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SUMMARY

Terminal selectors are transcription factors that con-
trol the morphological, physiological, and molecular
features that characterize distinct cell types. Here,
we show that, in the sea anemone Nematostella
vectensis, NvPOU4 is expressed in post-mitotic cells
that give rise to a diverse set of neural cell types,
including cnidocytes and NvElav1-expressing neu-
rons. Morphological analyses of NvPOU4 mutants
crossed to transgenic reporter lines show that the
loss of NvPOU4 does not affect the initial specifica-
tion of neural cells. Transcriptomes derived from
the mutants and from different neural cell popula-
tions reveal that NvPOU4 is required for the execu-
tion of the terminal differentiation program of these
neural cells. These findings suggest that POU4 genes
have ancient functions as terminal selectors for
morphologically and functionally disparate types of
neurons and they provide experimental support for
the relevance of terminal selectors for understanding
the evolution of cell types.

INTRODUCTION

Neuronsdisplay a remarkablemorphological andmolecular diver-

sity. The acquisition of the features that characterize different

types of neurons is the result of a series of developmental pro-

cesses largely directed by transcription factors and signalingmol-

ecules (Edlund and Jessell, 1999). Early stages of neural develop-

ment are often characterized by the proliferation of different types

of progenitor cells via symmetric and/or asymmetric divisions

(Doe, 2008; Homem et al., 2015; Taverna et al., 2014). After their

terminal mitosis, the differentiation of neurons typically begins

with the occurrence of more general neural features, like the

expression of neural cytoskeletal proteins and by the formation

of neurites (Ernsberger, 2012; Stefanakis et al., 2015). The terminal
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This is an open access article und
identity of individual types of neurons eventually manifests by the

expression of specific neurotransmitter systems, the elaboration

of specific projection patterns, and other factors defining the

physiological properties of these neuron types. Transcription fac-

tors that regulate these terminal differentiation features of distinct

neuron types are called terminal selector genes (Allan and Thor,

2015; Hobert, 2016; Hobert and Kratsios, 2019). Terminal selec-

tors often function in combination and may affect all or only

some aspects of the identity of a neuron (e.g., Etchberger et al.,

2007; Stratmann et al., 2019). Although transcription factors regu-

lating the terminal differentiation of neurons have been identified in

several bilaterians (Allan and Thor, 2015; Hobert and Kratsios,

2019), it is currently unknown whether conserved terminal selec-

tors tend to have comparable functions over long evolutionary dis-

tances.We address this question here by analyzing the function of

the Pit/Oct1/UNC-86 (POU) domain transcription factor POU4/

Brn3 in a representative of a non-bilaterian animal clade, the

cnidarian Nematostella vectensis.

Cnidarians are the sister group of bilaterians (Dunn et al., 2014;

Telford et al., 2015), with the separation of these two lineages

estimated to have occurred over 600 mya (dos Reis et al.,

2015; Park et al., 2012). As adults, they possess a relatively

simple nervous system that lacks brain-like centralization. Their

nervous system comprises three main classes of neural cells:

cnidocytes (‘‘stinging cells,’’ cnidarian-specific mechano/

chemoreceptor cells); ganglion cells (interneuron-like cells);

and sensory/sensory-motor cells (Galliot et al., 2009; Rentzsch

et al., 2019;Watanabe et al., 2009). Morphological andmolecular

analyses suggest the existence of distinct subpopulations of

these classes of neural cells; however, an integrated character-

ization of neural cell types in cnidarians is currently lacking

(Rentzsch et al., 2019; Sebé-Pedrós et al., 2018; Siebert et al.,

2019). The sea anemone Nematostella vectensis belongs to the

anthozoan class of cnidarians. Due to its inducible fertilization,

its relatively short generation time, and amenability to molecular

manipulations,Nematostella has become an important cnidarian

model organism (Layden et al., 2016). It has previously been

shown that a large fraction of its neurons derives from a pool

of NvSoxB(2)-expressing neural progenitor cells (NPCs) located
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in both ectoderm and endoderm, which give rise to the three

classes of neural cells (Nakanishi et al., 2012; Richards and

Rentzsch, 2014). In addition to NvSoxB(2), the basic helix-

loop-helix (bHLH) genes NvAshA and NvAtonal-like have been

identified as positive regulators of neurogenesis, whereas Notch

signaling acts to restrict the number of neural progenitor cells

(Layden et al., 2012; Layden and Martindale, 2014; Rentzsch

et al., 2017; Richards and Rentzsch, 2015). For the regulation

of early stages of neuron development, these observations sug-

gest a considerable degree of conservation between Nematos-

tella and bilaterians. How the terminal differentiation of neurons

is regulated in Nematostella is currently poorly understood.

Accordingly, it is not known whether the conservation of

neurogenic transcriptional programs between Nematostella

and bilaterians extends to the late stages of neuron

development.

POU genes are transcription factors that contain a bipartite

DNA binding domain consisting of a POU-specific and a homeo-

box domain. Although being found only in metazoans, they

diversified early during animal evolution, and four classes of

POU geneswere present in the last common ancestor of all living

animals (Gold et al., 2014; Larroux et al., 2008). Genes of the

POU4 class are predominantly expressed in neuronal cells and

have been shown to regulate the terminal differentiation of these

neurons in several organisms. Inmammals, there are three POU4

genes, Brn3a, Brn3b, and Brn3c, all of which are prominently ex-

pressed in partially overlapping areas of sensory structures, as

well as in other parts of the nervous system (Collum et al.,

1992; Fedtsova and Turner, 1995; Gerrero et al., 1993; Ninkina

et al., 1993; Turner et al., 1994; Xiang et al., 1993, 1995). Ana-

lyses of knockout mice have identified key roles for these genes

in the formation of hair cells in the auditory and vestibular sys-

tems (Brn3c; Erkman et al., 1996; Xiang et al., 1997), of retinal

ganglion cells (Brn3b; Erkman et al., 1996; Gan et al., 1996),

and of somatosensory and brainstem neurons (Brn3a; McEvilly

et al., 1996; Xiang et al., 1996). Each of the Brn3 genes functions

mainly at later stages of neural differentiation, e.g., in the acqui-

sition of morphological features of somatosensory neurons and

retinal ganglion cells (Badea et al., 2009, 2012; Erkman et al.,

2000; Ryan and Rosenfeld, 1997). In Drosophila, the POU4

ortholog acj6/I-POU regulates synaptic targeting in the central

nervous system and the odor sensitivity of olfactory neurons

(Ayer and Carlson, 1991; Certel et al., 2000; Clyne et al., 1999;

Treacy et al., 1992). In the nematode Caenorhabditis elegans,

the single POU4 gene, unc-86, is expressed in several types of

neurons (Finney and Ruvkun, 1990). In most of these neurons,

unc-86 acts in specific combinations with other transcription

factors to control a terminal differentiation program, for example,

by defining the neurotransmitter identity of the cell (Chalfie et al.,

1981; Duggan et al., 1998; Hobert, 2016; Serrano-Saiz et al.,

2013; Zhang et al., 2014). This terminal selector function of

POU4 genes is often also required for the maintenance of the

identity of these neurons, both in C. elegans and in mice

(Serrano-Saiz et al., 2018). In addition to its role in terminal differ-

entiation, unc-86 has a role in regulating the division of some

neural progenitor cells (Chalfie et al., 1981; Finney and Ruvkun,

1990). In line with potential roles in the nervous system, POU4

genes are expressed in sensory and other neural structures in
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several other bilaterians (Backfisch et al., 2013; Candiani et al.,

2005, 2006; Nomaksteinsky et al., 2013; O’Brien and Degnan,

2002; Ramachandra et al., 2002; Wollesen et al., 2014). Overall,

their roles in different types of neurons and in several bilaterians

make POU4 genes prime candidates for addressing the early

evolution of terminal neural differentiation.

Outside bilaterians, little is known about the role of POU4

genes. In medusae of the cnidarians Aurelia sp. and Craspeda-

custa sowerbyi, POU4 expression was detected in sensory

structures at the margin of the bell (Hroudova et al., 2012; Naka-

nishi et al., 2010); however, no functional analyses have been re-

ported so far in these groups. In this study, we use gene expres-

sion analyses and anNvPOU4::memGFP transgenic reporter line

to show that the single Nematostella POU class 4 gene is ex-

pressed in a large and heterogeneous population of post-mitotic

neural cells. Furthermore, we generated an NvPOU4mutant line

by CRISPR/Cas9-mediated genome editing, analyzed the tran-

scriptome of the mutants, and crossed it to nervous-system-

specific transgenic reporter lines. This revealed that NvPOU4

functions in the terminal differentiation of neural cells, including

the cnidarian-specific cnidocytes. These observations indicate

that POU4 genes have ancient roles in terminal neural differenti-

ation and that the regulation of cell differentiation by terminal

selector genes evolved early in animal evolution.

RESULTS

NvPOU4 Is Expressed in Neural Cells fromEarly Blastula
to Polyp Stage
The Nematostella genome contains a single POU4 gene ( Putnam

et al., 2007; Larroux et al., 2008; Gold et al., 2014). Using whole-

mount in situ hybridization, we first observed expression of

NvPOU4 in few cells at early blastula (12 h post fertilization at

21�C; Figure 1A). This expression occurs after the start of

NvSoxB(2) expression (a gene expressed in neural progenitor

cells; Magie et al., 2005; Richards and Rentzsch, 2014) but before

expression of NvNCol3 commences (a gene expressed in differ-

entiating cnidocytes and encoding the minicollagen structural

protein of the cnidocyst capsule wall; Babonis and Martindale,

2017; Zenkert et al., 2011). NvPOU4 is expressed in scattered

cells all over the ectoderm of the embryo at gastrula stage and

in scattered single cells in both ectoderm and endoderm at mid-

planula stage (Figures 1B and 1C). At late planula stage, the

expression is prominent in cells close to the oral opening (Fig-

ure 1D). At tentacle bud stage, this expression has resolved into

four distinct patches, the developing tentacle buds (Figure 1E).

In primary polyps, expressionofNvPOU4 is still detectable in scat-

tered ectodermal and endodermal cells and, most prominently, in

the tentacle tips (Figure 1F). The expression in scattered cells

throughout the body column resembles that of several neural

genes described previously (Layden et al., 2012; Marlow et al.,

2009; Nakanishi et al., 2012), whereas the expression in the

tentacle buds and tentacle tips reflects themain sites of cnidocyte

formation (Babonis and Martindale, 2017; Zenkert et al., 2011).

NvPOU4 starts being expressed approximately 2 h after the

expression of NvSoxB(2) (Figure S1), a gene that is broadly

required for neurogenesis in Nematostella (Richards and

Rentzsch, 2014). To understand better whether NvPOU4 is



Figure 1. NvPOU4 Expression Is Controlled by NvSoxB(2)

(A–F) In situ hybridization with probes indicated on the left side and the developmental stage on top. Mid-lateral views with the aboral pole to the left are shown.

Thewhite bracket in (C) indicates the endoderm layer.NvPOU4 is expressed in scattered single cells all over the embryos. All in situ hybridizationswere done on at

least three biological replicates with n > 20 for each sample.

(G–J) In situ hybridization with NvPOU4 probe. Treatments are indicated to the top of each image; NvSoxB(2)morpholino (MO) condition is compared to control

MO-injected animals. (G and H) and (I and J) are different focal planes of the same specimens.NvSoxB(2)MO injection results in a decreased number ofNvPOU4-

expressing cells. Animals were quantified into phenotypic classes based on having no, weak, or wild type expression. (I) and (J) are examples of weak expression.

Bars at the base of each image represent the percentage of animals in each phenotypic class.

(K) Graphical representation of the percentage of animals in each phenotypic class shown as mean ± SD (four biological replicates). Significance was tested by

chi-square test for control MO versusNvSoxB(2)MO for the different categories (WT, weak, none) using the count data. For ‘‘WT’’ and for ‘‘weak,’’ p < 2.23 10�6;

for ‘‘none,’’ p = 0.0002948. Asterisks indicate significance at p < 0.001.

Scale bars represent 50 mm.
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Figure 2. NvPOU4 Is Expressed in Differentiating Cells

(A–F) Double fluorescence in situ hybridization at blastula stage for NvPOU4 (green) and either NvRFamide, NvNcol3, or NvSoxB(2) (magenta). DAPI is shown in

gray. The neural differentiatingmarkersNvRFamide (A and B) andNvNCol3 (C and D) show partial co-expression (white) withNvPOU4. No co-expression with the

NPC marker NvSoxB(2) was detected (E and F). (A), (C), and (E) are projections of stacks; all other images are single confocal sections. Stacks are available as

Videos S1, S2, and S3. White color in (E) is caused by the maximal projection and does not represent co-labeling of NvPOU4 and NvSoxB(2). For gastrula and

planula stages, see Figure S2 and Videos S4–S9. All in situ hybridizations were performed with at least three replicates.

(G andH) Fluorescence in situ hybridization forNvPOU4 (green) plus staining for EdU (magenta) and DAPI (blue) at blastula stage. (G) is a projection of a stack, and

(H) is a single confocal section. The white rectangle in (G) indicates the area shown in (H). The stack for (G) is available as Video S10.

(I) In a 100 mm 3 100 mm area of mid-lateral ectoderm of 310 NvPOU4-expressing cells (in 10 animals), none incorporated EdU, suggesting that NvPOU4-ex-

pressing cells are post-mitotic.

All in situ hybridizations and the EdU labeling were performed with at least three biological replicates, i.e., animals derived from three different spawnings. Scale

bars represent 20 mm.
expressed in cells of the neural lineage, we inhibited the func-

tion of NvSoxB(2) by injection of a morpholino antisense

oligonucleotide (Richards and Rentzsch, 2014). This resulted

in a nearly complete suppression of NvPOU4 expression

(Figures 1G–1K).

Taken together, the expression pattern and the dependence

on NvSoxB(2) suggest that NvPOU4 is expressed in neural cells

in Nematostella.

NvPOU4 Expression Is Restricted to Non-proliferating,
Differentiating Cells
To better characterize the identity of the NvPOU4-expressing

cells, we used double fluorescent in situ hybridization to test co-
4476 Cell Reports 30, 4473–4489, March 31, 2020
expression of NvPOU4 with other genes expressed during

neural development. We observed that NvPOU4 is partially

co-expressed with the neuropeptide gene NvRFamide (labeling

differentiating sensory and ganglion cells; Figures 2A and 2B)

and with NvNcol3 (Figures 2C and 2D). In contrast, NvPOU4 is

not co-expressed with the neural progenitor marker NvSoxB(2)

fromblastula to late planula stages (Figures 2E, 2F, andS2; Videos

S1–S9). As we have shown that the expression of NvPOU4

depends on NvSoxB(2) function (Figures 1G–1K), the lack of co-

expression of the two mRNAs indicates that they might be

expressed sequentially in developing neurons. As a first step to

test this possibility, we examined cell proliferation in NvPOU4-ex-

pressing cells. We incubated wild-type animals at late blastula



(legend on next page)
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stage for 30 min with EdU, fixed them immediately afterward, and

performed EdU detection together with fluorescence in situ hy-

bridization (Figures 2G–2I; Video S10). We did not observe any

EdU-positive, NvPOU4-expressing cells (10 embryos; in total,

310 NvPOU4 expressing cells in 100 mm 3 100 mm squares in

the mid-lateral part of the blastoderm). This differs from previous

observations of EdU-incorporating cells that express NvSoxB(2)

mRNA (Richards and Rentzsch, 2014).

Together, these data suggest that NvPOU4 is expressed in

non-proliferating, differentiating cells of the developing nervous

system.
NvPOU4-Expressing Cells Develop into Neurons and
Cnidocytes
To gain further insight into the nature of the NvPOU4-expressing

cells, we generated a stable transgenic reporter line, in which a

4.7-kb upstream region of the NvPOU4 coding sequence drives

the expression of a membrane-tethered GFP (NvPOU4::

memGFP). This allowed the identification of the NvPOU4-ex-

pressing cells and their progeny. Double fluorescence in situ

hybridization of memGFP and NvPOU4 in transgenic embryos

showed a strong co-expression of the reporter gene transcripts

and endogenous NvPOU4 (Figure S3); this confirms that the

reporter line accurately reflects the endogenous expression of

NvPOU4.

Analysis of memGFP expression showed that it starts in early

gastrula and is increased and maintained until polyp stages (Fig-

ures 3A–3C). At early planula stage,memGFP is localized in scat-

tered ectodermal cells that have a slender shape and often an

apical cilium (Figure 3A). Later on, at late planula stage, it is

possible to detect the memGFP protein in both scattered

ectodermal and endodermal cells (Figure 3B). At primary polyp

stage, memGFP localization highlights the nerve net and is

expressed in cells with various morphologies in the ectoderm

and in the endoderm. In the endoderm, neurites of many

memGFP+ neurons extend along the mesenteries—the longitu-

dinal in foldings of the endoderm. At this stage, there is also

expression of the memGFP protein in scattered ectodermal cells

all over the body column and in the tentacles of the animals, with

particularly strong labeling in the tips of the tentacles. This

pattern of transgene expression is maintained in juvenile and

adult polyps (not shown).

Next, we generated double transgenic animals by crossing the

NvPOU4::memGFP line to other previously characterized

neuronal reporter lines. To clarify the relationship between

NvSoxB(2) and NvPOU4-expressing cells, we generated

NvSoxB(2)::memOrange; NvPOU4::memGFP double trans-

genics. At both gastrula and planula stage, nearly all NvPOU4::

memGFP cells were also labeled with the NvSoxB(2) reporter
Figure 3. A Transgenic Reporter Line Recapitulates the Expression of

(A–E) Confocal microscopy images of transgenic lines. (A–C). The NvPOU4::mem

images are lateral views with the aboral pole to the left. All images are Imaris sna

gastrula stage on and is consistent with the in situ hybridization signals (Figure S

(D and E) Double transgenic animals withNvPOU4::memGFP (green),NvSoxB(2)::

left are shown. At planula stage, theNvPOU4::memGFP+ cells are alsomOrange+.

from at least three biological replicates (separate spawnings) were analyzed.

Scale bars represent 20 mm.
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transgene (Figures 3D and 3E). This supports the scenario in

which the two genes are expressed sequentially in the same

cells, with NvSoxB(2) expression preceding that of NvPOU4.

We also noted that the overlap of the two transgenes is not

absolute: although the NvSoxB(2)::memOrange transgene is

expressed more broadly, there are also some cells that are pos-

itive for NvPOU4::memGFP, but not for NvSoxB(2)::memOrange

(Figure 3D).

The previously characterized NvNcol3::mOrange2 line labels

differentiating cnidocysts—the extrusive capsules of the cnido-

cytes (Sunagar et al., 2018). In double transgenic animals

(NvPOU4::memGFP, NvNcol3::mOrange2; Figures 4A–4F),

GFP-positive membranes surround all mOrange2-positive cni-

docysts throughout the animal from mid-planula to polyp stage.

Most of the ectodermal memGFP+ cells appear to contain a

cnidocyst and are therefore differentiating or differentiated cni-

docytes (Figures 4B, 4E, and 4F). However, this co-expression

is not absolute, and some memGFP+ cells do not contain a

developing cnidocyst and have a long apical cilium (Figure 4C).

The NvPOU4 transgene is thus expressed in developing cnido-

cytes and potentially other cell types.

To gain further insight into the nature of these other NvPOU4-

expressing cells, we generated NvPOU4::memGFP, NvElav1::

mOrange double transgenic animals (Figures 4G–4L). The

NvElav1::mOrange transgenic line labels a subset of sensory

and ganglion cells, but not cnidocytes (Nakanishi et al., 2012).

From early planula stage, we could note ectodermal cells that

expressed both fluorescent proteins, suggesting that a subset

of sensory cells expresses NvPOU4 (Figures 4H and 4I). The

co-expression of the two transgenes is more prominent at pri-

mary polyp stages, with much of the NvElav1::mOrange-positive

endodermal nerve net also expressing thememGFP protein (Fig-

ures 4J–4L), including cells with themorphology of ganglion cells

(arrow in Figure 4K0). We also generated double transgenics of

NvPOU4::memGFP with the NvFoxQ2d::mOrange line, in which

a small subpopulation of ectodermal sensory cells is labeled

(Busengdal and Rentzsch, 2017).We did not observe co-expres-

sion of NvPOU4::memGFP with NvFoxQ2d::mOrange (data not

shown).

Thus, the NvPOU4 transgenic reporter line labels cnidocytes

and a subset of sensory and ganglion cell types, and transgene

expression is maintained at the polyp stage.
NvPOU4 Is Required for Neural Differentiation
To identify the function of NvPOU4, we generated a mutant line

using the CRISPR/Cas9 system. We targeted the beginning of

the POUdomain with a single guide RNA (Figure 5A). Genotyping

of F1 animals derived from one founder polyp revealed a preva-

lent deletion of 31 bp, causing a frameshift and a premature stop
NvPOU4

GFP transgenic line; memGFP is detected by anti-GFP antibody (green). All

pshots from the 3D reconstructions. Expression of memGFP is detected from

3).

mOrange (magenta), and nuclei (blue in E). Lateral views with aboral pole to the

(E)–(E00) shows a double-positive putative sensory cell in the ectoderm. Animals
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codon that truncates the encoded protein before the DNA bind-

ing domain (Figures 5A and S4). We denote this allele as

NvPOU41 and refer to it in the text as NvPOU4�. We collected

F1 animals with this 31-bp deletion and then crossed them to

obtain 25% homozygous F2 mutants. Light microscopic obser-

vation of the F2 animals showed that 26% of them lacked elon-

gated cnidocyst capsules at primary polyp stage (n = 97

animals). We extracted DNA and sequenced the NvPOU4 gene

of those animals and of their siblings that possessed cnidocysts

(Figures 5B and 5C). This showed that 90% of the animals

without cnidocysts were NvPOU4�/�, whereas all sibling

controls with cnidocysts were NvPOU4+/+ or NvPOU4+/�. This
confirmed that NvPOU4 homozygous mutants lack cnidocysts.

These polyps were unable to catch prey and did not survive

beyond the primary polyp stage. To better characterize the cni-

docyte phenotype, we performed stainings to distinguish devel-

oping frommature cnidocytes. An antibody against NvNCol3 de-

tects the cnidocysts throughout their development but does not

detect the fully mature cnidocyst capsules (with very few excep-

tions; Babonis and Martindale, 2017; Zenkert et al., 2011). The

matrix of themature cnidocysts is specifically labeled by incuba-

tion with a high concentration of 40,6-diamidino-2-phenylindole

(DAPI) in the presence of EDTA (Szczepanek et al., 2002). We

noticed that NvPOU4�/� polyps do have patches of NvNCol3

staining but lack any of the well-defined, elongated capsules

that form during cnidocyte differentiation. Such capsules were

neither visible by staining with the NvNCol3 antibody nor by

the high concentration of DAPI (Figures 5D–5K). We confirmed

this observation by generating NvPOU4�/�, NvNCol3::

mOrange2 animals; in these animals, NvNCol3 is expressed,

but mature capsules fail to differentiate (Figure S4). The diffuse

nature of NvNCol3 staining in the mutants made quantification

of the stained cells difficult; thus, we cannot exclude an effect

on the number of NvNCol3-expressing cells. These experiments

suggest, however, that NvPOU4 is primarily required for the

terminal differentiation of cnidocytes in Nematostella.

We next studied the role of NvPOU4 during the development

of other neural cell types (ganglion and sensory cells) identified

by the NvPOU4::memGFP reporter line. To do so, we gener-

ated NvPOU4�/�, NvElav1::mOrange animals by crossing

NvPOU4+/� to NvPOU4+/�, NvElav1::mOrange polyps. We
Figure 4. NvPOU4::memGFP identifies neural cell types.

(A–F) Double transgenic animals with NvPOU4::memGFP (green), NvNCol3::mOr

(A–C) Planula stage.

(E and F) Live images at primary polyp stage.

(A, B, D, E, and F) From gastrula to primary polyp stage, theNvNCol3::mOrange2+

identifies cnidocytes.

(C) Some NvPOU4::memGFP+ cells do not contain NvNCol3::mOrange2+ capsule

cell types. In (B)–(C) and (E)–(F),NvPOU4 andNvNCol3 stand forNvPOU4::memG

and (B)–(C00) and (E)–(F00) are single confocal sections.

(G–L) Double transgenic animals with NvPOU4::memGFP (green) and NvElav1::m

(G–I) At planula stage, some ectodermal cells are positive for both reporter prote

(J–L) At primary polyp stage, the endodermal nerve net expresses both fluoresc

morphology.

(L) The cnidocytes (red arrows in L and L0) appear to be the only cells that do not co

NvPOU4::memGFP and NvNCol3::mOrange2, respectively. (G) and (J) are projec

from at least three biological replicates (separate spawnings) were analyzed.

Scale bars represent 20 mm.
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collected primary polyps with NvElav1::mOrange expression

and inspected them for the cnidocyte phenotype. Despite a

lack of mature cnidocytes, these putative NvPOU4�/�,
NvElav1::mOrange animals displayed no gross aberration of

their NvElav1+ nervous system (Figures 6A–6D). For quantifica-

tion, we randomly imaged NvElav1::mOrange+ polyps, counted

the number of mOrange+ cells in a 100 mm 3 100 mm square in

the body column and determined the presence or absence of

mature cnidocytes by light microscopy a posteriori. We did

not find a statistically significant difference in the number of

mOrange+ cells between polyps with and without mature cap-

sules, respectively (Figure S5). This suggests that NvPOU4

does not have a major role in the specification or gross

morphological development of the NvElav1+ neurons.

Loss ofNvPOU4Affects theTranscriptomes ofNvNCol3-
and NvElav1-Expressing Neural Cells
To characterize the function of NvPOU4 in more detail, we

decided to analyze transcriptional changes using RNA

sequencing. We compared cnidocyst-lacking NvPOU4�/�

animals at primary polyp stage and compared them to their

cnidocyst-containing siblings (consisting of NvPOU4+/+ and

NvPOU4+/� animals). RNA sequencing of four biological repli-

cates confirmed that NvPOU4�/� animals only generate tran-

scripts of this gene with the 31-bp deletion (Figure S5). In total,

1,217 geneswere differentially regulated (p-adjusted value < 0.05;

no threshold for fold change), with 576 being down- and 641 being

upregulated in the NvPOU4�/� polyps (Figure 6E; Table S1). An

analysis of Gene Ontology (GO) terms identified 21 terms that

are overrepresented among the downregulated genes, with ‘‘ion

channel activity,’’ ‘‘extracellular ligand-gated ion channel activity,’’

‘‘potassium channel activity,’’ ‘‘acetylcholine binding,’’ ‘‘calcium

ion binding,’’ and ‘‘voltage-gated potassium channel activity’’

being overrepresented in the GO domain ‘‘molecular function’’

(Figure 6F). The only term that is overrepresented among the up-

regulated genes is ‘‘endoplasmic reticulum’’ in the GO domain

‘‘cellular component.’’ Although this is consistent with a role for

NvPOU4 in nervous system development, the low proportion of

Nematostella genes that are associated with a GO term (39.4%

of all differentially expressed genes) limits the power of the

analysis.
ange2 (magenta), and DAPI in blue. Lateral view with aboral pole to the left.

capsules are surrounded by thememGFP, suggesting thatNvPOU4::memGFP

s, suggesting that the NvPOU4::memGFP line identifies cnidocytes and other

FP andNvNCol3::mOrange2, respectively. (A) and (D) are projections of stacks,

Orange (magenta). Lateral views with aboral pole to the left are shown.

ins; these cells have an apical cilium.

ent proteins. Arrow in (K0) indicates an endodermal cell with ganglion cell-like

-express both transgenes. In (H)–(I) and (K)–(L),NvPOU4 andNvNCol3 stand for

tions of stacks, and (H)–(I00) and (K)–(L00) are single confocal sections. Animals



Figure 5. The Loss of NvPOU4 Prevents

Cnidocyte Differentiation

(A) Schematic of the CRISPR/Cas9 targeting

strategy. Exons are in gray boxes, the POU domain

is shown as a green box, and the homeodomain

(HD) is shown as a yellow box. The sgRNA targets

the start of the POU domain (red dashed line) and

generated a deletion of 31 bp, causing a frameshift

and the appearance of a premature STOP codon.

(B and C) Bright field picture of the tentacle tips of

(B) primary polyps control (NvPOU4+/+ and

NvPOU4+/�) versus (C) NvPOU4�/�. Red arrows

highlight elongated cnidocysts.

(D–K) Antibody staining of NvNCol3 (magenta),

mature capsules (yellow), and nuclei (gray) in

controls (D, F, H, and I) versus NvPOU4�/� (E, G, J,

and K).NvPOU4�/� animals lack elongated mature

capsules. They still show NvNCol3 antibody

staining, suggesting that cnidocytes are specified

but do not differentiate properly, highlighted by the

shape of the NvNCol3-positive capsule (I and K).

(D)–(K) are projections of stacks of confocal

sections. Animals from at least three biological

replicates (separate spawnings) were analyzed.

Scale bars represent 20 mm.
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Our analysis of double transgenic animals has shown that sepa-

rate subsets of NvPOU4-expressing cells give rise to NvNCol3-

and NvElav1-expressing cells (Figure 4). We therefore used the

transcriptomes of NvNCol3::mOrange+ (Sunagar et al., 2018)

and NvElav1::mOrange+ cells enriched by fluorescence-activated

cell sorting (FACS) to assign genes differentially regulated in

NvPOU4 mutants to these two different populations of neural

cells. For theNvNCol3::mOrange+ cells, different levels of fluores-

cence combined with microscopic examination have previously

been used to characterize two populations of these cells and to

generate transcriptomes of them. One of the cell populations is

enriched for differentiating cnidocytes (mOrange positive), and

the other one consists ofmature cnidocytes (mOrange super-pos-

itive, with higher fluorescence; Sunagar et al., 2018). Among the

genes that were differentially expressed in NvPOU4 mutants, we

identified 287 genes that were in common with those reported

in the NvNCol3::mOrange transcriptomes, with 132 genes being

differentially expressed only in the positive cells, 62 only in the

super-positive cells, and 93 in both groups of cells (Figures 6G–

6I; Table S1). Interestingly, we noticed a striking difference in the

proportion of up- and downregulated genes in these three groups

of cells. Of the 132 differentially expressed genes (DEGs) present

only in the mOrange-positive, differentiating cells, 113 (85.6%)

were up- and 19 (14.4%) were downregulated (Figure 6G) in the

NvPOU4 mutants. In contrast, of the 62 DEGs only present in

the mOrange super-positive, more mature cells, 55 (88.7%)

were down- and only 7 (11.3%) were upregulated (Figure 6I). Of

the 93 DEGs found in both groups of cells, 60 (64.5%) were

down- and 33 (35.5%) were upregulated (Figure 6H). This sug-

gests that mutation of NvPOU4 reduces the expression of genes

involved in the terminal differentiation of cnidocytes and increases

the expression of genes involved in earlier steps of their

development.

We next generated transcriptomes ofNvElav1::mOrange-pos-

itive and negative cells at primary polyp stage and identified

3,538 genes with significantly higher expression level in

NvElav1::mOrange-positive cells. Of these genes, a total of 186
Figure 6. Loss of NvPOU4 Affects the Transcriptomes of NvNCol3- an

(A–D) NvPOU4�/� animals were distinguished based on the absence of cnidocyte

images of areas equivalent to the rectangles in (A) and (C).

(B0–D00) Confocal images of anti-dsRed antibody staining (detectingmOrange, sho

and sibling controls (B0 and B0 0), phalloidin in green, and DAPI in blue. Scale bars re

properly in the absence of NvPOU4.

(E) MA plot of the RNA sequencing comparing NvPOU4�/� animals with their

replicates). In total, 1,217 genes were differentially expressed (p-adjusted < 0.05;

downregulated (blue).

(F) GO term analysis of the NvPOU4�/� versus siblings (with p < 0.05). GO t

overrepresented among upregulated genes are in red.

(G and H) Comparison of the genes differentially expressed in NvPOU4�/� wi

NvNCol3+ (positive) represents the genes expressed in differentiating cnidocyt

differentiated cnidocytes (593), and NvNcol3+/NvNcol3++ represents the genes t

(G) 85.6% (113/132) of the differentially expressed genes (DEGs) common to th

NvPOU4 mutants.

(H) 64.5% (60/93) of the differentially expressed genes common to NvPOU4 m

NvPOU4 mutants.

(I) 85.6% (55/62) of the differentially expressed genes common to the NvPOU4

mutants.

(J) Comparison of the genes differentially expressed in NvPOU4�/� with the NvE

genes common to NvPOU4 mutant and the NvElav1 transcriptome are downreg
were differentially regulated in NvPOU4 mutants and, among

them, 137 (73.7%) were downregulated but only 49 (26.3%)

were upregulated in the mutants (Figure 6J). Thus, similar to

the situation in the NvNCol3::mOrange super-positive cnido-

cytes,NvPOU4 appears to functionmainly as a positive regulator

of genes expressed in NvElav1::mOrange-positive cells. The

broad expression in NvElav1::mOrange+ neurons suggests that

NvPOU4 functions in the differentiation of different types of

neurons. To support this hypothesis, we selected two genes

that are downregulated in the NvPOU4mutants and are upregu-

lated in NvElav1::mOrange-expressing cells for double fluores-

centce in situ hybridization with NvPOU4. We found Nve22966

(a putative ionotropic glutamate receptor) to be co-expressed

with NvPOU4 mainly in endodermal cells (Figures 7A and 7B),

whereas the co-expression of NvPOU4 and Nve21438

(a putative GABAA receptor subunit) is most prominent in

ectodermal cells (Figures 7C and 7D). This indicates that

NvPOU4 indeed contributes to the differentiation of different

subpopulations of NvElav1::mOrange-expressing neurons.

Taken together, our transcriptome analyses show that

NvPOU4 is mainly required for the expression of genes that are

expressed at late stages of cnidocyte and neuron differentiation.

This is consistent with the morphological observations of the

NvPOU4mutants in the background of the NvNCol3::mOrange2

and NvElav1::mOrange transgenic lines and suggests that

NvPOU4 regulates the terminal differentiation of neural cells.

DISCUSSION

In this report, we have shown that NvPOU4 is expressed in post-

mitotic cells that are derived from NvSoxB(2)-expressing neural

progenitor cells and give rise to cnidocytes, sensory cells, and

ganglion cells. Despite its expression from blastula stage on,

mutation of NvPOU4 does not prevent the initial specification

of these cells. Instead, our data suggest that the main function

of POU4 in Nematostella vectensis is the regulation of the

terminal differentiation of neural cells.
d NvElav1-Expressing Neural Cells

capsules.(A) and (C) are graphic illustrations, (B) and (D) are light microscopic

wn inmagenta) inNvPOU4�/�, NvElav1::mOrange+/� polyps (D0 and D0 0; 10 dpf)
present 50 mm. This experiment suggested that theNvElav1+ cells are specified

sibling control (selection based on the cnidocyte phenotype; four biological

nominimal fold change), 641 were found upregulated (red), and 576 were found

erms overrepresented among downregulated genes are in blue, and those

th the published NvNCol3::mOrange2 transcriptomes (Sunagar et al., 2018).

es (358), NvNcol3++ (super-positive) represents the genes expressed in fully

hat are expressed in both differentiating and differentiated cnidocytes (613).

e NvPOU4 mutants and the NvNcol3+ transcriptomes are upregulated in the

utants and the NvNcol3+/NvNcol3++ transcriptome are downregulated in the

mutant and the NvNcol3++ transcriptome are downregulated in the NvPOU4

lav1::mOrange transcriptome. 73.7% (137/186) of the differentially expressed

ulated in the NvPOU4 mutants.
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Figure 7. Co-expression of NvPOU4 with Glutamate and GABAA Receptor Genes in Different Populations of Cells

(A–D) Lateral views of double fluorescence in situ hybridization with probes indicated on the top and the developmental stage on the left side.

(A and B) NvPOU4 is labeled in green and Nve22966 (a putative glutamate receptor) in magenta; co-expression is visible in an endodermal population of cells.

(legend continued on next page)
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Cnidocyte precursors in NvPOU4 mutants still produce

NvNcol3 protein. They fail, however, to assemble the elongated

cnidocysts characteristic of mature cnidocytes. Thismorpholog-

ical observation suggested that, in these cells, NvPOU4 mainly

regulates the transcription of genes that encode factors required

for the final steps of cnidocyte differentiation. The availability of

separate transcriptomes enriched for cnidocytes at earlier

stages (at or before the beginning of cnidocyst formation) and

at later stages (containing elongated cnidocysts) of their devel-

opment (Sunagar et al., 2018) allowed us to analyze the require-

ment for NvPOU4 in this process in more detail. The preponder-

ance of downregulation among genes that are specifically

enriched in late-stage cnidocytes matched the observed lack

of mature cnidocysts. In contrast, we did not expect that many

of the genes that are specifically expressed in early-stage cnido-

cytes would be upregulated in NvPOU4 mutants. This included

the NvNCol3 gene, NvPaxA (a transcription factor that positively

regulates NvNCol3 expression; Babonis and Martindale, 2017),

and NvPOU4 itself. A possible explanation is that the failure to

produce functional cnidocytes leads to a ‘‘compensatory’’

response that increases the number of cells entering the cnido-

cyte differentiation pathway. An alternative, but not mutually

exclusive, possibility is that NvPOU4 is required for the downre-

gulation of genes that are temporarily expressed at an earlier

stage of cnidocyte differentiation, resulting in prolonged

expression of these genes in NvPOU4 mutants.

For the NvElav1::mOrange-expressing neurons, we currently

cannot separate cells at different stages of their differentiation.

At the primary polyp stage, all or almost all NvElav1::mOrange-

positive neurons possess neurites and are thus either at a late

stage of their development or terminally differentiated (Nakanishi

et al., 2012). In homozygousNvPOU4mutants, there is no signif-

icant reduction in the number of NvElav1::mOrange-expressing

neurons, and the neurons extend neurites that do not show gross

morphological alterations or obviously aberrant projection

patterns (Figures 6B0 and 6D0). These observations suggest

that, in the NvElav1+ endodermal neurons, NvPOU4mainly func-

tions in terminal differentiation, regulating, for example, the

repertoire of neurotransmitter receptors. In line with such a

function, the expression levels of genes encoding glutamate,

acetylcholine, and GABA receptors are reduced in NvPOU4mu-

tants. We note, however, that NvPOU4 may have other or addi-

tional roles in subpopulations of NvElav1-expressing neurons.

Of the 1,217 genes differentially expressed in NvPOU4 mu-

tants, only 287 are upregulated in the cnidocyte transcriptomes

and 186 in the NvElav1::mOrange transcriptome. This is a sur-

prising observation because the double transgenic lines suggest

that the majority of NvPOU4::memGFP-expressing cells are

included in the NvNCol3::mOrange or NvElav1::memOrange-

positive cells. A possible explanation is the difference in the

age of the polyps used for the isolation of cnidocytes (3 to

4 months; Sunagar et al., 2018) and the NvPOU4 mutants
(C and D)NvPOU4 is labeled in green andNve21438 (a putative GABAA receptor su

This suggests NvPOU4 contributes to the differentiation of different subpopulatio

shown. (A)–(A00) and (C)–(C00) are projections of stacks of confocal sections, and (B

on two biological replicates with n > 10 for each sample.

Scale bars represent 20 mm.
(14 days). The proportion of different types of cnidocytes has

been shown to differ between primary and adult polyps (Zenkert

et al., 2011), and the cnidocyte transcriptomes may therefore

lack genes that are expressed predominantly at earlier stages.

Similarly, only cnidocytes from the tentacles were used for

generating the cnidocyte transcriptomes, whereas NvPOU4 is

expressed in both tentacle and body column cnidocytes, and

these regions have been shown to differ in the composition of

cnidocyte types (Zenkert et al., 2011). Genes that are expressed

in cnidocyte types that are more common in the body column

(e.g., basitrichous haplonemas) may therefore be underrepre-

sented in the cnidocyte transcriptomes. It will be interesting for

future studies to understand whether additional populations of

NvPOU4-expressing cells exist outside the NvNCol3 and

NvElav1+ cells.

After functioning in neural development, POU4 genes have

been shown to be required for the survival of several classes of

neurons in C. elegans and in the mouse habenula (Serrano-

Saiz et al., 2018). Deletion of POU4 in these terminally differenti-

ated neurons results in the loss of their neurotransmitter identity

and their elimination by apoptosis (Serrano-Saiz et al., 2018),

suggesting an evolutionarily conserved, post-developmental

role for POU4 genes. Whether NvPOU4 has a comparable role

in Nematostella is currently not clear. A recent single-cell RNA

sequencing study showed that NvPOU4 is expressed in neural

cells in adult animals (Sebé-Pedrós et al., 2018), allowing for a

role in maintaining neural identity. We observed homozygous

mutants until 20 days post-fertilization (they become primary

polyps after 6 to 7 days) but did not detect alterations in the num-

ber or morphology of NvElav1::mOrange-positive neurons (data

not shown). Due to the lack of cnidocytes, NvPOU4 mutants are

unable to catch prey and are thus not viable, which prevents

long-term observations. Determining whether NvPOU4 has a

role in the maintenance of the identity of neurons will require

the development of methods for conditional gene inactivation

in Nematostella.

The C. elegans POU4 gene unc-86 is a prime example of a

terminal selector gene, and POU4 genes in other species have

comparable functions in the terminal differentiation of neural

cell types (Ayer and Carlson, 1991; Certel et al., 2000; Clyne

et al., 1999; Duggan et al., 1998; Erkman et al., 2000; Gan

et al., 1996; Gordon and Hobert, 2015; Huang et al., 1999,

2001; Serrano-Saiz et al., 2013; Sze et al., 2002). Terminal selec-

tors act in a combinatorial manner to regulate terminal effector

genes and determine cellular identity (Hobert, 2016). This allows

individual transcription factors to act as terminal selectors in

different types of neurons, for example, by cooperative binding

to regulatory elements together with other transcription factors

(Cho et al., 2014; Duggan et al., 1998; Wolfram et al., 2014;

Xue et al., 1992). In Nematostella, single-cell RNA sequencing

has revealed several NvPOU4-expressing ‘‘metacells’’ with

overall neuron-like transcriptional profiles (Sebé-Pedrós et al.,
bunit) inmagenta; co-expression is visible in an ectodermal population of cells.

ns of NvElav1::mOrange+ cells. Lateral views with the aboral pole to the left are

)–(B00) and (D)–(D00) are single confocal sections. In situ hybridizations were done
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2018). Individual NvPOU4+ metacells (likely representing

different neural cell types) express different combinations of

other transcription factors (Sebé-Pedrós et al., 2018), some of

which may function together with NvPOU4 in regulating the ter-

minal differentiation of these cells. In line with this scenario, each

of the NvPOU4+ metacells expresses at least one transcription

factor that has not been detected in any otherNvPOU4+ metacell

(Table S1). Although the physical and functional interaction with

other transcription factors and with regulatory elements of target

genes remains to be explored in future work, the morphological

and molecular analyses presented here support the hypothesis

that NvPOU4 acts as a terminal selector for different neural cell

types in Nematostella.

The advent of single-cell sequencing technologies has led to

the elaboration of concepts for the evolutionary diversification of

cell types. Terminal selector genes are central to such concepts,

as they are part of so-called ‘‘core regulatory complexes’’

(CoRCs), which regulate the cellular features that distinguish

different cell types (Arendt et al., 2016). It has been hypothesized

that evolutionary changes occur more slowly in core regulatory

complexes than in terminal effector genes, which would make

them more informative for inferring evolutionary relationships be-

tween cell types (Arendt et al., 2016, 2019). Our data show that,

more than 600 million years after the divergence of the cnidarian

and bilaterian lineages (dos Reis et al., 2015), POU4 genes

function in the terminal differentiation of neural cells in

cnidarians, as they do in bilaterians. NvPOU4 regulates the termi-

nal differentiation of strikingly different types of neural cells in

Nematostella, themore ‘‘typical’’NvElav1+ neurons, and the highly

derived, taxon-specific cnidocytes. This is likely due to cell-type-

specific combinatorial regulation together with other transcription

factors, and attempts to homologize POU4-expressing neural cell

typeswill require amore detailed understanding of such combina-

torial regulation. Nevertheless, we propose that the function of

NvPOU4 is derived from an ancestral function of POU4 genes

as regulators of terminal neural differentiation.We cannot exclude,

however, that, in some cases, POU4 genes have been co-opted

into comparable roles in different cell types.

In summary, the observation that NvPOU4 functions in the ter-

minal differentiation of neural cells in Nematostella supports the

hypothesis that the regulation of neurogenesis by conserved ter-

minal selector genes is an ancient feature of nervous system

development.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Fabian

Rentzsch (fabian.rentzsch@uib.no). Plasmids and genetically modified Nematostella vectensis generated for this study are available

upon completion of a Material Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nematostella culture
TheNematostella vectensis culture is derived fromCH2males andCH6 females (Hand andUhlinger, 1992). Adult polyps (> 12months)

weremaintained at 18�C in 1/3 filtered seawater ( =Nematostellamedium, NM). Spawning induction was performed by light and tem-

perature shift (18�C to 25�C) for 12 hours as described in Fritzenwanker and Technau (2002). Incubation of the fertilized egg packages

with a 3% cysteine/NM for 20min removed the jelly. Embryos were then raised at 21�C and fixed at 12 hours post fertilization

(hpf; early blastula), 16hpf (blastula), 20hpf (early gastrula), 24hpf (gastrula), 30hpf (late gastrula), 48hpf (early planula), 72hpf (planula),

4dpf (late planula); 5dpf (tentacle bud); 7dpf (early primary polyp), 12dpf (late primary polyp). The sex of the analyzed specimens was

not determined. The high penetrance of phenotypes (100% for NvPOU4 mutants) suggests that there are no significant differences

between male and female animals in response to genetic manipulations.

Genetic crosses
The NvSoxB(2)::mOrange line has been described in Richards and Rentzsch (2014), NvElav1::mOrange in Nakanishi et al. (2012),

NvNCol3::mOrange in Sunagar et al. (2018) and NvFoxQ2d::mOrange in Busengdal and Rentzsch (2017). NvPOU4::memGFP+/�,
NvSoxB(2) +/� double transgenics were generated by crossing NvPOU4::memGFP+/� to NvSoxB(2)::mOrange +/+ animals; NvPOU4::

memGFP+/�,NvElav1::mOrange+/� double transgenics by crossingNvPOU4::memGFP+/� toNvElav1::mOrange+/� animals; NvPOU4::

memGFP+/�,NvNCol3::mOrange2+/� double transgenics by crossing NvPOU4::memGFP+/� to NvNCol3::mOrange2+/�; NvPOU41/1

( = NvPOU4�/�) mutants were derived from NvPOU41/+ x NvPOU41/+ crosses; NvPOU41/1, NvElav1::mOrange+/� animals were

generated by crossing NvPOU41/+ to NvPOU41/+, NvElav1::mOrange+/� polyps; NvPOU41/1, NvNCol3::mOrange2+/� animals were

generated by crossing NvPOU41/+ to NvPOU41/+, NvNCol3::mOrange2+/� polyps.

METHOD DETAILS

Cloning of NvPOU4, in situ hybridization, EdU labeling and immunohistochemistry
The NvPOU4 sequence is derived from gene model Nve5471, retrieved from https://figshare.com/articles/Nematostella_

vectensis_transcriptome_and_gene_models_v2_0/807696. Fluorescent and colorimetric in situ hybridizations and immunohistochem-

istry were performed as described in the Supplementary material in Richards and Rentzsch (2014): Embryos were fixed in 3.7%
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formaldehyde/0.25% glutaraldehyde/NM for 2 min on ice, then in 3.7% formaldehyde/PTW (PBS+0.1%Tween20) for 1 h at 4�C. For
colorimetric in situ hybridization, samples were rehydrated in PTW, and then incubated in 20 mg/ml Proteinase K for 10 min at room

temperature (RT) followed by washes in 4mg/ml Glycine/PTW. They were then washed in 1% triethanolamine in PBS, followed by

the addition of 0.25%, then 0.5% acetic anhydride. Samples were next washed in PTW and refixed in 3.7% formaldehyde/PTW,

followed by washes in PTW. Pre-hybridization in hybridization buffer (HB: 50% formamide, 5X SSC, 1% SDS, 50 mg/ml heparin,

100 mg/ml salmon sperm DNA, 9.25 mM citric acid, 0.1X Tween20) was for at least 2 h at 60�C. Digoxigenin-labeled riboprobes

were synthesized from PCR templates (MEGAscript Kit, Ambion) and incubated with the samples at a final concentration of 0.1-

1 ng/ml for at least 60 h at 60�C. Unbound probe was removed via a series of 60�C washes of HB/2X SSC solutions [75/25, 50/50,

25/75, 0/100 (v/v)], then 0.2X SSC, 0.1XSSC. This was followed by RT washes of SSC/PTW solutions [75/25, 50/50, 25/75, 0/100

(v/v)]. Samples were then blocked in blocking solution [1% Block (Roche)/Maleic acid buffer (100mM maleic acid, 150mM NaCl)] for

2 h at RT and incubated overnight with 1:5000 anti-digoxigenin alkaline phosphatase (Roche)/blocking solution. Unbound antibody

was removedwith 103 15minwashesof PBTxBSA (PBS /0.2%Triton X-100 /0.1%bovine serumalbumin); sampleswere thenwashed

with staining buffer (100mM Tris pH 9.5, 100mM NaCl, 50mM MgCl2, 0.1%Tween20) before color was developed via the addition of

1:200 NBT/BCIP solution (Roche) in staining buffer. When the staining reaction was judged to be complete, samples were washed

as follows – staining buffer, PTW, H20, ethanol, H20, PTW – and then post- fixed for 30min with 3.7% formaldehyde/PTW before being

washed with PTW and then cleared via overnight incubation in 87% glycerol at 4�C.
For fluorescent in situ hybridization, fixed samples were incubated in 2% hydrogen peroxide in methanol to quench endogenous

hydrogen peroxidase activity. Samples were then rehydrated in PTW and the ISH protocol (see above) was followed from the

Proteinase K incubation step until the end of the SSC/PTW RT washes. During hybridization, samples were incubated with either

digoxigenin or fluorescein-labeled riboprobes (MEGAscript Kit, Ambion) at a final concentration of 1 ng/ml. After the SSC/PTW RT

washes, samples were washed in TNT (0.1M Tris-HCl pH 7.5/0.15M NaCl/0.5% Triton X-100) and then blocked in TNTblock

[0.5% blocking reagent (PerkinElmer)/TNT] for 1 h at RT before overnight incubation with anti-digoxigenin (1:100) or anti-fluorescein

(1:250) horseradish peroxidase (Roche). Unbound antibodies were removed by 10 3 15 min TNT washes, and samples were then

incubated in fluorophore tyramide amplification reagent (TSA Plus Kit, PerkinElmer). After the TSA reaction, samples were washed

in TNT and then incubated with DAPI 1:1000 and mounted in ProLong Gold antifade reagent. For double labeling, samples were

washed in 0.1M glycine pH 2.0 and then incubated 1 h in TNT block before overnight incubation with anti-digoxygenin or anti-fluo-

rescein horseradish peroxidase (Roche). Post-antibody washing and the TSA reaction were repeated as for the first probe; samples

were then washed in TNT, incubated with DAPI 1:1000 and mounted in ProLong Gold antifade reagent. Samples were imaged on

either a Nikon Eclipse E800 compound microscope with a Nikon Digital Sight DSU3 camera or on a Leica SP5 confocal microscope.

For immunohistochemistry, fixed samples were washed for 2h with PBTx (PBS/0.3%Triton X-100) and then incubated in block (5%

normal goat serum/PBTx) for 1h at RT before overnight incubation in primary antibodies at 4�C. Samples were then washed for 2h

with PBTx, incubated for 1h at RT in block and then overnight at 4�C in Alexa Fluor conjugated secondary antibodies (Molecular

Probes, 1:200). Samples were then washed for 2h with PBTx, incubated for 30 min in DAPI 1:1000 (Molecular Probes) and mounted

in ProLong Gold antifade reagent (Molecular Probes).

The following primary antibodies were used: to detect NvPOU4::memGFP, anti-GFP (mouse, abcam1218, 1:200); to detect

mOrange, anti dsRed (rabbit, Clontech 632496, 1:100); anti-NCol3 (Zenkert et al., 2011); mature cnidocytes were labeled with

DAPI/EDTA as described in Babonis and Martindale (2017) and Szczepanek et al. (2002).

EdU labeling was done as described in Richards and Rentzsch (2014): Embryos were incubated with 100 mMEdU/DMSO in NM for

30 min at 21�C and fixed immediately afterward in 3.7% formaldehyde/0.25% glutaraldehyde/NM for 2 min on ice, followed by 3.7%

formaldehyde/PTW (PBS+0.1%Tween20) for 1 h at 4�C. After the FISH protocol was completed, EdU incorporation was visualized

using the Click-iT EdU Alexa Fluor 488 imaging kit (Molecular Probes C10337) following themanufacturer’s instructions. For counting

NvPOU4+ and EdU+ cells a 100 mm 3 100 mmsampling area was defined in themid-lateral region of the ectoderm at blastula stage. All

the nuclei from this region were scanned via confocal microscopy.

Generation of transgenic lines
The NvPOU4::memGFP transgenic reporter line was generated by meganuclease-mediated transgenesis as described by

Renfer and Technau (2017). The genomic coordinates for the 4.7 kb regulatory region are 1063816-1068603 on scaffold 16

(http://genome.jgi.doe.gov/Nemve1/Nemve1.home.html, accessed 15 April 2019). This fragment was inserted in front of a codon

optimized GFP via the HiFi DNA Assembly kit (NEB) with the addition of a membrane-tethering CAAX domain at the C terminus to

visualize the morphology of the cells expressing the reporter protein. The reporter cassette is flanked by inverted I-SceI sites, the

vector backbone is pUC57. memGFP was detected with an anti-GFP antibody (mouse, abcam1218, 1:200).

CRISPR-Cas9 mediated mutagenesis and genotyping of embryos
Using published methods (Ikmi et al., 2014; Kraus et al., 2016) sgRNA were synthesized in vitro via the Megashortscript T7 kit

(Invitrogen) using the following oligos: 50TAGGCGTGGGTTCATATCATCGGC, 50AAACGCCGATGATATGAACCCACG

The reactionmixture (500 ng/ml Cas9 enzyme [PNABio CP01] and 150 ng/ml of the sgRNA) was incubated at 37�C for 15min prior to

injection.
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Genomic DNA from embryos or aboral pieces of F1 polyps was extracted using a Tris/EDTA/proteinase K buffer. Mutant genotyp-

ing was first done via melt-curve analysis after PCR amplification of a 90bp region on a BioRad CFX96 RealRime PCR machine.

Mutations were confirmed by sequencing a 500bp region around the mutation.

Primers for melt curve analysis are: 50CACGCGTTACACTCGGCAATCG (forward) and 50TCTTCTTTGCTTGAAGCGTTCCG

(reverse). Primers for sequencing are: 50TCCCAAATACCTGACGAAACCAT (forward) and 50CGTTTACGTTTCTTGTCGGA GTT

(reverse).

Morpholino injection
NvSoxB(2)MO1 is described in Richards and Rentzsch (2014), the sequence is TATACTCTCCGCTGTGTCGCTATGT. The sequence

of the generic control morpholino is CCATTGTGAAGTTAAACGATAGATC. Fertilized eggs were injected with 500 mM morpholino

(Gene Tools) and 40 mg/ml Alexa Fluor-conjugated dextran (Invitrogen) diluted in water. The injections were performed using a

Femtojet microinjector (Eppendorf) and a Nikon TE2000-S inverted microscope. Experiments were conducted with four biological

replicates, with embryos derived from four independent spawnings.

Generation of transcriptomes from NvPOU4 mutants and siblings
The presence/absence of cnidocysts was used for sorting animals at primary polyp stage (12dpf) into sibling control (NvPOU4+/+ and

NvPOU4+/�) and mutants (NvPOU4�/�). Twenty primary polyps were pooled for each biological condition and the total RNA was

extracted using the Direct-zol RNA MicroPrep kit (Zymo Research). Experiments were conducted with four biological replicates,

with embryos derived from four independent spawnings. Sequencing libraries were generated with the TruSeq� stranded mRNA

library prep kit (Illumina), 75bp single read sequencing was performed on a NextSeq500 machine (Illumina).

Cell type specific transcriptomes
NvElav1::mOrange-positive cells were enriched by FACS and RNA was extracted as described previously (Torres-Méndez et al.,

2019): mOrange positive primary polyps (12-14 days old) were dissociated at 37�C for �30 min in calcium- and magnesium-free

Nematostellamedium (CMF/NM) containing EDTA and 0.25% of trypsin. Single cell suspensions were then stained at room temper-

ature with Hoechst 33342 and 7-aminoactinomycin D (7-AAD) to exclude debris and non-viable cells by Fluorescent-Activated Cell

Sorting (FACS). Sorting was performed on a BD FACSAria II Sorp. with 100mm nozzle.

cDNAwas prepared from 400pg of total RNA using the Smart-Seq 2methodwith 16 pre-amplification PCR cycles, as described by

Picelli et al. (2014). NGS libraries were prepared using the home-made tagmentation-based method as described by Hennig et al.

(2018). Briefly, 125ng of cDNA was tagmented using home-made Tn5 loaded with annealed linker oligonucleotides for 3 minutes

at 55�C. Reactions were inactivated by adding 1.25ml of 0.2% SDS and incubation for 5 minutes at room temperature. Indexing

and amplification was done using the KAPA HiFi HotStart PCR kit (Sigma-Aldrich) with Index oligonucleotides (sequences were

adapted from Illumina). Four biological replicates of mOrange-positive and -negative cells, respectively, were used for 75bp single

read sequencing on a NextSeq500 machine (Illumina).

The generation of NvNCol3::mOrange2 transcriptomes is described in Sunagar et al. (2018). In brief, tentacles of transgenic

Nematostella polyps were dissociated and sorted in a FACSAria III (BD Biosciences, USA). Total RNA was isolated using TRIZOL

LS, libraries were prepared by the Illumina TruSeq RNA library protocol (mean insert size of 150 bp) and sequenced on Illumina

Nextseq 500 high output v2 platform.

QUANTIFICATION AND STATISTICAL ANALYSIS

Transcriptome analyses
The raw fastq files were initially quality checked and trimmed using Trimmomatic v0.38 (Bolger et al., 2014). Following this they were

aligned to the N. vectensis genome (https://mycocosm.jgi.doe.gov/Nemve1/Nemve1.home.html) using STAR v2.7.0 (Dobin et al.,

2013) in two-pass mode. Afterward the produced BAM (Binary Alignment Maps) files were sorted and indexed with Samtools

v1.6 (Li et al., 2009) and then gene counting was carried out using HTSeq v0.11.2 (Anders et al., 2015). Gene models were retrieved

from (https://figshare.com/articles/Nematostella_vectensis_transcriptome_and_gene_models_v2_0/807696). Differential gene

expression testing and subsequent over-representation analysis was done in R with DESeq2 v1.26.0 (Love et al., 2014) and

clusterProfiler v1.13.0 (Yu et al., 2012), respectively.

Quantification of NvPOU4 expression upon NvSoxB(2) MO injection
The frequencies of the phenotypic categories (wt, weak, none) are shown as mean ± SD (four biological replicates). Significance was

tested by chi-square test for control MO versus NvSoxB(2) MO for the three different categories using the count data from the four

biological replicates.

Quantification of NvElav1::mOrange+ cells in NvPOU4 mutants and siblings
NvElav1::mOrange positive cells (stained with anti dsRed antibody) were counted in an area 100mm long and located between two

mesenteries. The quantification was done in animals from four different spawnings and with 5-10 animals per sample. The genotype
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was inferred a posteriori by the presence/absence of cnidocysts. A Shapiro-Wilk test was used to determinewhether the data follow a

normal distribution. t test was performed for normal distribution, MannWhitney test (U-test) was performed for abnormal distribution.

Differences were considered not significant when p > 0.05. Box and whisker plots were generated with the default settings of Excel,

quartiles were calculated using Exclusive median. Boxes indicate first and third quartile, whiskers indicate 1.5 x interquartile range,

outliers are shown as dots.

DATA AND CODE AVAILABILITY

The accession number for the source transcriptome data for NvPOU4 mutants and siblings reported in this study is ArrayExpress:

E-MTAB-8658. The accession number for the source transcriptome data for NvElav1::mOrange-positive and –negative cells,

respectively, is ArrayExpress: E-MTAB-8794. No new code was generated for the study.
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