figure 14: An example of a (C, D, L′)-mountain Pj of
G based on Ci such that dehe(Pj) = j (depicted in red)
and the (C, D, L′)-mountain P (j−1)

j (depicted in green).

Then G contains a linkage L′′ = (L′ \Pj)∪ (P
(j−1)
j )

that is equivalent to L where cae(L′′, B) < cae(L′, B)
and L′′ ⊆ L′ ∪B. This contradicts the choice of L′ as a
(C, D, L)-minimal linkage of G. The claim follows.

Copyright © 2020 by SIAM
Published under the terms of the Creative Commons CC BY 4.0 license.



Let P be a (C, D, L′)-mountain of G based on Ci
such that dehe(P ) = d ≥ 2. The fact that P is tight
follows by recursively applying the Claim above.

Orderings of streams. Let G be a partially ∆-
embedded graph, C be a ∆-nested cycle collection of
G, D be an open disk where D ⊆ ann(C), L be an
ann(C)-avoiding and D-free linkage of G.

If Z is a disjoint collection of (C, L)-streams of G we
define its D-ordering as follows: Consider the sequence
[Z1, . . . , Zd] such that for each i ∈ [d], one, say Di, of
the two connected components of ann(C) \ (Zi ∪ Zi+1)
does not intersect

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Z (here Zd+1 denotes Z1). Among

all (d− 1!) such sequences we insist that [Z1, . . . , Zd] is
the unique one where D ⊆ Dq and that the order of Z
is the counter-clockwise order that its elements appear
around ann(C) (see Figure 15). We call [Z1, . . . , Zd] the
D-ordering of Z.

D
Z1

Z2

Z3Z4

Z5

Figure 15: An example of an ∆-nested cycle collection
C, an open disk D ⊆ ann(C) (depicted in blue), a linkage
L (depicted in red) that is D-free and ann(C)-avoiding,
a disjoint collection Z of (C, L)-streams, and the D-
ordering [Z1, . . . , Z5] of Z.

Brambles. Given a graph G, we say that a subset
S of V (G) is connected if G[S] is connected. Given
S1, S2 ⊆ V (G), we say that S1 and S2 touch if either
S1∩S2 6= ∅ or there is an edge e ∈ E(G) where e∩S1 6= ∅
and e ∩ S2 6= ∅. A bramble in G is a collection B is
pairwise touching connected subsets of V (G). The order
of a bramble B is the minimum number of vertices that
intersect all of its elements.

Proposition 5.2. ( [31]) Let k ∈ N≥0. A graph G has
a bramble of order k + 1 if and only if tw(G) ≥ k.

We now use the notions of ordering of streams and
brambles to prove the following result.

Lemma 5.4. Let G be a partially ∆-embedded graph, C
be ∆-nested cycle collection of G, D be an open disk

where D ⊆ ann(C), L be an ann(C)-avoiding and D-free
linkage of G, and Z be a disjoint collection of (C, L)-
streams of G. Then tw(L ∪ (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D)) ≥ min{|C|, |Z|}.

Proof. Let [Z1, . . . , Zd] be the D-ordering of Z and let
D′ be the connected component of ann(C)\(Zd∪Z1) that
contains D. Let r = min{|C|, |Z|}, and let [Z1, . . . , Zr]
be the sequence consisting of the first r elements of the
D-ordering of Z. Let also C′ be the sequence consisting
of the first r elements of C. Notice that there is a disjoint
collection Z ′ = [Z ′1, . . . , Z

′
r] of (C′, L)-streams of G such

that for each i ∈ [r], Z ′i ⊆ Zi.
We now set B = C′ \ D′, denote B = [B1, . . . , Br],

and notice that both B and Z ′ are sequences of paths
in G, such that both

⋃⋃⋃⋃⋃⋃⋃⋃⋃
B and

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Z ′ are linkages of G.

Consider now the graph Q =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
B∪
⋃⋃⋃⋃⋃⋃⋃⋃⋃
Z ′ and notice that

C = B1 ∪ Z ′1 ∪Br ∪ Z ′r is a cycle of G.
As Q ⊆ L ∪ (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \ D), it remains to prove that

tw(Q) ≥ r. For this, because of Proposition 5.2, it
suffices to give a bramble of Q of order r + 1. For each
(i, j) ∈ [2, r − 1]2 we define X(i,j) = (Bi ∪ Z ′j) \ V (C).
It is easy to check that X = {X(i,j) | (i, j) ∈ [2, r− 1]2}
is a bramble of Q of order ≥ r − 2. Let also X(1) =
Z1 \ B1, X(2) = B1, and X(3) = Z ′r ∪ Br. Notice that
X ∪ {X(1), X(2), X(3)} is also a bramble of Q and its
order is the order of X incremented by 3. Therefore Q
contains a bramble of order at least r + 1, as required
(see Figure 16).

Figure 16: An example of the construction of a bram-
ble of Q, where |B| = 5 and |Z ′| = 5. Here,
X(2,2), X(3,3), X(4,4) are depicted in red, green, and yel-
low, respectively, while X(1), X(2), X(3) are depicted in
orange, brown, and blue, respectively.

Lemma 5.5. Let G be a partially ∆-embedded graph, C
be a ∆-nested cycle collection of G, D be a connected
subset of ∆, and L be a ann(C)-avoiding and D-free
linkage of G. If P is a tight (C, D, L)-mountain (resp.
(C, D, L)-valley) of G, then tw(L ∪ (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \ D)) ≥ 2

3 ·
dehe(P ).

Proof. Let d = dehe(P ). We examine the non-trivial
case where d ≥ 3. We present the proof for the case
where P is a (C, D, L)-mountain as the case where P is
a (C, D, L)-valley is symmetric.

We assume that P is based on Ci, for some i ∈
[r]. By the definition of tightness, there is a sequence
P = [P2, . . . , Pd = P ] of (C, D, L)-mountains (resp.
(C, D, L)-valleys) based on Ci such that

• P = Pd,
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• ∀i ∈ [2, d], dehe(Pi) = i, and

• ∀i ∈ [2, d− 1], Pi ⊆ disk(Pi+1).

For every j ∈ [2, d], we denote C(j) = [Ci, . . . , Ci+j−1].
Notice that for every j ∈ [2, d], L is an ann(C(j))-
avoiding and D-free linkage of G.
Claim: For every j ∈ [2, d − 1] there exists a disjoint
collection Zj of (C(j), L)-streams of G where |Zj | ≥
2(d− j) + 1.
Proof of Claim: Let j ∈ [2, d−1]. Observe that for each
h ∈ [j + 1, d] exactly two of the connected components
of ann(C(j)) ∩ Ph are (C(j), L)-rivers in G. This implies
that there is a collection Rj of at least 2(d−j) (C(j), L)-
rivers in G. Recall that Rj is a disjoint collection of
(C(j), L)-streams of G. Observe also that we can pick
some sub-path of ann(C(j)) ∩ Pj that has one endpoint
in Ci and the other in Ci+j−1. As this path does not
share vertices with any of the paths in Rj we can add
it in Rj and obtain a disjoint collection Zj of (C(j), L)-
streams of G where |Zj | ≥ 2(d − j) + 1. Claim follows
(see Figure 17).

Ci

Ci+j−1

C(j)

Ci+d−1P

Figure 17: An example of a tight (C, D, L)-mountain P
based on Ci of height d and the respective sequence of
(C, D, L)-mountains based on Ci (depicted in red), an
annulus C(j) (depicted in blue), for some j ∈ [2, d],and
a disjoint collection Zj (depicted in green) of (C(j), L)-
streams of G.

We now set j′ = b(2d + 1)/3c and observe that
2 ≤ j′ ≤ d − 1. The above claim implies that there
exists a disjoint collection Zj′ of (C(j′), L)-streams of
G such that |Zj′ | ≥ 2(d − j′) + 1 ≥ j′ = |C(j′)|.
Therefore, we can apply Lemma 5.4 on C(j′) and deduce
that tw(L ∪ (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C(j′) \D)) ≥ j′. The Lemma follows as

L∪(
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C(j′)\D) ⊆ L∪(

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C\D) and b(2d+1)/3c ≥ 2d/3.

Lemma 5.6. Let G be a partially ∆-embedded graph, C
be a ∆-nested cycle collection of G, D be a connected
subset of ∆, L be a ann(C)-avoiding and D-free linkage
of G, and L′ be a (C, D, L)-minimal linkage of G. Then
all (C, D, L′)-mountains (resp. (C, D, L′)-valleys) of G
have height (resp. depth) at most 3

2 · f3(|L′|).

Proof. We set B =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \ D. By Lemma 5.2, tw(L′ ∪

B) ≤ f3(|L′|). Let P be a (C, D, L′)-mountain (resp.
(C, D, L′)-valley) of G based on Ci, for some i ∈ [r − 1]
(resp. i ∈ [2, r]). From Lemma 5.3, P should be
tight and, from Lemma 5.5, tw(L′ ∪ B) ≥ 2

3 · dehe(P ).
Therefore, dehe(P ) ≤ 3

2 · f3(|L′|).

Lemma 5.7. Let G be a partially ∆-embedded graph,
C = [C1, . . . , Cr] be a ∆-nested cycle collection of G,
and L be a D1-avoiding linkage. Then there is a linkage
L′ of G such that

1. L′ is D1-avoiding,

2. L′ ≡ L,

3. L′ is D3m/2+1-free, where m = f3(|L′|).

Proof. Let G+ be the graph obtained if we take its
disjoint union with a cycle Cr+1 ⊆ Dr and we set
C+ = [C1, . . . , Cr, Cr+1]. Observe that L is an ann(C+)-
avoiding linkage of G+. Let L′ be a (C+, ∅, L)-minimal
linkage of G+.

As L′ ≡ L, L′ is a D1-avoiding linkage of both
G and G+. Therefore L′ satisfies conditions (1) and
(2). For condition (3), assume to the contrary that
L′ is a linkage of G that is intersecting D3m/2+1. As
L′ is a D1-avoiding linkage of G+ we obtain that G+

contains some (C, ∅, L′)-mountain P , based on C1 where
dehe(P ) > 3m/2. On the other side, as L is an ann(C+)-
avoiding linkage of G+ we can apply Lemma 5.6, on G+,
C+, ∅, L, and L′ and obtain that dehe(P ) ≤ 3m/2, a
contradiction.

Lemma 5.8. Let G be a partially ∆-embedded graph, C
be a ∆-nested cycle collection of G, D ⊆ ∆, and L be
an A-avoiding and D-free linkage. If |C| > m = f3(|L|),
then G contains a linkage L′ of G such that

1. L′ ≡ L,

2. L′ ∩D = ∅,

3. All (C, D, L′)-mountains of G have height at most
3
2m,

4. All (C, D, L′)-valleys of G have depth at most 3
2m,

and

5. L′ has at most m A-rivers.

Proof. Let L′ be a (C, D, L)-minimal linkage. (1)
and (2) follow by the definition of a (C, D, L)-minimal
linkage. (3) and (4) follow directly from Lemma 5.6.
To prove (5), assume that G contains a collection Z of
(C, L′)-rivers where |Z| > m. Recall that Z is a disjoint
collection of (C, L′)-streams of G. From Lemma 5.4,
tw(L′ ∪ (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D)) ≥ min{|C|, |Z|} > m. We arrive at a

contradiction as, from Lemma 5.2, tw(L′∪ (
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C \D)) ≤

m.
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5.3 Rerouting a linkage The following proposition
is a direct consequence of [1, Lemma 7].

Proposition 5.3. Let k, k′, d be integers such that 0 ≤
d ≤ k′ ≤ k. Let Γ be a (k × k′)-grid and let
{pup1 , . . . , pupρ } (resp. {pdown

1 , . . . , pdown
ρ }) be vertices of

the higher (resp. lower) horizontal line arranged as they
appear in it from left to right. Then the grid Γ contains
ρ pairwise disjoint paths P1, . . . , Pρ such that, for every
h ∈ [ρ], the endpoints of Ph are puph and pdown

h .

Given two vertex disjoint paths P1 and P2 of G, we
say that an (P1, P2)-path of G is a path that whose one
endpoint is a vertex of P1 the other endpoint is a vertex
of H2 and contains all edges of P1 ∪ P2. We now prove
the following:

Lemma 5.9. Let r, q, s ∈ N≥3, b, d ∈ N≥0, such that
r ≥ s + 2b and q ≥ b + d, where r and s are odd
numbers. If G is a partially ∆-embedded graph, A is
a (r, q)-railed annulus of G, I ⊆ [q] where |I| ≥ d, then
there is a linkage K of G such that,

(a) there is an ordering P(K) = [K1, . . . ,Kd], where
for i ∈ [d], Ki is a (P1,b+i, Pr,b+i)-path of G.

(b) K is (s, I)-confined in A.

Proof. Let A = (C,P), let t = br/2c and t′ = bs/2c.
Also, let {i1, . . . , id} ⊆ I such that ∀j ∈ [d−1], ij < ij+1.
Claim: There is a collection of pairwise disjoint paths
Pdown = {P down

1 , . . . , P down
d } such that, for every h ∈ [d],

P down
h is a (P1,b+h, Pb,ih)-path.

Proof of Claim: For i ∈ [b], j ∈ [q] let pi,j be the vertex
obtained after contracting all edges in Pi,j . We also
define:

• E1 = {e = {pi,j , pi,j+1} | e is the edge ob-
tained after contracting all but one of the edges
of Li,j→j+1, i ∈ [b], j ∈ [q − 1]} and

• E2 = {e = {pi,j , pi+1,j} | e is the edge ob-
tained after contracting all but one of the edges
of Ri→i+1,j , i ∈ [b− 1], j ∈ [q]}.

Let H be the graph where V (H) = {pi,j | (i, j) ∈
[b] × [q]} and E(H) = E1 ∪ E2. Observe that H is
isomorphic to a (q×b)-grid (see Figure 18). For h ∈ [d],
let plowh (resp. phighh ) be the vertex p1,b+h (resp. pb,ih).

Figure 18: An example showing the construction of the
graph H. For every h ∈ [d], the resulting vertices plowh
and phighh (corresponding to the vertices of the paths
P1,b+h and Pb,ih , respectively) are depicted in white.

Due to Proposition 5.3, H contains d pairwise
disjoint paths P1, . . . , Pd such that, for every h ∈ [d],
the endpoints of Ph are plowh and phighh . Therefore, if we
substitute every vertex of each Pi with the the edges
that where contracted in G in order to obtain it in H,
we obtain the claimed result.

By applying the previous claim symmetrically, we
can find a collection of pairwise disjoint paths Pup =
{P up

1 , . . . , P up
d } such that, for every h ∈ [d], P up

h is a
(Pr−b,ih , Pr,b+h) path.

Now, for every h ∈ [d], let Pmid
h = ann(C, b, r − b) ∩

Pih and letKh = P down
h ∪Pmid

h ∪P
up
h . Since r ≥ s+2b and

s = 2t′ + 1 then ann(C, t− t′, t+ t′) ⊆ ann(C, b, r − b)
and therefore K = {K1, . . . ,Kd} is the desired linkage.
This concludes the proof.

Let A = (C,P) be an (r, q)-railed annulus of a par-
tially ∆-embedded graph G. We set z = bmin{r, q}/2c.
For each i ∈ [z], we define CAi as the unique cycle of the
graph

Li,i→q−i+1 ∪ Lr−i+1,i→q−i+1 ∪
Ri→r−i+1,i ∪Ri→r−i+1,q−i+1.

Notice that if r, q ≥ 5, then [CA1 , . . . , C
A
z ] is a ∆-

nested collection of cycles of G and we denote it by CA
(see Figure 19).

Figure 19: An example of an (8, 8)-railed annulus A =
(C,P) and the sequence CA (depicted in red).

We are now ready to prove Theorem 5.1.

Proof. [Proof of Theorem 5.1] Recall that f3 is the
function of Proposition 5.1. We define f4(k) := 3 ·
(f3(k))2 + 6 · f3(k) + 2. For simplicity, we use m =
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f3(k). Let also b = 3m/2, and keep in mind that
r ≥ f4(k)+s = 3m2+6m+2+s = 2(m+1)·b+2+s+2b
and that |I| ≥ m+ 1.

Recall that CA = [C ′1, . . . , C
′
z], where z =

bmin{q, r}/2c, is a ∆-nested collection of cycles of G.
For each i ∈ [z], we denote by D′i (resp. D

′
i) the open

(closed) disk corresponding to C ′i. Let also D̆ := D′b+1

and D := D
′
b+1. Keep in mind that D

′
1 = ∆1,r,1,q and

D = ∆b+1,r−b,b+1,q−b.
Observe now that L is a D

′
1-avoiding linkage. By

applying Lemma 5.7 on G, CA, L, and D
′
1, we obtain

that G has a D
′
1-avoiding and D-free linkage L′ such

that L′ ≡ L.
It is easy to verify that L′ is A-avoiding, r ≥ a > m,

D ⊆ ann(C), and |L′| = |L| ≤ k. Therefore, we may
apply Lemma 5.8 on k, G, A, D, and L′. We obtain
a D-free linkage L′′ of G that is equivalent to L′ (and
therefore to L as well) and such that

(a) All (C, D, L′′)-mountains/valleys of G have
height/depth at most b.

(b) L′′ has at most m A-rivers of G,

Let Z = [Z1, . . . , Zd] be the D-ordering of the A-rivers
of L′′ in G and keep in mind that, from (b), d ≤ m.

For every i ∈ [d], we define xdown
i (resp. xupi ) as the

vertex in the path C(i+1)·b+1 \ D̆ (resp. Cr−(i+1)·b \ D̆)
that belongs in Zi and has the minimum possible
distance to the vertices of the path P(i+1)b+1,q−b (resp.
Pr−(i+1)·b,q−b). We also denote by Qdown

i (resp. Qup
i )

the path certifying this minimum distance.
For i ∈ [d], let Zdown

i and Zup
i be the two connected

components of the graph obtained from Zi if we remove
the edges of its (xdown

i , xupi )-subpath (see Figure 20).
We choose Zdown

i (resp. Zup
i ) so that it intersects C1

(resp. Cr).

D

Qup
1

Qup
2

Qdown
2

Qdown
1

xup1

xdown
1

xup2

xdown
2

Zup
1

Zdown
1

Zup
2

Zdown
2

b

b

C1

C2

Cb+1

C2b+1

Cr−2b

Cr−b

Cr−1

Cr

b

b

Pb+1 Pq−b PqZ1 Z2

Figure 20: Visualization of an (r, q)-railed annulus and
the notations introduced above.

Claim: For i ∈ [d], Zdown
i−1 (resp. Zup

i−1 ) does not

intersect Qdown
i (resp. Qup

i ) — where Zdown
0 (resp. Zup

0 )
denotes Zq.
Proof of claim: If Zdown

i−1 ∩ Qdown
i 6= ∅ (resp. Zup

i−1 ∩
Qup
i 6= ∅) for some i ∈ [d], then some of the connected

components of Zdown
i−1 ∩Di·b+1 (resp. Z

up
i−1∩(∆\Dr−i·b))

whose endpoints are in Ci·b+1 (resp. Cr−i·b) should be
a (C, D, L′′)-mountain (resp. (C, D, L′′)-valley) of G of
height (resp. depth) > b, a contradiction to (a). Claim
follows.

Because of the above claim, it follows that the
paths Qdown

i ∪ Zdown
i (resp. Qup

i ∪ Z
up
i ), i ∈ [d] are

pairwise vertex-disjoint (Zi ∩ C1, P(i+1)·b+1,q−b)-paths
(resp. (Zi ∩ Cr, Pr−(i+1)·b,q−b)-paths) in G that do not
intersect the open disk D̆.

Let w = (m+ 1) · b+ 2 and w′ = r− (m+ 1) · b− 1.
For i ∈ [d], we now define (see Figure 21)

Y down
i = the (Pq−b, Pb+i)-path

in L(i+1)·b+1,q−b→b+i ∪ P(i+1)·b+1,b+i ∪
R(i+1)·b+1→w,b+i,

Y up
i = the (Pq−b, Pb+i)-path

in Lr−(i+1)·b,q−b→b+i ∪ Pr−(i+1)·b+1,b+i ∪
Rr−(i+1)·b→w′,b+i.

Cb+1

C2b+1

Cd·b+1
Cw

Cw′

Cr−d·b

Cr−2b

Cr−b

Pb+1 Pb+2 Pb+d Pq−bY down
1

Y down
2

Y up
1

Y up
2

Y up
d

Y down
d

Figure 21: Visualization of the definition of Y up
i and

Y down
i , i ∈ [d].

By the definition of Y down
i and Y up

i , the graphs
Xdown
i = Zdown

i ∪ Qdown
i ∪ Y down

i and Xup
i = Zup

i ∪
Qup
i ∪Y

up
i , i ∈ [d], are pairwise vertex-disjoint paths. In

particular, taking into account the definition of Y down
i

and Y up
i , we have that

Xdown
i is a (Zi ∩ C1, Pw,b+i)-path and(5.1)
Xup
i is a (Zi ∩ Cr, Pw′,b+i)-path(5.2)

Let Ω = ann(C, w, w′) and K ′ =
⋃⋃⋃⋃⋃⋃⋃⋃⋃
Xdown
i ∪

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Xup
i .

Observe that

K ′ ∩ Ω = {Pw,b+i, Pw′,b+1 | i ∈ [d]}.(5.3)
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Let Ā = (C̄, P̄), where C̄ = [Cw, . . . , Cw′ ] and
P̄ = P ∩ Ω.

Notice that |C̄| = w′−w+ 1 = r−2(m+ 1) · b−2 ≥
s + 2b. Notice also that d ≤ |I|, I ⊆ [q]. Finally,
b = 3/2m and d ≤ m imply that d+ b ≤ 5/2m ≤ q. We
can now apply Lemma 5.9 for r, q, s, b, d, Ā, and I and
obtain a linkage K of Ā satisfying properties (a), and
(b) of Lemma 5.9.

From Property (a) we can write P(K) =
[K1, . . . ,Kd] and, using (5.3), we deduce that, for
i ∈ [d], Ki is a (Pw,b+i, Pw′,b+i)-path of G. This, to-
gether with (5.1), (5.2), and (5.3), implies that K ∪K ′
is a linkage of G whereK∪K ′ ⊆ ann(C). From Property
(b), K is (s, I)-confined in Ā, therefore, from (5.3), we
get thatK∪K ′ is (s, I)-confined inA. Observe also that
each of the d paths of P(K∪K ′) is a (Zi∩C1, Zi,∩Cr)-
path of G for some i ∈ [d]. We define

L̃ = (L \A′) ∪K ∪K ′

where A′ = ann(C) \ (C1 ∪ Cr). By definition L̃ is a
linkage of G where L̃ ≡ L and L̃ \ ann(C) ⊆ L \ ann(C).
Finally, as K ∪K ′ is (s, I)-confined in A, then L̃ (s, I)-
confined in A as well.

Now, since we proved Theorem 5.1, we will use it
to in order to prove Theorem 2.1.

Proof. [Proof of Theorem 2.1] Let s be a positive odd
integer, H be a graph on g edges, G be a partially ∆-
embedded graph, A = (C,P) be a (r, q)-railed annulus
of G, where r ≥ f4(g) + 2 + s and q ≥ 5/2 · f3(g),
(M,T ) be a topological minor model of H in G such
that T ∩ ann(A) = ∅.

Let A′ = ([C2, . . . , Cr−1],P ∩ ann(C, 2, r − 1)) and
keep in mind that A′ is a (r, q)-railed annulus of G,
where r ≥ f4(g) + s and q ≥ 5/2 · f3(g). Notice that it
also holds that T ∩ ann(A′) = ∅ (see Figure 22).

Let M̃ (1) = M̃ [NM̃ [T̃ ]]. Notice that all the con-
nected components of M \ T are paths of G. Let L
be the linkage of G \ T created if we take the union
of all non-trivial connected components of M \ T . Ob-
serve that P(L) is the set of all paths of G connecting
neighbors of branch vertices of M and consisting only
of subdividing vertices of M . Also, notice that since
T ∩ ann(A′) = ∅, then L is A′-avoiding and there is an
one-to-one correspondence of P(L) with E(H) and thus
|L| ≤ g.

Let I ⊆ [q], where |I| > f3(h). By applying
Theorem 5.1 for s, g,G,A′, L, and I we obtain a linkage
L̃ of G such that L̃ ≡ L, L̃ is A′-avoiding, L̃\ann(A′) ⊆
L \ ann(A′), and L̃ (s, I)-confined in A′. We define

M̃ = (M \ L) ∪ L̃.

Figure 22: An example of a topological minor model
(M,T ) of H in G. Vertices of T are depicted in
blue while the neighbors of vertices of T that are also
subdividing vertices are depicted in red. Also, ann(A′)
is depicted in green.

By definition, (M̃, T ) is a topological minor model of H
in G. Also, since L, L̃ ⊆ ann(A), then M̃ \ ann(A) ⊆
M \ ann(A). Finally, as L̃ is (s, I)-confined in A′ then
M̃ is (s, I)-confined in A as well.

6 Conclusions
In this paper we prove that F-TM-Deletion is Fixed
Parameter Tractable on planar graphs by designing an
Ok,h(n2)-time algorithm for his problem.

In this paper we did not make any effort to specify
the contribution of the main parameter k in the com-
plexity of the algorithm. However, we suggest that the
contribution of k can be single-exponential, in particular
2Oh(k)n2 +O(n3). This can be done if, instead of using
Courcelle’s theorem in the proofs of Theorem 1.2 and
Lemma 2.2, we use the 2Oh(w)n + O(n3)-time dynamic
programming algorithm of [4] for computing pF (G) on
planar graphs with treewidth at most w.

The remaining question is whether the same result
can be derived for all graphs, as we conjectured in
the introduction. Towards this, we chose to state all
combinatorial theorems of this paper in more general
forms. Based on them, a straightforward generalization
is possible for the class of surface embeddable graphs,
that is graphs with Euler genus at most γ. Indeed,
the only piece of the proof that needs extension is the
starting point of the proof, that is the algorithm of
Proposition 2.1, that can easily be extended to work
on graphs of Euler genus γ. Using this, we can directly
derive a Ok,h,γ(n2)-time algorithm for the version of the
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problem on surfaces (which can be further improved to
one running in 2Oh,γ(k)n+O(n3)-time, again using the
results from [4]). It follows that with much more effort
it is possible to extend the result to every class that
excludes some fixed graph as a minor. However, for
a complete resolution of our conjecture one has to deal
with the case where the input graph contains a big clique
minor. We believe that the techniques of the algorithm
of [15] can be a good starting point in this direction.
However, the technical challenges of such an extension
are cumbersome.
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