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Abstract

Barrio et al. (Journal of Philosophical Logic, 49(1), 93—-120, 2020) and Pailos
(Review of Symbolic Logic, 13(2), 249-268, 2020) develop an approach to define var-
ious metainferential hierarchies on strong Kleene models by transferring the idea of
distinct standards for premises and conclusions from inferences to metainferences.
In particular, they focus on a hierarchy named the ST-hierarchy where the inferen-
tial logic at the bottom of the hierarchy is the non-transitive logic ST but where each
subsequent metainferential logic ‘says’ about the former logic that it is transitive.
While Barrio et al. (2020) suggests that this hierarchy is such that each subse-
quent level ‘in some intuitive sense, more classical than’ the previous level, Pailos
(2020) proposes an extension of the hierarchy through which a ‘fully classical’
metainferential logic can be defined. Both Barrio et al. (2020) and Pailos (2020)
explore the hierarchy in terms of semantic definitions and every proof proceeds by
a rather cumbersome reasoning about those semantic definitions. The aim of this
paper is to present and illustrate the virtues of a proof-theoretic tool for reasoning
about the ST-hierarchy and the other metainferential hierarchies definable on strong
Kleene models. Using the tool, this paper argues that each level in the ST-hierarchy
is non-classical to an equal extent and that the ‘fully classical’ metainferential logic
is actually just the original non-transitive logic ST ‘in disguise’. The paper concludes
with some remarks about how the various results about the ST-hierarchy could be
seen as a guide to help us imagine what a non-transitive metalogic for ST would
tell us about ST. In particular, it teaches us that ST is from the perspective of ST as
metatheory not only non-transitive but also transitive.
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1 Introduction

[1] and [2] develop an approach to define various metainferential hierarchies on
strong Kleene models by transferring the idea of mixed inferences to the metainfer-
ential level. In particular, their investigations reveal that a particular hierarchy named
ST is definable where the inferential logic at the bottom of the hierarchy is the
non-transitive logic ST advocated by [3] and [4] but where each subsequent metain-
ferential logic ‘says’ about the former logic that it is transitive. While [1] suggest that
this hierarchy provides metainferential logics where each subsequent level is ‘in some
intuitive sense, more classical than’ the previous level, [2] proposes an extension of
the hierarchy through which a “fully classical’ metainferential logic can be defined.
Both [1] and [2] explore the hierarchies from a semantic perspective and every proof
proceeds by a rather cumbersome reasoning about those semantic definitions.

The primary aim of this paper is to develop and illustrate the use of a proof-
theoretic tool obtained by combining ideas from nested sequent calculi with labelled
sequent calculi for reasoning about ST and the other metainferential hierarchies
definable on strong Kleene models. To that purpose, Section 2 presents the approach
to metainferential hierarchies on strong Kleene models developed by [1] and
Section 3 presents a “labelled nested” sequent calculus based on the definitions pro-
vided in Section 2. This tool is then employed to make some remarks about [1]’s
metainferential hierarchy ST and [2]’s ‘fully classical’ metainferential logic. In par-
ticular, it is shown in Section 4 that each level in the ST hierarchy is non-classical to
an equal extent, a result which is extended in Section 5 to the ‘fully classical’ metain-
ferential logic presented by [2]. Moreover, it is also shown that every metainference
of the ‘fully classical’ metainferential logic is equivalent to an inference of the origi-
nal non-transitive logic ST, and that the former is thus the latter ‘in disguise’. Finally,
the paper proposes in Section 6 that the hierarchy ST can fruitfully be understood as
a tool to help us imagine what ST would tell us about ST if ST is used as metatheory
where the most interesting observation being that ST is from the perspective of ST
both transitive and non-transitive.

2 Language and Models

This section presents the language and models that will form the basis for the proof
theory.

Definition 2.1 (The language) Let £ be a propositional language based on a count-
able set of propositional variables, a nullary connective A, a unary connective — and
the binary connective V. Let FORML £ be the set of formulas of L.

We shall use upper case Latin letters A, B etc as metalinguistic variables for for-

mulas in general and lower case Latin letters p, g etc as metalinguistic variables for
propositional variables.
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Metainferential reasoning on strong Kleene models

In addition to having formulas that are assigned values and can satisfy certain stan-
dards on strong Kleene models, we are interested in metainferences as objects that
can satisfy certain appropriate standards on strong Kleene models, that is, as objects
that can feature in a satisfaction relation. Following [1] we will define a hierarchy of
metainferential objects as follows using the notation [... = .. .]:

Definition 2.2 (The metainferential objects)

- If Ay,...,A, and By,..., B, are formulas of L, then [A{,..., A, =
By, ..., B,]is a metainferential object of level 0

- If Xy1,...,X, and Yq,...,Y, are metainferential objects of level k then
[X1,..., X, = Y1,..., Y,]is ametainferential object of level k + 1.

Metainferential objects can thus be seen as binary connectives that applies to sets
of objects. They are however not part of £ even if they contain objects from FORM.
Moreover, while one might be tempted to add numerals to the objects in order to
identify its level, this is not necessary since X; in [X1,..., X, = Y1,..., Y] will
be an object of the previous level if the level is > 0 or a formula if the level is 0.

Definition 2.3 (Strong Kleene valuations) A function V : FORML,y — {1, %, 0} is
a strong Kleene valuation just in case V(A) = % and the following conditions are
satisfied for every complex formula:

1 VA =1lorVB) =1 1 VA =0
VAVB)=40 VA =0andV(B)=0 V(A =10 VA =1
% otherwise % V() = %

Following [5], a formula on trivalent models can be either strictly or tolerantly
satisfied. This is made precise as follows:

Definition 2.4 (Satisfaction of formulas)

— VIrg Aifand only if V(A) =1
~ Vi Aifand only if V(A) € (1, 1)

[1] extends the notion of satisfaction from formulas to metainferential objects
using a hierarchy of metainferential standards based on the strict-tolerant distinction.
Informally presented, the idea is as follows:

— A formula can satisfy one out of two standards, s and ¢.

— A metainference of level 0 can satisfy one or more out of four standards, sz, ts,
ss and 71.

— A metainference of level 1 can satisfy one or more out of sixteen standards:

—  Stst,tsst, ssSt, ttst
—  Stts, tsts, sSsts, ttts
—  StSS, 1858, 8888, LSS
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—  Strr,tste, sste, tett

— A metainference of level 2 can satisfy one or more out of 256 standards which
we shall not list.

An inductive definition can thus be given as follows:

Definition 2.5 (The standards)

— s and ¢ are formula standards.

— if x and y are formula-standards, then xy is a metainferential standard of level 0.

— if x and y are metainferential standards of level n, then xy is a metainferential
standard of level n + 1.

Following [1], the notion of satisfaction can now be extended as follows:

Definition 2.6 (Satisfaction of metainferences) If [I°” = A] is a metainferential
object of level n and xy a metainferential standard of level n, then,

Vibyy [I' = Aliffsome X e I, VI, Xorsome Y € A, VIR, ¥

Finally, validity for the various inferential and metainferential logics is now
defined as follows:

Definition 2.7 (Validity) I' k,, A iff forevery V, VI, [I" = A]

Unsurprisingly, the various inferential and metainferential logics definable on
strong Kleene models recently discussed in the literature fall out of this definition.
We shall in general refer to a particular logic through its standard, e.g. the logic s¢
or the logic #sst. There is however one logic definable on strong Kleene models that
is not captured by this approach and which on occasion is discussed in the literature,
e.g. by [6], namely that definable using < as follows: I" F A iff every V is such that
min(V(A) € I') < max(V(B) € A). This is an acceptable limitation considering the
aim of this paper.

3 The HST Calculus

This section presents a sequent calculus representing metainferential hierarchies on
strong Kleene valuations based on the definitions provided in the previous section.
The hierarchical strict-tolerant calculus will be a labelled sequent calculus in the
sense that the rules will not manipulate formulas directly as in the case of a standard
sequent calculus, but rather labelled formulas and labelled metainferential objects.
To that purpose we shall introduce one label for each standard to thereby obtain
labelled formulas (e.g. s:A) and labelled metainferential objects of the form x:[I" =
A] where I and A will be formulas if it is a metainferential object of level 0 and
metainferential object of level n if it is a metainferential object of level n + 1. Since
the calculus will thus contain expressions that look like standard sequents nested
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Metainferential reasoning on strong Kleene models

within each others, it can also rightly be described as a sequent calculus for nested
sequents. It is thus a labelled nested sequent calculus.

While the calculus is straightforwardly modified to also include the addition of so-
called “antivalidities” as introduced into the debate by [7] and thus also capture the
arguments presented by [7], such modifications are purposely left out to keep things
simpler and more straightforward. The reader with an interest in such issues is invited
to make the appropriate amendments.

Definition 3.1 (Typed sequent expression)

— If Aisaformula and x € {s, t}, then x:A is a sequent expression of type (0, x)

- Ifx:Xy,...,x:X, are sequent expressions of type («, x) and y:Y7, ..., y:Y,, are
of sequent expressions of type (¢, y) then xy:[Xy,..., X, = Y1,...,Vp]isa
sequent expression of type (o + 1, xy).

For a sequent expression of type («, x), we refer to « as the level and x as the
standard. We shall use x : X to refer to an arbitrary sequent expression of any type.
Moreover, we let X x) and Y4, y) designate finite multisets of sequent expressions
of type (&, x) and («, y) respectively. We also let X designate the multiset obtained
by removing labels from the members of X4 ), 1.e. X = {X | x:X € X(¢ x)}. Note
also that it follows from the notation that a metainference of level n is represented by
a sequent expression of level n + 1.

The following are examples of typed sequent expressions.

st:[A, AV B = B] tt:[AV B = A, B]
tsst:[[A = A]l,[= AV B] = [A = B]]
ttst:[= [= Al [A =]

tsstitss:[[[A = Al,[= -AV B]= [A= B]]| = [= [= A, [A =]]]

As the examples suggest, it will be increasingly difficult to read the sequent expres-
sions in order to decipher their level and thus their meaning. Luckily the construction
is compositional and we are in general only interested in the inductive steps from
level n to level n + 1.

Definition 3.2 (The HST calculus) Let HST be the sequent calculus obtained
with the following rules where sequents are pairs of multisets of typed sequent
expressions.

Initial sequents:

s:p, ' = A,s:p s:p, ' = A, t:p t:p, I’ = A, t:p
Rules for sequent expressions of level O:
xA,I'=> A xA T = AVL = A,x:A,x:BVR
xAVB, = A I' => A, x:AV B
I'=> A x:A x:A,T'= A
AT S AW EY p oA REEY
— AL — AR
ssA, = A I'= A, t:A
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Rules for sequent expressions of level > 0:
I'=s A, x:X forevery x:X € Xy yY,I'=> A forevery y:Y €Yy y
xiX=Y],I'= A
XKoo, I'= A Yy
I'=> A xy:[X=Y]

[=]L

[=]RrR

This calculus is well-behaved from the perspective of structural proof theory as
elucidated by [8] and [9]. In particular, we have the following lemmas and theo-
rems where each proof is obtainable through a straight-forward adaptation of the
corresponding proof in [9].

Definition 3.3 (Derivation height) The height of a HST-derivation D, H(D) is
defined inductively as follows.

— If D is an initial sequent or conclusion of a zero-premise rule, then H (D) = 0.
— If D is obtained with an «-premise rule from derivations D; for 0 < i < «, then
H(D) =sup; ., (H(D;) + 1)

We’ll say that a rule is height-preservingly admissible (HP-admissible) just in case
whenever there is a derivation of the premise-sequent with height n then there is a
derivation of the conclusion-sequent with height < n.

Lemma 3.4 (Weakening and contraction) The following rules are HP-admissible in
HST:

I'= A x: X, x: X, '=> A I'= A x:X,x:X
I, Ir= A, A xX, = A I' = A, x:X

Proof The proofs are obtained by slight modifications on the proofs of proposition
4.4 and theorem 4.12 in [9]. O]

Lemma 3.5 (Inversion) The inversion of each primitive HST-rule is HP-admissible
in HST.

Proof Proof is a modification of proposition 4.11 in [9]. O

Definition 3.6 (Formula complexity) The complexity of a L-formula A,|A], is
defined inductively as follows:

— If A is an atomic formula, then | A |= 0
— If Ais of the form =B, then | A |=| B | +1
— IfAisoftheform Bv C,then| A|=| B |+ | C | +1.

Definition 3.7 (Expression weight) Suppose that x:X is a sequent expression.
Then the weight of X, W(X), is defined as follows: if X is a formula A, then
W(A) =|A| and if X is a metainferential object [I" = A], then W([I" = A]) =
DverWI) + >y VX)) + 1.
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Metainferential reasoning on strong Kleene models

Theorem 3.8 (Cut) The following rule is admissible in HST:

I' = A x:X xX, I'= A
rr=saua

Proof By double induction on the weight of X and the sum of the heights of the
derivations of the premise-sequents. See theorem 4.13 in [9]. O

Definition 3.9 (Sequent validity) A sequent I" = A is valid just in case there is no
valuation V such that

— for every typed sequent expression x:X € I', V I-, X
— for every typed sequent expression y:Y € A, V¥, Y

Theorem 3.10 (Completeness) A sequent I' = A is valid if and only if I’ = A is
derivable in HST.

Proof The right-to-left direction proceeds as usual by induction on the height of
a derivation. The left-to-right direction proceeds as usual via the construction of a
reduction tree for every underivable sequent from which a countermodel for that
sequent is extracted. We present here a few details from the latter proof.

Assume that I" = A is underivable. It follows that we can construct a tree above
it by applying the rules of the HST calculus backwards until each branch ends with
a sequent containing only labelled propositional variables and labelled 1’s. At least
one branch will be such that the leaf is not an initial sequent or a zero-premise rule of
the HST calculus. We pick such a branch B and define a function V from the set of
propositional variables of £ to {1, 0, %} as follows where I'" = A’ is the leaf-sequent
of B:

— forevery s:pin I'', V(p) = 1,
— forevery t:pin A', V(p) =0,
— otherwise, V(p) = %

The definition of V is extended to complex formulas and A in accordance with def-
inition 2.3. The satisfaction relation I is defined in accordance with definitions 2.4
and 2.6. We can now show by induction on the complexity of a formula that for every
I'"= A" eB:

— Ifx:Aerl”thenV Ik, A.
— Ifx:A € A" thenV ¥, A.

It is left to show by an induction on the set of standards from definition 2.5 that also
the following statements hold for every I’ = A" € B:

- Ifxy:[I" = A'leI' thenV Ik, [T = A].
- Ifxy:[I" = A'le A then V }¥,, (= Al
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With I' = A € B, it follows that for every typed sequent expression x:X € I,
V IFy X and for every typed sequent expression y:¥Y € A, V ¥, Y.V is thus a
countermodel for the sequent I” = A. O

Corollary 3.11 = xy:[I" = Al is derivable if and only if I" =y, A

Before we dive into the perhaps more serious applications of this proof-theoretic
tool, we shall first provide a few illustrations of its immediate usefulness. As a first
curiosity we shall show that the inferential logic defined with the standard st is
nontransitive using the admissibility of cut.

Lemma 3.12 (Nontriviality) For every label xy, sequent = xy:[ = ] is not
derivable.

Proof The empty sequent follows by inversion, but the empty sequent is excluded by
design. O

Lemma 3.13 (st is inconsistent) The sequents = st:[ = A] and = st:[A = ] are
derivable.

Proposition 3.14 (st is nontransitive) The sequent st:[ = A], st:[A = | = st:[ = |
is underivable.

Proof If that sequent is derivable then theorem 3.8 and lemma 3.13 together imply
that = st:[ = ] is derivable but this is excluded by lemma 3.12. O]

With inspiration from [10], we have thus shown the nontransitivity of a logic
typically defined proof-theoretically by rejecting cut using the admissibility of cut.

In fact, we actually have a tool which can be used as a “metasequent” calculus for
the four logics st, ts, ¢t and ss. In the case of s¢, for example, the following sequents
are derivable:

= st:[A, I = A, A]
st:[I" = A, A] = st:[-A, [ = A]
st:[A, I = Al = st:[I" = A, —A]
st:[A, " = Al st:[B, " = Al = st:[AV B, ' = A]

st:[I"' = A, A, Bl = st:[I" = A, AV B]

One can now use cut to obtain every sz-validity, where then each application of cut
corresponds to one application of a rule in the standard two-sided sequent calculus
for st such as that presented by [3].

Moreover, we can use the sequent calculus to illustrate the relationships between
the logics st, ts, ss and ¢t familiar from the literature. For example, we can show
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Metainferential reasoning on strong Kleene models

that a certain instance of transitivity holds in st just in case a corresponding instance
reflexivity holds in ¢s with the following derivations:

S:A, 1A = s:A 1A= s:A A
rAssAstAs] DR TAS e st Al {ji
stst:[[ = AL [A=]=],t:A = s:A
[=]rR

stst:[[ > AL [A = 1= 1= ts:[A = A]

LA, sti[A=> = 1:A (=R s:A,st:[ = Al = 1A (=R
st:[ = Al st:[A=]=t1:A s:A, st [ = Al st [A=>] =
ts:[A = Al st:[ = Al st:][A=>]1=
ts:[A = Al = sisti[[ = AL [A= 1= ]
To provide further familiar facts about the logics (and also for some propositions

in the next section), the following lemma for transforming labels will be useful.

[=]L

[=1R

Lemma 3.15 (label transformation) (a) If A is a formula, then following rules are
HP-admissible:

A, T = A I' = A, s:A
sA T =4 ML = a4 /R
(b) If X is a sequent expression of level I, then the following rules are HP-
admissible:
xt: X, ' = A sx: X, ' = A
xs X, [ = 4 Vst X, I = a SR
I'=> A, tx:X I' = A, xs:X
= A, sux WOR A nx WAIR

Proof The proofs straightforwardly follow the general strategy in structural proof
theory to show the height-preserving admissibility of a rule.

Regarding (a), we prove t/sL and s/tR simultaneously. We here focus on t/sL.

Base case: Assume O - t:A, I' = A.If A is a propositional variable and :A € A,
then s:A, I’ = A is also an initial sequent. If I’ = A is an initial sequent or
an instance of zero-premise rule, then s:A, I" = A is also an initial sequent or an
instance of a zero-premise rule and thus O - s:A, I" = A holds.

Inductive step: Assume n+1 = t:A, I' = A.If t:A is principal and of the form
—B, it follows that n = I" = A, s:B. By the inductive hypothesis we obtain n
I' = A, t:B and by one application of =L we obtain n+1 + t:=B, " = A. The
case for VL is similar. If 7:A is not principal, the sequent is obtained with some k-
premise rule R and it is thus the case that n - 1:A, I'' = A’ for every i < k. We
apply the inductive hypothesis to obtain n - s:A, I'' = A’ and one application of
R delivers n+1 F s:A, I’ = A.

Regarding (b) we proceed as follows, focusing only on the case of tx/sxR. Assume
n+l =TI = A, tx) [T = Al Iftx:[I" = A]is principal, thenn + t:I', I’ =
A, x:A. By (a) we obtain n + s:I', ' = A’ x:A and finally n+1 + I =
A',sx:[IT = A] by the relevant rule for introducing the desired expression. If
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tx:[I" = A]is not principal, then the sequent in question is obtained with some k-
premise rule R and it is thus the case that n + ' = Al tx:[I" = A] for every
i < k. We apply the inductive hypothesis to obtain n - I'' = A’ sx:[I" = A] and
then apply R to obtain n+1+ I'" = A, sx:[I" = A]. O

This lemma has two immediate corollaries. The first concerns the relationship
between valid inferences in the four logics as familiar from [5].

Corollary 3.16 (Relationships between st, s, ss and tt) The following sequents are
derivable:

ts: X =>tt:X ts: X =>s55:X t1:X =s5t: X s5s:X=st:X

The second concerns the relationship between inferences of st and ts on the one
hand, and formulas that are tolerantly and strictly satisfied on the other hand.
Corollary 3.17 The following rules are admissible were x # y:

xy:[A1,..., Ay =1 B1,....,By], [T = A
yimAIV...VoA, VB V...VB,, [ = A

I' = A xy:[A1,..., A, =1 Bt, ..., Byl
I' = A, y:—A1V...V2A, VB V...V By

Proof By inversion and straightforward applications of the relevant rules. O

An immediate consequence of that corollary is the following result by [11] and
[12]:

Proposition 3.18 The following rule is admissible:

The corresponding result for ¢s as presented by for example [13] is obviously also
available:

Proposition 3.19 The following rule is admissible:

= ss:(—Alv...v=AlvBlv. VBl .. —Akv  v=AR VBEV. VBE = A V.. =Ap VBV, VB,

What is interesting here is not the fact that these propositions hold about the four
logics st, ts, tt and ss, but the ease with which we have obtained them using proof
analysis.
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Metainferential reasoning on strong Kleene models

4 Approximating Classicality with the ST-Hierarchy?

The results in the previous section concerned only inferences and metainferences,
not inferences of metainferences and so forth. Given the generality of our calcu-
lus, it should be clear that we can also use it to prove facts about “higher-order”
metainferences. To illustrate that we shall have a look at what we can say about the
ST-hierarchy of metainferential standards presented by [1]. The basic idea with the
hierarchy is to “reproduce” the “sz-phenomenon” at a metainferential level by defin-
ing a hierarchy of metainferential standards where the standard for being a premise
in a sound inference is stricter than the standard for being a conclusion. For our pur-
poses, we can replicate the hierarchy of standards with labels using the following
definition:

Definition 4.1 (The ST-hierarchy) The set of labels ST is defined inductively as
follows:

- st eST
— Ifxy € ST then yxxy € ST

The standard for metainferences of level 1 is thus tsst as opposed to the standard
stst, and for metainferences of level 2 we have the standard st¢stsst as opposed to
the standard tssttsst. We will use ST, to refer to the nth level in ST, so that ST is
st, STy is tsst, and so on.

What is interesting about ST according to [1] is that “in some intuitive sense,
TS/ST is classical to a greater degree than ST”, and moreover that we obtain at each
ST,+1 a “metainferential” logic which is supposedly more similar to classical logic
than ST, because stage n is according to stage n + 1 transitive. To illustrate this,
consider the following observation about #sst:

Proposition 4.2 (tsst concerns a transitive logic) The following sequent is derivable:

=tsst:[[T = A AL A, T = A= [T = A, A

Proof We have for every formula A a derivation of the following form:

' = .l 5:A = s5:A s:A = 1A (=L : :
(=1L ts:[IF = A, AL t:I = 5:A,t:A t: I = I’ s: A = 514
ts: [l = A, Al ts:[A, T = A, t:T 1T = 5:A,s:A'
ts:[lC = A, Al ts:[A, T = Al ts:[[, T = A, A]
We then proceed as follows using label transformation:

ts:[IF = A, Al ts:[A, T" = Al=ts:[[, T = A, A']
ts:[IT = A, Al ts:[A, T = Al = ss:[[, " = A, A']
ts:[IF = A, AL ts:[A, T = A= st:[[, T = A, A']

= tsst:[[T = A, AL [A, T = A=, T = A, A]]

[=]R

tx/sxR
xs/xtR

O
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While reasoning from st to st is nontransitive, reasoning from ¢s to st is transitive.
To extend this observation to each standard in ST we shall use the following lemma:

Lemma 4.3 (Cut-elimination for ST) Suppose that xy € ST. Then the following rule

is admissible:
I' = A, x:X v:X, "= A

rr'=sauA

Proof Base case (=ST) (Simplified by omitting contexts):

1A =

= 5:A S:A = UsL
=

cut

Inductive step (Simplified by omitting contexts and some branching): Assume
that it holds for xy. Then it also holds for yxxy by applying inversion and then the
inductive hypothesis:

= yx:[I" = A] xy:[I' = Al =
xy:i ' = Al = yvil' = x:A yviA =
= x:I il =
=

O

Proposition 4.4 (Every stage in ST is a reflexive logic) If xy € ST, then =
xy:[X = X]is derivable

Proof
x:X = x:X yX =yX
x:X = y:X
= xy:[X = X]

Lemma 4.3
[=]r

O

Proposition 4.5 (Every stage in ST concerns a transitive logic) If yxxy € ST, then
= yxxy: [[I" = A, X],[X, " = A] = [I" = Al]] is derivable

Proof
x:I' =yI X:A=y:A x:X =yX (=1L
x:I' =y:.I’ x:A = y:A x:X,yx:([X, I = Al,x:[",=>y:A (=1L =
yx:[I' = A, X],yx:/[X, [ = Al,x:I", =y:A [>]R
yx:[I' = A, X],yx:[X, " = Al = xy:[I" = A] (=R

= yxxy: [T = A, X, [X, [ = Al= [ = A]]
O]

Again, while these observations are already made by [1], our proofs thereof
are obtained using proof analysis. In particular, the key ingredients are our cut-
elimination theorem in 3.8 and the label transformation lemmas. Our proofs are thus
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arguably more elegant and easier to read than those presented involving semantic
reasoning by [1].

In addition to establishing the fact that each stage is a reflexive “metainferential”
logic which concerns a transitive “metainferential” logic, we can also establish that
each stage is inconsistent, again using proof analysis.

Lemma 4.6 (Inconsistency is inheritable in ST) For every xy € ST, if xy is
inconsistent then yxxy is inconsistent.

Proof The following pieces of reasoning are admissible:

= xy:[X =]
x:X = (=1L Inv. of [= R = xy:)[ = X] (=R
yx[= X] = (=R = yxxy:[ = [ = X]]

= yxxy:[[ = X] =]

With st being inconsistent, the following proposition follows:
Proposition 4.7 For every xy € ST, xy is inconsistent.
Finally, we obtain thus the following:

Proposition 4.8 (Non-classicality of every stage) For every yxxy € ST the
following sequents are derivable for some expression X :

= yxxy [ =[= X]] S yxxy[=[X=1]
= yxxy:[I"' = A, X, [X, "= Al = [I" = A]]

The conclusion should thus not be that each level is classical to a greater extent
than the previous level as we transcend up in the hierarchy as if the next level takes us
closer to classical logic (even if we never reach classical logic), but rather that each
stage is non-classical to the same extent. This should not be too surprising consider-
ing how each stage in the hierarchy is a s¢-ish logic for the previous stage obtained
by what amounts to a strict-tolerant standard for that stage.

5 A “fully classical” Metainferential Logic?

Following the observation that no stage in the ST-hierarchy is classical, [2] presents a
way to “recovers every classically valid metainference of every level”. This consists
in defining a collection of metainferences STw of any level in such a way that we
can understand it “as the union of” each x € ST. In this way then, we are supposed
to obtain a “fully classical” (metainferential) logic. In the concluding remarks in [2],
it is observed that
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there still is plenty work to do in relation to these logics and truth theories. For
example, it seems not easy to imagine a proof theory for them [2].

As it turns out, it is straightforward to extend the HST calculus to a sequent calculus
for STw. Let us thus proceed with the definitions. In [2], a definition of STw is
provided which is equivalent to the following:

Definition 5.1 Suppose that X is a metainference of level j > 0. Then X € STw if
and only if for every V, V Ist; X.

This definition can fruitfully be split into two stages as follows:

Definition 5.2

(a) Suppose that X is a metainference of level j > 0 and V is a strong Kleene
valuation. Then V' I, X if and only if V It X.
(b) X € STw if and only if for every strong Kleene valuation V, V I, X.

We proceed now to define the extended sequent calculus. To that purpose we first
extend the definition of sequent expressions.

Definition 5.3 (Extended typed sequent expression) If x : X is a sequent expression
of type (o, x) where o > 0, then x : X and w : X are extended sequent expressions.

It follows that w:A where A is a formula is not an extended sequent expression
whereas w:[I" = A] where [I" = A] is a metainference of any level > 0 is an
extended sequent expression.

Definition 5.4 (Extended HST calculus) Let EHST be the sequent calculus obtained
by expanding the HST calculus with the following rules where x € ST, x # st and
X is a metainference of level x:

XX, [ = A = AxX

oX.T =A% = A wox “}

The adequacy of the rules for w is immediate by considering clause (a) in
definition 5.2. The various lemmas and theorems for HST transfers to EHST by
appropriately extending the various definitions.

Lemma 5.5 (Weakening and contraction) The following rules are HP-admissible in
EHST:

I'= A xX,xX, "= A I'= A, x: X, x:X
' Ir=A A4 xX, I = A I = A, x:X

Lemma 5.6 (Inversion) The inversion of each primitive EHST-rule is HP-admissible
in EHST.
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Theorem 5.7 (Cut) The following rule is admissible in EHST:

I' = A, x:X x: X, I''= A
"= A, A

As above in the HST-calculus, cut-elimination does not imply that a metainferen-
tial logic defined with the calculus is transitive. A reasonable question to ask now is
thus whether w really is a “fully classical” metainferential logic?

Proposition 5.8 Reasoning in w about metainferential levels in ST is not transitive.

Proof By proposition 4.6 it follows that for any metainferential level, there is an X
such that:
= w:[ = X] = w[X =]
By cut-elimination, it follows that the sequent
wl' = A, X],w:[X, ' = Al = w:[I" = A]

is not derivable. O]

It follows that w is not “more” classical than anything in ST. In fact, we can show
that w is st in disguise.

Definition 5.9 (Notation) Let X <«— Y mean that the following rules are

admissible:
X, I'= A r=AX

Y I'= A =AY

With the rules for introducing a metainference having the same shape as the rules
for introducing a formula of the form (Ag A ... A A,) D (Bo V...V By,) where A
and D are defined as —(—A VvV —B) and —A V B respectively, it is relatively evident
that we can engage in a process of flatting metainferences. For example, it follows by
corollary 3.17 that the following claims hold where I" O A abbreviates (Ag A ... A
A;) D(BgV...V By) where A; € I' and B; € A:

st:[I"' = Al«—t:I" D A
ts:)[I" = Al «— s:I' D A
With that established we proceed to observe the following:
tsst:[[I = Al ..., [Ty = Al = [T = AL ... [T, = 4,1
“«—

st DAL ..., [ DA =T DA, ..., T, DAl
‘We shall here illustrate how to establish the left rule. First, we note that for each
[I7 = Al
tsst:[[I = Aql, ..., [l = A= [T = A, 5, = 4,11=
=>ts: [ = Aj]
=s5:1; D A;
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Correspondingly, we obtain that for each [I7/ = A’]:
tsst:[[I = Aql, ..., [T :An]i[rl/:}A/l] ----- [F,:, :A;n]]:
st [l = Al =
t: !> A =

The desired conclusion is now obtained by the introduction an s¢-metainference.
Let us thus provide some definitions and a more general result:

Definition 5.10 (Hierarchical reduction) If [T = A] is a metainference of level
n + 1, then [I5 = A5] is the metainference of level n obtained by replacing each
metainference [ = A’] of level 0 in [I” = A] with the formula I’ D A’.

The above transformation of a tss¢-metainference to a s¢-inference illustrates this
definition in action.

Proposition 5.11 For every yxxy € ST, yxxy:[I" = A] «— xy:[I5 = A-5]
Proof By induction on the levels. O

Definition 5.12 If [ = A] is a metainference of level n then [T g = A%] is the
result of performing an hierarchical reduction n times on [I" = A].

A metainference of the form [Fg = A%] is thus simply an inference.

Theorem 5.13 (w is st in disguise)

[ = A] < st:[I0 = AY)]
Proof Tterated applications of proposition 5.11. O

To make sense of this theorem, it is useful to observe that w does not, despite its
label, represent a limit. Instead, it is simply a collection of metainferences of various
levels. Every metainference of @ will be of a particular finite level, and can thus be
reduced according to proposition 5.11. Moreover, and with that in mind, this result
shouldn’t actually be particularly surprising considering how the ST-hierarchy and w
is defined and how for example ¢ss¢ is the metainferential analogue of st since ts is
a stricter standard than st in the same way as s is a stricter standard than 7.

6 Imitating st as Metatheory
Since we have used the proof-theoretic tool developed in this paper to illustrate prob-

lems with the interpretation of the ST-hierarchy proposed by [1] and [2], it seems
appropriate to use the concluding remarks of this paper to engage in some speculation
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about whether we can utilise the results obtained with the tool to provide an alterna-
tive interpretation of the ST-hierarchy, and whether this could be used to make sense
of st.

The flatting of the ST-hierarchy into st suggests that ST-hierarchy is merely a
metainferential twist on the sz-phenomenon, as if the ST-hierarchy doesn’t tell us
anything that we couldn’t already express within s¢, and one could thus argue that
the hierarchy is somehow superfluous.

On the other hand, precisely because the ST-hierarchy is representable within sz,
it is perhaps not too incredulous to suggest that the ST-hierarchy can actually tell
us something about how it would be to reason within st about s¢, that is, how it
would be to use st as metatheory for s¢, and thus what st looks like from the per-
spective of st. Contrary to the received wisdom and thus awkwardly enough, this
amounts to looking at the material conditional of st to learn more about st. While
some initial scepticism is certainly warranted, we have shown that we can represent
the ST-hierarchy with the material conditional in sz, so if the ST-hierarchy tells us
something about st as a metatheory for sz, then surely valid inferences about the
material conditional in st would tell us what st as metatheory would tell us about s¢.

With that in mind we can reason as follows. Under the assumption that the valid
inferences about the material conditional in st represent the metainferences that hold
of st within sz, st is transitive according to st. In other words, according to st it is
the case that the inferences from anything to the liar and from the liar to anything
together imply that anything follows from anything. This observation corresponds to
that made by [14] with regard to a validity predicate defined in st along the lines of
the material conditional. From the perspective of a classical metatheory according to
which st is non-transitive, that claim is false, and [14] considered their observation
as presenting a problem for such an approach to defining a validity predicate in st.
However, we are no longer supposed to think of st from the perspective of classical
logic. Instead, we are considering st from the perspective of s¢, and what if st really is
transitive when st is the metatheory for s¢? After all, st is non-transitive from within
a classical metatheory because assuming otherwise leads to inconsistency. With st as
metatheory, however, the inconsistency is not an issue, and it follows that st can be
transitive according to st.

Continuing down the rabbit hole then, we also note that st tells us about s¢ that
anything implies the liar and that the liar implies anything. Now, does it follow, since
those facts imply that anything implies anything, that anything implies anything? On
the one hand, we can find formulas A and B such that =(A D B) follows from no
premises, a fact which is reasonably interpreted as that it is not the case that anything
implies anything. On the other hand, we have cases such as =(A D A) and (A D 1)
which are both valid according to st. Taking each statement to represent an inference
as suggested above, there are thus inferences that are both valid and not valid in
st according to st. From the perspective of st then, it seems reasonable to think of
transitivity of entailment in the same way; that it is (metainferentially) valid, but there
are counterexamples. While a classically minded referee would certainly protest at
this point since being valid and having a counterexample are supposed to be ‘at least
contraries’, such a protest would just illustrate the uphill battle faced by an advocate
of paraconsistent metatheory as generalised to include metainferences. Indeed, could
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the moral be that you're free to apply transitivity when reasoning within st about s¢
as long as you’re willing to accept that the conclusion you draw is a dialetheia?
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