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A B S T R A C T

When studying the function of proteins, biochemists utilize normal mode decomposi-
tion to enable the analysis of structural changes on time scales that are too long for
molecular dynamics simulation. Such a decomposition yields a high-dimensional pa-
rameter space that is too large to be analyzed exhaustively. We present a novel approach
to reducing and exploring this vast space through the means of interactive visualization.
Our approach enables the inference of relevant protein function from single structure
dynamics through protein tunnel analysis while considering normal mode combina-
tions spanning the whole normal modes space. Our solution, based on multiple linked
2D and 3D views, enables the quick and flexible exploration of individual modes and
their effect on the dynamics of tunnels with relevance for the protein function. Once
an interesting motion is identified, the exploration of possible normal mode combina-
tions is steered via a visualization-based recommendation system. This helps to quickly
identify a narrow, yet relevant set of normal modes that can be investigated in detail.
Our solution is the result of close cooperation between visualization and the domain.
The versatility and efficiency of our approach are demonstrated in two case studies.

c© 2021 Elsevier B.V. All rights reserved.

1. Introduction1

Proteins come with a large variety of functions, including the2

catalysis of chemical reactions and the transport of molecules3

in living organisms. Therefore, studying protein function has4

been in the scope of biochemists for many decades. Proteins5

are dynamic structures and it is state-of-the-art understanding6

that protein motion is often centrally related to protein func-7

tion [1, 2]. To explore protein dynamics, researchers often8

utilize in-silico methods, including molecular dynamics (MD)9

simulations as one popular choice. However, MD simulations10

are computationally very demanding and simulating large sys-11

tems for a long time remains overly challenging [3].12

∗Corresponding author:
e-mail: jan.byska@gemail.com (Jan Byška)

A commonly used alternative to MD simulations, which is 13

better suited for studying large molecular systems for longer 14

time intervals, is to decompose the flexibility of a protein into 15

a set of normal modes. This decomposition enables researchers 16

to probe the flexibility of a protein structure, solely based on 17

the 3D organization of its atoms but without providing the reso- 18

lution along time. One major challenge of normal mode cal- 19

culation is that it leads to many modes (in the order of the 20

number of atoms) and analyzing them separately or in com- 21

bination is a practically unbound endeavor. To investigate pro- 22

tein mechanisms, biochemists commonly use multiple confor- 23

mations of the same structure as hallmarks that allow them to 24

study the transitions between functional states. However, this 25

exploration is limited to studying a few low-frequency normal 26

modes – usually separately, without considering the impact of 27

the possible combinations of these normal modes on the protein 28
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Fig. 1: The overview of our system - a) 3D View depicting the protein, its tunnel (violet), and selected normal mode using vector field representation (orange
arrows); b) Single Normal Mode View showing the involvement of individual normal modes in tunnel dynamics; c) filtering and ranking options; d) Combined
Normal Mode View providing detailed information about possible combinations of selected normal modes and their influence on tunnel radius.

mechanisms.1

In this application paper, we present a new and interactive2

visual approach used to better exploit the information provided3

by the normal mode calculation to study links between protein4

function and dynamics. To do so, we utilize the fact that the pro-5

tein function is facilitated via interactions with other proteins or6

smaller molecules (known as ligands). These interactions occur7

in so-called active sites that are either on the protein surface or8

deeply buried inside it. In the latter case, protein voids (also9

known as tunnels or channels) serve as access paths for the lig-10

and to the buried active site. Studying the dynamics of protein11

tunnels helps domain experts to better understand how proteins12

interact with ligands – which in turn helps them to understand13

the function of the protein. Therefore, we use protein tunnel dy-14

namics as a guiding mechanism to identify the most important15

normal modes.16

Our solution is based on a carefully crafted set of 2D and 3D17

views (see Figure 1). The views enable the quick and extensive18

exploration of individual normal modes (or their combinations)19

and their effect on the dynamics of a protein tunnel of interest.20

Our design revolves around a fast sorting approach, based on21

computing the similarity of the normal modes to the desired22

behavior [4], which enables the domain experts to explore the23

normal modes and their combinations in a more systematic and24

faster way than what was possible before. To the best of our25

knowledge, we present one of the first solutions that would not26

only permit normal mode visualization but also allow exploring27

combinations throughout the normal mode space. Altogether,28

the main contributions of this paper are:29

• assessment of the tasks for an effective and efficient visual30

analysis of proteins using normal mode calculation,31

• the design of a new interactive tool for the exploratory 32

analysis of a large number of normal modes and their com- 33

binations, based on these tasks, 34

• the design of a visualization-based sorting approach, guid- 35

ing the user to potentially important normal modes or their 36

combinations, easing the exploration of the vast normal 37

modes space, 38

• the possibility of performing the analysis only from a sin- 39

gle protein conformation 40

The work presented in this paper was conducted in close col- 41

laboration between the visualization and computational biology 42

units at [removed for the review] and the authors of this paper 43

belong to both of these groups. To document the value of our 44

approach, we include case studies that show how our solution 45

supports the inference of a relevant protein function from a sin- 46

gle protein conformation, where several input structures (rep- 47

resenting various functional states) were required so far. This 48

amounts to a significant step forward as it makes studying pro- 49

teins, where only one conformation is known, much easier. 50

2. Background 51

Proteins are dynamic systems, and the way they move has 52

long been regarded as a link between their structure and their 53

function. The intricate motions they can display to perform 54

their goal may be decomposed into principal components. They 55

are known as the normal modes which are used as a mean to 56

help domain experts to study the flexibility of the protein struc- 57

ture. 58
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2.1. The Normal Modes1

In general, normal mode calculations are a state-of-the-art2

method from physics and are defined as an analytic approach3

to model the flexible motions of mechanical systems. In other4

words, normal modes are an evaluation of the system interac-5

tions. These interactions are characterized as a matrix repre-6

senting the physical forces between pairs of system particles.7

Such a matrix is decomposed into independent vectors - here8

its columns - obtained through eigenvalue decomposition. They9

form a new orthogonal basis set to describe the particle coor-10

dinates and are known as the independent modes of motion.11

Normal modes classify all available motions a system can un-12

dergo given its 3D structure and they are essentially large, non-13

uniform vector fields (at discrete locations).14

In a biological context, normal modes represent all the in-15

trinsic dynamics available to the protein. To transition from16

one functional conformation (i.e., the particular spatial arrange-17

ment of atoms) to another, the protein will deform following a18

specific subset of modes from its normal mode space. Since19

using normal mode calculation remains computationally cost-20

effective with increasing size of the molecule, it can be used21

routinely also on large molecular structures with thousands of22

atoms.23

The normal mode calculation can be performed using differ-24

ent granularity – the full atom calculation, where all the atoms25

are considered, and coarse grain (CG) normal mode calculation,26

where only one atom per amino acid (i.e., the α-carbon of each27

amino acid) is considered. In this paper, we focus on the CG28

normal mode calculation, since it enables the study of larger29

systems, but the presented solution can be easily used for full30

atom normal mode calculation, as well.31

Solving the eigenvalue decomposition of the interaction ma-32

trix, describing the forces between the protein atoms, yields 3N33

normal modes (eigenvectors), where N is the number of par-34

ticles (i.e. α-carbons) in the model [5]. Each normal mode k35

comprises a set of N 3D vectors Vk and describes an indepen-36

dent periodic motion of the entire system around the initial po-37

sition r0.38

From the list of all normal modes, we can reconstruct all39

possible motions of each protein particle i using the following40

equation:41

ri(t) = r0
i +

1
√

mi

3N∑
k=1

vkiak cos(2π fkt + δk) (1)42

with ak denoting the thermal amplitude per mode k, fk being43

its frequency (linked to the eigenvalue from the original eigen-44

problem), δk the phase shift, and mi the mass of the considered45

particle i. It is important to note that thermal amplitude ak is46

a function of the given normal mode frequency, highlighting47

the fact that the lowest-frequency modes are also displaying the48

largest motions:49

ak =

√
2kBT

2π fk
(2)50

with, kB the Boltzmann constant and T the temperature set at51

300K. It describes and normalizes the amplitude of a normal52

mode k by informing only about the particles’ position extrema.53

All Vk are the eigenvectors and consequently form an or- 54

thogonal basis set. It is thus possible to project the 3N mass- 55

weighted Cartesian coordinates on eigenvector k to get the nor- 56

mal coordinate qk. Obtaining atomic displacements can be then 57

achieved from one mode, or n normal modes combined, through 58

the following equation: 59

ri = r0
i +

1
√

mi

n∑
k

vkiqk (3) 60

Equation 3 is linear, and thus, atom movements can be treated 61

as usual vectors and combined accordingly. The phase shifts 62

δk from Equation 1 are taken into account by considering the 63

combinations of vector directions (in both positive and nega- 64

tive) when combining k modes. 65

Also noteworthy, the first six modes (also called trivial 66

modes, 1 ≤ k ≤ 6) are rigid-body transformations, and there- 67

fore, not of interest. When domain experts analyze normal 68

modes, they usually consider only the lowest frequency modes, 69

also known as the slow modes (e.g., the first 20 non-trivial 70

modes), as they have been shown to experimentally and compu- 71

tationally relate to protein function [6, 7]. Although the higher 72

frequency modes are usually disregarded, due to the smaller 73

variance of motion and the increased complexity of such an 74

analysis, it is known that they can yield useful information [8]. 75

2.2. Normal Mode Analysis 76

Normal mode analysis (NMA) is one of the molecular model- 77

ing methods to complement the experimental procedures which 78

lack dynamical information. NMA represents all the informa- 79

tion that can be drawn from the previous fundamental Equa- 80

tions. When exploring and analyzing the results of a normal 81

mode calculation, domain experts might be interested in asking 82

questions including the following: 83

Q1 Which amino acids (or domains) of the protein are dis- 84

placed and which normal modes relate to their motion? 85

Q2 Which amino acids (or domains) of the protein are dis- 86

placed together under the normal modes? 87

Q3 Which flexible motions are likely to be relevant for a par- 88

ticular protein function? 89

Q4 Which motions are potentially influencing the transport of 90

ligands (or substrates) through a protein tunnel or channel? 91

Getting answers to these questions is a nontrivial task as the 92

normal mode calculation provides a sizable number of modes 93

without any information about their possible involvement. As 94

drawn from Equation 3 the normal mode space grows with the 95

combination of amplitudes and phases δk. Considering all their 96

potential combinations, without proper visualization support, 97

becomes challenging. 98

Surely, in taking Equations 1 and 2, one can compute the 99

variance per particle i for a normal mode vector set k, defined 100

by the squared fluctuations: 101

Fki =
kBTv2

ki

mi4π2 f 2
k

(4) 102
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with vki being mass-weighted mode vector scaled by its thermal1

amplitude and weighted by its corresponding frequency. These2

squared fluctuations describe the extent of flexibility (as in the3

amount of displacement) of given particles in a structure and4

can tell the biochemists about the most displaced domains of5

the protein, inferring intrinsic mechanisms. However, as this6

information is obtained for every particle, a proper visual rep-7

resentation is needed.8

Normal modes being vector fields, the straight-forward9

method to visualize them involves scaled arrows. During our10

interviews with domain experts we discovered that it can be11

useful, especially for non-experts, to reconstruct a trajectory,12

following a mode in question (or their combinations) and de-13

pict it in 3D. Seeing the actual movement enables biochemists14

to rapidly generate hypotheses about how each normal mode15

could be involved in protein functions of interest.16

One disadvantage of depicting the trajectory is that it remains17

hard to focus on details and identify the correlation between18

movements, mainly due to occlusion and visual clutter. Such an19

analysis, for instance, is important to investigate allostery regu-20

lation processes [9] by which the proteins transmit the effects of21

(un)binding of ligands from one active site to another part of the22

protein. To investigate this phenomenon, it is common to study23

which parts of the protein are moving together. Accordingly,24

any visualization system for normal mode analysis should sup-25

port the direct analysis of these correlated movements.26

To this end, the correlated movements of particles can be ob-27

tained from the available non-trivial normal modes as firstly in-28

troduced by Ichiye et al. [10] with the cross-correlations:29

Ci j =

∑3N
k=7

1
λk

vki · vk j

(
∑3N

k=7
1
λk

vki · vki)
1
2 · (
∑3N

k=7
1
λk

vk j · vk j)
1
2

(5)30

with, vki and λk being, respectively, the displacement vectors of31

the eigenvector, and eigenvalue from a non-trivial mode k, and32

i and j the particles of the system. The correlations indicate33

which structure particles are coupled in their motions: Ci j = 134

when the coupled motion of two particles i and j is fully corre-35

lated and alternatively Ci j = −1 if it is fully anti-correlated.36

Further, it was also mentioned during the interviews that cur-37

rent workflows for the detection of important normal modes38

often require multiple conformations of the protein as input.39

Having two conformations enables the experts to detect normal40

modes representing the transitions between these experimen-41

tally observed functional states (e.g., protein in open and closed42

conformation). The challenge here is that it is hard and time-43

consuming to obtain these conformations in the first place, for44

example, in cases where not much is yet known about the pro-45

tein function. Hence, the experts would appreciate a solution46

that enables them to discover potentially functional and rele-47

vant normal modes only from the initial protein structure used48

for the normal mode calculation.49

2.3. Existing NMA Workflow50

With the presented formalism in mind, we describe the cur-51

rent workflow used by the biochemists to perform normal mode52

analysis with the available tools. First, the modes are ranked53

by their frequencies and up to a dozen of the first normal54

modes (slow modes) are chosen to be studied. Each selected 55

mode is scrutinized on a protein-wide scale; the biochemists 56

mainly answer Q1 to identify the dynamical domains of the 57

protein. To this aim, they reconstruct the trajectories follow- 58

ing the normal modes and utilize the fluctuation calculations. 59

Second, the correlated movements are studied in answering Q2 60

to examine which dynamical domains move together. Gener- 61

ally, this first set of analyses is carried out within a specific 62

tool (e.g., [11, 12]). Then, the slow modes are studied lo- 63

cally as well. The biochemists aim at identifying which flex- 64

ible motions are important for a particular sub-domain of the 65

protein. This step requires precise geometrical measurements 66

within the protein structure and are carried out with different 67

tools (e.g., [13, 14]). Finally, to narrow down the protein func- 68

tional motions in answering Q3 and Q4, the biochemists may 69

isolate a tunnel to study its dynamics. Multiple protein struc- 70

tures deformed along each of the slow modes are generated and 71

later loaded in a third tool (e.g., [15, 16]) to compute a tunnel 72

and analyze its dynamical behavior under the normal modes. 73

This intricate workflow has its shortcomings, for instance, it 74

is very difficult to isolate the exact same tunnel within differ- 75

ent protein structures for each of the slow modes across several 76

tools. Further, when exploring the potential functional modes 77

and their combinations the field experts have to switch between 78

all the mentioned tools to confirm or infirm the choice of func- 79

tional normal modes or their hypotheses on allosteric mecha- 80

nisms. However, most importantly, due to the current technical 81

limitations, the maximum number of selected modes is usually 82

arbitrary without knowing if any of the disregarded modes may 83

be describing a functional movement. 84

2.4. Protein Tunnels as a Metric of Interest 85

As already addressed, protein function is often related to pro- 86

tein tunnels and their dynamics [17, 18]. Tunnels represent a 87

space between the protein amino acids and are usually depicted 88

as a set of contiguous spheres. They connect deeply buried ac- 89

tive sites with the environment and enable chemical reactions 90

through which proteins facilitate their function. Thus, when 91

attempting to identify potentially functional modes, domain ex- 92

perts often reported the need for analyzing and quantifying their 93

influence on specific tunnels. To support such an analysis we 94

carefully selected the following measurements that allow us to 95

quantify the effect of a given normal mode on the tunnel: 96

• The tunnel radius and its changes per sphere to resolve the 97

effect of the normal mode down to amino acid precision. 98

• The squared fluctuation values of tunnel lining amino 99

acids, describing the variance of motions of the given tun- 100

nel under a given normal mode. 101

• The normal mode overlap that measures the extent to 102

which a normal mode vector field is similar to another vec- 103

tor field representing an atomic displacement. To study the 104

impact of the protein flexible motions on its tunnels, we 105

use a projection method proposed by Hinsen [19]. With 106

a vector field of M displacement vectors, and for mode k, 107
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it is possible to quantify the involvement of the mode in a1

particular displacement:2

pk =

M∑
i=1

di · vki (6)3

with, vki the kth normal mode vector of particle i, and d the4

corresponding displacement vector to project onto the kth
5

normal mode – p2
k then represents the involvement value.6

To describe the relationship between the tunnel and the7

normal mode, we set up this general vector field such that8

it describes some potentially functional movements - in9

our case the expansion of the tunnel. Widening the tun-10

nel for metabolite pathing requires the surrounding amino11

acids to be displaced away from the tunnel center. Hence,12

the displacement vectors d are designed such that they are13

pointing from the center of each sphere and through the14

surrounding amino acids.15

2.5. Data and Task Abstraction16

In following the guidelines proposed by Tamara Mun-17

zner [20] and to summarize the above subsections, we identified18

the following crucial tasks, which a system for normal mode19

analysis must support:20

T1 (Search task) Explore the influence of a single normal21

mode (or their combinations) on the overall dynamics of22

the protein and its tunnels (Q1)23

T2 (Query task) Identify the correlated movements of amino24

acids under the normal modes (Q2)25

T3 (Query task) Identify variance in amino acid motions un-26

der the normal modes (Q1)27

T4 (Query task) Summarize different spatial and biochemical28

properties of a tunnel under the influence of a single nor-29

mal mode (or their combinations) (Q3, Q4)30

T5 (Query task) Identify the amino acids surrounding the tun-31

nel which are contributing to its dynamics (Q4)32

T6 (Query task) Identify potentially functional and relevant33

normal modes only from the initial protein structure and34

its corresponding normal mode calculation (Q3)35

Also, as laid out at the beginning of the section, our workflow36

comprises several input data listed as follows: the initial protein37

atom positions in 3D (PDB format), the normal mode vector38

sets (or vector fields) obtained as a list from the normal mode39

calculation, and a list of computed protein tunnels among which40

the users can select one to investigate.41

3. Related Work42

In the past decades, several tools for computing normal43

modes and their analysis have emerged [21, 12, 22, 23, 11].44

While these tools are partially addressing some of the tasks pre-45

sented above, they do not provide a satisfactory solution for all46

of them. Normal mode analysis (NMA) refers to a quantitative47

and visual set of methods. It mainly consists of the analysis of 48

fluctuations, trajectories, vector field representations, and cor- 49

relations. 50

All the above tools display the normal mode atomic fluctua- 51

tions, which highlight the most displaced protein regions, using 52

a 2D chart as a function of the protein amino acid sequence. 53

However, such a representation is insufficient as the spatial in- 54

formation is lost and the representation requires precise knowl- 55

edge about the relationship between the protein sequence and 56

its structure. 57

The motion induced by the individual normal modes is com- 58

monly depicted either in 3D using animation or as a static vi- 59

sualization using arrows. Noteworthy, the work from López- 60

Blanco [11], implements a more recent visualization of the nor- 61

mal mode vector field with the use of affine arrow glyphs as 62

introduced by Bryden et al. [24]. Unfortunately, these methods 63

do not support the analysis of the protein tunnel dynamics. De- 64

spite this, we made sure that our approach supports them as they 65

help to partially address T1 by informing about the protein-wide 66

dynamics which play an important role during the analysis. 67

Finally, the presented tools allow the analysis of the corre- 68

lated motions of each structure particle (T2) with correlation 69

matrices showing the coupling of all particle pairs. Addition- 70

ally, Tiwari et al. [21] provided an external PyMol [25] script to 71

display the 3D links between the significantly correlated struc- 72

ture particle pairs. As such representation preserves the spa- 73

tial information better than the correlation matrices, we have 74

adapted it in our solution. 75

To link the intrinsic dynamics of the protein to its function the 76

domain experts often utilize multiple experimentally obtained 77

conformations of the protein. For instance, Tama et al. [4] eval- 78

uated the normal modes with respect to their involvement in the 79

transitions between the two known functional states. Several 80

approaches are also using path planning to explore the possible 81

transconformations between the two functional states [26, 27]. 82

Particularly, Al-Bluwi et al. [27] used NMA to steer the confor- 83

mation path sampling between the start and end protein states. 84

However, precise sampling of the conformational space may in- 85

volve long computation times depending on the macromolecule 86

size (e.g., 30 hours for a 950 amino acid protein [27]). Addi- 87

tionally, the above methods are implying the inherent need for 88

several protein structures. It limits their use for certain classes 89

of proteins (e.g., transmembrane proteins) that remain, despite 90

the tremendous progress in the past few years [28], still difficult 91

to determine as explained by Cheng [29]. 92

In order to overcome this issue, several methods have been 93

developed from the molecular modeling community. More 94

precisely, the recent work of Mahajan and Sanejouand [30] 95

presents the achievability of predicting the possible end confor- 96

mation only from a starting structure (T6). The authors suggest 97

identifying the functional normal modes by retaining the modes 98

that are conserved through multiple different normal mode cal- 99

culations. The disadvantage of this approach is high computa- 100

tional complexity which prevents the interactive normal mode 101

space exploration. 102

Also, on an exploratory matter from a single protein struc- 103

ture, the work from Mongan [31] introduced a solution to obtain 104
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the principal components of motion for a protein and project its1

structure on the individual (or combined) eigenvectors. How-2

ever, the approach does not link the possible motions to any po-3

tential protein function and the choice of relevant components4

is left entirely to the user who has to select the modes (or their5

combination) one by one.6

As can be seen, the exploration and analysis of the vast nor-7

mal mode space is an immense task. Therefore, our tool pro-8

vides sorting features that suggest possibly interesting combi-9

nations of modes. The topic of guidance is heavily discussed in10

the visualization community. For instance, Willett et al. [32] de-11

scribed the concept of Scented Widgets that enhances the com-12

mon navigation elements in the user interface with embedded13

visual cues. Krause et al. [33] proposed a visual analytic sys-14

tem for guiding users through the process of feature selection15

for predictive modeling on high-dimensional data. Gladisch et16

al. proposed a recommendation method for navigation in hi-17

erarchical graphs [34]. Finally, an overview of user guidance18

for visual analytic systems was provided by Ceneda et al. [35].19

The authors proposed an extension of the Wijk’s [36] model of20

visualization including the means for user guidance.21

In this paper, we propose a method for linking the protein22

intrinsic dynamics with protein function via analysis of mo-23

tions influencing protein tunnels or channels. A similar idea24

was already investigated by Taly et al. [37] and Kurkcuoglu25

et al. [38]. However, in both cases, the authors either study26

the normal modes separately or investigate only a limited num-27

ber of their combinations. Moreover, the approach proposed28

by Taly et al. [37] also requires a manual selection of atoms29

involved in the protein channel bottleneck which will then be30

approximated by a regular pentagon in the plane perpendicular31

to the main channel.32

The methods presented above stress the need for a more ex-33

haustive framework to investigate the link between protein dy-34

namics and function through normal mode analysis and precise35

tunnel and channel computation. In general, there are several36

techniques for visualization and visual analysis of protein tun-37

nels and channels, for both static and dynamic cases. In this38

text we list only a few most relevant methods but a complete39

overview can be found in the work of Krone et al. [39].40

Tools such as Caver Analyst [16] or MOLE 2.0 [15] use41

Voronoi diagrams to extract and subsequently visualize the evo-42

lution of protein tunnels and channels. Here, the most computa-43

tionally expensive part is to track the inner voids over time. As44

this step may require hours for a larger dataset, these techniques45

are unsuitable for analysis of the vast normal mode space. Al-46

ternatively, several real-time techniques for the extraction of dy-47

namic cavities inside proteins were proposed [40, 41, 42]. How-48

ever, these methods only allow studying the evolution of the49

whole cavity, while for the purposes of normal mode analysis,50

we require to analyze the impact of a normal mode to different51

parts of the tunnel.52

Finally, also multiple non-spatial techniques were developed53

over the past decade. For instance, Lindow et al. [43] propose54

to use rational graphs to explore the migration of a selected in-55

ner cavity within protein over time. Byška et al. [44] proposed56

to use heat maps to investigate the tunnel bottleneck and its dy-57

namics. Also, Byška et al. [45] and Masood et al. [46] devel- 58

oped abstracted representations for depicting the tunnel and its 59

properties including the amino acids over time. Finally, Kole- 60

sar et al. [47] proposed a technique for the spatial reformation 61

of the tunnel surface 2D space. While the methods mentioned 62

above can be used to identify amino acids surrounding the tun- 63

nel (T5), they are designed only for the analysis of molecular 64

dynamics data and do not support (at least not directly) the nor- 65

mal mode analysis pipeline. 66

4. Visualisation and Interaction Design 67

In Section 2.3, we presented the common workflow for bio- 68

chemical analysis of protein motions and functions with the 69

currently available tools. This workflow has its shortcomings 70

as described above. Therefore, we propose several visual ab- 71

stractions (see Figure 2) that are enabling quick and flexible 72

exploration of normal modes while addressing the previously 73

introduced tasks (T1-T6). Upon loading the input data, the do- 74

main experts have access to two workflow paths for studying 75

movement characteristics on protein-wide (bottom part of Fig- 76

ure 2) or tunnel-wide scales (Figure 2a,b). 77

On the protein-wide scale, and to focus on allostery and 78

concerted large-amplitude protein motions, the biochemists can 79

compute and visualize normal mode correlations (see Figure 2c, 80

Section 4.3). Alternatively, to get rapid insights about the mo- 81

tion variance, the biochemists have access to the computation 82

of normal mode squared fluctuations with a coloring mapped 83

onto the protein structure (see Figure 2f, Section 4.3). Also, to 84

convey direction when static visualization is required, the nor- 85

mal mode vector field can be directly displayed, either in the 86

form of vector field arrows (see Figure 2g, Section 4.3), or in 87

the form of affine arrows illustrating large-scale motions (see 88

Figure 2h, Section 4.3). Then, for dynamical representation 89

and direct impact of the protein motions on the selected tunnel, 90

the domain expert can compute and display the mode trajectory 91

(see Figure 2d, Section 4.3). 92

Providing the domain experts want to analyze normal modes 93

on a tunnel-wide scale they can follow an alternative workflow 94

path by exploring the Single Normal Mode View (SNMV, see 95

Figure 2a, Section 4.1) as it displays the impact of the normal 96

modes on each of the tunnel subsections (i.e., spheres) with re- 97

spect to various geometrical measurements. Upon sorting, fil- 98

tering, and eventually selecting a sub-set of normal modes in the 99

SNMV, the interactive link with the Combined Normal Mode 100

View (CNMV, see Figure 2b, Section 4.2) allows the domain 101

experts to have access to equivalent geometrical measurements 102

for the combinations of selected normal modes. 103

In case biochemists need more details on individual normal 104

modes or their combinations, they can choose a column in the 105

SNMV or the CNMV and interact with updated 3D visualiza- 106

tions. Here they can study the corresponding normal mode 107

fluctuations, vector fields and trajectories. To further the lo- 108

cal analysis of the motion impact on the tunnel, the biochemists 109

can select a tunnel section (i.e., rows) on either of the SNMV 110

or CNMV and the active geometrical measurement coloring 111

is overlaid onto the tunnel spheres in 3D (see Figure 2e, Sec- 112

tion 4.3). 113
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Analysis Workflow
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Fig. 2: Implemented workflow of our tool to visualize and quantify the flexible motions of proteins and their tunnels. The data inputs are located on the left-hand
side and give the domain expert access to a range of both protein-wide and tunnel-wide dynamics analysis. Yellow arrows represent user interactions with the system
which will update some of the visualizations while grey arrows depict the analysis workflow. Letters (a)-(h) indicate the different views in our tool and are detailed
throughout Section 4.

This three-step process (i.e., selecting functionally relevant1

normal modes based on either protein-wide scale or tunnel-2

wide scale, using the latter to select one of their possible com-3

binations, and visualizing its influence on protein structure) can4

be easily repeated and results in an interactive feedback loop.5

It can be used by the biochemists to quickly confirm their hy-6

potheses about the protein functional mechanisms.7

In the subsequent sections, we will describe the different8

views of our approach by following the second presented work-9

flow path, from a tunnel-wide scale and throughout the normal10

mode space with the SNMV and the CNMV, to a protein-wide11

scale where a selected mode or a combination of modes can be12

explored in detail with the 3D View.13

4.1. Single Normal Mode View14

The independence of the normal modes enables using them15

as a basis set to describe any of the possible motions of the pro-16

tein. Within this space, the protein employs an even narrower17

space of motions to carry out its functional goals. One of the18

aims of the biochemists is to precisely study this space to infer19

protein mechanisms and function (T4).20

However, selecting relevant normal modes from the decom-21

position without proper representation is practically unfeasible.22

In order to pinpoint functionally relevant modes, every mode23

and every possible mode combination have to be taken into24

account. Therefore, we design the 2D Single Normal Mode25

View (SNMV) that allows the biochemists to explore normal26

modes in a summarised and systematic fashion. It provides an 27

overview of all the normal modes and their influence on the 28

protein spheres composing the tunnel. We choose to focus the 29

analysis on the tunnel spheres instead of tunnel-wide measure- 30

ments (e.g., tunnel length, curvature, or bottleneck radius) as 31

biochemists need amino acid-wise definition in inferring sub- 32

strate pathing or functional mechanisms. To solve this task, 33

geometrical measurements of the tunnel under the influence of 34

normal modes are displayed in the SNMV in the form of a ma- 35

trix (see Figure 2a). The x-axis represents the available nor- 36

mal modes, primarily ranked by their respective frequencies, 37

the slowest one being located on the far left of the matrix chart. 38

The y-axis represents each sphere forming the tunnel, going 39

from inside of the protein (top) to the outer environment (bot- 40

tom). Each matrix cell represents a value for the selected mea- 41

surement (e.g., sphere radius) by color. Hovering a given cell, 42

the users will be displayed the exact information about the cor- 43

responding mode, the sphere number, and all the geometrical 44

measurements relevant for the particular tunnel part. 45

Summarizing the geometrical measurements of the tunnel 46

under all possible normal modes requires a fast approach for 47

displacing the tunnel. To this end, our solution proposes to 48

inspect each normal mode with the following method. For 49

each one of them, the initially calculated amino acids which 50

are forming the tunnel boundaries (called tunnel lining amino 51

acids) are displaced following the flexible motions at the user- 52

defined amplitude. Then, the initial tunnel is reconstructed 53
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around the displaced amino acids. The displaced tunnel recon-1

struction process consists of moving each initial tunnel sphere2

along the direction of the normal mode displacements. Each3

initial tunnel sphere center is displaced by the average flexi-4

ble displacement of all of its surrounding amino acids and the5

reconstructed sphere radius is adjusted to the shortest distance6

to the displaced amino acid atoms. Ultimately, the geometri-7

cal measurements of the reconstructed tunnel are calculated by8

comparing each tunnel sphere variations from the initial one.9

The above-described method ensures an efficient summariz-10

ing of the tunnel spatial properties under the influence of all11

the individual normal modes, and supports the domain experts12

in visually isolating probable functional ones (T4). To even13

further assist the biochemists in exploring and selecting rele-14

vant normal modes across their whole space in a quantitative15

fashion, we design sorting features based on the tunnel and the16

normal modes (T6). The normal mode sorting heavily utilizes17

the overlap method described in Section 2 with Equation 6. For18

each normal mode, the overlap involvement value (or similar-19

ity) with another input vector field is calculated.20

On the one hand, the sorting approach can be based on the21

tunnel. Although reconstructing the displaced tunnel with the22

previously described calculation is fast, it is still too compu-23

tationally expensive for the interactive sorting of the modes24

needed here. Consequently, only vibrational displacements of25

the tunnel lining amino acids are considered. Therefore, we26

build the input vector field such that it would approximate our27

desired behavior – representing the largest change in tunnel28

sphere size.29

On the other hand, the users can utilize the sorting approach30

which is based on a broader analysis of the normal mode space.31

Upon selecting a normal mode of interest – e.g., a normal mode32

resulting in biochemically relevant motions of the tunnel -– the33

biochemists can obtain a fast comparison with all of the other34

modes in the space. The sorting will run, for all the protein35

α-carbon atoms, a pairwise overlap comparison between the36

different mode vectors (see Equation 6, with di being here the37

displacement vectors of another normal mode).38

Ultimately, the modes are highlighted based on their overlap39

values ranking as a recommendation to the end-users. Simi-40

larly to the idea of scented widgets [32], we show this informa-41

tion directly on the column headers using color, with the red-42

most mode being the most influential and the yellow-most the43

least. Based on this ranking, the normal modes can be subse-44

quently reordered by their average overlap values directly in the45

SNMV, placing the most influential mode on the left and mak-46

ing it straightforward to select (see Figure 5).47

As a result, biochemists can rapidly identify the normal48

modes that can putatively greatly impact their tunnel (T4) and49

thus explore a larger number of normal modes than with the50

already available normal mode visualization tools.51

4.2. Combined Normal Mode View52

Upon identifying the important normal modes in the SNMV53

the biochemists require access to combinations of these selected54

normal modes. In Equation 1 the phases δk indicate how the55

normal mode direction vectors are applied with one another.56

Indeed, through Equation 3, the phases are taken into account in 57

exploiting the linearity and the vector directions (as in, adding 58

in the same directions, canceling out in opposing directions). 59

Therefore, it is crucial to consider all possible combinations of 60

modes as they are key to allow studying more complex motions 61

(T4). 62

Therefore, we designed and implemented the Combined Nor- 63

mal Mode View (CNMV) that presents the combinations of se- 64

lected modes. This view is, similarly to SNMV, based on a 65

heatmap representation (see Figure 3). As discussed in the pre- 66

vious section, the geometrical measurements detailing the tun- 67

nel are computed using an identical method but considering the 68

combined mode vectors. 69

Fig. 3: The selected Combined Normal Mode View. Columns describe the
mode phases representing arbitrary directions for each of the normal mode in
the dataset, while rows indicate the tunnel sphere numbers from the calcula-
tion starting point (in) to tunnel exit (out). Sphere radius difference values are
displayed on the chart, with strong violet representing an increase and green a
decrease. Opening spheres of the tunnel mid-section and their corresponding
mode combinations are highlighted with additional black rectangles.

The x-axis displays each considered combination of the pre- 70

viously selected normal modes while considering their different 71

positive or negative phases. The y-axis represents each sphere 72

forming the tunnel, starting inside of the protein (top) to the 73

outer environment (bottom). Consequently, biochemists have 74

access to an exhaustive view of the reduced space formed by the 75

selected relevant normal modes influencing the tunnel geome- 76

try and can quickly verify the putative tunnel-wide dynamics as 77

well as the corresponding protein-wide dynamics on the linked 78

3D View. 79

4.3. 3D View 80

While the SNMV and CNMV, described in previous sections, 81

provides an overview of the normal mode space exploration, 82

they also completely abstract the spatial characteristics of the 83

protein. Therefore, the 3D View can be used to strengthen the 84

understanding of the influence of the normal modes on the tun- 85

nel and allows to spatially resolve this information (T1, Fig- 86

ure 2e). We designed our tool to allow the biochemists, by in- 87

teracting with the other views, to access and depict the amino 88

acids surrounding a individual tunnel spheres. Further, any ge- 89

ometrical measurement is directly mapped onto the tunnel sur- 90

face, thus unlocking the precise spatial resolution of an influ- 91

ential normal mode on the tunnel (T4, T5). We used color to 92
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represent this quantitative attribute, as position, shape, and size1

of the tunnel spheres are reserved for tunnel visualization.2

Additionally, the 3D View functionalities also focus on pro-3

tein normal mode features and their analysis. As mentioned4

in Section 2, the squared fluctuations inform the biochemists5

about the variance in vibrational motions under a single nor-6

mal mode or a combination of modes (see Figure 4b and Equa-7

tion 4). We choose to encode this quantitative attribute with8

color, as position, shape, and size of structure atoms are re-9

served for other biochemical attributes. Here, red corresponds10

to low and blue corresponds to high squared fluctuation values,11

respectively. The squared fluctuations grants fast and effective12

access to overall protein flexible motions (T3) and inform bio-13

chemists about the prevalent structure mechanisms.14

(a) (c)

(b)

Fig. 4: The protein structure (PDB ID 1SU4) represented as a grey wire trace
with the static 3D visualizations of the normal modes. Gray circles depict mag-
nified details for each representation. 2a: The whole loaded normal mode set
cross-correlations filtered by 0.97 absolute value. The yellow sticks indicate a
strong correlation of the headpieces and that the individual helices are forming
correlated clusters throughout the transmembrane region (bottom part). Addi-
tional affine arrows by Bryden et al. [24] indicate the large scale dynamics of
the subdomains, here for mode 7. 2b: mode 7 squared atomic fluctuation val-
ues mapped onto the structure - blue displays high movement variances and
red low movement variances. 2c: mode 7 vector field arrow representation.
Arrow items are colored in bright orange for visibility and their magnitude de-
scribes the motion amplitudes while the protein is represented as gray secondary
structure elements. Alternative representations can be interactively switched or
combined.

Subsequently, the selected mode vector field representation is15

available (T1, T3). Even though it is tedious to fully grasp the16

motions solely from the vector field, this visualization enhances17

the previously presented fluctuations as it enriches the fluctua-18

tion color mapping by providing a notion of the direction and19

can also be used when an animation is not possible (e.g., pa-20

per publication) (see Figure 4c). The displacement vectors are21

displayed for each amino acid at atoms used during the normal22

mode calculation (e.g., α-carbon atoms) and are represented by23

orange arrows in the direction of the vibrational displacements.24

Alternatively, and to circumvent the shortcomings of state-25

of-the-art vector field representation, users have access to affine26

arrows from the method introduced by Bryden et al. [24], which27

model the motion by aggregating the arrow vectors of each 28

amino-acid in the different protein subdomains (see Figure 4a). 29

Also, all the normal mode amino acid cross-correlations are 30

available and can be displayed onto the protein structure (T2) 31

(see Figure 4a). The correlated amino acids are linked in the 32

3D View by sticks. Users can choose a threshold to display 33

only the highest correlated motion values. 34

While the biochemists can depict static information regard- 35

ing the normal modes, by coloring the protein structure or tun- 36

nel it the 3D View, they also require more dynamical analyses, 37

which are described in the next subsection, to better understand 38

motions and mechanisms. 39

4.4. Vibrational Trajectories 40

As already discussed, the biochemists are often interested in 41

protein motions when studying its function (T1). The state- 42

of-the-art fashion of visualizing atom motions described by the 43

normal modes is through examining their vector fields. How- 44

ever, understanding the protein mechanisms purely from vector 45

arrows is not an easy task. Therefore, we generate protein tra- 46

jectories to animate the normal mode harmonic motions of the 47

atoms. 48

The normal modes vectors are obtained from atomic dis- 49

placements around the initial structure. Thus, the obtained vec- 50

tors indicate a direction in the 3D space for a vibrational motion 51

rather than an actual displacement. Taking this into account, 52

the trajectory for a single normal mode is generated as follows. 53

Each particle is iteratively displaced in the normal mode direc- 54

tion using an increasingly larger scaling factor in each step to 55

ultimately reach the user-selected scaling amplitude and thus 56

create a trajectory. The number of steps (or snapshots) is a user- 57

defined parameter and represents a simple sampling along the 58

linear vectors. By default, we generate 4 snapshots in the pos- 59

itive directions and 4 in the negative ones. The initial structure 60

is placed in the middle of the resulting trajectory. 61

To gain insight into the studied protein function, biochemists 62

require analyzing the influence of normal modes on tun- 63

nels (T3). As presented in Section 2, normal mode data can be 64

obtained from all-atom or coarse-grained (CG) computations. 65

However, to compute the protein tunnels, we need information 66

about the movement of all atoms. As this information is not 67

present in CG computations, we designed an algorithm to re- 68

construct the movements of the missing atoms. It is done as 69

follows; for each α-carbon atom along the protein sequence, 70

its two respective neighbors on both sides are selected to com- 71

pute the transformation between the corresponding atoms in the 72

original and generated trajectory snapshot. The transformation 73

is then applied to all the amino acid atoms around the currently 74

evaluated α-carbon atom. 75

As explained before, it is not enough to consider normal 76

modes separately but the domain experts also need to investi- 77

gate their combinations (T1). To generate the vibrational tra- 78

jectories for combinations of normal modes, we use a similar 79

approach. The only difference is that, before the vibrational tra- 80

jectory creation, the normal mode directions are combined (see 81

Equation 3) and the resulting direction is used. 82
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5. Case Study1

In evaluating the usefulness of the proposed solution, we fo-2

cused on a total of three case studies – one in the main text and3

two in the supplementary material. We started with SERCA14

Ca-ATPase and α7 Nicotinic Acetylcholine Receptor. To thor-5

oughly compare our results with the initial work, we made sure6

that the PDB structures we used in these two studies were the7

same as the ones in the respective literature. This way, we8

avoided any potential bias when comparing our results. We9

used only one initial conformation for the analysis in order to10

prove the ability of our tool to achieve the same results as con-11

ventional tools that could require multiple input conformations12

(T6). Once validated on the original data, we used our ap-13

proach also on the GLIC ligand-gated ion channel, with more14

recent structures, to investigate whether our method captures15

the modes involved in transitioning from the closed to the open16

conformation of the protein. The results from the second and17

third case studies are described in the supplementary material.18

The normal modes for all proteins were computed using19

WEBnm@ [21] tool which uses coarse-grain normal mode cal-20

culation and the dataset consists of 200 normal modes and their21

frequencies, in a format as presented in Section 2.22

As described in Section 2 structural biochemists are investi-23

gating cues on the motions of protein sub-parts to conclude on24

their mechanisms of actions. We thus investigated the dynamics25

of the protein and tried to match them with possible functional26

displacements. To achieve so, we looked at which of the protein27

domains were highly influenced by the protein flexibility (T1).28

Also, in bridging between protein dynamics and function, we29

were interested in the correlated nature of the displacements to30

confirm or infer concerted protein mechanisms (T2). To further31

research any functional link, we computed the relevant tunnel32

using Caver Analyst [16] and focused on the sorting features to33

explore the influence of various combinations of normal modes34

on the known functional tunnel (T3).35

In the case studies, the obtained results were systematically36

compared with the literature in order to assess the tool’s correct-37

ness. This analysis proved the capability of our solution to sup-38

port domain experts in identifying possibly functional modes39

from a single structure (T4, T6). Also, upon different putative40

results presented below, we were able to detect new hypoth-41

esizes regarding the metabolite access mechanisms inside the42

core of the protein. These results were, due to the limitations43

of the existing workflows, either not considered or considered44

merely briefly without any quantification in the previous stud-45

ies.46

5.1. SERCA1 Ca2+ ATPase protein47

The transmembrane protein SERCA1 Ca-ATPase (PDB ID48

1SU4) is responsible for moving two calcium ions, through its49

core, from the inside of the cell to the outside. It consists of50

many different functional domains which can be mainly sepa-51

rated into two groups; the upper part of the structure, inside the52

cell (called the headpieces, see Figure 4) controlling the molec-53

ular machinery, and the transmembrane helices, the lower part54

of the structure, containing the ion pathways. The main tunnel55

pathway was chosen and computed based on the work of Møller 56

et al. [48] and Bublitz et al. [49]. 57

Firstly, concerning the link between the protein function and 58

the loaded normal modes, we analyzed how the different dy- 59

namics collaborate on the protein-wide scale (T2). Here we 60

used our tool to compute and display the correlations between 61

the movement of individual amino acids considering all nor- 62

mal modes. Through the 3D View, we could easily identify the 63

link between the movements of the headpieces and the motions 64

of the transmembrane helix clusters, as the dynamical domains 65

stand out with the correlations (see Figure 4a). We thus inferred 66

the role of actuators for the headpieces in linking the displace- 67

ments down through the protein transmembrane core. 68

As a second step, we needed to investigate the displacements 69

of the headpieces, and thus link them to functional modes to 70

understand the intrinsic mechanisms of the metabolite trans- 71

fer through the protein (T1). Knowing that the first non-trivial 72

normal modes (sorted by their frequency) are always the most 73

important [6], we visualized their squared atomic fluctuations 74

separately on the 3D View. In comparison to the existing ap- 75

proach where the fluctuation is depicted in line chart as a func- 76

tion of amino acids (e.g., WEBnm@ [21]), our approach using 77

color mapping onto the 3D structure (see Figure 4b) provides 78

information about the parts of the molecule that are influenced 79

by the individual normal modes without the necessity to know 80

their spatial position a priori. Here we identified modes 7, 8 im- 81

pacting the headpiece of the upper right domain, whilst modes 82

9, 10, 11, and 12 are influencing the headpiece of the upper left 83

domain (for mode 7, see Figure 4b, blue color part). 84

As mentioned earlier, the lowest frequency normal modes are 85

well related to functional motions. Nevertheless, in order to un- 86

derstand how the protein works, we needed to isolate the most 87

functional normal modes and by doing so, identify which pro- 88

tein domain motions could play a key role in its function (T4). 89

Since the protein tunnel is directly responsible for the protein 90

function, we used the tunnel dynamics as the guidance for the 91

analysis. We used the tunnel squared overlap measurement pre- 92

sented in Section 2 to identify relevant modes. In Figure 5, sev- 93

eral non-trivial modes are identifiable — with strong purple col- 94

ors and values of localized squared overlap. The heatmap repre- 95

sentation strengthens the overall analysis of the normal modes 96

in comparison with existing techniques as it is more straightfor- 97

ward to identify the modes strongly impacting each sphere of 98

the selected functional tunnel (T4) without having to precisely 99

analyze the modes separately. Even more so, in using the fil- 100

tering and sorting features in the SNMV it was easy to identify 101

the key normal modes. Here, the normal modes 7, 8, 9, 10, 13, 102

14, 15, and 19 were resulting from a filter threshold of squared 103

overlap values. As the values are depicted for each sphere, we 104

could easily observe which of these modes is influencing the 105

biologically relevant tunnel mid-section susceptible to play a 106

role in the metabolite pathing (spheres 24 to 42). Among these 107

modes, the ones numbered 9 and 10 were the most impactful 108

for the tunnel mid-section, stressing their role in mediating the 109

ion access to the protein core. 110

The same normal modes were identified in the work of Reuter 111

et al. [50], especially modes 9 and 10, described by the litera- 112
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Fig. 5: Single Normal Mode View of the dataset. Columns describe the modes
while rows indicate the tunnel sphere numbers, from the calculation starting
point (in) to tunnel exit (out). Squared overlap values are displayed on the chart
with strong purple representing high mode involvement. The sorting is applied,
with modes ranked and colored by their average involvement over the whole
tunnel. Modes 13 and 19 are highlighted with additional black rectangles.

ture as twisting the transmembrane helices for the former, and1

displacing the headpiece domain for the latter. However, to re-2

late the observed displacements to the protein function, Reuter3

et al. [50] studied the contribution of each low-frequency mode4

to the difference between two known active conformations of5

the studied protein. It resulted only in modes 7, 8, and 15 con-6

tributing the most to the functional change of protein confor-7

mations. Although precisely describing the observed motions8

of the aforementioned modes 9 and 10, in linking the modes to9

the structural protein domains, in their study, the authors could10

only formulate hypotheses about their quantified involvement11

with the protein function as they were not highlighted by the12

contribution method used. In utilizing our tool to isolate the13

highest values of the squared overlap, we could perform the14

analysis faster and only from one loaded protein structure and15

its normal mode calculation. Moreover, we were able to easily16

localize and quantify the influence of the normal modes on spe-17

cific parts of the tunnel which was not possible before without18

tedious manual work.19

Finally, to further steer the exploration of the large normal20

mode space, we utilized the sorting approach of the modes in21

the SNMV. As already mentioned, Figure 5 presents the rank-22

ing of the normal modes based on their impact on the tunnel.23

Here the modes 7, 9, 8, 11, and 10 have the highest contribution24

values. Using this view we also isolated modes 19 and 13 ex-25

hibiting a high squared overlap per each tunnel spheres but be-26

ing ranked quite low on the sorting with respect to the overlap27

value for the whole tunnel. As we wanted to explain this behav-28

ior, we switched the coloring of the chart to tunnel sphere radius29

changes. We could immediately see that the mode 19 is display-30

ing localized positive and negative radius values in the vicinity31

of the functional tunnel mid-section (see Figure 6). Identifying32

such mode within the whole normal mode set – let alone de-33

scribing its possible combination with other modes – would be34

impossible with the current state-of-the-art normal mode visu-35

alization tools.36

As such behavior is of possible biological relevance we de-37

cided to study the mode 19 further. We thus wanted to scru-38

tinize precisely the most favorable normal mode combinations39

Fig. 6: Single Normal Mode View of the dataset. Columns describe the mode
indices while rows indicate the tunnel sphere numbers, from the calculation
starting point (in) to tunnel exit (out). Tunnel sphere radius change values are
displayed on the chart with strong violet representing an increase and green
a decrease. The sorting is applied, with mode indices ranked and colored by
their average involvement over the whole tunnel. Opening spheres of the tunnel
mid-section and mode 19 are highlighted with an additional black rectangle.

that would enhance the motion described by mode 19. We uti- 40

lized the alternative sorting approach (described in Section 2) 41

to highlight the other normal modes based on their calculated 42

similarity with mode 19. The system recommended a subset 43

of modes, with modes 7, 9, 8, and 16 for their probable en- 44

hancement of mode 19, and we also selected the mode 10 as it 45

stood out as impacting the tunnel mid-section from the above 46

presented analysis. 47

To further analyze the narrowed normal mode combinations 48

and their impact on both the overall protein structure and its 49

functional tunnel, we displayed the Combined Normal Mode 50

View (Figure 3) with the tunnel sphere radius change measure- 51

ment. In comparison to the existing approach where the domain 52

experts generate different protein models with multiple ampli- 53

tudes and phases using modeling tools (e.g., [13]) to visualize 54

the possible impact of a combination on the protein structure 55

in another tool (e.g., [25]), our solution provides information 56

about the parts of molecule and its tunnel that are influenced 57

by the combination of normal modes in an integrated feedback 58

loop where users can select and modify their normal mode com- 59

bination choice and directly visualize their impacts on the pro- 60

tein without the necessity of a tedious analysis across several 61

tools. Here, we focused on the first tunnel spheres, close to 62

the ion-bindings site, and the midsection of the tunnel (spheres 63

numbers 24 to 42), representing the biological relevant tun- 64

nel mid-section. Ultimately, we could isolate the normal mode 65

combinations displaying the strongest opening of the particular 66

spheres (high violet values in Figure 3) and visualize the puta- 67

tive realistic motions on the linked 3D View to further explore 68

a precise metabolite gating and binding mechanism. 69

6. Conclusion and future work 70

Our solution deals with high dimensional data and allows its 71

exploration to gradually build an understanding of field-related 72

concepts. It was developed with biochemists’ tasks in mind. 73

We implemented a set of linked 2D and 3D views to ease their 74

work; without the necessity of using multiple tools separately to 75

assess protein functional mechanisms. To demonstrate the use- 76

fulness of our tool, field experts conducted several case studies 77
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using a dataset of protein structures and their normal mode cal-1

culations. The case studies corroborated that our solution can2

be used to address the identified tasks (T1-T6).3

However, interactive and computationally cost-effective4

analysis often comes at the expense of limitations. Despite dis-5

playing the normal mode properties for fast access to dynami-6

cal studies, and comparing them with one another to infer the7

most functionally relevant ones, we have to stress that our sys-8

tem is oriented on the datasets involving key protein tunnels9

for metabolite pathing. Also, some preliminary studies are re-10

quired to investigate the protein atoms involved in the pathing11

mechanism before being able to probe the protein larger func-12

tional motions. Nevertheless, the power of our tool can be used13

in a two-fold manner. Either the biochemists know the func-14

tional tunnel before the analysis and want to draw conclusions15

on the protein mechanics and large functional motions, as de-16

scribed in Section 5. Or, if the field experts do not know the17

precise location of any functional tunnel, upon running a tun-18

nel computation (using Caver Analyst or MOLE 2.0 [16, 15])19

our tool unlocks the possibility to quickly analyze these tun-20

nels based on the protein flexibility as described by the normal21

modes. This allows biochemists to further explore individual22

tunnels and draw conclusions on the metabolite pathing from23

the generated realistic motions. Also, we believe that several24

techniques described in this paper are of interest to the broader25

visualization community as the normal mode decomposition is26

used in other domains than biology (e.g., physics). Namely,27

the way we designed the predictors for determining the normal28

mode influence on the tunnel (i.e., using overlap computation)29

could be easily extended to other problems as long as the re-30

quired behavior can be described by vector fields. Alternatively,31

our fast algorithm for tunnel reconstruction can be of interest to32

other visualization researchers working on representing tunnels33

in molecular dynamics simulations as it provides an approxi-34

mation of the tunnel dynamics.35

For the future, we plan to further extend the Combined Nor-36

mal Mode View. Indeed, in this view, all the selected mode37

combinations are scrutinized, making it a more computationally38

challenging task for a larger number of selected modes. We plan39

to investigate a possible smart sampling, biased with the most40

prominent mode combinations, that will further narrow the rel-41

evant normal mode space which will be strongly linked to the42

protein function.43
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