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PREFACE 

The kynurenine pathway catabolizes the essential amino acid tryptophan and has been 

studied since the early part of the 20th century. The neurobiology of the kynurenine 

pathway was not extensively studied for years as scientists viewed brain tryptophan 

metabolism mostly through the lens of serotonin. In recent years, research efforts have 

focused on the ability of kynurenines to influence neurotransmitter systems and 

modulate the immune system. Essential organs and tissues, including the liver, 

immune cells, brain, muscle, and the gastrointestinal tract, express the kynurenine 

pathway's enzymes. Indeed, the kynurenine pathway, induced by inflammatory 

cytokines, is now implicated in metabolic, cardiovascular, gastrointestinal, psychiatric, 

and neurological disorders. Despite significant experimental evidence linking the 

kynurenines to cognition, dementia, and aging, there is a lack of rigorous clinical 

studies investigating the kynurenines in these areas of research.  
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ABSTRACT 

Background: Experimental studies implicate the kynurenine pathway in cognitive 

function, dementia, aging, and longevity. Comparatively, clinical studies are few and 

most lack comprehensive targeted metabolomic profiling of the kynurenine pathway.  

Aims: To investigate associations between circulating kynurenines and cognitive 

function in older adults (Study I) and between kynurenines, cognitive and 

neuropsychiatric prognosis in mild dementia (Study II). Lastly, to assess the 

relationship between aging and concentrations of metabolites of the kynurenine 

pathway in blood and cerebrospinal fluid (CSF) using longitudinal cohorts (Study III). 

Methods: Tryptophan (Trp) and nine kynurenines were measured in serum, plasma 

and cerebrospinal fluid. Associations between the kynurenines and cognitive 

performance were estimated using Zellner’s regression in community-dwelling older 

adults (Study I, n = 2174), and between the kynurenines, cognitive performance and 

neuropsychiatric symptoms in patients with mild dementia using a multilevel model 

(Study II, n = 155). In Study III, associations between age and the kynurenines were 

investigated in multilevel models in two longitudinal studies (n = 970 and n = 604), 

and non-parametrically in a small cohort with CSF samples (n = 109). Associations 

between the kynurenines and frailty were assessed using regression, mortality using 

Cox regression, and minor age differences using a multinomial logit model. The 

results of studies I and II were adjusted for multiple comparisons. 

Main findings: Higher kynurenine to tryptophan ratio (KTR) and neopterin 

concentrations were linearly associated with lower cognitive test performance, 

whereas kynurenine (Kyn) had a non-linear, quadratic association with cognitive test 

performance (Study I). The quadratic association between cognitive test performance 

and Kyn was also present in mild dementia, where higher kynurenic acid to 

kynurenine ratio (KKR) was further associated with more neuropsychiatric symptoms 

over time (Study II). In Study III, the strongest associations between age and the 

kynurenines were with Kyn, quinolinic acid (QA), and KTR which were positively 

associated with age and increased the most over time. Trp was inversely associated 



10 
 

 

with age and decreased over time. Kyn, 3-hydroxykynurenine, kynurenic acid, 3-

hydroxyanthranilic acid, QA and KTR were associated with frailty. Higher Trp 

concentrations were associated with lower all-cause mortality, whereas higher QA and 

KTR concentrations were associated with higher all-cause mortality in two cohorts of 

community-dwelling adults. Kyn and QA increased in the CSF over a period of four 

years and correlated the most with age. Compared to serum concentrations, age was 

more strongly correlated to CSF concentrations of Kyn and particularly QA.  

Conclusions: We found a non-linear relationship between Kyn and cognitive 

performance in both community-dwelling older adults and patients with mild 

dementia, where higher and lower Kyn concentrations were associated with poorer 

cognitive performance. Further, it appears that activation of the kynurenine pathway, 

reflected by increased KTR, is associated with poorer cognitive performance, aging, 

frailty, and mortality. However, of the downstream kynurenines, QA showed the 

strongest association with aging, frailty, and mortality and was more strongly 

correlated with age in the CSF relative to serum over time. Accordingly, the aging 

brain could be exposed to a disproportionate increase in the excitotoxic QA. Higher 

KKR, which may reflect increased kynurenine aminotransferase activity, was 

associated with more neuropsychiatric symptoms over time. 
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INTRODUCTION 

Tryptophan (Trp) is mainly metabolized by the kynurenine pathway with minor 

quantities used to generate serotonin and melatonin. The metabolites of the kynurenine 

pathway are collectively referred to as the kynurenines. They are involved in 

antioxidant activity, inflammation, immune regulation, and neurotransmission. 

Significantly, the kynurenine pathway provides the substrate for nicotinamide adenine 

dinucleotide (NAD+, or vitamin B3) synthesis, a central cofactor of cellular 

metabolism. 1 Experimental studies have implicated the kynurenine pathway in 

cognitive function, neurodegeneration, aging, and longevity. 2-6 In contrast, clinical 

studies are relatively few and have often relied on measuring a few select metabolites 

of the kynurenine pathway. This thesis aims to fill some of the knowledge gaps 

outlined below by using comprehensive targeted metabolomic profiling of the 

kynurenine pathway using data from several cohort studies.  

AN OVERVIEW OF KYNURENINE METABOLITES 

Tryptophan Metabolism 

Trp is an essential amino acid obtained through meat, dairy products, and fruit. 7 Once 

ingested, Trp is absorbed in the gut, passes into the portal circulation, and reaches the 

tissues by way of the liver. 1 However, gut microbiota can metabolize Trp to 

tryptamine, serotonin, kynurenines, and indoles prior to absorption. 7 Trp and the 

kynurenines can, in turn, influence the enteric nervous system and intestinal motility. 8 

Under physiological conditions, the liver degrades around 90% of Trp. Cells take up 

circulating Trp for synthesis and turnover of proteins. Intracellular proteolysis and 

protein catabolism partly regenerate Trp for subsequent protein synthesis. 7   

Expression of Kynurenine Pathway Enzymes 

The enzymes that catalyze the chemical reactions of the kynurenine pathway are 

differentially expressed in organs, tissues, and cells. 9 In humans, the enzymes are 

fully expressed in hepatocytes, antigen-presenting cells, fibroblasts, and vascular 
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endothelial cells. 9 In the brain, there is a differential expression of enzymes in 

astrocytes compared to microglia. 10 The kynurenine pathway has two rate-limiting 

enzymes: indoleamine 2, 3 dioxygenase (IDO) and tryptophan 2, 3 dioxygenase 

(TDO). Both catalyze the conversion of Trp to kynurenine (Kyn). TDO is mainly 

expressed in the liver. 11 Compared to TDO, IDO has wider tissue distribution, 

including cells of the immune system, most significantly antigen-presenting cells such 

as macrophages and dendritic cells. 12 Further, IDO is expressed in the lung, intestine, 

placenta, kidney, liver, and brain. 9 Skeletal muscle also metabolizes Trp through the 

kynurenine pathway. 1 The contribution of extrahepatic Trp metabolism along the 

kynurenine pathway is relatively minor (5-10%) under physiological conditions. 

However, this becomes more significant following activation of the immune system. 13  

THE BIOCHEMISTRY OF THE KYNURENINE PATHWAY 

Rate-Limiting Enzymes 

IDO and TDO are members of the heme-dependent family of enzymes. Specifically, 

the heme dioxygenase enzymes which uniquely use heme for catalysis. 14 The 

enzymes are functionally very similar but structurally different and are thus considered 

autologous enzymes. IDO and TDO have likely evolved independently, as gene 

duplication has not been identified. 15 Several IDO homologs have been identified in 

different species, but IDO1 and IDO2 are the main homologs expressed in humans. 9 

These homologs are encoded on genes adjacent to each other, suggesting that the 

homologs arose from gene duplication. 16 

Metabolism of Tryptophan by the Kynurenine Pathway 

The kynurenine pathway degrades Trp by several enzymatic reactions to quinolinic 

acid (QA). 11 Briefly, the metabolic pathway that gives rise to QA starts with the 

formation of Kyn from Trp by way of the intermediate metabolite N-

formylkynurenine. Next, Kyn gives rise to 3-hydroxykynurenine (HK), which is 

converted to hydroxyanthranilic acid (HAA). α-amino-α-carboxymuconic-ω-
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semialdehyde (ACMS) is generated from HAA by the oxidoreductase enzyme 3-

hydroxyanthranilic acid 3,4-dioxygenase (3-HAO), and subsequently converted to 

either picolinic acid (PIC), or QA. For conceptual purposes, the kynurenine pathway 

can be divided into the main pathway and branches from the main pathway, where 

Kyn and HK give rise to kynurenic acid (KA), anthranilic acid (AA), and xanthurenic 

acid (XA). Figure 1 on the next page shows a summary of the kynurenine pathway.  

In the main pathway, the first step of the kynurenine pathway is the oxidation of 

Trp to N-formylkynurenine by either IDO or TDO. 17 Kynurenine formamidase, a 

hydroxylase, catalyzes the hydrolysis of N-formylkynurenine to Kyn, 18 a pivotal 

metabolite of the kynurenine pathway. Kynurenine 3-monooxygenase (KMO), an 

oxidoreductase, catalyzes the conversion of Kyn to HK using oxygen and nicotinamide 

adenine dinucleotide phosphate (NADPH). 19 Kynureninase (KYNU), belonging to the 

family of aminoreductases, catalyzes the conversion of HK to HAA. 20                         

3-HAO catalyzes the conversion of HAA and O2 to ACMS. In the main pathway, 

ACMS is spontaneously converted to QA.  10  However, α-amino-ß-carboxymuconate-

ε-semialdehyde decarboxylase (ACMSD), a zinc-dependent amidohydrolase, 21 

preferentially catalyzes the conversion of ACMS to PIC. Saturation of ACMSD shifts 

the conversion of ACMS towards QA. 22 Quinolinate phosphoribosyl transferase 

(QPRT) is a glycosyltransferase enzyme that catalyzes the formation of nicotinic acid 

mononucleotide from QA and 5-phosphoribosyl-1-pyrophosphate, fueling NAD+ 

synthesis. 10  

There are primarily three important branches; First, Kyn can be metabolized to 

KA, by four kynurenine aminotransferases (KATs). 23 Second, KYNU can convert 

Kyn to AA. 10 Third, KATs can convert HK to XA.  
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Figure 1. The Kynurenine Pathway. Trp is oxidized to N-formylkynurenine by the rate-limiting enzymes 

indoleamine 2, 3 dioxygenase (IDO) or tryptophan 2, 3 dioxygenase (TDO). Formamidase catalyzes the 

formation of Kyn from N-formylkynurenine. Kynurenine 3-monooxygenase (KMO) metabolizes Kyn to 

HK, which is converted to HAA by kynureninase (KYNU). ACMS is formed from HAA, catalyzed by 3-

hydroxyanthranilic acid 3,4-dioxygenase (3-HAO). ACMS converts spontaneously to QA, which is 

further metabolized by the action of quinolinate phosphoribosyl transferase (QPRT) and several 

intermediary steps to nicotinamide adenine dinucleotide (NAD+). AA is produced from Kyn by KYNU. 

Kynurenine aminotransferases (KATs) generate KA from Kyn and XA from HK. α-amino-ß-

carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) converts ACMS to the intermediary 

metabolite 2-aminomuconic-6-semialdehyde (not shown), which is spontaneously converted to picolinic 

acid (Pic). Adapted from Schwarcz et al10. 
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Regulators of Enzyme Activity in the Kynurenine Pathway 

Tryptophan Availability 

Under physiological conditions, the activity of the kynurenine pathway is mostly 

determined by plasma free Trp. Generally, 90-95% of Trp in the bloodstream is bound 

to albumin, with 5-10% in an unbound state. While Trp induces TDO, Kyn acts as an 

allosteric inhibitor, resulting in a negative feedback loop. 9 

Glucocorticosteroids 

Glucocorticosteroids increase in response to physiological stressors 24 and induce TDO 

expression by acting on glucocorticoid-responsive elements of the TDO gene. 25 

Pro-Inflammatory Cytokines 

Cytokines can be broadly classified as pro-inflammatory or anti-inflammatory. IDO is 

mainly activated by the pro-inflammatory cytokine interferon-γ (IFN- γ). 26 However, 

other pro-inflammatory cytokines such as interferon-α, 27 tumor-necrosis factor-α, 

interleukin-1β,  and interleukin-2 can activate IDO to a lesser degree. Anti-

inflammatory cytokines (interleukin-4, interleukin-10, and transforming growth factor-

β) inhibit IDO induction by IFN-γ. 28 Thus, the balance between pro- and anti-

inflammatory cytokines is of importance to IDO-activity. 27 

Enzymatic Cofactors of the Kynurenine Pathway 

Pyridoxal 5’-phosphate 

The active form of vitamin B6, pyridoxal 5’-phosphate (PLP), is an enzymatic cofactor 

for transferring biological amines in multiple metabolic pathways. 29 Including KATs 

and KYNU, the two aminotransferase enzymes of the kynurenine pathway. 30  
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Riboflavin 

Riboflavin (vitamin B2) is a water-soluble vitamin present in milk, meat, fish, fruit, 

and vegetables, and its biologically active forms are involved in redox reactions. The 

activity of the oxidoreductase enzyme KMO can be decreased in riboflavin deficiency, 

as suggested by a ten-fold decrease in HK and a two-fold increase in KA in riboflavin-

deficient baboons. 31  

IMMUNOMODULATION BY KYNURENINE METABOLITES 

Experimental evidence suggests that the kynurenine pathway is not only induced by 

cytokines but has immunomodulatory and immunosuppressive actions. 32,33 IDO 

contributes to immune regulation by three main mechanisms. First, by acting as a 

signaling molecule influencing nutrient-sensing systems. Second, by depleting Trp, 

which activates amino-acid-sensing signal transduction pathways. Third, by producing 

Kyn, which acts as a natural ligand for the aryl hydrocarbon receptor (AhR), a 

transcription factor that inhibits immune responses. 2 By way of downstream signaling 

pathways, this suppresses CD8+ and CD4+ T-cells and stimulates regulatory T-cells 

(Tregs), promoting resolution of inflammation. 9 IDO deficient mice do not develop 

spontaneous autoimmune diseases. However, IDO inhibition reduces acquired 

tolerance to new antigens. 34 For example, pharmacological inhibition of IDO results 

in the rejection of allogenic fetuses in mice. 35 
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KYNURENINE METABOLISM IN THE BRAIN  

The enzymes of the kynurenine pathway are expressed in the brain, with some 

variation between brain regions. 10 In the brain, IDO- and TDO-expression levels are 

relatively low. 36 Approximately 60% of brain kynurenine metabolism stems from 

circulating Kyn 37 which readily crosses the blood-brain barrier (BBB) and enters glial 

cells. 38 

The Blood-Brain Barrier 

The BBB restricts the influx of most compounds from the blood to the brain, 

generating an optimal internal milieu for neurotransmission. 39 Trp, Kyn, and HK cross 

the BBB by way of the large amino acid transporter. Conversely, KA and QA do not 

cross the BBB due to their polarity and lack of transporters. 40 Experimentally, 

extracellular KA and QA can be detected after intracerebral injections of Kyn and 

HAA, respectively. 41,42 KA and QA are cleared from the brain interstitial fluid by 

cellular uptake. 9,43 

Cellular Compartmentalization 

The enzymes of the kynurenine pathway are differentially expressed in cells of the 

brain. Astrocytes express KAT enzymes, but not KMO, and account for the 

biosynthesis of KA. 44 In contrast, microglia have a much lower expression of     

KATs, 45 but express KMO and generate HK, further converted to downstream 

kynurenines such as QA. Please see Figure 2 on the next page for a summary. After 

synthesis, both KA and QA are released into the extracellular space to affect their 

neuronal targets. 10 HK and PIC are synthesized in neurons. 46 In addition, 

oligodendrocytes express KYNU, KMO, 3-HAO, and QPRT, but not IDO or KATs. 47 
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Figure 2. Kynurenines and the blood-brain barrier. Tryptophan (Trp), kynurenine (Kyn), and 3-

hydroxykynurenine (HK) cross the blood-brain barrier (BBB), where kynurenic acid (KA) is mainly 

synthesized in astrocytes and quinolinic acid (QA) in microglial cells. Kyn is considered the primary 

precursor of kynurenines in the brain. After synthesis, QA is released into the extracellular space to 

affect the N-methyl-D-aspartate receptor (NMDAR) as an agonist, whilst KA acts as an antagonist on 

the NMDAR, and at the α-7 nicotinic acetylcholine receptor (α7nAChR). Adapted from Schwarcz et 

al10.  

Neuroactivity 

Some kynurenines display neuroactive properties. KA is an antagonist of the the N-

methyl-D-aspartate receptor (NMDAR), whilst QA is an NMDAR agonist. 48 

Additional receptors where antagonist activity has been reported for KA include α-7 

nicotinic acetylcholine receptor (α7nAChR), the kainate receptor, and the α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptor. However, KA has the highest 

affinity for the glycine co-agonist site of the NMDAR. 9 Increased concentrations of 

QA may disrupt glutamatergic transmission in NMDA-expressing neurons, induce 

apoptosis in astrocytes, and amplify neuroinflammation. 49 
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Experimental studies in rats suggest that KA is neuroprotective in brain ischemia 

and seizures by reducing excitotoxicity. 11 In contrast, intraventricular injection of QA 

produces convulsions in mice. 50 Further, QA injection into the prefrontal cortex of 

mice leads to cognitive and behavioral impairment and reduces hippocampal 

neuroplasticity. 51 

THE KYNURENINES IN GERIATRIC MEDICINE  

Clinical and experimental studies, mostly focused on Trp, Kyn, and KA, have 

identified associations between the kynurenine pathway and cognitive 

function, neurodegenerative disorders, and aging. These are major aspects of geriatric 

medicine. Notably, psychosis and mood disorders are prevalent in elderly patients, 

often secondary to neurological disease, and are in the context of brain disease referred 

to as neuropsychiatric symptoms. A number of high-quality studies on younger 

individuals have identified altered kynurenine pathway metabolite levels in blood, 

cerebrospinal fluid (CSF) and post-mortem brain samples from patients 

with schizophrenia and bipolar disorder with psychotic symptoms. 52 This highlights 

the need to investigate whether the kynurenines are associated with the development of 

neuropsychiatric symptoms.  

Cognitive Function 

Results from experimental studies investigating acute inflammation suggest that the 

kynurenine pathway may be a mediator of inflammation-related cognitive impairment. 

In rats, IDO-inhibition prevented sepsis-induced cognitive impairment after cecal 

ligation and perforation. 3 In line with this, IDO knockout prevented cognitive 

impairment in mice following lipopolysaccharide injection. 5  

Two cross-sectional studies have investigated the potential association between 

cognitive test performance and concentrations of metabolites of the kynurenine 

pathway in blood in patients without neurocognitive disorders (see Table 1 on the next 

page). However, both studies included small clinical populations with either severe 

cardiovascular disease 53 or renal failure, 54 conditions which could affect circulating 
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levels of the kynurenines. Due to the neuroactivity of the kynurenines, experimental 

links to cognitive function, and immunomodulatory actions, there is a need to 

investigate the relationship between kynurenine metabolites and cognition in cohorts 

more representative of the general population. Notably, all metabolites are regulated 

around physiological concentrations, and thus non-linear associations could be present. 

However, the studies to date have focused on linear relationships.  

 

Psychiatric Disease and Behavioral Impairment 

The kynurenine pathway has been linked to major psychiatric disorders in patients 

without organic brain disease. 12 Post-mortem and CSF studies of schizophrenia show 

elevated concentrations of KA55 with similar findings in bipolar disorder. 52 Higher 

Kyn concentrations have also been linked to schizophrenia. 52 Higher KTR and lower 

KA plasma concentrations are also associated with depression. 56 In addition, patients 

who attempted suicide display higher QA and lower KA in plasma and CSF. 57 Mice 

with reduced NMDAR expression display severe behavioral abnormalities reminiscent 

of schizophrenia and autism. 58 In contrast, chronic excitotoxicity is linked to 

neurodegenerative disorders. 59 Despite these clinical and experimental findings, 

Table 1. Cross-sectional Studies on Kynurenines and Cognitive Function 

in Persons without Brain Disease 

Author 

(year) 

Sample 

size 

Population Fluid Measures Main findings 

Forrest et 

al (2011) 53 

56 Cardiac 

bypass 

surgery/ 

thoracic 

surgery 

Serum KA, Kyn, 

KTR, 

neopterin 

Higher concentrations of 

KA, Kyn, KTR, and 

neopterin were 

associated with lower 

cognitive performance. 

Karu et al 

(2016) 54 

27 Stage IV renal 

failure 

Serum KA, Kyn, 

QA, XA, 

neopterin 

Higher concentrations of 

KA were associated with 

lower cognitive function. 

Abbreviations: KA, kynurenic acid; Kyn, kynurenine; KTR, kynurenine to tryptophan ratio; 

QA, quinolinic acid; XA, xanthurenic acid. 
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investigations into a potential role of the kynurenines in relation to the 

pathophysiology of neuropsychiatric symptoms observed in patients with organic brain 

disease are yet to be undertaken. 

Neurodegenerative Disease Leading to Dementia 

Several cross-sectional studies have investigated possible differences in circulating 

Trp and other kynurenines in patients with dementia compared to controls, focusing on 

Alzheimer’s disease (AD), the most common cause of dementia. These studies are 

summarized in Table 2 on the next page and have generally found lower Trp 

concentrations in AD patients compared to controls. However, the findings regarding 

concentrations of downstream kynurenines have been inconsistent. Plasma HAA, XA, 

and QA were lower in histopathologically confirmed AD. 60 However, Gulaj et al61 

found lower plasma KA and higher QA in patients with AD. KA concentrations in 

CSF were not significantly altered in patients with dementia with Lewy bodies (DLB) 

compared to controls. 62  

The kynurenine pathway is linked to both underlying inflammation, 

immunomodulation, and potential activity at the NMDAR, all of which are 

hypothesized to play a role in cognitive deterioration in dementia. 63 Several 

experimental studies have investigated the possible relationship between the 

kynurenine pathway and dementia. For example, IDO inhibition in AD knockin mice 

was related to less neurodegeneration and improved cognitive performance. 4 Previous 

clinical studies have identified that higher concentrations of QA are associated with 

lower cognitive function in elderly patients with AD. 60,61 Despite these clinical and 

experimental studies, there have been no investigations into whether kynurenine 

metabolites can predict longitudinal cognitive outcomes in patients with dementia.  

Neuropsychiatric symptoms are highly prevalent in dementia and have an adverse 

impact on patients’ quality of life and cognitive prognosis. 64 Notably, patients often 

have a range of neuropsychiatric symptoms such as psychotic symptoms, aggression, 

disinhibition, depression, anxiety, and aberrant motor behavior. 65 However, the 

pathophysiology that leads some patients with dementia to develop neuropsychiatric 
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symptoms whereas others do not is unclear. Studies on patients with bipolar disorder 

and schizophrenia have found higher KA concentrations, suggesting that the 

kynurenine pathway may be related to psychiatric disease with psychotic symptoms. 52 

Thus, investigations into the potential role of the kynurenine pathway in both cognitive 

prognosis and neuropsychiatric symptoms in patients with dementia are warranted. 

 

Table 2. Cross-sectional Studies on Kynurenines Comparing Patients with 
Dementia to Controls 

Author 
(year) 

Sample 
size 

Population Fluid/Tissue Measures Main findings 

Heyes et al 
(1992) 66 

39 AD, 

30 Ctrls 

AD patients 
vs. Ctrls 

Cerebrospinal 
fluid 

Trp, Kyn, 
KA, QA 

KA concentrations were 
lower in AD patients 
compared to Ctrls. 

Baran et al  
(1999) 67 

11 AD,  

13 Ctrls 

AD patients 
vs. Ctrls 

Brain tissue Kyn, KA, 
HK, PLP 

KA was lower in the 
caudate and putamen of 
AD patients compared to 
Ctrls. 

Widner et al 
(2000) 68 

21 AD, 

20 Ctrls 

AD patients 
vs. Ctrls  

Serum Trp, Kyn, 
KTR 

Trp was lower, and Kyn 
and KTR were higher in 
AD patients compared to 
Ctrls. 

Hartai et al 
(2007) 69 

28 AD,  

13 Ctrls 

AD patients   
vs. Ctrls 

Plasma/Red 
blood cells 

Kyn, KA KA concentrations were 
lower in AD patients 
compared to Ctrls. 

Gulaj et al 
(2010) 61 

34 AD,  

18 Ctrls 

AD patients 
vs. Ctrls 

Plasma Trp, Kyn, 
HK, KA, 
AA, QA 

Trp and KA were lower, 
and QA higher in AD 
patients compared to 
Ctrls. 

Wennström 
et al    
(2014) 62 

19 AD,  

18 DLB, 

 20 Ctrls 

AD, DLB vs. 
Ctrls 

Cerebrospinal 
fluid 

KA KA concentrations were 
not altered in either AD or 
DLB patients compared to 
Ctrls. 

Giil et al 
(2017) 60 

65 AD,  

65 Ctrls 

AD patients 
vs. Ctrls 

Plasma Alla, PLP, 
neopterin 

Trp, HAA, XA, and QA 
concentrations were lower 
in AD patients compared 
to Ctrls. 

Jacobs et al 
(2019) 70 

20 AD,  

18 Ctrls 

AD patients 
vs. Ctrls 

Plasma / 
Cerebrospinal 
fluid 

Alla, 
neopterin, 
p-tau, t-tau 

Plasma Kyn and PIC 
inversely correlated with 
CSF p-tau and t-tau. 
Higher HK/Kyn ratio 
correlated with CSF p-tau 
and t-tau.  

Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; Ctrls, controls; DLB, dementia with 
Lewy bodies; HAA, 3-hydroxyanthranilic acid; HK, 3-hydroxykynurenine; KA, kynurenic acid; Kyn, 
kynurenine; KTR, kynurenine to tryptophan ratio; PIC, picolinic acid; PLP, pyridoxal 5’-phosphate; QA, 
quinolinic acid; Trp, tryptophan; XA, xanthurenic acid. 

a HAA, HK, KA, Kyn, PIC, QA, Trp, XA. 
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Aging and Immunosenescence 

The chronic low-grade inflammation of aging, called “inflammaging” is likely to 

activate the kynurenine pathway with increasing age, 2 as aging is associated with 

increased interferon gamma (IFN-γ) and other pro-inflammatory cytokines. 71 Indeed, 

multiple cross-sectional studies suggest that this occurs. 72-80 C-reactive protein (CRP) 

is a commonly used biomarker to study inflammaging. 81 The kynurenines are 

immunoactive and could participate in the broader process of immunosenescence, 

characterized by a dysregulated immune system with vulnerability to infections, 

decreased self-tolerance, and reduced cancer surveillance. 9 The kynurenine pathway is 

also associated with adverse age-related outcomes, such as myocardial infarction, 82 

cancer, 83 frailty, 84 type II diabetes, 85 and obesity. 86 Due to this, and their capacity for 

immune regulation, the kynurenines have been proposed as biomarkers of 

immunosenescence. 2 

As proposed by Ingram et al87, a biomarker of aging should show 1) significant 

cross-sectional correlation with age and 2) significant longitudinal change with age 

consistent with the cross-sectional correlation. It should also display significant 

alterations with small age changes/increments.  

Table 3 on the next page summarizes previous studies that have investigated 

metabolism and the kynurenines in aging. All studies have used a cross-sectional 

design. The studies demonstrate cross-sectional correlation between chronological age 

and kynurenine pathway metabolites in serum/plasma and CSF, suggesting a 

relationship with human aging. However, this is not completely clarified as the 

absence of longitudinal studies makes it difficult to rule out a cohort effect. 88 

Moreover, most studies in Table 3 have focused on only a few select metabolites. 

Other studies have focused on select groups such as women or clinical populations, 

further limiting their external validity. 89,90 Taken together, longitudinal investigations 

into altered concentrations of kynurenine metabolites in human aging are warranted. 

Ideally, such investigations should include comprehensive measurements of 

kynurenine pathway metabolites in multiple cohorts that include community-dwelling 
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persons. Further, due to the neuroactive properties of some kynurenine metabolites, 

CSF sampling would be of value.  

 

  

Table 3. Cross-sectional studies on Tryptophan and Kynurenines in Human Aging 

Author (year) Sample 
size 

Population Fluid Metabolites Main findings 

Frick et al (2004) 91 43 Healthy persons 34-
93 years old 

Serum Trp, Kyn, 
neopterin 

KTR and neopterin concentrations 
were positively correlated with older 
age. 

Kepplinger et al 
(2005) 80 

27 Acute headache 
patients 

CSF 

Serum 

KA CSF-KA concentrations were 
positively correlated with age. 

Coggan et al 
(2009) 79 

241 Suspected 
meningitis patients 

CSF PIC PIC was positively correlated with 
age.  

Capuron et al 
(2011) 78 

284 Non-institutionalized 
persons >65 years 
old   

Serum Trp, Kyn, 
neopterin 

Trp was inversely associated with 
age, whilst Kyn, KTR, and neopterin 
were positively associated with age.  

Yu et al (2012) 77 2886 Persons without 
metabolic diseases 

Serum Trp Trp was inversely associated with 
age. 

Collino et al  
(2013) 76  

396 Centenarians, off-
spring of 
centenarians 

Serum Trp Trp was inversely associated with 
age.  

Theofylaktopoulou 
et al (2013) 75 

7052 Community-dwelling 
persons born during 
1925-27 and 1950-
51 

Plasma Trp, Kyn, 
HK, KA, AA, 
HAA, XA, 
CRP, and 
neopterin 

Kyn, KA, AA, HK, KTR, and 
neopterin were higher in the older- 
versus middle-aged participants. 

De Bie et al   
(2015) 74 

49 Healthy women 20-
90 years old 

CSF Trp, Kyn, 
HK, HAA, 
KA, PIC, QA, 
neopterin 

Trp and HK were inversely correlated 
with age.  

KTR, PIC, and QA were positively 
correlated with age. 

Rist et al (2017) 73 301 Healthy adults 18-80 
years old 

Plasma Trp Trp concentrations were inversely 
associated with age. 

Ramos-Chávez et 
al (2018) 72 

77 Women over 50 
years old with normal 
cognitive function 

Serum Trp, Kyn, 
HK, KA. 

Trp was inversely associated with 
age, whilst the KA/Trp and HK/Trp 
ratios were positively associated with 
age. 

 

Abbreviations: AA, anthranilic acid; CSF, cerebrospinal fluid; CRP, C-reactive protein; HAA, 3-hydroxyanthranilic acid; HK, 3-
hydroxykynurenine; KA, kynurenic acid; KTR, kynurenine to tryptophan ratio; Kyn, kynurenine; PIC, picolinic acid; QA, 
quinolinic acid; Trp, tryptophan; XA, xanthurenic acid. 
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THE RATIONALE FOR THE THESIS 

There is substantial experimental evidence linking the kynurenine pathway to aging, 

cognitive function, and dementia. However, there are gaps in the current knowledge. 

First, there have been no large community-based studies on relations between 

kynurenines and cognitive function. Second, there have been no longitudinal studies 

investigating whether the kynurenines predict cognitive and neuropsychiatric 

prognosis in dementia. Third and finally, due to the hitherto cross-sectional nature of 

the aging studies on kynurenines among selected populations with limited metabolite 

measurements, it is not clear whether and how aging may impact the kynurenine 

pathway. 72,73,75-78,91-93 

AIMS OF THE STUDIES 

1. To investigate cross-sectional associations between the kynurenines and 

cognitive function in community-dwelling older adults. 

2. To assess longitudinal associations between kynurenines, and cognitive 

prognosis in patients with mild dementia. 

3. To determine whether these associations (aims 1 and 2) were linear or non-

linear. 

4. To assess longitudinal associations between kynurenines, and neuropsychiatric 

symptoms in patients with mild dementia. 

5. To assess the relationship between the kynurenine pathway and human aging 

using several cohorts, including longitudinal studies with repeated metabolite 

measurements in the blood. 

6. To assess whether the kynurenine pathway is altered in the cerebrospinal fluid 

with aging and whether this is different from serum.  

7. To assess associations between kynurenines, frailty, and all-cause mortality. 

8. To compare kynurenine metabolites to CRP as aging biomarkers. 
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METHODS 

PARTICIPANTS IN THE STUDY AND CASE DEFINITIONS 

Study I 

The Hordaland Health Study (HUSK) is a community-based health survey conducted 

during 1992/93 and 1997/99 (https://husk-en.w.uib.no/). The principal aim of HUSK 

was to investigate lifestyle epidemiology and chronic diseases such as cancer, 

cardiovascular disease, osteoporosis, anxiety, depression, obesity, and diabetes. HUSK 

is an interdisciplinary collaborative study, which includes subprojects targeting 

psychosocial health, occupational medicine, musculoskeletal diseases, and cognitive 

function. Significantly, most participants donated blood samples to a biobank, 

including plasma and whole blood in 1997/99. The study focused on persons born 

during 1925-27 and 1950-52, of which we have included solely the oldest group where 

a large subgroup underwent cognitive testing. 94  

In 1997/99, 4338 community-dwelling older adults born in 1925-27, residing in 

Hordaland County, who had participated in 1992/93, were invited by mail to 

participate in a follow-up study. In all, 3328 older adults (76.7%) agreed to participate. 

The invitational letter included a self-administered questionnaire on, among other 

questions, education, smoking habits, use of medications, physical exercise, alcohol 

consumption, and history of angina pectoris, myocardial infarction, stroke, phlebitis, 

thrombosis, diabetes, and hypertension. Additionally, the participants answered the 

Hospital Anxiety and Depression Scale (HADS), designed to assess symptoms of 

anxiety and depression. Further, a comprehensive self-administered food-frequency 

questionnaire to assess habitual food intake was included. Study staff collected blood 

samples at the clinical examination, and recorded height, weight, waist and hip 

circumferences, upper-arm circumference, and blood pressure. 95 
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For the cognitive sub-study, 2841 individuals born in 1925-27 were invited to 

participate. The selection of these participants was based on their residence as the 

time-consuming nature of the cognitive test battery would be challenging for 

participants undertaking longer journeys to the study center. The included participants 

resided in the city of Bergen and three immediate surrounding municipalities. 

Participants were invited by letter and 2197 participants (77.3%) agreed to participate 

in the cognitive sub-study. Trained nurses at the study center administered a 

standardized cognitive test battery. Altogether, 2174 participants who underwent 

cognitive testing also had available blood samples and are included in our study.  

Study II 

The Dementia Study of Western Norway (DemVest) is a longitudinal cohort study of 

patients with mild dementia from multiple centers in Western Norway. 96 The principal 

aim of the study was to characterize biomarkers and disease progression in mild 

dementia focusing on Alzheimer’s disease (AD) and, in particular, DLB. Our study 

included 155 patients recruited from specialist clinics of neurology and old age 

psychiatry in Hordaland and Rogaland County who had available blood samples for 

metabolite measurements. These participants were recruited from 2005 to 2007. 

Dementia was defined according to the Diagnostic and Statistical Manual of Mental 

disorders, version four (DSM-IV). Patients were diagnosed with mild dementia using 

the following criteria: a Mini-Mental State Examination (MMSE) test score equal to or 

above 20 or a Clinical Dementia Rating (CDR) no higher than one. Patients with 

dementia due to Parkinson’s disease were also included. As DLB and Parkinson’s 

disease dementia have similar pathophysiology, they were classified together as Lewy 

body dementia (LBD). 96  

The study applied the National Institute of Neurological and Communicative 

Disorders and Stroke and Alzheimer’s disease and Related Disorders Association 

(NINCDS-ADRDA) criteria to diagnose AD, 97  and the revised consensus criteria for 

DLB (2005). 98 Consensus meetings regarding the diagnosis were held at baseline and 

after five years, using all available information. For the subgroup of patients who 
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consented to an autopsy, the diagnosis was revised following the neuropathological 

examination, as described previously. 99 A physician interviewed the patient alongside 

a caregiver, reviewed electronic health records, and performed a clinical and 

neurological examination.  

At baseline, cognitive function and dementia severity were assessed using the 

MMSE, CDR, and a standardized neuropsychological test battery, which have been 

described previously. 96 The MMSE and the Neuropsychiatric Inventory (NPI) were 

assessed at baseline and annually until death or dropout. However, most patients 

reached a zero score on the MMSE after five years of follow-up. Information 

regarding neuropsychiatric symptoms becomes challenging to evaluate in end-stage 

dementia. Thus, we censored the data after the fifth annual examination to avoid floor 

effects. 96 

Study III 

To investigate changes in kynurenines with human aging, we included data from four 

independent cohorts: two with repeated plasma measurements of kynurenines, the 

HUSK cohort of community-dwelling persons, and a cohort of CSF donors with 

repeated CSF measures in a subgroup.  

Melbourne Collaborative Cohort Study  

The Melbourne Collaborative Cohort Study (MCCS) was started in the 1990s to 

prospectively investigate the impact of diet and lifestyle on the development of cancer 

and other non-communicable diseases. 100 Study participants were primarily identified 

using electoral enrollment (compulsory) and phone directories. Advertisements and 

community announcements were used to recruit non-citizens. 100 The participants 

received an invitational letter and were sampled from 1990 to 1994 using the 

following criteria: Australian born residents and Greek-born or Italian-born migrants 

aged 40-69 years old at recruitment. Migrants were overrepresented to increase genetic 

variation and extend the number of lifestyle exposures. At the start of the study, 

participants filled out questionnaires concerning lifestyle (alcohol consumption, diet, 

physical activity, and smoking), demographics, and self-reported medical history. 
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Altogether, 67% of the participants provided fasting blood samples, while 33% 

donated non-fasting blood samples. Most of the measurements and blood samples 

gathered at baseline were repeated for 26 824 participants during the first follow-up 

conducted from 2003 to 2007. A subset of 970 participants with repeated 

measurements of the kynurenines in plasma (baseline, and follow-up after a median of 

eleven years) were included. All study participants provided informed consent 

according to the Declaration of Helsinki. 100 Vital status was ascertained through 

linkage of the cohort to the Victorian Registry of Births Deaths and Marriages through 

the Victorian Cancer Registry and the National Death Index through the Australian 

Institute of Health and Welfare. 

Hordaland Health Study 

Community-dwelling older adults (n = 3136) aged 71-74 years old with non-fasting 

plasma samples and mortality data from HUSK were included. 94 In addition, a subset 

of 1691 participants who underwent cognitive testing with available non-fasting 

plasma samples were included for the construction of a frailty index (Please see 

METHODS; Study I p. 33 for the full description of the cohort). 

Western Norway B Vitamin Intervention Trial 

The Western Norway B Vitamin Intervention Trial (WENBIT) is a prospective, 

double-blind, placebo-controlled secondary prevention study investigating the clinical 

effects of B vitamin intervention. 101 The study included patients who underwent 

coronary angiography for suspected coronary artery disease. The 3090 study 

participants were recruited at Haukeland University Hospital, Norway (January 2000 – 

April 2004), and Stavanger University Hospital, Norway (September 2000 – April 

2004). 101 All participants underwent a routine clinical interview and examination 

before coronary angiography at the study baseline. Exclusion criteria were 

unavailability for follow-up, participation in other trials, known alcohol abuse, cancer, 

or severe mental illness. The participants were randomized to one of four arms: 1) 

vitamin B6, 2) vitamin B12/folate, 3) B12/folate/B6, and 4) placebo supplementations. 

Participants from the placebo group (n = 604) with repeated non-fasting plasma 



37 
 

 

samples were included in the analyses. Follow-up visits were scheduled at one month, 

one year, and a final study visit. As the aim of the current study was to investigate age-

related changes in kynurenines, the one-month follow-up was excluded. The mean 

time to the final study visit was three years after baseline for the placebo group. Thus, 

repeated measurements of Trp, the kynurenines, and CRP were available from 

baseline, one-year, and three-year follow-up. Each visit involved an interview, a 

clinical examination, and blood sampling. Participants unable to attend visits 

underwent a telephone interview or answered a questionnaire sent by mail. 101   

Elective Surgery Cohort 

The elective surgery cohort on CSF from Cognitively Normal Persons (COGNORM) 

is a collaborative study between Oslo University Hospital and Diakonhjemmet 

Hospital, Oslo, aiming to assess CSF and magnetic resonance imaging (MRI) 

biomarkers in cognitively healthy persons. 102 The participants were scheduled for 

elective surgery (gynecological, orthopedic, or urological) and CSF was sampled at the 

onset of spinal anesthesia. 102 It included 172 participants (≥65 years) during 2012 and 

2013. 103 The term “cognitively healthy” was defined as scoring >27 points on the 

MMSE and not being referred to a memory clinic. Patients were also tested using a 

neuropsychological test battery. Based on this, they were still defined as cognitively 

healthy if the MMSE was ≤ 27 points and just one other test score was more than 1.5 

standard deviations (SD) outside the age, education, and sex-based normative value. 

Exclusion criteria were a history of stroke with sequela and other neurodegenerative 

diseases affecting cognitive function. In the current study we included 109 patients 

who had available CSF and serum samples at baseline, and 33 patients volunteered to 

provide a second CSF sample four years after baseline. 102 
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ETHICS 

Study I 

The HUSK study was approved by The Regional Committee for Medical and Health 

Research Ethics (REK approval no.: 2016/2208). Participants provided written consent 

to participate in the study. 

Study II 

The DemVest study was approved by The Regional Committee for Medical and 

Health Research Ethics (REK approval no.: 2010/33). Participants provided written 

consent after a detailed explanation of the study procedures were explained in the 

presence of a caregiver.  

Study III 

HUSK (REK approval no.: 2016/2208), WENBIT (REK approval no.: 2013/2022), 

and COGNORM (REK approval no.: 2011/2052) were approved by The Regional 

Committee for Medical and Health Research Ethics in Norway. The MCCS was 

approved by the Human Research Ethics Committee of the Cancer Council Victoria.   
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PSYCHOMETRICS AND CLINICAL SCORING SYSTEMS 

Study I: Cognitive Performance and Depressive Symptoms 

Ceiling effects were identified in both a brief version of the MMSE and Block-Design 

(Study I: Supplementary Figure 1). This implies that cognitive function was not 

accurately measured in participants who reached the ceiling effects. Further, the Trail 

Making Test A displayed a log-normal distribution with a bimodal trend. These three 

cognitive tests were therefore considered unsuitable as measurements of variation in 

normal cognitive function. 

Three cognitive tests were normally distributed (Study I: Supplementary      

Figure 2), indicating an appropriate difficulty level with a centralized mean, and were 

selected to describe cognitive function in community-dwelling older adults: The 

Controlled Word Association Test (COWAT), Digit Symbol Test (DST), and 

Kendrick Object Learning Test (KOLT). The COWAT is considered a measure of 

language, memory, and executive function. The test encourages participants to write as 

many words as possible, beginning with a given letter, in 60 seconds. 104 The DST is 

considered to measure executive function. To perform the DST, the participant is 

given a single sheet of paper and an assignment to match symbols to numbers 

according to a key located on the top of the page. 105 The participant copies the symbol 

into spaces below a row of numbers. The number of correct symbols within the 

allowed time, usually 90 to 120 seconds, constitutes the score. 106 Lastly, KOLT 

measures immediate recall and requires participants to observe picture charts before 

telling the examiner what they observed. 107 KOLT is considered valid and reliable in a 

broad range of older persons: community-dwelling, depressed patients, patients with 

dementia, and institutionalized elderly. 108 

Depression is independently associated both with cognitive function and with 

kynurenine concentrations, and may therefore act as a confounder in the relation 

between the two.109 We assessed depressive symptoms using the HADS, a screening 

tool for mood disorders. 110 HADS includes fourteen statements on emotions and 

feelings, with seven items in each of the subscales on anxiety and depression. This 
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scoring system ranges from zero to three, indicating probable absence, possible 

presence, and the probable presence of an anxiety or mood disorder. The maximum 

score is 42, with a higher score indicating probable/possible mood disorder. 110 We 

defined a score of ≥ 8 as indicative of mild depressive symptoms, in accordance with 

Stern et al110. The sensitivity and specificity for HADS are both approximately 0.80. It 

performs reasonably well in assessing symptom severity and caseness for depression 

and anxiety disorders in somatic, psychiatric, and primary care patients and in the 

general population. 111 

Study II: Longitudinal Evaluation of Cognitive Performance 

The MMSE has a maximum score of 30, a minimum score of zero, and consists of 

multiple questions grouped into seven categories. These include orientation to time, 

orientation to place, registration of three words, attention and calculation, recall of 

three words, language, and visual construction. These are summed to give a global 

cognitive score. 112 The MMSE's simplicity is an advantage in longitudinal studies of 

dementia, as patients are typically unable to perform more complex 

neuropsychological tests as the disease progresses. The annual decline in MMSE score 

in patients with dementia is around three points, and a two to four points reduction is 

considered a reliable change. 113 Antemortem cognitive impairment measured by the 

MMSE is consistently associated with amyloid-beta (Aβ) plaques, neurofibrillary 

tangles and a decreased number of synapses. 114 The MMSE demonstrates satisfactory 

reliability and construct validity and displays high levels of sensitivity for moderate-

to-severe cognitive impairment. However, the MMSE is less sensitive in detecting 

patients with mild cognitive impairment. 112 

Study II: Longitudinal Assessment of Neuropsychiatric Symptoms 

The NPI evaluates twelve neuropsychiatric symptoms that may occur in dementia: 

delusions, hallucinations, agitation, anxiety, dysphoria, apathy, euphoria, disinhibition, 

irritability, aberrant motor behavior, disturbances of sleep, and appetite disturbances. 

A caregiver familiar with the patient is presented with descriptions fitting the 
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symptoms and asked if they are present. If present, the caregiver is asked to rate the 

severity and frequency of each neuropsychiatric symptom using a standardized 

questionnaire. A combined score for each symptom is calculated by multiplying the 

frequency by severity. The total score is calculated by adding all the domain scores 

together. 115 The NPI is considered valid and reliable with regards to concurrent 

validity, intra- and interrater reliability, test-retest reliability, and internal   

consistency. 116 

Study III: Frailty Index  

To investigate the potential relationship between frailty and the kynurenines, we 

followed the stepwise procedure to construct a frailty index described by Rockwood et 

al117. Thirty-eight health conditions/deficits (binary, ordinal, and continuous variables) 

were included from 2152 HUSK participants who underwent cognitive testing. The 

number of deficits was divided by the total number of possible deficits, resulting in a 

frailty index score from zero to one. However, there were missing data for several 

participants. We excluded participants with missing information on six or more 

conditions and adjusted the denominator to available health deficits. Thus, the frailty 

analyses included measurements from 1691 participants in HUSK with information on 

more than 32 health deficits for each participant. Of these, 327 participants had all 

available data (i.e. no missing data) for the potential 38 deficits registered, 633 had one 

deficit missing, 329 had two deficits missing, and 190 had three or more missing 

deficits. The frailty index is well validated. 118 Several studies have found that this 

frailty index has a higher predictive ability for adverse outcomes than other frailty 

scores, both in hospital and community settings. 119 The total frailty index score, rather 

than individual health deficits, is typically the most predictive of adverse outcomes. 

An upper limit of deficit accumulation measured by the frailty index is estimated to be 

around 0.67, beyond which survival is unlikely. 119  
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BLOOD SAMPLES AND METABOLIC BIOMARKERS 

Measurements of Trp, the kynurenines, and inflammatory markers were performed in 

five cohorts (see Table 4). Trp, the kynurenines, PLP, and neopterin were measured 

using liquid chromatography-tandem mass spectrometry. 120 CRP was measured using 

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. 121 The 

samples were stored at -80◦C in all five cohorts. KTR was defined as Kyn (µM)/Trp 

(µM) * 100. The limit of detection for the kynurenines and neopterin ranged from 0.5 

nmol/L to 7 nmol/L, while the limit of detection for Trp was 0.4 µmol/L. Within-day 

and between-day coefficients of variation were 5.7-16.9% and 3.0–9.5 %, respectively. 

For CRP, the limit of detection was 0.2 µg/L, and within- and between-day 

coefficients of variation were 5.5–8.4 % and 7.0–11.7 %, respectively. The 

biochemical analyses of biomarkers included in this thesis were performed at the 

Bevital AS laboratory (Bergen, Norway, http://bevital.no). 

Table 4. Biomarker Measurements in Five Cohorts.   

Cohort (Study) Population Fasting status Fluid 

HUSK (I, III) Community-dwelling Non-fasting Plasma 

DemVest (II) Mild dementia Fasting Serum 

MCCSa (III) Community-dwelling Fasting / non-fasting Plasma 

WENBIT (III) Stable angina pectoris Non-fasting Plasma 

COGNORMb (III) Elective surgery Fasting/ non-fasting Serum / CSF 

Abbreviations: COGNORM, Elective Surgery Cohort; CSF, cerebrospinal fluid; DemVest, Dementia Study of Western 

Norway; HUSK, Hordaland Health Study; MCCS, Melbourne Collaborative Cohort Study; WENBIT, Western Norway B 

Vitamin Intervention Trial. 

a In the MCCS, 67% of the participants provided fasting blood samples at baseline, with 90% fasting samples at follow-up.  

b In COGNORM, 109 participants donated CSF samples per-operatively during elective surgery, and of these, 33 volunteered 

to provide a second CSF sample after four years. The participants were fasting at baseline and non-fasting at follow-up.  
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STATISTICAL METHODS 

In all studies, metabolite concentrations are reported as median concentrations, and the 

variance is reported using the interquartile range, as the metabolites did not follow a 

normal distribution. Univariate analyses were conducted using the Mann-Whitney U-

test and Spearman’s Rho (Rs) correlation coefficients. Multivariable analyses were 

conducted following both statistical transformations to obtain normality and scaling, 

the latter by standardization (i.e. z-scores where all variables have a mean of zero and 

a SD of one). The mean following log-transformation corresponds to the geometric 

mean. 

Hypothesis Testing and Multiple Comparisons 

Adjustment for multiple comparisons aims to maintain the nominal alpha, thus 

reducing false-positive findings (type I errors), which increases as a function of the 

number of hypotheses tested. There are several methods that can achieve this aim. In 

study I, we applied the Bonferroni correction. This method's main disadvantage is that 

it can lead to a higher rate of type II errors. 122 However, due to the relatively large 

sample size in study I, occurrence of type II errors was not a significant concern. In 

study II, we used a method based on the false-discovery rate 123 adapted to correlated 

predictors, as is the case with the kynurenine metabolites. In study II, in contrast to 

study I, the sample size was relatively small. We thus wanted to avoid the inflation of 

the type II error rate typically associated with using the Bonferroni correction. In 

study III, generally, we could assess the same hypotheses (that kynurenine 

metabolites are associated with aging) across independent populations. As the 

probability of finding two significant p-values in independent studies is much lower, 

we did not adjust for multiple comparisons in study III.  
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Study I 

To find optimal statistical transformations of metabolite concentrations to a normal 

distribution, we applied Tukey’s ladder of powers.124  Cognitive tests are frequently 

correlated with each other, as was the case for COWAT, DST, and KOLT. In order to 

identify whether the kynurenines were associated with one of these tests, adjusted for 

the between-test associations, we applied multi-outcome regression, namely Zellner’s 

seemingly unrelated regression (SUR). 125 Linear regression assumes that the outcomes 

are independent. In the SUR model, the Breusch-Pagan test was highly significant, 

confirming dependent outcomes and the appropriateness of a SUR model. A two-step 

estimation procedure was applied. We could not formulate a hypothesis specifying 

which metabolite is associated with which cognitive test. Accordingly, we tested the 

joint significance of the association between each metabolite and the three cognitive 

outcomes. These were executive function (DST), language (COWAT), and memory 

(KOLT). Specifically, the joint significance was tested using the Wald test on a 

composite linear hypothesis of association between the metabolite and the three 

cognitive tests. The joint significance (α = 0.05) threshold was then adjusted for the 

number of hypotheses tested, according to the Bonferroni method. 122 We first 

estimated an unadjusted model, followed by adjustment for the a priori identified 

confounders: age, sex, body mass index, education (in years), estimated glomerular 

filtration rate (GFR), current smoking, diabetes, previous myocardial infarction, prior 

stroke, and PLP. Further, we evaluated whether metabolites were associated with 

depressive symptoms on HADS (score ≥ 8), 110 anti-depressant use 126, non-steroidal 

anti-inflammatory drugs use, 127 and CRP. 128 We included any significant association 

into the SUR model.   

Study II 

The metabolite concentrations were transformed to a normal distribution following 

Tukey’s ladder of powers.124 We used a joint model to estimate the association 

between, Trp and the kynurenines, and the dependent variables, MMSE score and the 

NPI-total score, adjusted for covariates. The MMSE and the NPI were assessed at 
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baseline and annually for five years. There were occasional delays, and some patients 

were followed for six years so the data were unbalanced. MMSE test scores were 

transformed using the square root of errors transformation; √(30-MMSE). Following 

this transformation, higher values indicated poorer cognitive performance. The MMSE 

reached a ceiling-effect. We therefore implemented right censoring using a linear 

mixed-effects Tobit model. This model included random intercepts and slopes.  

The NPI-total score was fitted using a negative binomial random-intercept model, 

selected as per the Bayesian information criterion. 129 Likely related to the 

considerable variation in neuropsychiatric symptoms over time, random slopes could 

not be fitted. The MMSE and NPI-total models were linked in a joint-model by 

allowing their respective random effects to be correlated, using a generalized structural 

equation model framework (Stata 15 package “gsem”). The metabolites were 

measured at baseline only. Due to strong correlations between metabolites, risking 

collinearity, each metabolite was entered as a predictor in separate joint models with 

MMSE and NPI as outcomes. Covariates included years in study (time), age, age*time 

interaction, sex, AD vs. LBD, AD vs. LBD*time interaction, current smoking, GFR, 

and PLP in the MMSE sub-model. Compared to study I, we included only the most 

important confounders as sample size limited the possibility for more complex models. 

The same covariates were used in the NPI-total sub-model, excluding the non-

significant age*time interaction. In brief, each metabolite in the joint-models predicted 

MMSE and NPI, adjusted for the association between these two outcomes, and 

covariates. The potential presence of non-linearity was evaluated using orthogonal 

polynomials of the transformed metabolite concentrations. Post-hoc, we re-estimated 

the above model stratified by diagnosis. We applied logistic mixed-effects models with 

random intercepts to estimate associations between metabolites and individual items of 

the NPI. The items were classified as present or not present, and covariates were 

included as described above for the sub-model with the NPI-total score as the 

outcome. Effect sizes are reported as fixed effects (FE), referred to as estimates in 

study II. All study findings were adjusted for multiple comparisons, using the tail-area 
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based false discovery rate due to dependency, and adjusted p-values are reported (Q-

values, or Q). This was done separately for post-hoc tests (R package: fdrtool).  

Study III 

Trp and the kynurenine metabolites were outcomes in random intercept models (as 

MCCS had two repeated measurements) or random coefficient models (WENBIT had 

three repeated measurements). We estimated a model with baseline age and time (in 

study) as the only predictors. Time was a category (0 for baseline, 1 for follow-up) in 

the MCCS, and change per year was calculated by dividing the effect sizes by 11 due 

to a median follow-up time of 11 years. In WENBIT, the exact time of follow-up 

occurred at a median of one and three years, and due to variations, time was entered as 

a continuous variable.  

These analyses provided partially standardized fixed effects on the log-scale 

where a one-year change in years in study or age gave a one SD change in the 

standardized log-transformed outcome. Further, we reported fully standardized fixed 

effects, calculated by multiplying the partially standardized coefficients by the SD of 

the predictors. The effect sizes have a similar interpretation as correlation coefficients.  

The survival analyses in MCCS and HUSK were performed using Cox regression, 

after determining that the models were in line with the assumption of proportional 

hazards. The analyses were adjusted for the covariates age, sex, and GFR. The 

baseline for survival analysis in the MCCS was after the last biomarker assessment at a 

median of 11 years, as endpoints were available only after this time-point. 

Investigation of associations between Trp, the kynurenines, and CRP and the frailty 

index (HUSK) were performed using a standardized linear regression model, adjusted 

for age and sex (as GFR was included in the frailty index). For the purpose of log-

transformation, the frailty index was multiplied by 100, and a constant of one was 

added prior to log-transformation and subsequent scaling to a z-score. 

The sample size in COGNORM prevented the assumption of a normal distribution 

on the lognormal scale. Therefore, we estimated correlation coefficients between age 
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and the kynurenine metabolites in serum and CSF using non-parametric Spearman’s 

Rho. Further, we explored if the correlation coefficients between age and the 

kynurenines in sera were equal to the correlation coefficients between age and the 

kynurenines in CSF, adjusted for the metabolites’ correlation between each other. 130 

The Wilcoxon signed-rank test was used to compare metabolite concentrations 

between baseline and follow-up in the subgroups with repeated CSF measurements.  
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RESULTS 

STUDY I 

Characteristics of the Study Participants  

Community-dwelling older adults (n = 2174) (55% women) from HUSK, with 

cognitive test scores and available blood samples were included in the study. The 

mean (SD) scores for the cognitive tests were: COWAT, 15 (5.5); DST, 10 (4.2); and 

KOLT, 35 (8.1). Please see Study I: Results, p. 158, and Table 1, p. 159. 

The Kynurenine Pathway and Cognitive Performance 

Higher plasma concentrations of KTR and neopterin were associated with reduced 

cognitive performance in the domains of memory (KOLT) and language (COWAT) 

(Figure 3 on the next page. From Study I: Figure 2, p. 158). This association was not 

present for executive function (DST). Of the two identified predictors, KTR was most 

associated with cognitive performance (please see Study I: Table 2, p. 159). In 

addition to adjusting for the a priori identified covariates age, sex, body mass index, 

education, GFR, current smoking, diabetes, previous myocardial infarction and stroke, 

and PLP, we evaluated other potential confounders. The kynurenines were not 

associated with depression as defined by a HADS score on the depression subscale ≥ 

8, or the use of anti-depressants. The kynurenines were, however, associated with CRP 

levels and the use of NSAIDs (Study I: Table 3, p. 160). However, adjustment for 

CRP or NSAIDs use did not attenuate the associations between KTR, Kyn, neopterin 

and cognitive outcomes (Study I: Table 4, p. 160).  
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Figure 3. Cognitive Tests and Markers of Immune Activation. Predicted results from Zellner’s 

seemingly unrelated regression, adjusted for age, sex, body mass index, educational level, estimated 

glomerular filtration rate, current smoking, diabetes, hypertension, previous myocardial infarction, prior 

stroke, and pyridoxal 5’ phosphate as covariates.  

Abbreviations: COWAT, Controlled Oral Word Association Test; KOLT, Kendrick Object Learning Test; 

KTR, kynurenine to tryptophan ratio.  

Figure 3 in the thesis corresponds to Figure 2 in Study II. 
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STUDY II 

Characteristics of the Study Participants  

Patients with dementia (n = 155, 90 AD, 65 LBD, 56.1% women) were included from 

DemVest. At baseline, the patients had a mean MMSE score of 23.7, a mean education 

of 9.7 years, and 20% indicated current smoking (Study II: Table 1, p. 4).  

Non-Linear Kynurenine-MMSE Association in Mild Dementia 

Serum Kyn concentrations measured at the beginning of the study displayed a non-

linear association with the average MMSE score over the five annual follow-ups. 

Specifically, the first polynomial of Kyn (FE -0.023 (referred to as estimate in Study 

II), Q > 0.05) did not show an association with cognitive function, whereas the second 

polynomial of Kyn did (FE 0.10, Q = 0.046), showing a significant quadratic 

association (Figure 4 on the next page. From Study II: Figure 2, p. 6). Kyn was not 

associated with the rate of cognitive decline in patients suffering from mild dementia. 

None of the other kynurenine metabolites were associated with cognitive performance 

(Study II: Table 2, p. 5). There were no significant differences in this association 

when the analyses were stratified according to a diagnosis of AD or LBD (data not 

shown).  

Kynurenines and Neuropsychiatric Symptoms 

We first estimated the associations between kynurenines and the NPI-total score. 

Higher serum kynurenic acid to kynurenine ratio (KKR) was not associated with 

neuropsychiatric symptoms at baseline (FE -0.050, Q > 0.05). However, higher KKR 

was associated with an increase in the NPI total score per year (FE 0.063, Q = 0.045), 

see Figure 5 on the page following the next page (p. 52), from Study II: Figure 3, p. 6. 

KA and XA also displayed a trend of being associated with increasing 

neuropsychiatric symptoms over time but were not significant following adjustment 

for multiple comparisons. Post-hoc, we estimated the associations between individual 

NPI items and the kynurenines. KKR was associated with increasing hallucinations 
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over time and KA was associated with more hallucinations overall without affecting 

the longitudinal development of hallucinations (both Q < 0.05) (Study II: Figure 4, p. 

7).  There were no significant differences in these associations between LBD and AD 

(data not shown). 

 

 

Figure 4. Non-Linear Association Between MMSE Test Scores and Serum Kynurenine. 

Kynurenine concentrations around the geometric mean was not associated with MMSE, whereas high 

or low serum concentrations were associated with more MMSE-errors. The model was estimated as a 

joint model together with a model for the NPI-total score (see statistics). Of note, a constant of one 

was added to kynurenine prior to logarithmic transformation, shifting the log (mean) from 0.55 to 

1.02.   

Abbreviations: MMSE, Mini-Mental State Examination; NPI, Neuropsychiatric Inventory.  

Figure 4 in the thesis corresponds to Figure 2 in Study II. 
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Figure 5. The Kynurenic Acid to Kynurenine Ratio and Neuropsychiatric Symptoms. The graph 

shows how a change in one standard deviation of the transformed and standardized levels of KKR 

(the reciprocal of 1/√(KKR)) was associated with an increase in neuropsychiatric symptoms over time, 

using a negative binomial random-intercept model linked to the MMSE model (i.e., a joint model), 

adjusted for age, sex, current smoking, estimated glomerular filtration rate, and PLP in the model for 

NPI-total score.  

Abbreviations: KKR, kynurenic acid to kynurenine ratio; MMSE, Mini-Mental State Examination; NPI, 

neuropsychiatric inventory; PLP, pyridoxal 5’-phosphate. 

Figure 5 in the thesis corresponds to Figure 3 in Study II.  

 

  



53 
 

 

STUDY III 

Characteristics of the Study Participants 

The characteristics of the study participants in the four independent cohorts are 

summarized below and in Study III: Table 1, p. 30.  

Melbourne Collaborative Cohort Study  

Community-dwelling participants (n = 970, 32% women) with a mean (SD) baseline 

age of 57.6 (7.9) years were included in the study. Plasma concentrations of Trp, the 

kynurenines, and CRP were measured at baseline and at follow-up after a median of 

eleven years. Mortality data were recorded until 16 years after the follow-up. 

 

Western Norway B Vitamin Intervention Trial 

Patients with stable angina pectoris (n = 604, 22.9% women) with a mean (SD) age of 

61.9 (9.7) years at baseline were included in this study. Trp, the kynurenines, and CRP 

were measured at baseline and at two follow-up visits after a median of one and three 

years.  

 

Hordaland Health Study 

Community-dwelling older adults aged 71-74 years old (n = 3161, 44.3 % women) 

who had donated blood samples were included in this study. Mortality data were 

recorded until 17 years after baseline. A subset of 2152 older adults underwent 

cognitive testing, of which 1691 participants had sufficient data to compute a frailty 

index.  

Elective Surgery Cohort 

Patients undergoing elective surgery (n = 109, 46% women) with a mean (SD) age of 

73.3 (6.8) years provided CSF and serum samples and were included in the analyses. 

A subset of patients (n = 33) voluntarily donated CSF at a follow-up after four years.  
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Associations Between Kynurenines and Age  

The associations between age, time and metabolites were characterized by FE from a 

multilevel model where metabolites were outcomes with age and time as independent 

variables. The estimated FE represents a one SD change in log-transformed plasma 

biomarker concentrations per year of age or time in study.  

In MCCS, a study on community-dwelling persons, the strongest associations with 

age were for QA, KTR, and Kyn. The estimated associations with age were weaker for 

HK, CRP, KA, and AA. In contrast, Trp was inversely associated with age. Please see 

Figure 6 on the next page. From Study III: Figure 2, p. 25. 

In WENBIT, a study on patients with stable angina, KTR, QA, and Kyn displayed 

the strongest associations with age. There were weaker associations between age, HK, 

KA, and AA. Again, Trp was inversely associated with age. Please see Figure 7 on the 

page after the next page (p. 56). From Study III: Figure 3, p. 27. 

Changes in Kynurenine Concentrations Over Time 

Samples in MCCS were taken at baseline and again after a median of 11 years. Figure 

6 (on the next page) summarizes changes in the kynurenine metabolites with age, and 

over time in MCCS. We identified an increase in plasma KTR and QA over time, with 

smaller increases in Kyn, HK, KA, and HAA. Trp and anthranilic acid (AA) decreased 

over time.  

Samples in WENBIT were taken at a median of one and three years after baseline. 

Figure 7 (on the page after the next page (p. 56)) summarizes changes in the 

kynurenine metabolites with age, and over time in WENBIT. Here, plasma QA and 

KTR increased. However, QA was measured only at baseline and after one year. Kyn, 

HK, KA, AA, HAA, and XA increased to a lesser extent over time, whereas Trp 

decreased. By comparison, CRP showed minor associations with age and inconsistent 

changes over time in MCCS and WENBIT. Standardized fixed effects, which can be 

interpreted similarly to correlation coefficients, can be found in Study III: 

Supplementary Table 2, p. 36. 
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Figure 6. Metabolites of the Kynurenine Pathway Change with Age (upper panel), and Over 

Time (lower panel) in Community-Dwelling Persons (MCCS study). The mean age of MCCS 

participants were 57.6 years at baseline, with follow-up after 11 years. Log-transformed and 

standardized metabolites (with CRP as a reference) were entered as outcomes in linear mixed-effects 

models with baseline age and time as predictors. In the model, time was a categorical variable, and 

the effect sizes for time were divided by 11 to yield change per year. The fixed effects reflect a one 

standard deviation change in the standardized, log-transformed metabolite concentration per year of 

chronological age or per year in the study. Of note, the x-axes for the fixed effects on the upper and 

lower panels are on different scales. 

Abbreviations: AA, anthranilic acid; CRP, C-reactive protein; HAA, 3-hydroxyanthranilic acid; HK, 3-

hydroxykynurenine; KA, kynurenic acid; KTR, kynurenine to tryptophan ratio; Kyn, kynurenine; MCCS, 

Melbourne Collaborative Cohort Study; p, p-value; QA, quinolinic acid; Trp, tryptophan; XA, 

xanthurenic acid; 95% C.I., 95% confidence interval.  

Figure 6 in the thesis corresponds to Figure 2 in Study III. 
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Figure 7. Metabolites of the Kynurenine Pathway Change with Age (upper panel), and Over 

Time (lower panel) in Patients with Stable Angina Pectoris (WENBIT study). The mean age of the 

patients was 61.9 years at baseline, and they were followed up after a median of one and three years. 

Metabolites (and CRP as a reference) were log-transformed, standardized and entered as outcomes 

in linear mixed-effects models with age at the study baseline and time (years in study) as predictors. 

The fixed effects reflect a one standard deviation change in the standardized, log-transformed 

metabolite per year of chronological age or per year in study. Of note, the x-axes for the fixed effects 

on the upper and lower panels are on different scales.  

Abbreviations: AA, anthranilic acid; CRP, C-reactive protein; HAA, 3-hydroxyanthranilic acid; HK, 3-

hydroxykynurenine; KA, kynurenic acid; KTR, kynurenine to tryptophan ratio; Kyn, kynurenine; p, p-

value; QA, quinolinic acid; Trp, tryptophan; WENBIT, Western Norway B Vitamin Intervention Trial; 

XA, xanthurenic acid; 95% C.I., 95% confidence interval. 

Figure 7 in the thesis corresponds to Figure 3 in Study III. 
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Metabolite Concentrations in Persons Aged 71 to 74 Years in HUSK 

Plasma Trp was lower in persons aged 74 years old compared to those aged 71 years. 

In contrast, HK, KTR, QA, and CRP were higher, although CRP did not reach 

statistical significance. HK was also higher in persons aged 73 years compared to 

those aged 71 years. QA was also higher in persons aged 72 or 73 years compared to 

those aged 71 years (Study III: Table 2, p. 31).  

Aging and Kynurenine Pathway Metabolites in the Cerebrospinal Fluid 

In the 109 participants from COGNORM, statistical analyses were conducted using Rs 

to estimate correlation coefficients. The metabolites in serum correlated moderately 

(HK, KA, Trp) to strongly (QA, PIC, Kyn) with the corresponding CSF-metabolites. 

HK and PIC were not correlated with age in either serum or CSF. Trp was 

significantly, inversely correlated with age in the serum        (Rs -0.27) and positively 

but non-significantly in the CSF (Rs 0.14). Kyn correlated significantly with age in 

serum (0.24) but more so in the CSF (0.39). KA correlated non-significantly with age 

in serum (Rs 0.15) but significantly in the CSF (Rs 0.32), whereas AA was more 

correlated with age in serum (Rs 0.29) than in the CSF (Rs 0.23). Finally, QA was most 

strongly correlated to age in serum (Rs 0.37) and in the CSF (Rs 0.55). The correlation 

between metabolites and age was significantly stronger in the CSF than in serum for 

QA and Kyn (Table 5A on the next page). Compared to the first age-quartile, CSF-QA 

concentrations doubled in the fourth quartile (Table 5B on the next page). In the 

subgroup of 33 participants with a second lumbar puncture after four years, Kyn 

(median 51.4 nmol/L at baseline, 57.7 after four years, p < 0.001) and QA (median 

31.2 nmol/L at baseline, 42.6 after four years, p < 0.001) increased, whereas HK 

increased marginally (median 4.42 nmol/L at baseline, 4.91 after four years, p = 

0.038). There was no significant change in Trp, KA, AA, and PIC (Table 5C on the 

next page). Table 5 corresponds to Study III: Table 3, p. 32. 
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Table 5A. Serum and Cerebrospinal Fluid Correlations with Age for Tryptophan 

and Kynurenines in 109 Cognitively Healthy Persons Undergoing Elective Surgery 

   

  Correlations between 

metabolitesa 

 Correlations between 

metabolites and agea 

 Difference in  

serum vs. CSF age-correlationsb 

  Serum vs. CSF  Serum  CSF  Null-hypothesis of equivalence 

Trp  0.26*  -0.27*  0.14  .001* 

Kyn  0.68**  0.24*  0.39**  .039* 

HK  0.40**  0.17  0.17  .999 

KA  0.28*  0.15  0.32**  .136 

AA  0.36**  0.29*  0.23*  .574 

PIC  0.70**  -0.11  0.03  .067 

QA  0.78**  0.37**  0.55**  .001* 

         

Table 5B. Quinolinic acid concentrations in nmol/L according to age-quartiles 

  Serum  CSF  % in CSF vs. Serum 

  Median (IQR)  Median (IQR)  Median (IQR) 

64-68  373 (158)  29.4 (10.1)  7.95 (2.62) 

69-71  398 (267)  33.0 (20.3)  8.74 (2.64) 

72-77  429 (135)  42.7 (16.1)  8.75 (4.28) 

78-91  647 (723)  65.9 (65.1)  10.6 (3.52) 

       

Table 5C. Change in cerebrospinal fluid kynurenines over four years (n = 33)c 

         

  Baseline  Four-year follow-up   

  Median (IQR)  Median (IQR)  pd 

Trp  2.64 (0.7)  2.64 (0.6)  .774 

Kyn  51.4 (14.2)  57.7 (29.9)  <.001** 

HK  4.42 (2.27)  4.91 (2.45)  .038* 

KA  2.47 (1.33)  2.25 (1.13)  .816 

AA  9.48 (7.18)  10.9 (2.88)  .788 

PIC  19.2  (8.2)  18.9 (7.4)  .469 

QA  31.2 (20.3)  42.6 (24.7)  <.001** 

Note: CSF concentrations of HAA and XA were below the limit of detection and thus omitted from this analysis.  

Abbreviations: AA, anthranilic acid; CSF, cerebrospinal fluid; HK, 3-hydroxykynurenine; IQR, interquartile range; KA, 

kynurenic acid; Kyn, kynurenine; p, p-value; PIC, picolinic acid; QA, quinolinic acid; Trp, tryptophan.  

a Spearman’s Rho correlation coefficients. 

b Equivalence of correlation coefficients in serum and CSF samples in paired samples, p < 0.05 indicates a significant 

difference. 130 

c Trp, HK, KA, AA, and PIC in μmol/L, Kyn and QA in nmol/L. 

d Wilcoxon signed rank test for paired samples. 

* p <0.05; ** p < 0.001. 

Table 5A, 5B, and 5C in the thesis corresponds to Table 3A, 3B, and 3C in Study III. 
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Kynurenines Concentrations and Frailty in HUSK  

Using the frailty index score as the outcome, plasma CRP showed the strongest 

association with frailty. Significant associations with frailty were identified for several 

kynurenines adjusted for age, sex, and CRP: QA (β 0.11, p < 0.001), Kyn (β 0.10, p < 

0.001), KTR (β 0.10, p < 0.001), HAA (β 0.08, p<0.001), KA (β 0.08, p = 0.002), and 

HK (β 0.07, p = 0.007). However, following adjustment for age, sex and KTR, CRP 

was still more strongly associated with frailty (β 0.15, p < 0.001). Please see Study 

III: Table 4, p. 33. 

Kynurenines as Predictors of All-Cause Mortality 

Following adjustment for age, sex, GFR and plasma CRP, increased Trp 

concentrations were associated with lower all-cause mortality, whereas increased QA 

and KTR concentrations were associated with higher all-cause mortality in MCCS and 

HUSK. After adjusting for age, sex, GFR and KTR, increased CRP concentrations 

were also associated with increased all-cause mortality in both cohorts (Table 6 on the 

next page. From Study III:  Table 5, p. 34).     
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Table 6. Associations of Kynurenines, and CRP with All-Cause Mortalitya 

  

Metabolites Cohortb HR 95% CI p  HR 95% CI p 

  
Unadjusted for KTRc  Adjusted for KTRc 

CRP HUSK 1.10 [1.05, 1.16] <.001**  1.06 [1.00, 1.11] .039* 

 MCCS 1.21 [1.09, 1.34] .001*  1.20 [1.09, 1.34] <.001** 

  
Unadjusted for CRPc  Adjusted for CRPc 

Trp HUSK 0.90 [0.85, 0.95] <.001**  0.91 [0.86, 0.96] <.001** 

 MCCS 0.86 [0.78, 0.96] .006*  0.87 [0.78, 0.97] .006* 

Kyn HUSK 1.11 [1.05, 1.18] <.001**  1.09 [1.03, 1.16] .004* 

 MCCS 1.06 [0.92, 1.24] .356  1.01 [0.87, 1.20] .534 

HK HUSK 1.13 [1.07, 1.19] <.001**  1.10 [1.05, 1.17] <.001** 

 MCCS 1.09 [0.96, 1.24] .172  1.05 [0.93, 1.20] .424 

KA HUSK 1.05 [0.98, 1.11] .140  1.05 [0.99, 1.11] .138 

 MCCS 1.06 [0.94, 1.18] .322  1.05 [0.94, 1.18] .368 

AA HUSK 1.10 [1.04, 1.16] <.001**  1.09 [1.03, 1.15] .001* 

 MCCS 1.12 [0.99 1.26] .060  1.11 [0.98, 1.25] .102 

XA HUSK 0.94 [0.89, 0.99] .019*  0.95 [0.90, 1.00] .044* 

 MCCS 0.96 [0.86, 1.06] .407  0.96 [0.86, 1.06] .405 

HAA HUSK 0.95 [0.91, 1.01] .100  0.95 [0.90, 1.00] .046* 

 MCCS 1.10 [0.97, 1.24] .645  1.05 [0.93, 1.20] .086 

PIC HUSK 1.00 [0.95, 1.05] .926  1.00 [0.95, 1.06] .897 

 MCCS 1.08 [0.96, 1.21] .187  1.06 [0.95, 1.19] .300 

QA HUSK 1.15 [1.09, 1.22] <.001**  1.14 [1.07, 1.20] <.001** 

 MCCS 1.30 [1.14, 1.48] <.001**  1.25 [1.09, 1.43] .002* 

KTR HUSK 1.23 [1.16, 1.30] <.001**  1.21 [1.14, 1.28] <.001** 

 MCCS 1.15 [1.02, 1.30] .022*  1.13 [1.01, 1.34] .043* 

Note: Effect sizes indicate the hazard ratio associated with a one standard deviation increase in the log-transformed 

metabolite concentrations. 

Abbreviations: AA, anthranilic acid; 95% CI, 95% confidence interval; CRP, C-reactive protein; HAA, 3-hydroxyanthranilic 

acid; HK, 3-hydroxykynurenine; KA, kynurenic acid; KTR, kynurenine to tryptophan ratio; Kyn, kynurenine; PIC, picolinic acid; 

QA, quinolinic acid; Trp, tryptophan; XA, xanthurenic acid.  
a Cox proportional hazard analysis with age, sex, and estimated glomerular filtration rate as covariates in all models, with or 
without adjustment for CRP for the kynurenines, or KTR for CRP.  
b HUSK, Hordaland Health Study (n = 3161); MCCS, Melbourne Collaborative Cohort Study (n = 970). 
c CRP adjusted for KTR. Trp, Kyn, HK, KA, AA, XA, HAA, PIC, QA, and KTR adjusted for CRP.  
* p < 0.05; ** p < 0.001. 
Table 6 in the thesis corresponds to Table 5 in Study III. 
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DISCUSSION 

PRINCIPAL FINDINGS 

In this thesis, we aimed to assess whether the kynurenines were associated with 

cognitive test performance in community-dwelling persons (study I), five year 

cognitive and neuropsychiatric prognosis in mild dementia (study II), and aging 

(study III). In study I, higher plasma concentrations of KTR and neopterin were 

associated with reduced cognitive performance. Kyn, however, had a non-linear 

quadratic association with cognitive performance. In study II, investigating AD and 

LBD patients with mild dementia, we also found a non-linear quadratic association 

between serum Kyn and cognitive performance. However, Kyn was not associated 

with the rate of cognitive decline. Our findings in studies I and II suggest that 

homeostatic Kyn concentrations around the geometric mean may benefit cognitive 

function where both high and low concentrations were associated with poorer 

cognitive performance. Patients with mild dementia who had a higher serum KKR had 

increasing neuropsychiatric symptoms over five years. Study III focused on repeated 

measurements of the kynurenines in plasma, serum and CSF. In two longitudinal 

cohorts, plasma Kyn, KTR, HK, KA, and QA were positively associated with age and 

displayed consistent longitudinal changes over time. In contrast, plasma Trp was 

negatively associated with age and consistently decreased over time. Kyn, HK, KA, 

HAA, QA, KTR, and CRP were all associated with frailty in HUSK. Higher QA, 

KTR, and CRP concentrations were independently associated with higher all-cause 

mortality in both MCCS and HUSK. In contrast, higher Trp concentrations were 

associated with lower mortality. Kyn, KA and QA correlated more strongly with age 

in the CSF compared to serum. Kyn and QA consistently increased in the CSF over 

four years. Overall, our results indicate that the kynurenine pathway is significantly 

altered by aging, has a complex relationship with cognitive performance, and relates to 

the risk of neuropsychiatric symptoms in mild dementia. The immunomodulatory and 

neuroactive properties of the kynurenines highlight the importance of investigating 

whether the kynurenines are actors or bystanders in aging and age-related disorders.   
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SYSTEMIC AND CEREBROSPINAL FLUID CONCENTRATIONS 

An important question is whether peripheral concentrations of the kynurenines reflect 

brain concentrations, as studies I and II focused on plasma and serum measurements. 

In study III, we found a strong correlation between QA in serum versus CSF (Rs, 

0.78) and a moderate-to-strong correlation between Kyn in serum versus CSF (Rs, 

0.68) among patients undergoing elective surgery. For HK, this correlation was 0.40, 

for KA 0.28, for AA 0.38, and for PIC 0.70 (HAA and XA concentrations in CSF were 

below the limit of detection when analyzed using liquid chromatography-tandem mass 

spectrometry). The results are in line with previously identified serum-CSF 

correlations for kynurenines in inflammatory- 131  and neurodegenerative disease. 132 

We also found a weak correlation between serum and CSF Trp (Rho, 0.26), similar to 

findings in patients with multiple sclerosis. 133 Trp, Kyn, and HK are transported 

across the BBB, while KA and QA must be synthesized in the brain, mainly within 

astrocytes and microglia, respectively (see the introduction, p. 24). 10 Thus, according 

to results from study III and previous reports, the correlations between serum and 

CSF are strong for Kyn, PIC and QA, but are weak to moderate for other kynurenines.  

THE KYNURENINE PATHWAY AND COGNITIVE FUNCTION 

Cognitive Performance in Community-Dwelling Older Adults 

In study I, we aimed to investigate associations between kynurenine metabolites in 

plasma and cognitive performance in community-dwelling older adults. We found that 

higher concentrations of KTR and neopterin were associated with lower cognitive test 

performance. Specifically, higher KTR and neopterin were associated with lower test 

performance on the two cognitive tests KOLT and COWAT. KOLT is designed to 

assess memory performance and dementia status among non-institutionalized    

elderly. 134 COWAT has been used to assess the cognitive domains of language and 

executive function. However, there is no clear consensus on which interpretation is 

correct, as cognitive domains are not mutually exclusive constructs. 104 Previous 

studies in patients without neurodegenerative disease have focused on patients with 
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end-stage renal disease 54 (n = 27) and patients undergoing cardiac bypass and thoracic 

surgery (n = 56). 53 Both of these studies found that higher concentrations of Kyn, KA, 

KTR, and neopterin were associated with reduced cognitive function. Even though the 

results are similar to those in our study, the presence of chronic inflammation in these 

sick individuals and somewhat different cognitive test protocols limit the 

comparability with our study. 53,54 Our findings indicate that associations between the 

kynurenines, neopterin and cognition are not only present in patients with relatively 

severe disease but also in community-dwelling older adults.  

Immune Activation as a Potential Confounder 

Clinical and experimental studies have investigated relationships between 

inflammation and cognitive function. Inflammation activates the kynurenine pathway 

and is thus a potential confounder in our study (for details, see also introduction p. 22-

23 and 30). Peripheral pro-inflammatory mediators, such as tumor necrosis factor-α, 

interleukin-6, and CRP, are associated with reduced cognitive performance in healthy 

persons. 135-139 Although study I lacked comprehensive immune profiling, CRP did not 

confound the identified associations. The main activator of the kynurenine pathway, 

IFN-γ, activates both the rate-limiting enzyme, IDO, and GTP cyclohydrolase I 

catalyzing the synthesis of neopterin in monocytes. IFN-γ knockout mice show 

improvements in neurogenesis, synaptic plasticity, and cognitive performance. 140 

Thus, higher concentrations of the kynurenines could be indirect markers of 

underlying immune activation.  

Previous Experimental Studies on Cognition 

Experimental researchers have previously investigated whether there is a link between 

changes in Trp, the kynurenines, and cognitive function. One study investigating acute 

Trp depletion identified subsequent impairment in episodic memory among mice. 141 

In an animal model of sepsis, IDO knockout mice did not show inflammation-induced 

cognitive impairment after lipopolysaccharide injection. 5 Knockout or 
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pharmacological inhibition of KAT II, which catalyzes the conversion of Kyn to KA, 

improved both spatial discrimination and contextual memory in rats. 142  

Further, studies of rats indicate that neurons within the hippocampus, striatum, and 

neocortex are sensitive to higher QA concentrations. 49 These experimental studies 

suggest that under certain conditions, manipulation of the kynurenine pathway can 

alter cognitive function. However, it is not known whether the kynurenines are 

involved in normal cognitive function.  

Summary of Study I 

In study I, we identified associations between the kynurenines and cognitive 

performance, in agreement with previous studies, and identified a non-linear quadratic 

association between the key metabolite Kyn and cognitive performance. This indicates 

that both high and low Kyn concentrations are associated with poor cognitive 

performance, whereas concentrations around the geometric mean (i.e., the mean on the 

log-scale) are associated with better cognitive performance. Although some circulating 

kynurenines are moderately-to-strongly correlated with CSF concentrations, including 

the CSF of healthy persons would add significantly to our work. However, due to the 

risk of lumbar puncture, such studies are not easy to perform. In addition, our results 

were only adjusted for CRP, so underlying immune activation is a potentially 

unidentified confounder. Further experimental studies are needed to establish whether 

the kynurenine pathway plays a role in cognitive function under physiological 

conditions.   

THE KYNURENINE PATHWAY IN MILD DEMENTIA 

Kynurenines and Cognitive Performance  

In study II, we first aimed to determine associations between serum concentrations of 

the kynurenines and cognitive performance over five years. We found that Kyn had a 

non-linear relationship with cognitive function where both low and high levels were 

associated with reduced cognitive function in patients with mild dementia diagnosed 
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with AD or LBD (study II). A similar non-linear relationship was also seen in 

community-dwelling older adults (study I). A previous cross-sectional study identified 

that higher QA was associated with lower cognitive function in elderly patients with 

AD. 60 Kyn concentrations are tightly regulated 9 and higher Kyn concentrations may 

reflect an inflammatory state and increased IDO-activity. 143 Low substrate availability 

of Kyn may lead to reduced production of downstream neuroactive kynurenines such 

as KA and QA, and of NAD+. 144 Although it is not clear from our data why the 

association between Kyn and cognitive performance was non-linear, Kyn 

concentrations around the geometric mean may reflect more homeostatic conditions. 

Animal Models and Cell Studies on Neurodegeneration 

The kynurenine pathway has been studied in animal models and cell studies of 

neurodegenerative disease. In AD knockin mice, cerebral injection of the IDO 

inhibitor coptisine resulted in less neuronal loss, reduced amyloid plaque formation, 

and improved cognition, suggesting that IDO activation could be detrimental in AD. 4 

Experimental studies on astrocytes, microglia, and hippocampal neurons have found 

increased immunoreactivity for IDO and QA in the brains of AD patients post-

mortem. 145 Studies on cell cultures of human neurons suggest that higher 

concentrations of QA lead to increased tau phosphorylation. 49 In both human neurons 

and mouse models, elevated Aβ induces the expression of enzymes of the kynurenine 

pathway, likely by increasing IFN-γ. 146 Thus, findings from both animal models and 

human cell studies suggest on the one hand that amyloid deposits can activate the 

kynurenine pathway, and on the other hand, that increased activity of the kynurenine 

pathway may promote disease progression. 

Kynurenines and Neuropsychiatric Symptoms 

In study II, we further aimed to determine associations between serum concentrations 

of the kynurenines and neuropsychiatric symptoms over five years. The primary 

outcome was the total score from the twelve domains of the NPI with individual items 

assessed in post-hoc analysis. 115 Neuropsychiatric symptoms are frequent in dementia 
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and include hallucinations, delusions, aggression, disinhibition, depression, anxiety, 

and aberrant motor behavior. 65 We found that higher serum KKR was associated with 

increasing neuropsychiatric symptoms over five years in patients with mild dementia. 

A higher KKR reflects a relatively higher KA compared to Kyn, which may suggest 

higher enzyme activity of KATs. 9 Investigating individual domains, KKR was 

associated with increasing hallucinations over five years, whereas higher KA was 

associated with more hallucinations overall without affecting the rate of change. We 

have not identified any previous studies investigating neuropsychiatric symptoms and 

the kynurenine pathway in dementia.  

Kynurenic Acid and Previous Studies on Psychotic Disorders 

Previous studies have found associations between the kynurenine pathway and major 

psychiatric disorders, including schizophrenia and bipolar disorder. 52 Compared to 

healthy volunteers, patients with schizophrenia display higher KA concentrations in 

the CSF 147 and the prefrontal cortex following neuropathological examination. 148 

Similarly, patients with bipolar disorder with psychotic symptoms have elevated CSF-

KA, 52 with increased Kyn and KA in the anterior cingulate cortex on post-mortem 

examination. 149 Notably, KMO expression is lower in patients with schizophrenia and 

bipolar disorder with psychotic symptoms, potentially contributing to increased 

conversion of Kyn to KA. 52 Thus, our findings highlighting the potential relevance of 

the relationship between Kyn and KA for neuropsychiatric symptoms in mild dementia 

are in line with findings from studies on patients with psychosis from major 

psychiatric disorders. 

Several studies have addressed whether KA can be mechanistically linked to 

psychosis. KA is a regulator of dopaminergic and glutamatergic neurotransmission and 

an antagonist of the NMDAR, the latter a feature with the potential to trigger 

psychosis. 150 Furthermore, KA is an agonist for the AhR and an antagonist for the 

α7nAChR, linked to schizophrenia. 151,152 An increase in KA may decrease the levels 

of the neurotransmitters glutamate, 153 dopamine, 154  and acetylcholine. 155 The diverse 

effects of higher KA concentrations have been proposed to induce psychotic 
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symptoms and impair executive functioning. 10 Taken together, research investigating 

how KA affects neurotransmitter systems suggests that the metabolite may be of 

pathophysiological relevance to psychosis although there is as of yet no evidence from 

clinical trials in humans. 

Summary of Study II 

Study II was limited by lack of CSF measurements and lacked measures on pro-

inflammatory activation, a potential confounder. Overall, our results suggest that Kyn 

has a complex relationship with cognition but is not associated with the rate of 

cognitive decline. Further, our findings indicate that higher KA and KKR, potentially 

related to KAT activity, could be biomarkers of an increased risk of neuropsychiatric 

symptoms in mild dementia.  

THE KYNURENINE PATHWAY AND HUMAN AGING  

Associations Between Circulating Kynurenines and Age 

In study III, we aimed to assess the relationship between the kynurenines and age 

using cross-sectional and longitudinal measurements in serum, plasma and CSF. Trp 

concentrations in plasma were inversely associated with age, whilst Kyn, QA, and 

KTR were positively associated with age in two independent cohorts (MCCS and 

WENBIT) with repeated measurements of kynurenines. These associations with age 

were consistent with changes in the same metabolites over time. Similarly, 

community-dwelling older adults 74-years old had lower plasma Trp and higher HK, 

QA, and KTR compared to those 71 years of age (study III). Our findings corroborate 

findings from previous cross-sectional studies investigating associations between the 

kynurenine pathway and human aging. Generally, these studies identified lower Trp 

with older age, in different populations. 72-74,76-78 For example, Capuron et al78 included 

non-institutionalized participants aged 65 years and older, whilst Collino et al76 

enrolled centenarians and their off-spring. Further, studies investigating serum or 

plasma concentrations of the kynurenines found positive correlations between age and 
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Kyn, 75,78 KTR, 75,78,91, HK, KA, and AA. 75 Collectively, these clinical findings across 

diverse populations suggest that aging is associated with increased systemic activity of 

the kynurenine pathway. The observations suggest that Trp is converted to 

downstream kynurenines with the most notable increases in Kyn and QA. 

Aging rats displayed an increase in Kyn, KA, PIC, and QA with age both 

peripherally and in the brain, accompanied by increased IDO and decreased QPRT 

gene expression in the liver and brain. 156 QPRT is involved in the de novo synthesis of 

NAD+, which is reduced in aging and neurodegenerative disorders. 157 Inhibition of 

QA degradation, as observed in aging rats, could serve as a potential explanation for 

the relative abundance of QA, compared to other kynurenine metabolites, with aging 

(study III).  

The kynurenine pathway is activated by pro-inflammatory cytokines, which 

increase with aging. Trp typically decreases with inflammation, as IDO catalyzes the 

formation of Kyn and downstream kynurenines. 2 IFN-γ stimulation of human 

monocytes ex-vivo results in increased concentrations of QA and KTR. 158 Aged 

macrophages have higher IDO-activity and produce more cytokines. 32 This suggests 

that increased pro-inflammatory activation associated with aging, or inflammaging, 

could contribute to increased conversion of Trp to kynurenines. This could in turn 

affect the immune system. Furthermore, higher IDO expression in breast cancer has 

been linked to immune evasion and poor outcomes. 159 A lack of Trp and an increase 

in Kyn concentrations likely suppress CD8+ and CD4+ T-cells via amino acid sensing 

signals and the AhR. 2,160-162 CD4+ and CD8+ CD28- T-cells, increase with age, whilst 

Tregs are depleted. 163 The immunomodulatory effects of low Trp and high Kyn could 

thus serve to constrain inflammaging. 2 However, our study cannot determine whether 

activation of the kynurenine pathway in human aging is harmful or adaptive.  

The kynurenine pathway is involved in energy metabolism through the conversion 

of its end-product QA to NAD+ in a reaction catalyzed by QPRT. Declining levels of 

NAD+ is observed across multiple species with aging, and this phenotype of aging is 

associated with age-related diseases. 164 Mice display declining intracellular NAD+ 



69 
 

 

concentrations in multiple organs, including brain, liver, muscle, pancreas, adipose 

tissue, and skin. An age-dependent reduction of NAD+ has also been identified in C. 

elegans and aged human tissue. 164 This apparent discrepancy where QA increases 

with age in our study while NAD+ decreases with age 157 could be explained by 

reduced QPRT activity, which has been identified in an animal study of aging. 156 

Accordingly, it is plausible that both the well-known reduction in micronutrient intake 

observed with aging 165 and reduced conversion of QA contributes to age-related 

NAD+ deficiency, 157 a topic for future studies. 

Aging and Kynurenines in the Cerebrospinal Fluid 

We further aimed to assess associations between kynurenines in CSF and age using 

data from COGNORM. Kyn and QA displayed stronger correlations with age in CSF 

compared to serum. Kyn and QA, and marginally HK, also increased in the CSF over 

time. CSF-QA was most strongly correlated with age, doubling in the fourth versus the 

first age quartile, and increased the most over time. There was no significant change in 

Trp, KA, AA, and PIC in the CSF over time, and CSF concentrations of HAA and XA 

were below the limit of detection. Our findings correspond with previous cross-

sectional studies reporting a correlation between age and CSF-QA, and between age 

and CSF-KA. 74,80 Trp correlated inversely with age in serum, but positively in the 

CSF, in line with previous studies demonstrating an increase in Trp in the CSF with 

aging. 10,74 Our study, comparing serum and CSF correlations with age, suggest that 

altered activity of the kynurenine pathway may be more profound in the brain than 

systemically. 

An increase of QA in the CSF of aging individuals could be of consequence. In 

the brain, QA is mainly generated from microglia or migrating monocytes. 10 QA is 

linked to NMDAR-dependent neurotoxicity, oxidative stress, and inhibition of 

mitochondrial function. 50 Significantly, patients with neurodegenerative and 

psychiatric disorders such as schizophrenia and bipolar disorder have increased 

concentrations of kynurenines in the CSF and brain tissue. 12 Thus, increased activity 

of the kynurenine pathway with age may lead to adverse outcomes. However, it is not 
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known at which brain concentrations QA becomes clinically relevant to adverse 

outcomes. Consequently, whether QA is a relevant pathophysiological factor in age-

related, neurological, and psychiatric disorders needs to be further investigated. 

Frailty and the Kynurenine Pathway 

We further aimed to assess associations between plasma Trp, the kynurenines, and 

CRP with frailty in HUSK. Frailty is an important hallmark of pathological aging, 166 

defined as: “a state of vulnerability to adverse outcomes”. One method to measure 

frailty is by a frailty index. Its principle is to count health deficits on the basis that the 

more health deficits a person has, the frailer they are. 117 Across multiple studies, 

frailty is significantly associated with poor health outcomes and a shorter lifespan. 167 

We constructed a frailty index based on available data on health deficits in HUSK 

from community-dwelling older adults aged 71-74 years, as previously described (see 

Methods, Study III: Frailty Index, p. 42). 117 Among the kynurenines, plasma QA was 

most strongly associated with frailty, followed by Kyn and KTR. However, CRP was 

more strongly associated with frailty than any of the kynurenine metabolites. HK, KA, 

and HAA were also significant but less strongly related to frailty. These findings are 

largely consistent with the kynurenines most associated with aging in HUSK, MCCS, 

and WENBIT (Study III). Our results are also in line with previous findings on 

kynurenines and frailty, 168,169 and underscore a consistent association between QA and 

frailty. Westbrook et al168 found higher Kyn, HK, KA, QA, and KTR, and lower Trp in 

frail persons above 70 years of age compared to younger individuals. Similarly, in a 

study by Marcos-Pérez et al169 of older adults above 65, frailty was associated with 

higher KTR and neopterin concentrations and reduced Trp concentrations. Our results 

and those of previous studies suggest that the kynurenines are associated with frailty, 

although we did not find lower Trp with increasing frailty as in previous studies.   

Experimental studies have also found associations between inflammation, the 

kynurenine pathway, and frailty. In older IL-10 knockin mice, higher levels of KTR 

and reduced concentrations of Trp were associated with reduced function and loss of 

integrity of neuromuscular junctions. 168 Further, aged mice injected with an IDO-
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inhibitor showed an increase in the size of muscle fibers and muscle strength. 170 

Taken together, a potential role in sarcopenia in experimental studies, a hallmark of 

frail individuals, 171 adds support for a role of the kynurenine pathway in frailty. 

Mortality and the Kynurenine Pathway 

Lastly, we aimed to assess associations between Trp, the kynurenines, and CRP with 

mortality. In comparison to the other kynurenines, plasma QA and KTR displayed 

relatively stronger associations with mortality consistent in both MCCS and HUSK, 

which were independent of age, sex, renal function, and CRP. Higher plasma Trp 

concentrations were associated with enhanced survival in both cohorts. The 

associations between Kyn, HK, AA, KTR, and CRP with mortality in HUSK have 

been published previously. 172 Increased KTR has been associated with coronary 

events, cancer, frailty, and mortality in nonagenarians. 2 The kynurenine biomarkers 

most associated with aging (i.e., KTR and QA) were also the most associated with 

mortality.  

Experimental studies have identified potential links between Trp, the kynurenines, 

and longevity. In C. elegans and D. melanogaster, depletion or loss of function of 

TDO results in increased longevity. 173,174 TDO-2 knockout in C. elegans increased 

lifespan by 15%. 173 In a study encompassing 26 mammalian species, KTR was 

negatively correlated with longevity. 175  

Summary of Study III 

Overall, our results are in line with previous findings indicating altered kynurenine 

pathway activity with age. Trp decreases with age, accompanied by an increase of 

downstream kynurenines. Our study expands upon previous studies and show that 

these age-related changes are consistent with changes over time in MCCS and 

WENBIT for Trp, Kyn, HK, QA, and KTR, a critical finding to identify an aging 

biomarker. 87 Further, decreased Trp and increased KTR and QA are seen with minor 

differences in age. Higher Trp concentrations were associated with lower all-cause 

mortality, whereas higher QA and KTR concentrations were associated with higher 
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all-cause mortality. Compared to other kynurenines, QA displayed the strongest 

association with age and changed the most over time. Kyn and the potentially 

neurotoxic QA were more strongly correlated with age in the CSF than in serum, and 

increased in the CSF over a period of four years. It is unknown at which 

concentrations QA becomes clinically relevant for adverse outcomes in the brain. Still, 

it appears the aging brain could be exposed to a disproportionate increase in the 

excitotoxic QA.   
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FUTURE DIRECTIONS 

The kynurenine pathway is connected to multiple physiological systems. Future 

studies of the kynurenine pathway in aging and age-related diseases should include 

multiple sample types, such as plasma, urine, feces, CSF, and immune cells. This 

would help provide a more complete picture. It is currently not clear whether the 

kynurenines are simply markers of immune activation or mediators between 

inflammatory activation and immune function, and potentially cognitive and 

psychiatric outcomes by way of their neuroactivity. In humans, studies including more 

detailed immune profiling with longitudinal, repeated measurements would be highly 

informative. Similarly, comprehensive metabolic profiling, including the NAD+ 

metabolome would provide information on the relationship between QA and NAD+, 

which is implicated in aging and neurodegenerative diseases. 164 

The role, if any, of the kynurenine pathway in normal cognitive function needs to 

be further investigated in otherwise healthy animals using experimental manipulation 

more reflective of the physiological condition rather than genetic knockout of 

enzymes. KAT inhibitors are being considered for clinical trials in schizophrenia 176 

and if proven effective, this could be considered for neuropsychiatric symptoms in 

dementia, as there are few, if any, available and effective treatments for patients with 

dementia and neuropsychiatric symptoms. 177  

There are indeed numerous ways of intervening therapeutically to target enzymes 

of the kynurenine pathway, each with its challenges. The depletion of Trp with aging 

suppresses T-cell proliferation, and theoretically, replenishing Trp could improve the 

immune response. However, higher substrate availability may also lead to an increase 

in downstream neuroactive and immunomodulatory metabolites. 9 Analogues of 

neuroprotective kynurenines or KMO inhibitors aim to skew the balance of 

kynurenines towards neuroprotection and are considered to hold therapeutic potential. 

However, it remains unclear whether KA displays clinically relevant neuroprotective 

effects. 12 Further, as selective NMDAR knockout is an animal model of 

schizophrenia, caution should be exercised in considering an NMDAR antagonist for 
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clinical trials investigating psychiatric disorders or neuropsychiatric symptoms in 

dementia. KMO inhibition, like IDO inhibitors, may lead to an excessive reduction of 

QA, which functions as a precursor of NAD+. Accordingly, concomitant NAD+ 

supplementation might be pertinent. 11 KMO inhibition may elevate peripheral Kyn 

levels, which can be converted to QA in the brain after crossing the BBB. Therefore, 

an efficient KMO inhibitor would require sufficient brain penetrance for therapeutic 

efficacy. 12 This could be avoided with an IDO inhibitor, which inhibits the formation 

of Kyn, the main precursor of brain kynurenines. IDO inhibitors have been 

investigated in cancer research, and may potentiate the efficacy of chemotherapy, and 

promote tumor regression, but these mechanisms remain unclear. 178 In addition, 

clinical and experimental studies suggest KAT inhibitors to reduce brain KA 

concentrations as a new therapeutic approach for cognitive and psychotic disorders. 

However, no randomized trials have been conducted to date. 52 All told, further 

research investigating the kynurenine pathway has the potential to result in novel and 

more effective treatments for multiple diseases. However, due to the kynurenines’ 

complex relationship with numerous biological pathways and organ systems, this is 

likely not without risk. 
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STRENGHTS AND LIMITATIONS 

The research included in this thesis has several strengths. We included five 

independent cohorts from different populations, with cross-sectional and longitudinal 

data. Several of the cohort studies had relatively large sample sizes (MCCS, HUSK, 

WENBIT), which increase the statistical power of our analyses. We performed 

comprehensive, targeted metabolomic profiling of the kynurenines in serum, plasma, 

and CSF using a centralized laboratory for all analyses. The HUSK study had a 

relatively high response rate among the participants, and they were of similar age (71-

74 years old), which limits the impact of age itself on metabolites and cognition (study 

I). Further, the DemVest study had a longitudinal design with annual follow-up 

examinations until death, combined with a low dropout rate amongst the patients who 

survived five years of follow-up (study II). In addition, the COGNORM performed 

repeated CSF sampling of patients who underwent elective surgery (study III). 

This thesis also has several limitations. General limitations include a lack of 

ability to identify causal relationships, common to all observational studies. Multilevel 

models assume that missing data follow the missing at random assumption. This 

means that persons with missing data can be characterized by observed data rather 

than unobserved data. This statistical assumption is not easily testable and may bias 

the results. The frailty analysis was performed under the assumption that the data were 

missing completely at random, increasing the risk of bias (study III). The relatively 

small sample size in study II is associated with a higher risk of bias compared to 

studies I and III as the normality assumptions are less likely to hold. The kynurenine 

metabolites are intercorrelated. It is therefore difficult to ascertain whether 

associations represent single metabolites or more broad activities in the metabolic 

pathway. Statistical transformation assures that the assumption of normality, a 

prerequisite of most multivariable models, is not violated but unfortunately 

complicates the interpretation of effect sizes, as the statistical relationships become 

non-linear. 
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This thesis included five independent cohorts with comprehensive kynurenine 

metabolite measurements. However, the sampling was non-standardized and 

metabolite differences between cohorts may relate to variation in follow-up times, 

blood sampling, and time to censoring. As Trp is an essential amino acid, non-fasting 

blood samples is a limitation in DemVest, HUSK, WENBIT and among a proportion 

of MCCS samples. CSF measurements in studies I and II would have been 

informative, as only Trp, Kyn, and HK are transported across the BBB. The absence of 

a suitable control group is a further limitation in study II. 

There are limitations related to the assessment of cognitive function, depression, 

and neuropsychiatric symptoms in this thesis. When measuring cognitive function, 

cognitive domains are not mutually exclusive, which can make interpretation of 

cognitive test results challenging, as one test may measure multiple cognitive domains 

such as language, memory, and executive function (studies I and II). Further, the 

HADS is not a diagnostic test for depression (study I). In addition, we used 

antidepressants as a surrogate marker for depressive symptoms, but these medications 

have several other indications, such as treatment of anxiety and sleep disturbances. 

Patients with major depression are also less likely to participate in studies (study I).  

Finally, at present there is no clear consensus on how to best measure frailty, but 

the frailty index has been validated in several studies. 117 In comparison, previous         

studies 168,169 have measured frailty using the validated frailty screening tool by Fried 

et al179, which consists of grip strength, walking speed, and questions concerning 

fatigue, weight loss, and physical activity. It is not clear whether the use of the Fried 

screening tool or an alternative frailty scale would have changed the associations we 

observed in study III. 
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CONCLUSIONS 

1. Plasma KTR and neopterin were associated with lower cognitive function in the 

domains of memory and language in community-dwelling older adults. 

2. There were no associations between serum kynurenine pathway metabolites at 

baseline and cognitive prognosis in patients with mild dementia. 

3. The relationship between Kyn and cognition was non-linear in community-

dwelling persons and patients with mild dementia. Kyn concentrations around 

the geometric mean were associated with better cognitive performance whereas 

low and high concentrations were associated with poorer cognitive 

performance. 

4. Higher KKR was associated with more neuropsychiatric symptoms over time in 

patients with mild dementia.  

5. Kyn, HK, KA, and most notably QA and KTR were positively associated with 

age and increased over time, whereas Trp was inversely associated with age and 

decreased over time.  

6. Kyn and the potentially neurotoxic QA were more strongly correlated with age 

in the CSF than in serum.  

7. Several kynurenines, most notably QA, Kyn, and KTR were associated with 

frailty. Higher Trp concentrations were associated with lower all-cause 

mortality, whereas higher QA and KTR concentrations were associated with 

higher all-cause mortality in two independent cohorts. 

8. Kynurenines were better biomarkers of chronological age compared to CRP and 

were about equivalently associated with frailty and mortality. 
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A B S T R A C T

Introduction: Tryptophan, its downstream metabolites in the kynurenine pathway and neopterin have been as-
sociated with inflammation and dementia. We aimed to study the associations between plasma levels of these
metabolites and cognitive function in community-dwelling, older adults.
Methods: This cross-sectional study included 2174 participants aged 70–72 years of the community-based
Hordaland Health Study. Tryptophan, kynurenine, neopterin and eight downstream kynurenines were measured
in plasma. Kendrick Object Learning Test (KOLT), Digit Symbol Test (DST) and the Controlled Oral Word
Association Test (COWAT) were all outcomes in standardized Zellner’s regression. The Wald test of a composite
linear hypothesis of an association with each metabolite was adjusted by the Bonferroni method. Age, body mass
index, C-reactive protein, depressive symptoms, diabetes, education, glomerular filtration rate, hypertension,
previous myocardial infarction, prior stroke, pyridoxal 5′phosphate, sex and smoking were considered as po-
tential confounders.
Results: Higher levels of the kynurenine-to-tryptophan ratio (KTR) and neopterin were significantly associated
with poorer, overall cognitive performance (p < 0.002). Specifically, KTR was negatively associated with KOLT
(β −0.08, p= 0.001) and COWAT (β −0.08, p=0.001), but not with DST (β −0.03, p=0.160). This pattern
was also seen for neopterin (KOLT: β −0.07; p= 0.001; COWAT: β −0.06, p=0.010; DST: β −0.01,
p= 0.800). The associations were not confounded by the examined variables. No significant associations were
found between the eight downstream kynurenines and cognition.
Conclusion: Higher KTR and neopterin levels, biomarkers of cellular immune activation, were associated with
reduced cognitive performance, implying an association between the innate immune system, memory, and
language.

1. Introduction

Tryptophan (TRP), an essential amino acid, is degraded primarily
through the kynurenine pathway (KP, Fig. 1) which generates meta-
bolites collectively referred to as the kynurenines (Chen and Guillemin,

2009). TRP and the kynurenines have been related to cognitive im-
pairment (Baran et al., 1999), cardiovascular disease (Sulo et al., 2013;
Zuo et al., 2016), renal function (Theofylaktopoulou et al., 2013), in-
flammation, obesity, diabetes and psychiatric disorders (Cervenka
et al., 2017). However, a relationship between the kynurenines and
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cognitive function in a community-dwelling cohort has not been es-
tablished.

Reduced levels of circulating TRP and several kynurenines have
been found in persons with dementia compared to controls (Giil et al.,
2017), while elevated levels of anthranilic acid (AA), a derivative of
kynurenine (KYN), has been linked to dementia in a prospective study
(Chouraki et al., 2017). In cognitively healthy persons, elevated levels
of inflammatory mediators are linked to poor cognitive performance
(Smith et al., 2012). The kynurenines are closely linked to the innate
immune system and have immune regulatory actions (Hwu et al.,
2000). During an inflammatory state, cytokines stimulate the activity
and expression of indoleamine 2, 3-dioxygenase (IDO), which converts
TRP to KYN, mostly in monocytes. This leads to reduced TRP and an
increase in downstream kynurenines, especially KYN (Capuron et al.,
2011). The most important activator of IDO is interferon-γ (IFN-γ),
which also activates GTP-cyclohydrolase I (GTP-CH), the rate-limiting
enzyme in the biosynthesis of neopterin, which is a pteridine produced
by monocytes during inflammation (Wirleitner et al., 2002). Increased
levels of neopterin have been linked to dementia (Parker et al., 2013).

IDO is also expressed in the brain and may have importance in the
relationship between systemic inflammation and cognitive impairment
(Comim et al., 2017). Inflammation activates IDO and may increase
levels of neurotoxic kynurenine metabolites in the brain with potential
harmful effects on the hippocampus (Lim et al., 2013; Schwarcz and
Kohler, 1983). Further, TRP and KYN pass the blood-brain barrier (BBB)
(Fukui et al., 1991; Smith et al., 1987) and are key substrates for the
brain’s synthesis of serotonin and kynurenines (Chen and Guillemin,
2009).

Our aim was to study the relationship between circulating levels of
TRP, kynurenines, and neopterin with cognitive test performance in a
community-based cohort of adults aged 70–72 years, The Hordaland
Health Study (HUSK).

2. Methods

2.1. Study participants

Study participants were included from HUSK, conducted in
Hordaland County, Western Norway (http://husk-en.w.uib.no). Details
of the recruitment procedures in both the main study and the cognitive
sub-study have been described previously (Nurk et al., 2007). Briefly,

from the source cohort, 2841 participants born in 1925–27, living in
Bergen and three surrounding municipalities, were invited by letter to
participate in HUSK during 1997 to 1999. Of these, 2197 participants
(77.3%) were included in the sub-study on cognitive function and of
these, 2174 had available blood samples and were included in the
present study. The presence of disease was not an exclusion criterion in
this population-based cohort. The self-reported prevalence of hy-
pertension was 32.8%, previous myocardial infarction 10.6%, diabetes
6.7%, and prior stroke 4.7% (Table 1). The Regional Committee for
Medical and Health Research Ethics approved the study protocol (REC
number: 2016/2208) and all participants provided signed informed
consent.

2.2. Measurement of metabolites

Non-fasting blood samples were collected at baseline, and aliquots
of EDTA plasma samples were stored at −80 ◦C until analysis. TRP,
eight kynurenines (KYN, AA, kynurenic acid (KA), 3-hydro-
xykynurenine (HK), 3-hydroxyanthranilic acid (HAA), xanthurenic acid
(XA), picolinic acid (PIC), quinolinic acid (QA)), pyridoxal 5′ phosphate
(PLP), neopterin and cotinine were measured using liquid chromato-
graphy-tandem mass spectrometry (Midttun et al., 2009). In general,
the kynurenine metabolites remain stable under long-term cryopre-
servation. TRP, KYN, KA, XA, PIC and QA remain stable. Under non-
optimal preanalytical handling or storage, HK and HAA may decrease,
while AA may increase (Hustad et al., 2012). However, all these three
markers were within their normal concentration range in our study
(Midttun et al., 2017). The ratio between kynurenine and tryptophan
was calculated as KYN (µM)/TRP (µM) * 100. The limit of detection was
0.4 µmol/L for TRP, while for neopterin and the kynurenines, limits of
detection ranged from 0.5 nmol/L to 7 nmol/L. Within-day and be-
tween-day coefficients of variation were 3.0–9.5% and 5.7–16.9%, re-
spectively.

Plasma high-sensitivity C-reactive protein (CRP) level was de-
termined using an immune-MALDI (matrix-assisted laser desorption/
ionization) mass spectrometry method (Meyer and Ueland, 2014). For
CRP, the limit of detection was 0.2 µg/L, and within-day and between-
day coefficients of variation were 5.5–8.4% and 7.0–11.7%, respec-
tively. All biochemical analyses were performed in the laboratory of
Bevital AS (http://bevital.no).

Fig. 1. The kynurenine pathway. TDO and IDO
converts tryptophan to kynurenine. HK is converted
to 3-hydroxyanthranilic acid (HAA) by kynureninase
(KYNU), and subsequently to quinolinic acid (QA),
catalyzed by quinolinate phosphoribosyl transferase.
QA is converted to nicotinamide adenosine dinu-
cleotide (NAD), the final product of the pathway.
Anthranilic acid is produced from KYN by KYNU.
Kynurenine aminotransferases (KATs) generate KA
from KYN and xanthurenic acid (XA) from HK.
Picolinic acid is produced by spontaneous conver-
sion of HAA. Both KYNU and KATs have pyridoxal
5′-phosphate (PLP) as a cofactor (Chen and
Guillemin, 2009). HAA, 3-hydroxyanthranilic acid;
HK, 3-hydroxykynurenine; 3-HAO, 3-hydro-
xyanthranilic acid 3, 4-dioxygenase; IDO, in-
doleamine 2, 3-dioxygenase; KATs, kynurenine
aminotransferases; KMO, kynurenine mono-
oxygenase; KTR, kynurenine-tryptophan ratio;
NAD+, nicotine adenine dinucleotide; Spont, spon-
taneous; TDO, tryptophan 2, 3-dioxygenase.
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2.3. Testing of cognitive function

We identified ceiling effects in both a brief version of the Mini-
Mental Status Examination and Block-Design (supplementary materials,
Figure S1). This implies that the true level of cognitive function has not
been accurately measured in the participants who reached the ceiling
effects. Further, the Trail Making Test A displayed a log-normal dis-
tribution with a bimodal trend. These cognitive tests were therefore
considered unsuitable as measurements of cognitive function.

The following normally distributed tests, which indicates an ap-
propriate difficulty level with a centralized mean, were selected to
describe cognitive function: Kendrick Object Learning Test (KOLT), the
Controlled Oral Word Association Test (COWAT), and the Digit Symbol
Test (DST) (Nurk et al., 2007). Briefly, KOLT measures immediate recall
and requires participants to observe picture charts, before telling the
examiner what they observed (Kendrick, 1985). DST evaluates execu-
tive function and is performed by completing a coding table that

consists of the numbers 1–9 and symbols. Participants are instructed to
fill in blank squares with the symbol that is paired with the digit dis-
played above the square (Wechsler, 1981). Lastly, COWAT encourages
participants to write as many words as possible beginning with a given
letter in 60 s and is considered a measure of language, memory, and
executive function (Benton A, 1989). Thus, the cognitive domains of
memory, language, and executive function were examined in this study.

2.4. Potential confounders

Age, gender and educational attainment (Ngandu et al., 2007) were
adjusted for. Cardiovascular disease (Zuo et al., 2016), diabetes (Stone
and Darlington, 2002) and stroke (Darlington et al., 2007) have been
associated with both kynurenines and cognitive performance (Biessels
et al., 2008; Stampfer, 2006; Tatemichi et al., 1994). Similarly, a high
body mass index (BMI) is associated with higher levels of kynurenines
(Mangge et al., 2014) and poor cognition (Cournot et al., 2006). PLP is
a coenzyme in the kynurenine pathway and associated with in-
flammation and cognitive function (Kennedy, 2016). Renal function
determines kynurenine levels (Pawlak et al., 2002) and poor renal
function is associated with cognitive dysfunction (Seliger et al., 2004).
The same applies to smoking (Anstey et al., 2007). Thus, estimated
glomerular filtration rate (Modification of Diet in Renal Disease equa-
tion) (Levey et al., 2006) and current smoking (plasma coti-
nine≥10 nmol/L) were adjusted for in our analyses (Seccareccia et al.,
2003).

Kynurenine levels are higher in major depression and TRP levels is
lower (Myint et al., 2007). Furthermore, depression is associated with
poor cognitive performance (Biringer et al., 2005). We aimed to es-
tablish whether kynurenines were associated with depressive symptoms
in this population-based sample. To this purpose, we applied the Hos-
pital Anxiety and Depression Scale (HADS) and defined a score of≥8 as
an indicator of mild depressive symptoms, in accordance with Stern
et al. (Stern, 2014). HADS questionnaires with one or two missing an-
swers on the items examining depressive symptoms were imputed as
the mode of the other answers (N=122). A total of 234 participants
who underwent cognitive testing did not answer the HADS ques-
tionnaire. To further characterize if TRP and kynurenines were related
to depressive symptoms in this study, we used antidepressant agents as
a surrogate marker. Anti-depressive medications were categorized ac-
cording to the 1997 ATC-classification system and included all agents
under N06A (selective serotonin reuptake inhibitors, tricyclic and tet-
racyclic antidepressants) and NX5 (selective norepinephrine reuptake
inhibitors). Further, we investigated if the use of non-steroidal anti-
inflammatory drugs (NSAIDs) were associated with kynurenine levels.
If so, these would be included in the multivariate models. NSAIDs were
defined by the 1997 ATC-registry groups M01A and N02B.

Finally, CRP is of special interest, as it is one of the most frequent
measures of inflammation reported as a negative determinant of cog-
nitive performance. Innate immune activation is expected to increase
both CRP levels, and the levels of several kynurenines downstream of
TRP (Kuo et al., 2005; Zuo et al., 2016). We thus evaluated associations
between TRP, kynurenines and CRP, and adjusted any significant
findings for CRP levels.

2.5. Statistics

Prior to multivariable analysis, metabolites were transformed ac-
cording to Tukey’s ladder of Powers (Tukey, 1977). The purpose was to
linearize relationships by achieving approximately normal distribu-
tions, as assessed by histograms and quantile-quantile plots. KYN was
transformed by an inverse transformation, QA and KTR as the inverse of
the square root and KA, XA, PIC, the KA/QA ratio, PLP and neopterin by
log transformations. CRP was transformed by a Box-Cox transformation
(Box and Cox, 1964). To compare effect sizes across the scales that
arose from the use of transformations, all continuous covariates and

Table 1
Demographic and clinical characteristics.

Variable Statistic
Demographics and general health

Age, years, median [range] 71 [70–72]
Women, % 55.2
Education, %
<7 years of Primary School 7.3
7–10 years of Primary School 31.6
1–2 years of High School 30.2
3 years of High School 11.9
College/University 19.0

Diabetes, % 6.7
Current smokinga, % 17.8
eGFR, mL/min/1.73m2, mean [SD] 71.7 [15.7]
BMI, mean [SD] 26.1 [3.9]
Hypertension, % 32.8
Stroke, % 4.7
MI, % 10.6
Depressive symptoms, % 8.8
Antidepressantsb, % 4.3
NSAIDsc, % 5.9
Cognitive test scores

KOLT score, mean [SD] 35 [8.1]
COWAT score, mean [SD] 15 [5.5]
DST score mean [SD] 10 [4.2]
Metabolite levels

TRP, µmol/L, median [IQR] 67.8 [17.5]
KYN, µmol/L, median [IQR] 1.72 [0.50]
KA, nmol/L, median [IQR] 54.8 [25.2]
AA, nmol/L, median [IQR] 16.0 [7.20]
XA, nmol/L, median [IQR] 16.4 [10.0]
HK, nmol/L, median [IQR] 36.1 [15.5]
HAA, nmol/L, median [IQR] 35.0 [17.0]
PIC, nmol/L, median [IQR] 49.4 [28.1]
QA, nmol/L, median [IQR] 462 [2 2 6]
Neopt, nmol/L, median [IQR] 8.70 [3.30]
PLP, nmol/L, median [IQR] 49.1 [44.5]
KTR, µmol/L/ µmol/L*100, median [IQR] 2.50 [0.70]
KA/QA, nmol/L/nmol/l*100, median [IQR] 11.87 [5.55]

a Plasma cotinine level≥ 10 nmol/l.
b ATC-classification system, NX5 and N06A: selective serotonin and nor-

epinephrine reuptake inhibitors. Tricyclic and tetracyclic antidepressants.
c ATC-registry groups M01A and N02B. AA, anthranilic acid; BMI, body mass

index; COWAT, Controlled Oral Word Association Test; DST, Digit Symbol Test;
eGFR, estimated glomerular filtration rate; HAA, 3-hydroxyanthranilic acid;
HK, 3-hydroxykynurenine; IQR, inter-quartile range; KA, kynurenic acid; KA/
QA, kynurenic acid-quinolinic acid ratio; KOLT, Kendrick Object Learning test;
KTR, kynurenine-tryptophan ratio; KYN, kynurenine; MI, previous myocardial
infarction; Neopt, neopterin; NSAIDs, non-steroidal anti-inflammatory drugs;
PIC, piconilic acid; PLP, pyridoxal 5′phosphate; QA, quinolinic acid; TRP,
tryptophan; XA, xanthurenic acid.
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outcomes were scaled to z-scores. Logistic- and linear regressions were
used to determine associations between potential confounders, kynur-
enines and outcomes.

The cognitive tests were positively correlated (supplementary ma-
terials, Figure S2) and potentially not independent outcome variables.
We first identified a highly significant Breusch-Pagan test (Breusch and
Pagan, 1979), which indicates correlated residuals from separate linear
regressions. Therefore, we decided to assess the associations between
all cognitive tests and each metabolite by Zellner’s seemingly unrelated
regression (SUR), which estimates a set of m linear regressions with
correlated error terms (Jahanshad et al., 2015). We used the two-step
estimation procedure. After initial analysis with age, gender, body mass
index, education (in years), GFR, current smoking, diabetes, previous
myocardial infarction, prior stroke and PLP, additional confounders
associated with TRP, kynurenines or neopterin, were adjusted.

It is impractical to formulate a hypothesis about which exact cog-
nitive test is related to which metabolite. Therefore, we tested the joint
significance of the association between each metabolite and “cogni-
tion”, represented by the three cognitive outcomes in SUR. In order to
test the joint significance, we applied the Wald test on a composite
linear hypothesis (Cameron, 2009), composed of the three hypotheses
of association between the metabolite and the three cognitive tests. The
joint significance (α = 0.05) threshold was adjusted for the number of
hypotheses tested, according to the Bonferroni method (Chen et al.,
2017). All statistical analyses were conducted using Stata (version 15,
Stata Corp, College Station, Texas, USA).

3. Results

3.1. Participant characteristics

A total of 2174 participants (55.2% women), aged 70–72 years with
cognitive tests and available blood samples are included in the analysis.
The mean scores and standard deviations (SD) of KOLT, DST, and
COWAT were 35 (SD: 8.1), 10 (SD: 4.2) and 15 (SD: 5.5), respectively.
KOLT, DST, and COWAT were approximately normally distributed
within the population (supplementary materials, Figure S2). Nineteen
percent of the study participants went to college or university (Table 1).
There were no major differences in the plasma concentrations of ky-
nurenines between the subgroups completing cognitive testing and the
HADS questionnaire.

3.2. Kynurenines and cognitive performance

KTR and neopterin were significantly inversely associated with
cognitive performance measured by KOLT (memory) and COWAT
(language) (Fig. 2), while no such associations were seen with DST
(executive function) (Table 2). KTR showed the strongest association
with cognitive performance (Table 2). Further, PLP was significantly
associated with DST (β 0.069, p=0.001), but did not act as a con-
founder.

3.3. Kynurenines and potential confounders

3.3.1. Depressive symptoms and antidepressant agents
TRP, KTR, the kynurenines, the KA/QA ratio and neopterin were not

associated with depressive symptoms or antidepressant agents
(Table 3). Thus, depression was not considered as a potential con-
founder for the relationship between kynurenines and cognition.

3.3.2. Non-steroidal anti-inflammatory drugs
Six percent of the participants reported use of NSAIDs (Table 1).

NSAIDs showed an association with TRP, KYN and KTR (Table 3), but
did not confound our results (Table 4).

3.3.3. C-reactive protein
CRP was associated with KYN, HK, HAA, QA, KTR, the KA/QA ratio

and neopterin (Table 3). After adjusting the SUR model for CRP, it did
not act as a confounder (Table 4).

4. Discussion

We studied cognition in relation to neopterin, tryptophan, and the
kynurenines in a community sample of older adults and found that
elevated levels of both KTR and neopterin were associated with lower
performance in the cognitive domains of memory and language. KTR
showed the strongest association.

Our study included 2174 persons (55.2% women) aged 70–72 years
recruited from a population of home-dwelling older adults. In com-
parison, other studies that have investigated the relationship between
the kynurenines, neopterin and cognitive function, have been based on
small patient groups with specific diseases. Higher levels of neopterin
and kynurenines were related to lower cognitive performance post-

Fig. 2. Cognitive tests and markers of immune ac-
tivation. Predicted results from Zellner’s regression,
adjusted for age, sex, body mass index, educational
level, estimated glomerular filtration rate, current
smoking, diabetes, hypertension, previous myo-
cardial infarction, prior stroke, and pyridoxal 5′
phosphate as covariates. COWAT, Controlled Oral
Word Association Test; KOLT, Kendrick Object
Learning Test; KTR, kynurenine-tryptophan ratio.
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operatively amongst patients who had undergone cardiac bypass sur-
gery (N=28, mean age of 60.2 years, 11% women), and major non-
cardiac thoracic surgery (N=28, mean age of 67.6 years, 32% women)
(Forrest et al., 2011). Additionally, a study of patients with stage IV
renal failure (N=27, mean age of 76.4 years, 33% women), suggested
that rising levels of neopterin and KYN were associated with lower
cognitive performance (Karu et al., 2016). Further, neopterin was as-
sociated with progression of cognitive deficits in patients with Alzhei-
mer’s disease (Blasko et al., 2007; Leblhuber et al., 1999). Previous
studies have shown that acute TRP depletion may impair episodic
memory, and suggest a role of the serotonergic system in cognitive
function (Mendelsohn et al., 2009). Our results support that the ky-
nurenine pathway may be relevant for cognitive function.

There is evidence of an association between peripheral pro-in-
flammatory mediators, such as tumor necrosis factor-α, Il-6, and CRP,
and reduced cognitive performance in healthy humans (Economos
et al., 2013; Schram et al., 2007; Teunissen et al., 2003; Wichmann
et al., 2014; Yaffe et al., 2003). Therefore, the kynurenines could rather
be indirect markers of their underlying activators, which are mainly
related to inflammation. We did not identify confounding from CRP in
our data, but a more comprehensive assessment of inflammation would
have been informative.

In this study, nine percent of the participants had depressive
symptoms (HADS score>= 8), but we found no association with TRP
or kynurenine levels. Although an association between kynurenines and
major depression has been described, our study is not comparable and
does not generalize to major depressive disorder. First, HADS is not a
diagnostic test of depression (Cosco et al., 2012; Myint et al., 2007).
Second, patients with major depression are less likely to participate as
study volunteers (Hughes-Morley et al., 2015). Finally, participants
with depressive symptoms and patients using antidepressants likely
represent a heterogeneous group, as antidepressant agents have broad
indications, for example for treating anxiety and sleeping disturbances
in the elderly (Noordam et al., 2015). Here, depressive symptoms were
mainly of interest as potential confounders.

PLP, the active form of vitamin B6, was associated with DST but did
not act as a confounder in our study. Our findings are in line with
studies indicating both a detrimental effect on cognition from PLP de-
ficiency. Vitamin B6 is actively transported over the BBB and is a rate-
limiting cofactor in the synthesis of neurotransmitters such as dopamine
and serotonin (Kennedy, 2016). Circulating PLP levels are lower in
individuals with inflammation compared to healthy subjects (Ueland
et al., 2017), and has been proposed to contribute to cognitive decline
(Kennedy, 2016). Intervention studies administering vitamin B6

Table 2
Cognitive performance and individual metabolites (N=2174).a

KOLT COWAT DST Wald testd

Memory Language Executive function

Association of each metabolite with three cognitive tests

β SE p β SE p β SE p X2 pc

TRP 0.047 0.022 0.03 0.043 0.022 0.05 0.050 0.021 0.02 9.2 0.027
KYNb -0.021 0.024 0.4 -0.030 0.024 0.2 0.026 0.023 0.3 4.6 0.2
KYN2b -0.061 0.021 0.003 -0.021 0.020 0.3 -0.044 0.020 0.03 11.3 0.01*
KA 0.022 0.026 0.4 -0.011 0.025 0.7 0.034 0.024 0.2 3.1 0.38
AA 0.003 0.022 0.9 0.014 0.021 0.5 0.003 0.021 0.9 0.42 0.94
XA 0.049 0.023 0.03 0.024 0.023 0.3 0.047 0.022 0.03 7.3 0.06
HK -0.002 0.242 0.9 -0.009 0.024 0.7 0.026 0.023 0.3 1.8 0.6
HAA 0.032 0.023 0.2 0.013 0.023 0.6 0.043 0.022 0.05 4.7 0.2
PIC 0.031 0.022 0.2 0.005 0.021 0.2 0.005 0.021 0.8 2.0 0.6
QA -0.007 0.024 0.8 -0.050 0.024 0.04 0.034 0.023 0.1 9.0 0.03
KTR -0.084 0.024 0.001 -0.077 0.024 0.001 -0.032 0.023 0.16 17.7 < 0.001*
Neopt -0.074 0.023 0.001 -0.056 0.022 0.01 -0.007 0.022 0.8 14.6 0.002*
KA/QA 0.022 0.021 0.3 0.028 0.021 0.2 -0.003 0.021 0.9 2.8 0.43
Association between KTR and three cognitive tests, with covariates

β SE p β SE p β SE p X2 p

Age
71 -0.024 0.050 0.6 0.072 0.049 0.1 -0.040 0.048 0.4 4.3 0.2
72 -0.050 0.050 0.3 0.072 0.049 0.1 -0.062 0.048 0.2 6.8 0.1

Female 0.408 0.044 <0.001 0.072 0.043 0.1 0.085 0.042 0.05 85.6 < 0.001
GFR -0.061 0.024 0.01 -0.067 0.024 0.005 -0.033 0.023 0.2 11.5 0.01
Edu 0.150 0.022 <0.001 0.340 0.022 < 0.001 0.402 0.021 <0.001 486.7 < 0.001
Smoke -0.021 0.050 0.7 -0.016 0.049 0.8 -0.061 0.048 0.2 1.8 0.6
Dia -0.103 0.086 0.2 -0.206 0.084 0.01 -0.090 0.082 0.3 6.8 0.08
BMI -0.001 0.006 0.8 -0.005 0.005 0.4 0.001 0.005 0.8 0.92 0.8
HT -0.045 0.046 0.3 -0.014 0.045 0.8 -0.049 0.044 0.3 1.5 0.7
MI -0.123 0.069 0.07 -0.051 0.067 0.4 -0.022 0.066 0.7 3.4 0.3
Stroke -0.246 0.098 0.01 -0.208 0.097 0.03 -0.091 0.095 0.3 8.7 0.03
PLP -0.003 0.022 0.9 0.032 0.021 0.1 0.069 0.021 0.001 13.1 0.005
KTR -0.084 0.024 0.001 -0.077 0.024 0.001 -0.032 0.023 0.16 17.7 < 0.001*

a Zellner’s seemingly unrelated regression, estimated for each metabolite with age, BMI, dia, edu, GFR, MI, sex, smoking, hypertension, MI, stroke and PLP as
covariates.
b The association between KOLT and KYN was non-linear. A second degree orthogonal polynomial gave a good fit.
c The significance threshold for 12 tests is 0.0042, according to the Bonferroni method, indicated by *.
d Test of the joint significance of the association between each metabolite and three cognitive outcomes. AA, anthranilic acid; BMI, body mass index; COWAT,

Controlled Oral Word Association Test; Dia, diabetes; DST, Digit Symbol Test; Edu, education; GFR, glomerular filtration rate; HAA, 3-hydroxyanthranilic acid; HK, 3-
hydroxykynurenine; HT, hypertension; KA, kynurenic acid; KA/QA, kynurenic acid-quinolinic acid ratio; KOLT, Kendrick Object Learning Test; KYN, kynurenine;
KYN2, 2nd degree orthogonal polynomial of KYN; KTR, kynurenine-tryptophan ratio; MI, previous myocardial infarction; Neopt, neopterin; p, p-value; PIC, picolinic
acid; PLP, pyridoxal 5′phosphate; QA, quinolinic acid; SE, standard error; Smoker, current smoking; Stroke, prior stroke; TRP, tryptophan; X2, chi-squared; XA,
xanthurenic acid; β, standardized regression coefficient.
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supplementation for age-related memory decline has shown some en-
couraging trends (Deijen et al., 1992). However, given the involvement
of PLP in a wide range of biological processes, it remains to be de-
termined if PLP plays an active role in cognitive performance.

Our rationale for using the KTR was that it provides a better mea-
sure of IDO activity than the individual metabolites, particularly when
KTR correlates with inflammatory markers, such as neopterin
(Schrocksnadel et al., 2006). The rate-limiting enzymes in kynurenine
and neopterin biosynthesis, IDO and GTP-CH respectively, are both
induced by IFN-γ. The absence of IFN-γ is associated with improve-
ments in neurogenesis, synaptic plasticity, and performance in hippo-
campus-dependent tasks in mice (Monteiro et al., 2016). Experimental
studies have implicated IDO in inflammation-associated cognitive dys-
function (Chen and Guillemin, 2009; Comim et al., 2017; Heisler and
O'Connor, 2015; Yu et al., 2015).

Experimental studies support a neuroexcitatory role of QA in the
brain, and a neuroprotective role of KA. The hippocampus has been
reported to be particularly susceptible to the neurotoxic effects of QA
(Schwarcz and Kohler, 1983). KA, on the other hand, is considered

neuroprotective (Leib et al., 1996). We did not find evidence to support
that the ratio between these metabolites (KA/QA) in peripheral blood
was related to cognitive function. However, QA and KA cross the BBB
poorly (Fukui et al., 1991), and therefore measurement in the cere-
brospinal fluid will be needed to settle this issue.

An important question in studies such as ours is to what extent, if
any, peripheral inflammation relates to neuroinflammation. Blood-
borne cytokines can enter the brain by transport systems at the BBB
(Varatharaj and Galea, 2017) and immune cells enter the brain under
physiological conditions, though at a much lower rate than in other
organs (Takeshita and Ransohoff, 2012). TRP and KYN are themselves
transported to the brain and are precursors of both brain serotonin
(Young and Leyton, 2002) and kynurenines (Chen and Guillemin,
2009). In microglia, KYN is a precursor for QA, which could activate the
N-methyl-D-aspartate receptor (NMDAR) (Ganong and Cotman, 1986).
Thus, high plasma KTR may be related to cognitive function as a marker
of inflammation, serotonin depletion and NMDAR activation in the
brain, but this must be investigated in future studies.

Strengths of this study include a large sample size of 2174 persons, a

Table 3
Evaluating potential confounders. Association with exposure a.

Depressive symptoms b Anti-depressants b NSAIDs b C-reactive protein c

OR p OR p OR p β p

TRP 1.01 0.9 0.91 0.4 0.65 < 0.001 -0.02 0.3
KYN 0.94 0.5 1.16 0.3 0.74 0.003 0.19 < 0.001
KA 0.88 0.2 0.89 0.4 0.96 0.7 0.04 0.2
AA 0.89 0.2 0.98 0.9 1.2 0.1 0.06 0.003
XA 0.93 0.4 0.80 0.1 0.93 0.4 -0.04 0.05
HK 1.10 0.3 1.06 0.7 1.00 0.9 0.17 < 0.001
HAA 0.97 0.7 1.11 0.4 0.93 0.5 0.15 < 0.001
PIC 0.98 0.8 0.87 0.2 1.02 0.9 -0.02 0.3
QA 0.98 0.8 1.07 0.6 1.02 0.82 0.24 < 0.001
KTR 0.94 0.5 1.27 0.1 1.29 0.01 1.21 < 0.001
Neopt 1.09 0.3 1.20 0.1 1.03 0.74 0.18 < 0.001
KA/QA 0.94 0.4 0.88 0.3 0.95 0.6 -0.15 < 0.001

Note. 252/2869 had depressive symptoms, 141/3319 used anti-depressants, and 196/3319 used NSAIDs.
a All models adjusted for age, body mass index, current smoking, diabetes, educational level, glomerular filtration rate, hypertension, previous myocardial

infarction, prior stroke, pyridoxal 5′ phosphate and sex.
b Logistic regression.
c Linear regression. AA, anthranilic acid; HAA, hydroxyanthranilic acid; HK, hydroxykynurenine; KA, kynurenic acid; KA/QA, kynurenic acid-quinonilic acid ratio;

KTR, kynurenine-tryptophan ratio; KYN, kynurenine; Neopt, neopterin; OR, odds ratio; p, p-value; PIC, picolinic acid; QA, quinonilic acid; TRP, tryptophan; X2, chi-
squared; XA, xanthurenic acid; β, standardized regression coefficient.

Table 4
Cognitive performance and individual metabolites. Adjusted models (N= 2174).a

KOLT COWAT DST Wald testb

Memory Language Executive function

Model 1: Unadjusted model

β SE p β SE p β SE p X2 P

KTR -0.084 0.024 0.001 -0.077 0.024 0.001 -0.032 0.023 0.2 17.7 <0.001
Neopt -0.074 0.023 0.001 -0.056 0.022 0.01 -0.007 0.022 0.8 14.6 0.002
Model 2: Adjustment for C-reactive protein

KTR -0.078 0.025 0.002 -0.081 0.025 0.001 -0.040 0.024 0.1 16.1 0.001
Neopt -0.071 0.024 0.003 -0.052 0.023 0.02 -0.011 0.022 0.6 11.7 0.008
Model 3: Adjustment for non-steroidal anti-inflammatory drugs

KTR -0.082 0.024 0.001 -0.079 0.024 0.001 -0.032 0.023 0.2 17.8 <0.001
Neopt -0.074 0.022 0.001 -0.055 0.022 0.01 -0.007 0.022 0.7 14.5 0.002

Note. 196 out of 3319 participants used non-steroidal anti-inflammatory drugs.
a Zellner’s seemingly unrelated regression, estimated for each metabolite with age, sex, body mass index, educational level, glomerular filtration rate, current

smoking, diabetes, hypertension, previous myocardial infarction, prior stroke, pyridoxal 5′ phosphate as covariates and either CRP (Model 2) or NSAIDs (Model 3).
b Test of the joint significance of association between each metabolite and all three cognitive outcomes. Neopt, neopterin; KTR, kynurenine-tryptophan ratio; p, p-

value; SE, standard error; X2, chi-squared; β, standardized regression coefficient.
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relatively high response rate among the participants, and similar age of
the participants (70–72 years), which limits the impact of age itself on
metabolites and cognition. The main limitations are the constraints of
cross-sectional studies. This involves difficulties in ascertaining the di-
rection of associations between predictors and outcomes and the po-
tential for unmeasured confounders. Cognitive domains are not mu-
tually exclusive, which can make interpretation challenging (Malek-
Ahmadi et al., 2011). Further, non-fasting blood samples is a limitation,
and measurements of the kynurenines in the cerebrospinal fluid would
have been informative. Longitudinal studies are needed to further de-
lineate these associations.

In summary, we found that KTR and neopterin, biomarkers of cel-
lular immune activation, were associated with a lower cognitive func-
tion in the domains of memory and language in a sample of community-
dwelling older adults. The findings add support for a role of the innate
immune system in cognitive function.
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Supplementary Figure 1. Ceiling effects in MMSE and Block Design 

 

The 12-point MMSE displayed considerable ceiling effects. 90.3 % scored ≥ 11 points; of these, 26.5% 

scored 11 and 63.8% scored 12 points. 87.7% of these participants also scored 16 out of 16 points on 

Block Design (97.7% scored 12 points or more). The ceiling effects were increased amongst 

participants with higher education. 2152 participants completed the Mini-Mental Status Examination, 

and 2168 participants completed the Block Design Test. MMSE, Mini-Mental Status Examination.                                                                                                     
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Supplementary Figure 2. Distributions of KOLT, COWAT and DST 

 

First row = histograms, second row = bivariate distributions with regression lines. COWAT, Controlled 

Oral Word Association Test; DST, Digit Symbol Test; KOLT, Kendrick Object Learning Test; p, p-

value; R, Pearson’s correlation coefficient. 
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Introduction
The essential amino acid tryptophan (Trp) is degraded through 
the kynurenine pathway (Figure 1), giving rise to metabolites 
referred to as kynurenines.1 The kynurenine pathway is most 
highly expressed not only in liver and monocytes2 but also in 
muscle, brain, and intestine.3 The kynurenines and the rate-
limiting enzyme indoleamine 2,3-dioxygenase (IDO) of the 
kynurenine pathway have been implicated in experimental 
cognitive dysfunction in mice,4-7 and kynurenines are lower in 
Alzheimer’s disease (AD) compared with healthy controls.8

Tryptophan 2,3-dioxygenase (TDO) and IDO generate 
kynurenine (Kyn) from Trp,9 which gives rise to downstream 
metabolites that have shown neuroprotective (kynurenic acid 
[KA])10 and neurotoxic properties (quinolinic acid [QA]).11 
Both KA and QA act as antagonist and agonist, respectively, 
at the N-methyl-d-aspartate receptor (NMDAR), suggest-
ing a potential role of kynurenines in relation to signal trans-
duction pathways related to cognitive dysfunction.12 The key 
enzymes IDO and kynurenine 3-monooxygenase (KMO) are  
induced by pro-inflammatory cytokines. KMO converts Kyn 

Kynurenines, Neuropsychiatric Symptoms, and 
Cognitive Prognosis in Patients with Mild Dementia

Stein-Erik Hafstad Solvang1,2, Jan Erik Nordrehaug1,2, 
Dag Aarsland3, Johannes Lange4,5, Per Magne Ueland6, 
Adrian McCann6, Øivind Midttun6, Grethe S Tell7,8  
and Lasse Melvaer Giil1,2

1Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway. 
2Department of Clinical Science, University of Bergen, Bergen, Norway. 3Department of Old Age 
Psychiatry, King’s College University, London, UK. 4The Norwegian Centre for Movement 
Disorders, Stavanger University Hospital, Stavanger, Norway. 5Centre for Organelle Research 
(CORE), University of Stavanger, Stavanger, Norway. 6Bevital A/S, Bergen, Norway. 7Department 
of Global Public Health and Primary Care, University of Bergen, Bergen, Norway. 8Division of 
Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway.

ABSTRACT

Introduction: Circulating tryptophan (Trp) and its downstream metabolites, the kynurenines, are potentially neuroactive. Consequently, 
they could be associated with neuropsychiatric symptoms and cognitive prognosis in patients with dementia.

Objective: The objective of this study was to assess associations between circulating kynurenines, cognitive prognosis, and neuropsy-
chiatric symptoms.

Methods: We measured baseline serum Trp, neopterin, pyridoxal 5′-phosphate (PLP), and 9 kynurenines in 155 patients with mild demen-
tia (90 with Alzheimer’s disease, 65 with Lewy body dementia). The ratios between kynurenine and Trp and kynurenic acid (KA) to kynure-
nine (KKR) were calculated. The Mini-Mental State Examination (MMSE) and the Neuropsychiatric Inventory (NPI) were administered at 
baseline and annually over 5 years. Associations between baseline metabolite concentrations with MMSE and the NPI total score were 
assessed using a generalized structural equation model (mixed-effects multiprocess model), adjusted for age, sex, current smoking, glo-
merular filtration rate, and PLP. Post hoc associations between KKRs and individual NPI items were assessed using logistic mixed-effects 
models. False discovery rate (0.05)–adjusted P values (Q values) are reported.

Results: Kynurenine had a nonlinear quadratic relationship with the intercept of the MMSE scores over 5 years (Q < 0.05), but not with the 
slope of MMSE decline. Kynurenine was associated with a higher NPI total score over time (Q < 0.001). Post hoc, both KKR and KA were 
associated with more hallucinations (Q < 0.05).

Conclusions: Kynurenine has a complex relationship with cognition, where both low and high levels were associated with poor cognitive 
performance. A higher KKR indicated risk for neuropsychiatric symptoms, especially hallucinations.
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to 3-hydroxykynurenine (HK).13 Interferon gamma (IFN-γ) 
is the most potent activator.2 Higher circulating levels of 
kynurenine metabolites are associated with depression14 and 
elevated postmortem brain levels of kynurenines, and rele-
vant enzymes have been observed in patients with psychotic 
and mood disorders.15-19 Cerebrospinal fluid (CSF) levels of 
KA were not significantly altered in patients with dementia 
with Lewy bodies (DLB) compared with controls.20 The 
kynurenine-to-tryptophan ratio (KTR) and neopterin, which 
are biomarkers of cellular immune activation, have been 
associated with reduced cognitive performance in commu-
nity-dwelling older adults.21

We aimed to assess whether the levels of circulating kynure-
nines at baseline predicted cognitive prognosis and neuropsy-
chiatric symptoms over 5 years in patients with AD and Lewy 
body dementia (LBD).

Methods
Study participants

The Dementia Study of Western Norway (DemVest) is a mul-
ticenter longitudinal cohort study with annual follow-up until 
death. The study recruited 155 participants from specialist 
clinics of neurology and old-age psychiatry situated in the 

Norwegian counties Hordaland and Rogaland with available 
blood samples in a biobank. Participant recruitment during 
2005 to 2007 relied on fulfillment of the inclusion criteria: 
patients diagnosed with mild dementia for the first time and a 
minimal Mini-Mental State Examination (MMSE) score of 
20.22 Thereafter, selective recruitment of patients with either 
DLB or Parkinson disease with dementia (PDD) was under-
taken. Thus, the latter 2 patient groups are overrepresented in 
the study. Due to similar pathologies, DLB and PDD were 
classified together as LBD.

Independently, 2 physicians experienced in the diagnostic 
workup of dementia made a clinical diagnosis using the 
NINCDS-ADRDA criteria for AD (National Institute of 
Neurological and Communicative Disorders and Stroke and 
Alzheimer’s Disease and Related Disorders Association)23 and 
the revised consensus criteria for DLB (2005).24 A detailed study 
protocol has been published.22 Briefly, a physician interviewed 
the patient together with a caregiver who provided complemen-
tary information. Medical history was also obtained from elec-
tronic records and a clinical neurological examination was 
performed. In addition to a global cognitive assessment of cogni-
tion by the MMSE, and dementia severity using Clinical 
Dementia Rating, patients were assessed with a standardized 
neuropsychological test battery. In situations with diagnostic 
uncertainty, physicians discussed each case until consensus. In 
addition, after 5 years, 3 specialists in geriatrics and psychiatry 
revised the diagnoses in consensus meetings. All patients were 
followed longitudinally with annual assessments with MMSE 
and the Neuropsychiatric Inventory (NPI), mostly until death. 
Due to the progressive nature of dementia, most patients fol-
lowed over time will reach a point where they score 0 on the 
MMSE on each consecutive follow-up. This is called the floor 
effect. At this point, the MMSE can no longer measure further 
disease progression, and for a statistical model, it will look as if 
disease progression has stopped. Furthermore, variance will be 
reduced at follow-ups with many 0 scores. This will result in the 
introduction of a range of statistical biases, which are not easily 
compensated for, especially if a substantial proportion of patients 
reach a floor or ceiling effect.25 Therefore, a decision was made 
to censor the study on biomarkers after the fifth follow-up.

Postmortem studies from the full DemVest study (56 
autopsies) found that the concordance rate for a clinical diag-
nosis compared with a pathological diagnosis was 83% for AD 
and 80% for LBD.26

Some data during follow-up were missing. Most were 
observed in an intermittent pattern, meaning that the patient 
missed one appointment and later returned to the study. The 
proportion of missing measurements that was not due to death 
was small. The MMSE and NPI were assessed at the same visit 
and thus had largely corresponding missing measurements. 
Accordingly, missing measurements for the MMSE are listed. 
For the MMSE, there were no missing measurements at base-
line, 6 missing measurements at the first follow-up, 11 at the 
second follow-up, 9 at the third follow-up, 6 at the fourth 

Figure 1.  The kynurenine pathway. TDO and IDO convert tryptophan to 

kynurenine (Kyn). HK (3-hydroxykynurenine) is converted to 

3-hydroxyanthranilic acid (HAA) by kynureninase (KYNU), and 

subsequently to quinolinic acid (QA), catalyzed by quinolinate 

phosphoribosyl transferase. QA is converted to nicotinamide adenosine 

dinucleotide (NAD+), the final product of the pathway. Anthranilic acid 

(AA) is produced from Kyn by KYNU. Kynurenine aminotransferases 

(KATs) generate KA from Kyn and xanthurenic acid (XA) from HK. 

Picolinic acid (PIC) is produced by spontaneous conversion of HAA. Both 

KYNU and KATs have pyridoxal 5′-phosphate (PLP) as a cofactor.9 IDO 

indicates indoleamine 2,3-dioxygenase; TDO, tryptophan 2, 

3-dioxygenase; KMO, kynurenine 3-monooxygenase; KATs, kynurenine 

aminotransferases; 3-HAO, 3-hydroxyanthranilic acid 3, 4-dioxygenase; 

Spont., spontaneous; NAD+, nicotine adenine dinucleotide; HK, 

3-hydroxykynurenine; HAA, 3-hydroxyanthranilic acid.
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follow-up, and 8 at the fifth follow-up. During the study 
period, several patients died prior to their planned follow-up. 
At the second follow-up, 15 patients had died, 34 at the third, 
55 at the fourth, and 78 at the fifth follow-up.

The Mini-Mental State Examination

The MMSE has maximum score of 30 and a minimum of 0 and 
consists of a variety of questions, grouped into 7 categories rep-
resenting different cognitive domains. The categories are orien-
tation to time, orientation to place, registration of 3 words, 
attention and calculation, recall of 3 words, language, and visual 
construction.27 A decline of 2 to 4 points is considered a reliable 
change,28 and about 3 points is also the expected annual decline.29

The Neuropsychiatric Inventory

The NPI evaluates 12 neuropsychiatric symptoms common in 
dementia: delusions, hallucinations, agitation, apathy, dyspho-
ria, anxiety, irritability, euphoria, disinhibition, motor distur-
bances, and sleep- and appetite disturbances. A caregiver 
familiar with the patient rates the severity and frequency of 
each neuropsychiatric symptom using a standardized question-
naire. A combined score for each symptom is calculated by 
multiplying the frequency by severity. The total score is deter-
mined by adding all the domain scores together.30 We used the 
NPI total score to limit the number of outcomes.

Measurement of metabolic biomarkers

Baseline levels of Trp, anthranilic acid (AA), 3-hydroxyan-
thranilic acid, HK, KA, Kyn, picolinic acid, QA, xanthurenic 
acid (XA), pyridoxal 5′-phosphate (PLP), and neopterin were 
measured using liquid chromatography-tandem mass spec-
trometry in serum samples, collected between 2005 and 2009, 
and stored at −80°C until analysis in 2018. The ratio between 
Trp and Kyn (KTR) was defined as Kyn (µM)/Trp (µM)*100 
and the kynurenic acid-to-kynurenine ratio (KKR) was esti-
mated. The limit of detection for neopterin and the kynure-
nines ranged from 0.5 to 7 nmol/L, whereas the limit of 
detection for Trp was 0.4 µmol/L. Within-day and between-
day coefficients of variation were 5.7% to 16.9% and 3.0% to 
9.5%, respectively. The biochemical analyses were performed at 
the laboratory of Bevital AS (Bergen, Norway; http://bevital.
no). We did not detect any significant correlations between 
metabolite levels and storage time using Spearman rank order 
correlations (data not shown).

Statistics

Univariate differences between AD and LBD were assessed 
using t tests, Pearson χ2, and Mann-Whitney U tests for nor-
mal, categorical, and skewed variables, respectively. Metabolite 
concentrations were transformed to approximate normality 

using Tukey’s ladder of powers.31 A constant of one was added 
prior to logarithmic transformation for all metabolites with a 
minimum concentration below 1 to avoid an uneven spread of 
the data after logarithmic transformations. Associations 
between cognitive deterioration and neuropsychiatric symp-
toms over 5 years and baseline metabolite levels were examined 
in a multiprocess model or joint model. Of note, although 
patients underwent 5 annual follow-up examinations, there 
were occasional delays, and some patients were followed for 
6 years. The MMSE test scores were transformed by the square 
root of errors, √(30-MMSE), thereby higher values indicate 
poorer performance. The MMSE raw scores were right skewed 
toward higher scores, which is problematic in statistics, as 
transformations typically work best to obtain normality with 
left-skewed data. Thus, the reciprocal of MMSE (30 − MMSE) 
was calculated to obtain a right-skewed distribution of the 
number of errors committed by patients on the MMSE (an 
MMSE score of 24 is 30 − 24 = 6 errors). After this, the square 
root transformation of the MMSE errors resulted in an approx-
imately normal distribution as assessed by quantile-quantile 
plots and histograms.32 However, 37 measurements of the 
transformed MMSE test scores reached a ceiling effect. Thus, 
right censoring was implemented using a linear mixed-effects 
Tobit model with random intercepts and slopes.

The NPI total score was best fitted using a negative bino-
mial random intercept model, according to the Bayesian 
information criterion. Random slopes could not be fitted, 
likely due to considerable individual deviation from a linear 
slope. The MMSE and NPI total models were linked by cor-
related random effects, implemented using a generalized 
structural equation model framework (Stata 15 package 
“gsem”). Each metabolite measured at baseline was entered in 
a separate multiprocess model, with years in study (time), age, 
age*time interaction, sex, AD vs LBD, AD vs LBD*time 
interaction, current smoking, glomerular filtration rate, and 
PLP as independent variables in the MMSE model. The 
independent variables were the same in the NPI total model, 
without a nonsignificant age*time interaction. Nonlinearity 
was checked using orthogonal polynomials of the trans-
formed metabolite levels.

Post hoc, we compared the multiprocess models stratified by 
diagnosis. We further assessed the association between metab-
olite concentrations and the presence of individual NPI items 
(domain score ⩾1) using a logistic random intercept model 
with time, age, sex, AD vs LBD, AD vs LBD*time interaction, 
current smoking, glomerular filtration rate, and PLP as inde-
pendent variables. Finally, all study findings were adjusted for 
multiple comparisons, using the tail area–based false discovery 
rate (FDR) due to dependency, and adjusted P values are 
reported (Q values or Q). This was done separately for post hoc 
tests (R package: fdrtool).33,34 The statistical analyses, besides 
FDR correction, were conducted in Stata (version 15; 
StataCorp, College Station, TX, USA).
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Ethics

The Regional Committee for Medical and Health Research 
Ethics approved the study protocol and a notification of change 
relating to biomarker analyses (REC number: 2010/633). All 
participants provided signed informed consent at baseline after 
a detailed explanation of the procedures.

Results
Study participants

The study included 155 patients (56% women) with 
dementia (90 AD, 65 LBD). The baseline mean MMSE 
score was 23.7 and mean educational level was 9.7 years. A 

total of 20% of the patients were current smokers at base-
line (Table 1).

Kynurenines and cognitive performance

Kynurenine measured at baseline had a significant nonlinear, 
quadratic, relationship with the average MMSE score over the 
5 follow-up examinations (Table 2, Figure 2), but not with the 
rate of change. Using orthogonal polynomials, the first polyno-
mial of kynurenine, representing a linear relationship, was not 
significant (estimate [Est.] −0.023, Q = 0.840), whereas the sec-
ond, representing a nonlinear relationship, was significant (Est. 
0.10, Q = 0.035).

Table 1.  Participant demographics of the Dementia Study of Western Norway and serum metabolite concentrations at baseline.

Clinical characteristics Dementia (N = 155) AD (N = 90) LBD (N = 65) P value

Age, y, mean (SD) 75.1 (7.31) 75.1 (7.8) 75.1 (6.3) .694a

Education, y, mean (SD) 9.7 (3.0) 9.7 (3.1) 9.6 (2.8) .738a

Female, % 56.1 67.8 40.0 .001b*

Lewy body disease, % 42.3  

Current smokers, % 20.0 23.3 15.4 .222b

MMSE, score, mean (SD) 23.7 (2.8) 23.6 (2.5) 23.8 (3.1) .597a

GFRc, mean (SD) 79.2 (20.4) 79.2 (22.4) 80.7 (25.4) .459a

Metabolites

Trpd,e 66.2 (22.4) 66.0 (22.8) 66.6 (15.5) .547f

Kynd,e 1.74 (0.67) 1.74 (0.58) 1.74 (0.73) .582f

HKe,g 50.0 (33.7) 48.0 (28.8) 54.4 (34.3) .033f*

KAe,g 51.1 (24.4) 51.5 (21.7) 50.2 (25.8) .772f

XAe,g 12.3 (9.0) 12.5 (8.9) 12.3 (9.9) .558f

AAe,g 21.7 (10.7) 20.1 (11.5) 22.5 (8.6) .539f

HAAe,g 36.1 (16.5) 35.2 (16.2) 39.2 (16.3) .360f

PICe,g 35.9 (22.4) 33.0 (18.0) 38.1 (26.5) .143f

QAe,g 474 (312) 465 (312) 481 (309) .736f

KTRe 2.59 (1.06) 2.49 (1.02) 2.69 (0.96) .244f

KKRe 7.97 (0.43) 8.00 (0.40) 7.95 (0.41) .357f

Neopte,g 19.7 (14.0) 18.7 (11.3) 20.6 (15.3) .276f

PLPe,g 31.6 (33.9) 34.0 (33.7) 29.6 (24.9) .021f*

Abbreviations: AA, anthranilic acid; AD, Alzheimer’s disease; GFR, glomerular filtration rate; HAA, 3-hydroxyanthranilic acid; HK, 3-hydroxykynurenine; KA, kynurenic 
acid; KTR, kynurenine-to-tryptophan ratio; Kyn, kynurenine; LBD, Lewy body dementia; MMSE, Mini-Mental State Examination; Neopt, neopterin; PIC, picolinic acid; PLP, 
pyridoxal 5´-phosphate; Trp, tryptophan; QA, quinolinic acid; XA, xanthurenic acid.
aStudent t test.
bPearson χ2 test.
cMetabolite levels in median and interquartile range.
dMicromoles per liter.
eMilliliters per minute per 1.73 m2 surface area.
fMann-Whitney U test.
gNanomoles per liter.
*P < .05.
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Kynurenines and neuropsychiatric symptoms

The kynurenic acid-to-kynurenine ratio was positively associ-
ated with the rate of change per year in neuropsychiatric symp-
toms, specifically with more neuropsychiatric symptoms over 
time (Q = 0.045; see Figure 3). There was a trend for KA and 
XA to also be positively associated with more neuropsychiatric 
symptoms over time, but these findings were not significant 
after adjustment for multiple comparisons (Table 2).

Post hoc analyses

Differences in prognostic associations of kynurenines between AD 
and LBD.  The associations between the kynurenines, cogni-
tive prognosis, and neuropsychiatric symptoms over 5 years did 
not differ between AD and LBD after corrections for multiple 
comparisons (no significant interaction by clinical diagnosis 
[AD versus LBD]; Supplementary Table 1, and Supplemen-
tary Figure 1).

Individual neuropsychiatric symptoms.  The kynurenic acid-to-
kynurenine ratio was significantly associated with an increasing 
probability of hallucinations over time (odds ratios in Figure 4 
indicate increased odds per year), whereas KA was significantly 
associated with more hallucinations, on average, over 5 years 
(Q < 0.001) with no change over time. There were several other 
observed trends. Of note, KA, KKR, and XA displayed trends 
for increasing agitation over time. Kyn, AA, QA, neopterin, 
and KTR showed trends for association with reduced average 
test scores on the item for irritability, whereas Trp, Kyn, HK, 
and neopterin displayed trends for association with higher 
average probabilities of experiencing apathy (Figure 4).

Discussion
In this study, Kyn had a nonlinear relationship with the partici-
pants’ average MMSE test performance over 5 years. This rela-
tionship suggests that both low and high levels of Kyn are 
associated with poorer MMSE test performance, as compared 

Table 2.  Associations between serum kynurenines and neopterin at baseline and 5-year prognosis in dementia.a

Cognitive performance (MMSE) Neuropsychiatric symptoms (NPI total score)

  Est. SE P value Q Est. SE P value Q

Trp 0.059 0.044 .185 Trp 0.010 0.055 .852  

Kyn −0.023 0.052 .656 Kyn −0.036 0.065 .569  

Kyn2 0.102 0.030 .006* .046*  

AA −0.080 0.048 .096 AA −0.097 0.058 .099  

KA 0.072 0.057 .209 KA −0.049 0.087 .575  

  KA*T 0.051 0.022 .021* .080

HK −0.099 0.060 .099 HK −0.005 0.077 .950  

XA 0.017 0.050 .728 XA −0.101 0.077 .190  

  XA*T 0.051 0.021 .017 .075

HAA −0.004 0.048 .932 HAA 0.027 0.058 .636  

QA −0.014 0.052 .795 QA −0.087 0.063 .170  

PIC 0.011 0.045 .808 PIC 0.022 0.057 .701  

Neopt 0.023 0.050 .647 Neopt −0.086 0.060 .149  

KTR 0.023 0.051 .648 KTR −0.074 0.064 .247  

KKR 0.092 0.046 .046 .133 KKR −0.050 0.074 .501  

  KKR*T 0.063 0.021 .003 .045*

Abbreviations: AA, anthranilic acid; Est., estimate; GFR, glomerular filtration rate; HAA, 3-hydroxyanthranilic acid; HK, 3-hydroxykynurenine; KA, kynurenic acid; KKR, 
kynurenic acid-to-kynurenine ratio; KTR, kynurenine-to-tryptophan ratio; Kyn, kynurenine; Kyn2, second degree orthogonal polynomial of Kyn; MMSE, Mini-Mental State 
Examination; Neopt, neopterin; NPI, Neuropsychiatric Inventory; PIC, picolinic acid; PLP, pyridoxal 5´-phosphate; SE, standard error; Trp, tryptophan; Q, Q value; QA, 
quinolinic acid; XA, xanthurenic acid.
aGeneralized structural equation model linking 2 mixed models by their random effects: Model 1: Tobit mixed-effects model with MMSE as the outcome, measured at 
baseline and for 5 consecutive years. Model includes random intercepts and slopes. MMSE transformed to √(30 − MMSE). Model 2: Negative binomial mixed-effects 
model with NPI total (sum of items 1 through 10) measured at baseline and for 5 consecutive years. Model includes random intercepts. Link: Random intercepts and 
slopes of MMSE correlated with random intercepts of NPI total. Covariates: Time, age (also *time for MMSE), sex, Lewy body dementia vs Alzheimer disease (also 
*time), current smoking, GFR, and PLP as independent variables.
*P < .05 or Q < 0.05.
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with values around the mean. Kynurenine was not associated 
with the rate of MMSE decline over time. A higher KKR was 
significantly associated with increasing neuropsychiatric symp-
toms over time. In post hoc analyses, we found that KKR and 
KA were significantly associated with more hallucinations. The 
associations between the kynurenines, cognitive prognosis, and 

neuropsychiatric symptoms over 5 years did not differ between 
patients with AD or LBD. However, several trends were 
observed, which should be investigated in a study with statisti-
cal power for subgroup analyses.

Kynurenine showed a nonlinear association with average 
MMSE score over 5 years (Figure 2), but not with the rate of 
change. Previously, we observed a similar nonlinear trend 
between Kyn and cognitive function in a cohort of community-
dwelling older adults.21 This may suggest that a homeostatic 
level of Kyn around the mean value can be beneficial for cogni-
tive function. One might speculate that the lack of association 
between kynurenines and the rate of cognitive decline suggests 
that circulating kynurenines are not related to strong drivers of 
cognitive deterioration, such as synaptic loss35 and tau pathol-
ogy.36 Availability of precursors of neuroactive kynurenines 
which are linked to both nicotinamide adenosine dinucleotide 
(NAD+) metabolism9 and low-grade inflammation,13 could 
lead to cognitive differences that are stable throughout the  
disease course. Circulating Kyn, which crosses the blood- 
brain-barrier (BBB), may affect kynurenines in the brain, as 
both TDO and IDO converting Trp to Kyn have low activity 
in the brain.9 Furthermore, Kyn is induced by pro-inflamma-
tory cytokines, but notably also gives rise to metabolites that 
suppress inflammation, indicating a complex relationship.37 
There is ample evidence that IDO activation has a negative 
impact on cognitive function in rodent models4-7 and can exac-
erbate AD pathology in amyloid knock-in mice.5 However, it 
is less clear how IDO activity outside the brain relates to cog-
nitive function. Peripheral interferon alpha may increase both 
blood and CSF levels of Kyn.38 Kynurenine could be a marker 
of IFN-γ activity, but neopterin and KTR, which are more 
strongly related to IFN-γ induction,39,40 were not associated 
with cognitive function in older humans.21 Whereas high Kyn 
levels may signify inflammation,13 low levels may limit the 
availability of a key precursor of neuroactive kynurenines and 
perhaps NAD+.9 Deficiency of kynurenines may explain poor 
outcomes with low Kyn levels, by decreasing levels of NAD+ 
leading to neuronal degeneration in dementia. Reduced avail-
ability of NAD+ may impair the activity of the NAD+-
dependent enzymes, such as the sirtuins, resulting in 
accumulation of amyloid-beta plaques and tau tangles.41

A higher KKR was significantly associated with more neu-
ropsychiatric symptoms over time. A similar association was 
found in post hoc analysis, suggesting that KKR was related to 
hallucinations with a similar trend for delusions and disinhibi-
tion, indicative of psychotic symptoms. Kynurenic acid was 
significantly associated with hallucinations independent of 
time in post hoc analysis, with a similar trend for agitation. 
The NMDAR antagonism, a function of KA, is a known trig-
ger of psychosis,42 and KA is increased in the brain19 and CSF 
of patients with schizophrenia,43 making this finding intrigu-
ing. Increased KA levels, indicating higher kynurenine ami-
notransferase (KAT) activity, may produce symptoms of 

Figure 2.  Nonlinear association between MMSE and kynurenine. Low 

levels of kynurenine are associated with more errors on the MMSE on 

average (intercept). At mean kynurenine levels, there is no association 

with MMSE, whereas high or low serum concentrations are associated 

with more average MMSE errors. The model was estimated as a 

multiprocess model together with a model for the NPI total score (see 

statistics). Of note, a constant of 1 was added to kynurenine prior to 

logarithmic transformation to avoid an uneven spread below and above a 

kynurenine level of 1, shifting the log (mean) from 0.55 to 1.02. MMSE 

indicates Mini-Mental State Examination; NPI, Neuropsychiatric 

Inventory.

Figure 3.  Kynurenic acid-to-kynurenine ratio and neuropsychiatric 

symptoms. The graph shows how a change in 1 standard deviation of the 

transformed and standardized levels of KKR, the reciprocal of 1/√(KKR) 

is associated with an increase in neuropsychiatric symptoms over time, 

using a negative binomial random intercept model, adjusted for age, sex, 

current smoking, glomerular filtration rate, and PLP in the model for 

MMSE. KKR indicates kynurenic acid-to-kynurenine ratio; MMSE, 

Mini-Mental State Examination; NPI, Neuropsychiatric Inventory.
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schizophrenia in experimental animals.44 In addition, mice 
with genomic deletion of the KAT II enzyme show improved 
cognitive function.45 Furthermore, KA may lead to decreased 
levels of the neurotransmitters glutamate,46 dopamine,47 and 
acetylcholine,48 and KA has been linked to elevated dopamin-
ergic activity in the brain.49 KKR might reflect the activity of 
peripheral KATs in the periphery. Notably, KATs also generate 
XA, which was associated at trend toward more neuropsychi-
atric symptoms over time, specifically, agitation in post hoc 
analyses. However, contrary to Kyn, KA does not cross the 
BBB, but is formed in the brain from Kyn catalyzed by KATs.50 
Accordingly, follow-up studies measuring CSF kynurenines 
would be highly informative. In addition, KA is an agonist for 
the aryl hydrocarbon receptor51,52 and is an antagonist of α7 
nicotinic acetylcholine receptors (α7nAChR), both implicated 
in schizophrenia.53,54

There were several nonsignificant associations in post hoc 
analyses indicating that in particular AA and QA, but also 
KTR, Kyn, and neopterin, could be associated with less irri-
tability and motor disturbances. It is interesting that 
increased concentrations of many of these metabolites may 

indicate metabolic flux away from KA. Reduced activity of 
KMO, linked to higher KA,55 has been shown in 
schizophrenia.56

Our study suggests that increased circulating KA and KKR, 
potentially related to KAT activity, could be biomarkers of an 
increased risk of neuropsychiatric symptoms in dementia. 
Furthermore, several direct and indirect effects of kynurenines 
on neurotransmitter receptors51-54 suggest the possibility of a 
potential role in the pathogenesis of such symptoms. There are 
several important regulators of the kynurenine pathway in the 
periphery, such as IFN-γ40 and interleukin 1β (IL-1β).57 
Furthermore, IL-1β can affect the activity of KAT.57 Thus, 
both clinical and experimental studies are needed to confirm 
and elaborate on our findings.

Strengths of the study include its longitudinal design with 
annual follow-up examinations until death, a low dropout 
rate among the participants and centralized laboratory analy-
ses of all metabolites. The main limitations are a relatively 
small sample size, use of nonfasting blood samples, lack of 
longitudinal measurements of kynurenines, and KKR might 
not accurately reflect KAT activity. Furthermore, we could 

Figure 4.  Post hoc: neuropsychiatric symptoms and metabolites. The bubble diagram shows associations between individual neuropsychiatric symptoms 

over 5  years and metabolites assessed by logistic random intercept models. The KKR was significantly associated with an increasing probability of 

hallucinations over time, whereas KA was significantly associated with more hallucinations, on average, over 5  years. The analyses were adjusted for 

using the Benjamini-Hockberg procedure with a false discovery rate of 0.05, and Q values, representing adjusted P values, were estimated. The bubble 

sizes are proportional to −log10 P values. Odds ratios (ORs) are depicted inside bubbles with thin dark borders representing significant P values and thick 

dark borders representing significant Q values. Light blue coloring represents an OR of <1, whereas pink represents an OR >1. Odds ratios are stratified 

by color transparency as 0% (OR: 0.60-0.69/1.75-2.00), 20% (OR: 0.70-0.79/1.50-1.74), 40% (OR: 0.80-0.89/1.25-1.49), 60% (OR: 0.90-0.99, 1.00-1.24). 

AA indicates anthranilic acid; HAA, 3-hydroxyanthranilic acid; HK, 3-hydroxykynurenine; KA, kynurenic acid; KA*T, kynurenic acid interaction with time; 

KKR, kynurenic acid-to-kynurenine ratio; KKR*T, kynurenic acid-to-kynurenine ratio interaction with time; KTR, kynurenine-to-tryptophan ratio; Kyn, 

kynurenine; Neopt, neopterin; OR, odds ratio; PIC, picolinic acid; Trp, tryptophan; QA, quinolinic acid; XA, xanthurenic acid; XA*T, xanthurenic acid 

interaction with time.
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not conclude that the associations with cognition are con-
fined to patients with dementia, due to the absence of an age-
matched longitudinal control group. Our previous study on 
community-dwelling older adults indeed found a similar 
association between Kyn and cognitive function.21 
Kynurenines in the brain may mostly be derived from circu-
lating kynurenines with Kyn as the main precursor.3 Still, 
synthesis of the potentially neuroprotective KA is confined to 
astrocytes, whereas the potentially neurotoxic QA is synthe-
sized in microglia.3 Thus, our assessment of kynurenines in 
dementia is incomplete without measurements of CSF and/
or brain samples.

In summary, circulating Kyn concentrations around the 
mean level may be beneficial for cognitive function in patients 
with dementia. Serum Kyn concentrations which diverge from 
the mean in either direction (higher or lower) may be associ-
ated with poorer global cognitive function. We observed an 
association of KA and KKR with neuropsychiatric symptoms, 
which adds to existing literature suggesting a role of kynure-
nines in mental health.3
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