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Abstract

The spectral distribution f(ω) of a stationary time series {Yt}t∈Z can be used to
investigate whether or not periodic structures are present in {Yt}t∈Z, but f(ω) has
some limitations due to its dependence on the autocovariances γ(h). For example,
f(ω) can not distinguish white i.i.d. noise from GARCH-type models (whose terms
are dependent, but uncorrelated), which implies that f(ω) can be an inadequate tool
when {Yt}t∈Z contains asymmetries and nonlinear dependencies.

Asymmetries between the upper and lower tails of a time series can be investi-
gated by means of the local Gaussian autocorrelations introduced in Tjøstheim and
Hufthammer [2013], and these local measures of dependence can be used to construct
the local Gaussian spectral density presented in this paper. A key feature of the new
local spectral density is that it coincides with f(ω) for Gaussian time series, which
implies that it can be used to detect non-Gaussian traits in the time series under
investigation. In particular, if f(ω) is flat, then peaks and troughs of the new local
spectral density can indicate nonlinear traits, which potentially might discover local
periodic phenomena that remain undetected in an ordinary spectral analysis.
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1 Introduction
Spectral analysis is an important tool in time series analysis. In its classical form, assuming∑
|γ(h)| < ∞, the spectral density function of a stationary times series {Yt}t∈Z is the

Fourier transform of the autocovariances
{
γ(h) = Cov

(
Yt+h, Yt

)}
h∈Z. Furthermore, since

γ(h) = Var(Yt) · ρ(h), with ρ(h) the autocorrelations, this can be expressed as:

f(ω) :=
∑
h∈Z

γ(h) · e−2πiωh = Var(Yt) ·
∑
h∈Z

ρ(h) · e−2πiωh. (1)

The connection Var(Yt) =
∫ 1/2

−1/2
f(ω) dω follows from the inverse Fourier transformation,

and this reveals how f(ω) gives a decomposition of the variance over different frequencies.

In particular, the spectral density function f(ω) captures the components of periodic linear

structure decomposed over frequency for {Yt}t∈Z, and the peaks and troughs of f(ω) can

thus reveal important features of the time series under investigation.

Nonlinear dependencies between the terms of a time series {Yt}t∈Z will however not be

reflected in the spectral density f(ω), since it is the linear dependencies that are detected by

the autocovariance functions γ(h). The most obvious example is the GARCH model from

Bollerslev [1986]. The GARCH model is much used in econometrics, and it is well known

that this model in general exhibits dependence over many lags (long range dependence).

But this dependence is not captured by the autocovariance function, since γ(h) is zero for

lags |h| ≥ 1. This again implies that the spectral density is flat for a GARCH model.

An estimate of f(ω) based on samples from, for example, a GARCH(1,1)-model will

then, as seen in the left panel of Figure 1, not reveal any information at all. An investigation

based on the method presented in this paper can however detect the nonlinear structure —

as seen in the right panel of Figure 1, where a point in the lower tail has been inspected.

One may ask whether there exist classes of processes for which the spectral density gives

complete information about the probabilistic dependence structure. The answer is simple:
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Figure 1: Left: Estimated ordinary (variance-rescaled) spectral density based on a

GARCH(1,1)-example. Right: Estimated local Gaussian spectral density at a point in

the lower tail. See Appendix G.2 for details regarding the underlying data.

If {Yt}t∈Z is a stationary Gaussian process, then its complete distributional dependence

structure (assuming a zero mean process) can be set up in terms of its spectral density.

This is in fact a starting point for the Whittle-type likelihood in time series analysis.

This paper is concerned with finding a generalization of Equation (1) that enables the

investigation of nonlinear structures in general non-Gaussian stationary processes. This will

be based on a local approach using Gaussian approximations, which ensures the desirable

property that the ordinary spectral density is returned for a Gaussian process.

A number of attempts have been made in the literature to extend the standard spectral

density f(ω), and these can roughly be divided into three categories.

Perhaps the best known, and probably the procedure going furthest back in time, is

represented by the higher order spectra; see Brillinger [1984, 1991]; Tukey [1959]. The

formula for the ordinary spectral density f(ω) from Equation (1) is then supplemented

by considering the Fourier transformations of the higher order moments (or cumulants),

such as E[YrYsYt] resulting in the bispectrum depending on a double set of frequencies

and E[YrYsYtYu] producing the trispectrum dependent on a triple of frequencies. These

cumulant-based higher order spectra are identical to zero for Gaussian processes. The multi-
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frequency dependence of the bispectrum and trispectrum is not always easy to interpret,

and one may also question the existence of higher order moments; in econometrics thick

tails often makes this into an issue.

Another approach is to replace γ(h) in Equation (1) by another measure of dependence

as a function of h. Recently there has been much activity in constructing an alternative

to Equation (1) by considering covariances of a stationary process obtained by describing

quantile crossings, see Hagemann [2011] for a well-written introduction and many refer-

ences. This is a local spectrum in the sense that it varies with the chosen quantile. It is

not always possible to give a local periodic frequency interpretation as in Equation (1), but

Li [2012c] emphasized a local sinusoidal construction by analogy with quantile regression

models. See also Han et al. [2016]; Li [2008, 2010a,b,c, 2012a,b, 2014]; Linton and Whang

[2007]. These approaches does usually not recover the ordinary spectrum for the Gaus-

sian processes. This loss of recovery is also the case if a local spectrum is constructed on

the basis of the so-called conditional correlation function (Silvapulle and Granger [2001]).

Still another viewpoint would be obtained in a spectral analysis of the distance Brownian

covariance function Székely and Rizzo [2009].

A third alternative is constituted by Hong’s generalized spectrum, see Hong [1999, 2000],

which is obtained by replacing the covariance function γ(h) in Equation (1) by the bivariate

covariance function σh(u, v) constructed by taking covariances between the characteristic

function expressions exp
(
iuYt+h

)
and exp (ivYh). Again, this gives a complete distribu-

tional characterization of dependence properties, but so far not much attention has been

given to concrete data analytic interpretation of this frequency representation. Rather,

it has been used to test for independence, conditional independence and predictability Li

et al. [2016]; Wang and Hong [2018].
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The new approach presented in this paper follows the strategy where the γ(h) of Equa-

tion (1) is replaced by another dependence measure, that is, the local Gaussian autocorrela-

tion introduced in Tjøstheim and Hufthammer [2013], see Lacal and Tjøstheim [2017, 2018]

for a number of recent references. The definition of the local Gaussian autocorrelation is

given in section 2.1, but the gist of it can be described as follows: The joint distribution

of
(
Yt+h, Yt

)
is approximated locally at a point v, say, by a Gaussian bivariate distribution

— and the correlation parameter from this approximating Gaussian distribution is then

taken as the local Gaussian autocorrelation ρv(h) at the point v. If
∑
|ρv(h)| < ∞, the

local Gaussian spectral density at the point v can be defined in the following manner,

fv(ω) :=
∞∑

h=−∞

ρv(h) · e−2πiωh. (2)

This enables a local frequency decomposition with different frequency representations

at different points v, for example, different oscillatory behaviour at extremes (cf. also the

extremogram of Davis and Mikosch [2009]) as compared to oscillatory behaviour in the

center of the process. The point v will naturally correspond to a pair of quantiles, but

this concept is distinctly different from the quantile spectra referred to above in that it

considers a neighbourhood of v and not v as a threshold. Moreover, this approach returns

a scaled version of the ordinary spectrum when a Gaussian process is investigated, with

equality when Var(Yt) = 1.

Due to issues related to numerical convergence, the estimates presented in this paper

will be based on an initial normalization of {Yt}t∈Z, and for the normalized processes the

correlation ρ(h) will always equal the covariance γ(h). All references to f(ω) will henceforth

refer to the spectral density of a normalized process, that is, f(ω) will now refer to the
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following rescaled version instead of the one given in Equation (1),

f(ω) :=
∑
h∈Z

ρ(h) · e−2πiω. (3)

For the normalized processes, f(ω) and fv(ω) will by construction be identical for Gaus-

sian time series, and a comparison of the ordinary spectrum f(ω) and the local Gaussian

spectrum fv(ω) can thus be used to investigate at a local level how a non-Gaussian time

series deviates from being Gaussian.

Much more details of this framework is given in section 2. This section also contains the

asymptotic theory with detailed proofs in the Supplementary Material. The real and simu-

lated examples of section 3 show that local spectral estimates can detect local periodic phe-

nomena and detect nonlinearities in non-Gaussian white noise. Note that the scripts needed

for the reproduction of these examples are contained in the R-package localgaussSpec,1

where it in addition is possible to use an interactive tool to see how adjustments of the

input parameters (used in the estimation algorithms) influence the estimates of fv(ω).

The theory developed in this paper can be extended to the multivariate case, see Jor-

danger and Tjøstheim [2017] .

2 Local Gaussian spectral densities
The local Gaussian correlation (LGC) was introduced in Tjøstheim and Hufthammer [2013],

with theory that showed how it could be used to estimate the local Gaussian autocorre-

lations for a time series. It has been further developed in a number of papers, primarily

Lacal and Tjøstheim [2017, 2018], but see also Berentsen et al. [2017, 2014a]; Berentsen

and Tjøstheim [2014]; Berentsen et al. [2014b]; Otneim and Tjøstheim [2017, 2018]; Støve

1 Use remotes::install github("LAJordanger/localgaussSpec") to install the package. See the

documentation of the function LG extract scripts for further details. See also Appendix G.
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and Tjøstheim [2014]; Støve et al. [2014] for related issues. In Tjøstheim and Hufthammer

[2013] the possibility of developing a local Gaussian spectral analysis was briefly mentioned,

and this is the topic of the present paper.

This section gives a brief summary of the local Gaussian autocorrelations, and use them

to define the local Gaussian spectral density for strictly2 stationary univariate time series

{Yt}t∈Z, and give estimators with a corresponding asymptotic theory.

2.1 The local Gaussian correlations

Details related to the estimation regime, and asymptotic properties, can be found in Ap-

pendix B.1.2 in the Supplementary Material. Note that other approaches to the concept of

local Gaussian correlation also have been investigated, cf. Berentsen et al. [2017] for details.

2.1.1 Local Gaussian correlation, general version

Consider a bivariate random variableW = (W1,W2) with joint cdfG(w) and joint pdf g(w).

For a specified point v := (v1, v2), the main idea is to find the bivariate Gaussian distri-

bution whose density function best approximates g(w) in a neighbourhood of the point of

interest. The LGC will then be defined to be the correlation of this local Gaussian approx-

imation.

For the purpose of this investigation, the vector containing the five local parameters µ1,

µ2, σ1, σ2 and ρ will be denoted by θ = θ(v),3 and the approximating bivariate Gaussian

density function at the point v will be denoted ψ(w;θ), that is,

ψ(w;θ) := 1

2π·σ1σ2
√

1−ρ2
· exp

{
−
σ2
1(w1−µ1)

2
−2σ1σ2ρ(w1−µ1)(w2−µ2)+σ2

2(w2−µ2)
2

2σ2
1σ

2
2(1−ρ2)

}
. (4)

2Strict stationarity is necessary in order for the machinery of the local Gaussian approximations to be

feasible, since Gaussian pdfs will be used to locally approximate the pdfs corresponding to the bivariate

pairs
(
Yt+h, Yt

)
.

3The vector θ is a function of the point v, but this will henceforth be suppressed in the notation.
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In order for ψ(w;θ) to be considered a good approximation of g(w) in a neighbourhood

of the point v, it should at least coincide with g(w) at v, and it furthermore seems natural

to require that the tangent planes should coincide too, that is,

g(v) = ψ(v;θ), (5a)

∂

∂w1

g(v) =
∂

∂w1

ψ(v;θ) and
∂

∂w2

g(v) =
∂

∂w2

ψ(v;θ). (5b)

It is easy to verify analytically that a solution θ can be found for any point v where

g(w) is smooth — but these solutions are not unique: ψ(w;θ) and ψ(w;θ
′
) can have the

same first order linearization around the point v, without θ being identical to θ
′
. It is

tempting to extend Equation (5) to also include similar requirements for the second order

partial derivatives, but the system of equations will then in general have no solution.

This shows that it, in order to find the local Gaussian parameters in θ, is insufficient to

only consider requirements at v, it is necessary to apply an argument that also takes into

account a neighbourhood around v. Applying the approach used when estimating densities

in Hjort and Jones [1996], one can consider a b→ 0+ limit of parameters θb = θb(v) that

minimize the penalty function

qb =

∫
Kb(w − v) [ψ(w;θ)− g(w) log (ψ(w;θ))] dw, (6)

where Kb(w − v) is a kernel function with bandwidth b. As explained in Hjort and Jones

[1996, Section 2.1], this can be interpreted as a locally weighted Kullback-Leibler distance

between the targeted density g(w) and the approximating density ψ(w;θ). An optimal

parameter configuration θb for Equation (6) should solve the vector equation∫
Kb(w − v)u(w;θ) [ψ(w;θ)− g(w)] dw = 0, (7)

where u(w;θ) := ∂
∂θ

log (ψ(w;θ)) is the score function of the approximating density ψ(w;θ).

There will, under suitable assumptions Hjort and Jones [1996]; Tjøstheim and Hufthammer
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[2013], be a unique limiting solution of Equation (7), that is,

θ0 = θ0(v) = lim
b→0+

θb(v) (8)

will be well-defined,4 and the ρ-part of the θ0-vector can be used to define a LGC at the

point v.

For the special case where g(w) is a bivariate normal distribution, that is, when

W ∼ N

µ1

µ1

 ,
 σ2

1 σ1σ2ρ

σ1σ2ρ σ2
2

 , (9)

then, for any point v and any bandwidth b, the parameters θb that gives the optimal

solution of Equation (7) will be the parameters given in Equation (9). The limit θ0 in

Equation (8) will thus of course also be these parameters, which implies that the LGC

coincides with the global parameter ρ at all points in the Gaussian case. The interested

reader should consult Tjøstheim and Hufthammer [2013, p. 33] for further details/remarks

that motivates the use of the LGC.

An estimate of the local Gaussian parameters θ0(v) in Equation (8) can, for a given

bivariate sample {Wt}
n
t=1 and some reasonable bandwidth b, be found as the parameter-

vector θ̂b(v) that maximizes the local log-likelihood5

Ln(θ) := n−1

n∑
t=1

Kb(Wt − v) logψ(Wt;θ)−
∫
R2

Kb(w − v)ψ(w;θ) dw. (10)

The asymptotic behaviour of θ̂b(v) (as n → ∞ and b → 0+) is in Tjøstheim and

Hufthammer [2013] investigated by entities derived from a local penalty function Qn(θ)

defined as −n · Ln(θ), that is,

Qn(θ) = −
n∑
t=1

Kb(Wt − v) logψ(Wt;θ) + n

∫
R2

Kb(w − v)ψ(w;θ) dw. (11)

4The solution θ0 will always satisfy Equation (5a), but it will in general not satisfy Equation (5b).
5Confer Appendix B.1.2 in the supplementary material for a detailed exposition.
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The key ingredient in the analysis is the corresponding vector of partial derivatives,

∇Qn(θ) = −
n∑
t=1

[
Kb(Wt − v)u(Wt;θ)−

∫
R2

Kb(w − v)u(w;θ)ψ(w;θ) dw

]
, (12)

and, as will be seen later on, the asymptotic investigation of the local Gaussian spectral

density fv(ω) introduced in this paper does also build on this entity.

Notice that the bias-variance balance of the estimate θ̂b(v) depends on the bandwidth-

vector b, and an estimate based on a b too close to 0 might thus be dubious. However, it

can still be of interest (for a given sample) to compare estimates θ̂b(v) for different scales

of b in order to see how they behave.

Since the goal is to estimate θ0(v), it is of course important to find θ̂b(v) for not too large

bandwidth-vectors b — but it might still be of interest to point out how Equation (10)

behaves in the “global limit b → ∞ = (∞,∞)”. In this case the second term goes to

zero, and the parameter-vector θ̂∞(v) that maximizes the first term becomes the ordinary

(global) least squares estimates of a global parameter vector θ which contains the ordinary

means, variances and correlation.

2.1.2 Local Gaussian correlation, normalized version

The algorithm that estimates the LGC (see Berentsen and Tjøstheim [2014] for an R-

implementation) can run into problems if the data under investigation contain outliers —

that is, the numerical convergence might not succeed for points v in the periphery of the

data. It is possible to counter this problem by removing the most extreme outliers, but an

alternative strategy based on normalization will be applied instead.

The key observation is that the numerical estimation problem does not occur when

the marginal distributions are standard normal — which motivates an adjusted strategy

similar to the copula-concept from Sklar [1959]. Sklar’s theorem gives the existence of

a copula C(u1, u2) such that the joint cdf G(w) can be expressed as C(G1(w1), G2(w2)),
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with Gi(wi) the marginal cdf corresponding to Wi. This copula C contains all the interde-

pendence information between the two marginal random variables W1 and W2, it will be

unique when the two margins are continuous, and it will then be invariant under strictly

increasing transformations of the margins.6 Under this continuity assumption, the random

variable W = (W1,W2) will have the same copula as the transformed random variable

Z := (Φ−1(G1(W1)) ,Φ−1(G2(W2))), where Φ is the cdf of the standard normal distribu-

tion — whose corresponding pdf as usual will be denoted by φ.7 This transformed version

of W has standard normal margins, so the LGC-estimation algorithm will not run into

numerical problems — which motivates the following alternative approach to the defini-

tion of LGC: Instead of finding a Gaussian approximation of the pdf g(w) (of the original

random variable W ) at a point v, find a Gaussian approximation of the pdf gZ(z) of the

transformed random variable Z at a transformed point vZ . Expressed relative to the pdf c

of the copula C, this means that the setup in Equation (13b) below will be used instead of

the setup in Equation (13a).

g(w) = c(G1(w1) , G2(w2)) g1(w1) g2(w2) approximate at v = (v1, v2) , (13a)

gZ(z) = c(Φ(z1) ,Φ(z2))φ(z1)φ(z2) approximate at vZ :=
(
Φ−1(G1(v1)) ,Φ−1(G2(v2))

)
.

(13b)

The normalized version of the LGC will return values that differ from those obtained

from the general LGC-version introduced in section 2.1.1, but the two versions coincide

when the random variable W is bivariate Gaussian. The transformed random variable Z

corresponding to theW from Equation (9) will then beZ = ((W1 − µ1) /σ1, (W2 − µ2) /σ2),

6For a proof of this statement, see, for example, Nelsen [2006, Theorem 2.4.3].
7See Berentsen et al. [2014b] for an approach where this is used to construct a canonical local Gaussian

correlation for the copula C.
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which implies

Z ∼ N

0

0

 ,
1 ρ

ρ 1

 , (14)

so the normalized LGC will thus also coincide with the global parameter ρ at all points.

The convergence rate for the estimates is rather slow for the LGC cases discussed above

(it is
√
n(b1b2)3), and that is due to the kernel function Kb in Equation (6). Briefly

summarized, the 5× 5 covariance matrix of the estimate θ̂b will have the form V −1
b WbV

−1
b ,

the presence of the kernel Kb means that the matrices Vb and Wb have rank one in the

limit b → 0+, and this slows down the convergence rate, cf. Tjøstheim and Hufthammer

[2013, Theorem 3] for the details.

The property that the limiting matrices have rank one does not pose a problem if only

one parameter is estimated,8 and the convergence rate would then be much faster (that

is,
√
nb1b2). Inspired by the fact that the transformed random variable Z have standard

normal margins, it has been introduced a simplified normalized version of the LGC where

only the ρ-parameter should be estimated when using the approximation approach from

Equation (13b), that is, the values of µ1, µ2 are taken to be 0, whereas σ2
1 and σ2

2 are taken

to be 1. This simplified approach has been applied successfully with regard to density

estimation9 in Otneim and Tjøstheim [2017, 2018], but for the local spectrum analysis

considered in this paper it gave inferior results — and this paper will thus not include any

plots based on the normalized one-parameter version.10

8The matrices then becomes 1× 1, so the singularity problems does not occur.
9Note that it is not the local Gaussian correlation that is the target of interest when this simplified

approach is used for density estimation.
10The theory for the normalized one-free-parameter version of LGC is avaialbe in the first authors PhD-

thesis, https://bora.uib.no/handle/1956/16950. This also contains a discussion with regard to why

an approach based on the normalized one-free-parameter approach fails to produce decent results.
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2.2 The local Gaussian spectral densities

An extension of the spectral density f(ω) from Equation (3) can be based on any of the

three LGC-versions mentioned in sections 2.1.1 and 2.1.2. The one presented below is

based on the normalized five-parameter local Gaussian autocorrelation, since that ensures

that the estimation algorithm avoids the aforementioned numerical convergence problems

— but the theory developed in the Supplementary Material does also cover the general

situation.

Definition 2.1. The local Gaussian spectral density (LGSD), at a point, v = (v1, v2), for

a strictly stationary univariate time series {Yt}t∈Z is constructed in the following manner.

1. With G the univariate marginal cumulative distribution of {Yt}t∈Z, and Φ the cumu-

lative distribution of the standard normal distribution, define a normalized version

{Zt}t∈Z of {Yt}t∈Z by

{Zt := Φ−1(G(Yt))}t∈Z. (15)

2. For a given point v = (v1, v2) and for each bivariate pair Zh:t :=
(
Zt+h, Zt

)
, a local

Gaussian autocorrelation ρv(h) can be computed. The convention ρv(0) ≡ 1 is used

when h = 0.

3. When
∑

h∈Z |ρv(h)| <∞, the local Gaussian spectral density at the point v is de-

fined as

fv(ω) :=
∞∑

h=−∞

ρv(h) · e−2πiωh. (16)

Notice that the requirement
∑

h∈Z |ρv(h)| <∞ in Definition 2.1(3) implies that the

concept of local Gaussian spectral density in general might not be well defined for all

stationary time series {Yt}t∈Z and all points v ∈ R2.
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The normalization in Equation (15) preserves the copula-structure of the original time

series, but a standard normal marginal will be used instead of its original marginal distri-

bution. This implies that the transformed time series will have all moments, even though

that might not be the case for a tick tailed original time series. A local Gaussian investi-

gation of the normalized time series can detect non-Gaussian dependency structures in the

original time series, but keep in mind that an investigation of the original marginal might

also be of interest in many situations, for example, with regard to discriminant analysis.

Finally, note that the normalization in Equation (15) can be compared to, but is very

different from, the normalization in Klüppelberg and Mikosch [1994].

The following definition of time reversible time series, from Tong [1990, def. 4.6], is

needed in Lemma 2.1(3).

Definition 2.2. A stationary time series {Yt}t∈Z is time reversible if for every positive in-

teger n and every t1, t2, . . . , tn ∈ Z, the vectors
(
Yt1 , Yt2 . . . , Ytn

)
and

(
Y−t1 , Y−t2 . . . , Y−tn

)
have the same joint distributions.

Lemma 2.1. The following properties holds for fv(ω).

1. fv(ω) coincides with f(ω) for all v ∈ R2 when {Yt}t∈Z is a Gaussian time series, or

when {Yt}t∈Z consists of i.i.d. observations.

2. The following holds when v̆ := (v2, v1) is the diagonal reflection of v = (v1, v2);

fv(ω) = 1 +
∞∑
h=1

ρv̆(h) · e+2πiωh +
∞∑
h=1

ρv(h) · e−2πiωh, (17a)

fv(ω) = fv̆(ω). (17b)

3. When {Yt}t∈Z is time reversible, then fv(ω) is real valued for all v ∈ R2, that is,

fv(ω) = 1 + 2 ·
∞∑
h=1

ρv(h) · cos(2πωh). (18)
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4. fv(ω) will in general be complex-valued, but it will always be real valued when the point

v lies on the diagonal, that is, when v1 = v2. Equation (18) will hold in this diagonal

case too.

Proof. Item 1 follows for the Gaussian case since the local Gaussian autocorrelations ρv(h)

by construction coincides with the ordinary (global) autocorrelations ρ(h) in the Gaussian

case. Similarly, when {Yt}t∈Z consists of i.i.d. observations, then both local and global

autocorrelations will be 0 when h 6= 0, and the local and global spectra both become the

constant function 1. Items 2 to 4 are trivial consequences of the diagonal folding property

from Lemma C.1, that is, ρv(−h) = ρv̆(h), and the definition of time reversibility, see

Appendices C.1 and C.2 for details.

For general points v = (v1, v2), the complex valued result of fv(ω) might be hard to

investigate and interpret — but, due to Lemma 2.1(4), the investigation becomes simpler

for points on the diagonal. This might also be the situation of most practical interest, since

it corresponds to estimating the local spectrum at (or around) a given value of {Yt}t∈Z —

such as a certain quantile for the distribution of Yt. The real valued results fv(ω) for v

along the diagonal can be compared with the result of the ordinary (global) spectral density

f(ω), as given in Equation (3), and this might detect cases where the times series {Yt}t∈Z
deviates from being Gaussian. Furthermore, if the global spectrum f(ω) is flat, then any

peaks and troughs of fv(ω) might be interpreted as indicators of for example, periodicities

at a local level. This implies that estimates of fv(ω) might be useful as an exploratory tool,

an idea that will be pursued in section 3.

Note that the collection of local Gaussian autocorrelations {ρv(h)}h∈Z might not be

non-negative definite, which implies that both the theoretical and estimated local Gaus-

sian spectral densities might therefore become negative. However, as the artificial process
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investigated in Figure 7 shows, the peaks of fv(ω) still occur at the expected frequencies for

the investigated points — which implies that the lack of non-negativity does not prevent

this tool from detecting nonlinear structures in non-Gaussian white noise.

The following definition is needed when the discussion later on refers to m-truncated

versions of the different spectra.

Definition 2.3. The m-truncated versions fmv (ω) and fm(ω) of fv(ω) and f(ω), for some

lag-window function λm(h), is defined by means of

fmv (ω) := 1 +
m∑
h=1

λm(h) · ρv̆(h) · e+2πiωh +
m∑
h=1

λm(h) · ρv(h) · e−2πiωh, (19a)

fm(ω) :=
m∑

h=−m

λm(h) · ρ(h) · e−2πiωh. (19b)

2.3 Estimation

Theoretical and numerical estimates of the ordinary spectral density f(ω) is typically in-

vestigated by means of the fast Fourier transform (FFT) and techniques related to the

periodogram. The FFT-approach can not be used in the local case since there is no nat-

ural factorization of terms making up a local estimated covariance, but there does exist

a pre-FFT approach for the estimation of f(ω), where a Fourier transform is taken of

the estimated autocorrelations after they have been smoothed and truncated by means of

some lag-window function — and the pre-FFT approach can be adapted to deal with the

estimates of the local Gaussian spectral densities.

Algorithm 2.1. For a sample {yt}
n
t=1 of size n, an m-truncated estimate f̂mv (ω) of fv(ω)

is constructed by means of the following procedure.

1. Find an estimate Ĝn of the marginal cumulative distribution function, and com-

pute the pseudo-normalized observations
{
ẑt := Φ−1

(
Ĝn(yt)

)}n
t=1

that corresponds to

{yt}
n
t=1.
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2. Create the lag h pseudo-normalized pairs
{(
ẑt+h, ẑt

)}n−h
t=1

for h = 1, . . . ,m, and esti-

mate, both for the point v = (v1, v2) and its diagonal reflection v̆ = (v2, v1), the local

Gaussian autocorrelations {ρ̂v(h|bh)}
m
h=1 and {ρ̂v̆(h|bh)}

m
h=1, where the {bh}

m
h=1 is the

bandwidths used during the estimation of the local Gaussian autocorrelation for the

different lags.

3. Adjust Equation (17a) from Lemma 2.1(2) with some lag-window function λm(h) to

get the estimate

f̂mv (ω) := 1 +
m∑
h=1

λm(h) · ρ̂v̆(h|bh) · e+2πiωh +
m∑
h=1

λm(h) · ρ̂v(h|bh) · e−2πiωh. (20)

The presence of the kernel Kb(w − v) in Equation (6) implies that small sample effects

can occur when the local Gaussian spectrum fv(ω) is estimated for some combinations of

points v and bandwidths b — and this can in particular be an issue if the points lie in the

low density regions corresponding to the tails of our distribution. Roughly speaking: When

the bandwidth b becomes “too small”, then the estimated local Gaussian autocorrelations

will have a tendency to approach either “−1” or “+1”, cf. Appendix D.3 — and these

estimates will then in general only reflect the random configuration of those lag-h pairs that

happened to lie closest to the point v. Section 3.1 presents strategies that can be used in

order to detect/avoid this issue, and additional details are presented in the Supplementary

Material.

The following result is an analogue to Equation (18) of Lemma 2.1(3)

Lemma 2.2. When it is assumed that the sample {yt}
n
t=1 comes from a time reversible

stochastic process {Yt}t∈Z, the m-truncated estimate f̂mv (ω) can for all points v ∈ R2 be

written as

f̂mv (ω) = 1 + 2 ·
m∑
h=1

λm(h) · ρ̂v(h|bh) · cos(2πωh). (21)
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Moreover, Equation (21) will always hold when the point v lies on the diagonal, that is,

v1 = v2.

Proof. This follows from Items 3 and 4 of Lemma 2.1.

The estimated Ĝn in Algorithm 2.1(2) can for example be the rescaled empirical cu-

mulative distribution function created from the sample {yt}
n
t=1 (which transforms original

data into ranks divided by n+ 1), or it could be based on some logspline technique like the

one implemented in Otneim and Tjøstheim [2017].

The bandwidths bh = (bh1, bh2) in Algorithm 2.1(2) does not need to be equal for all

the lags h when an estimate f̂mv (ω) is computed. For the asymptotic investigation it is

sufficient to require that bh1 and bh2 approach zero at the same rate, that is, that there

exists b = (b1, b2) such that bhi � bi for i = 1, 2 and for all h (that is to say, lim bhi/bi = 1).

The asymptotic theory for ρ̂v(h|bh), given that the required regularity conditions are

satisfied, follows when the original argument from Tjøstheim and Hufthammer [2013] is

combined with the argument in Otneim and Tjøstheim [2017]. The analysis in Tjøstheim

and Hufthammer [2013] considered the general case where the original observations {yt}
n
t=1

were used instead of the normalized observations {zt := Φ−1 (G(yt))}
n
t=1. Since the cu-

mulative density function G in general will be unknown, the present asymptotic analysis

must work with the pseudo-normalized observations {ẑt}
n
t=1, which makes it necessary to

take into account the difference between the true normalized values zt and the estimated

pseudo-normalized values ẑt. The analysis in Otneim and Tjøstheim [2017] implies that

Ĝn(yt) approaches G(yt) at a faster rate than the rate of convergence for the estimated local

Gaussian correlation, so (under some regularity conditions) the convergence rate of ρ̂v(h|bh)

will thus not be affected by the distinction between zt and ẑt. The present analysis will

18



not duplicate the arguments related to this distinction, and the interested reader should

consult Otneim and Tjøstheim [2017, sec. 3] for the details.

The bias-variance balance for the estimates f̂mv (ω) must consider the size of m relative

to both n and the bandwidths {bh}
m
h=1, that is, the kernel function reduces the number

of observations that effectively contributes to the computations of the estimates — and

that number of effective contributors can also depend on the location of the point v, that

is, whether the point v lies at the center or in the periphery of the pseudo-normalized

observations
{(
ẑt+h, ẑt

)}n−h
t=1

. Confer section 3.2 for further details.

Figure 2 shows the effect of the pseudo-normalization on the dmbp example11 that will be

discussed in section 3.4. The uppermost part shows the original dmbp-series (of length 1974)

whereas the lowermost part shows the pseudo-normalized transformation of it, and it is clear

that the shape of the pseudo-normalized version resembles the shape of the original version.

original dmbp

−2

−1

0

1

2

3

0 500 1000 1500 2000

pseduo−normal dmbp

−2

0

2

0 500 1000 1500 2000

Figure 2: dmbp, original version and pseudo-normalized version.

11 This is the Deutschemark/British pound Exchange Rate (dmbp) data from Bollerslev and Ghysels

[1996], which is a common benchmark data set for GARCH-type models, and as such models are among the

motivating factors for the study of the local Gaussian spectral density, it seems natural to test the method on

dmbp. The data plotted here was found in the R-package rugarch, see Ghalanos [2020], where the following

description was given: “The daily percentage nominal returns computed as 100 [ln (Pt)− ln (Pt − 1)], where

Pt is the bilateral Deutschemark/British pound rate constructed from the corresponding U.S. dollar rates.”
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2.4 Asymptotic theory for f̂mv (ω)

This section presents asymptotic results for the cases where f̂mv (ω) are real-valued functions.

Note that both assumptions and results are stated relative to the original observations

instead of the pseudo-normalized observations. This simplification does not affect the final

convergence rates (see earlier remarks for details) and it makes the analysis easier. The

requirement that the LGSD should be defined relative to the normalized observations is

due to computational issues, and the theoretical investigation shows that it could just as

well have been phrased in terms of the original observations.

2.4.1 A definition and an assumption for Yt

The assumption to be imposed on the univariate time series {Yt}t∈Z is given in terms

of components related to the bivariate lag-h-pairs that can be constructed from it. The

theoretical analysis of f̂mv (ω) also requires that (m+ 1)-variate pairs are considered. Note

that Item 3 of Algorithm 2.1 implies that it is sufficient to only consider positive values

for h.

Definition 2.4. For a strictly stationary univariate time series {Yt}t∈Z, with h ≥ 1 and

m ≥ 2, define bivariate and (m+ 1)-variate time series as follows,

Yh:t :=
[
Yt+h, Yt

]′
, Ym:t :=

[
Yt+m, . . . , Yt

]′
, (22)

and let gh(yh) and gm(ym) denote the respective probability density functions.

The bivariate densities gh can all be obtained from the (m+ 1) variate density gm

by integrating out the m − 1 redundant marginals, which in particular implies that if

an (m+ 1)-variate function η̃h(ym) : Rm+1 → R1 is the obvious extension12 of a bivariate

12Consider the function to be a constant with respect to all the new variables that are introduced.
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function ηh(yh) : R2 → R1, then

E[ηh(Yh:t)] = E[η̃h(Ym:t)] , for h ∈ {1, . . . ,m} . (23)

With the notation from Definition 2.4 the following Assumption 2.1 can now be imposed

on Yt. Note that Items 5 to 7 of Assumption 2.1 contain references to definitions that first

are given explicitly in Appendix B in the Supplementary Material; these definitions are

related to an (m+ 1)-variate penalty function for the time series Ym:t — and they are

quite technical so it would impede the flow of the paper to include all the details here. For

the present section, it is sufficient to know that the new (m+ 1)-variate function can be

expressed as a sum of m bivariate penalty-functions of the form given in Equation (11).

The key idea is that Wt and g(w) in Equations (6) to (12) are replaced with Yh:t and

gh(yh), which implies that an additional index h must be added in order to keep track of

the bookkeeping. In particular, an inspection of Equation (12) motivates the introduction

of a random variable vector Xh:t = Kb(Yh:t − v)u(Yh:t;θ), and the random variables Xn
hq:i

that occur in Assumption 2.1(7) are the components of
√
b1b2Xh:t. Furthermore, notice

that different combinations of the indices h, i, j and k in the product Xn
hq:i · Xn

jr:k implies

that it can contain from two to four different terms of the time series {Yt}t∈Z, so the

corresponding density function can thus either be bi-, tri- or tetravariate. The indices

q, r = 1, . . . , 5 keep track of the appropriate derivatives of the 5-dimensional parameter

vector θ. See Definitions B.7 and B.11 for details.

Assumption 2.1. The univariate process {Yt}t∈Z will be assumed to satisfy the following

properties, with v = (v1, v2) in Item 4 the point at which the estimate f̂mv (ω) of fv(ω) is to

be computed.

1. {Yt}t∈Z is strictly stationary.
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2. {Yt}t∈Z is strongly mixing, with mixing coefficient α(j) satisfying

∞∑
j=1

ja [α(j)]1−2/ν <∞ for some ν > 2 and a > 1− 2/ν. (24)

3. Var(Yt) <∞.

The bivariate density functions gh(yh) of the lag h pairs Yh:t of the univariate time

series {Yt}t∈Z, must satisfy the following requirements for a given point v = (v1, v2).

4. gh(yh) is differentiable at v, such that Taylor’s theorem can be used to write gh(yh) as

gh(yh) = gh(v) + gh(v)′ [yh − v] + Rh(yh)
′ [yh − v] , (25)

where gh(v) =

[
∂
∂yh
gh(yh)

∣∣∣
yh=v

, ∂
∂y0
gh(yh)

∣∣∣
yh=v

]′
and lim

yh−→v
Rh(yh) = 0,

and the same requirement must also hold for the diagonally reflected point v̆ = (v2, v1).

5. There exists a bandwidth bh0 such that there for every 0 < b < bh0 is a unique min-

imizer θh:b of the penalty function qh:b defined in Equation (B.4), which is obtained

from Equation (6) by putting w = yh.

6. The collection of bandwidths {bh0}h∈Z has a positive infimum, that is, there exists a b0

such that 0 < b0 := infh∈Z bh0, which implies that this b0 can be used simultaneously

for all the lags.

7. For Xn
hq:i from Definition B.11, the bivariate, trivariate and tetravariate density func-

tions must be such that the expectations E
[
Xn
hq:i

]
, E
[∣∣Xn

hq:i

∣∣ν] and E
[
Xn
hq:i ·Xn

jr:k

]
all

are finite.

These assumptions on Yt are extensions of those used for the LGC-case in Tjøstheim

and Hufthammer [2013]. Assumption 2.1(2) is a bit more general than the one used in

Tjøstheim and Hufthammer [2013], but that is not a problem since the arguments given

there trivially extend to the present case.
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The α-mixing requirement in Item 2 ensures that Yt+h and Yt will be asymptotically

independent as h→∞, that is, the bivariate density functions gh(yh) will for large lags h

approach the product of the marginal densities, and the situation will thus stabilize when

h is large enough. This is in particular of importance for Item 6, since it implies that it

will be possible to find a nonzero b0 that works for all h.

We do not consider the α-mixing condition to be very strong. In particular, note that

GARCH type models, which are frequently used in econometrics, and also in the present

paper, cf. section 3.4.3, are β-mixing under weak conditions, see, for example, Carrasco

and Chen [2002]; and β-mixing implies α-mixing.

The finiteness requirements in Assumption 2.1(7) will be trivially satisfied if the densi-

ties are bounded, that is, they will then be consequences of properties of the kernel function

Kb and the score function of the bivariate Gaussian distribution, see Lemma C.6 for details.

2.4.2 An assumption for Yt and the score function u(w;θ) of ψ(w;θ)

The score function in Equation (7), that is, u(w;θ) := ∂
∂θ

log (ψ(w;θ)), plays a central role

in the local density-estimation approach of Hjort and Jones [1996], and it also plays a pivotal

role in the local Gaussian correlation theory developed in Tjøstheim and Hufthammer

[2013].

In particular, the convergence rate that in Tjøstheim and Hufthammer [2013] is given for

θ̂v − θv does implicitly require that u(v;θv) 6= 0 in order for the corresponding asymptotic

covariance matrix to be well defined. The investigation of
(
f̂mv (ω)− fv(ω)

)
in this paper

builds on the asymptotic results from Tjøstheim and Hufthammer [2013], and the following

assumption must be satisfied in order for the given convergence rates and asymptotic

variances to be valid.
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Assumption 2.2. The collection of local Gaussian parameters {θv(h)} at the point v for

the bivariate probability density functions gh(yh), must all be such that

1. u(v;θv(h)) 6= 0 for all finite h.

2. limu(v;θv(h)) 6= 0.

It is, for a given time series Yt and a given point v, possible to inspect the 5 equations

in u(w;θ) = 0 in order to see when Items 1 and 2 of Assumption 2.2 might fail. For

the case of the asymptotic requirement in Item 2, the key observation is that the strong

mixing requirement from Assumption 2.1(2) implies that Yt+h and Yt will become indepen-

dent when h → ∞. Together with the assumption of normalized marginals, this implies

that the limit of θv(h) always becomes [µ1, µ2, σ1, σ2, ρ]′ = [0, 0, 1, 1, 0]′, which means that

Assumption 2.2(2) will fail for any point v that solves u(v; [0, 0, 1, 1, 0]′) = 0.

2.4.3 Assumptions for n, m and b

For simplicity, the present analysis will use the b = (b1, b2) introduced in the second para-

graph after Lemma 2.2, that is, it will be assumed that the individual bandwidths bh

for the different lags h approach zero at the same rate — and that it for the asymptotic

investigation thus can be assumed that the same bandwidth is used for all the lags.

Assumption 2.3. Let m := mn →∞ be a sequence of integers denoting the number of

lags to include, and let b := bn → 0+ be the bandwidths used when estimating the local

Gaussian correlations for the lags h = 1, . . . ,m (based on n observations). Let b1 and b2

refer to the two components of b, and let α, ν and a be as introduced in Assumption 2.1(2).

Let s := sn →∞ be a sequence of integers such that s = o
(√

nb1b2/m
)

, and let τ be a

positive constant. The following requirements must be satisfied for these entities.13

1. log n/n(b1b2)5 −→ 0.

13Notational convention: “∨” denotes the maximum of two numbers, whereas “∧” denotes the minimum.
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2. nb1b2/m −→∞.

3. mδ(b1 ∨ b2) −→ 0, where δ = 2 ∨ ν(a+1)
ν(a−1)−2

.

4.
√
nm/b1b2 · sτ · α(s−m+ 1) −→∞.

5. m = o
(

(nb1b2)τ/(2+5τ)−λ
)
, for some λ ∈ (0, τ/(2 + 5τ)).

6. m = o(s).

Assumption 2.3(1) is needed in order for the asymptotic theory from Tjøstheim and

Hufthammer [2013] to be valid for the estimates ρ̂v(h). See Lemma C.3 for a verification

of the internal consistency of the requirements given in Assumption 2.3. The expected

number of observations near v will for large n and small b1 and b2 be of order nb1b2 · gh(v)

— and this will, when gh(v) > 0, go to infinity when n→∞ and b→ 0+. See the end of

Appendix C.3 for further details.

2.5 Convergence theorems for f̂mv (ω)

Theorem 2.1 (v on diagonal, that is, v1 = v2). The local Gaussian spectral density fv(ω)

is a real valued function when the point v lies on the diagonal. Furthermore; when the

univariate time series Yt satisfies Assumptions 2.1 and 2.2, and n, m and b = (b1, b2) are

as given in Assumption 2.3, then the following asymptotic results holds for the m-truncated

estimate f̂mv (ω), √
n(b1b2)3/m ·

(
f̂mv (ω)− fv(ω)

)
d−→ N

(
0, σ2

v (ω)
)
, (26)

where the formula

σ2
v (ω) = 4 lim

m→∞

1

m

m∑
h=1

λ2
m(h) · cos2(2πωh) · σ̃2

v (h) (27)

relates the variance σ2
v (ω) to the asymptotic variances σ̃2

v (h) of
√
n(b1b2)3·(ρ̂v(h|bh)− ρv(h)).
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Proof. The proof is given in Appendix A.1.

The variance σ2
v (ω) depends on all the bivariate density functions through the variances

σ̃2
v (h). Moreover, it is clear from Equation (27) that σ2

v (ω) as a function of the frequency ω

is symmetric around ω = 1
4
, with its highest values when ω ∈

{
0, 1

2

}
. The same symmetry

is not present for the variance of the m-truncated spectra f̂mv (ω), and the variance of f̂mv (ω)

will have its highest value when ω = 0, cf. Appendix A.3 for details.

A similar result to Theorem 2.1 can be stated for time reversible stochastic processes.

Theorem 2.2 (Yt time reversible). The local Gaussian spectral density fv(ω) is a real valued

function for all points v when Yt is time reversible (see Definition 2.2). Furthermore under

Assumptions 2.1 to 2.3, the same asymptotic results as stated in Theorem 2.1 holds for the

m-truncated estimate f̂mv (ω).

Proof. Lemma 2.1(3) states that fv(ω) is a real-valued function, and the proof of Theo-

rem 2.1 (see Appendix A.1) can then be repeated without any modifications.

The asymptotic normality results in Theorems 2.1 and 2.2 do not easily enable a com-

putation of pointwise confidence intervals for the estimated LGSD. Thus, the pointwise

confidence intervals later on will either be estimated based on suitable quantiles obtained

by repeated sampling from a known distribution, or they will be based on bootstrapping

techniques for those cases where real data have been investigated. Confer Teräsvirta et al.

[2010, ch. 7.2.5 and 7.2.6] for further details with regard to the need for bootstrapping

in such situations. See also Lacal and Tjøstheim [2017, 2018] for analytic results on the

bootstrap and block bootstrap in the case of estimation of the local Gaussian auto- and

cross-correlation functions.
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The asymptotic result for f̂mv (ω) complex-valued is given in Appendix A.2, where it can

be seen that
√
n(b1b2)3/m ·

(
f̂mv (ω)− fv(ω)

)
then asymptotically approaches a complex-

valued normal distribution.

3 Visualizations and interpretations
This section will show how different visualizations of the m-truncated estimates f̂mv (ω)

can be used to detect nonlinear dependency structures in a time series. Similar graphical

methods can also be found in Birr et al. [2019]; Li [2019], and the heatmap-plot presented

in this section is in particular inspired by the one encountered in Li [2019].

Technical details, and the description of the selected tuning parameters of f̂mv (ω), are

given in section 3.1. Section 3.2 uses the aforementioned dmbp-data to highlight how the

different tuning parameters of the estimation algorithm are interconnected.

A sanity test of the implemented estimation algorithm is presented in section 3.3, and

it is there seen that f̂mv (ω) can detect local periodic structures in an example where a

heuristic argument enables the prediction of the anticipated result. Section 3.4 applies

the local Gaussian machinery to the dmbp-data, and it also contains the results from a

GARCH-type model fitted to the dmbp-data. A comparison of the results from the original

data and the fitted model can reveal to what extent the internal dependency structure of

the fitted model actually reflects the dependency structure of the original sample, and this

might be of interest with regard to model selection.

A few extreme examples have been included in the Supplementary Material in order to

investigate the limitations of this method. Appendix G.4.3 examine the detection of a pe-

riodic component located far out in the tail of a large sample, and Appendix G.4.4 consider

a situation based on a deterministic function perturbed by very low random fluctuations.
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3.1 The input parameters and some other technical details

Several tuning parameters must be selected in order to compute the m-truncated local

Gaussian spectral density estimates f̂mv (ω), and the values used for the plots in this section

are given below. Note that these parameters have been selected in order to provide a

proof of concept for the fact that nonlinear dependency structures can be detected by this

approach, and the quest for “optimal parameters” is a topic for further work. The interested

reader can consult Appendix D in the Supplementary Material for a sensitivity analysis of

the different tuning parameters.

The pseudo-normalization: The initial step of the computation of f̂mv (ω) is to replace

the observations {yt}
n
t=1 with the corresponding pseudo-normalized observations {ẑt}

n
t=1, cf.

Algorithm 2.1, that is, an estimate of the marginal cumulative density function G is needed.

The present analysis has used the rescaled empirical cumulative density function Ĝn for this

purpose, but the computations could also have been based on a logspline-estimate of G. A

preliminary test revealed that the two normalization procedures created strikingly similar

estimates of f̂mv (ω), so the computationally faster approach based on the rescaled empirical

cumulative density-function has thus been applied for the present investigation.

The length n of the samples: All samples have the same length as the dmbp-data,

that is, n = 1974. The estimation machinery produces similar results for shorter samples,

but it is important to keep in mind that too short samples might not reveal the dependency

structure of interest — which in particular might be an issue for the tails of the distribution.

The points v of investigation: Three diagonal points, with coordinates correspond-

ing to the 10%, 50% and 90% percentiles of the standard normal distribution,14 will be

used in the basic plots in this section. These points will often be referred to as lower tail,

14The corresponding coordinates are (−1.28,−1.28), (0, 0) and (1.28, 1.28).
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center and upper tail when discussed in the text. Confer Appendix D.3 for further details

related to the selection of v, and see Figure 8 for a heatmap-based plot.

The lag-window function λm(h): The smoothing of the estimated local Gaussian

autocorrelations, cf. Algorithm 2.1(3), was done by the Tukey-Hanning lag-window kernel:

λm(h) = 1
2
·
(
1 + cos

(
π · h

m

))
for |h| ≤ m, λm(h) = 0 for |h| > m.

The bandwidth b: The estimation of the local Gaussian autocorrelations requires

the selection of a bandwidth-vector b = (b1, b2), and the majority of the plots in this

section have used b = (.5, .5). Note that it is natural to require b1 = b2 since both of the

components in the lag h pseudo-normalized pairs comes from the same univariate time

series. Further discussion of choice of bandwidth is given in Appendix E

The truncation level m: The value m = 10 was used for the truncation level, since it

was possible to detect nonlinear dependency structures even for that low truncation level.

The number of replicates R: The estimated values (means and 90% pointwise

confidence intervals) have been based on R = 100 replicates. Simulations were used for the

cases with known parametric models, whereas a bootstrap based resampling strategy were

used for the real data example (cf. Appendix F for the technical details).

Numerical convergence: The R-package localgauss, see Berentsen et al. [2014a],

estimates the local Gaussian autocorrelations ρv(h) and returns them together with an

attribute that reveals whether or not the estimation algorithm converged numerically.

The m-truncated estimates f̂mv (ω) inherits the convergence-attributes from the estimates

{ρ̂v(h)}mh=−m, and either “NC = OK” or “NC = FAIL” will be added to the plot depend-

ing on the convergence status. Note that convergence-problems hardly occurs when the

computations are based on pseudo-normalized observations.

Reproducibility and interactive investigations: All the examples in this paper

can be reproduced by the scripts (see Appendix G) that are contained in the R-package
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localgaussSpec. Note that the computations of f̂mv (ω) can be performed for a wide range

of tuning parameters, which allows an integrated interactive investigation of the results by

means of a shiny-application.15

3.2 Estimation aspects for the given parameter configuration

The estimation of f̂mv (ω) for a point v = (v1, v2) that lies on the diagonal, that is, v1 = v2,

will be based on the estimates of ρ̂v(h) for h = 1, . . . ,m, and it is thus of interest to first

investigate how these estimates depend on the configuration of the tuning parameters given

in section 3.1. This is most easily done in terms of an example, and the pseudo-normalized

dmbp-data (of length 1974) will be used for this purpose.

First of all, note that the combination of point v and bandwidth b influences how many

of the h-lagged pairs that effectively contribute to the computation of ρ̂v(h). This is shown

in Figure 3 for the pseudo-normalized dmbp-data. In the plot of the pseudo-normalized time

series (top panel), the three horizontal dashed lines represent the levels which corresponds

to the coordinates of the three points v, whereas the horizontal strips centered at those

lines show which observations that lie within a distance of b = 0.5 from the respective

lines. The three plots at the bottom show the corresponding 1-lagged pairs, each with a

bandwidth-square (of width 2b) centered at one of the selected points v.

The estimates of ρv(1) are based on the 1-lagged pairs seen in the lower part of Figure 3,

and these and similar estimates for lags up to 200 (based on b = (0.5, 0.5)) are shown in

Figure 4. An investigation of Figure 4 shows how ρ̂v(h) varies for the three points of

interest, and there is a clear distinction between the center and the two tails. Note that

the bias-variance balance of the estimates ρ̂v(h) depends on the number of h-lagged pairs

that effectively contribute during the computation, and it is thus clear that the variance

15 See Chang et al. [2017] for details about shiny.
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Figure 3: dmbp (pseudo-normalized version), levels and bandwidth-bands (top) and lag 1

bandwidth-squares (bottom). Further details in the main text.

will increase for points v that lie farther out in the tails. The selection of which tail-points

to investigate must thus take into account the number of available observations for the lags

to be included.
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Figure 4: dmbp-data, ρ̂v(h) for h = 1, . . . , 200 (for the three points of interest). The esti-

mates for h = 1, . . . , 10 will be used for f̂mv (ω), cf. Figure 9.
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The ρ̂v(h) tends to fluctuate around 0 at the center, which implies that the correspond-

ing estimated spectral density f̂mv (ω) most likely will be rather flat and close to 1. For the

two tails, it seems natural to assumme that some long-range dependency must be present,

and one might also suspect that there is an asymmetry between the two tails.16

Based on the impression from Figure 4, it might be a connection between the global

long-range dependence in the dmbp-data and the local dependency structure in the tails —

but note that the estimates in Figure 4 are based on the pseudo-normalized data, so the

information from the marginal distribution is not present here. However, the same kind of

behaviour has been observed for pseudo-normalized samples from different GARCH-type

models, so the dependency structure of the tails could be a significant contributor to the

global long-range dependency seen in time series models like ARCH and GARCH.

3.3 Sanity testing the implemented estimation algorithm

The purpose of this section is to check whether or not the implemented estimation algorithm

returns reasonable results for some simulated examples. It is only for the Gaussian case

that the true value of the local Gaussian spectral densities fv(ω) are known, and it is

thus important to specifically construct an example where heuristic arguments enable the

prediction of the anticipated results.

The strategy used to create the plots for the simulated data works as follows: First

draw a given number of independent replicates from the specified model, and compute

f̂mv (ω) and f̂m(ω) for each of the replicates. Then extract the mean of these estimates to

get estimates of the true values of fmv (ω) and fm(ω), and select suitable upper and lower

percentiles of the estimates to produce an estimate of the pointwise confidence intervals.

16A further investigation of this is easy when the shiny-application in the R-package localgaussSpec

is used, since it then is possible to immediately switch to an investigation of the corresponding spectra.
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Note that the plots have been annotated with the following information: The numerical

convergence status NC in the lower left corner; the truncation level m in the upper left

corner; the percentiles of the point v of investigation, and the bandwidth b in the upper

right corner; the length n and the number of replicates R in the lower right corner.

3.3.1 Gaussian white noise

The sanity testing of the implemented estimation algorithm starts with the trivial case.

Figure 5 shows the result when the estimation procedure is used on 100 independent samples

of length 1974 from a standard normal distribution N(0, 1). The computations are based

on the bandwidth b = (0.5, 0.5), and the points (on the diagonal) corresponds to the 0.1,

0.5 and 0.9 quantiles of the standard normal distribution. The top left panel shows the

pseudo-normalized version of the first time series that was sampled from the model, with

dashed lines at the levels that corresponds to the above mentioned points. The three other

panels contain information about the m-truncated ordinary spectral density fm(ω) (red

part,17 the same for all the plots) and the m-truncated local Gaussian spectral densities

fmv (ω) for the three points under investigation (blue part).

i.i.d. Gaussian white noise
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Figure 5: i.i.d. Gaussian white noise, with global and local spectra for three points.

17If you have a black and white copy of this paper, then read “red” as “dark” and “blue” as “light”.
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It can be seen from Figure 5 that the means of the estimates (the dashed lines at the

center of the regions) are good estimates of fm(ω) and fmv (ω), which in this case in fact

coincides with f(ω) and fv(ω), that is, it is known that the true values are identical to 1

both for the local and global case. Observe that the estimated 90% pointwise confidence

intervals are wider for the local Gaussian spectral densities, which is as expected since

the bandwidth used in the estimation of the local Gaussian autocorrelations reduces the

number of observations that effectively contributes to the estimated values, and thus makes

the estimates more prone to small-sample variation. Note also that the pointwise confidence

intervals are wider in the tails, which is a natural consequence of the reduced number of

points in those regions, cf. the discussion related to Figure 3. The width of these pointwise

confidence intervals will decrease when the bandwidth increases, cf. the discussion related

to Figure 6.

The estimation procedure gave good estimates of the true values f(ω) and fv(ω) in the

simple example of Figure 5, but it is important to keep in mind that these plots actually

shows estimates of fm(ω) and fmv (ω). It might be necessary to apply a (much) higher

truncation level m before fm(ω) and fmv (ω) gives decent approximations of the true values

f(ω) and fv(ω). However, for the task of interest in section 3 it is actually not a problem if

the selected truncation level does not give “optimal estimates” of f(ω) and fv(ω) — since

the detection of nonlinear dependency structures can be seen for a wide range of different

truncation levels. The recommended approach is to estimate f̂mv (ω) for a range of possible

truncation levels m, and then check if the shape of the estimates for different truncations

share the same properties with regard to the position of any peaks and troughs. The

R-package localgaussSpec is designed in such a way that this is trivial to do.
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3.3.2 Some trigonometric examples

Beyond the realm of Gaussian time series, it is not known what the true value for the local

Gaussian spectral density actually should be. The sanity of the implemented estimation

algorithm will thus be tested by the means of an artificially constructed local trigonometric

time series, for which it at least can be reasonably argued what the expected outcome

should be for some specially designated points v (given a suitable bandwidth b). These

artificial time series will not satisfy the requirements needed for the asymptotic theory to

hold true (as is also the case for standard global spectral analysis), but they can still be

used to show how an exploratory tool based on the local Gaussian spectral density can

detect local periodic properties that the ordinary spectral density fails to detect.

As a prerequisite (and a reference) for the investigation of the local trigonometric time

series, it is prudent to first investigate the result based on independent samples from a

time series of the form Yt = cos(2παt+ ϕ) + wt, where wt is Gaussian white noise with

mean zero and standard deviation σ, and where it in addition is such that α is fixed for all

the replicates, whereas the phase-adjustment ϕ is randomly generated for each individual

replicate. A realization with α = 0.302 and σ = 0.75 is shown in Figure 6, where the

frequency α has been indicated with a vertical line in order to show that both the local

and global approaches in this case have a peak at the expected position. The plots are

based on 100 samples of length 1974, and shows 90% pointwise confidence intervals. Some

useful remarks can be based on Figure 6, before the local trigonometric case is defined and

investigated.

All the plots in Figure 6 show the same point (corresponding to the 10% quantile) in

the lower tail, but they differ with regard to the bandwidths that have been used. In

particular, the upper right plot is based on the bandwidth b = (.5, .5) (the bandwidth used

in all the other examples), whereas the two plots at the bottom shows the situation for the
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cosine and i.i.d. Gaussian noise
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Figure 6: Single cosine and i.i.d. white noise, same point, bandwidths 0.5, 0.75 and 1.

bandwidths b = (.75, .75) and b = (1, 1), respectively at the left and right. In this case, the

widths of the pointwise confidence intervals are influenced by the selected bandwidths, but

the overall shape is similar and close to the global estimate shown in red. This feature is

also present for the other examples that have been investigated.

Note that the cosine is recovered using just a neighbourhood of the 10% quantile. Fur-

thermore, the portion of the local Gaussian spectral density that is negative decreases with

increasing bandwidth, which is in accordance with the remark at the end of section 2.1.1.

Using the notation from Algorithm 2.1, this can for the estimates of the local Gaussian

autocorrelations be stated as ρ̂v(h|b)→ ρ̂ (h) when b→∞, which implies that the estimate

f̂mv (ω) converges towards the global non-negative estimate f̂m(ω). It is thus possible to

reduce the amount of negative values for the estimates f̂mv (ω) by increasing the bandwidth

b, but keep in mind that it is the limits b→ 0+ and m→∞ that should be taken in order

to actually estimate the local Gaussian spectral density fv(ω).

The truncation level used in Figure 6 is rather low, that is, m = 10, but it can be

seen that the peak is observed at the correct frequency. The peak will grow taller and

narrower when a higher truncation level is used, but it will stay at the same frequency.

This indicates that these plots (even for low truncation values) can detect properties of the
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underlying structure. Again, this feature is shared with the other examples that have been

investigated.

The local Gaussian spectral densities in Figure 6 goes below zero for low frequencies,

a feature that is not entirely unexpected as {ρv(h)}h∈Z, the collection of local Gaussian

autocorrelations, may not be a non-negative definite function. In fact, based on the ob-

servation that the estimates of f̂mv (ω) have peaks that are taller and wider than those of

f̂m(ω), it is as expected that these estimates might need to have negative values some-

where. The reason for this is that all the spectral densities (global, local and m-truncated)

by construction necessarily must integrate to one over the interval (−1
2
, 1

2
]. The higher and

wider peaks of the estimates for f̂mv (ω) thus requires that it has to lie below the estimates

of f̂m(ω) in some other region, and if necessary it must attain negative values somewhere.

The interesting details in the plots are thus the position of the peaks of f̂mv (ω), and regions

with negative values should not in general be considered a too troublesome feature.

Note that, under certain circumstances, f̂mv (ω) might contain spurious artefacts when

it is computed for time series having a non-flat ordinary spectrum, c.f. Appendix G.4.4 for

a discussion related to a case based on a deterministic function with small noise.

The local trigonometric case: The key idea in this example is that an artificial time

series {Yt}t∈Z can be constructed by the following scheme:

1. Select r time series {Ci(t)}
r
i=1.

2. Select a random variable I with values in the set {1, . . . , r}, and use this to sample

a collection of indices {It}t∈Z (that is, for each t an independent realization of I is

taken). Let pi := P(Ii = i) denote the probabilities for the different outcomes.

3. Define Yt by means of the equation

Yt :=
r∑
i=1

1{It = i} · Ci(t). (28)
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The indicator function 1{·} ensures that only one of the Ci(t) contribute for a given

value t, that is, it is also possible to write Yt = CIt(t).

The local trigonometric time series (needed for the sanity testing of the implemented

estimation algorithm) are constructed by selecting r cosine-functions that oscillates around

different horizontal base-lines Li, that is,

Ci(t) = Li + Ai(t) · cos (2παit+ ϕi) , i = 1, . . . , r, (29)

where αi and ϕi respectively represent the frequency and phase-adjustment occurring in the

cosine-function, and where the amplitudes Ai(t) are uniformly distributed in some interval

[ai, bi]. Note that it is assumed that the phases ϕi are uniformly drawn (one time for each

realization) from the interval between 0 and 2π, and it is moreover also assumed that the

stochastic processes ϕi, Ai(t) and It are independent of each other.

The autocorrelation ρ(h) of the time series {Yt}t∈Z, with Ci(t) as given in Equation (29),

has been computed in the Supplementary Material, cf. Equation (G.5) in Appendix G.4.

For the purpose of the present section, it is sufficient to know that it is possible to find

parameter-configurations for which the global spectrum is rather flat (at least when trun-

cated at m = 10), which implies that it cannot detect the frequencies αi of the underlying

structure.

Strictly speaking, neither f(ω) nor fv(ω) are well defined for the local trigonometric

times series, but this is not important since it still is possible to predict (cf. Appendix G.4 for

details) that the m-truncated estimates f̂mv (ω) for some points v should resemble Figure 6

— and this can be used, cf. Figure 7, to test the sanity of the implemented estimation

algorithm.

The explicit expression for the local trigonometric example studied in Figure 7 is given

by r = 4 components Ci(t) of the form given in Equation (29), where the probabilities pi are
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given by (0.05, 1/3−0.05, 1/3, 1/3), the frequencies αi are given by (0.267, 0.091, 0.431, 0.270),

the base-lines Li are given by the values (−2,−1, 0, 1), and the lower and upper ranges for

the uniforms sampling of the amplitudes Ai(t) are respectively given by (0.5, 0.2, 0.2, 0.5)

and (1.0, 0.5, 0.3, 0.6). Note that Li and Ai(t) should be selected in order to give a minimal

amount of overlap between the different components, cf. Appendix G.4 for further details.

Figure 7 shows f̂m(ω) and f̂mv (ω) for the local trigonometric example. The ordinary

spectrum does not detect the frequencies αi (indicated by vertical lines), whereas the local

Gaussian spectra does have clear peaks at the frequencies from respectively C2(t), C3(t)

and C4(t). Moreover, a comparison with Figure 6 shows that f̂mv (ω) indeed does look like

predicted, which verifies the sanity of the implemented estimation algorithm.

artificial trigonometric example
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Figure 7: Artifical example, local trigonometric components. Global and local spectra for

the three points v on the diagonal, that is, lower tail, center and upper tail.

The selected percentiles {pi}
4
i=1 implies that observations from the C3(t) component

after pseudo-normalization should lie between Φ−1(1/3) = −0.43 and Φ−1(2/3) = 0.43.

The estimation of fmv (ω) is based on the bandwidth b = (0.5, 0.5), which implies that

the estimate at the center will be “contaminated” by observations from the neighbouring

components — and this explains the lower amplitude seen for this point.
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The three points v in Figure 7 correspond roughly to the base-lines L2, L3 and L4, and

the corresponding frequencies α2, α3 and α4 are here detected by f̂mv (ω). But what about

the base-line L1 and the α1-frequency?

The low probability at which the C1(t) component is selected implies that the point

v corresponding to the base-line L1 must lie far out in the lower tail, and for the present

sample size (of n = 1974) the scarcity of observations in this region implies that it is not

possible to obtain decent estimates of the required local Gaussian autocorrelations ρv(h). A

countermeasure to this problem would be to use a larger bandwidth b, but the result would

then be “contaminated” by the observations from the C2(t) component — and the peak

of f̂mv (ω) would then be at the frequency α2 instead of α1. This implies that misleading

results can occur when the bandwidth b is to large.

However, note that for a large enough sample it is possible to detect the frequency α1

that belongs to the C1(t)-component, cf. Appendix G.4.3 for further details.

The C1(t) component was included in this example in order to emphasize that extra care

is needed when investigating the outer tails of a sample. This of course begs the question:

For a given sample {Yt}
n
t=1, how can an investigator figure out whether or not the estimate

of fmv (ω), for a given combination of point v and bandwidth b, seems trustworthy or

not? Another important question for an investigator is to decide if some points v might

be more interesting than others. Both of these questions can be investigated by means

of the two plots seen in Figure 8, which (for a single sample from the aforementioned

local trigonometric construction) investigates the m = 10 truncated local Gaussian spectra

fmv (ω) for points along the diagonal. Note that the points v are represented by their

respective percentiles, and the range goes from the 5% percentile to the 95% percentile.

The upper part of Figure 8 is a heatmap-plot for f̂mv (ω) (inspired by plots in Li [2019]),

which in this case is based on one sample of length n = 1974. The contour-lines in this
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Figure 8: Heatmap-plot with corresponding distance-plot, based on the local trigonomet-

ric case, showing how f̂ 10
v (ω) varies with the percentiles for the diagonal-points v. The

percentiles and frequencies used in Figure 7 have been indicated with lines/points.

plot clearly reveals that the highest peaks occur approximately at the points investigated

in Figure 7. In fact, looking at the heatmap, the peak at the 90% percentile of Figure 8,

may have its maximum closer to the 95% percentile, but one has to be a little careful here

since the estimates of ρv(h) might degenerate towards +1 (or −1) in the outer part of the

tail.
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The lower part of Figure 8 shows the corresponding distance-plot D(fmv (ω)), where the

norms of the m-truncated spectra (realized as elements of the complex Hilbert space of

Fourier series, cf. Appendix D.1 for details) are plotted against the diagonal points. Note

that distance-based plots do not contain any information about the frequencies, and com-

pletely different spectral densities can have the same distance-value. It is thus important

to always combine a distance-based plot with a plot that reveals the frequency-component.

The horizontal line at the bottom of the distance-plot gives the norm of the ordinary

spectrum, and it can be seen that this line is very close to the white-noise value which is 1.

It is interesting and reassuring that it picks up the peaks at the 10% and 50% percentiles.

It does however not indicate a peak close to the 95% percentile, but this is also the least

clear peak of the heatmap.

This discussion shows that it is important to include a wide range of points when

performing an investigation based on local Gaussian spectral densities, since it is necessary

to check how f̂mv (ω) changes as the diagonal point v varies from the lower tail to the

upper tail. The R-package localgaussSpec is designed for such investigations, and it

includes an interactive interface that can switch between different visualizations. Note

that localgaussSpec also can deal with points v that lies outside of the diagonal, and it

can in addition also digest multivariate time series.

3.4 Real data and a fitted GARCH-type model

The local Gaussian machinery will now be used on the dmbp-data. It will here be seen

that local properties of the nonlinear dependency structure indeed can be obtained by

comparing f̂m(ω) and f̂mv (ω), and this works even for low values of the truncation level m.

Another topic that it is natural to consider is the comparison of f̂mv (ω) based on the

data and f̂mv (ω) based on simulations from a model fitted to the data — and this will in
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particular be investigated for a GARCH-type model that was fitted to the dmbp-data by

the R-package rugarch, Ghalanos [2020].

3.4.1 The real data example

The dmbp-data (length 1974), whose original and pseudo-normalized versions can be seen

in Figure 2, will now be investigated by the m-truncated local Gaussian spectral densities

fmv (ω). These estimates will be based on the bandwidth b = (0.5, 0.5), and they will be

computed for the three diagonal points corresponding to the 10%, 50% and 90% percentiles

of the standard normal distribution. The estimated local Gaussian autocorrelations ρ̂v(h)

that is used in the computation of f̂mv (ω) can be seen in Figure 4, and the estimated values

of f̂m(ω) and f̂mv (ω) (for the m = 10 case) are shown as the red and blue solid lines18 in

Figure 9. The pointwise confidence intervals are based on the resampling strategy discussed

at the end of this section.
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Figure 9: dmbp-data, bootstrapped based confidence intervals. Global and local spectra for

the three diagonal points.

The global spectrum f̂m(ω) is flat, which is in agreement with the knowledge that the

dmbp-data resembles white noise. The local Gaussian spectrum f̂mv (ω) at the center is also

18Solid lines are always used by the R-package localgaussSpec when f̂mv (ω) is based on real data.
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rather flat, which is no surprise given the values ρ̂v(h) seen in the middle panel of Figure 4.

The estimates f̂mv (ω) in the tails are obviously not flat, and the clear peaks at the frequency

ω = 0 are again in agreement with the corresponding values ρ̂v(h) from Figure 4.

The difference between the (solid lines in the) lower and upper tail could indicate the

presence of an asymmetry, that is, the peak are more prominent for the lower tail. It

would be premature to draw a firm conclusion regarding asymmetry based one a single

plot using the low truncation level m = 10, but the asymmetry can also be seen for higher

truncation levels (investigated up to m = 200), with an increasing difference between the

height of these peaks. Such an asymmetry, with a higher peak at the lower tail, would be

in agreement with the asymmetry between a bear market (going down) and a bull market

(going up).

A comparison solely based on the solid lines in Figure 9 is not sufficient, since an

observed difference could be due to the variability of the estimator used to find f̂mv (ω).

It is thus necessary to decide on a reasonable resampling strategy (described below) that

can provide pointwise confidence intervals like those shown in Figure 9. Based on the

pointwise confidence intervals, it is clear that the truncated local and global spectra indeed

do show that the dmbp-data contains local non-linear dependency structures in the tails.

Note that the width of the pointwise confidence interval is a function of the frequency, cf.

Appendix A.3, and this can in some cases give it a wide “trumpet shape” near ω = 0,

as seen in the lower and upper tails in Figure 9 (and which is even more prominent in

Figure 11)

The pointwise confidence intervals in Figure 9 requires a resampling strategy that takes

into account that the local Gaussian autocorrelations ρv(1), . . . , ρv(m) are estimated by a

local likelihood approach. The asymptotic properties of these estimates were developed in

the present paper using the procedure from Klimko and Nelson [1978], cf. Appendix B.1.
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The block bootstrap can be used for a variety of estimators, and it can in particular,

cf. Künsch [1989, Example 2.4, p. 1219-20], be applied for estimators based on the Klimko-

Nelson procedure. The block bootstrap was thus used as the resampling strategy in an

earlier draft of this paper, and the results were similar to Figure 9 when a block length of

L = 100 was used. The selected block length L seemed reasonable based on the ρ̂v(h)-

values seen in Figure 4. See Appendix F.6 for further details.

Some comments related to the block bootstrap were received during the review-process,

and those motivated the investigation presented in Appendix F, which lead to the adjusted

resampling strategy given in Algorithm F.4. The adjusted resampling method uses a

two step procedure, where the first step uses the block bootstrap on the indices of the

observations, and the next step uses those resampled indices to identify the h-lagged pairs(
Yt+h, Yt

)
that should be used when estimating ρv(h) for the resampled data.

The adjusted resampling approach reduce the edge-effect noise that occurs when the

components of a resampled pair belong to different blocks, and this implies that it works well

with lower block lengths than those needed for the ordinary block bootstrap. A sensitivity

analysis related to the selection of the block length L is presented in Appendix F.5.

3.4.2 A heatmap/distance plot for the dmbp-data

It is of interest to know how f̂mv (ω) behaves for other diagonal points, and this can be seen

in Figure 10 which is constructed in the same manner as Figure 8. Keep in mind that

these plots are based on pseudo-normalized data, that is, the information in the marginal

distribution is not present, and Figure 10 thus primarily reveals information about the

copula-structure of the time series under investigation, cf. Appendix D.2 for further details.

Figure 10 supports the impression that there is an asymmetry between the lower tail

and the upper tail, and it can also be seen that the local dependency structure is weak near

the center. Note that these plots go from the 5% to 95% percentile, in order to show that it
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Figure 10: Heatmap and corresponding distance-based plots based on the dmbp-data,

showing how f̂ 10
v (ω) varies with the percentiles for the diagonal-points v. The percentiles

used in Figure 9, that is, 10%, 50% and 90%, have been highlighted with lines/points.

might be perilous to go too far out in the tail for the present sample size (n = 1974). This

is discussed in more detail in Appendix D.2, where heatmap based plots of the estimated

underlying local Gaussian autocorrelations can be found, cf. Figures D.2 to D.4.
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3.4.3 A GARCH-type model

This section will consider an asymmetric power ARCH-model (apARCH) of order (2, 3),

with parameters based on a fitting to the dmbp-data.19 Technical details about this model,

and comments regarding the script needed for the reproduction of this example, can be

found in Appendix G.3 in the Supplementary Material.

For a comparison with the results based on the dmbp-data, it is natural to consider

R = 100 samples of length n = 1974 from the fitted apARCH(2, 3) model — and the

estimates of fmv (ω) should be computed for the same points v and with the same tuning

parameters b and m. The result from such an investigation can be seen in Figure 11.

GARCH−type example
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Figure 11: GARCH-type model, based on dmbp. Global and local spectra for three points.

It is clear from Figure 11 that the estimate of the m-truncated global spectrum is flat,

and this is in agreement with the knowledge that f(ω) = 1 for a GARCH-type model (since

ρ(h) = 0 when h 6= 0). It can also be seen that the esimates f̂mv (ω) based on the fitted

model have the same overall structure as those in Figure 9. In particular, there is a flat

spectrum at the center, and the tails show the presence of nonlinear structures with peaks

19The R-package rugarch, Ghalanos [2020] was used to find the parameters of a multitude of GARCH-

type models, and the asymmetric power ARCH model with the best fit was then selected.

47



at ω = 0. Figure 11 does however not pick up the apparent and intuitively reasonable

asymmetry seen in the solid lines in Figure 9, which also are supported by the plots in

Figure 10.

3.4.4 Local testing of fitted models

A comparison of plots like those in Figures 9 and 11 can be used to perform a “local sanity

check” of whether or not the dependency structure of the fitted model properly matches the

dependency structure of the data — and it is also possible to perform “local comparisons”

of different models that have been fitted to the same data. The interested reader can find

similar local investigations of data and fitted models in for example Birr et al. [2019]; Li

[2019].

Note that it for such comparisons also is of interest to include points v outside the

diagonal. The plots needed for off-diagonal points must take into account that f̂mv (ω)

will be complex-valued outside the diagonal, but this has already been taken care of in the

R-package localgaussSpec, where the implemented solution simply mimics the co-spectra,

quadrature-spectra, phase-spectra and amplitude spectra that is used for the ordinary

complex-valued cross-spectra.

An alternative strategy to the comparison of two sets of plots, like those in Figures 9

and 11, is to superimpose the f̂mv (ω) from the dmbp-data on the top of the corresponding

plots based on the fitted model. A plot based on this superposition principle (inspired by a

similar plot from Birr et al. [2019]) is given in Figure F.1 in the Supplementary Material, cf.

Appendix F.2. Note that this plot also contains visualizations of complex-valued spectra.

4 Conclusion
The local Gaussian spectral density fv(ω) has in this paper been introduced as a new tool for

the study of nonlinear time-series. The examples show that even for low truncation levels it
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is possible to detect nonlinear periodicities missed by the ordinary spectral density. Further,

one can detect the presence of general nonlinear dependency structures by a comparison of

the m-truncated versions of the ordinary spectrum and the local Gaussian spectra.

The m-truncated spectra fmv (ω) can also be of interest with regard to local comparisons

of models fitted to a given sample, as discussed at the end of section 3.4.

The R-package localgaussSpec can estimate fmv (ω) for a large number of combina-

tions of points v, truncation levels m, and block lengths b — and it does also have an

integrated shiny-application that enables an easy interactive investigation of the results.

The Supplementary Material contains a sensitivity analysis that shows how f̂mv (ω) reacts to

adjustments of v, m and b — and it is there also seen that adjustments of the block length

L, within wide intervals, have a minimal impact on the pointwise confidence intervals.
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Künsch, H.R., 1989. The Jackknife and the Bootstrap for General Stationary Observations.

The Annals of Statistics 17, 1217–1241. URL: http://www.jstor.org/stable/2241719,

doi:10.1214/aos/1176347265.

Lacal, V., Tjøstheim, D., 2017. Local Gaussian Autocorrelation and Tests for Serial Inde-

pendence. Journal of Time Series Analysis 38, 51–71. URL: http://dx.doi.org/10.

1111/jtsa.12195, doi:10.1111/jtsa.12195. 10.1111/jtsa.12195.

Lacal, V., Tjøstheim, D., 2018. Estimating and Testing Nonlinear Local Dependence Be-

tween Two Time Series. Journal of Business & Economic Statistics 0, 1–13. URL: https:

//doi.org/10.1080/07350015.2017.1407777, doi:10.1080/07350015.2017.1407777,

arXiv:https://doi.org/10.1080/07350015.2017.1407777.

Li, H., Zhong, W., Park, S.Y., 2016. Generalized cross-spectral test for nonlinear Granger

causality with applications to money–output and price–volume relations. Economic Mod-

elling 52, Part B, 661 – 671. URL: http://www.sciencedirect.com/science/article/

pii/S0264999315002916, doi:10.1016/j.econmod.2015.09.037.

Li, T.H., 2008. Laplace Periodogram for Time Series Analysis. Jour-

nal of the American Statistical Association 103, 757–768. URL: http:

53

http://dx.doi.org/10.1214/aos/1176344207
http://dx.doi.org/10.1214/aos/1176344207
http://dx.doi.org/10.1214/aos/1176344207
http://www.jstor.org/stable/4616332
http://www.jstor.org/stable/2241719
http://dx.doi.org/10.1214/aos/1176347265
http://dx.doi.org/10.1111/jtsa.12195
http://dx.doi.org/10.1111/jtsa.12195
http://dx.doi.org/10.1111/jtsa.12195
https://doi.org/10.1080/07350015.2017.1407777
https://doi.org/10.1080/07350015.2017.1407777
http://dx.doi.org/10.1080/07350015.2017.1407777
http://arxiv.org/abs/https://doi.org/10.1080/07350015.2017.1407777
http://www.sciencedirect.com/science/article/pii/S0264999315002916
http://www.sciencedirect.com/science/article/pii/S0264999315002916
http://dx.doi.org/10.1016/j.econmod.2015.09.037
http://dx.doi.org/10.1198/016214508000000265
http://dx.doi.org/10.1198/016214508000000265


//dx.doi.org/10.1198/016214508000000265, doi:10.1198/016214508000000265,

arXiv:http://dx.doi.org/10.1198/016214508000000265.

Li, T.H., 2010a. A Nonlinear Method for Robust Spectral Analysis. IEEE Transactions

on Signal Processing 58, 2466–2474. URL: http://ieeexplore.ieee.org/abstract/

document/5406102/, doi:10.1109/TSP.2010.2042479.

Li, T.H., 2010b. Robust coherence analysis in the frequency domain, in: Signal Processing

Conference, 2010 18th European, IEEE. pp. 368–371. URL: http://ieeexplore.ieee.

org/abstract/document/7096642/.

Li, T.H., 2010c. A robust periodogram for high-resolution spectral analysis. Signal Pro-

cessing 90, 2133 – 2140. URL: http://www.sciencedirect.com/science/article/

pii/S0165168410000137, doi:10.1016/j.sigpro.2010.01.012.

Li, T.H., 2012a. Detection and estimation of hidden periodicity in asymmetric noise by us-

ing quantile periodogram, in: 2012 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 3969–3972. URL: http://ieeexplore.ieee.org/

abstract/document/6288787/, doi:10.1109/ICASSP.2012.6288787.

Li, T.H., 2012b. On robust spectral analysis by least absolute deviations. Journal of Time

Series Analysis 33, 298–303. URL: http://dx.doi.org/10.1111/j.1467-9892.2011.

00760.x, doi:10.1111/j.1467-9892.2011.00760.x.

Li, T.H., 2012c. Quantile Periodograms. Journal of the American Statistical Asso-

ciation 107, 765–776. URL: http://dx.doi.org/10.1080/01621459.2012.682815,

doi:10.1080/01621459.2012.682815.

54

http://dx.doi.org/10.1198/016214508000000265
http://dx.doi.org/10.1198/016214508000000265
http://dx.doi.org/10.1198/016214508000000265
http://arxiv.org/abs/http://dx.doi.org/10.1198/016214508000000265
http://ieeexplore.ieee.org/abstract/document/5406102/
http://ieeexplore.ieee.org/abstract/document/5406102/
http://dx.doi.org/10.1109/TSP.2010.2042479
http://ieeexplore.ieee.org/abstract/document/7096642/
http://ieeexplore.ieee.org/abstract/document/7096642/
http://www.sciencedirect.com/science/article/pii/S0165168410000137
http://www.sciencedirect.com/science/article/pii/S0165168410000137
http://dx.doi.org/10.1016/j.sigpro.2010.01.012
http://ieeexplore.ieee.org/abstract/document/6288787/
http://ieeexplore.ieee.org/abstract/document/6288787/
http://dx.doi.org/10.1109/ICASSP.2012.6288787
http://dx.doi.org/10.1111/j.1467-9892.2011.00760.x
http://dx.doi.org/10.1111/j.1467-9892.2011.00760.x
http://dx.doi.org/10.1111/j.1467-9892.2011.00760.x
http://dx.doi.org/10.1080/01621459.2012.682815
http://dx.doi.org/10.1080/01621459.2012.682815


Li, T.H., 2014. Quantile Periodogram and Time-Dependent Variance. Journal of Time

Series Analysis 35, 322–340. URL: http://dx.doi.org/10.1111/jtsa.12065, doi:10.

1111/jtsa.12065.

Li, T.H., 2019. Quantile-Frequency Analysis and Spectral Divergence Metrics for Diagnostic

Checks of Time Series With Nonlinear Dynamics. Papers. arXiv.org. URL: https:

//EconPapers.repec.org/RePEc:arx:papers:1908.02545.

Linton, O., Whang, Y.J., 2007. The quantilogram: With an application to

evaluating directional predictability. Journal of Econometrics 141, 250 – 282.

URL: http://www.sciencedirect.com/science/article/pii/S0304407607000152,

doi:10.1016/j.jeconom.2007.01.004. semiparametric methods in econometrics.

Nelsen, R.B., 2006. An Introduction to Copulas -. 2nd ed., Springer, Berlin, Heidelberg.

Otneim, H., Tjøstheim, D., 2017. The locally Gaussian density estimator for multivari-

ate data. Statistics and Computing 27, 1595–1616. URL: https://doi.org/10.1007/

s11222-016-9706-6, doi:10.1007/s11222-016-9706-6.

Otneim, H., Tjøstheim, D., 2018. Conditional density estimation using the local Gaussian

correlation. Statistics and Computing 28, 303–321. URL: http://dx.doi.org/10.1007/

s11222-017-9732-z, doi:10.1007/s11222-017-9732-z.

Silvapulle, P., Granger, C., 2001. Large returns, conditional correlation and

portfolio diversification: a value-at-risk approach. Quantitative Finance 1,

542–551. URL: https://doi.org/10.1080/713665877, doi:10.1080/713665877,

arXiv:https://doi.org/10.1080/713665877.

55

http://dx.doi.org/10.1111/jtsa.12065
http://dx.doi.org/10.1111/jtsa.12065
http://dx.doi.org/10.1111/jtsa.12065
https://EconPapers.repec.org/RePEc:arx:papers:1908.02545
https://EconPapers.repec.org/RePEc:arx:papers:1908.02545
http://www.sciencedirect.com/science/article/pii/S0304407607000152
http://dx.doi.org/10.1016/j.jeconom.2007.01.004
https://doi.org/10.1007/s11222-016-9706-6
https://doi.org/10.1007/s11222-016-9706-6
http://dx.doi.org/10.1007/s11222-016-9706-6
http://dx.doi.org/10.1007/s11222-017-9732-z
http://dx.doi.org/10.1007/s11222-017-9732-z
http://dx.doi.org/10.1007/s11222-017-9732-z
https://doi.org/10.1080/713665877
http://dx.doi.org/10.1080/713665877
http://arxiv.org/abs/https://doi.org/10.1080/713665877
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Székely, G.J., Rizzo, M.L., 2009. Brownian distance covariance. Ann. Appl. Stat. 3, 1236–

1265. URL: https://doi.org/10.1214/09-AOAS312, doi:10.1214/09-AOAS312.
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SUPPLEMENTARY MATERIAL
This part contains the supplementary material to the paper Nonlinear spectral analysis:

A local Gaussian approach. The asymptotic results for f̂mv (ω) are presented in appendix A,

appendix B contains the underlying asymptotic results for the parameters θ̂v|m|b, and a
collection of technical details is given in appendix C.

A sensitivity analysis of the tuning parameters is given in appendix D, and some com-
ments related to the selection of the tuning parameters are given in appendix E. Appendix F
discusses issues related to sampling and resampling, including a sensitivity analysis of the
block length L for the slightly adjusted block bootstrap that is used in this paper.

Finally, appendix G contains some additional information about the examples used in
the main document, and it does also include comments related to the reproducibility scripts
that are contained in the R-package localgaussSpec.

Appendix A: Asymptotic results for f̂mv (ω)
This appendix presents the asymptotic properties of f̂mv (ω), the m-truncated estimate of
the local Gaussian spectral density, i.e. the proof of theorem 2.8 is given here together with
a theorem that covers the case when f̂mv (ω) is complex-valued. The technical details needed
for the proofs are covered in appendices B and C. Note that the theory is given for the
general situation, i.e. it is not required that the time series under investigation should have
been replaced with a pseudo-normalised version.

A.1 The proof of theorem 2.8
Proof. The property that fv(ω) is a real-valued function when v lies on the diagonal was

proved in lemma 2.3(d). The expression for f̂mv (ω) from lemma 2.6 can by vectors be
written as

f̂mv (ω) = 1 + 2 ·Λ′m(ω) · P̂v|m|b, (A.1)

i.e. the sum can be expressed as the inner product of the two vectors

Λ′m(ω) := [λm(1) · cos (2πω · 1) , . . . , λm(m) · cos (2πω ·m)] , (A.2a)

P̂v|m|b := [ρ̂v(1|b1), . . . , ρ̂v(m|bm)]′ . (A.2b)

Since ρ̂v(h|bh) is one of the 5 estimated parameters θ̂v(h|bh) from the local Gaussian ap-
proximation (of the lag h pairs) at the point v,1 it is clear that it is possible to write

1The properties of θ̂v(h|bh) was investigated in Tjøstheim and Hufthammer [2013]. A brief summary,
with notation adjusted to fit the multivariate framework of the present paper, is given appendix B.1.2.
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ρ̂v(h|bh) = e′5 · θ̂v(h|bh), where e′5 is the unit vector that picks out ρ̂v(h|bh) from θ̂v(h|bh). The

vectors
{
θ̂v(h|bh)

}m
h=1

can be stacked on top of each other to give a joint parameter vector

θ̂v|m|b, and it follows that the vector P̂v|m|b can be expressed as P̂v|m|b = E′m · θ̂v|m|b, where

E′m is the matrix that picks out the relevant components from θ̂v|m|b. It follows from this,
and Brockwell and Davis [1986, Proposition 6.4.2, p. 211], that an asymptotic normality

result for θ̂v|m|b will give an asymptotic normality result for f̂mv (ω). In particular, if a

suitable scaling factor2 cn|m|b gives a 5m-variate asymptotic normality result for θ̂v|m|b,

cn|m|b ·
(
θ̂v|m|b − θv|m

)
d−→ N

(
0,Σv|m

)
, (A.3)

then a scaling factor c ′n|m|b can be found that gives a univariate asymptotic normality result

for f̂mv (ω),

c ′n|m|b ·
(
f̂mv (ω)− fv(ω)

)
d−→ N(0, σ2

v(ω)) , (A.4)

where the variance σ2
v(ω) is a suitably scaled version of the limit of

Var
(
f̂mv (ω)

)
= 4 · Var

(
Λ′m(ω) ·E′m · θ̂v|m|b

)
= 4 ·Λ′m(ω) ·E′m · Var

(
θ̂v|m|b

)
·Em ·Λm(ω). (A.5)

The asymptotic normality required in eq. (A.3) follows from theorem B.22 (page 33),
i.e. the scaling factor cn|m|b will be

√
n(b1b2)

3, whereas the asymptotic covariance matrix

Σv|m can be written as the direct sum of the covariance matrices for
√
n(b1b2)

3 · θ̂v(h|bh),
i.e.

Var

(√
n(b1b2)

3 · θ̂v|m|b

)
=

m⊕
h=1

Var

(√
n(b1b2)

3 · θ̂v(h|bh)
)
, (A.6)

from which a simple calculation gives

Var

(√
n(b1b2)

3 · f̂mv (ω)

)
= 4 ·

m∑
h=1

λ2

m(h) · cos2(2πωh) · Var

(√
n(b1b2)

3 · ρ̂v(h|bh)
)
. (A.7)

2cn|m|b must be a function of n, m and {bh}
m

h=1
, such that cn|m|b →∞ when n → ∞, m → ∞ and

bh → 0+.
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From this it is clear that the scaling factor cn|m|b requires an additional scaling with√
1/m in order to include the averaging factor 1/m for the sum in eq. (A.7). Thus,

c ′n|m|b =
√
n(b1b2)

3/m, which completes the proof.

Some care must be taken formally with regard to the limiting 5m-variate normal distri-
bution in eq. (A.3), since it has to be interpreted as something that is approximately valid
for large (but finite) values of the truncation point m. The univariate normal distribution
in eq. (A.4) is the one of interest, and this will under the required assumptions be well
defined in the limit.

A.2 The complex-valued case
Theorem A.1 (Complex-valued case). If the local Gaussian spectral density fv(ω) is a
complex valued function for a point v = (v1, v2), i.e. fv(ω) = cv(ω)− iqv(ω), with qv(ω) 6≡ 0,
then, under assumptions 2.1 to 2.3, the components ĉ m

v (ω) and q̂ m
v (ω) of the m-truncated

estimate f̂mv (ω) will, when ω 6∈ 1
2
· Z :=

{
. . . ,−1,−1

2
, 0, 1

2
, 1, . . .

}
, be jointly asymptotically

normally distributed as given below.√
n(b1b2)

3/m ·
([

ĉ m
v (ω)
q̂ m
v (ω)

]
−
[
cv(ω)
qv(ω)

])
d−→ N

([
0
0

]
,

[
σ2
c:v(ω) 0

0 σ2
q:v(ω)

])
, (A.8)

where the variances σ2
c:v(ω) and σ2

q:v(ω) are given by

σ2

c:v(ω) = lim
m→∞

1

m

m∑
h=1

λ2

m(h) · cos2(2πωh) · {σ̃2

v (h) + σ̃2

v̆ (h)} (A.9a)

σ2

q:v(ω) = lim
m→∞

1

m

m∑
h=1

λ2

m(h) · sin2(2πωh) · {σ̃2

v (h) + σ̃2

v̆ (h)} , (A.9b)

with σ̃2
v (h) and σ̃2

v̆ (h) related to respectively ρ̂v(h|bh) and ρ̂v̆(h|bh) as given in theorem 2.8.
The component q̂ m

v (ω) is identical to 0 when ω ∈ 1
2
· Z, and for these frequencies the

following asymptotic result holds under the given assumptions√
n(b1b2)

3/m ·
(
f̂mv (ω)− fv(ω)

)
d−→ N(0, σ2

c:v(ω)) . (A.10)

Proof. The case ω ∈ 1
2
·Z can be proved by the exact same argument that was used in the

proof of theorem 2.8, whereas the general case requires a bivariate extension of that proof.
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In particular, when the proof of theorem 2.8 is used on ĉ m
v (ω) and q̂ m

v (ω), it follows that
they can be written as

ĉ m

v (ω) = 1 + Λ′c|m(ω) · P̂v|m|b + Λ′c|m(ω) · P̂v̆|m|b = 1 + Λ′c|m(ω) · P̂v|m|b (A.11a)

q̂ m

v (ω) = 0 + Λ′q|m(ω) · P̂v|m|b −Λ′q|m(ω) · P̂v̆|m|b = 0 + Λ′q|m(ω) · P̂v|m|b, (A.11b)

where Λ′c|m(ω) and Λ′q|m(ω) are the coefficient vectors containing respectively the cosines

and sines, where P̂v|m|b and P̂v̆|m|b contains the estimated correlations corresponding to
v and v̆ for the lags under consideration, and where the length 2m vectors Λ′c|m(ω),

Λ′q|m(ω) and P̂v|m|b are defined in the obvious manner in order to get a more compact
notation. Following the same line of argument as in the proof of theorem 2.8, it follows
that P̂v|m|b = (E′m ⊕E′m) · Θ̂m|b(v, v̆), where Θ̂m|b(v, v̆) is the full set of estimated parame-
ters from the local Gaussian approximations at v and v̆ for the lags under consideration,3

and where (E′m ⊕E′m) is the matrix that picks out the relevant autocorrelations.
Based upon this, it follows that the target of interest can be written as[

ĉ m
v (ω)
q̂ m
v (ω)

]
=

[
1
0

]
+

[
Λ′c|m(ω)
Λ′q|m(ω)

]
· (E′m ⊕E′m) · Θ̂m|b(v, v̆) , (A.12)

which together with the asymptotic normality result from theorem B.23, i.e.√
n(b1b2)

3 ·
(
Θ̂m|b(v, v̆)−Θm(v, v̆)

)
d−→ N

(
0,Σv|m ⊕ Σv̆|m

)
, (A.13)

gives the result when the arguments in the proof of theorem 2.8 are applied to the present
setup. Note that the requirement ω 6∈ 1

2
· Z is needed in order to ensure that the vari-

ance σ2
q:v(ω) is different from 0, which is needed in order for Brockwell and Davis [1986,

Proposition 6.4.2, p. 211] to be valid in this case.

A.3 The finite sample case and the variance of f̂m
v

(ω)

The variance of the estimated local Gaussian spectral density f̂mv (ω), as seen in eq. (A.5),
is a function of both the point v and the frequency ω. It is with regard to this of interest to
note that the variance σ2

v (ω) is symmetric around ω = 1
4
, and it attains its highest values

when ω ∈
{

0, 1
2

}
. This symmetry is a consequence of the fact that all the correlation terms

are asymptotically negligible.

3The vector Θ̂m|b(v, v̆) can be expressed as a combination of θ̂v|m|b and θ̂v̆|m|b, where θ̂v|m|b is the
parameter vector from the proof of theorem 2.8.
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The correlation-terms are however still present in them-truncated case, and this changes
the situation a bit. To clarify: The correlation terms will depend on the frequency ω trough
the functions cos(2πωk) · cos(2πω`), and these functions are in general not symmetrical
around ω = 1

4
. For ω = 0 all these products are equal to 1, whereas the value for ω = 1

2
will

be given by cos(2πωk) · cos(2πω`) = (−1)k+`. The consequence of this is that the highest
value of this variance is obtained at ω = 0 — which in particular was evident in the plots
related to the apARCH-model and the dmpb-data, cf. figs. 9 and 11 in the main document,
where a ‘trumpet shape’ could be seen for the pointwise confidence intervals near ω = 0.

Appendix B: Asymptotic results for θ̂v|m|b
This section will investigate the asymptotic properties of the parameter vector θ̂v|m|b, that is
used in the proof of theorem 2.8. The proof is similar in spirit to the one used in Tjøstheim
and Hufthammer [2013] for the asymptotic investigation of the parameter vectors θ̂v(h|bh),
i.e. the Klimko-Nelson penalty function approach will be used to derive the desired result.

Appendix B.1 explains the Klimko-Nelson approach and shows how a local penalty
function for the present case can be constructed based on the local penalty function en-
countered in Tjøstheim and Hufthammer [2013]. Appendix B.2 verifies the fourth of the

requirements needed for the Klimko-Nelson approach, and the asymptotic results for θ̂v|m|b

are collected in appendix B.3.
The asymptotic investigation requires several indices in order to keep track of the differ-

ent components, and to simplify references to v and b will whenever possible be suppressed
from the notation.

B.1 Local penalty functions and the Klimko-Nelson approach
Tjøstheim and Hufthammer [2013] used a local penalty function to define the local Gaussian
correlation ρv as a new local measure of dependence at a point v, and then used the approach
formalised in Klimko and Nelson [1978], to investigate the asymptotic properties of ρ̂v. The
local Gaussian spectral density fv(ω) is based on the local Gaussian autocorrelations ρv(h),

and the asymptotic properties of the estimates f̂mv (ω) are thus closely connected to the
asymptotic properties of ρ̂v(h).

The Klimko-Nelson approach shows how the asymptotic properties of an estimate of the
parameters of a penalty function Q can be expressed relative to the asymptotic properties
of (entities related to) the penalty function itself. This result plays a pivotal role in the
present analysis, and it has thus been included in appendix B.1.1.

Appendix B.1.2 presents the bivariate definitions and results from Tjøstheim and Huftham-
mer [2013], with the notational modifications that are needed in order to make it fit into
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the multivariate approach in the present paper. The bivariate penalty functions Qh:n from
Tjøstheim and Hufthammer [2013] will be used as building blocks for the new penalty
function.

B.1.1 The Klimko-Nelson approach
The following presentation is based on Taniguchi and Kakizawa [2000, Th. 3.2.23].

Let {Xt}t∈Z be an m-variate strictly stationary and ergodic process that satisfies the
requirement E

[
‖Xt‖

2
]
<∞. Consider a general real valued penalty function Qn = Qn(θ) =

Qn(X1, . . . ,Xn;θ), which should depend upon n observations {Xt}
n

i=1
and a parameter

vector θ that lies in an open set Θ ∈ Rp, and let the true value of the parameter be denoted
by θ◦. Add the requirement that Qn must be twice continuously differentiable with respect
to θ a.e. in a neighbourhood N of θ◦, such that the following Taylor expansion is valid (in
the neighbourhood N ) for ‖θ − θ◦‖ < δ,

Qn(θ) = Qn(θ
◦) + (θ − θ◦)′ ∂

∂θ
Qn(θ

◦) +
1

2
(θ − θ◦)′ ∂2

∂θ∂θ′
Qn(θ

◦) (θ − θ◦)

+
1

2
(θ − θ◦)′

{
∂2

∂θ∂θ′
Qn(θ

∗)− ∂2

∂θ∂θ′
Qn(θ

◦)

}
(θ − θ◦) (B.1a)

= Qn(θ
◦) + (θ − θ◦)′ ∂

∂θ
Qn(θ

◦) +
1

2
(θ − θ◦)′ Vn (θ − θ◦)

+
1

2
(θ − θ◦)′ Tn(θ∗) (θ − θ◦) (B.1b)

where Vn and Tn(θ
∗) are defined in the obvious manner, with θ∗ = θ∗(X1, . . . ,Xn;θ) an

intermediate point between θ and θ◦ (determined by the mean value theorem).

Theorem B.1 (Klimko-Nelson, Klimko and Nelson [1978]). Assume that {Xt}t∈Z and Qn

are such that as n→∞
(A1) n−1(∂/∂θ)Qn(θ

◦)
a.s.−→ 0,

(A2) n−1Vn
a.s.−→ V , where V is a p× p positive definite matrix, and

(A3) for j, k = 1, . . . , p

lim
n→∞

sup
δ→0

(nδ)−1
∣∣Tn{θ∗}jk∣∣ <∞ a.s. (B.2)

where Tn{θ∗}jk is the (j, k)th component of Tn{θ∗}.
Then there exists a sequence of estimators θ̂n =

(
θ̂1, . . . , θ̂p

)′
, such that θ̂n

a.s.−→ θ◦, and for

any ε > 0, there exists an event E with P (E) > 1− ε and an n◦ such that on E, for n > n◦,

(∂/∂θ)Qn(θ̂n) = 0 and Qn attains a relative minimum at θ̂n. Furthermore, if
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(A4) n−1/2(∂/∂θ)Qn(θ
◦)

d−→ N(0,W )
then

n1/2(θ̂n − θ◦)
d−→ N(0, V −1WV −1) . (B.3)

B.1.2 The bivariate penalty functions
This section will translate the bivariate results from Tjøstheim and Hufthammer [2013]
into the present multivariate framework, and these bivariate components will then be used
to define a new penalty function in appendix B.1.3.

The main idea from Tjøstheim and Hufthammer [2013] is to use bivariate Gaussian
densities ψ

(
yh;θv|h

)
to approximate the bivariate densities gh(yh) at a point v, where

θv|h =
[
θv|h:1, . . . , θv|h:5

]′
is the five dimensional parameter-vector of the bivariate Gaussian

distribution. The point v will be fixed for the remainder of this discussion, and it will
henceforth be dropped from the notation for the parameters, i.e. θh should always be
understood as θv|h.

The local investigation requires a bandwidth vector b = (b1, b2) and a kernel func-

tion K(w), which is used to define Kh:b(yh − v) := 1
b1b2

K
(
yh−v1

b1
,
y0−v2

b2

)
, which in turn

is used in the following local approximation around v,

qh:b
:=

∫
R2

Kh:b(yh − v) [ψ(yh;θh)− gh(yh) logψ(yh;θh)] dyh, (B.4)

a minimiser of which should satisfy the vector equation∫
R2

Kh:b(yh − v)uh(yh;θh) [ψ(yh;θh)− gh(yh)] dyh = 0, (B.5)

where uh(yh;θh) := ∇h logψ(yh;θh) is the score function of ψ(yh;θh) (with ∇h
:= ∂/∂θh).

Under the assumption that there is a bandwidth b0 such that there exists a minimiser θh:b

of eq. (B.4) which satisfies eq. (B.5) for any b with 0 < b < b0,
4 this θh:b will be referred

to as the population value for the given bandwidth b.
Equation (B.4) is a special case of a tool that Hjort and Jones [1996] introduced in

order to perform locally parametric nonparametric density estimation, but (as was done
in Tjøstheim and Hufthammer [2013]) it can also be used to define and estimate local
Gaussian parameters — whose asymptotic properties can be investigated by means of a
local penalty function Qh:n(θh), to be described below, and the Klimko-Nelson approach.

4Inequalities involving vectors are to be interpreted in a component-wise manner.
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For a sample of size n from {Yh:t}t∈Z, the following M -estimator5 will be used, which
(due to the ergodicity implied by assumption 2.1(a)) will converge towards the penalty
function qh:b,

Lh:n(θh) := Lh:n(Yh:1, . . . ,Yh:n;θh)

:= n−1

n∑
t=1

Kh:b(Yh:t − v) logψ(Yh:t;θh)−
∫
R2

Kh:b(yh − v)ψ(yh;θh) dyh. (B.6)

The local penalty function from Tjøstheim and Hufthammer [2013] can be described as

Qh:n(θh) := Qh:n(Yh:1, . . . ,Yh:n;θh) := −nLh:n(θh)

= −
n∑
t=1

Kh:b(Yh:t − v) logψ(Yh:t;θh) + n

∫
R2

Kh:b(yh − v)ψ(yh;θh) dyh, (B.7)

and it remains to write out how the different components in appendix B.1.1 looks like for
this particular penalty function. A central component is the vector of partial derivatives,
which by the score function uh(yh;θh) can be given as,

∇hQh:n(θh) = −
n∑
t=1

[
Kh:b(Yh:t − v)uh(Yh:t;θh)−

∫
R2

Kh:b(yh − v)uh(yh;θh)ψ(yh;θh) dyh

]
.

(B.8)

Note that the expectation of the bracketed expression in the sum gives the left hand side
of eq. (B.5), which implies that the expectation will be 0 when ∇hQh:n(θh) is evaluated at
the population value θh:b.

Given a bandwidth b which is small enough to ensure a unique solution θh:b, the
next part of interest is the Taylor expansion of order two in a neighbourhood Nh

:=
{θh : |θh − θh:b| < δ} of θh:b, i.e.

Qh:n(θh) = Qh:n(θh:b) + [θh − θh:b]
′∇hQh:n(θh:b) +

1

2
[θh − θh:b]

′ Vh:b:n [θh − θh:b]

+
1

2
[θh − θh:b]

′ Th:b:n [θh − θh:b] , (B.9a)

5The entity Lh:n(θh) can for independent observations be thought of as a local log-likelihood or a local
kernel-smoothed log-likelihood, see Hjort and Jones [1996, Section 2-3] for details. In the realm of time
series, where the observations are dependent, it is according to Tjøstheim and Hufthammer [2013, page 36]
better to interpret it as an M -estimation penalty function
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where

Vh:b:n
:= Vh:b:n(θh:b) := ∇h∇′

hQh:n(θh:b) , (B.9b)

Th:b:n
:= Th:b:n(θ

∗
h,θh:b) := ∇h∇′

hQh:n(θ
∗
h)−∇h∇′

hQh:n(θh:b) , (B.9c)

with θ∗h an intermediate point between θh and θh:b, again determined by the mean value
theorem.

With the preceding definitions, Tjøstheim and Hufthammer [2013, theorem 1] investi-
gated the case where the bandwidth b was fixed as n → ∞, i.e. items (A1) to (A4) of
theorem B.1 was verified in order to obtain the following result for the estimated local
Gaussian parameters θ̂h:n; for every ε > 0 there exists an event Ah (possibly depending

on the point v) with P(Ac
h) < ε, such that there exists a sequence of estimators θ̂h:n that

converges almost surely to θh:b (the minimiser of qh:b from eq. (B.4)). And, moreover, the
following asymptotic behaviour is observed

(nb1b2)
1/2
(
θ̂h:n − θh:b

)
d−→ N(0,Σh:b) , (B.10)

where Σh:b
:= V −1

h:b Wh:bV
−1
h:b with Wh:b the matrix occurring in item (A4) of theorem B.1.

The situation when b→ 0+ as n→∞ requires some extra care since the presence of the
kernel function Kh:b(w) in Qh:n(θh), see eq. (B.7), gives limiting matrices of Vh:b and Wh:b

of rank one. The details are covered in theorems 2 and 3 in Tjøstheim and Hufthammer
[2013, p. 39-40], which ends out with the following adjusted version of eq. (B.10), where n
and b = (b1, b2) are such that log n/n(b1b2)

5 → 0,(
n (b1b2)

3
)1/2 (

θ̂h:n − θ◦h
)

d−→ N(0,Σ◦h) , (B.11)

where θ◦h is the b→ 0+ value of θh:b and where the limiting matrix Σ◦h is a (b1b2)
2-rescaled

version of matrices related to the matrices Vh:b and Wh:b, see the discussion in Tjøstheim
and Hufthammer [2013] for details.

B.1.3 A new penalty function

The proof of theorem 2.8 requires an asymptotic result for the parameter vector θ̂n|m|b, which
was obtained by combining m parameter vectors corresponding to the bivariate lag h pairs(
Yt+h, Yt

)
for h = 1, . . . ,m. This section will show how a penalty function for θ̂n|m|b can be

constructed based on the bivariate penalty functions Qh:n defined in appendix B.1.2. The
indices n and b will for notational simplicity be suppressed from the notation, and only θm
will henceforth be used.
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An analysis akin to the one in Theorem 1 of Tjøstheim and Hufthammer [2013] will
be performed in this section, i.e. the asymptotic situation will be investigated for the
simple case where the truncation m and the bandwidth b both are fixed as n → ∞. The
proof that the new penalty function satisfies the four requirements items (A1) to (A4) of
theorem B.1 can then be based upon corresponding components of the proof of Theorem 1
from Tjøstheim and Hufthammer [2013].

The general case, where m→∞ and b→ 0+ when n→∞, can recycle the arguments
given here for the requirements in items (A1) to (A3), but extra work is needed for the
requirement given in item (A4). The details needed for item (A4) will be covered in
appendix B.2.

With regard to the construction of the new penalty function, the main observation
of interest is that the Qh:n(θh) from appendix B.1.2 was defined for bivariate time se-
ries {Yh:t}t∈Z, whereas the new penalty function will be defined for the (m+ 1)-variate time
series {Ym:t}t∈Z. The first step is to extend the penalty functions Qh:n, h = 1, . . . ,m from
expression based on Yh:t to expressions based on Ym:t, but this is trivial since the bivariate
functions occurring in the definition of Qh:n(θh) can be extended in a natural manner to
(m+ 1)-variate functions, as mentioned in section 2.4.1, which gives the desired functions

Q̃h:n(θh).

Definition B.2. Let the new penalty function Qm:n(θm) be given as follows,

Qm:n(θm) := Qm:n(Ym:1, . . . ,Ym:n;θm) :=
m∑
h=1

Q̃h:n(θh) , (B.12a)

where θm is the column vector obtained by stacking all the individual θh on top of each
other, i.e.

θm := [θ′1, . . . ,θ
′
m]′ . (B.12b)

The m components Q̃h:n(θh) in the sum that defines Qm:n(θm) have no common parame-
ters, which implies that the optimisation of the parameters for the different summands can
be performed independently. For a given sample from {Ym:t}t∈Z and for a given bandwidth b,

the optimal parameter vector θ̂m:n for Qm:n(θm) can thus be constructed by stacking on top
of each other the parameter vectors that optimise the individual summands in eq. (B.12)

— and these are the parameter vectors θ̂h:n that shows up for the m bivariate cases in

eq. (B.10). Since each θ̂h:n converge almost surely to θh:b, it is clear that θ̂m:n will converge
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almost surely to θm:b, the vector obtained by stacking the m vectors θh:b on top of each
other.

The desired asymptotic result for the fixed b and fixed m estimates f̂mv (ω) can be ob-
tained directly from the preceding observation and Theorem 1 in Tjøstheim and Huftham-
mer [2013], but that would not reveal how m and b must behave in the general situation.
The rest of this section will thus be used to verify items (A1) to (A4) from theorem B.1,
which in essence only requires a minor adjustment of the bivariate discussion from ap-
pendix B.1.2, i.e. the discussion can start with the following Taylor-expansion of Qm:n(θm),

Qm:n(θm) = Qm:n(θm:b) + [θm − θm:b]
′∇mQm:n(θm:b) +

1

2
[θm − θm:b]

′ Vm|b:n [θm − θm:b]

+
1

2
[θm − θm:b]

′ Tm|b:n [θm − θm:b] , (B.13)

where θm:b represents the vector obtained by stacking on top of each other the m individual
population parameters θh:b, where ∇m

:= [∇′
1 , . . . ,∇′

m]′, and where the matrices Vm|b:n and
Tm|b:n corresponds to the matrices Vh:b:n and Th:b:n from eq. (B.9).

The following matrix-observations gives the foundation for the extension from the bi-
variate case to the multivariate case.

1. Keeping in mind how ∇m is defined relative to ∇h, and how Qm:n is defined relative
to Qh:n, it is clear that ∇mQm:n(θm:b) is the vector obtained by stacking the m vectors
∇hQh:n(θh:b) on top of each other.

2. The operator ∇m∇′
m can be viewed as an m×m block-matrix, consisting of the 5× 5

matrices ∇j∇′
k , j, k = 1, . . . ,m. Due to the definition of Qm:n, it is clear that the only

operators ∇j∇′
k that will return a nonzero result are those having j = k.

3. The preceding observation implies that Vm|b:n =
⊕m

h=1 Vh:b:n, i.e. Vm|b:n is the direct sum
of the matrices Vh:b:n (the block diagonal matrix where the diagonal blocks equals Vh:b:n,
and all other blocks are zero, cf. e.g. Horn and Johnson [2012, p.30] for further details).

4. The same observation implies that Tm|b:n =
⊕m

h=1 Th:b:n

With these observations, and the details from the proof of Theorem 1 in Tjøstheim
and Hufthammer [2013], it is straightforward to verify items (A1) to (A3) of theorem B.1,
whereas item (A4) requires some more work.

Lemma B.3 (Item (A1) of theorem B.1.).
n−1∇mQm:n(θm:b)

a.s.−→ 0

Proof. Since ∇mQm:n(θm:b) is the vector obtained by stacking the m vectors ∇hQh:n(θh:b) on
top of each other, and the proof of Theorem 1 in Tjøstheim and Hufthammer [2013] shows
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that n−1∇hQh:n(θh:b) converges almost surely to 0, the same must necessarily be true for
the combined vector n−1∇mQm:n(θm:b) too.

Lemma B.4 (Item (A2) of theorem B.1.).
n−1Vm|b:n

a.s.−→ Vm|b, where Vm|b is a 5m× 5m positive definite matrix.

Proof. Since Vm|b:n is the direct sum of the m matrices Vh:b:n, the behaviour of those will
describe the behaviour of Vm|b:n. The proof of Theorem 1 in Tjøstheim and Hufthammer
[2013] shows that the matrices n−1Vh:b:n converges almost surely to positive definite ma-
trices Vh:b, and this implies that n−1Vm|b:n will converge almost surely to a block diagonal
matrix Vm|b, defined as the direct sum of the matrices Vh:b. Since the set of eigenvalues for
a direct sum of matrices equals the union of the eigenvalues for its components, see Horn
and Johnson [2012, p.30] for details, if follows that Vm|b:n is positive definite since all the
Vh:b:n are positive definite.

Lemma B.5 (Item (A3) of theorem B.1.).
For j, k = 1, . . . , 5m,

lim
n→∞

sup
δ→0

(nδ)−1
∣∣∣Tm|b:njk

∣∣∣ <∞ a.s., (B.14)

where Tm|b:njk
is the (j, k)th component of Tm|b:n.

Proof. Tm|b:n is the direct sum of the m matrices Th:b:n, so the required inequality is triv-
ially satisfied for all entries j and k that gives an element outside of the diagonal-blocks.
The proof of Theorem 1 in Tjøstheim and Hufthammer [2013] shows that the inequality
is satisfied almost surely on each of the m blocks Th:b:n, which implies that it holds for
Tm|b:n too.

Lemma B.6 (Item (A4) of theorem B.1.).

n−1/2∇mQm:n(θm:b)
d−→ N

(
0,Wm|b

)
Proof. As done in the proof of Theorem 1 in Tjøstheim and Hufthammer [2013], the idea
is to first prove asymptotic normality of each individual component of ∇mQm:n(θm:b) by
Theorem 2.20(i) and Theorem 2.21(i) from Fan and Yao [2003, p. 74-75]. Then the Cramér-
Wold Theorem (see e.g. Theorem 29.4 in Billingsley [2012]) will be used to conclude that the
joint distribution of ∇mQm:n(θm:b) will be the joint distribution of these limiting components,
and finally a simple observation based on moment-generating functions tells us that this
limiting joint distribution is asymptotically normal.
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Since ∇mQm:n(θm:b) = [∇1Q1:n(θh:b)
′, . . . ,∇mQm:n(θh:b)

′]′, its components can be indexed
by pairs [h, i], h = 1, . . . ,m and i = 1, . . . , 5. From eq. (B.8) it is clear that the [h, i]-component
of the vector can be written as

(∇mQm:n(θm:b))[h,i] = −
n∑
t=1

Xhi:t, (B.15)

where the random variable Xhi:t is defined as

Xhi:t
:= Kh:b(Yh:t − v)uhi(Yh:t;θh:b)−

∫
R2

Kh:b(yh − v)uhi(yh;θh:b)ψ(yh;θh) dyh, (B.16)

and where uhi refers to the ith component of the hth score function uh.
The required α-mixing property (and thus ergodicity) are inherited from the original

univariate time series Yt to Xhi:t (see eq. (C.36) for details), and the connection with L
ν
-

theory observed in eq. (C.41) gives E[|Xhi:t|
ν] <∞. Finally, since θh:b is the population

value parameter that minimise eq. (B.5), it follows that E[Xhi:t] = 0. These observations
show that Xhi:t satisfies the requirements needed in order to apply Theorem 2.20(i) and The-
orem 2.21(i) from Fan and Yao [2003, p. 74-75], i.e. for Shi|n :=

∑n
t=1 Xhi:t, Theorem 2.20(i)

gives the asymptotic result

n−1Shi|n −→ σ2 := γ0 + 2
∑
`≥1

γ`, (B.17)

with γ` being the ` th autocovariance of the series {Xhi:t}t∈Z. From Theorem 2.21(i) it now
follows that there is a component-wise asymptotic normality, i.e.

n−1/2Shi|n
d−→ N(0, σ2) . (B.18)

In order to apply the Cramér-Wold device, all possible linear combinations of the com-
ponents in ∇mQm:n(θm:b) must be considered. Such general sums can be represented as
Sn(a) := a′∇mQm:n(θm:b), where a ∈ R5×m. This can be rewritten, by ‘taking the sum
outside of the vector ∇mQm:n(θm:b)’, as

Sn(a) =
n∑
t=1

Xt(a) , (B.19)

where Xt(a) = a′Xt, with the vector Xt obtained by stacking all the components Xhi:t on
top of each other, i.e. Xt = [X11:t, . . . , Xm5:t]

′.
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By construction, E[Xt(a)] = 0, the required α-mixing are inherited from the original
time series {Yt} (see eq. (C.36)), and lemma C.8 ensures that the property E[|Xt(a)|ν] <∞
holds true. That is, Xt(a) does also satisfy the requirements stated in Theorem 2.20(i) and
Theorem 2.21(i), which gives the following asymptotic results;

n−1Sn(a) −→ σ2(a) := γ0(a) + 2
∑
`≥1

γ`(a) (B.20)

n−1/2Sn(a)
d−→ N(0, σ2(a)) , (B.21)

where the autocovariances γ`(a) now are with respect to the time series Xt(a) = a′Xt.
Since γ0(a) = Var(a′Xt) = a′Var(Xt)a and γ`(a) = Cov

(
a′Xt+`,a

′Xt

)
= a′Cov

(
Xt+`,Xt

)
a,

it follows that we can write σ2(a) = a′Wm|ba, with Wm|b being the matrix obtained in the
obvious manner by factorising out a′ and a from the sum of autocovariances, i.e.

Wm|b := Var(Xt) + 2
∑
`≥1

Cov
(
Xt+`,Xt

)
(B.22)

= E[XtX
′
t] + 2

∑
`≥1

E
[
Xt+`X

′
t

]
, (B.23)

where the second equality follows since E[Xt] = 0.

The Cramér-Wold device now gives the required conclusion, n−1/2∇mQm:n(θm:b)
d−→ N

(
0,Wm|b

)
.

Lemmas B.3 to B.6 shows that the penalty function Qm:n(θm) (for fixed m and fixed b)
satisfies the four requirements given in items (A1) to (A4) of theorem B.1, and this implies
that the following asymptotic results holds in this particular case

√
n
(
θ̂m:n − θm:b

)
d−→ N

(
0, V −1

m|bWm|bV
−1

m|b

)
. (B.24)

The hard task to deal with in the general situation, when m → ∞ and b → 0+

as n → ∞, is the asymptotic behaviour of n−1/2∇mQm:n(θm:b). This will be treated in
appendix B.2.

B.2 The A4-requirement in the general case
The verification of the three first requirements of the Klimko-Nelson approach does work as
before when ‘m→∞ and b→ 0+ when n→∞’, whereas the asymptotic normality in the
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fourth requirement demands a more detailed investigation. Appendix B.2.1 will introduce
some new building blocks to be used in the investigation of the asymptotic properties, which
will be developed in appendices B.2.2 and B.2.3. Some technical details that only depend
upon the kernel function and the score functions have been collected in appendix C.4.

B.2.1 The final building blocks
The bivariate processes Yh:t from definition 2.7 will now be used to construct new random
variables, that culminates in a random variable Qnm which has the same limiting distribu-
tion6

√
b1b2∇mQm:n(θm:b). Looking upon eq. (B.8), it is clear that everything depends upon

the three functions ψ(yh;θh), uh(yh;θh) and Kh:b(yh − v).

Definition B.7. For ψ(yh;θh) the local Gaussian density used when approximating gh(yh)
at the point v = (v1, v2), define for all h ∈ N and q ∈ {1, . . . , 5}

(a) With θh:b the population value that minimises the penalty function qh:b from eq. (B.4),
let

uhq:b(w) :=
∂

∂θh:q

log (ψ(yh;θh))

∣∣∣∣
(yh;θh)=(w;θh:b)

. (B.25)

(b) For L ≥ 0, define the following lower and upper truncated versions of uhq:b(w),

uhq:b(w)≤L := uhq:b(w) · 1
{∣∣uhq:b(w)

∣∣ ≤ L
}
, (B.26a)

uhq:b(w)>L := uhq:b(w) · 1
{∣∣uhq:b(w)

∣∣ > L
}
. (B.26b)

Obviously; uhq:b(w) = uhq:b(w)≤L + uhq:b(w)>L and uhq:b(w)≤L · uhq:b(w)>L = 0.
(c) Let uhq(w) be as in item (a), with the difference that the limit b→ 0+ of the param-

eters θh:b are used in the definition.7 Let uhq(w)≤L and uhq(w)>L be the truncated
versions of uhq(w).

The following simple observations will be useful later on.

Lemma B.8. For the point v, the following holds for the functions introduced in defini-
tion B.7.

6Due to the presence of the kernel function Kh:b(w), the fourth requirement of the Klimko-Nelson
approach will (when b → 0+) require that the scaling factor n−1/2 is adjusted with (b1b2)

1/2
, and this

scaling must thus also be included in the discussion in the present approach.
7The limit of the parameters θh:b will exist under assumptions that implies that the four requirements

of the Klimko-Nelson approach are satisfied, cf. Tjøstheim and Hufthammer [2013] for details.
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(a) suphq
∣∣uhq:b(v)

∣∣ <∞ and suphq
∣∣uhq(v)

∣∣ <∞.
(b) When L is large enough, uhq:b(v)≤L = uhq:b(v) and uhq(v)≤L = uhq(v).

Proof. By definition, the functions uhq:b(w) and uhq(w) will all be bivariate polynomials
of order two (in the variables w1 and w2), which implies that they are well defined for
any point v. Since the parameters in these polynomials originates from a local Gaussian
approximation of gh(yh) at the point v, and since assumption 2.1(b) ensures that the
bivariate densities gh(yh) will approach the product of the marginal densities when h→∞,
it follows that the estimated parameters must stabilise when h becomes large. This rules
out the possibility that any of the parameters can grow to infinitely large values, which
implies that the supremums in item (a) are finite. Item (b) follows as a direct consequence
of this, the statement holds true for any threshold value L that is larger than the supremums
given in item (a).

The bivariate kernel to be used in the present approach will be the same as the one
used in Tjøstheim and Hufthammer [2013], i.e. it will be the product kernel based on two
standard normal kernels. The following definition enables a more general approach to be
used in the theoretical investigation,8 while capturing the desirable properties that will be
satisfied for the product normal kernel.

Definition B.9. From a bivariate, non-negative, and bounded kernel function K(w), that
satisfies∫

R2

K(w1, w2) dw1dw2 = 1, (B.27a)

K1:k(w2) :=

∫
R1

K(w1, w2)w
k

1 dw1 is bounded for k ∈ {0, 1, 2}, (B.27b)

K2:`(w1) :=

∫
R1

K(w1, w2)w
`

2 dw2 is bounded for ` ∈ {0, 1, 2}, (B.27c)∫
R2

K(w1, w2) |wk

1w
`

2| dw1dw2 <∞, k, ` ≥ 0 and k + ` ≤ 2 · dνe , (B.27d)

where ν > 2 is from assumption 2.1(b) (and d·e is the ceiling function), define

Kh:b(yh − v) :=
1

b1b2

K

(
yh − v1

b1

,
y0 − v2

b2

)
. (B.28)

8Differences in the computational cost implies that the product normal kernel is used for practical pur-
poses.

16



It turns out, see appendix C.4 for details, that the asymptotic results needed later on
mainly depends upon the properties of the kernel K(w) and the components uhq:b(w) of
the score functions.

Some vector and matrix notation is needed in order to make the expressions later on
more tractable.

Definition B.10. With gh(yh), uhq:b(w) and K(w) as given in definitions 2.7, B.7 and B.9,
let Uh:b

:=
[
uh1:b(v) , . . . , uhp:b(v)

]′
, and define the following matrices.

Wh:b
:= Uh:bU

′
h:b · gh(v)

∫
R2

K(w)2 dw, (B.29a)

Wm|b :=
m⊕
h=1

Wh:b. (B.29b)

Matrices Wh and Wm can be defined in a similar manner, using the b → 0+ versions
uhq(w) from definition B.7(c). Note that Wh:b and Wh will have rank one, whereas Wm:b

and Wm will have rank m. Furthermore, note that if ah ∈ R5 and am = [a1, . . . ,am]′, then
a′mWm:bam =

∑m
h=1 a

′
hWh:bah.

The time is due for the introduction of the random variables.

Definition B.11. Based on Yh:t, uhq:b(w) and Kh:b(yh − v) from definitions 2.7, B.7
and B.9, define new bivariate random variables as follows,

Xn

hq:t(v) :=
√
b1b2Kh:b(Yh:t − v)uhq:b(Yh:t) , (B.30a)

Xn|≤L
hq:t (v) :=

√
b1b2Kh:b(Yh:t − v)uhq:b(Yh:t)

≤L , (B.30b)

Xn|>L
hq:t (v) :=

√
b1b2Kh:b(Yh:t − v)uhq:b(Yh:t)

>L . (B.30c)

Obviously; Xn
hq:t(v) = Xn|≤L

hq:t (v) +Xn|>L
hq:t (v) and Xn|≤L

hq:t (v) ·Xn|>L
hq:t (v) = 0.

Since the point v will be fixed for the remainder of this discussion, v will be suppressed
and only Xn

hq:t will be used when referring to eq. (B.30a), and v will also be suppressed for
the new random variables derived from Xn

hq:t.
Note: A comparison of Xn

hq:t against the components occurring in the expression for
∇hQh:n(θh), see eq. (B.8), implies that the following adjusted variable should be included,

X̃n

hq:t
:= Xn

hq:t −
√
b1b2

∫
R2

Kh:b(yh − v)uhq:b(yh)ψ(yh;θh) dy
h
, (B.31)
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but the arguments later on will use a mean adjusted approach similar to the one used in
Masry and Tjøstheim [1995], see the definitions of Zn

hq:t and Qnhq below, and the only place

X̃n
hq:t is needed is in the proof of lemma B.14.

Definition B.12. Based on the bivariate random variables Xn
hq:t from definition B.11 define

the following bivariate and (m+ 1)-variate random variables,

Zn

hq:t
:= Xn

hq:t − E
[
Xn

hq:t

]
, (B.32a)

Qnhq :=
n∑
t=1

Zn

hq:t. (B.32b)

Similarly, Zn|≥L
hq:t , Zn|<L

hq:t , Qn|≥Lhq and Qn|<Lhq can be defined in the natural manner, with the ob-
vious connections Zn

hq:t = Zn|≥L
hq:t + Zn|<L

hq:t , Zn|≥L
hq:t · Zn|<L

hq:t = 0, and Qnhq = Qn|≥Lhq + Qn|<Lhq holding
for all L. Moreover: Cov

(
Zn
hq:i, Z

n
j:k

)
= E

[
Zn
hq:i · Zn

j:k

]
= Cov

(
Xn
hq:i, X

n
jr:k

)
.

The last batch of random variables can now be introduced.

Definition B.13. Based upon the bivariate Zn
hq:t from definition B.12, and for a := am ∈ R5×m,

define the following (m+ 1)-variate random variables,

Zn

m:t(a) :=
m∑
h=1

5∑
q=1

ahqZ
n

hq:t = a′Zn

m:t, (B.33a)

Qnm(a) :=
m∑
h=1

5∑
q=1

ahq Qnhq = a′ Qnm, (B.33b)

where Zn
m:t and Qnm are defined in the obvious manner.

Lemma B.14. Qnm and
√
b1b2∇mQm:n(θm:b) share the same limiting distribution.

Proof. The only difference between Qnm and
√
b1b2∇mQm:n(θm:b) is that the first use Zn

hq:t

where the second use X̃n
hq:t. The difference between these components are

Zn

hq:t − X̃n

hq:t =
√
b1b2 ·

∫
R2

Kh:b(yh − v)uhq:b(yh) {gh(yh)− ψ(yh;θh)} dy
h
, (B.34)

and this difference will not only approach zero but in fact be identical to zero when the
bandwidth b is smaller than b0, since the population value θh:b in that case satisfies eq. (B.5).
The result now follows from Billingsley [2012, Th. 25.4].
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The purpose of the new random variables introduced in definitions B.11 to B.13 is
to find under which conditions the fourth requirement of the Klimko-Nelson approach is
satisfied in the general situation where m→∞ and b→ 0+ when n→∞.

The part that does require some effort to investigate is the fourth requirement of the-
orem B.1, which (using the notation introduced here) means that it is necessary to verify
that n−1/2 Qnm approaches a normal distribution when b goes to zero when n and m are
‘large enough’. The proof will be presented in a step by step manner, that builds upon
the asymptotic behaviour of E

[
Xn
hq:i ·Xn

jr:k

]
. The computation of this expectation will (de-

pending on the indices h, i, j and k) either require a bivariate, trivariate or tetravariate
integral.

Combinations v b Yh:i Yj:k
First argument of Kh:b v1 b1 Yh+i Yj+k
Second argument of Kh:b v2 b2 Yi Yk

Table 1: Factors deciding bivariate, trivariate or tetravariate.

Table 1 lists the combinations that must be taken into account when computing E
[
Xn
hq:i ·Xn

jr:k

]
,

i.e. the presence of v and b and the dependence on Yt in the kernel functions — and it is
evident from this table that the amount of overlap in the indexing set {i, h+ i, k, j + k} will
decide if the resulting integral turns out to be bi-, tri- or tetravariate. Note that eq. (2.17)
of algorithm 2.5(c) implies that only positive indices are required, so the bivariate case can
thus only occur when i = k and h = j. It will be seen later on that these bivariate compo-
nents are the only ones that adds non-negligible contributions to the asymptotic behaviour.

B.2.2 The asymptotic results — basic part
The analysis of the asymptotic properties of Xn

hq:i, from definition B.11, would be quite
simple if either the kernel function K(w) or the score-function components uhq:b(w) had
bounded support, since the finiteness requirements of assumption 2.1(g) then would follow
directly from lemma C.6, and the proof of lemma B.15 would be rather trivial. However,
in the present analysis, K(w) and uhq:b(w) both have R2 as their support, which implies
that extra care must be taken when working with the densities under consideration.

Lemma B.15. When Yt satisfies assumption 2.1, and uhq:b(w) and K(w) are as given in
definitions B.7 and B.9, then the random variables Xn

hq:t from definition B.11 satisfies

(a) E
[
Xn
hq:i

]
= O

(√
b1b2

)
.
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(b) E
[∣∣Xn

hq:i

∣∣ν]1/ν = O
(
|b1b2|

(2−ν)/2ν
)
.

(c) E
[
Xn
hq:i ·Xn

jr:k

]
=


uhq:b(v)uhr:b(v) gh(v)

∫
R2 K(w)2 dw +O(b1 ∨ b2) when bivariate,

O(b1 ∧ b2) when trivariate,

O(b1b2) when tetravariate,
where bivariate, trivariate and tetravariate refers to how many different Yt the four
indices h, i, j and k gives, cf. table 1 for details.

Proof. The expectations in items (a) to (c) are all finite due to assumption 2.1(g) and
they do in addition correspond to integrals whose integrands are of the form V · g, where
g is a density function and V is an integrand of the type discussed in items (a) to (c)
of lemma C.6, i.e. V collects everything that only depends on the functions uhq:b(w) and
K(w). The substitutions used in the proof of lemma C.6 can be applied to the different
cases under investigation, and it follows that these substitutions will create new integrals
with the desired function of b1 and b2 as a scaling factor. This proves items (a) and (b)
and it also takes care of the trivariate and tetravariate cases of item (c).

Equation (2.22) from assumption 2.1(d) is needed for the bivariate case of item (c),
i.e. the Taylor expansion of gh(yh) around the point v allows the integral of interest to be
written as the sum of the following three integrals:

J1
:=

∫
R2

V (yh) · gh(v) dyh, (B.35a)

J2
:=

∫
R2

V (yh) · (gh(v)′ [yh − v]) dyh, (B.35b)

J3
:=

∫
R2

V (yh) · (Rh(yh)
′ [yh − v]) dyh. (B.35c)

The bivariate case of lemma C.6(c) shows that the term J1 gives the desired result, so
it remains to prove that the terms J2 and J3 are O(b1 ∨ b2). For this investigation, the
substitution w1 = (yh − v1) /b1 and w2 = (y0 − v2) /b2 must be applied, which in particular
replaces the vector [yh − v] with the vector [b1w1, b2w2]

′. In order to compactify the nota-
tion, let a1 and a2 denote the two components of gh(v), let W be the substituted version
of V , let Rh1 and Rh2 be the two components of the remainder function and finally let Th1

and Th2 be the substituted versions of Rh1W and Rh2W .
With this notation, the substitution used upon J2 gives

J2 = a1b1

∫
R2

w1 · W(w) dw + a2b2

∫
R2

w2 · W(w) dw, (B.36)
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whose integrands include an extra factor of w1 or w2 compared to the integrands encountered
in the proof of lemma C.6. This is however no problem, since lemma C.5(b) implies that
the finiteness conclusion still holds true in these cases, which implies that J2 is O(b1 ∨ b2)

Since assumption 2.1(g) ensures that the sum of the three integrals J1, J2 and J3 is
finite, and the above discussion shows that the two first of them are finite, it follows that
J3 also is finite. An inspection of J3 after substitution, i.e.

J3 =

∫
R2

[b1w1 · Th1(y(w)) + b2w2 · Th2(y(w))] dw, (B.37)

then reveal that the maximum of b1 and b2 can be factorised out of the integrand. This
implies that J3 is O(b1 ∨ b2), and thus concludes the proof of lemma B.15

The following corollary is handy when the covariance is the target of interest.

Corollary B.16. When Yt satisfies assumption 2.1, and uhq:b(w) and K(w) are as given
in definitions B.7 and B.9, then the random variables Xn

hq:t from definition B.11 satisfies

Cov
(
Xn

hq:i, X
n

jr:k

)
=


uhq:b(v)uhr:b(v) gh(v)

∫
R2 K(w)2 dw +O(b1 ∨ b2) when bivariate,

O(b1 ∧ b2) when trivariate,

O(b1b2) when tetravariate.

(B.38)

Proof. Since Cov
(
Xn
hq:i, X

n
jr:k

)
= E

[
Xn
hq:i ·Xn

jr:k

]
− E

[
Xn
hq:i

]
· E
[
Xn
jr:k

]
, the result follows im-

mediately from an inspection of items (a) and (c) of lemma B.15.

The next corollary is needed in the proof of lemma B.18.

Corollary B.17. When Yt satisfies assumption 2.1, and uhq:b(w) and K(w) are as given
in definitions B.7 and B.9, then the random variables Zn

hq:t and Zn
m:t(a) from definition B.12

satisfies
(a) E

[∣∣Zn
hq:t

∣∣ν]1/ν = O
(
|b1b2|

(2−ν)/2ν
)
.

(b) E[|Zn
m:t(a)|ν]1/ν = O

(
m |b1b2|

(2−ν)/2ν
)
.

Proof. The connection between expectations and L
ν
-spaces discussed in appendix C.5, see

eq. (C.41), can be applied here, which in essence reduces the proof to a simple application
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of Minkowski’s inequality. For item (a), note that lemma B.15 gives the following result

E
[∣∣Zn

hq:t

∣∣ν]1/ν = E
[∣∣Xn

hq:t − E
[
Xn
hq:t

]∣∣ν]1/ν (B.39a)

≤ E
[∣∣Xn

hq:t

∣∣ν]1/ν + E
[∣∣E[Xn

hq:t

]∣∣ν]1/ν (B.39b)

= O
(
|b1b2|

(2−ν)/2ν
)

+O
(√

b1b2

)
(B.39c)

= O
(
|b1b2|

(2−ν)/2ν
)
. (B.39d)

Item (b) now follows from item (a) and lemma C.8, due to the following inequality,

E[|Zn
m:t(a)|ν]1/ν = E

[∣∣∣∑m
h=1

∑5
q=1 ahqZ

n
hq:t

∣∣∣ν]1/ν

(B.40a)

≤
m∑
h=1

5∑
q=1

∣∣ahq∣∣E[∣∣Zn
hq:t

∣∣ν]1/ν (B.40b)

≤
m∑
h=1

5∑
q=1

Am ·O
(
|b1b2|

(2−ν)/2ν
)

(B.40c)

= O
(
m |b1b2|

(2−ν)/2ν
)
. (B.40d)

where Am is the maximum of
∣∣ahq∣∣.

B.2.3 The asymptotic results — final part
This section will present the final steps toward the verification of the fourth requirement of
the Klimko-Nelson approach for the case where m → ∞ and b → 0+ when n → ∞. Note
that theorem B.20 (the main theorem) requires both a large block - small block argument
and a truncation argument, and the technical details related to these components will be
taken care of in lemma B.18 and corollary B.19.

The large block - small block argument requires that quite a few components must be
verified to be asymptotically negligible. The following lemma, which extends an argument
encountered in the proof of Masry and Tjøstheim [1995, Lemma 4.3(b)], shows that the
asymptotic negligibility of all the ‘off the diagonal’ components can be taken care of in one
operation.

Lemma B.18. When Yt satisfies assumption 2.1, when n, m and b are as specified in
assumption 2.3, and when uhq:b(w) and K(w) are as given in definitions B.7 and B.9 —
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then the random variables Zn
m:t(a) from definition B.13 satisfies

1

n

n∑
i,k=1
i 6=k

|E[Zn

m:i(a) · Zn

m:k(a)]| = o(1) . (B.41)

Proof. Assumption 2.1(a), i.e. the strict stationarity of {Yt}t∈Z, implies that the double sum
in eq. (B.41) can be reduced to a single sum, i.e.

1

n

n∑
i,k=1
i 6=k

|E[Zn

m:i(a) · Zn

m:k(a)]| = 2
n−1∑
`=1

(
1− `

n

)
Inm:`(a), (B.42)

where the terms Inm:`(a) are given by

Inm:`(a) := |E[Zn

m:0(a) · Zn

m:`(a)]| (B.43a)

=

∣∣∣∣∣E
[

m∑
h=1

5∑
q=1

ahqZn

hq:0 ·
m∑
j=1

5∑
r=1

ajrZn

jr:`

]∣∣∣∣∣ (B.43b)

=

∣∣∣∣∣
m∑
h=1

m∑
j=1

5∑
q=1

5∑
r=1

ahqajr E
[
Zn

hq:0 · Zn

jr:`

]∣∣∣∣∣ (B.43c)

≤
m∑
h=1

m∑
j=1

5∑
q=1

5∑
r=1

|ahq||ajr| Inhqjr:`, (B.43d)

where Inhqjr:` :=
∣∣E[Zn

hq:0 · Zn
jr:`

]∣∣ =
∣∣Cov

(
Xn
hq:0, X

n
jr:`

)∣∣.
Introducing integers kn (to be specified later on) such that kn →∞ and knm

2b1b2 → 0
as n→∞, eq. (B.42) can be written as the sum of the following three sums,

J1
:= 2

m∑
`=1

(1− `/n) Inm:`(a), (B.44a)

J2
:= 2

kn+m∑
`=m+1

(1− `/n) Inm:`(a), (B.44b)

J3
:= 2

n−1∑
`=kn+m+1

(1− `/n) Inm:`(a). (B.44c)
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From the definition of Inm:`(a) it is seen that in J1 there will be some overlap between
those Yt that are a part of Zn

m:0(a) and those that are a part of Zn
m:`(a), and moreover that

this will not be the case for the two sums J2 and J3.
Equations (B.43d) and (B.44a) implies that a squeeze argument can be used when

dealing with J1, i.e.

0 ≤ J1 ≤ 2 ·

 max
h∈{1,...,m}
q∈{1,...,5}

∣∣ahq∣∣2
 · m∑

`=1

m∑
h=1

m∑
j=1

5∑
q=1

5∑
r=1

∣∣Cov
(
Xn

hq:0, X
n

jr:`

)∣∣ , (B.45)

and corollary B.16 can be used to determine how the summand behaves in the limit.
Table 1, page 19, shows that the bivariate case never occurs, that h must be equal to
` or j + ` in order for a trivariate case to occur, and that the rest of the cases must
be tetravariate. It is not hard (but a bit tedious) to explicitly compute the number of
trivariate terms that occur in eq. (B.45), but for the present asymptotic analysis it is
sufficient to note that the number of trivariate terms is of order m2, whereas the number
of tetravariate terms is of order m3. Corollary B.16 thus gives that the bivariate and
tetravariate parts of the bound for J1 respectively are O(m2(b1 ∧ b2)) and O(m3b1b2).

J1 = o(1) now follows from assumption 2.3(c) and the following two simple observations;

m2(b1 ∧ b2) ≤ m2(b1 ∨ b2) , (B.46a)

m3b1b2 ≤ m−1 ·m4(b1 ∨ b2)
2 = m−1 · (m2 (b1 ∨ b2))

2 . (B.46b)

For J2, a squeeze similar to the one in eq. (B.45) can be used. The situation becomes
simpler since ` > M ensures that only the tetravariate case is present, and the order of
J2 becomes

J2 = O(knm
2b1b2) . (B.47)

Since knm
2b1b2 → 0 (with a choice of kn to be specified below), it follows that J2 = o(1).

For J3, the Corollary of Lemma 2.1 in Davydov [1968] will be used to get an upper bound
on Inm:`(a), such that a squeeze-argument can be used for J3 too. The requirements needed
for Davydov’s result are covered as follows: The strong mixing requirement is covered by
assumption 2.1, and (for a given m and b) the requirement about finite expectations follows
from corollary B.17(b).

The σ-algebras to be used follows from the comment stated after eq. (C.33), i.e. that
Zn
m:0(a) ∈ Fm

0 , whereas Zn
m:`(a) ∈ F `+m

` ⊂ F∞m+(`−m). Thus, for ` > kn +m, the following
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bound is obtained on Inm:`(a),

Inm:`(a) = |E[Zn

m:0(a) · Zn

m:`(a)]| (B.48a)

= |E[Zn

m:0(a) · Zn

m:`(a)]− E[Zn

m:0(a)] · E[Zn

m:`(a)]| (B.48b)

≤ 12 (E[|Zn

m:0(a)|ν])1/ν · (E[|Zn

m:`(a)|ν])1/ν · [α(`−m)]1−1/ν−1/ν (B.48c)

= 12
(
(E[|Zn

m:0(a)|ν])1/ν
)2 · [α(`−m)]1−2/ν (B.48d)

= 12
(
O
(
m |b1b2|

(2−ν)/2ν
))2 · [α(`−m)]1−2/ν (B.48e)

≤ C ·m2 · |b1b2|
(2−ν)/ν · [α(`−m)]1−2/ν , (B.48f)

where eq. (B.48b) follows since the mean of Zn
m:t(a) by construction is zero, where eq. (B.48c)

is Davydov’s result, where eq. (B.48d) use the strict stationarity of the process {Yt}, where
eq. (B.48e) is due to corollary B.17(b), and finally eq. (B.48f) is an equivalent statement,
using a suitable constant C to express the upper bound.

A squeeze for J3 can now be stated in the following manner

0 ≤ J3 ≤ C3 ·
∞∑

j=kn+1

(
m2 · |b1b2|

(2−ν)/ν
)
· [α(j)]1−2/ν , (B.49)

where C3 is a constant, where the index has been shifted by introducing j = `−m, and
where the sum from eq. (B.44c) has been extended to infinity (adding only non-negative
summands).

A comparison of eq. (B.49) with the finiteness requirement that the strong mixing
coefficients should satisfy, see assumption 2.1(b), indicates that if ja ≥ m2 · |b1b2|

(2−ν)/ν for
j ≥ kn + 1, then that could be used to get a new upper bound in eq. (B.49). Taking
the ath root on both sides, it is clear that the desired inequality can be obtained when
kn + 1 =

⌈
m2/a · |b1b2|

(2−ν)/aν
⌉
, which gives the new bound

0 ≤ J3 ≤ C3 ·
∞∑

j=kn+1

ja [α(j)]1−2/ν , (B.50)

and if kn →∞ when n → ∞, the finiteness assumption from assumption 2.1(b) gives
that J3 = o(1).

Finally, lemma C.4 verifies that kn satisfies the two limits knm
2b1b2 → 0 (needed for the

J2-term) and kn →∞ (needed for the J3-term). Altogether, this shows that eq. (B.41) can
be rewritten as J1 + J2 + J3, all of which are o(1), and the proof is complete.
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The following observations are needed in the truncation argument of theorem B.20.

Corollary B.19. When Yt satisfies assumption 2.1, when n, m and b are as specified in
assumption 2.3, and with Wm:b =

⊕m
h=1Wh:b and a = am = [a1, . . . ,am]′ (with ah ∈ R5) as

given in definition B.10, then the random variable Zn
m:t(a) from definition B.13 satisfies

(a) Var(Zn
m:t(a)) = a′mWm:bam + O(m2 · (b1 ∨ b2)) =

∑m
h=1 a

′
hWh:bah + O(m2 · (b1 ∨ b2)) =

O(m).
Furthermore, with r := rn a sequence of integers that goes to ∞ when n → ∞, and for a
given threshold value L, the following holds for the random variables η1:r

:=
∑r

t=1 Z
n
m:t(a),

η≤L1:r
:=
∑r

t=1 Z
n|≤L
m:t (a) and η>L1:r

:=
∑r

t=1 Z
n|>L
m:t (a).

(b) Var(η1:r) = r · {
∑m

h=1 a
′
hWh:bah + o(1)}.

(c) When L is large enough, Var(η≤L1:r ) = r · {
∑m

h=1 a
′
hWh:bah + o(1)} and Var(η>L1:r ) = r · o(1).

Proof. For item (a), note that it follows from definitions B.12 and B.13 that

Var(Zn

m:t(a))=
m∑
h=1

m∑
j=1

5∑
q=1

5∑
r=1

ahqajr Cov
(
Xn

hq:t, X
n

jr:t

)
(B.51a)

=
m∑
h=1

5∑
q=1

5∑
r=1

ahqahr Cov
(
Xn

hq:t, X
n

hr:t

)
+

m∑
h,j=1
h 6=j

5∑
q=1

5∑
r=1

ahqajr Cov
(
Xn

hq:t, X
n

jr:t

)
.

(B.51b)

The bivariate case of corollary B.16 can be applied to the ‘diagonal part’ of the sum in
eq. (B.51b), whereas the trivariate and tetravariate cases can be applied to the ‘off-diagonal
part’. The ‘diagonal part’ can thus be written as the sum of∑m

h=1

∑5
q=1

∑5
r=1 ahqahruhq:b(v)uhr:b(v) gh(v)

∫
R2 K(w)2 dw (which is equal to a′Wm:ba =∑m

h=1 a
′
hWh:bah) and a sum that is O(m · (b1 ∨ b2)). For the ‘off-diagonal part’ the re-

sult is O(m2 · (b1 ∧ b2)). Both of these asymptotically negligible terms are covered by
O(m2 · (b1 ∨ b2)), and this gives the two first equalities of item (a). The last equality
follows since the summands a′hWh:bah are finite.

For item (b), note that the variance can be expressed as

Var(η1:r) =
r∑
i=1

Var(Zn

m:i(a)) +
r∑

i,k=1
i 6=k

E[Zn

m:i(a) · Zn

m:k(a)] . (B.52)

The ‘on diagonal’ part of this sum equals r · Var(Zn
m:1(a)) due to assumption 2.1(a), while

the ‘off diagonal’ part due to lemma B.18 becomes r · o(1). Together with the result from
item (a), this gives the statement in item (b).
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The truncated cases in item (c) use the same arguments as those encountered in
item (b), with the effect that the uhq:b(v)uhr:b(v) that occurs in Wh:b either are replaced by
uhq:b(v)≤L uhr:b(v)≤L or by uhq:b(v)>L uhr:b(v)>L . Lemma B.8(b) gives that uhq:b(v)≤L = uhq:b(v)
when L is large enough (and thus uhq:b(v)>L = 0), which completes the proof.

The main theorem can now be stated, i.e. this result can be used to verify the fourth
requirement of the Klimko-Nelson approach for the penalty function Qm:n(θm:b), from which

it follows an asymptotic normality result for θ̂v|m|b, that finally gives the asymptotic nor-

mality result of f̂mv (ω). (Confer appendix B.2.3 for an interpretation of the m that occurs
in the limiting distributions.)

Theorem B.20. For a given point v = (v1, v2): When Yt satisfies assumptions 2.1 and 2.2,
when n, m and b are as specified in assumption 2.3, and with Wm:b =

⊕m
h=1Wh:b and a =

am = [a1, . . . ,am]′ (with ah ∈ R5) as given in definition B.10, then the random variables
Qnm(a) and Qnm from definition B.13 will for small b and large m and n satisfy

(a) n−1/2 Qnm(a)
d−→ N(0,

∑m
h=1 a

′
hWh:bah), i.e. asymptotically univariate normal.

(b) n−1/2 Qnm
d−→ N(0,

⊕m
h=1Wh:b), i.e. asymptotically 5m-variate normal.

Proof. For the proof of item (a), note the following connection between Qnm(a) and Zn
m:t(a)

which follows directly from definitions B.12 and B.13,

Qnm(a) =
m∑
h=1

5∑
q=1

ahq Qnhq =
m∑
h=1

5∑
q=1

ahq

[
n∑
t=1

Zn

hq:t

]
=

n∑
t=1

[
m∑
h=1

5∑
q=1

ahqZ
n

hq:t

]
=

n∑
t=1

Zn

m:t(a).

(B.53a)

A large block - small block argument can be used to analyse this, i.e. the index set {1, . . . , n}
will be partitioned into large blocks and small blocks, such that Qnm(a) can be expressed as
the sum of S(1)

n , S(2)
n and S(3)

n (to be defined below). The asymptotic distribution of Qnm(a)
will be shown to coincide with the asymptotic distribution of S(1)

n , the summands of S(1)
n

will be shown to be asymptotically independent, and finally the Lindeberg conditions for
asymptotic normality of S(1)

n will be verified.
Use `, r, and s from lemma C.3(c) to divide the indexing set {1, . . . , n} into 2`+ 1

subsets of large blocks and small blocks (and one reminder block), defined as follows

Aj
:= {(j − 1) (r + s) + 1, . . . , (j − 1) (r + s) + r} , for j = 1, . . . , `, (B.54a)

Bj := {(j − 1) (r + s) + r + 1, . . . , j (r + s)} , for j = 1, . . . , `, (B.54b)

C` :=

{
{` (r + s) + 1, . . . , n} when ` (r + s) < n,

∅ when ` (r + s) = n.
(B.54c)
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In order to avoid iterated sums later on, introduce the following unions,

A◦ :=
⋃̀
j=1

Aj, B◦ :=
⋃̀
j=1

Bj. (B.55a)

Note that the number of elements in A◦ and B◦ will be `r and `s respectively. The number
of elements in C` will be n− `(r + s), and this can vary between 0 and r + s− 1 < 2r.

Use these subsets of {1, . . . , n} to define the following variables,

ηj :=
∑
t∈Aj

Zn

m:t(a), for j = 1, . . . , `, S(1)

n
:=
∑̀
j=1

ηj =
∑
t∈A◦

Zn

m:t(a), (B.56a)

ξj :=
∑
t∈Bj

Zn

m:t(a), for j = 1, . . . , `, S(2)

n
:=
∑̀
j=1

ξj =
∑
t∈B◦

Zn

m:t(a), (B.56b)

ζ` :=
∑
t∈C`

Zn

m:t(a), S(3)

n
:= ζ`, (B.56c)

such that

n−1/2 Qnm(a) = n−1/2 {S(1)

n + S(2)

n + S(3)

n } . (B.57)

The expectation of these quantities are by construction equal to zero, which gives

Var(n−1/2 Qnm(a)) =
1

n
E[ Qnm(a) · Qnm(a)] =

1

n

3∑
p=1

3∑
q=1

E[S(p)

n · S(q)

n ] . (B.58)

When p 6= q, there will be no overlap between the indexing sets that occur in the two
sums, and the following inequality, here illustrated by the case p = 1 and q = 2, is obtained

∣∣∣∣ 1n E[S(1)

n · S(2)

n ]

∣∣∣∣ =

∣∣∣∣∣ 1n E

[(∑
i∈A◦

Zn

m:i(a)

)
·

(∑
k∈B◦

Zn

m:k(a)

)]∣∣∣∣∣ (B.59a)

≤ 1

n

∑
i∈A◦

∑
k∈B◦

|E[Zn

m:i(a) · Zn

m:k(a)]| (B.59b)

≤ 1

n

n∑
i,k=1
i6=k

|E[Zn

m:i(a) · Zn

m:k(a)]| . (B.59c)

28



Lemma B.18 thus gives that the expectation of all the cross-terms are asymptotically
negligible.

For the case p = q = 2, i.e. the small blocks, the same strategy as in eq. (B.59) shows
that the internal cross-terms are asymptotically negligible. Corollary B.19(a) states that
the remaining summands all are O(m), which results in the following bound

1

n
E[S(2)

n · S(2)

n ] =
1

n

∑
i,k∈B◦

E[Zn

m:i(a) · Zn

m:k(a)] (B.60a)

=
1

n

∑
i∈B◦

E[Zn

m:i(a) · Zn

m:i(a)] +
1

n

∑
i,k∈B◦
i6=k

E[Zn

m:i(a) · Zn

m:k(a)] (B.60b)

=
1

n

∑
i∈B◦

O(m) + o(1) (B.60c)

= O

(
m`s

n

)
. (B.60d)

For the case p = q = 3, i.e. the residual block, a similar argument gives

1

n
E[S(3)

n · S(3)

n ] = O

(
m (n− `(r + s))

n

)
< O

(mr
n

)
. (B.61)

Lemma C.3(c) ensures that (m`s)/n and mr/n goes to zero, so the terms investigated in
eq. (B.60) and eq. (B.61) are asymptotically negligible. This implies that n−1/2( Qnm(a)− S(1)

n )⇒ 0,
and Billingsley [2012, Theorem 25.4] states that there thus is a common limiting distribu-
tion for n−1/2 Qnm(a) and n−1/2 S(1)

n .
The arguments used for S(2)

n also gives the simple observation below, which is needed
later on,

Var(n−1/2 S(1)

n ) =
1

n

∑̀
j=1

Var
(
ηj
)

+ o(1) . (B.62)

The next step is to show that the random variables ηj are asymptotically independent,
which formulated relative to the characteristic functions corresponds to showing∣∣∣∣∣E[exp(itS(1)

n )]−
∏̀
j=1

E
[
exp

(
itηj
)]∣∣∣∣∣→ 0. (B.63)
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The validity of this statement follows from Lemma 1.1 in Volkonskii and Rozanov [1959,
p. 180], by introducing random variables Vj = exp

(
itηj
)
, for j = 1, . . . , `. By construction,

the Vj trivially satisfies the requirement
∣∣Vj ∣∣ ≤ 1, so it only remains to identify the corre-

sponding σ-algebras and the distance between them. From the definitions of ηj, Aj and
Zn
m:t(a), it is easy to see that Vj ∈ F

(j−1)(r+s)+r+m

(j−1)(r+s)+1 , and from this it follows that the distance
between the highest index in the σ-algebra corresponding to Vj and the lowest index in the
σ-algebra corresponding to Vj+1, is given by

ϑ := {((j + 1)− 1)(r + s) + 1} − {(j − 1)(r + s) + r +m} = s−m+ 1. (B.64)

Assumption 2.3(f), i.e. m = o(s), ensures that there (asymptotically) will be no overlap
between these σ-algebras, and the result from Volkonskii and Rozanov [1959] thus gives
16(`− 1)α(ϑ) as an upper bound on the left side of eq. (B.63). Lemma C.3(c) says that
this bound goes to zero, which shows that the ηj are asymptotically independent.

It remains to verify the Lindeberg condition, for which an expression for s2
`

:=
∑`

j=1 Var
(
ηj
)

is needed. From assumption 2.1(a) and corollary B.19(b), it follows that

s2

` =
∑̀
j=1

Var
(
ηj
)

= ` · Var(η1) = ` · r ·

{
m∑
h=1

a′hWh:bah + o(1)

}
, (B.65)

and assuming s2
` > 0, the condition to verify is

∀ ε > 0 lim
n→∞

∑̀
j=1

1

s2
`

E
[
η2

j · 1
{∣∣ηj∣∣ ≥ ε

√
s2
`

}]
−→ 0. (B.66)

This holds trivially if the sets occurring in the indicator functions, i.e.
{∣∣ηj∣∣ ≥ ε

√
s2
`

}
,

becomes empty when n is large enough. It is thus of interest to see if an upper bound
for
∣∣ηj∣∣ can be found, and if the limit of this upper bound becomes smaller than the limit

of the right-hand side ε
√
s2
` .

Keeping in mind the definitions ofXn
hq:t, Z

n
hq:t and ηj, see eqs. (B.30a), (B.32a) and (B.56a),

it is clear that an upper bound for
∣∣ηj∣∣ might be deduced from,

∣∣ηj∣∣ =

∣∣∣∣∣∣
∑
t∈Aj

m∑
h=1

5∑
q=1

ahqZ
n

hq:t

∣∣∣∣∣∣ ≤
∑
t∈Aj

m∑
h=1

5∑
q=1

∣∣ahq∣∣ ∣∣Zn

hq:t

∣∣ , (B.67a)

∣∣Zn

hq:t

∣∣ =
∣∣Xn

hq:t − E
[
Xn

hq:t

]∣∣ ≤ ∣∣Xn

hq:t

∣∣+O
(√

b1b2

)
, (B.67b)∣∣Xn

hq:t

∣∣ =

∣∣∣∣√b1b2 ·
1

b1b2

Kh

(
Yt+h − v1

b1

,
Yt − v2

b2

)
uh:b(Yh:t)

∣∣∣∣ . (B.67c)
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If all of the functions uhq:b(w) are bounded, or if the kernel functions Kh:b(w − v)
have bounded support, then the present framework will be sufficient to reach the desired
conclusion. However, no such conditions are assumed, and a truncation argument must
thus be introduced in order to deal with this problem — in particular, the expression
Qnm(a) = Qn|≤Lm (a) + Qn|>Lm (a) will be used.

Lemma B.8(a) implies that a large enough value for the threshold L will ensure that all
constructions and arguments based upon the ordinary functions uhq:b(w) also works nicely
for the truncated functions uhq:b(w)≤L and uhq:b(w)>L . With regard to the limiting distribu-
tions, first note that n−1/2 Qn|>Lm (a) and n−1/2 S(1)

n

|>L shares the same limiting distribution,
and then observe that the upper truncated versions of eqs. (B.62) and (B.65) together with
the result from corollary B.19(c), gives the following bound when L is large enough:

Var
(
n−1/2 S(1)

n

|>L) =
1

n

∑̀
j=1

Var
(
η>Lj
)

+ o(1) =
`r

n
· o(1) . (B.68)

Since `r � n, it follows that n−1/2 Qn|>Lm (a)⇒ 0, so the limiting distributions of n−1/2 Qnm(a)
and n−1/2 Qn|≤Lm (a) coincide when L is large enough.9 Next, observe that the random vari-
able

∣∣η≤Lj ∣∣ obviously will have an upper bound, since the truncated polynomial uhq:b(w)≤L

will occur in the lower truncated version of eq. (B.67). Since the kernel function K(w) by
definition is bounded by some constant K, it follows that

∣∣η≤Lj ∣∣ is bounded by

∣∣η≤Lj ∣∣ ≤ 5rm
(
max

∣∣ahq∣∣)
(
K√
b1b2

L+O
(√

b1b2

))
< CL rm√

b1b2

, (B.69)

where C is a constant that is independent of the index j.

It remains to verify that the indicator functions 1
{∣∣η≤Lj ∣∣ ≥ ε

√
(s2

`)
≤L
}

, from the lower

truncated version of eq. (B.66), becomes zero when n→∞, which can be done by checking
that the upper bound of

∣∣η≤Lj ∣∣ from eq. (B.69) in the limit gives a smaller value than the
lower truncated version of (s2

`)
≤L from eq. (B.65). This in turn can be done by dividing

both of them with
√
`rm, and then compare their limits. Assuming that the threshold

value L is high enough to allow corollary B.19(c) to be used, i.e. that (s2
`)
≤L and s2

` share

9Truncation arguments often requires the threshold value L to go to ∞ in order for a conclusion to be
obtained for the original expression, but this is not required for the present case under investigation (due
to lemma B.8).
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the same asymptotic expression, this becomes,∣∣η≤Lj ∣∣√
`rm

≤ CL
√

mr

`b1b2

−→ 0, due to lemma C.3(c), (B.70a)

ε
√

(s2
`)
≤L

√
`rm

= ε ·

√√√√ 1

m

{
m∑
h=1

a′hWh:bah + o(1)

}
� ε ·

√√√√ 1

m

m∑
h=1

a′hWh:bah. (B.70b)

Assumption 2.2(b) ensures that Wh:b (from definition B.10) converges to some non-zero
matrix (as h → ∞ and b → 0+), and this implies that the limit of 1

m

∑m
h=1 a

′
hWh:bah in

eq. (B.70b) will be nonzero, from which it follows that the indicator function in eq. (B.66)
becomes zero in the limit, i.e. that the Lindeberg condition is satisfied.

This implies that ∑`
j=1 η

≤L
j√

s2
`

−→ N(0, 1), (B.71)

which due to `r � n can be re-expressed as

n−1/2
∑̀
j=1

η≤Lj −→ N

(
0,

m∑
h=1

a′hWh:bah

)
. (B.72)

The proof of item (a) is now complete, since the four random variables n−1/2 Qnm(a), n−1/2 Qn|≤Lm (a),
n−1/2(S(1)

n )≤L and n−1/2
∑`

j=1 η
≤L
j all share the same limiting distribution (when L is large

enough).
The proof of item (b) follows from the Cramér-Wold theorem.

The statements in theorem B.20 has to be interpreted as an approximate asymptotic
distributions valid for large m and n and small b. One part of the ‘asymptotic problem’
is the interpretation of an infinite-variate Gaussian distribution, but the main problem is
the occurrence of the kernel function K(w), which in the limit gives a degenerate Gaussian
distribution in theorem B.20(b). This degeneracy in itself would not have been any issue
if the target of interest had been the asymptotic behaviour of n−1/2 Qnm, but it requires
some additional rescaling before the Klimko-Nelson approach in theorem B.1 can be used
to investigate the asymptotic properties of the estimates θ̂m:n, see appendix B.3 for details.
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Corollary B.21. Given the same assumptions as in theorem B.20, the following asymptotic
result holds true

n−1/2
√
b1b2∇mQm:n(θm:b)

d−→ N

(
0,

m⊕
h=1

Wh:b

)
, (B.73)

i.e. asymptotically 5m-variate normal.

Proof. Lemma B.14 states that Qnm and
√
b1b2∇mQm:n(θm:b) have the same limiting distri-

bution, and the result thus follows from theorem B.20(b).

B.3 The asymptotic results for θ̂
v|m|b

The final details needed for the investigation of the asymptotic properties of f̂mv (ω) will
now be presented. (Confer appendix B.2.3 for an interpretation of the m that occurs in
the limiting distribution.)

Theorem B.22. Under the same assumptions as in theorem B.20, the estimated parameter
vector θ̂v|m|b converges towards the true parameter vector θv|m in the following manner.√

n(b1b2)
3 ·
(
θ̂v|m|b − θv|m

)
d−→ N

(
0,Σv|m

)
, (B.74)

where Σv|m :=
⊕m

h=1 Σv|h, i.e. Σv|m is the direct sum of the covariance matrices Σv|h that

corresponds to
√
n(b1b2)

3 ·
(
θ̂v|h|b − θv|h

)
.

Proof. Under the given assumptions, corollary B.21 states that the fourth requirement
of theorem B.1 (the Klimko-Nelson approach) holds true for the local penalty function
Qm:n

(
θv|m|b

)
in the general case where m → ∞ and b → 0+ when n → ∞. The three

remaining requirements holds true by the same arguments that was used in appendix B.1.3,
so the Klimko-Nelson approach can be used to obtain an asymptotic result for the difference
of the estimate θ̂v|m|b and the true parameter θv|m.

As in Tjøstheim and Hufthammer [2013], it will be instructive to first consider the
simpler case where m and b were fixed. In this case, the asymptotic result obtained from
theorem B.1 takes the form,

√
n ·
(
θ̂v|m|b − θv|m

)
d−→ N

(
0,Σv|m

)
, (B.75)
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with Σv|m := V −1
v|mWv|mV

−1
v|m, where the 5m× 5m matrices Vv|m and Wv|m can be represented

as

Vv|m =
m⊕
h=1

Vv|h, Wv|m =
m⊕
h=1

Wv|h, (B.76)

i.e. they are the direct sums of the 5× 5 matrices Vv|h and Wv|h that corresponds to the
bivariate penalty functions used for the investigation of the parameter vectors θv|h|b.

Since Vv|m is the direct sum of the invertible matrices Vv|h, it follows that V −1
v|m is the

direct sum of V −1
v|h (see e.g. Horn and Johnson [2012, p.31]). This implies that the matrix of

interest can be expressed as Σv|m =
⊕m

h=1 Σv|h, where Σv|h := V −1
v|hWv|hV

−1
v|h are the covariance

matrices that corresponds to
√
n ·
(
θ̂v|h|b − θv|h

)
, i.e. a bivariate result like the one in

Tjøstheim and Hufthammer [2013, Th. 1].
For the general situation, when m→∞ and b→ 0+ when n→∞, it is necessary with

an additional scaling in order to get a covariance matrix with finite entries. Obviously, a
factor

√
b1b2 must be included in order to balance the effect of the kernel function Kh:b.

Moreover, since the limiting matrices of Vv|h and Wv|h turns out to have rank one, an
additional scaling is required in order to obtain a covariance matrix with finite entries. This
case is treated in Tjøstheim and Hufthammer [2013, Th. 3], from which it follows that the
scaling factor must be

√
(b1b2)

3.

B.4 An extension to two different points, i.e. both v and v̆
The previous analysis was restricted to the case where one point was used throughout,
which is sufficient for the investigation of the asymptotic properties of the m-truncated
estimates f̂mv (ω) for a point v that lies upon the diagonal (see theorem 2.8) or for general
points v ∈ R2 when the time series under investigation is time reversible (see theorem 2.9).

An investigation of the m-truncated estimates f̂mv (ω) for points v = (v1, v2) that lies
off the diagonal, i.e. v1 6= v2, requires some minor modifications of the setup leading to
theorem B.22, as discussed in the proof of the following theorem.

Theorem B.23. Consider the same setup as in theorem B.20, but with the modification
that the point v = (v1, v2) lies off the diagonal, and with the added requirement that the
bivariate densities gh(yh) does not possess diagonal symmetry. With v̆ = (v2, v1) the diago-

nal reflection of v, the two parameter vectors θ̂v|m|b and θ̂v̆|m|b can be combined to a vector
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Θ̂m|b(v, v̆) =
[
θ̂′v|m|b, θ̂

′
v̆|m|b

]′
, possessing the following asymptotic behaviour.

√
n(b1b2)

3 ·
(
Θ̂m|b(v, v̆)−Θm(v, v̆)

)
d−→ N

(
0,

[
Σv|m 0

0 Σv̆|m

])
, (B.77)

where the matrices Σv|m and Σv̆|m are as given in theorem B.22.

Proof. This result follows when the Klimko-Nelson approach is used upon the local penalty-
function

Qm:n

(
Θm|b(v, v̆)

)
:= Qm:n

(
θv|m|b

)
+Qm:n

(
θv̆|m|b

)
, (B.78)

i.e. the four requirements in items (A1) to (A4) of theorem B.1 must be verified for this
new penalty function. The function Qm:n on the right side of eq. (B.78) is the penalty
function encountered in the investigation of θv|m|b, i.e. the same observations {Yt}

n

t=1
occurs

in both the first and second term, but the point of interest will be v in the first one and v̆
in the second one.

The requirement that v lies off the diagonal together with the requirement that none of
the bivariate densities gh(yh) possess diagonal symmetry implies that different approximat-
ing local Gaussian densities occurs for the different points and different lags, so it can be
assumed that there is no common parameters in θv|m|b and θv̆|m|b. This implies that the ar-
guments used to verify the three first requirements of theorem B.1 for the penalty function
Qm:n (see lemmas B.3 to B.5), also will work upon the combined penalty function Qm:n, and
it will in particular be the case that the Hessian matrix Vm|b:n occurring in lemma B.4 can be

written as the direct sum of the matrices that corresponds to Qm:n

(
θv|m|b

)
and Qm:n

(
θv̆|m|b

)
,

i.e. Vm|b(v, v̆) = Vm|b:n(v)⊕ Vm|b:n(v̆), where the points of interest have been included in the
notation to keep track of the components.

The investigation of the fourth requirement of the Klimko-Nelson approach for the
penalty function Qm:n requires some minor modifications of the constructions that was en-
countered in appendix B.2.1. Both Xn

hq:t(v) and Xn
hq:t(v̆) (for h = 1, . . . ,m and q = 1, . . . , 5)

are needed, and the final random variable will include both v and v̆ versions of the variables
Zn
hq:t, Qnhq, Z

n
m:t(a), Zn

m:t, Qnm(a) and Qnm.
A minor revision of lemma B.14 proves that the same limiting distribution occurs for

the
√
b1b2-scaled gradient of Qm:n

(
Θm|b(v, v̆)

)
and for the random variable Qnm(v, v̆) :=

[ Qnm(v)′, Qnm(v̆)′]′, and it is easy to see that Zn
m:t(a1,a2;v, v̆) := Zn

m:t(a1;v) + Zn
m:t(a2; v̆)

must take the place of Zn
m:t(a) in the existing proofs. The key ingredient for the asymp-

totic investigation of Zn
m:t(a1,a2;v, v̆) is a simple extension of lemma B.15(c) such that
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it also covers the ‘cross-term’ cases E
[
Xn
hq:i(v) ·Xn

jr:k(v̆)
]

and verifies that these cases are
asymptotically negligible. This follows from the results stated in lemma C.7

The statement for Zn
m:t(a) given in corollary B.17(b) extends trivially to the present

case, since the asymptotic behaviour are unaffected by the adjustment that a sum of length
m is replaced by two sums of length m. The statement in lemma B.18 remains the same
too, but some minor adjustments are needed in the proof: First of all, from the definition
of Zn

m:t(a1,a2;v, v̆), it follows that

Zn

m:i(a1,a2;v, v̆) · Zn

m:k(a1,a2;v, v̆) = Zn

m:i(a1;v) · Zn

m:k(a1;v) + Zn

m:i(a1;v) · Zn

m:k(a2; v̆)

+ Zn

m:k(a1;v) · Zn

m:i(a2; v̆) + Zn

m:i(a2; v̆) · Zn

m:k(a2; v̆),
(B.79)

and only the parts that contains both v and v̆ needs to be investigated (since the other
terms already are covered by the existing results). The statement that must be verified
reduces to

1

n

n∑
i,k=1
i 6=k

|Zn

m:i(a1;v) · Zn

m:k(a2; v̆)| = o(1) , (B.80)

and it is straightforward to verify that this sum can be realised as

n−1∑
`=1

(
1− `

n

)
Inm:`(a1,a2;v, v̆) +

n−1∑
`=1

(
1− `

n

)
Inm:`(a2,a1; v̆,v), (B.81)

where Inm:`(a1,a2;v, v̆) := |E[Zn
m:0(a1,v) · Zn

m:`(a2, v̆)]|, with Inm:`(a2,a1; v̆,v) defined in the
obvious manner by interchanging the parameters and the points. The desired result follows
from this, since the remaining part of the proof of lemma B.18 (using the adjusted version
of lemma B.15(c)) gives that the two sums in eq. (B.81) both are o(1).

The investigation of the variance of Zn
m:t(a1,a2;v, v̆) is straight forward, i.e. the standard

formula for the variance of a sum of random variables gives

Var
(
Zn

m:t(a1,a2;v, v̆)
)

= Var(Zn

m:t(a1,v)) + 2 Cov(Zn

m:t(a1,v), Zn

m:t(a2, v̆)) + Var(Zn

m:t(a2, v̆)) ,

and the revised version of lemma B.15(c) implies that the covariance part of this expression
is asymptotically negligible. The two variances are already covered by the existing version
of corollary B.19(a), and from this it is clear that the asymptotically non-negligible parts
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can be written as

a′m ·Wm:b · am := [a′1,a
′
2] · (Wm:b(v)⊕Wm:b(v̆)) ·

[
a1

a2

]
= a′1 ·Wm:b(v) · a1 + a′2 ·Wm:b(v̆) · a2,

(B.82)

whereas the asymptotically negligible parts of corollary B.19(a) remains as before. This is
sufficient for the revision of corollary B.19 (since items (b) and (c) follows from item (a)
and lemma B.18)

Finally, theorem B.20 can now be updated based on the matrixWm:b
:= Wm:b(v)⊕Wm:b(v̆),

and with some minor adjustments of the proof, i.e. new cross-terms are asymptotically neg-
ligible and sums of length m are replaced with two sums of length m, it follows that

n−1/2 Qm:n

(
Θm|b(v, v̆)

) d−→ N(0,Wm:b(v)⊕Wm:b(v̆)) . (B.83)

The revised version of corollary B.21 is as before trivial to prove, which completes the
investigation of the fourth requirement needed in order to use the Klimko-Nelson approach.
Basic linear algebra together with theorem B.22 now finishes the proof.

The arguments above could (under suitable assumptions) have been formulated in a

more general setup, leading to a result that shows that the parameter vectors θ̂vi|m|b
cor-

responding to different points {vi}
ν

i=1
will be jointly asymptotically normal and pairwise

asymptotically independent. The asymptotically independent property are inherited by
the corresponding estimated local Gaussian spectral densities f̂mvi (ω), and this enables an
alternative smoothing strategy for the estimated local Gaussian spectral densities at a given
point v, see appendix B.5. However, the added computational cost incurred by such an
estimation approach may make this a less interesting topic of investigation.

B.5 An alternative smoothing strategy?
The previously defined estimates f̂mv (ω) of fv(ω) was based on a weighting function λm(h)
that worked upon the estimated values ρ̂v(h), but it should for the record be noted that
an alternative approach could have been applied too.

The point is that it is possible to extend the result of appendix B.4 to show that the
estimated m-truncated local Gaussian spectral densities f̂mvi (ω) corresponding to different

points {vi}
ν

i=1
will be jointly asymptotically normal and pairwise asymptotically indepen-

dent (when m → ∞ and b → 0+ as n → ∞). This enables an alternative smoothing
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strategy, where an estimate f̂mv (ω) for a given point v could be based on a weighting of the

values of f̂mvi (ω) in a grid of points surrounding v.
This alternative approach shares some superficial similarities with the one used when

the ordinary global spectrum f(ω) is computed based on the periodogram, see e.g. Brock-
well and Davis [1986] for details. However, the efficiency of the periodogram-approach in
the estimation of f(ω) is due to the Fast Fourier Transform, which implies that the peri-
odogram can be computed directly from the observations without the need for an explicit
computation of all of the estimated autocovariances ρ̂(h), and that shortcut is not available
for the local Gaussian case. The computational load would thus become much larger for
the local Gaussian case if such an averaging-approach was applied.

Appendix C: Technical details
This section collects some technical details that would have impeded the flow of the main
argument if they had been included throughout the paper. A brief overview: Appendix C.1
discuss the diagonal folding property of the local Gaussian autocorrelations ρv(h) and ap-
pendix C.2 considers the special case of time-reversible time series. Appendix C.3 collects
technical results related to the asymptotic relationship between n, m and b, whereas ap-
pendix C.4 shows that the assumptions on the kernel function K(w) and the score func-
tions uhq:b(w) implies that some integrals are finite (which implies that assumption 2.1(g)
will be trivially satisfied if the bivariate densities gh(yh) are finite). Appendix C.5 contains
a few basic definitions/comments related to α-mixing, σ-algebras and L

ν
-spaces.

C.1 The diagonal folding property of ρ
v
(h)

The following simple observation about ρv(h) is of interest both for theoretical and com-
putational aspects of the local Gaussian spectral density fv(ω).

Lemma C.1. For a strictly stationary time series {Yt}t∈Z and a point v = (v1, v2), the
following symmetry property (diagonal folding) holds for the local Gaussian autocorrelation,

ρv(−h) = ρv̆(h), (C.1)

where v̆ = (v2, v1) is the diagonal reflection of v.

Proof. This is a simple consequence of the symmetrical nature of the bivariate random
variables Yh:t

:= (Yh, Y0) and Y−h:t
:=
(
Y−h, Y0

)
, which due to the connection between the

corresponding cumulative density functions

G−h
(
y−h, y0

)
= P

(
Y−h ≤ y−h, Y0 ≤ y0

)
= P

(
Y0 ≤ y0, Y−h ≤ y−h

)
= P

(
Yh ≤ y0, Y0 ≤ y−h

)
= Gh

(
y0, y−h

)
(C.2)
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gives the following property10 for the probability density functions,

g−h
(
y−h, y0

)
= gh

(
y0, y−h

)
. (C.3)

This implies that g−h(v) = gh(v̆), and the symmetry does moreover induce a symmet-
rical relation between the parameters θ−h(v) of the local Gaussian approximation of g−h
at v and the parameters θh(v̆) of the local Gaussian approximation of gh at v̆, i.e. if
θ−h(v) = [µ1, µ2, σ11, σ22, ρ]′ then θh(v̆) = [µ2, µ1, σ22, σ11, ρ]′. Equation (C.1) follows since
ρ in these two vectors respectively represents ρv(−h) and ρv̆(h), and this completes the
proof.

A trivial consequence of the diagonal folding property in lemma C.1 is that the local
Gaussian autocorrelation becomes an even function of the lag h when v1 = v2.

C.2 Time-reversible time series
Additional symmetry properties are present for time reversible time series, which implies
that the local Gaussian spectral densities fv(ω) always are real-valued for such time series,
see definition 2.2 and theorem 2.9.

The following simple result follows immediately from definition 2.2.

Lemma C.2. If {Yt}t∈Z is time reversible, then

gh(v1, v2) = gh(v2, v1) (C.4)

for all points v = (v1, v2) ∈ R2 and all h ∈ N, which implies

ρv(−h) = ρv(h). (C.5)

Proof. The time reversibility of {Yt}t∈Z implies that (Yh, Y0) and
(
Y−h, Y0

)
have the same

joint distribution, i.e.

G−h
(
y−h, y0

)
= P

(
Y−h ≤ y−h, Y0 ≤ y0

)
= P

(
Yh ≤ y−h, Y0 ≤ y0

)
= Gh

(
y−h, y0

)
.

Together with the observation in eq. (C.2), this gives the diagonal symmetry stated in
eq. (C.4). The statement for the local Gaussian autocorrelations follows by the same
reasoning as in the proof of lemma C.1.

10This must not be confused with the property that gh and g−h themselves are symmetric around the
diagonal, for that will in general not be the case.
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C.3 Two limit theorems — and one comment
This section contains two lemmas and one comment. Lemma C.3 combines a check of
the internal consistency of assumption 2.3 with the limits needed for the small block-large
block argument in theorem B.20, whereas lemma C.4 takes care of the two limits needed
in order to prove that the off the diagonal components in lemma B.18 are asymptotically
negligible. The comment at the end of this section has been included due to the remark at
the end of section 2.4.3 in the main document.

Lemma C.3. Under assumption 2.3, the following holds.
(a) There exists integers s that makes items (e) and (f) of assumption 2.3 compatible.
(b) There exists integers s and constants c := cn →∞, such that

c · s = o
(√

nb1b2/m
)
,

√
nm/b1b2 · c · α(s−m+ 1) −→ 0. (C.6)

(c) There exists integers s and constants c, such that with r, ` and ϑ given as the integers

r = rn :=

⌊√
nb1b2/m

c

⌋
, ` = `n :=

⌊
n

r + s

⌋
, ϑ = ϑn := s−m+ 1, (C.7)

the following limits occur when n→∞:

s

r
−→ 0; `α(ϑ) −→ 0;

mr

n
−→ 0;

mr

`b1b2

−→ 0;
m`s

n
−→ 0. (C.8)

Proof. Item (a) will be established by first observing that it is possible to find integers s
that ensures that assumption 2.3(f) is compatible with the requirement m = o

(
(nb1b2)

ξ
)
,

for any ξ ∈
(
0, 1

3

)
, and then checking that the exponent τ/(2 + 5τ)− λ lies in this interval.

Observe that it is impossible to havem = o(s) and s = o
(√

nb1b2/m
)

whenm ≥
√
nb1b2/m,

which implies m <
√
nb1b2/m, which is equivalent to m < (nb1b2)

1/3. Some extra leeway is
needed in order to construct the desired integers s, so consider the requirement

m = o
(
(nb1b2)

1/3−ζ) , for some ζ ∈
(
0, 1

3

)
. (C.9)

Define the integers s by s := m · s, where s := 1 ∨
⌊
(nb1b2)

ζ/2
⌋
, and note that this construc-

tion ensures that s goes to∞. Further, m = o(s) holds sincem/s = 1/s→ 0, and s = o
(√

nb1b2/m
)
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holds since

s√
nb1b2/m

� m · (nb1b2)
ζ/2

(nb1b2/m)1/2
=

m3/2

(nb1b2)
(1−ζ)/2 =

[
m

(nb1b2)
(1−ζ)/3

]3/2

=

[
1

(nb1b2)
2ζ/3
· m

(nb1b2)
1/3−ζ

]3/2

→
[

1

∞
· 0
]3/2

= 0. (C.10)

This implies that the desired integers s can be found wheneverm = o
(
(nb1b2)

ξ
)
, with ξ ∈

(
0, 1

3

)
.

Since the value of τ/(2 + 5τ)− λ lies in the interval
(
0, 1

5

)
, the proof of item (a) is complete.

For items (b) and (c), the integers s and constants c can e.g. be defined as

s = 1 ∨
⌊(√

nb1b2/m
)1−η⌋

, c =
(√

nb1b2/m
)η/2

, for some η ∈ (0, 1). (C.11)

Since 1− η and η/2 are in (0, 1), it follows from assumption 2.3(b) that s and c goes to ∞
as required. A quick inspection reveals that the product c · s is o

(√
nb1b2/m

)
, proving the

first part of eq. (C.6). For the second part of eq. (C.6), keep in mind the similarity with
assumption 2.3(d), and observe that c in the limit is asymptotically equivalent to sη/2(1−η).
Since η can be selected such that the exponent η/2(1− η) becomes smaller than any τ > 0,
the second statement holds too, which completes the proof of item (b).

In order to prove item (c), note that a floor-function bxc in a denominator can be
ignored in the limit x→∞, since x � bxc, that is limx/ bxc = 1. Moreover, observe that
assumption 2.3(b) implies that n/m goes to ∞. With these observations, all except the
last limit in eq. (C.8) are trivial to prove, i.e.

s

r
� s√

nb1b2/m

c

=
c · s√
nb1b2/m

→ 0, (C.12a)

`α(ϑ) ≤ n

r + s
α(ϑ) � n

r
α(ϑ) � n√

nb1b2/m

c

α(ϑ) =
√
nm/b1b2 · c · α(ϑ)→ 0, (C.12b)

mr

n
≤

√
nb1b2/m

c

n/m
=

√
b1b2

c
√
n/m

→ 0

∞ ·∞
= 0, (C.12c)

mr

`b1b2

� mr
n
r+s

b1b2

=
r(r + s)

nb1b2/m
� r2

nb1b2/m
≤

nb1b2/m

c2

nb1b2/m
=

1

c2
→ 0. (C.12d)
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For the proof of m`s/n→ 0, the explicit expressions for s and c from eq. (C.11) will be
needed, i.e.

m`s

n
≤
m n

r+s
s

n
= m

s

r + s
� m

s

r
� m

c · s√
nb1b2/m

≤ m

(√
nb1b2/m

)1−η/2

√
nb1b2/m

=
m

(nb1b2/m)η/4
=

m1+η/4

(nb1b2)
η/4

=

(
m

(nb1b2)
η/(4+η)

)(4+η)/4

. (C.13)

Assumption 2.3(e) states that m = o
(
(nb1b2)

τ/(2+5τ)−λ), and it is consequently sufficient
to show that an η can be found which gives τ/(2 + 5τ)− λ ≤ p(η) := η/(4 + η). Since
p′(η) = 4/ (4 + η)2 > 0, the highest value of p(η) will be found at the upper end of the in-
terval of available arguments. From the proof of item (b) it is known that η/2(1− η) < τ ,
which gives the requirement η < 2τ/(1 + 2τ). The value of p(η) at the upper end of this in-
terval is τ/(2 + 5τ), and since λ > 0 it is possible to find an η that satisfies τ/(2+5τ)−λ ≤
p(η) < τ/(2 + 5τ), which concludes the proof.

Lemma C.4. Under assumption 2.3, the sequence of integers defined by kn+1 :=
⌈
m2/a · |b1b2|

(2−ν)/aν
⌉

satisfies the following two limit requirements.
(a) kn −→∞.
(b) knm

2b1b2 −→ 0.

Proof. The key requirements ν > 2 and a > 1− 2/ν (inherited from assumption 2.1(b))
ensures that 2/a > 0 and (2− ν)/aν < 0. As m→∞ and b→ 0+ when n→∞, it follows
that kn →∞, which proves item (a).

For item (b), observe that kn =
⌈
m2/a · |b1b2|

(2−ν)/aν
⌉
− 1 < m2/a · |b1b2|

(2−ν)/aν implies

knm
2b1b2 <

(
m2/a · |b1b2|

(2−ν)/aν
)
·m2b1b2 (C.14a)

= m2(1+1/a) · |b1b2|
1+(2−ν)/aν (C.14b)

≤ m2(1+1/a) ·
∣∣(b1 ∨ b2)

2
∣∣1+(2−ν)/aν

(C.14c)

= {m{1+1/a}/{1+(2−ν)/aν} · (b1 ∨ b2)}
2(1+(2−ν)/aν)

(C.14d)

= {m{ν(a+1)}/{ν(a−1)+2} · (b1 ∨ b2)}
2(1+(2−ν)/aν)

. (C.14e)

An inspection of the outermost exponent reveals

2 ·
(

1 +
(2− ν)

aν

)
= 2 · a− (1− 2/ν)

a
> 0, (C.15)

which together with assumption 2.3(c) concludes the proof of item (b).
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A comment related to the remark at the end of section 2.4.3: It is not
required for the theoretical investigation, but it might still be of interest to mention the
following observation: Consider a combination of a given point v, a small bandwidth
vector b = (b1, b2), and a large sample of size n from a univariate time series {Yt}t∈Z that
satisfies assumption 2.1. The number of lag-h pairs in the vicinity of v will then, for each
h = 1, . . . ,m, be of order nb1b2 · gh(v) — and this will, when gh(v) > 0, go to infinity when
n→∞ and b→ 0+.

Only a sketch of the argument will be given here, since the asymptotic theory does not
build upon this observation: First select a b-dependent region Vb(v) around v to be the ‘b-
vicinity of v’, i.e. Vb(v) should shrink when b→ 0+. The area of Vb(v) should be given by
some constant A times b1b2. From a sample of size n there will be a total of n−h lag-h pairs,
and the expected number of those in the region Vb(v) will be (n − h) ·

∫∫
Vb(v)

gh(yh) dyh.

Assumption 2.1(d) implies that the bivariate density functions gh(yh) are continuous at
v, and it is thus clear that both infyh∈Vb(v) gh(yh) and supyh∈Vb(v) gh(yh) go to gh(v) when

b→ 0+. The integral
∫∫
Vb(v)

gh(yh) dyh will thus be of order A · b1b2 · gh(v) when b→ 0+,

and the result follows.
This shows why it even for rather large samples might be hard to obtain good estimates

of the local Gaussian spectral densities in the tails, where the densities gh(v) are low.

C.4 Integrals based on the kernel and the score functions
The asymptotic properties of the random variables introduced in definitions B.11 to B.13
does of course depend upon the properties of the time series {Yt}t∈Z upon which they have
been defined, but quite a few of the required properties does in fact only depend upon
K(w) and uhq:b(w). Note that the treatment in this section exploits the property that the
functions uhq:b(w) all are quadratic polynomials in the variables w1 and w2, which implies
that the inequalities from lemma C.5 is sufficient for the proofs of the asymptotic results
given in lemma C.6.

Lemma C.5. For K(w) from definition B.9 (page 16), and ν > 2 from assumption 2.1(b),
the following holds:

(a)
∣∣∣∫R2 K(w1, w2)w

k
1w

`
2 dw1dw2

∣∣∣ <∞, k, ` ≥ 0 and k + ` ≤ 5.

(b)
∣∣∣∫R2 K(w1, w2)

2wk
1w

`
2 dw1dw2

∣∣∣ <∞, k, ` ≥ 0 and k + ` ≤ 5.

(c) K(w1, w2)w
k
1w

`
2 ∈ L

ν
, k, ` ≥ 0 and k + ` ≤ 2.
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Proof. Since the kernel function by definition is non-negative, it follows that∣∣∣∣∫
R2

K(w1, w2)w
k

1w
`

2 dw1dw2

∣∣∣∣ ≤ ∫
R2

K(w1, w2) |wk

1w
`

2| dw1dw2, (C.16)

which proves item (a), since eq. (B.27d) of definition B.9 implies that this is finite for the
specified range of k and `.

Since the kernel function is bounded, there is some constant C such that K(w) ≤ C,
which implies that∣∣∣∣∫

R2

K(w1, w2)
2wk

1w
`

2 dw1dw2

∣∣∣∣ ≤ C ∣∣∣∣∫
R2

K(w1, w2)w
k

1w
`

2 dw1dw2

∣∣∣∣ , (C.17)

which due to item (a) is finite, thus item (b) holds true.
Next, note that |K(w1, w2)w

k
1w

`
2|
ν = |K(w1, w2)|

(ν−1) |K(w1, w2)| |wk
1w

`
2|
ν ≤ C(ν−1)K(w1, w2) |wk

1w
`
2|
ν,

which gives the following inequality,(∫
R2

|K(w1, w2)w
k

1w
`

2|
ν dw1dw2

)1/ν

≤ C(ν−1)/ν

(∫
R2

K(w1, w2) |wk

1w
`

2|
ν dw1dw2

)1/ν

, (C.18)

from which it is clear that a proof of the finiteness of the right hand side of eq. (C.18) will im-
ply item (c). Since the region of integration can be divided into Ak` = {w : |wk

1w
`
2| ≤ 1} and

Ac
k` = R2 \ Ak`, it follows from the non-negativeness of K(w), and eqs. (B.27a) and (B.27d)

of definition B.9, that∫
Ak`

K(w1, w2) |wk

1w
`

2|
ν dw1dw2 ≤

∫
Ak`

K(w1, w2) dw1dw2 ≤
∫
R2

K(w1, w2) dw1dw2 = 1,

(C.19a)∫
Ack`

K(w1, w2) |wk

1w
`

2|
ν dw1dw2 ≤

∫
Ack`

K(w1, w2) |wk

1w
`

2|
dνe dw1dw2

≤
∫
R2

K(w1, w2) |wkdνe
1 w`dνe

2 | dw1dw2 <∞, (C.19b)

where the last inequality follows since the assumption k + ` ≤ 2 ensures that k dνe+ ` dνe ≤ 2 dνe.
The expression in eq. (C.18) is thus finite — and, as stated in item (c), K(w1, w2)w

k
1w

`
2 ∈ L

ν
.

Lemma C.6. The following holds for uhq:b(w) and Kh:b(yh − v) from definitions B.7
and B.9, and ν > 2 from assumption 2.1(b):
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(a)
∫
R2

√
b1b2Kh:b(ζ − v)uhq:b(ζ) dζ = O

(√
b1b2

)
.

(b)
(∫

R2

∣∣√b1b2Kh:b(ζ − v)uhq:b(ζ)
∣∣νdζ)1/ν

= O
(
|b1b2|

(2−ν)/2ν
)
.

(c) Let Kqr,hj:b(ζ1, ζ2) := Kh:b(ζ1 − v)Kj:b(ζ2 − v)uhq:b(ζ1)ujr:b(ζ2), where ζ1 and ζ2 either
coincide completely (bivariate), have one common component (trivariate), or have no
common components (tetravariate). Let κ be the number of variates, and let dζ(κ)
represent the corresponding κ-variate differential. Then,

∫
Rκ (b1b2)Kqr,hj:b(ζ1, ζ2) dζ(κ) =


uhq:b(v)ujr:b(v)

∫
R2 K(w)2 dw +O(b1 ∨ b2) κ = 2,

O(b1 ∧ b2) κ = 3,

O(b1b2) κ = 4.

Proof. Recalling the definition of Kh:b(yh − v) from eq. (B.28), the integral in item (a) can
be written as ∫

R2

√
b1b2 ·

1

b1b2

K

(
ζ1 − v1

b1

,
ζ2 − v2

b2

)
uhq:b(ζ1, ζ2) dζ1 dζ2, (C.20)

which implies that the substitutions w1 = (ζ1 − v1) /b1 and w2 = (ζ1 − v2) /b2 gives the in-
tegral ∫

R2

√
b1b2

b1b2

K (w1, w2)uhq:b(b1w1 + v1, b2w2 + v2) (b1dw1) (b2dw2)

=
√
b1b2 ·

∫
R2

K (w1, w2)uhq:b(b1w1 + v1, b2w2 + v2) dw1dw2. (C.21)

Since uhq:b(w) is a bivariate polynomial, it is clear that uhq:b(b1w1 + v1, b2w2 + v2) can be
written as

uhq:b(v1, v2) + b1c1w1 + b2c2w2 + b2

1c11w
2

1 + b1b2c12w1w2 + b2

2c22w
2

2, (C.22)

for suitable constants c1, c2, c11, c12 and c22. The integral in eq. (C.21) can thus be expressed
as a sum of integrals like those occurring in lemma C.5(a), all of which are finite. The
dominant term becomes O

(√
b1b2

)
when b→ 0+, and the conclusion of item (a) follows.

The substitution used in item (a) can also be applied for item (b), resulting in(∫
R2

∣∣∣∣√b1b2 ·
1

b1b2

K (w1, w2)uhq:b(b1w1 + v1, b2w2 + v2)

∣∣∣∣ν (b1dw1) (b2dw2)

)1/ν

= |b1b2|
(2−ν)/2ν

(∫
R2

∣∣K (w1, w2)uhq:b(b1w1 + v1, b2w2 + v2)
∣∣ν dw1dw2

)1/ν

. (C.23)
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Note that this represent the norm in L
ν
-space, and that eq. (C.22) implies that it can be

realised as the norm of a sum of the simpler components encountered in lemma C.5(c). It
is now clear that Minkowski’s inequality can be used to obtain a bound for the expression
in eq. (C.23). In particular, constants e1, e2, e11, e12 and e22 can be found that realises this
bound as

|b1b2|
(2−ν)/2ν

(
uhq:b(v1, v2) + b1e1w1 + b2e2w2 + b2

1e11w
2

1 + b1b2e12w1w2 + b2

2e22w
2

2

)
, (C.24)

which is dominated by the |b1b2|
(2−ν)/2ν-term when b→ 0+, as stated in item (b).

The investigation of item (c) requires different substitutions depending on the κ for
the configuration under investigation. Noting that the integrand in addition to the scaling
factor b1b2 always contains the product Kh:b(ζ1 − v)Kj:b(ζ2 − v), it follows that it regard-
less of the value of κ will be a factor 1/b1b2 that will be adjusted by the b1- and b2-factors
that originates from the substituted differentials. It is easy to check that the new differen-
tials becomes b1b2 dw1dw2 when κ = 2, b2

1b2 dw1dw2dw3 or b1b
2
2 dw1dw2dw3 when κ = 3, and

b2
1b

2
2 dw1dw2dw3dw4 when κ = 4.
For the bivariate case, the substitution from item (a) gives an expression of the following

form, ∫
R2

K(w1, w2)
2 · U(w1, w2) dw1dw2, (C.25)

where U(w1, w2) is a product whose factors both are of the form encountered in eq. (C.22),
i.e. it will be a quartic polynomial in the variables (b1w1) and (b2w2), and its constant term
will be uhq:b(v)ujr:b(v). From lemma C.6(b) it follows that this will be a finite integral, and
as b→ 0+ the result will be as given for the κ = 2 case of item (c).

For the trivariate case, the overlap between ζ1 and ζ2 will belong to one of the fol-
lowing configurations, (i) ζ1 = (ζ1, ζ2) and ζ2 = (ζ1, ζ3), (ii) ζ1 = (ζ1, ζ2) and ζ2 = (ζ3, ζ1),
(iii) ζ1 = (ζ1, ζ2) and ζ2 = (ζ2, ζ3), or (iv) ζ1 = (ζ1, ζ2) and ζ2 = (ζ3, ζ2). The reasoning is
identical for the four cases, so it is sufficient to consider case (i), which gives the following
product of kernel functions in the original integral,

K((ζ1 − v1)/b1, (ζ2 − v2)/b2) ·K((ζ2 − v1)/b1, (ζ3 − v2)/b2) . (C.26)

When the substitution

w1 = (ζ1 − v1)/b1, w2 = (ζ2 − v2)/b2, w3 = (ζ3 − v2)/b2, (C.27)
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is used, the following component occurs in the transformed integrand,

K (w1, w2, w3) := K(w1, w2) ·K([(b2w2 + v2)− v1] /b1, w3) . (C.28)

The argument [(b2w2 + v2)− v1] /b1 does not pose a problem due to the boundedness re-
quirement from eq. (B.27d) in definition B.9, and the following inequality thus holds for
` ∈ {0, 1, 2},∫

R1

K (w1, w2, w3)w
`

3 dw3 = K(w1, w2) ·
∫
R1

K([(b2w2 + v2)− v1] /b1, w3)w
`

3 dw3 (C.29a)

= K(w1, w2) · K2:`([(b2w2 + v2)− v1] /b1) (C.29b)

≤ D2:` ·K(w1, w2) , (C.29c)

where D2:` is a constant that bounds the function K2:`.
Since the substitution in eq. (C.27) transforms the integral of interest into

b2

∫
R3

K (w1, w2, w3) · U(w1, w2, w3) dw1dw2dw3, (C.30)

where U(w1, w2, w3) is a quadratic polynomial in the variables (b1w1) and (b2w3), and a
quartic polynomial in w2 (with coefficients having suitable powers of b1 and b2 as factors),
the observation in eq. (C.29) implies that an iterated approach to the integral (starting
with the w3-variable) can be used to show that each part of the sum will be bounded by a
constant times an integral of the form encountered in lemma C.6(a). The trivariate integral
in item (c) can thus be bounded by a sum of finite integrals having coefficients based on
powers of b1 and b2. From the b2 factor in eq. (C.30), it follows that the trivariate integral
in this case is O(b2) when b→ 0+. Note that w2 = (ζ2 − v1)/b1 could have been used as an
alternative substitution in eq. (C.27), which by the obvious modifications of the arguments
implies that the integral also will be O(b1) when b → 0+ — and from this if follows that
the integral is O(b1 ∧ b2), which completes the proof for the κ = 3 case of item (c).

The case κ = 4 is quite simple, since no common components in ζ1 and ζ2 implies that
the tetravariate integral, after the obvious substitution, corresponds to an expression of the
form

b1b2

(∫
R2

K(w)uhq:b(ζ(w)) dw

)
·
(∫

R2

K(w)ujr:b(ζ(w)) dw

)
, (C.31)

where ζ(w) = (b1w1 + v1, b2w2 + v2). The integrals occurring in this product are similar to
those encountered in the bivariate case discussed above, and it is clear that the result will
be O(b1b2) when b→ 0+, which concludes the proof of item (c).
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Note that the bivariate case of lemma C.6(c) only considers the configuration where the
components of ζ1 and ζ2 coincide completely, while the configuration where ζ1 = (ζ1, ζ2)
and ζ2 is the diagonal reflection (ζ2, ζ1) has been left out. This restriction does not pose a

problem for the asymptotic investigation of f̂mv (ω) when the point v = (v1, v2) lies upon the
diagonal, i.e. when v1 = v2, since the diagonal folding property ensures that it is sufficient
to consider positive lags for the point v in this case. For the general case, where v1 6= v2,
the following adjusted version of lemma C.6(c) is needed, where one of the kernels use v
and the other use the diagonally reflected point v̆ = (v2, v1).

Lemma C.7. The following holds for uhq:b(w) and Kh:b(yh − v) from definitions B.7
and B.9, when the point v = (v1, v2) does not coincide with its diagonal reflection v̆ = (v2, v1),
i.e. v1 6= v2.
Let Kqr,hj:b(ζ1, ζ2;v, v̆) := Kh:b(ζ1 − v)Kj:b(ζ2 − v̆)uhq:b(ζ1)ujr:b(ζ2), where ζ1 and ζ2 either
are diagonal reflections of each other (bivariate), have one common component (trivariate),
or have no common components (tetravariate). Let κ be the number of variates, and let
dζ(κ) represent the corresponding κ-variate differential. Then,

∫
Rκ

(b1b2)Kqr,hj:b(ζ1, ζ2;v, v̆) dζ(κ) =


o(1) κ = 2,

O(b1 ∧ b2) κ = 3,

O(b1b2) κ = 4.

Proof. The statements for the trivariate and tetravariate cases are identical to those in
lemma C.6(c), and so are the proofs, i.e. the same substitutions can be applied for the
present cases of interest.

For the bivariate case, the substitution w1 = (ζ1 − v1) /b1 and w2 = (ζ1 − v2) /b2 gives
that the integral

∫
R2 K(w1, w2)

2 · U(w1, w2) dw1 dw2 from eq. (C.25) is replaced with a sum

of integrals of the form,∫
R2

K(w1 + (v1 − v2)/b1, w2 + (v2 − v1)/b2) ·K(w1, w2)w
k

1w
`

2 dw1 dw2, (C.32)

where k, ` ≥ 0 and k + ` ≤ 4. and the integrands of these integrals goes to zero when
b → 0+, due to the assumption that v1 6= v2. To clarify: For a kernel function K whose
nonzero values occurs on a bounded region of R2, the integrand of eq. (C.32) will become
identical to zero when (v1 − v2)/b1 and (v2 − v1)/b2 are large enough to ensure that at least
one of the factors in the integrand must be zero. For the general case, first observe that the
factors K(w1, w2)w

k
1w

`
2 are the integrands that occurs in lemma C.5(a), and the finiteness
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of those integrals implies that these factors must go to zero at a sufficiently high rate when
w1 and w2 are far from origo. The rate at which the individual kernel K(w1, w2) goes to
zero will of course be faster than that of the product K(w1, w2)w

k
1w

`
2, and together this

implies that the integrand in eq. (C.32) must go to zero when b → 0+, and the integral
thus becomes asymptotically negligible.

It is a straightforward (albeit somewhat tedious) exercise to verify that eq. (C.32) goes
towards zero at an exponential rate when the kernel function K(w) is the product normal
kernel. The observation that the bivariate case of lemma C.7 is o(1) can also be derived
from the realisation that Kh:b(ζ1 − v) and Kj:b(ζ2 − v̆) are entities that converge towards
two different bivariate Dirac delta functions, and the limit of the integral becomes zero
since these delta functions sifts out different points.

C.5 A few details related to σ-algebras, α-mixing and L
ν

-spaces
The following general definitions and basic observations are needed when e.g. results from Davy-
dov [1968] and Volkonskii and Rozanov [1959] are used.

Related σ-algebras
The σ-algebras related to the process {Yt}t∈Z, will be denoted

F s

t
:= σ(Yt, . . . , Ys) , (C.33)

where t and s are allowed to take the values −∞ and +∞ respectively.
Note in particular, that if a new random variable is defined by means of a measurable

function ξ(ym) from Rm+1 to R, i.e. Ym:t
:= ξ(Ym:t), then Ym:t ∈ F t+m

t .
Inheritance of α-mixing

The coefficients in the strong mixing property mentioned in assumption 2.1(b), is given by

α(s |Yt) := sup
{
|P(A ∩B)− P(A) P(B)| : −∞ < t <∞, A ∈ F t

−∞, B ∈ F∞t+s
}
, (C.34)

from which it is an easy task to verify that a derived process, like the Ym:t mentioned above,
will have an inherited α-mixing coefficient that satisfies

α(s | Ym:t) ≤ α(s−m |Yt) . (C.35)

This implies that the finiteness requirement in eq. (2.21) will be inherited by the process
Ym:t, i.e. with ν and a as introduced in assumption 2.1(b), the following holds true

∞∑
j=1

ja [α(j | Ym:t)]
1−2/ν <∞. (C.36)
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Related L
ν
-spaces

Some inequalities are needed in the main proofs, and these inequalities can be verified by
means of the simple connection between expectations and L

ν
-spaces outlined below.11

First of all, when a measure space (Ω,G, µ) is given, then for 1 ≤ ν <∞, the space
L
ν

:= L
ν
(Ω,G, µ) is defined to be the class of measurable real functions ζ for which |ζ|ν is

integrable, that is,

ζ(z) ∈ Lν def⇐⇒
∫

Ω

|ζ(z)|ν dµ <∞. (C.37)

The L
ν
-spaces related to the processes Yh:t and Ym:t will henceforth be denoted by

L
ν

h — the L
ν

spaces related to the densities gh, (C.38a)

L
ν

m — the L
ν

space related to the density gm. (C.38b)

These L
ν

spaces are in fact Banach spaces, see e.g. Billingsley [2012, Section 19] for
details, which means that they are complete normed vector spaces, with a ν-norm defined by

‖ζ(z)‖
ν

:=

(∫
Ω

|ζ(z)|ν dµ

)1/ν

= (E[|ζ(Z)|ν])1/ν (C.39)

and the Minkowski’s inequality (i.e. the triangle inequality for L
ν
-spaces) will play a central

role in the investigation later on,

‖ζ1(z) + ζ2(z)‖
ν
≤ ‖ζ1(z)‖

ν
+ ‖ζ2(z)‖

ν
. (C.40)

The main reason for the introduction of these L
ν
-spaces are the following observation:

With Z a random variable on (Ω,G, µ), the definitions of expectation and L
ν
-spaces gives

a sequence of equivalences

E[|ζ(Z)|ν] <∞ ⇐⇒
∫

Ω

|ζ(z)|ν dµ <∞ ⇐⇒ ζ(z) ∈ Lν . (C.41)

Lemma C.8. For a univariate time series {Yt}t∈Z, with Yh:t and Ym:t as defined in defini-
tion 2.7, and with m bivariate functions ζh : R2 −→ R1

If E[|ζh(Yh:t)|
ν] <∞ for h = 1, . . . ,m, then(

E
[
|
∑m

h=1 ahζh(Yh:t)|
ν
])1/ν ≤∑m

h=1 |ah| (E[|ζh(Yh:t)|
ν])1/ν <∞.

11These definitions are normally presented with p used instead of ν.

50



Proof. From eq. (C.41) it follows that E[|ζh(Yh:t)|
ν] <∞ implies ζh(yh) ∈ L

ν

h for h = 1, . . . ,m.

With ζ̃h(ym) the corresponding trivial extensions to (m+ 1)-variate functions, it follows

from eq. (2.20) that ζ̃h(ym) ∈ Lνm for h = 1, . . . ,m. From the vector space property of
L
ν
-spaces it follows that

∑m
h=1 ahζh(Yh:t) ∈ L

ν

m, and Minkowski’s inequality then gives the
desired result.

Appendix D: Sensitivity analysis of the tuning parameters
This section will investigate how sensitive f̂mv (ω) is to changes in the tuning parameters
(and the point v). This will be done by the distance function D introduced in appendix D.1,
together with plots that reveal information about the frequency-dimension.

Appendices D.2 and D.3 respectively consider the sensitivity of the point v and the
bandwidth b, whereas the sensitivity of the truncation level m is discussed in appendix D.4.
The effect the value of the block length L has upon the bootstrap-based pointwise confidence
intervals is discussed in appendix F.5, since that gives the most natural flow.

Appendix E contains a discussion related to the selection of tuning parameters for
f̂mv (ω), and it also contains some references to the related problem of selecting the band-
width when a local Gaussian correlation is to be estimated from a sample.

The scripts required for the replication of the results in this section are contained in
the R-package localgaussSpec, and these scripts can be used as templates for those that
would like to investigate other time series in a similar manner. See appendix G for details.

D.1 Sensitivity analysis - the distance function
An investigation of the sensitivity requires a tool that can measure the differences that occur
in the resulting estimates when the tuning parameters are adjusted. Many techniques have
been developed in order to deal with distances between spectral functions, cf. e.g. Basseville
[2013, Section 7] and Georgiou [2007, Section 1]. Some approaches are based on proper
distance functions, whereas other use divergence/distortion measures where symmetry and
the triangular identity no longer are present.

A natural (and easy to implement) candidate for the case of interest in this paper is the
distance function inherited from the complex Hilbert space of Fourier series on the interval[
−1

2
, 1

2

]
, cf. e.g. Brockwell and Davis [1986, Ch. 2.8], i.e. for f(ω) =

∑∞
h=−∞ ρ(h)e−2πih

the norm is defined by ||f(ω)||2 =
∫ 1/2

−1/2
f(ω)f(ω) dω =

∑∞
h=−∞ ρ(h)2. This motivates the

following definition.
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Definition D.1. Given two spectra f1(ω) =
∑∞

h=−∞ ρ1(h)e−2πih and f2(ω) =
∑∞

h=−∞ ρ2(h)e−2πih,
the distance between them is denoted by

D(f1(ω), f2(ω)) :=

√√√√ ∞∑
h=−∞

(ρ1(h)− ρ2(h))2. (D.1)

Furthermore: The notation D(f1(ω)) will be interpreted as D(f1(ω), 0), which implies that
D(f1(ω), f2(ω)) also can be written as D(f1(ω)− f2(ω)) (which is used in fig. D.8).

Note that D will work both for real-valued and complex-valued spectra, and the latter is
of importance both with regard to the univariate case when the point v lies of the diagonal,
and with regard to the multivariate case treated in Jordanger and Tjøstheim [2017] .

The obvious adjustment must be done when D is used on m-truncated estimates f̂mv (ω),
i.e. ρ(h) should be replaced with λm(h) · ρ̂v(h) when |h| ≤ m, and with 0 when |h| > m.

The distance function in definition D.1 is not applicable in the FFT-periodogram based
approach to the estimation of spectral densities, since that approach does not explicitly
compute the coefficients needed in eq. (D.1). However, note that the deviance measure that
is based on the root mean squared error (RMSE), cf. e.g. Chen et al. [2019, Section 3.2],
is closely related to the one used in the present paper. To emphasise: If f̃1(ω) and f̃2(ω)
are two periodogram-based estimates of the spectral densities f1(ω) and f2(ω), then the
RMSE-distance is given by

DRMSE

(
f̃1(ω), f̃2(ω)

)
:=

√√√√ 1

n

n−1∑
l=0

[
f̃1(ωl)− f̃2(ωl)

]2

, (D.2)

where the summation is over all the Fourier-frequencies ωl = l/n in the interval [0, 1). A
quick inspection of the expression under the square-root in eq. (D.2) reveals that this is

a Riemann-sum approximation of the integral
∫ 1

0
(f1(ω)− f2(ω)) (f1(ω)− f2(ω)) dω. This

will, when n → ∞, converge towards ||f1(ω) − f2(ω)||2, which shows the close connection
with the distance function from definition D.1.

Another more commonly used divergence measure is also considered in Chen et al.
[2019], and that is the divergence measure based on the Kullback-Leibler (KL) divergence
Kullback and Leibler [1951]. For the periodogram-based approach this can be written as

DKL

(
f̃1(ω), f̃2(ω)

)
:=

n−1∑
l=0

f̃1(ωl) ln

(
f̃1(ωl)

f̃2(ωl)

)
. (D.3)
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An implementation of the KL-approach in this paper was briefly considered, but it was
discarded since the local Gaussian spectral densities fv(ω) in general will be complex-valued
functions, and it was thus not clear how to adjust eq. (D.3) in a proper manner.

Regarding the frequency-dimension: A distance measure like the D defined in
definition D.1 does not contain any information about the frequencies, and completely
different spectral densities can have the same distance-value. It is thus, for the purpose
of sensitivity analysis, important to combine distance-based plots with plots that reveal
something about the frequency-component too.

D.2 Sensitivity analysis: The point v
The bandwidth b is a central tuning parameter when an estimate of the m-truncated local
Gaussian spectral density fmv (ω) is desired for a given point v = (v1, v2). The point v itself
is not a tuning parameter of the estimation algorithm, but an investigator will obviously
be interested in information about how fmv (ω) varies with v, and it is thus also natural to

consider the sensitivity of the estimate f̂mv (ω) relatively the selected point.
Two plots related to this particular investigation was included in the main part, i.e.

figs. 8 and 10, which respectively considered the local trigonometrical example and the
dmbp-data. It is preferable to have a plot available for the present discussion too, and
fig. D.1 shows an example based on one single simulation from the apARCH(2, 3) that was
fitted to the dmbp-data, cf. section 3.4.

The point v = (v1, v2) is bivariate, but the present investigation will restrict its attention
to the diagonal cases. The requirement v1 = v2 is used for simplicity since it ensures that
the resulting local Gaussian spectral densities will be real valued.

This restriction implies that the point v is allowed to vary continuously along a one
dimensional line (the diagonal), and a heatmap can be used to see how f̂mv (ω) varies with
v (for a fixed b). It is also of interest to use the distance function D from definition D.1 to

create a distance-based plot that shows how the norm D
(
f̂mv (ω)

)
varies with v.

The points v in fig. D.1 ranges from the 5% percentile to the 95% percentile of the
standard normal distribution, increasing in steps of 0.5% (altogether 91 different points).
This percentile based selection implies that the corresponding points are not equally spaced
along the actual diagonal, and the plots in fig. D.1 have thus used the option that the points
v have been presented according to their underlying percentile-values — which implies that
these plots primarily reveals information about the copula-structure of the time series under
investigation.

It can be seen from fig. D.1 that f̂mv (ω) near the 50% percentile is quite close to an
i.i.d. white noise situation — and it also seems to be a very clear symmetry around the
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Figure D.1: Heatmap and corresponding distance-based plots for the the apARCH(2, 3)-

model that was fitted to the dmbp-data, showing how f̂ 10
v (ω) varies with the percentiles for

the diagonal-points v. The percentiles used in fig. 11, i.e. 10%, 50% and 90%, have been
highlighted with lines/points.

50% percentile. This is in stark contrast to the situation seen for the dmbp-data, cf. fig. 10,
which indicates an asymmetry around the 50% percentile

Note that the 5% and 95% percentiles are quite far out in the tails of the distribution,
and it is thus natural to assume that the selected bandwidth in those cases might fail to
work properly — the small sample variation of the points closest to the point v might
simply render the estimated local Gaussian autocorrelations rather dubious. It is possible
to counter this problem by selecting a larger bandwidth for percentiles in the tails, but it
is then important to keep in mind that a too large bandwidth might completely miss the
desired local structure at the point of investigation.
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Heatmap-plots for the estimates ρ̂v(h): The construction of the two plots in fig. D.1
requires the computation of all of the underlying estimates ρ̂v(h), for h = 1, . . . ,m. It is
thus also possible to create heatmap-based plots that can visualise how these estimates
changes as the point v moves from the 5% to the 95% percentile, and this can for the
apARCH(2, 3)-example be seen in fig. D.2.

ρv(h)
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NC = OK n = 1974, R = 1 h

v
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25%

50%

75%

100%

0 3 6 9

−1.0

−0.5

0.0
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1.0

Heatmap for the local Gaussian autocorrelations

Figure D.2: Heatmap for ρ̂v(h), for the apARCH(2, 3)-model fitted to the dmbp-data. The
percentiles used in fig. 11, i.e. 10%, 50% and 90%, have been highlighted with lines.

It is clear from fig. D.2 that the estimated values ρ̂v(h) are near symmetric around

the 50% percentile, which thus explains the corresponding symmetry for f̂mv (ω) seen in
fig. D.1. For the dmbp-data, see fig. D.3, a similar level of symmetry is not to the same
extent present. It might from such plots be possible to identify if it is the contribution from
some particular lags h that drives the asymmetry of the corresponding estimated spectrum
f̂mv (ω).

For completeness, fig. D.4 has been included in order to show how the situation looks
like for the local trigonometric example seen in fig. 8.

D.3 Sensitivity analysis: The bandwidth b
The bandwidth b = (b1, b2) is bivariate, but it is natural to assume b1 = b2 when a univariate

time series is investigated. With this restriction it follows that the sensitivity of f̂mv (ω) due
to changes in the bandwidth b can be investigated in a similar manner to the one used in
the preceding section for the diagonal points v.

The bandwidth b should be selected according to the Goldilocks principle, i.e. it should
neither be ‘too low’ nor ‘too high’, it must be ‘just right’. The heatmap and distance-based
plots from fig. D.1 can easily be adjusted to visualise the problems that occur when the
bandwidth does not belong to the ‘just right’ region. The plots shown in fig. D.5 does
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Figure D.3: Heatmap for ρ̂v(h), for the dmbp-data. The percentiles used in fig. 9, i.e. 10%,
50% and 90%, have been highlighted with lines.
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Figure D.4: Heatmap for ρ̂v(h), for the local trigonometric case. The percentiles used in
fig. 7, i.e. 10%, 50% and 90%, have been highlighted with lines.

once more consider the dmbp-data, and in this case the bandwidth ranges from 0.25 to 1.5
in steps by 0.005 (altogether 251 different bandwidths). The bandwidth b = 0.5 has been
highlighted since it was that value that was used in fig. 9.

The problem when b becomes too large is that the estimated local Gaussian autocor-
relations ρ̂v(h) no longer will capture the local structure of interest, and the corresponding

estimated local Gaussian spectral density f̂mv (ω) (which no longer deserves to be referred
to as ‘local’) will then be indistinguishable from the ordinary spectral density. It is clear
from fig. D.5 that a bandwidth of b = 1.5 is far too large for the present investigation.

The expected behaviour when a too low bandwidth is used is that it will trigger a
degeneration of the estimated local Gaussian autocorrelations, i.e. ρ̂v(h) will tend towards
either +1 or −1 regardless of the actual structure of the underlying density distributions.
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Figure D.5: Heatmap and corresponding distance-based plots based on the dmbp-data,
showing how f̂ 10

v (ω) varies with the bandwidth b. The bandwidth used in fig. 9, i.e. b = 0.5,
has been highlighted with a line/point.

The reason for this is that ρ̂v(h) will, due to the kernel function from the density
estimation algorithm, become increasingly sensitive to the position of the h-lagged pairs(
Yt+h, Yt

)
that lies nearest to the point v = (v1, v2). To clarify, for a given point v there

will be a collection of Euclidean distances to the h-lagged pairs
(
Yt+h, Yt

)
in the sample,

and these distances could (after a re-indexing) be sorted in ascending order {di}
n−h
i=1

.
Under the assumption that it is the product normal kernel that is used, the contribution

from a lag-h pair
(
Yt+h, Yt

)
that lies a distance of di from v will be weighted by wi:b

:=
1

2πb2
e−d

2
i /2b

2
— and it is now natural to consider the set of all the weights Wv:b

:= {wi:b}
n−h
i=1

.
The primary detail of interest is how much larger the weights are for the pairs that lies

closest to v, and it thus necessary to consider the fraction rij:b := wi:b/wj:b =
(
ed

2
j−d

2
i

)1/b2

.

The number rij:b will, when di < dj, grow to ∞ when b → 0+, and this implies that the
estimation algorithm for small b-values will become increasingly sensitive to the h-lagged
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pairs that lies closest to the point v when the bandwidth shrinks — and in the end it would
thus be natural to have a degeneration of the estimated value ρv(h) to either +1 or −1.

Note that the corresponding D
(
f̂mv (ω)

)
will grow when this degeneration happens, as

can be seen for b = 0.25 in the distance-based plot in fig. D.5.
Heatmap-plots for the estimates ρ̂v(h): It is here, as it was for the investigation

of the diagonal points v, possible to also consider a heatmap based investigation of the
underlying estimates ρ̂v(h), for h = 1, . . . ,m. Such a plot is given in fig. D.6, and it can
there be observed that it for some of ρ̂v(h)-estimates is the case that the estimates first
switch sign from positive to negative — and then they grows quickly towards −1. This kind
of behaviour is expected to occur when the bandwidth b has shrunk to a level that implies
that the kernel function in the local penalty function, cf. eq. (B.7), gives high weights to
the few observations

(
Yt+h, Yt

)
nearest v, and very low weights elsewhere.
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Heatmap for the local Gaussian autospectra

Figure D.6: Heatmap for ρ̂v(h), for the dmbp-data, showing the effect of different band-
widths. The bandwidth used in fig. 9, i.e. 0.5 has been highlighted with a line.

Note that fig. D.5 considers the situation where v is the diagonal point corresponding to
the lower tail, but similar plots could have been included for the cases where v corresponds
to either the center or the upper tail.12 A comparison of the distance-based plots for these
three points is presented in fig. D.7, in order to show how the bandwidth-sensitivity of
f̂mv (ω) also depends on the selected point v. A common scale has been used for the three
subplots in order to emphasise the asymmetry between the lower and upper tail.

Note that the center plot of fig. D.7 reveals that the ‘too low bandwidth problem’ occurs
a bit slower in a high density region, but it will even there eventually create a situation
where the estimated local Gaussian autocorrelations degenerate towards either +1 or −1.

12The interested reader can use the scripts in the R-package localgaussSpec to get access to these plots
for the center and upper tail, cf. appendix G for details.
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Figure D.7: Distance-based plots for the dmbp-data, showing how f̂ 10
v (ω) varies with the

bandwidth b for the three percentiles used in fig. 9, i.e. 10%, 50% and 90%. The bandwidth
used in fig. 9, i.e. b = 0.5, has been highlighted by a point.

The heatmap and distance-based plots in figs. D.5 to D.7 can detect the clearly unde-
sirable regions for the bandwidth b, but they do not reveal what the ‘just right’ value for
the bandwidth should be. Nevertheless, it is still possible to gain some insight into how
sensitive the estimate of fmv (ω) will be for minor variations of the bandwidth b, and that
can be useful with regard to the selection of a few bandwidths that can be used when e.g.
a bootstrap-investigation is to be performed.

The framework used in the R-package localgaussSpec ensures that it is trivial to
compute and investigate a wide range of bandwidths simultaneously, and the key idea is
that knowledge of the local dependency structure can still be obtained even if the selected
bandwidths are not spot on the ‘just right’ value for the bandwidth.
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D.4 Sensitivity analysis: The truncation level m
The shape of fmv (ω) for a low truncation level can be different from the shape seen when
a higher truncation level is used. It is thus of interest to investigate how sensitive the
estimates f̂mv (ω) are to changes in the truncation level m.

This issue can easily be probed by performing an initial investigation with a high value
for the maximum lag to be computed, since the computational cost is not too large when
only a single sample (like the dmbp-data) is investigated. It did e.g. not take a long time
to estimate ρv(h) for h = 1, . . . , 200, which was needed for the construction of fig. 4 in the

main document — and with these estimates it is trivial to compare f̂m(ω) and f̂mv (ω) for
m up to 200, since the integrated shiny-application of the R-package localgaussSpec can
animate the changes that occur in the spectra when m grows from 0 to 200.

The computational costs can become rather large when it is necessary to find pointwise
confidence intervals, since a high number of replicates then must be investigated with the
same configuration of tuning parameters. It is then important to figure out a sufficient
truncation level m, and restrict the attention to the estimates of ρv(h) for h = 1, . . . ,m.

A drawback with the shiny-based approach in localgaussSpec is that it requires an
inspection of many different plots. It could thus be of interest to also consider summary-
plots that either use the distance function D from definition D.1, or some heatmap-based
alternative visualisation of f̂mv (ω), similar to those used for ρ̂v(h) in figs. D.2 to D.4 and D.6.

Distance plots: It is possible to investigate the m-sensitivity by distance-based plots,

but those plots are less useful in this case. One reason for this is that the norms D
(
f̂mv (ω)

)
are monotonically increasing as functions of m. This can easily be seen by first recalling
(cf. algorithm 2.5(c)) that the estimates f̂mv (ω) are given by

f̂mv (ω) := 1 +
m∑
h=1

λm(h) · ρ̂v̆(h) · e+2πiωh +
m∑
h=1

λm(h) · ρ̂v(h) · e−2πiωh,

and then keeping in mind that the lag-window function λm(h) satisfies λm+1(h) ≥ λm(h). It

follows that D
(
f̂m+1
v (ω)

)
≥ D

(
f̂mv (ω)

)
, which does not provide any useful new information.

Instead of a plot of the norms D
(
f̂mv (ω)

)
, it is slightly more interesting to consider

a plot that shows D
(
f̂m+1
v (ω)− f̂mv (ω)

)
, i.e. the distances between f̂m+1

v (ω) and f̂mv (ω) in

the Hilbert room of Fourier series. This idea is shown in fig. D.8 for the three diagonal
points and 200 lags that was included in fig. 4. Note that fig. D.8 takes into account
the scaling due to the lag-window function λm(h), and as such it does provide some new
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information compared to that contained in the plot showing the estimated local Gaussian
autocorrelations.
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Figure D.8: Distances between successive m-truncations of the local spectra, dmbp-data.

The three subplots of fig. D.8 shows that D
(
f̂m+1
v (ω)− f̂mv (ω)

)
rather quickly starts to

decrease monotonically, which is as expected given the presence of the lag-window function
λm(h). This decrease implies that the effect of a change in the truncation level from m to
m+ 1 becomes smaller as m grows, and the sensitivity is thus largest when m is small.

Figure D.8 might indicate that the m = 10 used in the main part is a bit to small.
However, the purpose of that particular truncation level was simply to show that even a
low truncation level could be used to detect the presence of nonlinear dependency structures
in the time series under investigation, i.e. structures not detected by the ordinary spectrum.

It is natural to assume that two successive local Gaussian spectra f̂mv (ω) and f̂m+1
v (ω)

should be similar in shape when m has grown a bit, but this does not imply that the
accumulated changes to f̂mv (ω) are negligible. It is thus important to also inspect the
frequency-dimension, and this can as mentioned above easily be done by the interactive
shiny-application in the localgaussSpec-package.

Heatmap plots: The truncation level m is a discrete tuning parameter, and an inspec-
tion based on a heatmap-based approach could thus follow the setup used for the estimated
ρ̂v(h)-values seen in figs. D.2 to D.4 and D.6. The R-package localgaussSpec contains a

script that can be used to create such a heatmap-based plot for f̂mv (ω), with the frequencies
ω along one axis and the truncation levels m along the other.
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The resulting heatmap-based plot clearly showed that the peak seen in fig. 9 at ω = 0
(for m = 10 and a point either in the lower or upper tail) became even more dominating
as m increased, and the peak dominated to such an extent that the heatmap-based plot
did not reveal anything about the other frequencies. This plot has thus not been included
here, but the script is available in localgaussSpec, cf. appendix G for details.

Appendix E: How to select the tuning parameters?
Several tuning parameters are required in order to compute the m-truncated estimate f̂mv (ω)
of the local Gaussian spectrum fv(ω), for a given point v. In addition to the truncation level
m, there is a bandwidth b (to be used when estimating the local Gaussian autocorrelations
ρv(h), for h ∈ {1, . . . ,m}). There is also a lag-window function λm(h) used for smoothing.

The sensitivity analysis in appendix D considered the effect of minor changes to the
tuning parameters b and m, and it did also discuss the sensitivity of f̂mv (ω) that is due to
the position of the point v — which is of interest to know when a given sample/model is
to be investigated.

The task of finding ‘optimal tuning parameters’ lies beyond the scope of this paper,
and the focal point of interest in this section will be to give some advice with regard to
how the R-package localgaussSpec can be used to investigate a given sample/model, cf.
appendix E.1 for the details. A few comments related to the selection of the bandwidth
b is given in appendix E.2, primarily in order to give some pointers to papers that have
discussed bandwidth selection for the estimation of the local Gaussian correlation ρv.

E.1 Using the R-package localgaussSpec
The R-package localgaussSpec can compute f̂mv (ω) for a wide range of tuning parameters,
and for a huge selection of different points v. The integrated shiny-application enables
an easy interactive investigation of the resulting estimates, with an interface that makes
it trivial to switch between visualisations of the estimated local Gaussian autocorrelations
ρ̂v(h) and the corresponding estimated local Gaussian spectral densities f̂mv (ω).

The computational cost for one single estimate of the local Gaussian correlation ρv(h),
for a given lag h, a given bandwidth v and a given point v, is usually not that high (depends
on the sample size n). The computational cost does however quickly escalate when a huge
combination of points v, bandwidths b and large truncation level m is used. It becomes
even worse if it is of interest to produce pointwise confidence intervals, since it then will be
necessary to have R replicates of every configuration of these tuning parameters.

This implies that it for a practical investigation is natural to first do the computations
on a single sample, a few bandwidths b and a wide range of points v. The truncation level
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m could in this initial investigation probably be rather low, e.g. m = 30, since the key
observation is that it is differences between the m-truncated ordinary and local Gaussian
spectra that can reveal the presence of non-Gaussian dependency structures in the sample.

The next step of the investigation is the inspection of the heatmap- and distance-based
plots of the estimates f̂mv (ω), and from this it is then possible to figure out if there are some
subset of the points v that it would be of particular interest to investigate further. If such
points are identified, then it is possible to restrict another investigation to these points, and
then perform e.g. R = 100 replicates in order to produce the pointwise confidence intervals.

This procedure was used in appendix G.4.3, where the aim of the investigation was
to show that for a sufficiently large sample from the local trigonometric model used in
section 3.3.2, it should be possible to detect the C1(t) component that only occurred with
a probability of p1 = 0.05. In this case a range of diagonal points v were selected from the
lower tail, and one sample was used as the basis for the heatmap- and distance-based plots
seen in fig. G.2. From this it was then easy to identify a suitable point v that could be used
to create the plot in fig. G.3, where the pointwise confidence intervals also are present.

This kind of investigation is easy to reproduce for other samples, since the scripts in the
R-package localgaussSpec can be modified in order to deal with similar investigations, cf.
the discussion in appendix G for further details.

E.2 Some comments regarding the bandwidth b
The bandwidth b = (.5, .5) used as default in section 3 of the main part was selected based
on the fact that b = .5 is quite close to the value obtained when the formula b ≈ 1.75n−1/6

was given the value n = 1974 (the length of the dmbp-data). This formula, due to H̊akon
Otneim, is based on an empirical comparison with a cross-validation bandwidth algorithm
used in Otneim and Tjøstheim [2017], and it has been applied here even though it originates
from a bandwidth-selection algorithm aimed at computing density estimates based on the
one-free-parameter local Gaussian approximation employed in that paper.

There does exist a leave-one-out cross-validation algorithm for the selection of the band-
width to be used when estimating the local Gaussian correlation based on independent
observations, see Berentsen and Tjøstheim [2014, Section 3.4] for details. However, the es-
timation of the local Gaussian spectral density fmv (ω) requires the estimation of m different
local Gaussian autocorrelations ρv(h), and such cross-validation algorithms then becomes
quite time consuming13 — in particular if it in addition is necessary to use bootstrapping
in order to obtain pointwise confidence intervals for the estimates. Moreover, it may be a

13Tests were performed to see if it might be possible to only use the bandwidth-algorithm for the
case h = 1, and then let the higher lags inherit the estimated bandwidth — but it turned out that that
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bit questionable to apply an algorithm developed for independent observations in a time
series setting. In particular, the leave-one-out cross-validation has some flaws if the aim
is model selection based upon dependent data, see Burman et al. [1994]; Racine [2000];
Shao [1993], where the concepts leave-nν-out cross-validation, h-block cross validation, and
hv-block cross-validation were introduced as better tools for the dependent case.

Appendix F: Regarding sampling and resampling
This section will discuss sampling related issues, both with regard to the parametric and the
nonparametric cases. Details related to the trivial case of sampling from parametric models
are given in appendix F.1. Appendix F.2 discusses the approach based on parametric
bootstrapping, which can be of interest in order to see if samples from a model fitted to
a given data-set have the same dependency structure as the original data. This section
includes a plot similar to one of the diagnostic plots used in Birr et al. [2019], in which
points v both on and off the diagonal have been used in the investigation.

Nonparametric and model free bootstrap strategies are discussed in appendices F.3
and F.4, and it is there seen that a slightly adjusted version of the block bootstrap, cf.
theorem F.4 on page 75, can be a useful resampling strategy for the estimators that are
used to find the local Gaussian spectral densities.

A sensitivity analysis of the block length argument L (used in the adjusted resampling
algorithm) is given in appendix F.5, and a few additional comments related to problematic
issues with the initial approach are given in appendix F.6.

F.1 Simulations from a parametric model
Simulations are trivial for parametric time series models, since new independent samples
(of the same length n) can be made directly from the model. The estimates of fmv (ω) (for
the specified values of m and b) are then computed for each of these samples, the mean of
the resulting estimated spectra is used as the proxy for the true spectra, whereas pointwise
confidence intervals are constructed directly from the collection of estimated spectra.

F.2 Parametric bootstrap and local sanity-testing of models
A parametric bootstrap approach can be used to investigate models fitted to real data, and
this is e.g. used in Birr et al. [2019]. The idea behind the parametric bootstrap is that a
parametric model first is fitted to the original sample, and then that fitted model is used

assumption was not a viable one. In particular, the bandwidths estimated for the higher lags did not need
to be close to the one estimated for the first lag.
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when resampling — which implies that the second step in this procedure is identical to the
one described in appendix F.1.

This approach can be used to perform a local sanity-test of the fitted model, since it
becomes possible to identify points/frequencies with a clear mismatch between the local
structures detected in the original sample and those seen in samples from the fitted model.
The plot presented in fig. F.1, which is similar in structure to one of the plots in Birr
et al. [2019], shows how such a comparison can be performed for the dmbp-data and the
apARCH(2, 3)-model that was seen in figs. 9 and 11 in section 3.4.
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Figure F.1: The estimates of fmv (ω) based on the dmbp-data (solid lines) have been super-
imposed on the corresponding estimates based on samples from the fitted apARCH(2, 3)-
model. The off-diagonal points v give complex-valued fmv (ω), see main text for explanation.

The key idea in fig. F.1 is that estimates of fmv (ω) based on the original sample can be
superimposed on the plots based on parametric bootstrapping from the fitted model, and
this makes it easy to compare them.
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Nine different points v = (v1, v2) are considered in fig. F.1, and these are based on
the combinations that can be created when v1 and v2 varies over the 10%, 50% and 90%
percentiles of the standard normal distribution. The corresponding plots are ordered in a
grid in accordance with the position of these nine points in the plane, as can be seen by
the information about v in the upper right corner of the respective plots.

The estimates of fmv (ω) for the three diagonal points are real-valued, and this is thus
in essence the same plots that was seen in fig. 11 — but the information about the global
spectrum has been removed and the solid lines from fig. 9 have been added to the plots.

The estimates fmv (ω) are complex-valued for the six off-diagonal points, and in this
case the R-package localgaussSpec follows the convention used for the complex-valued
cross-spectra, viz. Co(fmv (ω)) = Re(fmv (ω)) and Quad(fmv (ω)) = − Im(fmv (ω)).

The off-diagonal points are symmetric around the diagonal, i.e. both v = (v1, v2)
and its diagonal reflection v̆ = (v2, v1) are present. It is the case that fv(ω) = fv̆(ω),
cf. lemma 2.3(b), so it is sufficient to plot Co(fmv (ω)) on one side of the diagonal and
Quad(fmv (ω)) on the other side.

Finally, the same scale is used for all plots showing real values, whereas another scale
is used for the plots related to the imaginary parts. This distinction is natural since the
scale needed for the imaginary part can be much smaller, as can be seen in fig. F.1.

A comparison of the dashed and solid lines in fig. F.1 can now be used to see if there
might be any faults with the apARCH(2, 3)-model that was fitted to the dmbp-data. The
plots related to the real parts does not give any indications that something is off, with
a possible minor exception near ω = 0 for the point at the upper tail (as also observed
in section 3.4.3 in the main part). The plots related to the imaginary parts might (when
seen isolated) imply that the model did not catch all of the dependency structure — but
it is here important to keep in mind that different scales are used for the two groups of
plots, and as such it seems natural that a good match at the dominating scale might be
accompanied with a more messy situation at the other scale.

It seems natural to conclude that the selected apARCH(2, 3)-model performs rather well,
which is as expected since it was one of the better models from a testing procedure that
tried out several thousand different variations of the GARCH-type models implemented in
the rugarch-package.

A final comment to fig. F.1: Note the shape seen for the points v = (v1, v2) on the outer
tails of the anti-diagonal, viz. when v1 corresponds to the 10% percentile and v2 to the 90%
percentile (or vice versa). For these points, Co(fmv (ω)) does have a deep trough near ω = 0,
which is rather natural since in a volatile situation it can be the case that a large decrease
is followed by a somewhat larger increase (like a ‘Sucker Rally’ in the stock-market).
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F.3 Nonparametric bootstrapping techniques
This section will first explain why the block bootstrap could be a reasonable resampling
technique for a statistic like the m-truncated estimates of the local Gaussian spectra. It will
then be seen that after all there are some issues with the block bootstrap for the present
case, and that motivates the quest for a slightly modified resampling strategy.

Technical details related to the bootstrap and block bootstrap are collected in ap-
pendix F.3.1, whereas appendix F.3.2 discuss some problems related to edge-effects between
the blocks in the resampled time series. Appendix F.3.3 discuss one potential solution to the
edge-effect issue, and explains why this approach was discarded for the investigation per-
formed in the present paper. Appendix F.3.4 presents the ideas behind the block-of-blocks
bootstrap (where edge-effects does not occur), and it explains why a direct application of
that method might not be an optimal approach when the statistic of interest is computed
by means of an algorithm that contains a kernel function.

Justification for the block bootstrap: First of all, recall from algorithm 2.5(c)

(in the main part) that the m-truncated estimates f̂mv (ω) of the local Gaussian spectral
densities fv(ω), are constructed as follows:

f̂mv (ω) := 1 +
m∑
h=1

λm(h) · ρ̂v̆(h|bh) · e+2πiωh +
m∑
h=1

λm(h) · ρ̂v(h|bh) · e−2πiωh, (F.1)

where the point v̆ = (v2, v1) is the diagonal reflection of v = (v1, v2), and bh is the bandwidth-
vector used for the lag-h pairs (the bh will henceforward be dropped from the notation).

Note that the estimates ρ̂v̆(h) and ρ̂v(h), for h = 1, . . . ,m, and also the m-truncated

estimate f̂mv (ω), all are estimated by a local likelihood approach — and the asymptotic
properties of these estimates were developed in the present paper using the procedure from
Klimko and Nelson [1978], cf. the discussion in appendix B.1.

A statistic obtained from the Klimko-Nelson procedure was explicitly mentioned by
Künsch as an example for which the block bootstrap method would be applicable, cf.
Künsch [1989, Example 2.4, p. 1219-20], and a resampling based on the block bootstrap
was thus initially used for the construction of the pointwise confidence intervals for the
dmbp-example seen in fig. 9.

Comments received during the review-process initiated an investigation of the following
problem: Estimates based on the block bootstrap method can suffer from edge-effect noise
when it is used on smaller sample sizes, cf. the discussion in appendix F.3.2. This motivated
an investigation of possible replacements, that in the end lead to the slightly adjusted
version of the block bootstrap given in appendix F.4, see theorem F.4 on page 75.
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F.3.1 The bootstrap and the block bootstrap
The bootstrap introduced in Efron [1979] use sampling with replacement from an i.i.d.
sample {Xi}

n

i=1
to create a collection of B bootstrapped samples {{X∗i:b}

n

i=1
}B
b=1

, and then
a nonparametric estimator of the variance of a statistic Tn := T (X1, . . . , Xn) can be com-
puted from the estimates in {T ∗n:b}

B

b=1
, where T ∗n:b

:= T (X∗1:b, . . . , X
∗
n:b). The block bootstrap

introduced in Künsch [1989] enables a similar investigation to be performed when the
statistic Tn is computed on a set of observations {Xi}

n

i=1
from a stationary process, and in

this case the resampled sets {X∗i:b}
n

i=1
are created by the following procedure: (1) Create

the set of L-sized blocks of consecutive observations from {Xi}
n

i=1
, i.e. {Yi}

n−(L−1)

i=1
, where

Yi =
(
Xi, . . . , Xi+(L−1)

)
. (2) Sample with replacement dn/Le of these blocks, to obtain a set

{Y ∗i:b}
dn/Le
i=1

. (3) Concatenate the selected blocks to one block of size dn/Le ·L, and truncate
it at length n to obtain the desired resampled version {X∗i:b}

n

i=1
.

Künsch [1989] lists a wide range of different types of statistics that can be based on
{X∗i:b}

n

i=1
, and it is for the purpose of the present paper of particular interest to note that

statistics based on the Klimko-Nelson procedure is specifically mentioned as a case, which
as mentioned above is the case for the estimators in this paper.

F.3.2 Corrupt tuples and edge-effect noise for the block bootstrap
A problematic issue with the block bootstrap is that it will introduce a bit of edge-effect
noise into the estimation procedure. For example, if a time series {Yt}

n

t=1
of length n is

given, then an estimate of ρv(h) will be based on the bivariate set Yh :=
{(
Yt+h, Yt

)}n−h
t=1

of
size n − h. When the block bootstrap is used with some block length L, then there will
be a resampled sequence {Y ∗t }

n

t=1
and the idea is that an estimate of ρv(h) now should be

computed based on the bivariate set Y∗h:L
:=
{(
Y ∗t+h, Y

∗
t

)}n−h
t=1

.
However, the set Y∗h:L will contain corrupt tuples that do not exist in Yh, i.e. the first

and second component of
(
Y ∗t+h, Y

∗
t

)
can belong to different blocks, and this will add a bit

of edge-effect noise into the estimation process. The edge-effect noise is negligible in the
asymptotic situation (very large sample sizes n and large block lengths L), but it can make
an impact when smaller samples are investigated.

For the present paper, it is of particular interest to consider the amount of corrupt
tuples that occur when the block bootstrap is used on the dmbp-data (n = 1974 unique
observations, i.e. no ties). The plots in fig. 9 used the truncation level m = 10 for fmv (ω),
and it is thus natural to focus on the estimation of ρv(h) for h = 1, . . . , 10.
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It is easy to see that the expected number E∗h:L of corrupt tuples in Y∗h:L to a close
approximation14 will be a simple formula of the number of blocks q := dn/Le and the
length r := n− (q − 1) · L of the last block, i.e.

E∗h:L ≈

{
h · (q − 1) h ≤ r ≤ L

h · (q − 2) + r 1 ≤ r < h.
(F.2)

A total of n−h tuples
(
Y ∗t+h, Y

∗
t

)
are included in Y∗h:L, and the expected fraction of corrupt

tuples is thus given by E∗h:L/(n − h). It is enlightening to compute the expected fractions
of corrupt tuples for the dmbp-data for the two block lengths L = 25 and L = 100, and the
results (given as percentages) are listed in table 2.

L \ h 1 2 3 4 5 6 7 8 9 10
25 4.0% 7.9% 11.9% 15.8% 19.8% 23.8% 27.8% 31.7% 35.7% 39.7%

100 1.0% 1.9% 2.9% 3.9% 4.8% 5.8% 6.8% 7.7% 8.7% 9.7%

Table 2: The expected fraction of corrupt tuples when ρv(h) are estimated from block
bootstrap replicates of the dmbp-data (n = 1974), when L ∈ {25, 100} and h ∈ {1, . . . , 10}.

It is evident, based on table 2, that the expected fraction of corrupt tuples can become
rather large when ρv(h) is estimated for high lags h. The problem for estimates of fmv (ω)
is slightly reduced since the estimates ρ̂v(h) are weighted with the lag-window functions

λm(h) when f̂mv (ω) is computed, which implies that the estimates ρ̂v(h) suffering from the
highest levels of edge-effect noise do not contribute that much to the final result.

Table 2 indicates that it could be of interest to find an adjusted resampling technique,
preferably one that completely (or at least partially) removes the corrupt tuples from the
estimation algorithm. Two different approaches that completely avoids the corrupt tuples
are presented in appendices F.3.3 and F.3.4, but there are some issues with these two
methods that make them less interesting to implement.

It is however possible to reduce the number of corrupt tuples by slightly tweaking the
way the block bootstrap algorithm is used when applied to smaller sample sizes. The key
idea is to move the primary focus to the indices of the original sample, and then apply a
simple adjustment that selects the h-lag pairs in a manner that is more in line with the way
these pairs would have been selected if the methods from appendices F.3.3 and F.3.4 had
been used. The technical details are given in appendix F.4, see in particular theorem F.4.

14It is possible that two neighbouring blocks can join perfectly (no edge-effect noise), so the correct
formula for the expected number of corrupt tuples is slightly less than the numbers given in eq. (F.2), but
this level of precision is not needed for the present discussion.
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The corrupt tuples do not disappear with the adjusted resampling strategy from theo-
rem F.4, but the expected fraction of such tuples (for a given combination of sample size
n, block length L and lag h) is significantly lower than those seen in table 2. It can e.g. be
seen from table 3 (page 80) that for the h = 10 case it will be a reduction from 39.7% to
0.11% when L = 25, and a reduction from 9.67% to 0.028% when L = 100.

F.3.3 A ‘natural’ solution to the edge-effect issue?
Obviously, if the aim of the investigation is restricted to ρ̂v(h) for a single value of h, then
it is trivial to completely avoid the problem of corrupt tuples in Y∗h:L. The solution in that
case would simply be to realise Yh as a sample from a bivariate time series, and then apply
the block bootstrap method on Yh instead of the original sample. The situation becomes
a bit more complicated when it is necessary to estimate ρ̂v(h), for h = 1, . . . ,m, since an
approach where each of these estimates are computed from its own Yh might fail to capture
some of the temporal dependency structure from the original sample {Yi}

n

i=1
.

The temporal dependency structure between ρ̂v(h) will be taken care of if the estimation
of {ρv(h)}m

h=1
is based on (the relevant parts of) the (m+1)-tuples in the derived time series

Ym =
{(
Yi+m, . . . , Yi+1, Yi

)}n−m
i=1

, but this approach is slightly wasteful since the estimation
of ρv(h) for an h < m in this case discards the last m − h observations that would have
been used if the estimate had been based on Yh instead. The effect of this wastefulness will
of course not be severe when a large sample is investigated, but it is present.

Moreover, this approach implies that the estimates of ρv(h), for 1 ≤ h ≤ m, will depend
on the selected value m. For a strict regime of reproducibility, like the one implemented
in the R-package localgaussSpec , this implies that everything must be recomputed if
the initial truncation level m1 is changed to m2. The computational cost related to the
estimate of ρv(h) (for a fixed point v and a fixed bandwidth b) is usually not that high, but
a local Gaussian investigation will typically involve a wide range of lags h, many points v,
different values of the bandwidth b, and a huge number of replicates. This implies that the
number of cases to recompute might increase to the tens of thousands, which makes the
‘resampling from Ym seen as an (m+ 1)-variate time series’ approach far from desirable to
implement.

The new estimation algorithm introduced in appendix F.4 are inspired by the resampling
from tuples outlined above, and for the cost of a tiny percentage of edge-effects it will
completely avoid the problematic issues mentioned. In particular: The estimation of the
local Gaussian autocorrelations ρv(h) will use all the available information in Yh, and the
estimated values ρ̂v(h) will be the same regardless of the value of the truncation level m.
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The role of the block length L when resampling from Ym: The discussion in
appendix F.4 will reveal that the block length L plays a different role when the block
bootstrap is used on the (m+ 1)-variate tuples in Ym, since both m and L then contribute
to the capturing of the desired dependency structure. This is different from the situation
seen when the ordinary block bootstrap is used on {Yt}

n

t=1
, since then it only is the block

length L that decides to what extent the temporal dependency structure of the original
sample is preserved in the resampled data {Y ∗t }

n

t=1
. In particular, a too short block length

will simply destroy all of the dependency structure that it is of interest to investigate.
The situation changes when the block bootstrap is used on Ym (regarded as an (m+ 1)-

dimensional time series), since it for some estimators then might be the case that even a
very short block length L can give decent results (in particular for an estimator that focus
solely on the content captured in the (m+ 1)-variate tuples). For example: If L = 1, then
the block bootstrap used on Ym is equivalent to uniform sampling from the tuples in Ym.
For an estimator that does not care about the internal order of the resampled tuples, e.g.
the local likelihood estimator used in this paper, it might then in fact be sufficient to use
such a short block length.

The block length argument L is for this particular situation reduced to a tuning param-
eter that governs the expected number of times the different tuples occur in the resampled
version of Ym. A higher value of the block length L will slightly reduce the fraction of
tuples sampled from the start and the end of Ym, whereas the majority of the tuples will
have a tiny increase in the expected number of occurrences, cf. appendix F.4.3.

The reduction in the expected number of tuples sampled from the end of the time
series can be of interest for the adjusted resampling strategy given in appendix F.4, since
it will induce a corresponding reduction in the expected number of corrupt tuples, which is
desirable since it removes some of the expected edge-effect noise from the estimation. See
the discussion in appendix F.4 for further details.

F.3.4 The block-of-blocks bootstrap
Another tuple-based bootstrapping approach that should be mentioned is the block-of-
blocks bootstrap introduced in Politis and Romano [1992]. This method completely avoids
the edge-effect issue that was mentioned for the block bootstrap, which makes it an inter-
esting alternative to consider.

The key idea in the block-of-blocks bootstrap is that two levels of blocks are created, and
resampling is made from the second level. The first level of blocks are created as follows:
For a strictly stationary and weakly dependent d-variate time series {Xi}

n

i=1
, let Bi,m,L

:=(
X(i−1)L+1, . . . ,X(i−1)L+m

)
. The block Bi,m,L contains m consecutive observations, and it can
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be considered the result of a ‘window’ of width m that is ‘moving’ at lags L at a time.
There are Q = d(n−m)/Le of these blocks, and for each block a statistic Ti,m,L is defined

by a function φm : Rdm → R, i.e. Ti,m,L := φm
(
Bi,m,L

)
. Note that the set

{
Ti,m,L

}Q
i=1

actually
is a sample from a strictly stationary univariate time series (derived from the original time
series through φm), and note that the mean of

{
Ti,m,L

}Q
i=1

, i.e. T n
:= 1

Q

∑Q
i=1 Ti,m,L, gives

an estimate of the true value of the statistic given by the aforementioned function φm. It
is thus of interest to do a block bootstrap on the sample

{
Ti,m,L

}Q
i=1

in order to investigate

the properties of the estimator T n — and this motivates the creation of the second level
of blocks Bj, which are created from

{
Ti,m,L

}Q
i=1

by means of a ‘window’ of width L that is

‘moving’ at lags h at a time: Bj :=
(
T(j−1)h+1,m,L, . . . , T(j−1)h+L,m,L

)
is constructed by taking L

consecutive observations from
{
Ti,m,L

}Q
i=1

, and there are q = d(Q− L)/he of these blocks.
Politis and Romano [1992, p. 1993] explain how sampling with replacement (k times),
followed by a concatenation, can be used to construct resampled sets T ∗1 , . . . , T

∗
kL, and they

give the required theoretical results that connects the mean T
∗

of this sample with the
mean T n — which thus gives the algorithm for the block-of-blocks bootstrapping.

The block-of-blocks bootstrap completely avoids the edge-effect problem that occurs
when the block bootstrap is used, since the statistic of interest (given by the function φm)
are computed on the individual blocks Bi,m,L. This restriction to individual blocks can be
an excellent idea for many statistics of interest, but it is a somewhat questionable approach
for the estimates ρ̂v(h) of the local Gaussian autocorrelations. The reason for this is that
the bandwidth argument b in the kernel function Kb(w − v) must be much larger if the
estimation algorithm is to be used on only a subset of the observations — and the local
structures of interest might then not be detected at all.

It would of course be of interest to implement the block-of-block bootstrap for the
estimates of the local Gaussian spectra if very large samples are encountered, i.e. when
the individual blocks contains several thousand consecutive observations — but for shorter
samples (like the dmbp-example) it seems better to use something else.

F.4 A slightly adjusted resampling algorithm
This section will present a minor adjustment of the ordinary block bootstrap. The adjusted
approach will by construction return the same results as those obtained from the ordinary
block bootstrap when the sample size n and the block length L are large. The situation is
different for smaller sample sizes, since the adjusted approach then will remove the majority
of the corrupt tuples that adds edge-effect noise into the estimation of the local Gaussian
autocorrelations ρv(h).
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Note that this adjusted resampling strategy is designed to take care of statistics that are
constructed from pairs

(
Yt+h, Yt

)
, and it does this by mimicking key features of the optimal

resampling strategy described in appendix F.3.3. In contradistinction to the adjusted
block bootstrap, the ordinary block bootstrap is not restricted to statistics based on pairs(
Yt+h, Yt

)
, nor is it specially designed for such a case.

The block length L plays a different role when the resampling is done on (m + 1)-
tuples, and it can be considered as a tuning parameter that governs the expected number
of times the different tuples will occur in the resampled set, cf. the discussion at the end of
appendix F.3.3. The sensitivity analysis of the block length L in appendix F.5 indicates that
the selection of L should not be a problematic issue when the samples are large enough.

F.4.1 A toy example to illustrate the principle
It will be a bit easier to digest the definitions and the algorithm that are given later on
in this section, if a simple toy-example is investigated first: Consider a situation with a
time series having five unique observations Y1, Y2, Y3, Y4, Y5 and assume that there is an
interest for an estimate based on the four lag-1 tuples in Y1 =

{(
Yt+1, Yt

)}4

t=1
. If a block

bootstrap with block length L = 2 is used, the resampled time series might e.g. look like
Y ∗1 = Y4, Y

∗
2 = Y5, Y

∗
3 = Y3, Y

∗
4 = Y4, Y

∗
5 = Y2, and the corresponding set of lag-1 tuples

would be Y∗1:2 =
{(
Y ∗t+1, Y

∗
t

)}4

t=1
. It is easy to see that Y∗1:2 in this case will contain the two

corrupt tuples (Y3, Y5) and (Y2, Y4), i.e. tuples that are not present in Y1.
The key idea in the adjusted algorithm is to move the focus to the indices of the

original sample, i.e. 1, 2, 3, 4, 5, and then use the block bootstrap to sample from these.
The resampled set of indices for the example above would be 4, 5, 3, 4, 2, and from these it
is possible to construct the cyclically h = 1 shifted set of indices 5, 1, 4, 5, 3. The method
is simply to add the lag h = 1 to all the resampled indices — and to start back on 1 if a
value exceeds n = 5. The four desired lag-1 tuples Y ]1:2 =

{(
Y ]
t+1, Y

]
t

)}4

t=1
are now created

by using the resampled set of indices in the Y ]
t -component, whereas the cyclically h = 1

shifted indices are used for the Y ]
t+h-component. This results in the following four tuples,

Y ]1:2 = {(Y5, Y4) , (Y1, Y5) , (Y4, Y3) , (Y5, Y4)}, and it is easy to see that the only corrupt tuple
in Y ]1:2 is (Y1, Y5). Note: It could in principle now also be added a fifth tuple (Y3, Y2) to Y ]1:2,
but that is not of interest since there are only four tuples in Y1.

The adjusted resampling algorithm is thus quite simple in structure, and it only needs
to be formalised. This is taken care of in definitions F.1 to F.3 and theorem F.4.

It is easy to compute the expected number of corrupt tuples in Y ]h:L for a given com-
bination of sample size n, lag h, and block length L, and this is done in lemma F.5 in
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appendix F.4.4. It can from this easily be seen how much the edge-effect noise is reduced
for estimates based on the dmbp-data, cf. table 3 on page 80.

F.4.2 Three definitions and one algorithm
Definition F.1. For n and i positive integers, and h a non-negative integer, define the
new index M(i, h;n) as follows:

M(i, h;n) := 1 + [(i+ h− 1) mod n] = (i+ h)− n ·
⌊
i+ h− 1

n

⌋
(F.3)

The result ofM(i, h;n) will always be a number in the set {1, . . . , n}, andM(i, 0;n) = i
when i ≤ n.

Definition F.2. For fixed positive integers m and n, with m < n, and any starting index
i ∈ {1, . . . , n}, define the (m+ 1)-tuple M(i;m,n) as follows:

M(i;m,n) := (M(i,m, n), . . . ,M(i, 1, n), i) (F.4)

The result of M(i;m,n) will be referred to as an (m + 1)-variate tuple of indices. It
will have the desirable form (i+m, . . . , i+ 1, i) when i ≤ n − m. The result will be
cyclically shifted when i ∈ {n−m+ 1, . . . , n}, i.e. the indices will in that case have the form
(M(i,m, n), . . . , 1, n, . . . , i). Note that it is trivial to tweak the definition of M(i;m,n),
if only a subset of the resulting indices is required. This is e.g. the case for the indices
needed when estimating ρ̂v(h), where it only is the bivariate pairs (M(i, h, n), i) that it is
of interest to consider.

Definition F.3. For a sample {Yi}
n

i=1
of length n, an integer m < n and any starting index

i ∈ {1, . . . , n}, use the indices from M(i;m,n) to define an (m+1)-variate tuple Y (i;m,n)
as follows:

Y (i;m,n) :=
(
YM(i,m,n), . . . , YM(i,1,n), Yi

)
(F.5)

The resulting tuple will be referred to as ‘desirable’ when i ≤ n − m, whereas it will be
referred to as ‘corrupt’ when i ∈ {n−m+ 1, . . . , n}.

If a starting index i is selected randomly from {1, . . . , n}, then there is a probability of
p = n−m

n
that the tuple Y (i;m,n) will be desirable, and a probability of 1 − p = m

n
that

the tuple will be corrupt.
With these definitions, it is now time to present the adjusted resampling algorithm.
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Algorithm F.4 (Circular index-based block bootstrap for tuples).
Given a sample {Yi}

n

i=1
of length n from a strictly stationary time series, and a statistic Tn

that is given as a function ϕn of the (m + 1)-variate set Ym :=
{(
Yi+m, . . . , Yi+1, Yi

)}n−m
i=1

,
i.e. Tn := ϕn(Ym). For a given block length L, let q be the number dn/Le, and define a
resampled set Y ]m:L, and T ]

n
:= ϕn(Y ]m:L), as follows:

(a) Sample with replacement q numbers n1, . . . , nq from the index set {1, . . . , n− (L− 1)}.
(b) For j ∈ {1, . . . , q}, let I]j:L be the L-sized tuple

(
nj, nj + 1, . . . , nj + L− 1

)
.

(c) Let I]n = (i]1, . . . , i
]
n) be the n-sized tuple that occurs when the q tuples I]1:L, . . . , I]q:L

first are concatenated into one tuple, and then truncated at length n.
(d) Use the first n−m indices from I]n as starting indices, and let Y ]m:L be given by

Y ]m:L
:=
{
Y (i]j;m,n)

}n−m
j=1

. (F.6)

(e) Use the function ϕn to define the estimate T ]
n, i.e. T ]

n
:= ϕn(Y ]m:L).

The index set I]n from theorem F.4(c) is the same set of indices that would occur if
the block bootstrap was used to obtain a resampled version {Y ∗i }

n

i=1
of the original sample

{Yi}
n

i=1
. This implies (assuming reasonable values for L and m) that the majority of the

tuples in Y ]m:L also will be present in Y∗m:L
:=
{(
Y ∗i+m, . . . , Y

∗
i+1, Y

∗
i

)}n−m
i=1

, where the latter is
the one that would have been used to get an estimate T ∗n := ϕn(Y∗m:L) if the ordinary block
bootstrap was used.

All the desirable tuples in Y∗m:L will also be contained in Y ]m:L, and it is easy to see, cf.
similar discussion in appendix F.3.2, that the number of desirable (m+ 1)-variate tuples in
Y∗m:L at least must be (n−m · dn/Le) /(n −m). This fraction converges towards 1, given
reasonable assumptions with regard to how fast L→∞ and m→∞ when n→∞, which
thus implies that the content of Y ]m:L and Y∗m:L in essence coincide when n → ∞ — and
it is thus natural to anticipate that the asymptotic behaviour of the estimates T ]

n and T ∗n
should be quite similar.

As previously mentioned, the block bootstrap is viable for a statistic based on the
Klimko-Nelson procedure, cf. Künsch [1989, Example 2.4, p. 1219-20], and it is thus in
particular applicable when estimating the local Gaussian autocorrelations ρv(h) and the m-
truncated local Gaussian spectra fmv (ω). The previously mentioned overlap between Y ]m:L

and Y∗m:L indicates that the circular index-based block bootstrap for tuples from theorem F.4
also should be a viable alternative for the statistics of interest for the present paper.

F.4.3 The block length L and the expected content of Y ]m:L

The purpose of the adjusted resampling strategy is to provide the required data Y ]m:L, that
can replace the (m+ 1)-variate tuples in Ym when the pointwise confidence intervals are to
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be estimated for the original estimate of fmv (ω). A sensitivity analysis of the block length
L is included in appendix F.5, and it is thus of interest to add some comments about the
effect the block length L has on the expected content of Y ]m:L.

It is with regard to this discussion of interest to point out that the temporal connection
between the (m + 1)-variate tuples in Ym and Y ]m:L does not affect the resulting estimates
of fmv (ω). The reason for this is that the algorithm that estimates the local Gaussian
autocorrelations ρv(h) only cares about the points in the plane that are defined by the
bivariate lag-h tuples, that again are derived from these (m + 1)-tuples. To clarify: The
temporal aspect is pivotal with regard to the construction of the (m+ 1)-variate tuples in
Y ]m:L, but the order does not matter anymore when these tuples first have been constructed.

The main detail of interest is thus to figure out the expected number of times the
different tuples will occur in Y ]m:L.

The first detail to note is that the content of Ym and Y ]m:L correspond to starting indices
given by (n − m)-tuples from the index-set {1, . . . , n}. For Ym it is simply the tuple
(1, . . . , n−m), whereas it for Y ]m:L is the n − m first indices from the tuple I]n that was
introduced in theorem F.4(c).

A brief inspection of items (a) and (b) of theorem F.4 reveals that I]n is built from
q = dn/Le tuples I]j:L =

(
nj, nj + 1, . . . , nj + L− 1

)
, where the index nj has been sampled

uniformly from the index-set {1, . . . , n− (L− 1)}. The length of the q − 1 first of these
tuples are L, whereas the last tuple might be shorter since it has to be truncated to the
length r = n− (q − 1) · L in order for I]n to have the length n.

The expected content of Y ]m:L is thus related to the expected number of times different
starting indices k will occur in I]n, which again is related to the probability that the building
blocks I]j:L contains k. The situation for the q−1 first of these building blocks is the simplest.
The basic observation is that the event ‘I]j:L contains k’ is equivalent to ‘nj ≤ k ≤ nj+L−1’,
which can be rewritten as ‘k − (L − 1) ≤ nj ≤ k’. The number nj must lie in the index
set {1, . . . , n− (L− 1)}, so this latter event is equivalent to ‘1 ∨ (k − (L − 1)) ≤ nj ≤
k ∧ (n− (L− 1))’. This implies that the probability that the L-length tuple I]j:L contains
k can be written out as

P
(
I]j:L contains k, for j = 1, . . . , q − 1

)
=


k

n−(L−1)
1 ≤ k < L

L
n−(L−1)

L ≤ k < n− L
n−(k−1)
n−(L−1)

n− L ≤ k ≤ n.

(F.7)
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The argument for the last block is similar, but the truncation to length r implies that it
can not contain any indices above the value n− (L− r).

P
(
I]q:L contains k

)
=


k

n−(L−1)
1 ≤ k < r

r
n−(L−1)

r ≤ k < n− L
n−(L−r)−(k−1)

n−(L−1)
n− L ≤ k ≤ n− (L− r)

0 n− (L− r) < k ≤ n.

(F.8)

The expected number of occurrences of an index k in the index set I]n can be found
by simply summing the expected number of occurrences in the q building blocks I]j:L, and
this is easy to find from eqs. (F.7) and (F.8). For the purpose of the sensitivity analysis
in appendix F.5, it is sufficient to observe that the expected number of occurrences of an
index k that lies in the set {L, . . . , n− L} is given by (q − 1) · L

n−(L−1)
+ 1 · r

n−(L−1)
, and it

follows from r = n− (q − 1) · L that this is the number n
n−(L−1)

.
This shows how the block length L affects the expected number of times different

indices k occurs in I]n, which as mentioned above reveals the expected number of times the
corresponding (m + 1) tuple will occur in Y ]m:L. It is clear from the fraction n

n−(L−1)
that

it for a large enough n will be a rather negligible effect on these expectations when L is
modified from e.g. 10 to 69 (which is the case in appendix F.5).

F.4.4 Edge-effect noise for the adjusted resampling algorithm
This section will investigate the edge-effect noise that occurs when the adjusted resampling
algorithm is applied, and this will in appendix F.4.5 be used to check that the fraction of
corrupt tuples becomes minuscule when this algorithm is used on the dmbp-data (n = 1974
unique observations, i.e. no ties).

Lemma F.5. Given a sample {Yi}
n

i=1
from a continuous-valued time series, and the corre-

sponding derived time series of (m+ 1)-tuples Ym :=
{(
Yi+m, . . . , Yi+1, Yi

)}n−m
i=1

. For a given
block length L > m, let q := dn/Le be the number of blocks used in the construction of the
resampled version Y ]m:L (introduced in theorem F.4), and let r := n−L · (q−1) be the length
of the last block. Let E ]m:L denote the expected number of corrupt tuples in Y ]m:L, i.e. tuples
not occurring in Ym. The number E ]m:L is then given by the following formula:

E ]m:L =

{
1
2
(q − 1) m(m+1)

n−(L−1)
m ≤ r ≤ L

1
2
(q − 2) m(m+1)

n−(L−1)
+ 1

2
r(r+1)
n−(L−1)

1 ≤ r < m
(F.9)
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Proof. The continuity-requirement implies that there are no ties (as is the case for the
dmbp-data). Further, there is no need to adjust the result for the possibility that a corrupt
index-set (of length m+ 1) can concatenate observations from the two ends of {Yi}

n

i=1
into

a sequence that already exists as a sub-sequence of {Yi}
n

i=1
. To clarify: This requirement

ensures e.g. that no proper tuple
(
Yi+1, Yi

)
can be equal to (Y1, Yn), so the formulas in

eq. (F.9) are thus exact and not only approximate.
The blocks used in the construction of Y ]m:L are uniquely identified by the starting

indices given in I]j:L =
(
nj, nj + 1, . . . , nj + (L− 1)

)
, where the initial numbers n1, . . . , nq

are sampled uniformly from {1, . . . , n− (L− 1)}. This implies that E ]m:L can be expressed
as the sum of the expected number of corrupt tuples in the individual blocks.

It was mentioned in definition F.3 that zero corrupt tuples would occur for a starting
index in {n− (m− 1), . . . , n}, and it follows from this that a block will contain 0 corrupt
tuples when nj ≤ n −m − (L − 1). This implies that the probability for 0 corrupt tuples

in a block is given by n−m−(L−1)
n−(L−1)

. It is easy to check that a starting tuple given by nj =

n − (m − k) − (L − 1) for some k ∈ {1, . . . ,m} must correspond to a block that contains
k corrupt tuples, and each of these outcomes have the same probability 1

n−(L−1)
. It follows

from this that the expected number of corrupt tuples in a block is given by 1
2
m(m+1)
n−(L−1)

.
The expected number of corrupt tuples for the individual blocks can now be used to

compute E ]m:L, i.e. the expected number of corrupt tuples in Y ]m:L. Note that only the first
n −m indices from I]n are used in the computation of Y ]m:L, cf. theorem F.4(d), and that
implies that any potential corrupt tuples from the last block will be discarded due to this
truncation. The length r of the last block will thus influence whether or not some potential
corrupt tuples from the second to last block also might be removed in this truncation, and
the formula for the expected number of corrupt tuples in Y ]m:L must thus take the value of
r into account. By construction, r will be a number in the set {1, . . . , L}.

The case where r ≥ m is the simplest, since the truncation to length n−m in this case
does not affect the second to last block. The expected number of corrupt tuples in Y ]m:L is
thus simply the sum of the expected number of corrupt tuples from the q − 1 first blocks,
which gives the result E ]m:L = 1

2
(q − 1) m(m+1)

n−(L−1)
when r ≥ m.

The situation for the case r < m is slightly more complicated. The effect of truncation
to length n−m will in this case completely eliminate the last block of I]n, and the second to
last block will have its last (m− r) indices removed. This implies that the highest possible
number of corrupt tuples from block number q − 1 is reduced from m to r, which implies
that the expected number of corrupt tuples from this block becomes 1

2
r(r+1)
n−(L−1)

. The stated
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result follows when this expected number is added together with the contribution from the
q − 2 first blocks, i.e. E ]m:L = 1

2
(q − 2) m(m+1)

n−(L−1)
+ 1

2
r(r+1)
n−(L−1)

when r < m.

The result in lemma F.5 is stated for m+1 tuples of the form
(
Yi+m, . . . , Yi+1, Yi

)
, but it

is easy to see that the expected number of corrupt tuples remains the same if it is restated
for bivariate lag-m tuples

(
Yi+m, Yi

)
. This implies that the formula in eq. (F.9) can be used

for the dmbp-data investigation given in the next section.
The continuity requirement in lemma F.5 was included in order to avoid additional

technicalities in the proof, but the resulting expression for the expected number of corrupt
tuples would for most cases remain the same even if some observations were repeated.

A minor warning should be added with regard to the corrupt tuples that actually
do occur when the resampling strategy from theorem F.4 is used: The way the tuples(
Y ]
t+h, Y

]
t

)
is constructed implies that the corrupt tuples always will occur at the exact

same positions. For example, the lag-1 corrupt tuple will always be the tuple (Y1, Yn), the
lag-2 corrupt tuples will always be from the set

{(
Y1, Yn−1

)
, (Y2, Yn)

}
, and so on. In a worst

case scenario, some of these tuples might be very close to the point v for which the local
Gaussian autocorrelation ρv(h) is to be computed (this can easily be checked by plotting
the relevant tuples). Given the low expected fraction of corrupt tuples, cf. table 3 in the
next section, it seems likely that this effect should not turn out to be a too big problem.

F.4.5 The dmbp-data and corrupt tuples for the adjusted resampling algorithm
It was seen in appendix F.3.2 that the ordinary block bootstrap could produce a high
fraction of corrupt tuples when it was used on smaller samples. The dmbp-data (n = 1974)
was used as a test case, and table 2 on page 69 listed the approximate fractions of corrupt
tuples that was expected to occur in Y∗h:L =

{(
Y ∗t+h, Y

∗
t

)}n−h
t=1

when h ∈ {1, . . . , 10} and
L = {25, 100}. It is now of interest to create a similar table for the circular index-based block
bootstrap for tuples from theorem F.4, in order to see to what extent the adjusted resampling
strategy manages to reduce the expected number of corrupt tuples Y ]h:L =

{(
Y ]
t+h, Y

]
t

)}n−h
t=1

.
The counting formula from eq. (F.9) can, as mentioned after the proof of lemma F.5,

be used for the present case of interest too. The length of the last blocks will for the two
cases L = 25 and L = 100 respectively be 24 and 74, and this implies (since both of them

are larger than h = 10), that it is the version 1
2
(q − 1) h(h+1)

n−(L−1)
that should be used to find

the expected number of corrupt tuples in Y ]h:L when h ∈ {1, . . . , 10}. The data in table 2
was given as fractions of the total number of tuples n − h, and table 3 has thus used the
same adjustment.

A comparison with table 2, with focus on the entries in the h = 10 column, shows that
the numbers have been reduced from 39.7% to 0.112% when L = 25, and it has been a
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L \ h 1 2 3 4 5 6 7 8 9 10
25 0.002% 0.006% 0.012% 0.020% 0.030% 0.043% 0.057% 0.073% 0.092% 0.112%

100 0.001% 0.002% 0.003% 0.005% 0.008% 0.011% 0.014% 0.019% 0.023% 0.028%

Table 3: The expected amount of corrupt tuples when ρv(h) are estimated for the dmbp-data
by the circular index-based block bootstrap for tuples, cf. theorem F.4.

reduction from 9.7% to 0.028% when L = 100. This implies that the edge-effect noise for
the adjusted resampling strategy can be considered rather negligible, and it could also be
the case that estimates based on Y ]h:L might be less sensitive to changes in the block length
L, cf. the sensitivity analysis in appendix F.5.

The relation between the entries in tables 2 and 3 can be found by comparing the
counting formulas for the expected number of corrupt tuples in Y∗h:L and Y ]h:L, cf. respectively
eqs. (F.2) and (F.9), and this results in15

E ]h:L

E∗h:L

≈

{
1
2

h+1
n−(L−1)

h ≤ r ≤ L
1
2

(q−2)·h·(h+1)+r·(r+1)
(n−(L−1))·(h·(q−2)+r)

1 ≤ r < h.
(F.10)

It follows from eq. (F.10) that the L = 25 and h = 10 entry in table 3 is 0.282% of the
corresponding value in table 2 — and it can similarly be seen that the same relation for
the entry L = 100 and h = 10 is given by 0.293%.

F.5 Sensitivity analysis: The block length L
The block length sensitivity for the adjusted resampling strategy from theorem F.4 will
now be investigated — and the computations will, as for the other tuning parameters
investigated in appendix D, be based on the dmbp-data.

The tool for this investigation will be the distance function D that was defined in
appendix D.1, i.e. the distance function inherited from the complex Hilbert space of Fourier
series on the interval

[
−1

2
, 1

2

]
. This distance function does not reveal anything about the

frequency-component of the cases under investigation, so it is also necessary to include a
plot that focus on that aspect for a few of the block lengths L.

The block length L takes integer values, and one possible way to gain some insight into
the sensitivity of this argument is to use a sequence of box-plots to show the status for
different values of L. This approach has been used in fig. F.2, where the panel at the top
contains the results as L increases in steps of 1 from L = 10 to L = 69.

15The result is only approximate since eq. (F.2) did not adjust for the possibility that neighbouring
blocks in some rare cases could join perfectly (no edge-effect noise), but the actual fraction should be very
close to the one given by the expressions in eq. (F.10).
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Figure F.2: Distance based box-plots for the investigation of the sensitivity of the block
length L for the adjusted resampling strategy from theorem F.4. The numbers in the two
bottom rows show q = dn/Le and r = n − (q − 1) · L, i.e. the number of blocks and the
length of the last block.

The panel at the top of fig. F.2: A box-plot for the D
(
f 10
v (ω)[L]

)
-values (based on

R = 100 replicates) is given for each block length L. A horizontal red dashed line has
been added that shows the D(f 10

v (ω))-value for the original sample. It can be seen that the
medians of the box-plots tend to be slightly larger than the horizontal line that corresponds
to the value based on the original sample, they seem to approach the line as L increases,
but these medians are based on R = 100 replicates — and another realisation might thus
look slightly different. It does not seem to be any pattern here with regard to how these
box-plots changes when L increases.

The panel at the bottom of fig. F.2: These box-plots shows the percent-wise
changes in the distances when the block length goes from L to L + 1, and everything else
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is kept identical, i.e. 100 ·
(
D
(
f 10
v (ω)[L+1]

)
/D
(
f 10
v (ω)[L]

)
− 1
)
. This is possible to do since

the reproducibility setup enables a tracking for each individual realisation.
A horizontal red dashed line has been added at 0, and it is clear that the median-part

of these box-plots are quite close to this horizontal line. It can also be observed that some
of these box-plots are more compact than the other ones, and a simple investigation of the
numbers given at the bottom of the plots reveals that this phenomenon occurs when an
increase from L to L + 1 does not reduce the number of blocks that are needed, i.e. they
occur when dn/Le = dn/(L+ 1)e.

For the individual bootstrapped time series, this indicates that the changes are minimal
when the number of blocks remains the same — whereas the changes are much larger when
the increase of L triggers a reduction in the number of blocks. However, as is evident
from an inspection of the panel at the top of fig. F.2, this effect is only on the level of the
individual replicates, and it is averaged away when a collection of replicates is considered.

Note that the effect noticed in the bottom panel of fig. F.2 also is present for the global
spectral densities (based on these bootstrapped samples), so this phenomenon is thus not
an artefact of the way the local Gaussian spectral densities are estimated.

The frequency-component: Figure F.2 indicates that the block length sensitivity,
as measured by D(fmv (ω)), for the adjusted resampling strategy from theorem F.4 is rather
small. But does this imply that these block lengths should be considered equally good or
equally bad? That can not be concluded from fig. F.2 alone, and it is thus necessary to also
consider a plot that takes the frequency-dimension into account, as is done in fig. F.3 for
the four block lengths L ∈ {10, 25, 50, 69}.

It is clear from fig. F.3 that the differences between these estimates are rather small,
and it is necessary to look closely in order to see that the pointwise confidence intervals are
slightly narrower near ω = 0 for the two cases L = 25 and L = 50. Moreover, the situation
with minimal differences between the estimates remains unchanged even if the number of
lags are increased to e.g. h = 50.

This might at first sight be somewhat surprising (and a source of concern), since it
seems natural to assume that the block length L should have a larger impact on the re-
sults. However, this result is actually quite natural to anticipate when the discussion
from appendix F.4.3 is taken into account. It was there noted that the algorithm that
estimates fmv (ω) does not use the temporal connection between the (m + 1)-tuples in
Y ]h:L =

{(
Y ]
t+m, . . . , Y

]
t+1, Y

]
t

)}n−m
t=1

, and that the important detail thus should be the ex-
pected number of times the different tuples would occur in Y ]h:L.

It was seen in appendix F.4.3 that the majority of the tuples were expected to occur
n

n−(L−1)
times, and this value hardly changes when n = 1974 and L goes from 10 to 69.
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Figure F.3: Four different block lengths L (from those investigated in fig. F.2) have here
been used in the resampling strategy given in theorem F.4. The values of L are 10, 25, 50
and 69, and this information is plotted at the lower right corner of the plots.

There are of course also differences with regard to the expected number of corrupt tuples for
different block-lengths, cf. eq. (F.9) in lemma F.5, but the data in table 3 clearly indicates
that this effect also can be considered minuscule.

The effect of different block lengths L will of course be larger if this resampling strategy
is used on a short sample, but for such samples it might not really be natural to compute
the local Gaussian spectrum in the first place (since the bandwidth b in such cases must
be large, and this tends to blot out local differences in the spectrum).

An additional example: The preceding discussion about the anticipated outcome is
completely general in nature, but one might still wonder if the results in figs. F.2 and F.3
would have looked significantly differently if another case than the dmpb-data had been used
for the investigation. This is easy to investigate since the relevant scripts trivially can be
adjusted to investigate other cases too, like e.g. a single realisation from the local trigono-
metric time series, cf. figs. 7 and 8 in section 3.3.2 and the discussion in appendix G.4.

The result for the distance based box-plots for this new investigation was (as expected)
very similar to the result seen in fig. F.2. The analogue of fig. F.3 is shown in fig. F.4,
and it seems in fact to be the case that the differences between the pointwise confidence
intervals in this case is even smaller than those observed in fig. F.3.

Conclusion: The preceding discussion (based on the dmbp-data and a local trigono-
metric example) indicates that the block length L does not seem to have a major impact
on the estimates and pointwise confidence intervals obtained from the adjusted resampling
strategy given in theorem F.4. This simplifies the task described in section 3.4, i.e. to figure
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Figure F.4: A plot similar to fig. F.4, that shows that the adjusted resampling strategy
from theorem F.4 also works when used on a single realisation from the local trigonometric
time series used in figs. 7 and 8 in section 3.3.2, see appendix G.4 for details.

out if it for a given sample of size n seems reasonable to claim that an observed difference
between estimates of fm(ω) and fmv (ω) is large enough to conclude that the sample at hand
do have a non-Gaussian dependency structure.

For other cases, it seems natural to recommend an approach where different block
lengths L are tested (like seen in figs. F.3 and F.4), in order to safeguard against the
possibility that the present examples for some reason both should be exceptional cases.

Reproducibility: The scripts needed for the reproduction of the plots in this section
are included in the R-package localgaussSpec (see appendix G for further details), and
the interested reader can there easily adjust the range of the block lengths to be used. It is
also possible to adjust all the other tuning parameters needed for the estimation of fmv (ω),
and it is even possible to perform the computations with the ordinary block bootstrap if
so should be desired.

F.6 What about the ordinary block bootstrap?
It was originally the ordinary block bootstrap that was used as the resampling strategy in
this paper, and it could be of interest to include a few comments related to this method.

First of all, note that there are data-driven methods for the selection of the block length
to be used with the block bootstrap, see e.g. Bühlmann and Künsch [1999]; Lahiri et al.
[2007]; Nordman and Lahiri [2014]; Patton et al. [2009]; Politis and Romano [1994]; Politis
and White [2004] — but these methods do not produce good results when used upon data
with a nonlinear structure and a flat (ordinary) spectrum.
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The ‘problem’ is easily detected from an inspection of the selection algorithms in sections
3.2 and 3.3 in Politis and White [2004], as they all have a factor G :=

∑∞
h=−∞ |h|R(h) where

R(h) is the lag h autocovariance of the series under investigation. For a time series whose
ordinary spectrum is flat, the only nonzero R(h) occurs when h = 0, and the sum G thus
becomes zero in this case. This implies that the data-driven block length algorithms (both
for the stationary and for the circular bootstrap) considers a very short block length to
be suitable when bootstrapping the dmbp data — and that would obviously destroy all
nonlinear structures in the data.

To the best of the authors’ knowledge, it does not exist any adjustments of the al-
gorithms used for block length selection that is suited for a situation with a flat global
spectrum, and the block length L thus had to be selected manually. A sensitivity analysis
of the block length argument for the ordinary block bootstrap showed something similar
to fig. F.2 when L was large enough, e.g. the range from L = 75 to L = 135. It was
mentioned at the end of section 3.4.1 in the main part that a block length of L = 100 had
been used in an earlier draft of this paper (selected due to a visual inspection of the ρ̂v(h)-
values seen in fig. 4, and after the testing of a few alternatives), and it can be noted that
the pointwise confidence intervals then looked very similar to those based on the adjusted
block bootstrap, cf. fig. 9.

The results for shorter block lengths could on the other hand be rather bad, but that
is hardly surprising based on the observations in table 2 (in appendix F.3.2) about the
fractions of corrupt tuples that occurs when the block bootstrap is used on a short sample.

In retrospect it is clear that the optimal resampling strategy would have been to use the
block bootstrap on the derived (m + 1)-variate time series

{(
Yt+m, . . . , Yt+1, Yt

)}n−m
t=1

, since
that would have eliminated all of the edge-effect noise — see appendix F.3.3 for the details,
and an argument in favour of using the adjustment from theorem F.4 instead. Note that a
resampling of the derived (m+ 1)-variate time series will have the same properties as those
discussed in appendix F.4.3, and the sensitivity of the block-length argument L should in
this case be similar to those seen in figs. F.2 and F.3 for the adjusted resampling strategy.

The ordinary block bootstrap (working on {Yt}
n

t=1
) is available as a resampling strat-

egy in the R-package localgaussSpec, but the default for this task is the adjusted block
bootstrap from theorem F.4.

Appendix G: Scripts and details related to the examples
The reproducibility of all the examples in this paper can be done by the scripts contained
in the R-package localgaussSpec, and appendix G.1 explains how the interested reader
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can extract these scripts. Additional details about the GARCH(1, 1)-example seen in fig. 1,
and the apARCH(2, 3)-example seen in fig. 11, are given in appendices G.2 and G.3.

Appendix G.4 investigates the local trigonometric example seen in figs. 7 and 8. It starts
with a theoretical investigation of the general construction of which the local trigonometric
example is a particular realisation, and it then gives the heuristic arguments that enables
this example to be used for the sanity testing of the implemented estimation algorithm.

The last part of appendix G.4 verifies that it for a large sample is possible to detect an
elusive component that only occurs with probability 0.05, and it ends with some comments
related to issues that can occur (under specific circumstances) when the local Gaussian
machinery is used on a time series whose global spectrum does not look like white noise.

G.1 The scripts in the R-package localgaussSpec
All the examples in this paper (and the related multivariate paper Jordanger and Tjøstheim
[2017] ) can be reproduced by the scripts in the R-package localgaussSpec. This R-package
can be installed by using ‘remotes::install github("LAJordanger/localgaussSpec")’.
The simplest way to extract the scripts from the internal storage of this R-package is to use
the R-function ‘LG extract scripts()’ after the package has been installed.

These scripts can either be used as they are (reproduction of the examples in this paper),
or they can be used as templates for similar investigations of other samples/models that
the user would like to investigate. In the latter case, see appendix E for some comments
related to the selection of the tuning parameters of the estimation algorithm.

The reproduction of the figures requires two different scripts. The first scripts contain
the code needed for the estimation of the local Gaussian autocorrelations ρv(h) for all the
specified combinations of the tuning parameters, whereas the second scripts contain the
code that creates the particular visualisations seen in the figures in this paper. Note that it
is sufficient to use the first type of scripts in order to use the integrated shiny-application
that enables an easy interactive investigation of the resulting estimates. The second type
of scripts is first needed when one wants to put many figures into one larger grid.

G.2 The GARCH(1, 1)-example in fig. 1
A GARCH(1, 1) example was in fig. 1 used to show that the local Gaussian spectral density
could detect dependency structures that the ordinary spectral density did not detect.
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The following description of the standard GARCH model, introduced in Bollerslev
[1986], is taken from the vignette for the rugarch-package Ghalanos [2020b],

σ2

t =

(
ω +

m∑
j=1

ζjvjt

)
+

q∑
i=1

αjε
2

t−j +

p∑
i=1

βjσ
2

t−j, (G.1)

with σ2
t denoting the conditional variance, ω the intercept and ε2

t the residuals from the
mean filtration process. The GARCH order is defined by (q, p) (ARCH, GARCH), and
it can also be m external regressors vjm which are passed pre-lagged. Consult Ghalanos
[2020a, sec. 2.2.1] for further details.

The R code below specifies the parameters for the GARCH(1, 1) model in fig. 1.

library(rugarch)

.spec <- ugarchspec(

variance.model=list(model="sGARCH",

garchOrder=c(1,1)),

mean.model=list(armaOrder=c(0,0),

include.mean=TRUE),

distribution.model="norm",

fixed.pars=list(mu=0.001,

omega=0.00001,

alpha1=0.02,

beta1=0.95))

G.3 The apARCH(2, 3)-example in fig. 11
The apARCH(2,3)-example seen in fig. 11 (see also figs. D.1 and D.2) had coefficients that
were fitted to the dmbp-data by the help of the rugarch-package Ghalanos [2020b], and
this particular model was selected after a testing procedure that tried out several thousand
different variations of the GARCH-type models implemented in the rugarch-package.

The apARCH(p, q) model (for observations εt) was in Ding et al. [1993] introduced as

εt = stet, et ∼ N(0, 1) , (G.2a)

sδt = α0 +

p∑
i=1

αi
(∣∣εt−i∣∣− γiεt−i)δ +

q∑
j=1

βjs
δ

t−i, (G.2b)

where α0 > 0, δ ≥ 0, αi ≥ 0 and −1 < γi < 1 for i = 1 . . . , p, and βj ≥ 0 for j = 1 . . . , q.
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The description of this model in the rugarch-package, cf. Ghalanos [2020a, sec. 2.2.5],

is slightly different: The constant α0 is there replaced with
(
ω +

∑m
j=1 ζjvjt

)
, which is the

same term that was used in eq. (G.1), see the previous section for details.

G.4 The local trigonometric example in figs. 7 and 8
This section will discuss some topics related to the local trigonometric example, whose
local Gaussian spectral density was investigated in figs. 7 and 8 of section 3.3.2. A few
basic results related to the general construction are given in appendix G.4.1, whereas
appendix G.4.2 presents the arguments that enabled this example to be used for the sanity
testing of the implemented estimation algorithm.

It was noted in section 3.3.2 that the first component of the local trigonometric example
could not be detected in the short sample investigated in that section, but it is possible to
detected it when the sample-size is large enough, cf. fig. G.3 in appendix G.4.3.

Finally, appendix G.4.4 highlights issues that can occur (under specific circumstances)
when this machinery is used on a time series whose global spectrum does not look like white
noise, as seen in fig. G.4 where the m-truncated local Gaussian spectrum has been estimated
for samples from a deterministic function perturbed by very low random fluctuations.

G.4.1 Some properties of the general construction
Recall that the local trigonometric example is a particular case of a general construction,
in which a new time series {Yt}t∈Z is constructed by the following scheme:

1. Select r time series {Ci(t)}
r

i=1
.

2. Select a random variable I with values in the set {1, . . . , r}, and use this to sample a
collection of indices {It}t∈Z (i.e. for each t an independent realisation of I is taken).
Let pi := P(Ii = i) denote the probabilities for the different outcomes.

3. Define Yt by means of the equation

Yt :=
r∑
i=1

1{It = i} · Ci(t). (G.3)

The basic properties of {Yt}t∈Z can be expressed relatively those of {Ci(t)}
r

i=1
, as seen

in the following result.

Lemma G.1. ½ With {Yt}t∈Z as defined above, it follows that:
(a) E[Yt] =

∑r
i=1 pi · E[Ci(t)]

(b) E
[
Yt+h · Yt

]
=

{∑r
i=1

∑r
j=1 pi · pj · E[Ci(t+ h) · Ci(t)] h 6= 0∑r

i=1 pi · E[Ci(t)
2] h = 0
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(c) Cov
(
Yt+h, Yt

)
=

{∑r
i=1

∑r
j=1 pi · pj · Cov

(
Ci(t+ h), Cj(t)

)
h 6= 0∑r

i=1 pi · E[Ci(t)
2]− (

∑r
i=1 pi · E[Ci(t)])

2
h = 0

(d) The additional assumption that Ci(t) and Cj(t) are independent when i 6= j, simplifies
the h 6= 0 case to: Cov

(
Yt+h, Yt

)
=
∑r

i=1 p
2
i · Cov(Ci(t+ h), Ci(t)).

Proof. The random variable It that produces the set of indices is independent of Ci(t), and
item (a) thus follows without further ado. For the h 6= 0 case of item (b) it is sufficient to
note that It+h and It then are independent, and it follows that E

[
1
{
It+h = i

}
· 1{It = j}

]
=

E
[
1
{
It+h = i

}]
· E[1{It = j}] = P

(
It+h = i

)
· P(It = j) = pi · pj. For the h = 0 case of

item (b) it is enough to note that 1{It = i}·1{It = j} = 0 when i 6= j, which together with
1{It = i} ·1{It = i} = 1{It = i} gives the required expression. The statements in items (c)
and (d) follows trivially from those in items (a) and (b).

The key idea in the local trigonometric example is that the r time series Ci(t) all should
be ‘cosines with some noise’, since this implies (given a reasonable parameter configuration)
that it should be possible to present a decent guesstimate with regard to the expected shape
of the m-truncated local Gaussian spectral density (for some carefully selected tuning
parameters of the estimation algorithm). The global spectrum in this case will not be
flat, but it will for low truncation levels be ‘flat enough’ for the purpose of showing that
the global spectrum does not detect the underlying frequencies whereas the local Gaussian
spectral density function can do that task.

The following result reiterates the Ci(t)-definition used in the local trigonometric ex-
ample, and it presents some basic properties related to this definition.

Lemma G.2. Let Ci(t) = Li +Ai(t) · cos (2παit+ ϕi), be defined in the following manner:
Li and αi are constants that respectively defines the horizontal base-line and the frequency.
The amplitude Ai(t) are for each t uniformly distributed on an interval [ai, bi], and Ai(t+h)
and Ai(t) are independent when h 6= 0. The phase-adjustment ϕi are uniformly drawn (one
time for each realisation) from the interval between 0 and 2π, and it is moreover assumed
that the stochastic processes ϕi and Ai(t) are independent of each other.

(a) E[Ci(t)] = Li

(b) E[Ci(t+ h) · Ci(t)] =

{
L2
i + π

4
· (a2

i + 2aibi + b2
i ) · cos(2παi · h) h 6= 0

L2
i + π

3
· (a2

i + aibi + b2
i ) h = 0

(c) Cov(Ci(t+ h), Ci(t)) =

{
π
4
· (a2

i + 2aibi + b2
i ) · cos(2παi · h) h 6= 0

π
3
· (a2

i + aibi + b2
i ) h = 0
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Proof. This is a consequence of the independence of the two stochastic processes Ai(t)
and ϕi, and the basic observations: E[Ai(t)] = 1

2
· (ai + bi), E[A2

i (t)] = 1
3
· (a2

i + aibi + b2
i ),

E[cos(2παit+ ϕi)] = 0 and E[cos(2παi(t+ h) + ϕi) · cos(2παit+ ϕi)] = π · cos(2παi · h).
The proof of item (a) is trivial. For item (b) it suffices to observe that the h 6= 0 case
contains E[Ai(t)]

2 as a factor, whereas the h = 0 case contains E[Ai(t)
2] as a factor.

Item (c) follows from items (a) and (b).

Finally, the local trigonometric example is obtained by using r time series Ci(t), of the
form given in lemma G.2, in the construction of the time series Yt, i.e.

Yt =
r∑
i=1

1{It = i} · (Li + Ai(t) · cos (2παit+ ϕi)) , (G.4)

where it furthermore is assumed that the i-indexed stochastic variables Ai(t) and ϕi are
independent of the j-indexed variants when i 6= j. It now follows from lemmas G.1 and G.2
that the h 6= 0 correlation of the time series Yt in eq. (G.4) is given by

ρY (h) =
π
4
·
∑r

i=1 p
2
i · (a2

i + 2aibi + b2
i ) · cos(2παi · h)∑r

i=1 pi ·
[
L2
i + π

3
· (a2

i + aibi + b2
i )
]
− (
∑r

i=1 pi · Li)
2 . (G.5)

An inspection of eq. (G.5) reveals that it is fairly easy to find a parameter configuration
for which the numerator is rather small compared to the denominator. This is of course not
white noise, but the key idea is that it is close enough to white noise to make it impossible
to deduce anything about the underlying frequencies αi based on the ordinary spectrum.

G.4.2 The heuristic argument that motivates the local trigonometric example
This section starts with an outline that shows how it is possible to select the parameters of
the local trigonometric time series from eq. (G.4) in such a manner that some specified key
features should be present after the pseudo-normalisation of a sample. It is with regard to
this also necessary to take into account the tuning-parameters of the estimation algorithm
(i.e. the bandwidth b), since these must be adjusted relative to the size n of the sample.
The last part of this section considers the example used in section 3.3.2, and the discussion
related to fig. G.1 will pinpoint why this hand-waving approach actually works.

The heuristic argument: The amplitude Ai(t) is uniformly distributed on [ai, bi],
and it thus follows that all the observations from the Ci component lies in the interval
Ii = [Li − bi, Li + bi]. The first key requirement is that the r intervals Ii should have a
minimal amount of overlap, and it is moreover for simplicity natural to require that the
base-lines are ordered as follows L1 < L2 < · · · < Lr.
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The base lines Li do occur in the denominator of ρY (h), cf. eq. (G.5), but for the
purpose of the local Gaussian spectral density investigation it is the corresponding values
after the pseudo-normalisation that is of interest. This implies that the values of Li, ai and
bi are somewhat irrelevant, since minor modifications of them will return exactly the same
pseudo-normalised sample.

The key ingredient with regard to the pseudo-normalised version of the sampled values
that lies in a given interval Ii, is the the specification of the probability pi := P(It = i).
Assuming that the intervals Ii does not overlap, it is clear that it for a sample of size n will
be natural to assume that approximately pi ·n of the observations should lie in the interval
Ii — and the symmetry of the cosine around its baseline then implies that approximately
one half of these pi · n observations should lie below Li and the other half above it.

It follows from this that the base-line L1 of the C1(t) component should occur near the
v1

:= 1
2
p1 percentile of the sample, the ‘border-line’ between C1(t) and C2(t) near the p1

percentile, the base-line L2 of the C2(t) near the v2
:=
(
p1 + 1

2
p2

)
percentile, and so on.

This implies that the part of the sample that lies in the interval Ii should correspond to
the observations between the two percentiles vi − 1

2
pi and vi + 1

2
pi, and this part should

moreover look like a random selection of pi · n observations from the Ci(t) component.
The idea now is that the pseudo-normalisation of the Ii-part of the sample still should

contain a structure that reveals the frequency αi of the underlying cosine, and that it thus
(given a suitable combination of point v and bandwidth b) should be possible to get a
result that looks approximately like the result obtained when fmv (ω) is estimated for a
single cosine with a frequency equal to αi.

It is possible to select the probabilities {pi}
r

i=1
such that the percentile vi of the base-

line Li corresponds directly to the diagonal point v for which fmv (ω) should be estimated,
but this does not take into account that the pseudo-normalised version of the Ii-part of
the sample in general will not be symmetric around Φ−1(vi) (with one exception when
vi = 0.5). The probabilities {pi}

r

i=1
should be selected such that the vi percentile lies closer

to the center than the percentile corresponding to v.
Given a configuration of probabilities {pi}

r

i=1
, and furthermore assuming that the prob-

ability pi for the Ci(t) component is sufficiently large relatively the sample size n, it will
now be possible to find a point v and a bandwidth b such that the estimate of fmv (ω) has
the predicted shape with a peak at the frequency αi that is used in Ci(t)

It is possible to construct local trigonometric examples where some of the components
Ci(t) are impossible to detect for a given sample size n, but they could still be detected
when a larger sample is used, cf. the example discussed in appendix G.4.3.
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The case investigated in section 3.3.2: The heuristic arguments outlined above
were used in order to create the local trigonometric example in section 3.3.2. The initial
requirements for the construction of that particular example were that the sample should
have the same length as the dmbp-data, i.e. n = 1974, that the bandwidth should be 0.5,
and that the investigation should be performed at the three diagonal points corresponding
to the 10%, 50% and 90% percentiles of the standard normal distribution.

The initial approach used three Ci(t)-components with equal probability of being se-
lected. An additional new first component C1(t) was then added, with p1 = 0.05 (and with
a corresponding reduction of the next probability to p2 = 1

3
− 0.05). This adjustment was

done in order to get more mileage out of the example, since it then also could be used to
highlight that the local Gaussian spectral density in some cases might not have enough
observations available to detect all the local features. Note that the elusive first component
can be detected when the sample size increases, cf. appendix G.4.3 for details.

The explicit expression of the local trigonometric time series used in section 3.3.2 is
given by the following equation,

Yt :=
4∑
i=1

1{It = i} · (Li + Ai(t) · cos(2παit+ ϕi)) , (G.6)

where the probabilities pi := P(It = i) are given by (0.05, 1/3 − 0.05, 1/3, 1/3), and the
frequencies αi are given by (0.267, 0.091, 0.431, 0.270). The base-lines Li are given by the
values (−2,−1, 0, 1), and the lower and upper ranges for the uniforms sampling of the
amplitudes Ai(t) are respectively given by (0.5, 0.2, 0.2, 0.5) and (1.0, 0.5, 0.3, 0.6). Recall
that these latter values are not really of interest with regard to the pseudo-normalised
version of the sample, and the only requirement regarding these should be that they are
selected in order to give a minimal amount of overlap between the different components.
The phase-adjustments ϕi are uniformly selected from the interval [0, 2π), one time for each
realisation of a sample from Yt.

Figure G.1 shows a simplified excerpt of length 100 from one realisation of Yt. The
amplitudes Ai(t) have here for the simplicity of the present discussion been fixed to the
values (1.0, 0.5, 0.3, 0.5) since it is of importance to emphasise which one of the underlying
‘hidden’ components Ci(t) (shown as dotted curves in the top panel) that was selected in
this case (the phase-adjustments ϕi in this particular realisation are (0.52, 2.57, 3.24, 2.49)).
The center panel of fig. G.1 shows an estimate of the m-truncated (global) spectral den-
sity fm(ω), based on 100 independent samples of length 1974 and with a 90% pointwise
confidence interval that shows that it is viable to claim that this particular process be-
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Time series based on several cosines
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Figure G.1: Top: Short excerpt from artifical example based on hidden trigonometric
components. Center: Estimated (truncated) global spectral density (hidden frequencies
indicated with vertical lines). Bottom: Local cosine showing the detected points at the
local level centered at -1. Further details in the main text.

haves almost like white noise. Note that the vertical lines in the center panel shows the
frequencies αi that was used in eq. (3.2).

The bottom panel of fig. G.1 is the one of major interest for the present discussion, i.e.
it is the one from which it is possible to provide an explanation for the expected shape
of the local Gaussian spectral density, at some particularly designated points v (given a
suitable bandwidth b). First of all, the bottom panel shows one of the cosines from the
top panel, the circles represents the points from the top panel that happened to lie on this
particular cosine — and the crosses represents all the remaining points (at integer valued
times t) of the cosine. Recall that these points are from the simplified realisation where
the amplitudes Ai(t) are constant, and that the actual values thus would be distorted a bit
from those observed here.

The circles can be considered as a randomly selected collection of points from a time
series like the one investigated in fig. 6 (single cosine function with some white noise), and
the main point of interest is that it (for a sufficiently long time series, and a sufficiently
large bandwidth b) will be the case that the estimated local Gaussian autocorrelations
based on this scarce subset might be quite close to the estimates obtained if all the points
had been available. The rationale for this claim is related to the way that the local Gaussian
auto-correlation at lag h (at a given point v) is computed from the sets of bivariate points
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(
Yt+h, Yt

)
. In particular: It might not have a detrimental effect on the resulting estimate if

some of these lag h pairs are removed at random, as long as the remaining number of pairs
is large enough. Based on this idea, it can thus be argued that the local Gaussian spectral
density estimated from the collection of the circled-marked points should be fairly close to
the situation shown in fig. 6, at least if the time series under investigation is sufficiently long.

This final heuristic graphical argument is the reason for the guesstimate that the m-
truncated local Gaussian spectral densities (for the three points v corresponding to the
10%, 50% and 90% percentiles) should have an overall shape that resembles the one seen
for the single cosine example seen in fig. 6.

It did turn out, cf. figs. 7 and 8, that the guesstimate based on these heuristic arguments
in fact did hold true, and them-truncated local Gaussian spectral densities did in fact detect
the specified frequencies αi in (0.091, 0.431, 0.270) at the three targeted points v.

Note that the frequency 0.267 corresponding to the C1(t) component could not be
detect based on only n = 1974 observations, since the probability p1 = 0.05 requires an
investigation far out in the lower tail. It is however possible to detect it whit a much larger
sample size, cf. the discussion in the next section.

G.4.3 Detecting the C1(t) component of the local trigonometric example
The local trigonometric example seen in figs. 7 and 8 of section 3.3.2, cf. eq. (G.6) for
the definition, contains a component C1(t) that goes undetected when the sample size of
n = 1974 is used. The reason for the elusiveness of the C1(t) component is that it has a
probability of p1 = 0.05 of being selected, which implies that it is expected to only find
98.7 observations from this component when n = 1974.

The ‘border’ between the observations from the C1(t) and C2(t) components should
occur near the 5% percentile, but it is necessary to ‘zoom in’ on a point v that lies farther
out in the tail than p1/2 = 0.025. This requirement occurs since the estimate of fmv (ω)
should avoid ‘contamination’ from the observations from the C2(t) component.

Based on the idea that it might be necessary to go all the way out to the 1%, it seemed
natural to attempt an investigation based on n = 25000 observations. Since the point v
now is far out in the lower tail, e.g. the 1% percentile of the standard normal distribution
is −2.326, it seemed reasonable to use the bandwidth b = (0.4, 0.4).

The heatmap and distance plots in fig. G.2 is based on an investigating of a single
realisation, that included percentiles based on values starting from 2 bandwidths below
the 5% percentile and ending at 1/2 bandwidth below the 5% percentile, i.e. the diagonal
points starts at approximately the 0.72% percentile and ends at the 3.25% percentile.
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Figure G.2: A heatmap+distance plot used to search for an ‘optimal’ percentile that can
reveal the α1 frequency in the lower tail of the local trigonometric.

It is no surprise that the C2(t) component completely dominates at the 3.25% percentile,
and it can be seen that it is necessary to go down to at least the 1% percentile in order to
detect a peak close to the frequency α1 = 0.267 of the C1(t) component. Note that fig. G.2
is based on only 1 single realisation, and other realisations might look slightly different.

Figure G.3 shows the situation when R = 100 replicates are used to estimate fmv (ω) at

the diagonal point v that corresponds to the 1% percentile. This shows that f̂mv (ω) in this
case has the expected ‘cosine’-shape, and the peak is at the frequency α1 = 0.267 of the
C1(t) component.

G.4.4 Beware of deterministic global structures under small noise
It was seen in the local trigonometric example investigated in the preceding sections, that
a peak of f̂mv (ω), like the one seen in fig. G.2, corresponded to a frequency α of some

underlying cosine-function (that f̂m(ω) did not detect). It should here be emphasised that
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Figure G.3: The detection of the α1 frequency in the lower tail of the local trigonometric
example requires a large sample and an investigation far out in the lower tail.

the local trigonometric example was fine tuned in order to test the sanity of the implemented
estimation algorithm — and it would thus be a logical fallacy to conclude that a similar
peak of f̂mv (ω) (not present in f̂m(ω)) always could be interpreted in the same manner for
general non-Gaussian time series.

An investigation of this issue can be seen in fig. G.4, where an extreme version of the case
investigated in fig. 6 are presented. The setup is similar to the one from fig. 6, i.e. the plots
are based on 100 samples of length 1974 from a model of the form Yt = cos(2παt+ ϕ) + wt,
where α = 0.302 (as before), but the standard deviation of the Gaussian white noise wt has
now been reduced to σ = 0.05.

cosine and a tiny bit of noise, 100 observations
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Figure G.4: Pseudo-normalised single cosine with small noise.

The low value of the standard deviation σ implies that samples from this model have
a very clear periodic behaviour, as can be seen from the plots in fig. G.4, where the 90%
confidence intervals are almost indistinguishable from the mean of the estimates. This clear
periodicity is also evident from the trace shown in the upper left panel of fig. G.4, where
the 100 first pseudo-normalised observations of one of the samples are presented.

Figure G.4 contains estimates of the local and global spectra, with focus on the points
in the lower tail and the center for the truncation level m = 10, and for the lower tail when
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m = 20. The additional peaks seen at the center is due to the kernel function K that is
used in the estimation algorithm — in particular K works on the h-lagged pairs

(
Yt+h, Yt

)
,

the contribution becomes negligible for pairs far away from v, the pairs that do contribute
give the impression that several ‘local frequencies’ might be present, but the underlying
model has only one single frequency.

The case in fig. G.4 is extreme since the noise-term is minuscule. Because the local
Gaussian correlation is based on a continuous distribution assumption and the use of a ker-
nel function, similar difficulties can be expected for other deterministic functions embedded
in low noise. One possible way out might be to consider an approach where a parametric
model is fitted first to the data and then examine the residuals with a global and a local
spectral analysis.
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