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Abbreviation  Explanation 

AChE Acetylcholinesterase 

AGD Ameobic Gill Disease 

EC50 Effective median Concentration 

H2O Water 

H2O2 Hydrogen peroxide 

HC5 Hazardous concentration for 5% of species 

LC50 Lethal median Concentration 

Log Kow Octanol-water partition coefficient  

MRL Maximum Residue Level 

Na+ Sodium 

O2 Oxygen 

OCR Oxygen Consumption Rate 

PNEC Predicted No Effect Concentration 

SSD Species Sensitivity Distribution 
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SUMMARY 

I present new knowledge on the toxicity of three major bath treatment 

chemotherapeutants used in Norway. Previously, regarding the toxicity studies of 

hydrogen peroxide (H2O2) alone, a total of twelve non-target crustaceans have been 

examined across the globe, but only five species were relevant for the Norwegian 

marine ecosystem. The present study applied laboratory experiments to assess the 

toxicity of this chemotherapeutant to three non-target crustacean species that play a 

crucial role in the Norwegian marine ecosystem, bringing a better understanding of the 

risk posed by H2O2. Hydrogen peroxide has long been labeled as the most 

environmentally friendly bath treatment in use for the salmonid industry. It has also 

been considered that it poses little to no threat in terms of lethality to non-target 

crustaceans such as lobster, shrimps or crabs (Burridge et al., 2014; Gebauer et al., 

2017). However, papers I, II and III show that the recommended H2O2 concentrations 

used by the salmonid industry across the globe are lethal to non-target crustaceans. 

Through the creation of species sensitivity distribution curves (SSD), this thesis 

identified the Northern krill (Meganyctiphanes norvegica) as the crustacean species that 

is most sensitive to H2O2 of those that have been tested so far. By including the 

sensitivity of six phyla other than the arthropods, this thesis takes a broader perspective 

on the impact of H2O2 on the marine environment. The hazardous concentration of H2O2 

for 5% of the species (HC5) derived from the available toxicity data for marine species 

is 5.11 (1.52 – 16.15) mg/L. As SSD curves are a central tool for ecological risk 

assessments, showing the different sensitivities and variations between species, it is 

crucial that this tool continues to be used for the risk assessment of the other 

chemotherapeutants.  

Deltamethrin and azamethiphos have a detrimental effect on European lobster larvae 

(Homarus gammarus) in laboratory experiments (Paper IV). One-hour exposure to 

deltamethrin proved to be more toxic than H2O2 and azamethiphos to both stage I and 

stage II H. gammarus larvae. By examining the toxicity of all three chemotherapeutants 

to a single species this thesis, in combination with the results from previous studies, 

proposes a ranking of the toxicity of deltamethrin, H2O2 and azamethiphos based on the 

difference between the median lethal concentrations LC50 (Papers II & IV). With the 
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available data from other studies, the toxicity ranking for Norwegian relevant species 

is: deltamethrin > H2O2 > azamethiphos.  

This thesis has also shown the importance of coupling sub-lethal studies with more 

conventional toxicity studies (Papers I & II). It was shown that behavior parameters 

linked with the predator avoidance and escape response of the European lobster 

juveniles and the copepod Calanus spp. were affected following short-term (1 h) 

exposures at concentrations ≤85 mg/L H2O2 (i.e. 5% of the recommended treatment). 

All three chemotherapeutants induced immobility at concentrations considerably lower 

than the reported lethal values. Furthermore, in paper IV the calculated effective 

median concentration EC50 values for both deltamethrin and azamethiphos were 

considerably lower than the reported LC50 values based on mortality. 

The results from the hydrodynamic model presented in paper IV plus the lethality 

findings from papers I, II and III coupled with both field studies and models should 

be considered by regulatory authorities in Norway and can be an important tool for other 

salmonid producer nations when carrying out future environmental risk assessments of 

H2O2, deltamethrin and azamethiphos. These results should thus be used to evaluate the 

potential risks associated with the expansion of salmonid aquaculture into new 

locations. To have a better understanding of the risks of these chemotherapeutants in 

the Norwegian marine environment, further studies should evaluate their broader 

impact by assessing chronic or pulse-like exposures that are certainly closer to real life 

delousing scenarios where multiple pens are treated over a cumulative period of time. 

Likewise, data from the flushing of well-boats should also be included in new 

hydrodynamic models, as this bath treatment method dilutes the effluent of waste 

treatments and thus reduces its environmental impact (Ernst et al., 2014).  

Overall, this study has shown that the recommended H2O2, deltamethrin and 

azamethiphos concentrations used by the salmonid industry have a detrimental effect in 

the survival of the non-target crustaceans Calanus spp., H. gammarus and M. norvegica.  
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INTRODUCTION 

Global aquaculture has seen a rapid increase in the past 35 years with a rise in 

production from 5.2 million tons in 1981 to 110.02 million tons in 2016 (FAO, 2018). 

Salmonids are the most farmed marine fish with a global production of 2.6 million tons 

in 2016 (FAO, 2018). Furthermore, farmed Atlantic salmon (Salmo salar) represents 

more than 90 percent of the market, generating approximately 1.4 billion US dollars in 

revenue per year (Brauner et al., 2012). Norway is the world’s largest salmon producer 

followed by Chile and Scotland, with over 950 farms along its coastline and 1 million 

tons of salmon produced annually since 2011 (Norwegian Directorate of Fisheries, 

2020; SSB, 2020), making farmed salmon a major component of the Norwegian 

economy.  

The expansion in the production of Atlantic salmon in Norway has long raised 

concerns on its impact on the environment such as the negative impact on wild salmonid 

populations, the release of nutrients and chemical pollution, as well as the spread of 

diseases and parasites (Taranger et al., 2015; Liu et al., 2017). Salmonid aquaculture 

sites are distributed along the entire Norwegian west coast (Krkošek et al., 2013). The 

high number of fish or in this case hosts in the farms leads to high densities of parasites 

in areas of intensive aquaculture activity compared to farm-free areas (Krkošek et al., 

2005; Serra-Llinares et al., 2014).  

The ectoparasitic copepod known as the sea lice is one of the most important 

challenges for the salmon industry, having the greatest economic impact on the industry 

(Costello 2009; Torrisen et al., 2013). Abolofia et al. (2017) estimated the cost of sea 

lice to the industry to be US$301 million, equivalent to 8.81% of the total production 

for the same year. In 2011, the financial loss due to sea lice infestations was estimated 

to be US$334 million for the Norwegian industry alone by Liu and Bjelland (2014), but 

this was slightly low compared to calculations by Abolofia et al. (2017) pointing to a 

financial loss of US$436 million equivalent to 8.7% of the industries’ total production 

for the year 2017.  

Sea lice are crustacean copepods in the family Caligidae that are naturally 

occurring parasites of marine fish populations. In Norway, Lepeophtheirus salmonis is 

the major challenge for the salmonid industry, although unusually large numbers of 
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Caligus elongatus have been reported in infestations in the northern regions of the 

country (Hemmingsen et al., 2020). Caligus rogercresseyi is a challenge for the Chilean 

industry. The most important difference between L. salmonis and Caligus spp. is that 

while L. salmonis is a parasite restricted to salmonids, Caligus spp. is less specific about 

its host. These species see their dispersal being limited by the natural low host density. 

However, this changed with the start of intensive salmonid farming providing the ideal 

conditions for the growth and dispersal of the parasites (Torrissen et al., 2013; Aaen et 

al., 2015). As it happens with any other agricultural and aquaculture activity, the high-

density conditions observed in the salmonid industry net pens have led to a high 

occurrence of parasitic infections. Roth et al. (1993) observed that in areas where the 

salmonid industry was not present, the hosts presented fewer lesions due to the low 

number of parasites. Nevertheless, changes in the coastal ecosystems where aquaculture 

has become predominant, place wild salmonid populations at risk of parasite 

transmission (Krkošek et al., 2006).  

The sea lice L. salmonis life cycle comprises eight stages, each separated by a 

molt (Hamre et al., 2019). Eggs are carried in a pair of strings (100-1000 eggs) which 

are extruded from the abdomen of the adult female (Costello, 1993). The first two stages 

are planktonic naupliar larvae. The planktonic and non-feeding larvae go through 

extensive morphological changes for about 5 to 15 days, depending on temperature, 

before molting into the third, infective stage that will later attach to the host using the 

second antennae that serve as small hooks. Studies suggest that copepodids could use 

water-borne chemical cues to recognize hosts (Bailey et al., 2006). Before molting into 

the chalimus stage, the copepodids develop a special frontal filament, which is then 

used to stay attached to the host. The remaining five stages develop on the host and are 

strictly dependent on the host’s skin for food (Hamre et al., 2013). The chalimus stages 

I and II are followed by two pre-adult stages that can move freely over the host’s skin. 

It is these pre-adult stages that cause the most harm to the salmon, which culminates at 

the adult phase of the louse.  

Infected salmonids can suffer from substantial physiological and pathological 

consequences, which are highly dependent on the number and developmental stage of 

the L. salmonis (Torrisen et al.,2013). For the Atlantic salmon, the combination of 
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mobility and feeding behavior of the pre-adult and adult parasitic copepods, is the main 

cause for most of the severe consequences of the infection (Finstad et al., 2000). The 

parasite feeds on the mucous, skin and blood of the host with the use of rasping mouth 

parts, resulting in skin erosion and sub-epidermal hemorrhaging (Costello, 2006). In an 

infection, the host fish can suffer from reduced appetite, changes in swimming behavior, 

reduced growth, reduced osmoregulatory and respiratory ability; all indications of a 

stressed and weakened fish (Costello, 2006). The transfer of sea lice from domesticated 

fish to the wild populations occurs through two major pathways, either from infected 

farmed escapees or from close proximity with an infected farm (Krkošek et al., 2009). 

Though effects from an infection can be characterized as sub-lethal, they may 

eventually be fatal for wild salmonid smolts migrating through the fjords where the 

farms are situated (Birkeland, 1996; Costello, 2009; Torrissen et al., 2013; Serra-

Llinares et al., 2014; Aaen et al., 2015).  

In the last 25 years, severe annual sea lice infestations on migrating post-smolts, 

wild sea trout (Salmon trutta) and arctic char (Salvelinus alpinus) has been reported in 

Norway (Finstad & Bjørn, 2011). The negative impact of sea lice infestations on the 

survival of wild Atlantic salmon post-smolts is, therefore, a contributing factor in the 

decline of wild populations in Norway (Skilbrei et al., 2013; Torrisen et al., 2013). The 

severity of sea lice infestations on salmonid post-smolts depends on the size and 

condition of the fish (Wagner et al., 2003, 2008; Heuch et al. 2005; Tveiten et al., 2010; 

Thorstad & Finstad, 2018). Overall, 0.04-0.15 lice per g fish weight reduces the 

swimming ability and increases stress levels of the Atlantic salmon (Wagner et al. 2003; 

Tveiten et al., 2010). Wagner et al. (2008) described that ~11 sea lice per fish can kill 

a wild smolt of 15 g. Another study indicated that post-smolts presenting > 10 lice 

would suffer higher mortalities (Heuch et al. 2005). The negative impacts of lice on 

wild populations also include delayed growth and delayed sexual maturation (Grefsrud 

et al., 2019).  

 

Anti-sea lice treatments  

Due to its vast coastline and high number of suitable inland habitats for salmon, 

Norway has the highest number of spawning rivers for wild Atlantic salmon (Liu et al., 
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2011), and therefore is home to most of the remaining wild populations. Through the 

Convention for the Conservation of Salmon in the North Atlantic Ocean (NASCO, 

1982), Norway has the international responsibility to protect the remaining wild 

populations of Salmo salar. In Norway, the number of farmed salmon exceeds the 

number of wild ones, with an estimated ratio of 1 to 728 farmed harvested salmon in 

2015 (Norwegian Directorate of Fisheries, 2018). This, increases the risk of diseases 

and parasite infestations for salmonid wild populations in areas with high density of 

aquaculture sites (Bjørn et al., 2001; Krkošek et al., 2005). Monitoring and controlling 

the parasite is therefore vital not only to minimize the losses in the industry and improve 

the welfare of the farmed fish, but also to protect the wild salmonid populations from 

negative effects associated with salmonid aquaculture.  

To control the sea lice infestations in the farms and minimize the pressure on the 

wild stock, strict regulations have been put in place. The Salmon Lice Directive (FOR-

2012-12-05-1140, 2020) requests that a plan for prevention and treatment of sea lice is 

prepared for each farm. The permitted number of sea lice per fish, according to the 

Norwegian authorities (2012), is 0.2 adult female or three mobile parasites per fish 

between 1 January and 31 August, and 0.5 adult female or five mobile individuals 

during the rest of the year. In order to comply with these regulations, the industry has 

relied on chemotherapeutants, but lately there have been development of alternative 

methods (Grefsrud et al., 2019). Alternative methods include mechanical delousing 

systems such as: the Flatsetsund Engineering AS system that removes the lice through 

pressure washers, the SkaMk system using brushes, and the Hydrolicer ® system which 

uses the inverse turbulence principle to remove the lice from the salmon (Overton et al., 

2019). Other alternative methods to reduce lice infestation include the use of plankton 

shielding skirts, snorkel cages (Aaen et al., 2015; Geitung et al., 2019), and thermal 

treatments Thermolicer® and Optilicer® in which the salmonids are exposed to water 

temperatures of 20-34ͦ C (Grøntvedt et al., 2015; Roth, 2016). However, negative effects 

on the fish have been observed with the use of mechanical methods, including gill 

bleeding, skin wounds and increased mortality (Hjeltnes et al., 2018). Finally, a 

biological alternative is the use of cleaner-fish, including wrasse species (Labridae sp.) 

and lumpfish (Cyclopterus lumpus) (Imsland et al., 2014; Skiftesvik et al., 2014). 
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Though several non-chemical methods are being used and new technologies are being 

developed, chemotherapeutants are still used in Norway as well as in the other salmon 

producing countries (Grefsrud et al., 2019).  

Chemotherapeutants tailored to combat sea lice are either applied as a bath 

treatment (hydrogen peroxide, organophosphates or pyrethroids) or in-feed treatment 

(emamectin-benzoate or flubenzurons). Two different approaches are in use for the bath 

treatments. One is by surrounding the cages with an impervious tarpaulin and mixing 

the solution directly into the enclosure and the other is by transferring the salmonids to 

well-boats. The recommended doses are then added, and the recommended treatment 

time is followed. Once the treatment is over, the chemotherapeutants are discharged 

into the surrounding environment (Burridge et al., 2014). This will potentially affect 

non-targeted species that are present in the resulting plume of the discharged chemicals. 

Indeed, hydrogen peroxide (H2O2), deltamethrin and azamethiphos as delousing 

agents, can negatively impact other species than the sea lice, i.e. non-target species. 

Crustaceans are at a higher risk as these chemotherapeutants, especially deltamethrin 

and azamethiphos, were tailored to remove sea lice, a crustacean. The extensive use of 

chemotherapeutants including the bath treatments over the years, has led to 

development of sea lice with reduced sensitivity towards one or several 

chemotherapeutants in heavily treated areas (Aaen et al., 2015). This initiated a practice 

in which the frequency of treatments increased, the dose of the chemotherapeutant 

increased, or two drugs were used in combination, all of which increase the potential 

effect on non-target species. 

The toxicity of these chemotherapeutants to non-target species has been 

reviewed (Urbina et al., 2019). Acute toxicity studies often involve 24, 48 or 96h 

exposure periods, which do not necessarily reflect the exposures expected to occur in 

the marine environment following the discharge of chemotherapeutants from fish farms 

(Ernst et al., 2001; Ernst et al., 2014; Urbina et al., 2019). Previous studies have 

observed that 1-3 h exposures occur during chemotherapeutant plume dispersion, 

therefore shorter exposure times, i.e. 1 h, can be more realistic as they can generally be 

expected from a single pen release (Ernst et al., 2014). There is a need for toxicity 

studies to be performed under more environmentally relevant exposure periods; few 
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studies have followed shorter exposure times thus making a direct comparison between 

results of the chemotherapeutants toxicity difficult. Moreover, there is a lack of 

information concerning species relevant to Norwegian marine ecosystems even in 

relatively recent studies (Table 1). Therefore, it is crucial to improve our knowledge on 

the toxicity of chemotherapeutants to non-target crustacean species present in the 

Norwegian ecosystems. Especially important is the assessment of delayed sub-lethal 

effects of bath treatment plumes on these non-target species, resulting from short time 

exposures. Shorter exposure times i.e. 1h followed by a 24h post-exposure time can 

provide a more realistic assessment of the impacts of bath treatment plumes on non-

target species (Medina et al., 2004; Van Geest et al., 2014; Bechmann et al., 2019; 

Frantzen et al., 2020). 

 

Table 1. Summary of toxicity studies on H2O2, deltamethrin and azamethiphos performed on 

non-target marine crustacean species from the North-East Atlantic Ocean.  

 

 

Species Endpoints 
Exposure 

Period 

Post-

Exposur

e Period 

Reference 

H2O2 

 

 

Calanus 

finmarchicus 

Mortality, oxidative 

stress 
96h - 

Hansen et al., 

2017 

Corophium 

volutator 
Mortality 96h - Smit et al., 2008 

Paleamon 

elegans 
Mortality 

1h 

24h 
24h Brokke, 2015 

Pandalus 

borealis 

Mortality 

Behavior  

Embryo 

development 

2h 28 days 
Frantzen et al., 

2020 

Pandalus 

borealis 

Mortality 

Immobilization 

Feeding rate 

Gill histology 

Pulse 

exposures 

up to 12 

days 

Bechmann et 

al., 2019 

Praunus 

flexuosus 
Mortality 

1h 

24h 
24h Brokke, 2015 
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Deltamethrin 

Monocorophiu

m insidiosum 

Mortality 

Biochemical 

responses 

10 days - 
Tucca et al., 

2014 

Palaemon 

serratus 

Mortality 

Swimming velocity 

Liver antioxidant 

status  

Energy metabolism 

Neurotransmission 

96h -  
Oliveira et al., 

2012 

Paleamon 

elegans 
Mortality 

1h 

24h 
24h Brokke, 2015 

Pandalus 

borealis 

Mortality 

Behavior 

Embryo 

development 

Reproductive 

output 

2h 
19-29 

days 

Frantzen et al., 

2020 

Pandalus 

borealis 

Mortality 

Swimming activity 

2h (1x 

pulse) 

2h (3x 

pulse) 

13 days 

48h 

Bechmann et 

al., 2020 

Praunus 

flexuosus  
Mortality 

1h 

24h 
24h Brokke, 2015 

Azamethiphos 

Gammarus spp Mortality 96h - 
Ernst et al., 

2001 

Paleamon 

elegans 
Mortality 

1h 

24h 
24h Brokke, 2015 

Pandalus 

borealis 

Mortality 

Behavior 

Embryo 

development 

Reproductive 

output 

2h 
19-29 

days 

Frantzen et al., 

2020 

Pandalus 

borealis 

Mortality 

Swimming activity 

2h (1x 

pulse) 

2h (3x 

pulse) 

13 days 

48h 

Bechmann et 

al., 2020 

Praunus 

flexuosus 
Mortality 

1h 

24h 
24h Brokke, 2015 

Tisbe 

battagliai 

Mortality 

Developmental 

effects 

7 days - 
Macken et al., 

2015 
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Conventionally, assessments of the acute toxicity of pollutants to non-target 

crustaceans rely on the determination of lethal median concentrations (LC50). However, 

these lethal values only provide a partial measurement of the real magnitude of the 

effects of these chemicals (Desneux et al., 2007). Sub-lethal effects have been defined 

as an impact, either on a physiological or behavioral level, on individuals that survive 

the exposure. Ecologically relevant sub-lethal effects are defined as having an impact 

on the fitness of the individual: ability to grow, survive, and reproduce (Beiras, 2018). 

By influencing these endpoints, sub-lethal effects can have major consequences at a 

population level (Little and Finger, 1990). Sub-lethal endpoints are the first to be 

affected by pollutants and thus sub-lethal effects can occur at concentrations several 

orders of magnitude below the LC50 values (Beiras, 2018). Moreover, behavioral 

endpoints such as predator avoidance, burrowing activity, swimming activity, 

swimming speed, and oxygen consumption rates are possibly the most sensitive 

responses to pollutants (Beiras, 2018). Several behavioral responses in crustacean 

species alter the probability of successful predation. Ohman (1988), divided these 

behavioral responses into three major groups: avoidance behavior (through refuge, diel 

migration cycles, seasonal diapause and locomotor behavior), escape responses 

(through active motility, aggregation, bioluminescence and passive evasion), and 

defense responses (through chemical means and induced morphology). The avoidance 

behavior reduces the encounter probabilities with predators, the escape responses 

minimize the successful attacks, and the defense responses decreases the probability of 

ingestion by a predator. It is critical that the sub-lethal effects on the behavior of non-

target organisms is considered in addition to traditional mortality measurements in order 

to have a better understanding of the real impact of pollutants. It is also important to 

assess whether these concentrations, calculated from laboratory based toxicity tests, are 

likely to threaten the wild non-target populations living in the vicinity of the aquaculture 

facilities. To better understand the environmental risk of these chemotherapeutants, a 

greater knowledge of the possible concentrations around the fish farms is required. 

Presently, there is limited information on the dilution and dispersal of H2O2, 

deltamethrin and azamethiphos in the Norwegian marine environment. 
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OBJECTIVES AND METHODOLOGICAL CONSIDERATIONS 

 

Objectives 

This doctoral thesis is part of the internally financed research project Legemidler og 

Fremmedstoffer (Institute of Marine Research), working to increase the knowledge of 

the risks associated with the discharges of chemotherapeutants from the aquaculture 

industry to the environment. The contribution of my studies to this project was to 

evaluate how bath treatment effluents may impact non-target crustaceans both in the 

water column and in the benthic habitats in proximity of the fish farming sites. To 

achieve this, keystone species of the North Atlantic, the copepods Calanus spp., the 

Northern krill (Meganyctiphanes norvegica) and the European lobster (Homarus 

gammarus), were exposed to the most frequently used anti lice bath treatments; H2O2, 

deltamethrin and azamethiphos. All three chemotherapeutants, H2O2, deltamethrin and 

azamethiphos, are non-specific when used as bath treatments, meaning that they can 

impact several non-target species other than the sea lice. The first objective was to 

elucidate whether these different species have distinct sensitivity when exposed to the 

same chemotherapeutant. 

In Norway, H2O2 is the most used bath treatment but the knowledge around its 

toxicity to Norwegian species is limited. Thus, the first objective of this thesis was to 

answer the first question posed by this work. By calculating the median lethal 

concentration (LC50) of different species exposed to H2O2 it was possible to estimate a 

species sensitivity distribution (SSD) curve, illustrating the different sensitivities to 

H2O2 for species present in marine ecosystems. The second objective was to compare 

how one species, European lobster, responded to the three chemotherapeutants H2O2, 

deltamethrin and azamethiphos. A toxicity ranking was established to elucidate the 

relative toxicity of each chemotherapeutant. The third objective was to quantify sub-

lethal effects to assess the potential extent of the impact of these chemicals. Sub-lethal 

effects such as physiological or behavioral changes due to exposure to a 

chemotherapeutant, can occur at concentrations several orders of magnitude below the 

LC50 (Beiras, 2018). The chosen sub-lethal parameters were oxygen consumption and 

anti-predator behavior, after exposure to H2O2 of Calanus spp. and H. gammarus. The 
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fourth objective was to set the results of laboratory from this works’ experiments into a 

more realistic context. To do this, data from field studies were combined with 

hydrodynamic models to understand the relevance of laboratory experiments in 

comparison to the expected environmental fate of the chemotherapeutants. The four 

aims of this studies can be summarized with the following questions: 

i) Is one chemotherapeutant equally toxic to different marine species? 

(Paper I, Paper II & Paper III) 

ii) Will a single species be equally sensitive to several 

chemotherapeutants? (Paper II & IV) 

iii) Can non-lethal concentrations of hydrogen peroxide have impacts on the 

survival of non-target crustaceans? (Paper I & Paper II) 

iv) Are laboratory toxicity results relevant in real-case dispersal scenarios? 

(Paper IV) 

To answer these questions, the three major chemotherapeutants H2O2, deltamethrin and 

azamethiphos, were chosen for this work. Mortality that occurred within the 1 h 

exposures was defined as acute mortality whereas total mortality was defined as the 

cumulative mortality after 1 h exposure and the 24 and 48 h post-exposure periods. A 

description of the chemotherapeutants, a reasoning for the use of the selected species 

and the methods used in this work are presented below. 
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Chemotherapeutants  

 

Hydrogen peroxide 

Hydrogen peroxide (H2O2) (Fig. 1), was first 

introduced as an anti-sea lice agent in Norway in 1993 

and was in use until 1997 when more efficient 

chemotherapeutants with a higher safety margin were 

introduced, like emamectin-benzoate, cypermethrin 

and deltamethrin (Thomassen, 1993; Kiemer and 

Black, 1997). However, an extensive use of these new 

drugs led to reduced sensitivity in sea lice (Costello, 2009; Aaen et al., 2014) and 

brought back the use of H2O2 in 2010. Available formulations of H2O2 are Nemona® 

(49.5% w/w), Paramove 35® (35% w/w) and Paramove 50® (49.5% w/w) (Grant, 2002). 

In Norway, Nemona® and Paramove50® have marketing authorization. Though the 

mechanism of action of H2O2 on the sea lice is not entirely understood, it has been 

described as mechanical paralysis, inactivation of enzymes and DNA replication, and 

peroxidation of lipid and cellular organelle membranes by hydroxyl radicals (Cotran et 

al., 1989). Studies have suggested that the mechanical paralysis is caused by the 

decomposition of H2O2 into water and O2 bubbles in the gut and haemolymph, resulting 

in the immobilization of the sea lice, causing its detachment from the host and floating 

to the surface (Thomassen, 1993; Bruno Raynard, 1994; Aaen et al., 2014).  

Today, H2O2 is used for delousing purposes in almost all the salmon producing 

countries (Overton et al., 2018), and in many countries, it is also used to treat amoebic 

gill disease (AGD) caused by the Neoparamoeba perurans (Young et al., 2007). If 

untreated, AGD can be potentially fatal for salmonids as it causes multifocal lesions in 

the gills and its transmission has been associated with sea lice infestations (Nowak et 

al., 2010). The recommended dose of H2O2 when used for delousing is between 1500 

and 2100 mg/L with a treatment time of 20-30 minutes depending on the sea water 

temperature, and 1250 mg/L for 20 minutes to treat AGD (The veterinary catalogue, 

Norway 2020). An advantage of H2O2 over other compounds is that its MRL (Maximum 

Residue Level) value is not required and therefore there is no withdrawal period 

Fig. 1 Structural formula of 

hydrogen peroxide (H2O2). 
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between the treatment operation and time of slaughter of the fish (Haya et al.2005). 

Though the consumption of H2O2 has decreased in the past years as a result of reduced 

sensitivity in the sea lice, it is still the most prescribed chemotherapeutant in Norway 

with 4523 tons used in 2019 (Folkehelseinstituttet, 2019) (Table 2).   

The effectiveness of H2O2 against the parasite differs between the different life 

stages of the sea lice: it removes pre-adult and adult stages but is not effective against 

the chalimus stages (Thomassen, 1993; Treasure et al., 2000; Aaen et al., 2014). 

Furthermore, H2O2 also has a detrimental effect on the maturation and reduced hatching 

viability of exposed egg strings of both L. salmonis and C. rogercresseyi (Aaen et al., 

2014; Bravo et al.,2015).  

Table 2. Bath treatment chemotherapeutants used in Norway between the years 2011 and 2019. 

The values are given in kg of active substance, with the exception of H2O2 given in tons (from 

Folkehelseinstituttet, 2019, 2018).  
 

  2011 2012 2013 2014 2015 2016 2017 2018 2019 

Hydrogen 

peroxide 

(tons) 3144 2538 8262 31577 43246 26597 9277 6735 4523 

Deltamethrin 

(kg) 54 121 136 158 115 43 14 10 10 

Azamethiphos 

(kg) 2437 4059 3037 4630 3904 1269 204 160 154 

Cypermethrin 

(kg) 48 232 211 162 85 48 8 0 0 

 

 

The chemotherapeutants combating sea lice also affect non-target species 

following release into the sea. In the past years, several studies have tested the toxicity 

of H2O2 in 12 different non-target crustacean species (Smit et al., 2008; Burridge et al., 

2014; Van Geest et al., 2014; Brokke, 2015; Gebauer et al., 2017; Hansen et al., 2017; 

Bechmann et al., 2019; Frantzen et al., 2020) (Fig. 2). In addition, there is available 

literature for the toxicity of H2O2 on the polychaetes Capitella sp. and Ophryotrocha 

spp., and sugar kelp (Saccharina latissima) (Bruno and Raynard, 1994; Mitchell and 

Collins, 1997; Rach et al., 1997; Fang et al., 2018; Haugland et al., 2019).  
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Deltamethrin 

The synthetic pyrethroids deltamethrin and cypermethrin were introduced in 

Norway in the mid-1990s, as the replacement of the organophosphates due to reduced 

sensitivity in the parasites and as a safer alternative to hydrogen peroxide (Jones et 

al.,1992; Hart et al., 1997; Denholm et al., 2002). Synthetic pyrethroids have a low 

toxicity on mammals (Davies, 1985) but are highly toxic for fish and crustaceans, 

including sea lice (Anderson, 1989; Coats et al., 1989; Haya, 1989). Soon after its 

introduction, deltamethrin became the preferred chemotherapeutant in Norway, with 

more than 80% of the market share (Denholm et al., 2002). However, due to this 

extensive use, both L. salmonis and C. rogercresseyi developed reduced sensitivity 

towards deltamethrin in the early-2000s decreasing the consumption (Sevatdal and 

Horsberg, 2003; Helgesen et al., 2014). It was, however reintroduced in the market and 

became one of the most used treatments in Norwegian farms between 2010 and 2015, 

as the active ingredient of the commercial formulation AlphaMax®. 

Deltamethrin is a wide spectrum insecticide which acts on the nerve transmission 

pathways (Miller and Adams, 1982; Kahn, 1983) (Fig. 3). More specifically, its 

mechanism of action involves interacting with the sodium (Na+) channels of nerve 

Fig. 2 Number of non-target 

crustaceans’ species per 

geographical region used to 

study the toxicity of H2O2. 

Globally a total of 8 studies 

have looked at the toxicity of 

H2O2 at aquaculture relevant 

concentrations on non-target 

crustaceans.  
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membranes, resulting in the 

depolarization and overstimulation of 

nerve endings finally leading to paralysis 

(Haya et al., 2005). The recommended 

deltamethrin treatment dose in salmon 

aquaculture is 2 µg/L for a time period of 

30-40 minutes (The veterinary catalogue, 

Norway 2020).  

As deltamethrin is highly toxic to crustaceans, a number of different studies have 

examined its toxicity to non-target species (Fig. 4) (Dorts et al., 2009; Fairchild et al. 

2010; Oliveira et al., 2012; Burridge et al., 2014; Tucca et al., 2014; Brokke, 2015; 

Bechmann et al., 2020; Frantzen et al., 2020). However, only 45% of the studied species 

are relevant to Norwegian marine ecosystems. There is available literature on 

deltamethrin toxicity on other marine invertebrates such as the echinoderms 

Paracentrotus lividus and Shaerechinus granularis, the chorus mussel (Choromytilus 

chorus), and the polychaete Nereis virens (Van Geest et al., 2014; Sanhueza-Guevara 

et al., 2018). Deltamethrin is rapidly metabolized and therefore unlikely to be 

accumulated in the aquatic food web (Kahn 1983). 

Fig. 4 Number of non-target 

crustaceans’ species per 

geographical region used to 

study the toxicity of 

deltamethrin. Globally a total of 

8 studies have looked at the 

toxicity of deltamethrin at 

aquaculture relevant 

concentrations on non-target 

crustaceans. 

Fig. 3 Structural formula of 

deltamethrin (C22H19Br2NO3). 
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Azamethiphos 

Until the mid-1990s, more than 80% of the 

delousing operations performed in Norway used 

the organophosphate dichlorvos, which is also the 

preferred chemotherapeutant in the rest of the 

salmon farming countries (Fallang et al., 2004; 

Torrisen et al., 2013). Azamethiphos was then 

introduced as a safer and more effective 

alternative to dichlorvos in 1994 and was in use 

until 1999, when reduced sensitivity of L. salmonis became a problem (Roth et al. 1993; 

Burka et al.,1997). However, reduced sensitivity in the salmon lice, this time against 

the pyrethroids and emamectin-benzoate, led to a reintroduction of azamethiphos in 

2008 (Aaen et al., 2015).  

Azamethiphos is a neurotoxic insecticide (Fig. 5), which inhibits the 

acetylcholinesterase (AChE) activity leading to paralysis (Baillie, 1985). In Norway, 

azamethiphos is available as Azasure with a recommended treatment dose of 0.1mg/L 

and a treatment duration between 30 and 60 minutes. At temperatures of over 10 ͦC a 

treatment duration of 30 minutes is recommended. The effects of azamethiphos is 

visible within the first few hours after treatment (Roth et al., 1996; Torrisen et al. 2013). 

Though azamethiphos is effective in removing pre-adult and adult lice, it is ineffective 

against chalimus stages (Roth et al., 1993).  

The toxicity of azamethiphos has been previously studied in a great number of 

crustaceans (Fig. 6) (Pahl and Opitz, 1999; Abgrall et al., 2000; Ernst et al., 2001, 2014; 

Mayor et al., 2008; Burridge et al., 1999, 2000, 2008, 2014; Van Geest et al., 2014; 

Brokke, 2015; Macken et al., 2015; Gebauer et al., 2017; Mill, 2019; Bechmann et al., 

2020; Frantzen et al., 2020). However, relatively few studies (27%) involve species 

relevant to Norwegian marine ecosystems. 

Fig. 5 Structural formula of 

azamethiphos (C9H10CIN2O5PS). 
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Study species 

The abundance of zooplankton crustaceans varies seasonally, with a 

predominant occurrence following the phytoplankton spring bloom, usually taking 

place in the northern hemisphere between March and June, although some regional 

variations may occur (Grover, 1952; Plourde & Runge, 1993; Niehoff et al.,1999). In 

Norway, during the spring, chemotherapeutants are being used extensively to comply 

with sea lice regulations (Grefsrud et al., 2018) (Fig. 7) and the chance of crustaceans 

being exposed to the substances is therefore higher. Delousing operations can involve 

concurrent and sequential applications within one or multiple net pens, leading to 

various discharges in a single fjord. These multiple discharges may expose non-target 

planktonic crustaceans to delousing plumes over extended periods of time (Grefsrud et 

al., 2018).  The copepods Calanus spp., the dominant zooplankton species of the North 

Atlantic, is of great ecological importance being a key trophic link in the marine food 

webs (Schminke, 2007). These dominant zooplankton species are intense grazers of 

primary production and are the main prey for other important species, such as the 

Northern krill, and several pelagic fish species such as herring and cod, both 

economically important species (Dalpadado et al., 2000; Sundby, 2000; Rullyanto et 

al., 2015). Eggs and nauplii of copepods are the main source of food for fish larvae of 

many species, which prey upon them almost exclusively, and the copepodite stages are 

preyed on by juvenile fish in the nursery areas (Runge and de Lafontaine, 1996; Heath 

and Lough, 2007). Calanus spp. are abundant in the Norwegian coastal zone where 

salmonid aquaculture sites are located (Broms et al., 2009), but more importantly in 

Fig. 6 Number of non-target 

crustaceans’ species per geographical 

region used to study the toxicity of 

azamethiphos. Globally, 17 studies 

have looked at the toxicity of 

azamethiphos at aquaculture relevant 

concentrations on non-target 

crustaceans. 

 

11 

17 
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spring when the zooplankton 

bloom is at its highest, adults 

reproduce almost exclusively in 

surface waters (< 50 m) and the egg 

production of Calanus spp. 

overlaps with the peak of 

chemotherapeutant operations. 

During the winter, large numbers 

of late juvenile stages (copepodite 

stage V) are found at depths of 

approximately 500 m (Hirche, 

1996). The end of the diapause 

happens in the spring when the late 

juvenile stages migrate to surface 

and molt into adults. The effects of 

bath treatment 

chemotherapeutants on Calanus 

spp. are largely unknown. This is 

addressed in Paper I.  

The Northern krill, 

Meganyctiphanes norvegica, 

another pelagic zooplankton 

species, inhabits offshore and 

coastal waters of the Norwegian sea (Kaartvedt et al., 2002; Melle et al., 2004; Tarling 

et al., 2010). Its distribution is seasonal with a predominantly coastal distribution 

between the months of January and May (Grover, 1952), when the use of 

chemotherapeutants is at its highest. The Northern krill is a major component of the 

North Atlantic ecosystem, acting as a major contributor to the carbon pump cycle and 

a link between secondary and large predators (Kaartvedt et al., 2005; Tarling et al., 

2010). It is preyed upon by several fish species, seabirds, and marine mammals (Brodie 

et al., 1978; Montevecchi et al., 1992; Sameoto et al., 1994; Onsrud et al., 2004; Stevick 

Fig. 7 Norway’s yearly prescriptions for 

hydrogen peroxide, deltamethrin and 

azamethiphos per quarter, A) Prescriptions for 

the year 2015; B) Prescriptions for the year 2018. 

Overall, there has been a decrease in the number 

of prescriptions for the three chemotherapeutants 

between the years 2015 and 2018. Hydrogen 

peroxide is still the most used bath treatment in 

quarters 1, 2 and 4, followed by deltamethrin. 

Data from Grefsrud et al., (2018).  
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et al., 2008). Mass death of krill washed up on a beach can occur and is considered a 

natural phenomenon. In recent years, there has been a higher frequency of reports in 

Norway describing this phenomenon in areas with salmon farms. Debates in the media 

of what might have caused the mass mortality often point to the use of 

chemotherapeutants for delousing of the salmon farms. However, the effects of bath 

treatment chemotherapeutants on the Northern krill is unknown. This is addressed in 

Paper III. 

The European lobster, Homarus gammarus, is an important commercial species 

native to the Norwegian marine environment and found along the European continental 

shelf in the northeast Atlantic (Agnalt et al., 2009). As a valuable marine resource, the 

European lobster has supported the northern Europe coastal fisheries for centuries, but 

overfishing and low recruitment has depleted its populations in Norway (Agnalt et al., 

2013). The distribution of H. gammarus in Norway overlaps with that of aquaculture 

sites (Agnalt, 2009), making it vulnerable to exposure following the release of bath 

treatment chemotherapeutants. The first four developmental stages of the European 

lobster are pelagic, thus potentially more vulnerable to bath treatments. The effects of 

chemotherapeutants on the European lobster are largely unknown. This is addressed in 

Papers II & IV.  

 

 

Linking environmental fate with toxicity 

Field surveys studying the dispersion and dilution of chemotherapeutants 

following discharge are difficult and expensive to implement. Another important 

objective of this thesis was to use models to link the environmental fate of the 

chemotherapeutants after discharge with the threshold concentrations found through the 

toxicology studies. This will allow us to establish the distances from the treatment site 

at which there are negative effects on wild non-target populations. The decrease in the 

concentration of chemicals after they have been released depends on several factors. 

Discharge from a farm will spread with the current (dispersal) and at the same time will 

be mixed with the surrounding water and be diluted. How far the chemotherapeutant 

spreads and how fast it is diluted depends on hydrographical variables such as current 
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velocity, wave exposure, temperature and stratification level of the water masses at the 

location. The rate of chemical breakdown can also be an important factor for some 

chemotherapeutants. Hydrogen peroxide has long been considered environmentally 

friendly as it is a highly polar compound which has an elevated oxidative capacity, 

therefore facilitating its decomposition into oxygen (O2) and water (H2O). After 7 days 

in sea water, 21% and 54% of H2O2 decomposes respectively at temperatures of 4°C 

and 15°C (Bruno & Raynard, 1994). If the water is aerated, decomposition occurs more 

rapidly, 45% and 67%, respectively. In real case scenarios, the decomposition of H2O2 

may occur more rapidly due to the presence of organic matter in the water (Richard et 

al., 2007, Miller et al., 2009).  

Deltamethrin (C22H19Br2NO3), has an octanol-water partition coefficient (log Kow) 

of 6.2 (Urbina et al. 2019). The log Kow is a physiochemical characteristic which 

indicates the capacity of a compound to accumulate in a sediment and to adhere to 

particulate material (Mayor et al., 2008). Considering that deltamethrin has a high log 

Kow and low water solubility (< 2 µg/L) (The veterinary catalogue, Norway 2020), it is 

expected that deltamethrin will have a greater tendency to accumulate in the sediment 

particularly in farms located in shallow areas and will be preserved for long periods of 

time (Haya et al., 2005). Furthermore, deltamethrin may be absorbed not only by the 

sediment but also by organic materials and other materials like plastic. Deltamethrin 

can therefore be removed from the water phase following different pathways, 

decreasing the concentration in water and consequently the effect on non-target 

organisms.   

Azamethiphos (C9H10CIN2O5PS) is highly soluble in water (1.1 g/L) and has a log 

Kow of 1.05 (Worthing and Walker, 1987; Tomlin, 1997). This indicates that 

azamethiphos will remain in the aqueous phase and is not expected to accumulate in the 

sediment or adhere to organic matter. The estimated half-life of azamethiphos is 

between 8.9 and 10.8 days (Worthing and Walker, 1987; Burridge and Van Geest, 

2014). 
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RESULTS AND DISCUSSION 

 

In the work reported in papers I, II and III, a clear distinction was seen between 

acute and total mortality. Assessing both types of mortalities was essential to understand 

sensitivities of the different species to the chemotherapeutant used in this study. A 1 h 

exposure to 170mg/L H2O2, i.e 10% of the recommended treatment dose caused 0% 

mortality for H. gammarus pelagic stages (Paper II), on average 68% mortality for 

Calanus spp. (Paper I), and 100% mortality for M. norvegica (Paper III). Further, after 

a 24 h post-exposure period the mortalities for Calanus spp. and H. gammarus 

increased, leading to an average total mortality of 96% and 25%, respectively (Paper I 

& II). In Paper III, following the post-exposure period, the mortality of M. norvegica 

increased with time in all exposed groups resulting in successively lower median lethal 

concentrations (LC50) values with 14.11 mg/L after 6 h (7.3-20.9), 4.92 mg/L (1.2-7.9) 

after 24 h and finally 0.86 mg/L after 48 h. These results show the importance of 

including a recovery period after the exposure.  

 

Is one chemotherapeutant equally toxic to different marine species? 

 

Hydrogen peroxide caused mortality in Calanus spp. (pre-adult and adult) 

(Paper I), to all pelagic stages of H. gammarus (Paper II), and to M. norvegica (Paper 

III) at concentrations below the treatment concentration of 1700 mg/L. These results 

suggest that H2O2 waste emissions from salmon farms could potentially be lethal to a 

wide range of non-target crustacean species in their vicinity.  

In Paper I and III we observed that H2O2 was acutely toxic to wild-captured M. 

norvegica and to both stages copepodite V and adult Calanus spp.. The highest acute 

mortality recorded for European lobster larvae was 15.4% for stage I, and therefore no 

acute LC50 were calculated for any of the pelagic stages of H. gammarus (Paper II). 

While several studies have examined the toxicity of H2O2 to marine non-target 

crustacean species, few studies used a short-term exposure (1 h). Of the species studied 

with an East-North Atlantic geographical distribution, an acute LC50 value of ≥ 1700 

mg/L H2O2 was found for the rock pool shrimp (Palaemon elegans) and chameleon 
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shrimp (Praunus flexuosus) (Brokke, 2015). A review of all toxicity studies reveals that 

most of the marine crustacean species tested as adults have a relatively high tolerance 

to H2O2 exposure at the recommended treatment concentrations, which is reflected in 

low acute mortality when they are exposed to concentrations similar to the 

recommended treatment dose (Burridge et al., 2014; Van Geest et al., 2014). The high 

acute mortality for M. norvegica is therefore an indication that krill is among the most 

sensitive species to H2O2 (Paper III).  

The acute mortality was lower than the total mortality recorded after the post-

exposure period for all the three-studied species (Paper I, II & III). From the species 

tested in this work, the Northern krill was the most sensitive with the highest acute and 

delayed mortality and lowest LC50 values, followed by the copepods Calanus spp., and 

leaving the European lobster as the least sensitive species to H2O2. For the Northern 

krill, the calculated LC50 value after a 24 h post-exposure period, represented a 3-fold 

dilution of the acute LC50 value (Paper III). In Paper I, the calculated LC50 values, 

after a 24 h post-exposure period, were subsequently lower, represented a 2.8 and 1.5-

fold-dilution for the copepodite V and adult Calanus spp., respectively. Moreover, after 

a 24 h post-exposure period the lethality of H2O2 to all H. gammarus pelagic stages (I-

IV) became evident (Paper II). The calculated total LC50 values for the European 

lobster represented approximately 10-, 4-, 3- and 2-fold dilutions for stages I, II, III and 

IV, respectively. Similarly, for rock pool shrimps and chameleon shrimps a significant 

mortality occurred during the 24 h post-exposure period (Brokke, 2015).  

For these two species as well as for the Northern shrimp (Pandalus borealis), the 

acute mortalities were low but all three presented high mortalities post-exposure, 

classifying them as highly sensitive (Brokke, 2015; Frantzen et al., 2020). In 

comparison, low mortalities were reported even after a 95 h post-exposure period for 

American lobster (Homarus americanus) larvae and adult, and sand shrimps (Crangon 

septemspinosa) (Burridge et al., 2014). Recommendations suggested in previous studies 

describe the importance of including a post-exposure period following the exposure to 

evaluate any delayed effects and obtain an accurate estimate of mortality (Van Geest et 

al., 2014; Brokke, 2015; Bechmann et al., 2020). Our findings support this.  
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In papers I and II, a difference in sensitivity to H2O2 exposure was observed in 

different developmental stages of the same species. Adult Calanus spp. showed higher 

acute and total mortality to H2O2 exposure than the copepodite stage V (Paper I). In 

the Calanus spp. life history, the late juvenile stage CV enters a diapause state during 

winter, which could explain the robustness of the CV to exposure to H2O2 relative to 

the adult copepod. In the case of the European lobster, stage I larvae were the most 

sensitive (Paper II) and stage IV the least sensitive. Similar stage specific differences 

in sensitivity to H2O2 exposure have been reported for other species including salmon 

lice L. salmonis and its eggs, and the copepod Acartia sp. (Mitchell and Collins, 1997; 

Van Geest et al., 2014; Aaen et al., 2015). Furthermore, stage-specific differences in 

sensitivity were also observed between stages I and II of the European lobster after 

exposure to azamethiphos (Paper IV). Stage-specific sensitivities observed in 

crustaceans towards chemotherapeutants have been explained as a result of differences 

in metabolism, moulting frequency, detoxification mechanisms and allometric (i.e. 

surface area to volume) differences, with older life stages often being less sensitive than 

earlier life stages (Medina et al., 2002; Willis and Ling, 2004).  

 

 

Species Sensitivity Distributions 

 

To protect marine ecosystems, there must be standards in relation to water 

quality. Such standards require data from ecotoxicology studies and a method to convert 

those data into estimates of the concentration of pollutants that result in negligible 

impacts (Posthuma et al., 2019). In order to understand the possible hazards of toxic 

compounds to an ecosystem, the effect on different species must be estimated. The 

concept of species sensitivity differences towards the same toxic compound has earlier 

been described as an important factor for ecotoxicology and environmental risk 

assessments (Van Straalen, 2002; Fourie et al., 2007). Different species show different 

sensitivities to the same chemical substance and the variation between those species can 

be described by a statistical distribution. Laboratory results should not be used directly 

to perform a risk assessment, but must be extrapolated to calculate a predicted no-effect 
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concentration (PNEC). The variation that results from the observed sensitivities of 

different species can be modeled as a statistical distribution also known as a species 

sensitivity distribution (SSD).  

An SSD is based on single species toxicity tests to a single compound fitted into 

a statistical model, most often log-logistic or log-normal. SSDs use toxicity values such 

as LC50 or EC50 when it comes to acute exposures and EC10 for chronic exposures. These 

values are then rank ordered and a statistical distribution is fitted to the values. Once 

the values have been fitted, the hazardous concentration for 5% of the species (HC5) 

can be derived (with a 95% confidence interval). The threshold for observable impacts 

is defined as being above this value (Belanger and Carr, 2019). The HC5 value can then 

be used to calculate the PNEC.  

Species sensitivity distributions are recognized by a wide range of regulatory 

authorities across the globe (Belanger and Carr, 2019). However, the criteria for the 

data used in an SSD varies between countries and jurisdictions, often with differences 

in the minimum number of data points needed, leading to differences in the quality of 

the studies (Posthuma et al., 2002). 

The European guidelines for the creation of SSD curves do not specify what must 

be done when multiple points of toxicity data are provided for the same species but 

different life stages (ECHA, 2011). Therefore, this thesis first attempts to construct an 

SSD curve for the species relevant to Norway, including the stage-specific differences 

to assess the different sensitivities to H2O2 (Fig. 8). The SSD curve was based on 

mortality data (LC50 values) using the R-package fitdistrplus (Delignette-Muller & 

Dutang, 2015). The SSD curve shows that M. norvegica is the most sensitive species to 

H2O2 whereas the shrimp P. elegans and P. flexuosus are the most resilient non-target 

crustacean species of the Norwegian marine ecosystems. The derived HC5 was 1.88 (0.5 

- 6.7) mg/L H2O2. In order to have a better understanding of the toxicity of H2O2, three 

levels of sensitivity were included. The high sensitivity fraction corresponds to less than 

25% of the affected species, which includes C. finmarchicus after a 1h exposure with a 

24h, 48h and 96h post-exposure period and M. norvegica after a 1h exposure plus a 72h 

post-exposure period. The medium sensitivity fraction includes between 25% and 75% 

of the species affected. And in the low sensitivity fraction > 75% of the species are 
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affected. This low sensitivity fraction includes the Calanus spp. CV following 1h 

exposure and H. gammarus stages II to IV following a 1h exposure plus a 24h post-

exposure period. The SSD curve also illustrates how the effect of the 

chemotherapeutants is influenced by both exposure time and the post-exposure period. 

The revised method for deriving guideline values for toxicants in Australia and 

New Zealand (Warne et al., 2018) provide a protocol when there are two or more studies 

presenting data for the same endpoint, species and different life-stages. These 

guidelines state that only a single toxicity value should be used to represent the 

sensitivity of each species in an SSD. However, there are often multiple toxicity values 

for each species. In that case, both selection and manipulation of the data is required. 

The geometric mean is calculated for toxicity values that come from studies with the 

same species, endpoints and duration of exposure. The lowest value for all combinations 

of species and endpoints is chosen and used for the SSD.  

A second SSD curve was constructed including all available EC50/LC50 for non-

target crustacean species around the world following the Australian and New Zealand 

guidelines for multiple data points for the same species (Fig. 9). The additional species 

are M. edwardsii (Gebauer et al., 2017), H. americanus larvae stage I (Burridge et al., 

2014), Mysid sp. (Burridge et al., 2014), Crangon septemspinosa (Burridge et al.,2014) 

and A. hudsonica (Van Geest et al., 2014). The derived HC5 was 3.09 (0.6-14.9) mg/L 

H2O2. The same three sensitivity divisions are also included in this SSD. This new curve 

places C. septemspinosa as the most resilient species with an LC50 of 3182 mg/L H2O2. 

The species with lowest sensitivity relevant for Norway was H. gammarus stg. IV with 

an LC50 of 737 mg/L H2O2. Compared to the first SSD constructed (Fig. 8), the second 

SSD (Fig. 9) predicts a higher HC5 value. By generating an SSD with more species the 

HC5 value becomes more precise. Nevertheless, Fig.9 only represents species from the 

same taxonomic group. Though the determination of SSD curves for a single taxonomic 

group has previously been done in other studies to determine the differences in toxicity 

(de Souza et al., 2020), the different environmental agencies require a minimum number 

of taxonomic groups to be represented in SSDs for their use in policy applications 

(Posthuma et al., 2002).  
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The available toxicity data for marine species exposed to H2O2 was evaluated. 

Preference was given to toxicity data published in peer-reviewed journals. All of the 

data used complied with a range of criteria following the Guidelines for Fresh & Marine 

Water Quality (2018): 1) The study should be publicly available. 2) The study should 

be available in English. 3) Toxicity data should be published after 1980. 4) Duration of 

exposure should be stated. 5) Test concentrations should not differ by a large amount 

(e.g. more than 10-fold difference). 6) Toxicological endpoints should be stated and/or 

endpoints should be ecologically relevant. 7) Toxicity values should not be greater than 

twice the aqueous solubility. 8) Mortality in the controls must be stated either in the text 

or in a table. 9) Mean mortality in the controls should not exceed 20%. 

Toxicity data that fulfilled all of these criteria were then quality assessed, 

according to the methods of Zhang et al, 2015. Toxicity data with a quality score ≥80% 

were classified as ‘high’ quality, data with a quality score of ≥50 to <80% were 

classified as ‘acceptable’ quality, while data with a quality score of <50% were 

classified as ‘unacceptable’ quality. Only ‘high’ and ‘acceptable’ quality data were used 

for the creation of the SSD in Fig. 10 (Appendix A). 

By including the sensitivity of six other phyla, the SSD presented in Fig. 10 

shows a broader perspective of impact of H2O2 on the marine environment. The HC5 

value derived from the available toxicity data for marine species is 5.11 (1.52 – 16.15) 

mg/L. This value is a HC5 with a higher degree of precision than the first derived value, 

reinforcing the need for data to achieve better SSDs. The single-celled green algae, 

Dunaliella tertiolecta (phylum Ochrophyta) was the most sensitive. Overall, the 

different species of arthropoda exhibit different sensitivity. Figure 10 also shows that 

the toxicity of H2O2 is not specific to crustaceans, which is consistent with earlier 

observations on this chemotherapeutant. By being non-specific H2O2 can negatively 

impact a broader number of phyla. 
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The review of studies presenting toxicity data of marine species towards H2O2 

shows that arthropods were over-represented with 10 species in the SSD, while the other 

six phyla only had data for one or two species. The strict criteria for the SSD 

ecotoxicology data selection constrained the SSDs that could be developed to a low 

number of chemical compounds. The current methods for aquatic toxicity data 

evaluation are mainly based on freshwater species, and some of the data selection 

criteria are not applicable to marine species. As a result, the risks of most marine 

pollutants cannot be evaluated and, therefore, managed (Posthuma et al., 2019). The 

European Environment Agency (2018) reports that environmental quality standards 

have been assessed for approximately only 300 compounds out of over 146000 

compounds registered in the REACH website. ECHA requires a minimum of 10 tests 

with species from different taxonomic groups (minimum 8) for the derivation of an SSD 

(ECHA, 2008). As is most often the case, the modeled SSD curve in this thesis for the 

toxicity of H2O2 in marine species does not comply with ECHA’s minimum of 8 

taxonomic groups for the extrapolation of a PNEC value from the HC5 value. Further 

toxicity studies on non-target species other than arthropods are needed for the 

completion of the H2O2 SSD curve and the extrapolation of a PNEC value for this 

pollutant. 

 

 

Will a single species be equally sensitive to several chemotherapeutants? 

 

A risk ranking, illustrating the relative risk of each chemical against another for 

key species, is an important tool to direct where regulatory efforts should be focused on 

to best protect Norway’s and other salmonid producing country’s marine ecosystems. 

Therefore, available data from previous studies was reviewed, in order to propose a 

preliminary ranking of the toxicity of these chemotherapeutants to non-target 

crustaceans. All the available information on species that have been exposed to the three 

chemotherapeutants and for which LC50 values have been calculated was collated 

(Table 3). Eight different crustacean species have been tested with H2O2, deltamethrin 

and azamethiphos: Acartia hudsonica, Crangon septemspinosa, Homarus americanus 
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(multiple stages), Homarus gammarus (multiple stages), Metacarcinus edwardsii, 

Mysid sp., Praunus flexuosus and Palameon elegans. Overall, there are different lethal 

threshold rankings for the different non-target crustaceans exposed to H2O2, 

deltamethrin and azamethiphos. 

Table 3. Summary of all the available toxicity studies for non-target crustacean species 

exposed to H2O2, deltamethrin and azamethiphos. 

Species Chemicals 
Exposure 

time 

Post-

Exposure 

time 

LC50 References 

Acartia hudsonica 

H2O2 1h 6h 

2.6-10 

mg/L* 

Van Geest et 

al., 2014 
Deltamethrin 1h 6h 

0.017-0.067 

µg/L* 

Azamethiphos 1h 6h -* 

Cypermethrin 1h 6h 

0.098-0.36 

µg/L* 

Crangon 

septemspinosa 

H2O2 1h 96h 3182 mg/L 

Burridge et 

al. 2014 Deltamethrin 1h, 24h 96h 142 ng/L 

Azamethiphos 1h, 24h 96h > 85.5 µg/L   

Homarus americanus 

Adult 

H2O2 1h 96h > 3750 mg/L 

Burridge et 

al. 2014 Deltamethrin 1h, 24h 96h 18.8 ng/L 

Azamethiphos 1h, 24h 96h 24.8 µg/L 

Homarus americanus 

Stage I 

H2O2 1h 96h 1673 mg/L 

Burridge et 

al. 2014 Deltamethrin 1h, 24h 96h 3.4ng/L 

Azamethiphos 1h, 24h 96h > 86.5 µg/L 

Homarus gammarus 

Stage I 

H2O2 1h 24h 177 mg/L 

Paper II & 

IV Deltamethrin 1h 24h 2.6 ng/L 

Azamethiphos 1h 24h 43.1 µg/L 

Homarus gammarus 

Stage II 

H2O2 1h 24h 404 mg/L 

Paper II & 

IV Deltamethrin 1h 24h 2.9 ng/L 

Azamethiphos 1h 24h 20.5 µg/L 

Metacarcinus 

edwardsii zoea I 

H2O2 40min 48h 1642 mg/L 

Gebauer et 

al., 2017 Deltamethrin 40min 48h 1.25 µg/L 

Azamethiphos 40min 48h 2.84 µg/L 
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* In the study conducted on A. hudsonica, LC50 values were not determined. The calculated effective 

concentrations (EC50) based on the immobilization are given in the table. 

 

In the case of the early life stages of the European lobster, although the 

recommended treatment concentrations of H2O2, deltamethrin and azamethiphos were 

all lethal (Papers II & IV), a difference in lethal threshold ranking was observed. After 

1 h exposure to H2O2 followed by a 24 h post-exposure period the calculated LC50 values 

for stages I and II of H. gammarus represent approximately 9- and 4-fold dilutions of a 

treatment concentration of 1700 mg/L (Paper II). Exposures to deltamethrin were 

considerably more toxic to both larval stages I and II, with LC50 values representing 

approximately an 800-fold dilution of the recommended treatment dose of 2000 ng/L 

(Paper IV). Lastly, the LC50 for azamethiphos were calculated to approximately 2- and 

5-fold dilutions respectively of the treatment solution of 100 µg/L for stage I and stage 

II H. gammarus (Paper IV). The ranking of toxicity is therefore: deltamethrin > H2O2 

> azamethiphos, from more toxic to less toxic (Fig. 11). The results reported on the 

shrimp species P. elegans and P. flexuosus (Brokke, 2015) and Mysid sp. (Burridge et 

al., 2014), support the conclusion in Papers II & IV for the proposed ranking of lethal 

thresholds. In contrast, following from the H. americanus larvae LC50 (Burridge et al., 

2014), H2O2 was less toxic than azamethiphos. The data for H. americanus larvae by 

Burridge et al. (2014) result in a ranking of deltamethrin > azamethiphos > H2O2. 

Overall, deltamethrin is the more toxic of the three. 

Cypermethrin 30min 48h - 

Mysid sp. 

H2O2 1h 96h > 973 mg/L 

Burridge et 

al. 2014 
Deltamethrin 1h 96h 13.9ng/L 

Azamethiphos 1h 96h > 86.5 µg/L 

Palameon elegans 

H2O2 1h, 24h 24h 179 mg/L 

Brokke 2015 Deltamethrin 1h, 24h 24h 8.3 ng/L 

Azamethiphos 1h, 24h 24h 47 µg/L 

Praunus flexuosus 

H2O2 1h, 24h 24h 24.9 mg/L 

Brokke 2015 Deltamethrin 1h, 24h 24h 6.3 ng/L 

Azamethiphos 1h, 24h 24h 4.6 µg/L 



3
9

 
    F

ig
. 
1

1
  
 R

an
k

in
g
 o

f 
th

e 
to

x
ic

it
y
 o

f 
b

at
h

 t
re

at
m

en
t 

ch
em

o
th

er
ap

eu
ta

n
ts

, 
d

el
ta

m
et

h
ri

n
, 

H
2
O

2
 a

n
d

 a
za

m
et

h
ip

h
o

s 
b

as
ed

 o
n

 t
h

e 
d

if
fe

re
n

ce
 b

et
w

ee
n

 t
h

e 

m
ed

ia
n

 l
et

h
al

 c
o

n
ce

n
tr

at
io

n
s 

L
C

5
0
 (

9
5

%
 C

.I
).

 T
h

e 
L

C
5

0
 v

al
u

es
 f

o
r 

N
o

rw
eg

ia
n

 n
at

iv
e 

sp
ec

ie
s,

 H
o

m
a

ru
s 

g
a

m
m

a
ru

s 
la

rv
ae

 s
ta

g
es

 I
 a

n
d

 I
I 

(P
a

p
e
rs

 

II
 &

 I
V

),
 P

ra
u

n
u

s 
fl

ex
u

o
u

s 
an

d
 P

a
la

em
o

n
 e

le
g

a
n

s 
(B

ro
k
k

e,
 2

0
1

5
),

 a
re

 p
lo

tt
ed

 a
s 

ci
rc

le
s,

 w
it

h
 t

h
e 

9
5

%
 c

o
n

fi
d

en
ce

 i
n

te
rv

al
s 

in
 b

ra
ck

et
s.

 T
h

e 

re
co

m
m

en
d

ed
 t

re
at

m
en

t 
co

n
ce

n
tr

at
io

n
s 

in
 N

o
rw

ay
 a

re
 2

µ
g
/L

 d
el

ta
m

et
h

ri
n

, 
1

0
0

 µ
g
/L

 a
za

m
et

h
ip

h
o

s,
 a

n
d

 1
7

0
0

 m
g
/L

 H
2
O

2
.



40 
 

The sub-lethal effects of chemotherapeutants  

 

Though the importance of examining sub-lethal effects is clear, the available 

literature regarding these on behavioral endpoints by the delousing chemotherapeutants 

is limited. The effects of deltamethrin, azamethiphos and H2O2 have been studied on 

the swimming performance of M. edwardsii larvae (Gebauer et al., 2017). The sub-

lethal effects of the same three chemotherapeutants were examined on the behavior, 

embryonic development and reproductive output of P. borealis (Frantzen et al., 2020). 

Another study focused on the effects of H2O2 on the deep-water shrimp P. borealis, and 

investigated immobilization, swimming activity and feeding rates after exposure 

(Bechmann et al., 2019). Even at low concentrations, reported effects were, inability to 

swim or increased swimming activity (depending of the chemical), inability to capture 

food and delayed molting (Gebauer et al.,2017; Bechmann et al., 2019; Frantzen et al., 

2020).  

In this work, two categories of non-lethal effects were measured. In papers I & 

II, short-exposure (1h) to sub-lethal concentrations of H2O2 caused both metabolic 

stress and led to the impairment of anti-predator behaviors (escape response and shelter 

seeking behavior) of non-target crustacean species. In addition to these effects two 

observations were made; bubble formation inside the carapace and immobilization 

when exposed to sub-lethal concentrations of H2O2. The exposure to H2O2 even at low 

doses, resulted in the formation of bubbles inside the carapace of all pelagic stages of 

H. gammarus (Paper II). The formation of bubbles led the animals to float to the 

surface of the water. In field conditions, this would be detrimental as animals would be 

unable to feed or escape predators. The formation of O2 bubbles has also been described 

in sea lice (Bruno and Raynard, 1994), and is considered the primary cause of 

detachment from the salmonid host following H2O2 treatment (Cotran et al., 1989; 

Treasurer et al., 2000; Aaen et al., 2014). During a 24 h exposure to H2O2, stage I larvae 

of the American lobster were also floating, however there was no mention of bubbles 

inside the carapace (Burridge et al., 2014). Bubble formation was not observed for the 

Northern krill (Paper III), nor reported for the Northern shrimp, the mola rock crab 

larvae, or copepods (A. hudsonica and C. finmarchicus) (Van Geest et al., 2014; 



41 
 

Gebauer et al., 2017; Bechmann et al., 2019; Frantzen et al., 2020), nor for pre-adult or 

adult stages of Calanus spp. (Paper I). The reason for these inconsistencies requires 

further investigation. 

Immobilization was observed throughout experiments with H2O2. It was 

described in the copepod A. hudsonica, the crab M. edwardsii, and the shrimp P. 

borealis after exposures equal to or below the recommended treatment doses (Van 

Geest et al., 2014; Gebauer et al., 2017; Bechmann et al., 2019; Frantzen et al., 2020). 

Though none these studies reported bubble formation, they all described a mechanical 

immobilization induced by the exposure to H2O2. Hydrogen peroxide, even at the sub-

lethal doses, also caused some degree of immobilization in Calanus spp. and H. 

gammarus (Paper I & II). Immobilization was also observed in H. gammarus stages I 

and II after exposure to deltamethrin and azamethiphos (Table 4) (Paper IV). In the 

wild, paralyzed zooplankton would be unable to feed or to maintain their position in the 

water column and their predator avoidance behavior would also be severely affected.  

 

Table 4. Summary of the EC50 values based on the combination of mortality and 

immobilization by deltamethrin and azamethiphos for H. gammarus larvae stages I and II.  
 

Chemical Life stage 
Endpoint 

measured 

Exposure 

Period 
EC50 

Fold-

Dilution 
Reference 

Deltamethrin 

H. 

gammarus 

Stage I 

Immobility 

+ Mortality 

1h 0.6 ng/L 4 Paper IV 

H. 

gammarus 

Stage II 

Immobility 

+ Mortality 

1h 0.4 ng/L 7 Paper IV 

Azamethiphos 

H. 

gammarus 

Stage I 

Immobility 

+ Mortality 

1h 15.5 ng/L 2 Paper IV 

H. 

gammarus 

Stage II 

Immobility 

+ Mortality 

1h 9.2 ng/L 3 Paper IV 

 

After a 1h exposure to sub-lethal concentrations of H2O2, measurable effects 

were observed on the escape response of Calanus spp. (Paper I). Both the distance at 

which the copepods initiated their escape response and the distance traveled decreased 

with increasing H2O2 concentration. These two parameters in the response of copepods 

are decisive factors in escaping from predators (Fields and Yen, 1997). The success of 
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copepods in planktonic communities is highly dependent on their ability to initiate a 

rapid response (Fields and Yen, 2002). Additionally, the oxygen consumption rates 

(OCR) significantly decreased with increased concentrations of H2O2 (Paper I). 

Considering that the energetic cost of an escape reaction in copepods is high and that 

the strength of each response decreases with increasing frequency of predator attacks 

(Strickler, 1975; Fields, 2000), a lower OCR (metabolic activity) may impact the escape 

response of copepods. Our behavioral results suggest that Calanus spp., the dominant 

component of the North Atlantic zooplankton communities, will be more susceptible to 

predation due to impairment of their escape response as a result of the paralysis induced 

by H2O2 even at a concentration equivalent to 1% of the recommended treatment dose.  

In paper II, all sub-lethal concentrations 85-510 mg/L H2O2, negatively affected 

various behavioral parameters associated with the shelter seeking of the stage V H. 

gammarus. After a short-term (1h) exposure, lobsters traveled a shorter distance and 

inspected the potential shelter significantly fewer times compared to non-exposed 

individuals. Furthermore, at concentrations equivalent to 10 and 30% of the 

recommended H2O2 dose, it took the lobsters a longer time to recognize the shelter 

(Paper II). Other studies also report negative effects of anti-sea lice drugs on lobster 

juveniles. Sub-lethal concentrations of azamethiphos had a negative effect on the use of 

shelters by juvenile H. americanus, with an increase in the lobsters’ latency to re-enter 

the shelter observed with increasing azamethiphos concentrations (Abgrall et al., 2000). 

Similarly, juvenile H. gammarus exposed to the in-feed drug teflubenzuron used 

significantly more time to find and recognize shelter than those given unmedicated feed 

(Cresci et al., 2018). Together these studies demonstrate that shelter-seeking behavior 

of juvenile lobsters is impacted by chemotherapeutants given both in-feed and as bath 

treatment. The survival of newly settled lobsters depends on the ability to avoid 

predators and rapidly find a shelter (Hudon, 1987; Lawton & Lavalli, 1995; van der 

Meeren, 2001; Mehrtens et al., 2005). Young lobsters that reside in the vicinity of 

salmon farms treating with H2O2, may therefore be at a higher risk of predation. Our 

results suggest that H2O2, as low as 5% of the recommended treatment concentration, 

poses a risk to the pelagic life stages as well as bottom-dwelling lobster life stages. 

Twenty-four hours after exposure, there were no significant differences between control 
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and H2O2 -exposed lobsters for any of the behavioral parameters assessed. This suggests 

that the sub-lethal effects of H2O2 on the shelter seeking behavior of H. gammarus may 

only be short lived, with the risk of predation in the wild likely to be highest in the 

immediate aftermath of an exposure scenario. 

 In the previous section, the toxicity of H2O2, deltamethrin and azamethiphos was 

ranked to define their relative risks based on their LC50 values. A similar ranking of the 

compounds has also been used for non-lethal effects. In the case of the copepod A. 

hudsonica, the feeding inhibition threshold ranking was: H2O2 > deltamethrin > 

cypermethrin > azamethiphos (Table 5) (Van Geest et al., 2014). Ernst et al. (2001) 

recorded immobilization, based on the loss of mobility of E. estuarius even though the 

movement of the appendages was still present. They calculated the EC50 value for 

azamethiphos to be 3.0 µg/L (33-fold dilution) and for cypermethrin <0.05 µg/L (2000-

fold dilution). Given these values the immobility threshold ranking for E. estuarius was: 

azamethiphos > cypermethrin.  

 

Table 5. Toxicity ranking for Acartia hudsonica based on the EC50 values from feeding 

inhibition (data taken from Van Geest et al. 2014).  

 

 

Preliminary results indicate that 1h exposure to sub-lethal concentrations of H2O2 

caused structural alterations in the gill of H. gammarus larvae (Fig. 12, Escobar-Lux 

unpublished data). Gill alterations on non-target crustaceans, P. montague and P. 

borealis, following H2O2 exposure have also been reported in previous studies 

(Fagereng, 2016; Bechmann et al., 2019). The present study hypothesizes that gill 

damage can be an indicator for delayed effects and increased mortality with increasing 

post-exposure periods. Further research is necessary to corroborate this.  
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Fig. 12. Gills from control H. gammarus larvae stage I (A), and larvae exposed for 1h to 

170mg/L H2O2 (B) (Escobar-Lux, unpublished data). Significant structural alterations are 

observed in the gill of exposed larvae. The epithelium is observed to be lifted from the basal 

membrane in the H2O2 exposed larvae.  

 

 Low doses of H2O2 may have detrimental consequences on the survival of non-

target species, but relatively few studies have focused on the sub-lethal effects of other 

chemicals such as deltamethrin and azamethiphos. Our results have also shown 

immobilization of stages I and II of H. gammarus after exposure to deltamethrin and 

azamethiphos (Paper IV). Acute toxicity studies are not sufficient to evaluate effects 

of chemotherapeutants. Sub-lethal endpoints that are ecologically relevant should be 

implemented in future toxicity studies to avoid underestimation of risk.  

 

Contextualizing laboratory studies 

 

This work and previous studies have reported the negative effects of 

chemotherapeutants on non-target marine organisms at concentrations in line with 

current usage in salmonid aquaculture. So far, these effects have been assessed only in 

controlled laboratory settings. Ideally, field studies should be prioritized, however, 

limitations such as higher overall costs and sampling occurring at a single point in time 

and location, may restrict the outcome of such studies.  
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As of today, no study has exposed non-target species in-situ following a H2O2 plume 

discharge, but two separate field studies have made direct measurements of the 

chemotherapeutant concentrations in the surrounding waters of a Norwegian salmonid 

farm following the discharge effluents (Andersen & Hagen, 2016; Fagereng, 2016). The 

concentrations decreased with time and distance from the farm (Andersen and Hagen, 

2016). Low concentrations of H2O2, 25 to 60 minutes after the discharge were measured 

in water sampled at 20-60 m from the edge of net pens after discharge (Fagereng, 2016). 

Still, these concentrations were higher than the calculated LC50 for the Northern krill 

and European lobster (Paper II and III). 

In the case of deltamethrin and azamethiphos two field studies have measured their 

concentration in the surrounding waters after discharge (Ernst et al., 2014; Langford et 

al., 2015). Using rhodamine dye, one of the studies measured the fate of the dispersing 

chemotherapeutants following six treatments to facilitate the tracking of the plume 

(Ernst et al. 2014). The study showed that azamethiphos was mostly present in the 

aqueous phase, indicating that non-target organisms are primarily exposed in the water 

column, while deltamethrin was observed primarily associated with particles. High 

concentrations of azamethiphos (25 µg/L) in water were sampled within 1 m from the 

edge of the pen (Ernst et al., 2014). These concentrations are similar to the lethal 

concentrations described in this thesis for H. gammarus (Paper IV). Another study 

indicated that azamethiphos might dilute more slowly, with concentrations of 26 ng/L 

in the water samples one week after the treatment (Langford et al.,2015). Overall, the 

concentrations reported by the available field studies support that the lethal and 

effective concentrations found in this thesis for H2O2, deltamethrin and azamethiphos 

can be found in the surrounding areas of farms following their discharge.  

Laboratory studies coupled with hydrodynamic models are useful for predicting the 

environmental impact of chemotherapeutants. By incorporating the topography of farm 

locations and the lethal/effective data from toxicity studies, these models can predict 

the dilution, dispersion and impact areas of the chemicals. A previous mathematical 

model predicted the dispersal of H2O2 from Norwegian aquaculture sites (Refseth et al., 

2016). This model describes a more extensive spread of H2O2 than the field studies 

implied, predicting that concentration under 100 mg/L H2O2 can be present in surface 
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waters (0-3 m depth) up to several hours after discharge at distances up to 2 km away. 

These simulations suggest that both the pre-adult stage CV and adult stage of Calanus 

spp. and M. norvegica located within 2 km of H2O2 treated salmonid farms may be 

exposed to lethal concentrations (Fig 13) (Papers I & III). Furthermore, the model also 

predicted that areas within 1 km of the farm may experience concentration > 300 mg/L 

H2O2 within the first hour after discharge indicating that pelagic life stages of H. 

gammarus, particularly stages I and II living within 1–2 km of a salmon farm may be 

exposed to lethal concentrations of H2O2 (Paper II).  

This thesis, with the use of a hydrodynamic model, simulated the dispersal of 

deltamethrin and azamethiphos into the Norwegian marine environment and mapped 

the potential risk areas for wild European lobster (Fig. 13) (Paper IV). Our results show 

that large areas around salmonid farms, ranging from 21.1 to 39.0 km2, were within 

high impact zones of deltamethrin. The azamethiphos impact zones around the farms 

were relatively small and thus its effect would be less severe (Paper IV). The difference 

in the impact zones is large and is caused by the difference in toxicity between the two 

drugs. For azamethiphos the LC50 values for stage I and II H. gammarus larvae 

represented approximately 2- and 5-fold dilutions of the treatment concentration used 

in Norway. For deltamethrin, on the other hand, these values were approximately 800-

fold dilution of the treatment concentration. Compared to previous models, the present 

study indicates that these low levels of deltamethrin could disperse to approximately 10 

times greater distances. 

The model in paper IV demonstrates that large areas around aquaculture sites are 

exposed to lethal and effective concentrations of deltamethrin following treatments, and 

therefore this compound may have widespread adverse effects on sensitive non-target 

crustacean species living in the vicinity. However, we must also highlight some major 

limitations of the model. First, several of the model’s underlying assumptions could 

result in its predictions being worst case scenarios of the impact zones. For example, 

the model may over-estimate the dispersal of deltamethrin as it assumes that the 

chemical is not absorbed by organic matter. Secondly, though the impact zones were 

delimited by the effective concentrations, time was not considered and therefore, how 

long the harmful concentrations were present in an area was not determined. The model 
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simply maps areas surrounding the net pens that experience lethal and effective 

concentrations at any point in time during the 24 h simulation.  

 

 

Fig. 13. Simplified illustration of the impact zones of H2O2, deltamethrin and azamethiphos 

after discharge from a salmonid farm. Based on the hydrodynamic model data from Refseth et 

al. 2016 and Paper IV. The figure does not illustrate the depth of the impact zones.  
 

 Hydrodynamic models have shown that a single 1 h exposure to H2O2, 

deltamethrin and azamethiphos had lethal and sub-lethal effects on non-target 

organisms. Delousing operations can involve parallel and consecutive 

chemotherapeutant treatments in many sea cages within a single fjord. Thus, non-target 

crustaceans are likely exposed to multiple chemotherapeutant plumes over a few days 

(Grefsrud et al., 2018). In previous studies, lower LC50 and EC50 values have been 

described as a result of pulse-like exposures for crustaceans (Burridge et al., 2000, 

2008; Bechmann et al., 2019). Therefore, the real impact of H2O2, deltamethrin and 

azamethiphos on wild populations of non-target crustaceans may be higher than the 

effects observed for a single exposure. Laboratory studies can provide further results to 

be implemented in future models and reduce this knowledge gap. 
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ADDITIONAL CONSIDERATIONS  

  

In this thesis, the tests that were carried out were static; that is, the exposure 

water was not changed over time. The limitations of such static studies are: 1) The 

toxicant concentrations drop due to degradation, uptake or adsorption by the container, 

and 2) the water quality may diminish due to the accumulation of waste and decrease 

of O2. To mitigate these limitations, I conducted short one-hour exposures in glass 

beakers, in which neither H2O2, deltamethrin and azamethiphos degrade after 1h 

exposure (Bruno & Raynard, 1994; Lyons et al., 2014; Fagereng, 2016; Burridge et al., 

2014; Bechmann et al., 2020).  

The LC50 values in this work are based in nominal concentration. These three 

compounds have been approved as drugs, suggesting that the nominal concentrations 

are an official procedure as they comply with a minimum quality standard. 

Nevertheless, the measurement of pollutant concentrations before and after their use 

should be carried out in ecotoxicology studies to ensure consistency of exposure 

concentrations and nominal concentrations. 

This study identifies some general lessons and considerations for ecotoxicology 

studies in the marine environment. Ecotoxicology studies are often based on guidelines 

design for freshwater environments in which conventional laboratory species such as 

Daphnia magna are used. However, we cannot rely on the results of freshwater species 

for the approval of pesticides to be used in the marine environment. It is of utmost 

importance to take into consideration the ecology of the species tested and their role in 

the ecosystem. By considering the relative toxicities across species and life-stages, this 

thesis has highlighted the need to perform tests with species relevant to the ecosystems 

in question. This work, together with previous studies, has shown the importance of 

including different life stages when performing ecotoxicology tests. Data for the most 

sensitive life stage should be included in the creation of SSD curves, as we do not know 

which life stage is the most sensitive, larval, juvenile or adult stages and which should 

be tested. Additionally, the 3Rs (Replacement, Reduction and Refinement) should be 

taken into account when conducting ecotoxicology studies. Although, enough data 

should be collected to produce reliable SSD curves, PNECs, NOEC values in order to 
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provide better risk assessments. If the studies are conducted with high standards, 

completing as much of the quality criteria from a standardized guideline, and on 

relevant species, enough data for management advice will be available. 
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PERSPECTIVES FOR THE FUTURE 

Standardized toxicity tests for chemotherapeutants should be conducted to allow 

a better comparison between studies. Shorter exposure times followed by a prolonged 

observation period, will continue to provide insight on the delayed effects on non-target 

crustaceans and other marine species. Likewise, this thesis supports the necessity to 

assess the negative impacts of these chemicals at a local level. Variation in species 

sensitivity has been observed, therefore the outcome of this thesis highlights that there 

is a need for agrochemical companies to carry out toxicity tests with local keystone 

species from different taxonomic groups when applying for authorization from the 

appropriate regulatory body. Sub-lethal endpoints should also become required in the 

implementation of risk assessments to avoid underestimating risk. Lastly, risk 

assessments can be further improved with the inclusion of time-to-event data. By 

incorporating both exposure concentration and duration at which the first effects appear, 

a better overview of the impact of these compounds can be attained.  
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Abstract
Hydrogen peroxide (H2O2), a pesticide used in salmonid aquaculture, is released directly into
the environment where nontarget organisms are at risk of exposure. We determined threshold
concentrations for mortality of Calanus spp., the dominant zooplankton species in the North
Atlantic, and assessed sublethal effects, focusing on the escape response and oxygen consumption
rates (OCRs) as behavioral and physiological assays. One-hour exposure to 170 mg·L−1

(i.e., 10% of the recommended H2O2 treatment) was lethal to copepodite stage V (92% mortality)
and adult females (100% mortality). The acute median lethal concentration (1h-LC50) was
214.1 (150.67–277.4) and 48.6 (44.9–52.2) mg·L−1 for copepodite V and adults, respectively. The
25-h LC50 was 77.1 (57.9–96.2) and 30.63 (25.4–35.8) mg·L−1 for copepodite V and adults, respec-
tively. At concentrations of 0.5% and 1% of the recommended treatment level, Calanus spp. showed
a decrease in escape performance and lower OCRs with increased concentration. At H2O2 concen-
trations of 5% of the recommended treatment levels (85 mg·L−1), exposed copepods showed no
escape reaction response. These results suggest that sublethal concentrations of H2O2 will increase
the risk of predation for Calanus spp. Furthermore, this study provides supporting evidence that
theoretical “safe” values, traditionally used for predicting toxicity thresholds, underestimate the
impact of H2O2 on the physiological condition of nontarget crustaceans.

Key words: aquaculture, behavior, ecotoxicology, hydrogen peroxide, sublethal effects, zooplankton

Introduction
Lepeophtheirus salmonis, salmon louse, is a parasitic copepod affecting farmed and wild salmonids
(Costello 2006; Torrissen et al. 2013). Addressing the economic and ecological impact of salmon lice
is considered one of the most important challenges for the salmon industry. The parasite feeds on
skin, causing damage associated with osmotic stress and secondary infections (Finstad et al. 2000;
Johnson et al. 2004). Salmon lice infestations increase the overall cost of salmon aquaculture due to
high expenses associated with delousing and the concomitant reduction in fish growth and reduced
marketability due to skin lesions (Costello 2009; Liu and Bjelland 2014). In natural populations,
smolts from wild salmon and trout can suffer high mortality if infested with a high density of salmon
lice (Liu et al. 2011).
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To control salmon lice infestations strict regulations on the number of lice per fish—0.2 adult
female lice in the spring, and 0.5 adult female lice per fish for the rest of the year—have been
established in Norway, and a plan for management of salmon lice is requested from each farm
by the Salmon Lice Directive (www.lovdata.no/dokument/SF/forskrift/2012-12-05-1140). To meet
these regulations, commercial farms rely partly on chemical therapeutants to control salmon lice
populations. One of the therapeutants used in Norway to treat salmon lice and amoebic gill disease
(Young et al. 2007) is hydrogen peroxide (H2O2). Hydrogen peroxide is administered by bath
treatment, either directly in the net pens or using well boats (Ernst et al. 2001). After treatment,
the chemical is discharged into the surrounding water. The use of H2O2 peaked in 2015 at 43 246 tons,
but declined to 9277 tons in 2017 (www.fhi.no/hn/legemiddelbruk). The mechanism of action of
H2O2 on salmon lice includes mechanical paralysis, inactivation of enzymes and DNA replication,
and peroxidation of lipid and cellular organelle membranes by hydroxyl radicals (Cotran et al. 1989).
Mechanical paralysis is caused by decomposition of H2O2 to water and O2 bubbles in the haemolymph,
which causes detachment of the pre-adult and adult lice from the fish (Thomassen 1993; Aaen et al.
2014). Hydrogen peroxide is not effective on the chalimus stages.

The pelagic zooplankton, Calanus spp., is a key component in the north Atlantic food web (Melle
et al. 2014) and is abundant in the coastal zone where aquaculture sites are located (Broms et al.
2009). Calanus spp. is an important grazer of primary production (Runge and de Lafontaine 1996;
Heath and Lough 2007). The younger life stages are important food for juvenile fish in the nursery
areas, and the adults are main prey for several pelagic fish stocks such as herring and cod
(Dalpadado et al. 2000; Sundby 2000; Rullyanto et al. 2015). In the spring, egg production for
Calanus spp. overlaps with the peak application of pharmaceuticals to keep the level of salmon lice
below 0.2 lice females per fish. Its effect on Calanus spp. is largely unknown.

Only a few studies have examined the effect of exposing nontarget organisms to H2O2 (Burridge et al.
2014; Van Geest et al. 2014; Brokke 2015). Brokke (2015) reported that exposure to 1700 mg·L−1

H2O2 for 1 h resulted in 10% mortality in chameleon shrimp (Praunus flexuosus) and 20% in
rockpool shrimp (Palaemon elegans) after a 24-h recovery period. Consequently, the median lethal
concentration (LC50) values were higher than the treatment concentration for both species. In con-
trast the opossum shrimp (Mysid sp.) were considerably more sensitive with a LC50 of 973 mg·L−1

(i.e., lower than the recommended treatment concentration (Burridge et al. 2014)) and late copepo-
dide stage Calanus spp. had a LC50 of 6 mg·L−1 H2O2 following a 24-h exposure, indicating a time-
dependent effect (Hansen et al. 2017).

The objective of this study was to determine the threshold concentrations at which H2O2 causes
mortality in Calanus spp. and to assess possible sublethal effects, focusing on the escape response as
a behavioral assay and oxygen consumption rates as a physiological indicator.

Materials and methods
Copepods were collected from the dock at Austevoll Research Station, Institute of Marine Research,
Norway (60°05′20″N, 5°15′57″E) at a depth of 20–30 m using light traps and plankton nets. The light
traps (mesh size 500 μm; 0.45 m in diameter; BellaMare, San Diego, California, USA) were equipped
with a white LED light and deployed overnight. A standard plankton net (mesh size, 200 μm; diam-
eter, 30 cm) was used to collect copepods from 20 m to the surface. Copepods were collected at least
3 km away from any commercial fish farm and were transported to the laboratory at Austevoll
Research Station where Calanus spp. adult females and copepodite V stages were sorted. Copepods
were maintained overnight in 10 L containers at 8 °C. Seawater used in the experiments was pumped
from a depth of 160 m in Bjørnafjorden and filtered through a sand filter. Copepods were tested
within 24 h of capture and each copepod was tested only once.
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Commercial H2O2 (Nemona, Akzo Nobel Pulp and Performance Chemicals AB, Bohus, Sweden) is
49.50% H2O2. For treating salmon, the recommended concentration for a H2O2 bath treatment is
1500–2100 mg·L−1 depending on temperature, for 20 min (https://www.felleskatalogen.no/medisin-
vet/atc-register/QD08A). Typically, toxicity studies use exposure times of 24, 48, 72, and 96 h; how-
ever, this is not representative of the scenario following a bath treatment on a salmon farm.
Therefore, we followed the recommendations of Burridge et al. (2014) and Van Geest et al. (2014)
and limited the exposure time to 1 h.

A preliminary study was conducted to select the concentrations to be used in the main experiment.
Testing was undertaken with concentrations of 1700 and 340 mg·L−1 H2O2 (∼100% and 20% of the
recommended treatment concentration). These concentrations caused 100% mortality after 1 h
exposure for both copepodite Vs and adult females. Thus, the concentrations chosen in this study
were 170, 85, 17, and 8.5 mg·L−1, corresponding to 10%, 5%, 1%, and 0.5% of a recommended treat-
ment dose of 1700 mg·L−1.

The copepods were randomly divided into five groups, each group consisting of 30 individuals. H2O2

was added to each of four 4 L tanks and mixed to the target concentrations. One tank contained clean
seawater and served as a control. Three PVC pipes (25 cm diameter, 25 cm tall, 500 μm Nitex screen
bottom) were added to each tank; each pipe contained approximately 10 individuals. The experiment
was conducted in triplicate using a total of approximately 450 copepods. The temperature in the tanks
was 13 °C.

Mortality
Stage V and adult female copepods were used in all experiments. The exposure time was 1 h and, after
exposure, the copepods were transferred to 10 L tanks in which they were held for 24 h (recovery
period). The copepods were observed under a dissecting microscope immediately after the 1-h
exposure and after the 24-h recovery period. Dead individuals were counted at each time point.
Individuals were considered dead if they were discolored, deformed (urosome and pleopods folded
back), or if there was no movement of the antenna and pleopods after a gentle stimulus. Copepods
laying on the bottom of the tank, with retracted antennae but showing uncontrolled limb motion,
(e.g., twitching of the antennae) were considered immobilized. Mortality that occurred during the
1-h exposure is defined as acute mortality. Total mortality was defined as the sum of mortality during
the 1-h exposure plus that after the 24-h recovery period.

Sublethal effects
The escape response of the copepods was measured as a behavioral assay and oxygen consumption
rates as a physiological indicator of sublethal effects of exposure to H2O2. Exposure concentrations
used in these experiments were 8.5, 17.0, and 85.0 mg·L−1 H2O2, in addition to a control. The
set-up was identical to the mortality experiment. After the 1-h exposure the copepods were trans-
ferred to 10 L tanks containing filtered seawater and the behavioral responses and oxygen consump-
tion rates (OCRs) were measured (described below). All copepods were tested within 5 h of exposure
in a randomized order. The entire experiment was repeated on three consecutive days with freshly
collected copepods.

Escape response
Silhouette video photography (Browman et al. 2003), was used to observe the swimming behavior of
copepods. This system allows high-quality observations of small transparent organisms at high
resolution and is unaffected by ambient light intensity. Two video cameras were mounted orthogo-
nally, each camera illuminated with a 20 cm collimated beam generated by a small red (720 nm)
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LED light source. A glass aquarium holding the organisms was placed at their intersection of the two
light paths. The two simultaneous orthogonal views allow particles in the field of view to be tracked in
three dimensions. The software packages TRAKFISH, MANTRACK, and ANAPATHS (Racca
Scientific Consulting and JASCO Research Ltd., Victoria, British Columbia, Canada) were used to
analyze the video records (Browman et al. 2003).

Escape response was tested in a 31 L tank (25 cm × 25 cm × 50 cm) (Fig. 1). To stimulate the escape
response, a siphon (a 16-gauge, stainless steel, flat-tip hypodermic needle that acted as a mimic of a
suction predator) was mounted in the center of the tank, 70 mm above the bottom (Fields et al.
2012). The flow rate into the siphon was maintained at 1 mL·s−1. The velocity (V) of the water
entrained by the siphon decreases exponentially with distance (r) from the siphon as: V = Q
(4π × r2)−1 where Q is the volume exiting the siphon (Kiørboe et al. 1999). At 5 cm from the siphon,
the flow was calculated to be 30 μm·s−1, which is below the threshold for the escape response of this
species of copepod (Fields et al. 2012). As the water drained through the siphon, filtered seawater
was re-introduced at the top of the tank to maintain a constant water level. This type of set-up has
been used previously to initiate an escape response in other copepod species (Fields and Yen 1997).
All trials (treatment and controls) were filmed for 60 min in a climate-controlled room at 13 °C
(±0.5 °C). The tank contained approximately 200 copepods. Each animal was used only once.

The distance from the predator at which the copepod initiates their escape (threshold distance), and
how fast and how far, are the decisive factors in the ability of a copepod to avoid predation (Fields
et al. 2012). An escape response involves a single or a series of jumps during which the copepod draws
its antennae in to the sides of its body followed by rapid motion of the swimming legs (Strickler 1975;
Fields 2000). In case of multiple sequential escape jumps, only the first escape was used. The end of

Fig. 1. Schematic diagram of the siphon tank used to observe the escape reaction of Calanus spp. in response to a
suction flow. Illustration of the escape response of Calanus spp. The distance from the copepod to the siphon at
the initiation of the escape response represents the detection threshold distance. Once the animal initiated an
escape reaction (retracts its antennae and jumps), the total distance traveled, and the speed of the escape were
measured.
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the escape response was defined as the moment when the antennae returned to their original position.
Copepods that initiated an escape response but were captured by the siphon were designated as
unsuccessful escapes and were not included in the behavioral analysis. The threshold and magnitude
of the escape response was evaluated by measuring three parameters: immediate escape response
(distance of the copepod from the siphon when the first escape response was initiated), the average
speed of the escape and the total distance traveled during the escape. Exposed copepods that were
completely paralyzed were not included in the assessment of escape performance or oxygen consump-
tion rate.

Oxygen consumption rates (OCRs)
Only adult female copepods were used in this experiment. Three replicate measurements were made
on the same day using three individuals from each concentration and the control. Test animals were
held in experimental chambers (4.3 mL) filled with filtered seawater and sealed with a ground glass
top that has a small access hole (0.4 mm) to accommodate the oxygen microelectrode. The experi-
mental chambers were stirred (10 rpm) using a glass-encased magnetic stir bar (2 mm). Dissolved
oxygen concentrations were measured using a Clark-type oxygen microelectrode (Unisense; Aarhus,
Denmark). The linear response of each electrode was calibrated with 0.2 μm filtered seawater bubbled
for a minimum of 1 h to set the 100% dissolved oxygen calibration point (Runge et al. 2016). For the
anoxic calibration, seawater was placed into a silicone tube immersed in a solution of 0.1 mol·L−1

sodium ascorbate and 0.1 mol·L−1 sodium hydroxide overnight (for over 4 h). All oxygen measure-
ments were made at 12 °C (±0.01 °C) in a ThermoScientific water bath (Model A10B with a thermo-
stat SC100).

Oxygen concentration in the chambers was measured every 2 s for 1.5 h. The oxygen concentration
never decreased below 20% saturation. Control chambers, without copepods, were measured to deter-
mine background levels of microbial and algal respiration. The oxygen consumption was computed as
the difference between the beginning and end of the incubation and then corrected with the values
obtained from the control chambers. Activity level of the copepods was assessed under a dissecting
microscope before and after the OCR analysis to ensure that all of the copepods were alive.

Statistical analysis
Statistical analysis was conducted using the software R (R Studio, version 3.4.3). The concentration of
H2O2 that caused 50% mortality (LC50), and their 95% confidence intervals (CI), were calculated for
each stage using a generalized linear model with binomial error structures and probit links according
to Finney (1971). Pesticide concentrations were log10 transformed to linearize the data. At sublethal
concentrations, changes in the escape performance variables and OCR as a function of H2O2 concen-
tration were tested using a linear regression with a significance level (p) of 0.05 after significance
between replicates within treatments was tested using ANOVA.

Results

Mortality
No mortality was recorded in any of the control groups. After 1-h exposure to 170 mg·L−1 H2O2, the
acute mortality was 38.0%± 0.08% for copepodite stage V and 97.0%± 0.03% for adult Calanus spp.
females (Table 1); all of the surviving animals in this treatment were immobilized. During the 24-h
recovery period, the mortality increased to 92.0%± 0.01% for copepodite stage V and 100% for adult
females. At 85 mg·L−1, total mortality was 34% ± 0.09% (copepodite stage V) and 89% ± 0.17% for
adult females. At 17 mg·L−1 total mortality was 30%± 0.12% and 14%± 0.03% for stage V and adults,
respectively. No delayed mortality or immobilization was observed when exposed to 8.5 mg·L−1 in

Escobar-Lux et al.

FACETS | 2019 | 4: 626–637 | DOI: 10.1139/facets-2019-0011 630
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
FI

SK
E

R
ID

IR
E

K
T

O
R

A
T

E
T

 o
n 

01
/2

9/
20



either stage V or adults. Based on the total mortality rates, the acute 1h-LC50 and total 25h-LC50

values with 95% CIs were calculated (Table 2).

Escape response
Biological replicates within each treatment were not significantly different (ANOVA p< 0.5) so they
were pooled for further statistical analysis. Copepods from the control, 8.5 and 17.0 mg·L−1 H2O2

treatments successfully escaped the siphon 94% of the time. There was a significant difference in the
escape performance between the control copepods and those exposed to 8.5 or 17.0 mg·L−1. The
escape threshold decreased significantly with increased concentration (y = 8.24 − 0.14x; R2 = 0.13;
p = 0.015) (Fig. 2A). Every 10 mg·L−1 increase in concentration caused a 1.4 mm decrease in distance
from the siphon at which the copepod initiated the escape reaction. Similarly, once the copepod ini-
tiated the escape response the distance that Calanus spp. traveled decreased with increasing H2O2

(y = 31.84− 0.8x; R2 = 0.103; p = 0.031) (Fig. 2B). Every 10 mg·L−1 increase in concentration caused
an 8-mm decrease in distance traveled away from the siphon. However, there was no significant dif-
ference in the escape speed between the control and treatment levels up to 17 mg·L−1 (p = 0.32)
(Fig. 2C). At higher concentrations (85 mg·L−1), none of the copepods made a successful escape reac-
tion from the siphon or even initiated an escape response. Although alive, the copepods exposed to

Table 1. Acute (1-h exposure) and total mortality (1-h exposure+ 24-h recovery) shown in percentages (%)
with ±SD, of copepodite stage V (N = 324) and adult females (N = 327) of Calanus spp. exposed to different
concentrations of H2O2.

H2O2 (mg·L−1)

Acute mortality (%) Total mortality (%)

Copepodite V Adult Copepodite V Adult

0 0 0 0 0

8.5 0 0 0 0

17 14± 0.03 14± 0.09 30± 0.12 14± 0.03

85 14± 0.12 74± 0.08 34± 0.09 89± 0.17

170 38± 0.08 97± 0.03 92± 0.01 100

340a 100 100 — —

1700a 100 100 — —

aFrom the preliminary study.

Table 2. LCx with corresponding 95% confidence intervals for copepodite stage V and adult Calanus spp.
following 1-h exposures to hydrogen peroxide (1h-LCx) and following a 24-h recovery period (25h-LCx).

Hydrogen peroxide (mg·L−1)

Copepodite V 1h-LC10 29.3 (18.8–39.7) 25h-LC10 10.9 (6.5–15.3)

1h-LC50 214.1 (150.7–277.4) 25h-LC50 77.1 (57.9–96.2)

1h-LC90 1566.1 (673.75–2458.6) 25h-LC90 545.6 (284.8–806.5)

Adults 1h-LC10 17.2 (14.6–19.8) 25h-LC10 11.6 (9.1–14.2)

1h-LC50 48.3 (44.9–52.2) 25h-LC50 30.6 (25.4–35.8)

1h-LC90 135.2 (121.5–148.9) 25h-LC90 80.7 (60.6–100.8)
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concentrations of 85 mg·L−1 showed limited swimming ability and were most often lying on the
bottom of the tank.

Oxygen consumption rate (OCR)
OCR was measured at H2O2 concentrations at which copepods showed a behavioral response to the
siphon (0, 8.5, and 17 mg·L−1 H2O2 treatments). OCR decreased significantly in the H2O2 treatments
relative to controls (y = 60.75− 1.93x; R2 = 0.886; p = 0.005). At 12 °C, OCR for Calanus spp. decreased
from 64 nmol O2 ind

−1·h−1 in the control group to 24 nmol O2 ind
−1·h−1and 39 nmol O2 ind

−1·h−1 in
8.5 and 17.0 mg·L−1 H2O2 respectively (Fig. 2D). At 85 mg·L−1 H2O2, the copepods were still alive but
were unresponsive; their OCR was not significantly different from that of controls (ANOVA, p> 0.5).

Discussion
The recommended concentration of H2O2 used to treat salmon lice (1700 mg·L−1) causes acute
mortality in wild-captured Calanus spp. A 1-h exposure to the recommended treatment concentration,
and to 20% of the recommended concentration (340 mg·L−1), caused 100% mortality in both copepo-
dite stage V and adult females. As the concentration of H2O2 is decreased, the mortality in Calanus
spp. also decreased. At the lowest concentration tested (8.5 mg·L−1) no acute or delayed mortality was
observed. The acute mortality (recorded immediately after exposure), was lower than the total mortality
recorded after a 24-h recovery period. These results suggest that it is important to include a 24-h
recovery period in these types of experiments to obtain an accurate estimate of mortality.

Adult Calanus spp. showed higher mortality to H2O2 exposure than copepodite stage V. Similar stage-
specific differences in sensitivity to H2O2 exposure have been reported for other copepod species

Fig. 2. Changes in the escape performance of Calanus spp. at sublethal concentrations of H2O2. (A) Escape
threshold distance from the siphon at which the Calanus spp. initiates the escape reaction (p = 0.015), (B) the
distance traveled during the escape response (p = 0.031), (C) the escape speed, and (D) oxygen
consumed (p = 0.005). Values are means (±SE). Lines show significant linear regressions of the data. OCR, oxygen
consumption rate.
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(Acartia sp.; Van Geest et al. 2014), including salmon lice (L. salmonis; Mitchell and Collins 1997) and
their eggs (Aaen et al. 2014; Bravo et al. 2015). We found no available data on the sensitivity of
Calanus spp. eggs or nauplii to H2O2. However, given the abundance of ovigerous copepod females
present during the spring period when H2O2 application is the highest (Grefsrud et al. 2018), this
should be tested in future.

The immobilization of the copepods observed in this study was expected as it is one of the effects of
H2O2 on salmon lice. Bubbles of O2 gas in the haemolymph are the primary cause of sea lice detach-
ment from the host following treatment with H2O2 (Cotran et al. 1989; Treasurer et al. 2000; Aaen
et al. 2014). However, the formation of gas bubbles observed in salmon lice (Bruno and Raynard
1994) was not reported in Acartia hudsonica, Metacarcinus edwardsii, or in Calanus spp. (Van
Geest et al. 2014; Gebauer et al. 2017; Hansen et al. 2017), so the mechanism of immobilization
observed in Calanus spp. is unclear.

The distance from the predator at which a copepod initiates an escape reaction, and the strength of
the escape reaction, are decisive factors in the copepod’s ability to avoid predation (Fields and Yen
1997). Calanus spp. that were not exposed to H2O2 (control) showed escape performance metrics
consistent with earlier studies on copepods (Fields et al. 2012). At sublethal levels, exposure to
H2O2 had measurable effects on the escape reaction of Calanus spp. At a concentration of
85 mg·L−1, approximately 25% of the exposed adult copepods survived a 1-h exposure, yet none of
these survivors made a successful escape from the siphon. Many of the copepods exposed to
17 mg·L−1 were partially immobilized and sank to the bottom of the aquarium during exposure,
unlike copepods exposed at 8.5 mg·L−1 at which no immobilization was observed. Calanus spp.
showed a decrease in the threshold distance at which they initiated their escape reaction with
increased H2O2 concentration and after the copepods initiated the escape response, they traveled a
significantly shorter distance from the siphon. These behavioral results suggest that Calanus spp.
exposed to sublethal concentrations of H2O2 (at 1% of the recommended treatment levels) will be
more susceptible to predation because of an impaired escape response. These results are consistent
with the findings of Van Geest et al. (2014) who observed immobilization of A. hudsonica after
15 min of exposure to concentrations of ≥10 mg·L−1.

Exposed copepods also experienced reduced OCR in response to increased concentrations of H2O2.
The lower metabolic activity is a likely cause of the decreased distance traveled during the escape. In
addition, the lower metabolic activity may impact the repetitive escape reaction of copepods. The
escape reaction of copepods is energetically costly (Strickler 1975) and the strength of the response
decreases with increased escape frequency (Fields 2000). A lower OCR will decrease the ability of
the copepod to perform multiple escape reactions and thereby further increase their predation risk
(Fields 2000).

At the highest sublethal concentrations tested (85 mg·L−1; 5% of treatment levels), Calanus spp. were
unable to swim and sank to the bottom of the tank. These individuals exhibited no response to the
predator mimic. Paradoxically, the respiration rates of the copepod at these higher levels of exposure
were similar to levels measured in the controls. These results suggest a change in the mode of action of
the H2O2 (Rand 1995). At higher concentration (above 17 mg·L−1), H2O2 may produce narcosis,
causing partial paralysis. The risk of predation for these copepods with no escape reactions is
extremely high. The data show that some of these animals may recover normal escape behavior;
however, since predation can have a significant effect on the population dynamics of invertebrates
(Pangle et al. 2007), sublethal effects on escape behavior potentially have important ecological impli-
cations for the affected population. The results of this study provide supporting evidence that theo-
retical “safe” values, traditionally used for predicting toxicity thresholds, underestimate the impact
of H2O2 on the physiological condition of nontarget crustaceans. This warrants additional research.

Escobar-Lux et al.

FACETS | 2019 | 4: 626–637 | DOI: 10.1139/facets-2019-0011 633
facetsjournal.com

FA
C

E
T

S 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.f
ac

et
sj

ou
rn

al
.c

om
 b

y 
FI

SK
E

R
ID

IR
E

K
T

O
R

A
T

E
T

 o
n 

01
/2

9/
20



Our results indicate that the No Observable Effect Concentration for Calanus spp. is between 8.5 and
17 mg·L−1. This is considerably higher than the concentration reported for another calanoid copepod
species, A. hudsonica, for which the sublethal concentration level of 2.6–10.0 mg·L−1 (EC50) was
determined based on feeding rate measurements (Van Geest et al. 2014). This suggests that the impact
of H2O2 on copepods is species specific. Copepods as a group may be more sensitive to H2O2 than
other planktonic crustaceans. For example, Gebauer et al. (2017) reported a LC50 for the mola rock
crab larvae (M. edwardsii) of 1642 mg·L−1, two orders of magnitude higher than thresholds for
Calanus spp.

While it is clear that even 0.5% of the standard treatment concentration of H2O2 has a detrimental
effect on Calanus spp., the dispersal and dilution processes that affect the effluent plumes after
treatments at aquaculture sites are still unclear (Ernst et al. 2001). Development and testing of
dispersion models, including field studies to verify the models, will be important to evaluate the
broader impact of H2O2 on the organisms living around salmon farms.
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A B S T R A C T   

Bath treatment chemotherapeutants, used to control sea lice infestations in the salmonid aquaculture industry, 
are released directly into the marine environment around fish farms and pose a serious risk to non-target species, 
particularly crustaceans. Hydrogen peroxide (H2O2) is the most frequently used bath treatment chemo
therapeutant on Norwegian fish farms, however, limited information is available on its toxicity to European 
lobsters (Homarus gammarus), a commercially important species at risk of exposure due to its distribution 
overlapping with salmon farm locations. The aim of this study was to investigate the lethal effects of H2O2 on 
pelagic (stage I-IV) larvae/post-larvae and its sub-lethal effects on the benthic stage V H. gammarus. To assess the 
lethal effects of H2O2, we carried out a series of 1 h toxicity tests and assessed mortality after a 24 h post- 
exposure period. Exposure to H2O2 was toxic to all pelagic larval stages tested, with estimated median lethal 
concentrations (LC50) of 177, 404, 665 and 737 mg/L for stage I, II, III and IV, respectively. These concentrations 
represent approximately 10, 23, 40 and 43%, of the recommended H2O2 concentrations used for delousing 
salmon on Norwegian fish farms, respectively. To assess the sub-lethal effects of H2O2 on H. gammarus, stage V 
juveniles were exposed to H2O2 at concentrations of 85, 170 and 510 mg/L for 1 h and shelter-seeking behaviour 
and mobility endpoints were assessed. Numerous behavioural parameters including distance travelled to shelter, 
time to locate shelter and the number of shelter inspections, were negatively affected in lobsters exposed to H2O2 
when assessed immediately after the exposure period. However, no differences between control and exposed 
lobsters were detected after a 24 h post-exposure period. Our results demonstrate that short term exposures to 
H2O2 are lethal to pelagic H. gammarus life stages and can negatively affect the shelter seeking behaviour of 
benthic life stages, though these behavioural changes may be short-lived.   

1. Introduction 

Sea lice (Lepeophtheirus salmonis) infestations are a major challenge 
to the salmonid farming industry around the world (Costello, 2006; 
Torrisen et al., 2013; Vollset et al., 2016). The lice are naturally 
occurring parasitic copepods that affect both farmed and wild salmonid 
populations, causing skin damage and sub-epidermal hemorrhages that 
can lead to osmotic stress and secondary infections (Johnson et al., 
2004; González et al., 2015). The high density of sea lice in the sur
rounding water of the salmon farms may lead to high mortality of the 
migrating post smolts of wild Atlantic salmon (Salmo salar) and the sea 
trout (Salmo trutta) (Costello, 2009; Vollset et al., 2016). In order to 
manage sea lice infestations on Norwegian fish farms, the Norwegian 
Salmon Lice Directive has limited the number of adult female lice per 

fish to 0.2 in spring and 0.5 for the rest of the year 
(FOR-2012-12-05-1140, 2012). To comply with these regulations, the 
industry relies on the use of chemotherapeutants, either dissolved in the 
water and applied as a bath treatment (hydrogen peroxide [H2O2], 
deltamethrin, azamethiphos) or applied as an in-feed drug (ema
mectin-benzoate, diflubenzuron, teflubenzuron) or on other 
non-medicated treatments e.g. mechanical removal or the use of warm 
or fresh water (Grefsrud et al., 2019). 

Recently, Norway has seen a major decrease in the consumption of 
all chemotherapeutants (Folkehelseinstituttet, 2019), as a consequence 
of the development of resistance amongst the sea lice and the intro
duction of new delousing methods. Hydrogen peroxide is still, however, 
the predominate chemotherapeutant used in Norway, with 4523 tons 
used in 2019 (Folkehelseinstituttet, 2019). It acts on sea lice by inducing 
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mechanical paralysis, inactivation of enzymes and DNA replication, and 
peroxidation of lipid and cellular organelle membranes by hydroxyl 
radicals (Cotran et al., 1989; Valenzuela-Muñoz et al., 2020). Studies 
have shown that the mechanical paralysis is caused by decomposition of 
H2O2 to water and O2 gas/bubbles in the gut and hemolymph, resulting 
in the release of the pre-adult and adult lice from the fish which sub
sequently float to the surface (Thomassen, 1993; Bruno and Raynard, 
1994; Aaen et al., 2014). On salmon farms, the target concentration of 
H2O2 for bath treatments is between 1500 and 2100 mg/L and treatment 
period can last for 20–40 min, depending on temperature (Treasure 
et al., 2000). Once the treatment is complete, the waste treatment water 
is released into the surrounding environment as the tarpaulin enclosing 
the net pens is removed or from wells boat release while in transport. As 
the plume of H2O2 disperses into the marine environment, pelagic 
non-target organisms may be exposed to the effluent (Burridge et al., 
2014). 

Several studies have found lethal effects of exposure to H2O2 on 
different marine crustacean species, including American lobster 
(Homarus americanus) larvae and adults, sand shrimp (Crangon septem
spinosa), Mysid sp., amphipods (Corophium volutator), Metacarcinus 
edwardsii, brine shrimp (Artenia salina), northern shrimp (Pandalus bor
ealis), and the copepods Acartia hudsonica and Calanus spp. (Smit et al., 
2008; Burridge et al., 2014; Van Geest et al., 2014; Gebauer et al., 2017; 
Hansen et al., 2017; Bechmann et al., 2019; Escobar-Lux et al., 2019). A 
limited number of studies have also shown that exposure to H2O2 can 
have sub-lethal effects on crustaceans. For example, exposures to rela
tively low concentrations of H2O2 for short periods of time caused me
chanical paralysis in copepod Acartia hudsonica (≥10 mg/L), Calanus 
spp. (≥17 mg/L) and Pandalus borealis (15 mg/L) (Van Geest et al., 2014; 
Bechmann et al., 2019; Escobar-Lux et al., 2019). 

Acute toxicity tests often involve 24, 48 and 96 h exposure periods, 
which do not necessarily reflect acute exposures expected to occur in the 
marine environment (Ernst et al., 2001; Urbina et al., 2019). In recent 
years, there has been an increasing demand for toxicity tests to be per
formed under more environmentally relevant exposure conditions 
(Urbina et al., 2019). Shorter exposure times i.e. 1 h followed by a 24 h r 
post-exposure time (to assess delayed effects), would therefore provide a 
more accurate assessment of the impacts of bath treatment plumes on 
non-target species (Medina et al., 2004; Van Geest et al., 2014; Esco
bar-Lux et al., 2019). 

The aim of this study was to investigate the toxicity of H2O2 to Eu
ropean lobster (Homarus gammarus), a non-target crustacean species 
native to the Norwegian marine environment. H. gammarus is an 
important commercial species and is at risk of exposure to bath treat
ment chemotherapeutants as its distribution overlaps with the location 
of salmon farms along the coast of Norway (Agnalt, 2008). The life 
history of H. gammarus includes a number of distinct developmental 
stages including a planktonic larval phase (stages I-III), a post-larva 
phase (stage IV) which marks the transition from planktonic to 
benthic living, followed by a fully benthic phase from stage V and on
wards (Sars, 1874; Lawton and Lavalli, 1995). During the pelagic life 
stages, lobsters are most at risk of exposure to H2O2 when the pesticide 
disperses from the salmon cages into the surrounding marine environ
ment following the operational release of bath treatment effluents. Our 
first objective, therefore, was to perform a series of 1 h toxicity tests to 
environmentally relevant concentrations of H2O2 with each of the 
H. gammarus pelagic larval stages (I-IV) in order to establish lethal 
concentrations. The benthic lobster life stages are also at risk of exposure 
to H2O2 under certain environmental concentrations. For example, 
when the water column is well mixed, H2O2 can potentially sink under 
salmon cages and undergo horizontal dispersion along the seafloor 
instead of in the surface layers (Refseth et al., 2017). Stage V lobsters 
naturally exhibit an exploratory and shelter-seeking behaviours when 
placed in new environments (Agnalt et al., 2017; van der Meeren, 2001) 
which can potentially be negatively affected by exposure to chemical 
pollutants. Therefore, our second objective was to examine the 

sub-lethal effects of H2O2 on H. gammarus stage V post-larvae following 
short (1 h) exposures, and specifically assess changes in their shelter 
seeking behaviour. 

2. Material and methods 

2.1. Chemicals 

Commercial H2O2 (Nemona, 49,50% H2O2 or 600 g L−1) was pur
chased from Akzo Nobel, Pulp and Performance Chemicals, AB Sweden. 

2.2. Animal collection and handling 

This experiment was approved by the Norwegian Food Safety Au
thority (ID 15510) and was carried out according to The Code of Ethics 
of the World Medical Association for animal experiments (The Norwe
gian Ministry of Agriculture and Food, 2010, 2015). Six ovigerous 
H. gammarus females were purchased from a lobster dealer on May 22, 
2018 and transferred to Austevoll Research Station, Institute of Marine 
Research (HI) (N60◦05′15.36′′, E5◦15′54′′). 

The lobsters were subsequently kept in holding tanks (1.5 m × 1.5 m) 
containing sand filtrated seawater from 160 m depth (salinity of 34.7 
ppt), with a flow rate of 30 L min−1 and a photoperiod of 16-h/8-h day/ 
night. The water temperature was maintained at 8 ◦C to control hatch
ing. In August 2018, the seawater temperature was gradually increased 
to 16 ◦C to stimulate hatching. Newly hatched larvae, staged according 
to Sars (1874), were collected and transferred to aerated 40 L incubators 
(Hughes et al., 1974) supplied with running seawater at 14 ◦C. In order 
to limit cannibalism, all larvae in an incubator had an age difference no 
greater than three days. Correspondingly, each incubator was stocked 
with a maximum of 1500–2000 larvae. The larvae were fed daily with 
frozen artemia and Otohime C2 (Marubeni Nisshin Feed Company, 
Japan). When the larvae reached stage IV, they were transferred to 
separate 170 ml3 (7.0 cm × 3.5 cm x 7.0 cm) housing compartments 
made of white plastic PVC with 2.5 mm diameter holes in the bottom to 
allow water exchange. Coarse-grained sand was added to each 
compartment to induce normal claw development (Govind and Pearce, 
1989; Agnalt et al., 2017). The compartments were held in holding tanks 
at 14 ◦C and the lobster juveniles were fed frozen shrimp once a day. The 
incubators were treated twice a week with chloramine T (0.02 g L−1) for 
1 h to control Leucatrix minor infections in the larvae (Dr. D. Boothroyd, 
pers. comm.). 

2.3. Toxicity studies 

Lethality studies were performed with the pelagic larvae (stages I- 
IV). Exposures were conducted for 1 h and were followed by a 24 h post- 
exposure period. The temperature in the water-system was set to 14 ◦C, 
and in order to keep the temperature in the exposure units and in the 
post-exposure period, the room temperature was regulated to keep the 
temperature accordingly. The water temperature ranged between 13 
and 14 ◦C. As no previous studies have assessed the toxicity of H2O2 on 
H. gammarus larvae, the chosen concentrations were based on the rec
ommended dose for treating salmon (1700 mg/L). All four larval stages 
were exposed to H2O2 at concentrations of 170, 510, 850, 1190, 1530 
mg/L corresponding to 10%, 30%, 50%, 70% and 90% of the recom
mended treatment dose. The mean carapace length for stage I, II, III and 
IV was 2.3 mm ± 0.1, 3.3 mm ± 0.1, 3.8 mm ± 0.2 and 5.0 mm ± 0.5, 
respectively. 

For larval stages I & II, exposures were carried out in glass tank 
containing five larvae with five replicates per concentration; for stages 
III & IV (due to increased cannibalism and the number of available an
imals) each tank had approximately four larvae with four replicates per 
concentration (Burridge et al., 2014; Parsons et al., 2020). The glass 
tanks used for exposure had a volume of 700 ml. Prior to the start of 
exposure (within 5 min), the tanks were filled with fresh sand filtered 
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seawater at 14 ◦C and mixed with the appropriate H2O2 volumes. 
Following the exposures, larvae were transferred to 1 L individual 
post-exposure tanks supplied with continuously aerated seawater at 14 
◦C. Mortality and general condition of the larvae were assessed at 0, 6 
and 24 h (for larval stages I & II) post exposure. The lobsters were 
considered to be immobilised when normal swimming was absent, but 
there was movement of the pleopods and mouth parts after gentle 
prodding. Larvae were considered dead if they were discoloured, 
deformed (detached carapace), or if there was no movement of the 
pleopods after gentle stimuli. Mortality that occurred during the 1 h 
exposure was defined as acute mortality whereas total mortality was 
defined as the combined mortality of the 1 h exposure and the 24 h 
post-exposure period. 

2.4. Behavioural studies 

Sixty-four stage V lobsters were randomly divided into four groups, 
control and three exposure groups, which were exposed for 1 h to sub- 
lethal concentrations of H2O2 (85, 170 and 510 mg/L) in individual 
containers. The selected concentrations were based on the estimated 
LC50 values established for stage IV and represented 0, 5, 10 and 30% of 
the recommended treatment dose, respectively. Exposures were carried 
out in glass tanks containing 500 ml of the appropriate test solution at 
13.5–14.0 ◦C, where solutions were made as described above for the 
toxicity tests. Thirty-two lobsters were randomly selected and photo
graphed for length measurements. Carapace length (CL) was recorded as 
the distance from the posterior rim of the eye socket to the posterior 
edge of the carapace, using the open source software ImageJ (Image 
Processing and Analysis in Java, mean CL = 6.04 ± 0.06 mm). 

Immediately after exposure, the lobsters were transferred to indi
vidual containers filled with fresh seawater and aeration, until the 
commencement of the behavioural studies (within approximately 2 
min). To ensure that the lobsters had enough space to walk freely and 
explore the environment, four wide light acrylic diffusers (65 cm × 12 
cm x 6 cm) were used as lanes for the behavioural studies (Fig. S1). The 
lanes were filled with 3.12 L of seawater and maintained at 13.5–14.0 
◦C. To observe and record the behaviour of the lobsters, two GoPro 
Hero5® cameras where position at a height of 53.5 cm above the lanes. 
White sand was used as a substrate to ensure a better contrast between 
the lobster and the bottom of the tank. Shelters (5.5 cm × 2 cm), made 
from white PVC pipes cut in half, were placed at one end of each lane. 
The four lanes were simultaneously recorded, with one lobster from 
each exposure group placed in each lane at the opposite end of the 
shelter. This set-up has been used previously to study the shelter-seeking 
behaviour and activity levels of H. gammarus juveniles (Taormina et al., 
2020). The lobsters were recorded for 30 min, after which the following 
parameters were recorded: 1) total distance travelled (cm); 2) time to 
locate shelter (s); 3) total number of inspections of the shelter; 4) time to 
accept shelter (s)-defined as time of entering and remaining inside the 
shelter for the rest of the observation; 5) proportion of lobsters that 
accepted shelter by the end of the observation. 

Once the recording period was over, the lobsters were returned to 
their individual holding tanks. This marked the beginning of the 24 h 
post-exposure period. During this period the lobsters were fed frozen 
deep-water shrimp (Pandalus borealis). After the 24 h post-exposure 
period, the behavioural assays were repeated, in order to assess if 
there was any improvement in their behaviour. Between each trial, the 
lanes were cleaned, and the water was changed. 

2.5. Statistics 

All statistical analyses were conducted in R (Version 3.4.3 (2018-07- 
02) Copyright © 2018 The R Foundation for Statistical Computing). 

2.5.1. Toxicity studies 
Median lethal concentrations (LC50 values), and their 95% 

confidence intervals (CI), were calculated for each stage using general
ised linear models (GLM) with binomial error structures and probit 
links, according to Finney (1971). Concentrations were log10 trans
formed to linearize the data. The dose-response curves were plotted 
using the ggplot2 R package. 

2.5.2. Behavioural studies 
Behavioural data were firstly tested for normality using the Shapiro- 

Wilk Test. If the data met the requirement for normality, an unpaired 
two-sample t-test was performed to compare the measured endpoint 
between treatment groups. If the data did not meet the requirement for 
normality, a non-parametric Mann-Whitney U Test was performed. 
Multivariate repeated measures ANOVA was carried out to test if there 
was any difference between the data acquired after 1 h exposure and the 
data acquired after a 1 h plus a 24 h post-exposure period. 

3. Results 

3.1. Toxicity studies 

Acute mortality was low for all the treatment groups (Table 1), and 
the highest mortality of 15.4 ± 0.1% was obtained for stage I larvae 
exposed to the highest concentration of 1530 mg/L. No acute mortality 
was recorded for stage IV larvae, in any of the treatment groups. 
Immobilization and bubble formation on the inside of the carapace 
occurred in all larval stages but time-to-event was only recorded for 
stages I & II. In all of the H2O2 treatment groups, all stage I & II larvae 
developed air bubbles inside the carapace (Fig. 1), floated to the surface 
and subsequently became immobilised. This occurred within the first 5 
min of the exposure period. Since many of the immobile and floating 
larvae did not recover, mortality increased during the 24 h post- 
exposure period. No acute mortality was recorded for any of the con
trol groups immediately after the 1 h exposure. 

Total mortality reached 100% for stage I larvae exposed to 1530 mg/ 
L H2O2, and correspondingly, 92 ± 0.1% for stage II, 81 ± 0.2% for stage 
III and 75 ± 0.2% for stage IV (Table 1). In the groups exposed to 170 
mg/L the total mortality observed after the 24 h post-exposure period 
was 44 ± 0.3%, 24 ± 0.1%, 25 ± 0.3% and 6.3 ± 0.1% for stages I, II, III 
and IV, respectively. Mortality was also observed in the control group for 
stage IV after the 24 h post-exposure period (12.5 ± 0.1). Estimated LC50 
values and their CI for stage I, II, III and IV were 177 mg/L (142–212 
mg/L), 404 mg/L (289–519 mg/L), 665 mg/L (423–906 mg/L) and 737 
mg/L (507–967 mg/L), respectively (Fig. 2). 

3.2. Behavioural studies 

Independent of their treatment groups, the naïve stage V lobsters i.e. 
no previous encounter with shelter, started exploring their new envi
ronment as soon as they were released. The exploratory behaviour 
principally consisted of the lobsters freezing just as they were released in 
the lane, and then moving towards one of the lane borders. With the use 
of their antennae and claws, the lobsters maintained physical contact 
with the border, and then explored the long side of the lane in either 
direction. Once the lobsters made physical contact with the shelter, it 
was inspected multiple times occasionally followed by a second explo
ration of the lane before entering and accepting the shelter. 

When examined immediately after the 1 h exposure period, the 
exposed lobsters (85, 170 and 510 mg/L H2O2) travelled significantly 
shorter distances compared to control (Mann-Whitney U Test, p < 0.01) 
(Fig. 3). The mean distances travelled were 569 ± 119 cm, 179 ± 40 cm, 
242 ± 120 cm, and 130 ± 34 cm for lobsters in control, 85, 170 and 510 
mg/L treatment groups, respectively. 

Furthermore, the time spent by the lobsters to locate shelter for the 
first time was also greatly influenced by H2O2 exposure (Fig. 4). In 
particular, lobsters exposed to the two highest doses of H2O2 spent 
significantly longer times to locate the shelter compared to lobsters in 
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Table 1 
Summary of the mean (±SD) acute mortality (1 h exposure) and total mortality (1 h exposure + 24 h post-exposure) of H. gammarus stage I (n = 150), stage II (n = 150), 
stage III (n = 109), and stage IV (n = 96) larvae after exposures to a range of H2O2 concentrations.   

Acute Mortality (%) Total Mortality (%)  

1-h exposure 1-h exposure + 24-h post-exposure 

H2O2 (mg/L) Stage I Stage II Stage III Stage IV Stage I Stage II Stage III Stage IV 

1530 15.4 ± 0.1 0 4.8 ± 0.1 0 100 92 ± 0.1 81 ± 0.2 75 ± 0.2 
1190 8.3 ± 0.1 4 ± 0.1 0 0 100 88 ± 0.1 45 ± 0.1 68.8 ± 0.3 
850 8 ± 0.1 4 ± 0.1 0 0 100 80 ± 0.2 56.3 ± 0.2 62.5 ± 0.3 
510 4 ± 0.1 0 0 0 100 44 ± 0.3 16.7 ± 0.1 37.5 ± 0.3 
170 0 0 0 0 44 ± 0.3 24 ± 0.1 25 ± 0.3 6.3 ± 0.1 
Control 0 0 0 0 0 5 ± 0.1 0 12.5 ± 0.1  

Fig. 1. Representative images of H. gammarus stage I larvae in the (A) control and (B) 850 mg/L H2O2 group. The black arrow indicates the presence of an air bubble 
inside the carapace. 

Fig. 2. The toxicity of H2O2 to H. gammarus larvae following a 1 h exposure and 24 h post-exposure period. Dose-response curves show mortality amongst pelagic 
H. gammarus (A) stage I, (B) stage II, (C) stage III and (D) stage IV larvae. 
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Fig. 3. The total distance travelled (cm) by H. gammarus stage V post-larvae in the 30 min behavioural assays performed following 1 h exposures to sub-lethal 
concentrations of H2O2. ***p < 0.001 treatment vs. control. Data is presented for behavioural assays performed A) immediately after the exposure period and B) 
after a 24 h post-exposure period. n = 16 per concentration. 

Fig. 4. Time (seconds) taken by H. gammarus stage V post-larvae to find and inspect the provided shelter for the first time during 30 min behavioural assays 
performed following 1 h exposures to sub-lethal concentrations of H2O2. *p < 0.05 treatment vs. control. Data is presented for behavioural assays performed A) 
immediately after the exposure period and B) after a 24 h post-exposure period. n = 16 per concentration. 
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the control group (Mann-Whitney U Test, p < 0.05). The mean time 
taken to locate the shelter for the first time were 210 ± 45 s, 375 ± 129 s, 
649 ± 215 s, and 551 ± 148 s for lobsters in control, 85, 170 and 510 
mg/L treatment groups, respectively. 

Similarly, the total number of shelter inspections were affected by 
H2O2 exposure, where individuals in the control group inspected the 
shelter at a significant higher rate than the lobsters in all the treatment 
doses lesser (Mann-Whitney U Test, p < 0.01) (Fig. 5). There was, 
however, no significant effect of H2O2 exposure on the time (s) taken by 
the lobsters to accept the shelter (data not shown), though based on a 
limited data set since only one lobster in the 170 mg/L treatment group 
accepted the shelter. The proportion of lobsters that had accepted their 
shelters at the end of the experimental period (30 min) were 44, 12, 6 
and 12% in the control, 85, 170 and 510 mg/L treatment groups, 
respectively, showing a significant influence by H2O2 exposure (Mann- 
Whitney U Test,p < 0.01) (Fig. 6). 

Twenty-four hours after the exposure, there were no significant dif
ferences between control and H2O2-exposed larvae for any of the 
behavioural parameters assessed (Figs. 3–5) (Mann-Witney U Test, p >
0.05). 

4. Discussion 

4.1. Mortality 

Exposure to H2O2 was lethal to H. gammarus larval stages (I-IV). In 
this study, we have shown that a 1 h exposure to H2O2, at environ
mentally relevant concentrations, was lethal to each of the pelagic 
H. gammarus larval stages (I-IV). The stage I larvae were the most sen
sitive life stage tested with an LC50 value for H2O2 of 177 mg/L, followed 
by stage II (LC50 = 404 mg/L), stage III (LC50 = 676 mg/L) and stage IV 
(LC50 = 738 mg/L). Consistent with our results, stage-specific differ
ences in sensitivity to H2O2 were also observed in toxicity studies with 
sea lice (L. salmonis), Calanus spp. and Acartia sp. (Aaen et al., 2014; Van 

Geest et al., 2014; Bravo et al., 2015; Escobar-Lux et al., 2019). 
In line with our findings, previous studies have also reported that 

short term (1 h) exposures to H2O2 were toxic to non-target marine 
crustaceans, and where species-specific differences in sensitivity are 
apparent. For example, while Burridge et al. (2014) observed that a 
short-term exposure (1 h + 96 h post-exposure period) to H2O2 was 
lethal to Mysid spp., C. septemspinosa and H. americanus larvae, the 
estimated LC50 values (973, 3182 and 1637 mg/L, respectively) were 
much higher than those reported here, especially when compared to 
H. gammarus stage I. Furthermore, a number of other studies have re
ported that H2O2 was not acutely toxic to crustacean species like 
P. flexuosus, P. elegans and adult H. americanus (Brokke, 2015; Burridge 
et al., 2014) following a 1 h exposure. 

In comparison, a recently published paper reported that 1 h expo
sures (followed by a 24 h post-exposure period) to H2O2 were acutely 
toxic to copepodite V and adult Calanus spp., and both life stages were 
more sensitive than H. gammarus larvae (as examined here), with LC50 
values of 77.1 mg/L and 30.6 mg/L calculated, respectively (Escobar 
Lux et al., 2019). Taken together these studies demonstrate that there 
are species- and life-stage specific differences in sensitivity to H2O2 
exposure amongst crustaceans, and especially H. gammarus stage I larvae 
appears to be one of the most sensitive species tested to date. 

While H2O2 exposures were lethal to all of the H. gammarus larval 
stages tested, the deleterious effect of H2O2 appeared to be delayed, with 
larval mortalities mostly occurring during the 24 h post-exposure 
period. For example, the acute mortality amongst stage I larvae 
ranged between 0 and 15%, but the total mortality reached 44–100% at 
24 h post-exposure. Delayed effects following a post-exposure period 
was also observed in H2O2 toxicity studies with P. borealis (Bechmann 
et al., 2019), Calanus spp. (Escobar-Lux et al., 2019) and zoea M. edwarsii 
(Gebauer et al., 2017). These studies combined demonstrates the 
importance of including a post-exposure period in the experimental 
design to prevent an underestimation of the toxic effects of H2O2 on 
non-target crustaceans. 

Fig. 5. Total number of shelter inspections by H. gammarus stage V post-larvae during 30 min behavioural assays performed following 1 h exposures to sub-lethal 
concentrations of H2O2. **p < 0.01; ***p < 0.001 treatment vs. control. Data is presented for behavioural assays performed A) immediately after the exposure period 
and B) after a 24 h post-exposure period. n = 16 per concentration. 
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4.2. Immobilization and bubble formation 

We observed that exposure to H2O2, even at the lowest dose tested, 
resulted in the formation of bubbles almost immediately (within 5 min 
of the exposure commencing) inside the carapace of all H. gammarus 
stage I and II larvae. Bubbles were also observed inside the carapace of 
stages III and IV though time to event was not monitored. As these larvae 
were subsequently paralysed at the surface of the water and only a 
limited number of individuals recovered after 24 h post-exposure 
period, our results suggest that the negative effects of H2O2 exposure 
on these larval stages may be substantial and rapid. In the wild, para
lysed larvae would be unable to feed and unable to maintain their po
sition in the water column and negatively impact their predator 
avoidance behaviour. These larvae may, therefore, be considered as 
ecologically dead and the effect in the wild may be larger than what is 
indicated by the LC50 value alone. While mechanical paralysis and the 
formation of O2 bubbles in the hemolymph has previously been 
observed amongst H2O2-exposed adult sea lice (Thomassen, 1993; 
Bruno and Raynard, 1994; Aaen et al., 2014), this was not reported for 
H. americanus larvae in H2O2 acute toxicity tests (Burridge et al., 2014). 
Interestingly, while M. edwardsii larvae and copepods (A. hudsonica and 
Calanus spp.) were paralysed following short-term exposures to H2O2, 
the formation of bubbles was not reported/observed (Van Geest et al., 
2014; Gerbauer et al., 2017; Escobar-Lux et al., 2019), suggesting dif
ferences in mechanistic pathways of toxicity amongst crustacean 
species. 

It is interesting to note, that although we observed that a single 1 h 
H2O2 exposure had lethal and sub-lethal effects on H. gammarus larva, 
delousing operations can involve the concurrent and sequential pesti
cide applications in many cages within a single fjord. Consequently, 
multiple discharges and cumulative loading of the pesticides can occur 
and non-target crustaceans are likely to be exposed to multiple H2O2 
plumes over a longer period (Grefsrud et al., 2018). Lower LC50 and EC50 
values have been reported as a result of longer exposure times or 

pulse-like exposures for both H. americanus and P. borealis (Burridge 
et al., 2000, 2008; Bechmann et al., 2019). Therefore, the impact of 
H2O2 on wild lobster larvae may be more pronounced under these 
conditions than the effects observed here for single exposures. 

4.3. Effects of H2O2 on the shelter-seeking behaviour 

Here we have shown that short (1 h) exposures to sub-lethal con
centrations of H2O2 negatively affected several behavioural parameters 
associated with shelter-seeking in stage V H. gammarus lobsters when 
examined immediately after the exposure period. In all H2O2 treatment 
groups (85–510 mg/L), the lobster juveniles moved significantly less 
(total distance travelled) and inspected the shelter fewer times 
compared with control juveniles. Such negative impacts on locomotion 
observed in short-term sub-lethal exposures to pesticides have previ
ously been linked to a failure in predator avoidance for other crustacean 
species (Farr, 1977; Rasmussen et al., 2013). Furthermore, juveniles 
exposed to the two higher H2O2 concentrations (170 and 510 mg/L) 
spent a longer period of time exploring their surroundings and to locate 
and recognise the shelter. As far as we are aware, no published studies to 
date have examined the effect of H2O2 on the shelter seeking behaviour 
of H. gammarus or any other lobster species, though exposure to H2O2 
did have measurable effects on the escape behaviour of Calanus spp. 
(Escobar-Lux et al., 2019). Interestingly, a recent study reported reduced 
exploratory behaviour amongst H. gammarus juveniles exposed to 
sub-lethal concentrations of the in-feed anti-sea lice drug teflubenzuron 
(Cresci et al., 2018). Specifically, and in line with our findings, the study 
found that teflubenzuron exposed juveniles took significantly more time 
to find and recognise shelter (Cresci et al., 2018). Furthermore, 
sub-lethal concentrations of the organophosphate pesticide azamethi
phos negatively affected the use of shelters by juvenile H. americanus, 
with an increase in the lobsters’ latency to re-enter the shelter observed 
with increasing azamethiphos concentrations (Abgrall et al., 2000). 
Taken together, these studies demonstrate that shelter seeking 

Fig. 6. Proportion (%) (±SD) of H. gammarus stage V post-larvae that accepted the shelter during 30 min behavioural assays performed following 1 h exposures to 
sub-lethal concentrations of H2O2. Data is presented for behavioural assays performed A) immediately after the exposure period and B) after a 24 h post-exposure 
period. n = 16 per concentration. 
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behaviour of juvenile lobsters is negatively affected following exposure 
to a range of anti-sea lice pesticides, including H2O2, and this may have 
negative consequences on the lobster’s ability to avoid predators. 
Post-larvae or early benthic juvenile lobsters are more dependent on the 
rapid attainability of their shelters than adults (Mehrtens et al., 2005), 
and multiple studies have shown that the vulnerability of newly settled 
juveniles due to lack of protective shelters is high, and therefore 
important for survival (Hudon, 1987; Lawton and Lavalli, 1995; van der 
Meeren, 2001). Juveniles that reside in the vicinity of salmon farms 
treating with H2O2, may therefore be at a higher risk of predation if they 
cannot rapidly attain a shelter. Interestingly, however, all of the 
behavioural endpoints affected immediately after the exposure period 
returned to baseline levels at 24 h post-exposure, with no significant 
differences between exposed and control lobsters. This suggests that the 
effects of H2O2 on the shelter seeking behaviour of H. gammarus larvae 
may only be short lived, with the risk of predation in the wild likely to be 
highest in the immediate aftermath of an exposure scenario. 

4.4. Potential effects of H2O2 to wild populations 

Hydrogen peroxide has previously been described as the most envi
ronmental friendly bath treatment chemotherapeutant on the market 
and it is estimated that it poses little threat in terms of lethality to non- 
target crustaceans, such as lobster and shrimp, after short term expo
sures (Burridge et al., 2014). Here, however, we have shown that the 1 
h-LC50 values calculated for stage I, II, III and IV H. gammarus larvae 
represent approximately 10, 23, 40 and 43%, respectively, of the rec
ommended H2O2 concentrations used for treating sea lice infestations on 
Norwegian fish farms. Furthermore, we have also shown that lobster 
juvenile behavioural parameters associated with shelter seeking were 
also affected following short-term exposure to H2O2 at concentrations as 
low as 85 mg/L (or 5% of the recommended treatment dose). It is 
important, however, to assess whether these concentrations, calculated 
from laboratory based toxicity tests, are likely to pose a risk to lobster 
larvae living in the wild near aquaculture facilities. While it has previ
ously been reported that H2O2 breaks down into water and oxygen, the 
speed of this process is influenced by several parameters including 
temperature and the amount of organic matter in the water. Degradation 
studies have estimated that the half-life of H2O2 ranged between 1 and 
56 days (Bruno and Raynard, 1994; Lyons et al., 2014; Fagereng, 2016; 
Parsons and Samuelsen unpubl. data), and even the shortest of these 
estimated degradation times is considerably longer than the 1 h needed 
to induce mortalities, paralysis and altered exploratory behaviours 
amongst the pelagic and benthic larval stages of H. gammarus. Since 
H2O2 is expected to rapidly dilute in receiving waters, it is, however, 
reasonable to assume that the degradation rate will have limited impact 
on the environmental concentrations and dispersal dynamics instead 
will greatly influence the impact of H2O2 on non-target species. 
Considering that H2O2 is extensively used as an anti-sea lice pesticide 
around the world, relatively few field studies have, however, measured 
the concentration of H2O2 in the waters surrounding fish farms after the 
discharge of bath treatment effluents. One such study from the west 
coast of Norway, found that concentrations of H2O2 were either below 
the limit of detection or relatively low in water sampled 20–60 m from 
the edge of a salmon cage after the bath treatment water was discharged 
(Fagereng, 2016). In contrast, a later Norwegian study measured rela
tively high concentration of H2O2 (up to 778 mg/L), similar to or greater 
than the LC50 values observed here for H. gammarus larvae (177–738 
mg/L) in the water directly under (at depths up to 60 m) and sur
rounding (within 15 m) a salmon cage post treatment. These higher 
H2O2 concentrations did, however, decrease with time (Andersen and 
Hagen, 2016). 

Recently, studies have started to use mathematical models to predict 
the dispersal of bath treatment pesticides from Norwegian farms and 
indicate that the spread of H2O2 in the marine environment may be more 
substantial than field studies imply (Refseth et al., 2017; Parsons et al., 

2020). Model simulations, performed by Refseth et al. (2017), found 
that low concentrations of H2O2 (<100 mg/L) should be detected in 
surface waters (0–3 m depth) at large distances from Norwegian farms, 
up to several hours after the discharge. This study also reports that areas 
closer to the farm (within 1 km) may experience higher H2O2 concen
trations (>300 mg/L) for the first hour after discharge, while areas 
within a 2 km radius may be exposed to concentrations of 100 mg/L 
(Refseth et al., 2017). These simulations suggest that pelagic life stages 
of H. gammarus, in particular stage I and II larvae, that are living within 
1–2 km of a salmon farm may be exposed to lethal concentrations of 
H2O2. 

It is interesting to note that both field measurement and model 
simulation studies report that when environmental conditions result in a 
well-mixed water column, H2O2 plumes can sink to the seafloor within 
minutes of discharge. These findings have serious implications for 
benthic non-target species and life stages, such as juvenile and adult 
lobsters, living in the vicinity of fish farms. For example, Andersen and 
Hagen (2016), measured H2O2 concentrations that were 43% of the 
treatment concentration on the sea floor (at 70 m depth) 8 min after a 
discharge. Similarly, Refseth et al. (2017), predicted that 50% of the 
initial treatment doses (800 mg/L) could sink to the seafloor under fish 
cages and horizontal transport along the bottom would be reduced 
compared to the surface layers, meaning that these higher concentra
tions would persist for longer periods of time (up to 5–10 h). Considering 
that we observed behavioural changes in newly settled stage V 
H. gammarus juveniles, at 5% of the recommended treatment concen
tration, these studies suggest that H2O2 poses a risk to bottom-dwelling 
lobster life stages as well as the pelagic life stages. 

In summary, the results presented here clearly demonstrate that 
short-term exposures to H2O2, at and below recommended industry 
concentrations, have lethal and sub-lethal effects on multiple life stages 
of the commercially important European lobster. In order to better un
derstand the potential effects of H2O2 in the Norwegian marine envi
ronment, further studies which assess the impact of acute and chronic 
exposures to H2O2 on a wide variety of native non-target species are 
required. 
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Abstract
Bath treatment pharmaceuticals used to control sea lice infestations in the salmonid industry, such as hydrogen peroxide 
(H2O2), are released directly into the environment where non-target organisms are at risk of exposure. The aim of this study 
was to determine the threshold concentrations for mortality of the Northern krill, Meganyctiphanes norvegica, a major 
component of the north Atlantic marine ecosystem. To assess the lethal effects of H2O2, we carried out a series of 1 h acute 
toxicity tests and assessed mortality through a 48 h post-exposure period. One-hour exposure to 170 mg/L, corresponding 
to 10% of the recommended H2O2 treatment, caused 100% mortality and a subsequent acute median-lethal concentration 
LC50 value of 32.5 mg/L. Increased mortality was observed with time in all exposed groups, resulting in successively lower 
LC50 values during the post-exposure period. The suggested H2O2 concentrations have the potential of causing negative 
effects to the Northern krill.

Keywords  Crustacean · Toxicity · LC50 · Aquaculture

Sea lice (Lepeophtheirus salmonis and Caligus rogercres-
seyi), naturally occurring parasitic copepods affecting both 
farmed and wild salmonid populations, are a major chal-
lenge for the salmonid industry worldwide (Costello 2006; 
Torrissen et al. 2013; Vollset et al. 2016). The parasites feed 
on the mucous, skin, and blood of its host, and if present in 
significant numbers they can cause damage associated with 
osmotic stress and secondary infections (Finstad et al. 2000; 
Johnson et al. 2004; González et al. 2015). Norwegian wild 
salmonid populations, migrating post smolts from Atlantic 
salmon and local populations of sea trout (Salmon trutta), 
can suffer high mortality if there is high density of salmon 
lice larvae in the surrounding water (Costello 2009; Vollset 
et al. 2016). In farmed fish, salmon lice infestations reduce 
the general welfare of the fish and lead to an increase of 
the overall cost of the industry due to reduced growth and 
marketability due to skin lesions, and high costs associated 
with delousing treatments (Costello 2009). Therefore, both 

the economic and ecological impact of salmon lice infesta-
tions are significant challenges for the salmonid industry.

In order to control salmon lice infestations, the indus-
try has relied on the use of different chemotherapeutants, 
through the application of bath treatments and the use of in-
feed drugs. Bath treatments can be applied either by enclos-
ing the fish cages with an impervious tarpaulin or transfer-
ring the fish into well-boats, and after treatment the waste 
water is directly released into the surrounding water (Ernst 
et al. 2001; Burridge et al. 2010). At a global level, hydrogen 
peroxide (H2O2) was introduced as an antiparasitic agent 
after the loss of sensitivity in both L. salmonis and C. roger-
cresseyi to other delousing agents (Bravo et al. 2015; Urbina 
et al. 2019). In Norway alone, H2O2 is still the most used 
bath treatment therapeutant with a consumption of 4523 tons 
in 2019 (www.fhi.no/hn/legem​iddel​bruk).

Hydrogen peroxide acts on salmon lice by hydroxyl 
radicals attacking lipid and cellular organelles resulting 
in inactivation of enzymes and DNA replication (Cotran 
et al. 1989; Urbina et al. 2019). Previous studies have also 
shown that decomposition of hydrogen peroxide to water 
and O2 bubbles in the gut and the haemolymph may cause 
mechanical paralysis leading to detachment of the pre-
adult and adult salmon lice from the fish and causing them 
to float towards the surface (Bruno and Raynard 1994; 
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Aaen et al. 2014). A bath treatment involves the release 
of a large volume of H2O2 containing waste water and the 
chemical can potentially be dispersed over a wide area 
(Burridge et al. 2010, 2014, Parsons et al. 2020, Refseth 
et al. 2017). Therefore, there is a growing concern about 
the possible toxic effects of H2O2 on non-target aquatic 
invertebrate species living in the vicinity of fish farms, 
and specifically crustaceans which has been proven as par-
ticularly vulnerable (Smit et al. 2008; Burridge et al. 2014; 
Van Geest et al. 2014; Gebauer et al. 2017; Hansen et al. 
2017; Bechmann et al. 2019; Escobar-Lux et al. 2019).

The pelagic zooplankton, Meganyctiphanes norvegica, 
Northern krill, is a species at risk as its distribution over-
laps with the location to many salmon farms in Norway, 
as it inhabits both coastal and offshore waters (Kaart-
vedt et al. 2002; Melle et al. 2004; Tarling et al. 2010). 
Furthermore, the distribution of this boreal krill species 
has been described to be seasonal, with a predominant 
coastal distribution between the months of January and 
May (Grover 1952). In Norway, during this period of the 
year, pharmaceuticals are being used to keep the level of 
salmon lice below 0.2 female lice per fish as specified in 
the Norwegian Ministry of Trade, Industry and Fisheries 
(FOR-2012-12-05-1140, 2012) (Grefsrud et al. 2019). The 
total biomass of euphasiid stocks in the Norwegian Sea has 
been previously estimated to 42 million tons (Mt), with 
around 40–75% of this stock being Northern krill (Lindley 
1982; Melle et al. 2004). Thus, the northern krill is a major 
component of the north Atlantic marine ecosystem, acting 
as a keystone organism between lower trophic levels and 
larger predators and plays an important role in the seques-
tration of carbon (Kaartvedt et al. 2005; Tarling et al. 
2010). It is preyed upon by several commercially impor-
tant fish species (Sameoto et al. 1994; Onsrud et al. 2004), 
seabirds (Montevecchi et al. 1992; Stevick et al. 2008), 
and marine mammals (Brodie et al. 1978). Moreover, the 
commercial exploitation of Northern krill is gaining inter-
est in the salmonid industry as a potential protein alterna-
tive to the fishmeal (Tarling et al. 2010). Mass death of 
krill washed up on a beach can occur and is considered a 
natural phenomenon. Previously the mass stranding of M. 
norvegica has been explained as predation events in which 
predators’ chase krill ashore (MacDonald 1927), trans-
ported to land by oceanic currents or by special events like 
upwellings (Aitken 1960; Cox 1975), or because special 
lightning conditions that might interfere with the krill’s 
behavior (Wiborg 1966). However, in recent years there 
has been a higher frequency of reports in Norway describ-
ing this phenomenon near areas with salmon farms. This 
started a debate in public media of what might have caused 
the mass mortality and one of the most frequently cited 
suggestions has been the use of pesticides for delousing 
of the salmon farms, and especially H2O2. However, the 

effects of H2O2 exposure on the Northern krill have until 
now been unknown.

For treating salmon, the recommended concentration for a 
H2O2 bath treatment is 1500–2100 mg/L for 20 min depend-
ing on temperature (https​://www.felle​skata​logen​.no/medis​
in-vet). Typically, toxicity studies use exposure times that 
vary from 24 to 96 h. However, these may not be representa-
tive of the real-life scenarios following a release of waste 
water after a bath treatment on a salmon farm (Ernst et al. 
2001; Urbina et al. 2019). The use of 1 h exposures, is con-
sidered a more realistic exposure scenario, but to date only 
a limited number of species have been tested under those 
conditions (Medina et al. 2004; Fairchild et al. 2010; Bur-
ridge et al. 2014; Van Geest et al. 2014; Escobar-Lux et al. 
2019; Parsons et al. 2020). What these previous studies also 
have shown is that the mortality observed immediately after 
exposure tends to be lower than the mortalities registered if 
a post-exposure period is included in the experimental set-
up. A longer post-exposure observation period is therefore 
recommended.

The main objective of this study was to examine the tox-
icity of H2O2 to M. norvegica, a non-target crustacean and 
keystone species of the Norwegian marine environment. Our 
objective was to expose the Northern krill to a short 1 h 
pulse of H2O2 and assess the acute and delayed mortality 
during a post-exposure period of 48 h in clean seawater.

Materials and Methods

In the present study, krill (M. norvegica) were collected from 
the dock at Austevoll Research Station, Institute of Marine 
Research Norway (60° 05′ 20″ N 5° 15′ 57″ E) using light 
traps. The light traps (mesh size 500 µm; 0.45 m in diameter; 
BellaMare USA) were equipped with a white LED light and 
deployed at a depth of 20 m overnight. The research station 
is at least 3 km away from the nearest commercial salmon 
farm. Krill from the traps were transported to the laboratory 
at Austevoll Research Station and kept overnight in 10 L 
buckets supplied with sand filtered seawater from a depth of 
160 m (Bjørnafjorden) holding a temperature of 8 °C (salin-
ity of 34.2 ppt; pH 7.94). The experiment was performed 
within 48 h of capture and prior to exposure the krill were 
sorted and only krill in excellent physical condition were 
used in the experiments.

Commercial H2O2 (Nemona, Akzo Nobel Pulp and Per-
formance Chemicals AB Sweden) at a concentration of 
49.50% (600 g/L) was purchased from Akzo Nobel, Pulp 
and Performance Chemicals, AB Sweden. Since no previ-
ous studies had assessed the toxicity of H2O2 on M. nor-
vegica, the chosen concentrations were based on the rec-
ommended dose for treating salmon (1700 mg/L). The krill 
were exposed to concentrations of 1.7, 8.5, 17, 170, 850 and 
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1700 mg/L H2O2, corresponding to 0.1, 0.5, 1, 10, 50 and 
100% of the recommended treatment dose. All exposures 
were conducted in glassware units with a volume of 500 mL. 
A total of 140 krill were randomly divided into seven treat-
ment groups, including a control group, with four replicates 
for each treatment and each replicate counting five individu-
als. After the 1 h exposure, acute mortality was recorded and 
the krill were transferred to 10 L recovery tanks where mor-
tality was checked successively at 6, 24 and 48 h post-expo-
sure using a dissecting microscope. Krill were considered 
dead if there was no movement of the pereopods, pleopods 
or antenna after a gentle stimulus. Mortality that occurred 
during the 1 h exposure was defined as acute mortality. Total 
mortality was defined as the cumulative mortality after the 
48 h post-exposure period.

The statistical analyses for mortality were done in the 
software R (Version 3.5.3 (2019-03-11) Copyright © 2019 
The R Foundation for Statistical Computing). The LC50 val-
ues, and their 95% confidence intervals (CI), were calcu-
lated using generalized linear models (GLM) with binomial 
error structures and probit links, according to Finney (1971). 
Hydrogen peroxide concentrations were log10 transformed 
to linearize the data.

Results and Discussion

This study clearly show that H2O2 was acutely toxic to wild-
captured Northern krill M. norvegica. While no mortality 
was recorded in the group exposed to the lowest dose of 
1.7 mg/L or in the control group, a 1 h exposure to 170 mg/L, 
i.e. 10% of recommended dose, caused 100% mortality and 
a subsequent acute LC50 value of 32.5 mg/L (16.8–48.2) 
was calculated (Fig. 1a). During the post-exposure period, 
increased mortality with time was observed in all exposed 
groups resulting in successively lower LC50 values with 
14.11 mg/L after 6 h (7.3–20.9), 4.92 mg/L (1.2–7.9) after 
24 h and finally 0.86 mg/L after 48 h (Fig. 1b–d). No mor-
tality was registered in the control groups during the post-
exposure period. The calculated LC50 value at 24 h repre-
sents a threefold dilution of the acute 1 h LC50 value. These 
findings clearly support the recommendations suggested in 
previous studies to include a post-exposure period follow-
ing the exposure to H2O2 to assess any delayed effects (Van 
Geest et al. 2014; Brokke 2015; Escobar-Lux et al. 2019).

While several studies have examined the toxicity 
of H2O2 on marine crustacean species, the number of 

studies using an exposure time of 1 h is more limited. 
A review of those studies reveals that some crustaceans 

Fig. 1   The toxicity of hydrogen peroxide to M. norvegica following 
1 h exposure. Dose–response curves showing mortality amongst the 
northern krill at 0 h, 6 h, 24 h, and 48 h post-exposure to H2O2. Each 
point on the graphs represent an individual replicate tank containing 

4 to 6 krill and the line represent the best fit model for the data cal-
culated using a binomial log-probit GLM in R. The shadowed area 
represents the 95% confidence intervals
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have a relatively high tolerance to H2O2 exposure and is 
reflected in low mortality when exposed to concentrations 
similar to or higher than the recommended treatment dose. 
This applies to both newly hatched larvae and adult of 
American lobster (Homarus americanus), sand shrimp 
(Crangon septemspinosa), the mysid Mysid sp. (Burridge 
et al. 2014), rock pool shrimp (Palaemon elegans) and 
chameleon shrimp (Praunus flexuosus) (Brokke 2015). For 
some species, low mortality was observed even when a 
post-exposure period was included in the study. Follow-
ing an exposure of 1 h and a 95 h post-exposure period, 
the calculated LC50 values were 1673 mg/L for H. ameri-
canus larvae, > 3750 mg/L for adult American lobster, 
3182 mg/L for sand shrimps and 973 mg/L for Mysid sp. 
(Burridge et al. 2014; Van Geest et al. 2014). For rock pool 
shrimps and chameleon shrimps the acute mortality after 
1 h exposure was low indicating LC50 values higher than 
the highest exposure concentration of 1700 mg/L for both 
species (Brokke 2015). However, a significant mortality 
occurred during the 24 h post-exposure period, resulting 
in LC50 values of 174.1 mg/L and 77.5 mg/L for rock pool 
shrimp and chameleon shrimps respectively, classifying 
these species as highly sensitive. In the study by Bech-
mann et al. (2019), the Northern shrimp (Pandalus borea-
lis) was exposed to 15 mg/L H2O2 for 1 h. The very low 
acute mortality observed immediately after exposure did 
however increase during the post-exposure period (7 days) 
but as the total mortality never exceeded 30%, no LC50 
could be calculated. Damage on the gills was observed in 
the shrimps exposed to H2O2 and suggested as the major 
cause of the delayed mortality (Bechmann et al. 2019).

In comparison, species like the copepods Acartia Hud-
sonica and Calanus spp. have shown higher sensitivity 
to H2O2 exposure, resulting in EC50 and LC50 values of 
2.6–10 mg/L and 30.6 mg/L respectively, following a 24 h 
post-exposure period (Van Geest et al. 2014; Escobar-Lux 
et al. 2019). In the case of the European lobster (Homarus 
gammarus) larvae (stage I–IV), a 1 h exposure to 1530 mg/L 
followed by a 24 h post-exposure period, resulted in mortali-
ties between 75 and 100% (Escobar-Lux et al. 2020) and cal-
culated LC50 values of 177 mg/L, 404 mg/L, 676 mg/L and 
738 mg/L, for stages I, II, III and IV respectively. For species 
other than crustaceans, the polychaete Ophryotrocha sp. and 
the sugar kelp Saccharina latissima are amongst the more 
sensitive marine species with LD50 values of 64.3 mg/L and 
80.7 mg/L following 72 h and 7 days’ post-exposure periods, 
respectively (Fang et al. 2018; Haugland et al. 2019). The 
LC50 values calculated for northern krill are therefore, to 
our knowledge the most sensitive species examined so far.

This study has shown that a bath treatment with H2O2 
has a detrimental effect on M. norvegica. However, it is 
important to assess whether these laboratory-based con-
centrations are likely to pose a significant risk to krill at 

the proximity of salmonid aquaculture sites. Due to dif-
ferences in experimental set-ups the variation in half-
lives reported for H2O2 in seawater in large, with results 
between 1 and 58 days (Bruno and Raynard 1994; Lyons 
et  al. 2014; Fagereng 2016; Parsons and Samuelsen 
unpubl. data). Several factors affect both the toxicity 
and the degradation of H2O2, for example the water tem-
perature or the irradiance (Stratford et al. 1984; Treas-
ure et al. 2000)”. However, even the shortest degradation 
time reported (1 day) is significantly longer than the 1 h 
exposure needed in the present study to cause consider-
able mortality of the Northern krill. Even though H2O2 
is extensively used around the world as an anti-sea lice 
bath treatment, few studies have initiated the use of math-
ematical models to predict its’ dispersal and its’ impact 
on non-target species. One such study from Norway has 
indicated that the spread of H2O2 may be larger than pre-
viously thought (Refseth et al. 2017). According to the 
model, concentrations up to 300 mg/L may occur within a 
1 km radius from the farm and 100 mg/L within a radius 
of 2 km. Furthermore, the model also suggested that a con-
centration of 100 mg/L can be present in surface waters for 
several hours after discharge. The presented model simula-
tions therefore suggest that the Northern krill within 2 km 
of a salmonid farm may be exposed to lethal concentration 
of H2O2.

Parsons et al. (2020) used dispersion models to predict 
the spreading of pharmaceuticals from salmonid farms in 
Norway, following bath treatment. Based on the models and 
LC50 values (1 h exposure followed by 24 h post-exposure 
period) for European lobster larvae (stage I and II) they cal-
culated impact zones around 23 Norwegian fish farms for 
the pesticides azamethiphos and deltamethrin. This model 
however, did not take into account the degradation of the 
compounds due to the presence of organic matter in the 
water. While the azamethiphos impact zones around farms 
were relatively small (mean area of 0.04–0.2 km2), del-
tamethrin impact zones covered much larger areas (mean 
area of 21.1–39.0 km2). The difference in impact zone is 
due to the difference in toxicity between the two drugs. For 
azamethiphos the 1 h-LC50 values (95% CIs) for stage I and 
II larvae were 43.1 μg/L (13.0–131.0 μg/L) and 20.5 μg/L 
(13.2–30.9 mg/L), respectively, representing approximately 
2- and fivefold dilutions of the treatment concentration 
(100 μg/L) used on Norwegian fish farms. For deltamethrin 
the 1 h-LC50 values (with 95% CIs) for stage I and II larvae 
were estimated to be 2.6 ng/L (0.6–11.0 ng/L) and 2.9 ng/L 
(1.5–5.7 ng/L), representing approximately 800-fold dilution 
of the treatment concentration of 2000 ng/L. Considering the 
sensitivity of krill towards H2O2 found in the present study, 
where the LC50 ranged from 52- to 2000-fold dilution with 
increasing post-exposure period, impact zones like those 
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calculated for deltamethrin in Parsons et al. (2020) will be 
most relevant for impact zones for H2O2 and krill.

Meganyctiphanes norvegica can be found around the 
North Atlantic, with the Norwegian sea being a major hot-
spot for its distribution (Melle et al. 2004). Due to their dis-
tribution, krill can often be found in waters close to aqua-
culture sites and therefore be negatively impacted by the 
dispersal of effluent plumes after treatments. Based on our 
findings and the information from previous mathematical 
models, H2O2 may cause a larger impact than it was previ-
ously believed. Therefore, that some cases of mass mortal-
ity of krill observed in past years may have been caused by 
H2O2 exposure, cannot be overlooked.
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a b s t r a c t

Anti-sea lice pesticides, used in the salmonid aquaculture industry, are a growing environmental concern
due to their potential to adversely affect non-target crustaceans. Azamethiphos and deltamethrin are two
bath treatment pesticides used on salmon farms in Norway, however, limited information is available on
their impact on European lobster (Homarus gammarus) larvae in the Norwegian marine environment.
Here, we firstly report the lethal (LC50) and effective (EC50) concentrations of azamethiphos and delta-
methrin for stage I and stage II larvae, following 1-h exposures. Using a hydrodynamic model, we also
modelled the dispersal of both compounds into the marine environment around selected Norwegian
farms and mapped the potential impact zones (areas that experience LC50 and EC50 concentrations)
around each farm. Our data shows that azamethiphos and deltamethrin are acutely toxic to both larval
stages, with LC50 and EC50 values below the recommended treatment concentrations. We also show that
the azamethiphos impact zones around farms were relatively small (mean area of 0.04e0.2 km2),
however deltamethrin impact zones covered much larger areas (mean area of 21.1e39.0 km2). These
findings suggest that deltamethrin poses a significant risk to European lobster in the Norwegian marine
environment while the impact of azamethiphos may be less severe.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the past three decades, global aquaculture production has
expanded rapidly, from 5.2 million tonnes in 1981 to 110.2 million
million tonnes in 2016 (FAO, 2018). This expansion has led to
growing environmental concerns over the industry’s impact on
water quality, natural ecosystems and human health (Liu et al.,
2017; P�aez-Osuna, 2001). Norway is the largest producer of
farmed Atlantic salmon (Salmo salar) in the world, with 1.2 million
tonnes produced annually (FAO, 2018). Sea lice (Lepeophtheirus
salmonis) infestations are common in the salmonid aquaculture
industry, reducing the general welfare of the farmed fish and
causing significant economic losses to the industry (Pike et al.,

1999; Wagner et al., 2008; Burka et al., 1997). Chemotherapeutic
drugs and pesticides applied either as in-feed additives or bath
treatments are one of several methods for controlling these in-
festations on salmonid farms. Bath treatments involve surrounding
fish cages with a tarpaulin or transferring the fish to well-boats so
they are enclosed. The recommended treatment concentration for
the pesticide is added, and salmon are held in the bath for the
recommended treatment time. Following the treatment, the
enclosed water is directly released into the surrounding aquatic
environment (Burridge et al., 2010). Azamethiphos and delta-
methrin are important bath treatment pesticides used in major
regions of salmonid aquaculture worldwide (Burridge et al., 2010;
Scottish Environmental Protection Agency (SEPA), 2019;
Folkehelseinstituttet, 2019). Azamethiphos, the active ingredient in
the commercial formulations Salmosan Vet® and Trident Vet®, is a
neurotoxic insecticide, causing acetylcholinesterase (AChE) inhibi-
tionwhich consequently results in paralysis and eventual mortality
of the target organism (Baillie et al., 1985). On salmon farms, a
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20e40 min azamethiphos treatment is recommended with a target
concentration of 100 mg L�1. Deltamethrin, a synthetic pyrethroid
insecticide, is the active ingredient in the commercial formulation
AlphaMax®. It interacts with the sodium (Naþ) channels of nerve
membranes, resulting in depolarisation of nerve endings and over-
stimulation of cells and eventual paralysis (Miller and Adams,
1982). A 30-min deltamethrin treatment is recommended with a
target concentration of 2 mg L�1. The use of azamethiphos and
deltamethrin, along with other delousing pesticides, was wide-
spread on Norwegian fish farms between 2010 and 2015, as a result
of increased resistance amongst sea lice to the different pesticide
compounds. The current annual consumption of azamethiphos and
deltamethrin is relatively low in comparison to previous years, with
only 154 kg and 10 kg (active substance) used in 2019, respectively
(Folkehelseinstituttet, 2019).

Given the growing evidence showing that anti-sea lice pesti-
cides are toxic to non-target species, particularly crustaceans, their
direct release into the marine environment is an increasing cause
for concern (Burridge et al., 2010; Urbina et al., 2019). To better
assess the impacts of azamethiphos and deltamethrin on non-
target species in the Norwegian marine environment, a greater
understanding of their toxicity and environmental concentrations
around fish farms is required. To date azamethiphos and delta-
methrin acute toxicity tests using marine crustaceans have mostly
involved 24, 48 and 96 h exposure periods (Burridge et al., 1999;
Ernst et al., 2001; Ernst et al., 2014; Oliveira et al., 2012; Adam et al.,
2010), which do not reflect the highly acute exposures expected to
occur in the marine environment following the release of bath
treatment effluents (Ernst et al., 2001; Burridge et al., 2014; Bruno
and Raynard, 1994; Tomlin, 1997; Scottish Environmental
Protection Agency (SEPA), 2005). Currently, there also is limited
information available on the dispersal of azamethiphos and delta-
methrin in the marine environment around Norwegian fish farms.
Consequently, it is difficult to assess whether threshold concen-
trations, calculated from laboratory based toxicity tests, are likely to
pose a risk to non-target species living in the wild near aquaculture
facilities. While mathematical models have been developed for
assessing the dispersal of bath treatment compounds from farming
systems located in shallow estuarine, semi-enclosed (e.g. sea lochs)
and coastal environments in Scotland and Ireland (Falconer and
Hartnett, 1993; Gillibrand and Turrell, 1997; Gillibrand and
Turrell, 1999; Scottish Environmental Protection Agency (SEPA),
2008), the environmental conditions in Norway’s fjords are
considerably different. Therefore there is an urgent need to apply a
hydrodynamic model to assess the dispersal of bath treatment
compounds specifically in the Norwegian marine environment
(Rico et al., 2019).

The main aim of this study was to assess the potential impact of
azamethiphos and deltamethrin on a native non-target crustacean
species in the Norwegian marine environment. Our first objective
was to examine the toxicity of both compounds to European lobster
(Homarus gammarus) larvae following an environmentally relevant
exposure period (1 h) and establish threshold concentrations
associated with exposure. H. gammarus is an important commercial
species in many coastal regions of Europe, including Norway, and is
often located near salmon aquaculture sites.H. gammarus larvae are
pelagic and remain in the surface layers and therefore can move
with pesticide plumes following the operational release of bath
treatment effluents. Consequently, the larvae are potentially more
vulnerable to exposure than benthic invertebrates such as adult
lobsters. The second objective of this study was to use a hydrody-
namic model to simulate the dispersal of azamethiphos and del-
tamethrin into the marine environment at multiple Norwegian fish
farms. Using the simulated dispersal data, we subsequently map-
ped the areas around each of the farms which experience pesticide

concentrations exceeding the lethal and effective threshold con-
centrations calculated here for H. gammarus larvae.

2. Material and methods

2.1. Animal collection and maintenance

This experiment was approved by the Norwegian Food Safety
Authority (ID 15510) and has been carried out according to The
Code of Ethics of the World Medical Association for animal exper-
iments (The Norwegian Ministry of, 2010; The Norwegian Ministry
of, 2015). Six ovigerous H. gammarus females were purchased from
a local lobster dealer on 22 May 2018 and transferred to the Insti-
tute of Marine Research (IMR) field station at Austevoll, located
outside Bergen (N60�05015.3600, E5�1505400). They were initially kept
in holding tanks (1.5 m � 1.5 m x 1 m) supplied with filtrated
seawater from 160 m depth at a flow of 30 L min�1 (salinity of
34.7 ppt and temperature of 8 �C). Females were fed frozen shrimp
twice per week and the temperature was kept low to postpone and
control hatching. Experiments were conducted at the same location
in AugusteNovember 2018. The ovigerous females were trans-
ferred to holding tanks with 16 �C to stimulate hatching.

When spawning occurred larvae were removed from the
hatching tanks every morning and transferred to 40 L fibreglass
incubators (plankton Kreisler tanks) (Hughes et al., 1974), which
were supplied with oxygenated seawater (15e16 �C) at a rate of
8e10 L min�1 and kept in a 16:8 h light: dark cycle. Maximum
density for each incubator was set to 50 larvae L�1. The incubators
were treated for the bacteria Leucatrix minor with chloramine-T
(every third day at 0.02 g L�1 for 1 h). Larvae were fed frozen
artemia twice a day and checked daily to determine the stage of
development. The larvae were staged I-II according to Sars (1874).
Briefly, stage I larvae are characterised by the lack of pleopods while
stage II larvae had developed pleopods. At the selected water
temperature, the approximate number of days required to pass
through the stage I to stage II larval stages were 4 and 5 days,
respectively. The larvae used in each lethality test were of the same
stage and approximate age. The mean carapace length for stage I
and stage II larvae was 2.3 mm ± 0.1 and 3.3 mm ± 0.1, respectively.

2.2. Acute toxicity tests

H. gammarus larvae (5 larvae per tank, 3e4 replicates per con-
centration) were exposed to a range of concentrations of azame-
thiphos (1e1000 mg L�1) and deltamethrin (0.01e200 ng L�1) in
700 mL of test solution for 1 h to generate cumulative mortality
curves. Each assay was repeated twice (approx. 40 larvae per con-
centration). The chosen concentrations were based on LC50 values
estimated for H. americanus lobster larvae (Burridge et al., 2014).
Azamethiphos (Trident Vet 500 mg g�1 powder) was purchased
from Neptune Pharma Ltd. (London, UK) and deltamethrin
(AlphaMax 10 mg ml�1) from Pharmaq A/S, (Overhalla, Norway).
Stock solutions (1 mg L�1 and 10 mg L�1, respectively) of azame-
thiphos and deltamethrin were prepared using the stock formula-
tions and filtered seawater (0.2 mm). Test concentrations were
prepared by serial dilutions of stock solutions. All experimental
units and equipment for preparing stock solutions were made of
glassware (as deltamethrin is known to readily bind to the walls of
plastic test vessels). After each exposure, the larvae were placed in
1 L recovery units supplied with fresh seawater. The number of
mortalities and immobile larvae were recorded at 0 h and 24 h
post-exposure in each tank. Lobsters were considered immobile if
they sank to the bottom of the tank, i.e. normal swimming
behaviour was absent and considered dead when there was no
movement of pleopods even after gentle prodding. Larvae were fed
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compound fish feed (Otohime C, Marubeni Nisshin Feed Company,
Japan) during the 24 h recovery period. Water temperatures ranged
between 13.5 and 17.7 �C. Lethal and total effect dose-response
curves were generated for each individual assay (as each pesti-
cide assay was repeated twice) as well as the data combined (i.e.
assay one and two were combined). For each of the dose-response
curves, LCx and ECx values, based on mortality and total effect
(mortality þ immobility) after the 24 h recovery period, were
calculated, respectively.

2.3. Modelling pesticide dispersal and impact zones

The dispersal of azamethiphos and deltamethrin into the ma-
rine environment around Norwegian fish farms was simulated for a
24 h period post bath treatment effluent release using a hydrody-
namical model. The dispersal data was subsequently used to map
the potential impact zones around fish farms. Impact zones are
defined as areas around fish farms which are exposed to the lethal
and effective concentrations of azamethiphos and deltamethrin (as
per the 1 h toxicity tests carried out with H. gammarus larvae in the
present study) at any point during the 24 h simulation. A schematic
of the procedure used for computing impact zones is outlined in
Scheme 1.

From the BarentsWatch database, we selected a sample of 23
Norwegian fish farms (referred to here as farms A-W) that carried
out delousing bath treatments with azamethiphos or deltamethrin
in the period 2017e2018 (BarentsWatch, 2019) (Fig. S1 of the
Supporting Information). Particle tracking software LADiM
(Myksvoll et al., 2018) was used to simulate the release and
dispersal of both pesticides from each farm. Ocean current data,
based on the NorFjords hydrodynamic model, was entered into the
particle tracking software. The NorFjords model, an implementa-
tion of the Regional Ocean Model System (ROMS) (Shchepetkin and
McWilliams, 2005; Haidvogel et al., 2008) has a resolution of

160 m � 160 m and 35 vertical levels, and includes recorded input
data from atmosphere, tides and rivers (Isachsen, 2014; Storesund
et al., 2017). The model is based on the NorKyst800 model
(Albretsen et al., 2011) which has a horizontal resolution of
800 m � 800 m. The release sites span a wide geographical region,
with latitudes in the range 59.5 �N - 70.5 �N (Fig. S1). Various types
of hydrodynamic regimes are represented including sheltered lo-
cations withmodest tidal currents (Farms A, R, V), larger fjords with
more pronounced tidal activity (Farms D-H, J-M, Q, S, W), open-
ended fjords with a dominant current direction (Farms B, C, I, O,
T, U) and exposed locations that are highly influenced by the Nor-
wegian coastal current (Farms N, P). Chemical plumes released in
sheltered areas tend to disperse and move slowly. In exposed re-
gions, turbulent currents dissolve released plumes quickly and
disperse contaminants over a large area in a short time.

The released pesticide was represented by 100,000 particles,
initially dispersed within a volume of 50 m � 50 m x 10m, which is
roughly equal to the size of a typical large Norwegian fish cage
(Fiskeridirektoratets og Mattilsynets anbefalinger, 2010). The par-
ticles were tracked for 24 h. A rectangular grid (100 m � 100 m in
the horizontal direction, 1 m in the vertical direction) was con-
structed around the cage, and the particle density was calculated
from the grid block volume and the number of particles within each
block. From this we computed the maximal particle density in the
vertical direction and stored the result on a 2D grid, for each time
step. The data was combined into a dilution map, where each point
represents the largest particle density encountered during the
simulation (Fig. S2).

The BarentsWatch database does not specify the date or time of
bath treatments, only the week in which the treatment was per-
formed. Because of this, and to study the effect of varying weather
and tide conditions on pesticide dispersal, we simulated a pesticide
release at 00:00, 06:00, 12:00 and 18:00 for each day the treatment
was performed for all 23 locations under consideration. This

Scheme 1. Schematic representation of the procedure for computing bath treatment impact zones.
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resulted in a total of 28 releases per location, and therefore 28
dilution maps per farm. The releases were not cumulative; the
location was assumed pristine before each release. In order to
create maps of the impact zones around each fish farm, each of the
dilution maps were then related to the EC₅₀ and LC₅₀ values for the
combined data (i.e. the data from the two repeat assays combined)
reported here. For instance, if the LC₅₀ value of a pesticide corre-
sponds to N % of the recommended treatment concentration, the
LC₅₀ impact zone for that drug is the portion of the dilution map
that exceeds N % of the initial particle density. The impact zones for
each farmwere subsequently overlaid and the resulting maps show
the proportion of releases that result in areas around the farms
experiencing lethal or effective concentrations of the pesticides.

The impact zones vary in shape and size depending on the
pesticide, location and time of release. In order to summarize the
data, we computed radial and areal extent of the impact zone for
each of the simulated releases. The radial extent is defined as the
largest distance from the fish farm to the edge of the impact zone,
while the areal extent is simply the area of the impact zone.

2.4. Statistical analyses

All statistical analyses were conducted in R Studio (3.4.3)
(RStudio Team, 2016). LC50 and EC50 values, and their 95% confi-
dence intervals (CI), for each pesticide were calculated using
generalised linear models (GLM) within the ecotox R package
(Hlinaet al., 2019), with binomial error structures and probit links
according to Finney (1971). Pesticide concentrations were log
transformed (log10) to linearise the data. Dose-response data were
plotted using the ggplot2 R package (Wickham, 2009). The dose-
response curves for the repeated assays were compared statisti-
cally using ratio tests within the ecotox R package, as well as the
confidence interval overlap method. Dispersal models were per-
formed in Python and exposure areas were plotted using the
package holoviews with the backend matplotlib (Hunter, 2007).

3. Results and discussion

3.1. Acute toxicity of azamethiphos and deltamethrin

A summary of the azamethiphos and deltamethrin LC50 and
EC50 values, and their corresponding 95% CIs, for each of the
repeated assays as well as the combined data are provided in
Table S1 and Table S2. One hour exposures to azamethiphos were
acutely toxic to both stage I and stage II H. gammarus larvae, with
both mortality and immobility increasing in a dose dependent
manner (Table S3). For both stage I and stage II larvae, there was a
significant difference in the mortality dose-response curves for
each of the azamethiphos assays performed and the associated
lethal threshold concentrations (Fig. S3; Ratio Test, p < 0.001). For
stage I and stage II larvae, the 1h-LC50 values for azamethiphos
ranged from 23.8 to 75.7 mg L�1 and 8.5e75.7 mg L�1, respectively.
As the two assays were performed with larvae hatched from two
different females, the differences inmortality levels between assays
may be suggestive of differences in inherited tolerance. Interest-
ingly, however, therewas no significant difference in the total effect
dose-response curves for the two repeated assays, as well as the
estimated effective threshold concentrations (Ratio Test, p > 0.05),
which suggests that the overall effect of azamethiphos between
different populations may not be drastically dissimilar. When the
data from the two assays were combined, the 1h-LC50 values (95%
CIs) for stage I and II larvaewere 43.1 mg L�1 (13.0e131.0 mg L�1) and
20.5 mg L�1 (13.2e30.9 mg L�1), respectively, representing approx-
imately 2- and 5-fold dilutions of the treatment concentrations
used on Norwegian fish farms (Fig. 1). Our results are in line with a

recent study which found that azamethiphos (10e500 mg L�1)
induced significant mortalities in crab larvae (Metacarcinus
edwardsii), following short term exposures (30-min) (Gebauer
et al., 2017). In contrast, 1-h exposures to azamethiphos, at
similar concentrations to those tested here, did not lead to a sig-
nificant increase in mortalities amongst exposed H. americanus
lobster larvae (stage I and III) and several shrimp species
(M. stenolepsis, C. septemspinosa, P. flexuosus, P. elegans) (Ernst et al.,
2014; Burridge et al., 2014). In addition, limited mortalities were
observed amongst northern shrimp (Pandalus borealis) exposed to
azamethiphos for a 2 h period, however, it should be noted that
exposure concentrations in these studies were relatively low
(100e200 ng L�1) (Bechmann et al., 2020; Frantzen et al., 2019). It is
interesting to observe here that stage II larvae were slightly more
sensitive to azamethiphos exposure than stage I larvae. It has been
hypothesised that stage-specific differences in crustacean sensi-
tivity to pesticides is a result of differences in metabolism, moulting
frequency, detoxification mechanisms and allometric differences
(i.e., surface area to volume), with adult life stages often less sen-
sitive than earlier life stages (Medina et al., 2002; Willis and Ling,
2004). Similar to our findings, however, higher sensitivity in later
life stages has more recently been observed in several crustaceans
including copepods (Acartia hudsonica) and krill (Calanus spp.) (Van
Geest et al., 2014a; Escobar-Lux et al., 2019), though no plausible
explanation has yet to be determined.

One hour exposures to deltamethrin were considerably more
toxic than azamethiphos to both stage I and stage II H. gammarus
larvae, with both mortality and immobility increasing in a dose-
dependent manner (Fig. 1, Table S4). There was no significant dif-
ference in the lethal and total effect dose-response curves, as well
as the estimated threshold concentrations for the two repeated
deltamethrin assays (Ratio Test, p > 0.05; Fig. S4). For the combined
data, the 1h-LC50 values (with 95% CIs) for stage I and II larvae were
estimated to be 2.6 ng L�1 (0.6e11.0 ng L�1) and 2.9 ng L�1

(1.5e5.7 ng L�1), representing approximately 800-fold dilution of
the treatment concentration. These results are consistent with
those reported for stage I H. americanus lobster larvae (3.4 ng L�1),
though reduced sensitivity was also observed in adults (19 ng L�1)
and stage III larvae (36.5 ng L�1) (Burridge et al., 2014; Fairchild
et al., 2010). Lobster species appear to be more sensitive to delta-
methrin compared to many other taxonomic groups, with higher
1h-LC50 values reported for shrimp (105.1e142 ng L�1), mysid
(13.9 ng L�1), amphipod (13.1e70 ng L�1) and crab larvae
(1300 ng L�1) (Burridge et al., 2014; Fairchild et al., 2010; Van Geest
et al., 2014b; Parsons et al.). In two recent studies examining the
toxicity of deltamethrin to P. borealis, high levels of mortality were
observed amongst individuals exposed to low concentrations of
deltamethrin (0.2e6 ng L�1) for short time period (2 h), however
LC50 values were not estimated, therefore, direct comparisons with
these studies cannot be made (Bechmann et al., 2020; Frantzen
et al., 2019). These results demonstrate that there are species-
specific and life-stage specific differences in sensitivity to azame-
thiphos and deltamethrin amongst crustaceans. H. gammarus
larvae appear to be one of the most sensitive crustacean species
tested to date and therefore the present results should be included
in any future ecological risk assessments investigating the risks of
pesticides to the marine environment (Vaal et al., 2000).

Here, we reported EC50 values based on the combination of
lethality and immobility, which previously has been shown to be a
highly sensitive and potentially more environmentally relevant
endpoint for assessing neurotoxic compound (Fairchild et al., 2010;
Van Geest et al., 2014b). Indeed, we found that EC50 values for both
azamethiphos and deltamethrin were substantially more sensitive
than LC50 values based on mortality. The EC50 threshold values for
azamethiphos were 15.5 mg L�1 (9.3e24.5 mg L�1) and 9.2 mg L�1
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(5.7e14.1 mg L�1) for stage I and II larvae, respectively, which are
2.2- and 2.7-fold lower than the respective calculated LC50 values
and approximately 10-fold lower than the recommended treat-
ment concentrations. For deltamethrin, the 1h-EC50 values for stage
I and II larvae were estimated to be 0.6 ng L�1 (0.2e2.1 ng L�1) and
0.4 ng L�1 (0.2e1.1 ng L�1), respectively, which are 4.3- and 7.3-fold
lower than the respective calculated LC50 values and approximately
4000-fold lower than the recommended treatment concentrations.
Given that immobile larvae are incapable of maintaining their po-
sition in the water column, unable to avoid predators and unable to
feed, these larvae are considered to be ecologically dead (Van Geest
et al., 2014b) and therefore the data presented here suggested that
both azamethiphos and deltamethrin are considerably more toxic
than previous published studies have suggested.

Given that the exposure period in this study was extremely
short, the larvae were monitored both immediately after the 1 h
exposure period and 24 h post exposure, allowing us to assess
whether immobilised larvae could recover. In both azamethiphos
and deltamethrin assays, larvae that were immobilised at 0 h post
exposure typically did not recover by 24 h post exposure and
consequently died (Tables S3 and S4). This lack of recovery and
delayed mortality may be explained by the mode of action of the
two toxicants. Azamethiphos covalently binds to AchE via phos-
phorylation and while the enzyme remains phosphorylated, its
activity is inhibited. Consequently, ACh accumulates in cholinergic
synapses, leading to unregulated excitation at neuromuscular

junctions of skeletal muscle, preganglionic neurotransmitters and
postganglionic nerve endings of the autonomic nervous system,
and neurotransmitters in the brain or CNS. The phosphorylated
AchE is typically very stable and may persist for days or weeks. The
AchE activity is only slowly reactivated by spontaneous hydrolysis
of the phosphate ester and recovery usually depends on new
enzyme synthesis (Fulton and Key, 2001). Studies in fish, birds,
mammals and invertebrates have shown a direct relationship be-
tween levels of AChE inhibition in the brain and subsequent mor-
tality (Russom et al., 2014), which may explain the delayed
mortality observed here at 24 h post exposure. While there are
differences in sensitivity between species and life stage to various
AChE inhibiting chemicals, it is evident that upon reaching a critical
inhibition threshold, mortality is highly likely. Mortality may arise
as a result of adverse physiological responses at the organ level
such as altered respiratory activity, altered heart rates, altered
blood pressure levels and seizures (Russom et al., 2014). Delta-
methrin, on the other hand, inhibits the activity of voltage-gated
sodium channels, resulting in depolarisation and prolonged
permeability of the nerve to sodium. This consequently produces a
series of repetitive nerve signals in sensory organs, sensory nerves,
and muscles resulting in eventual paralysis (Soderlund, 2012). As a
type II pyrethroid pesticide, deltamethrin contains an a-cyano
group that induces long-lasting inhibition of the sodium channel
activation gate which again likely explains the lack of recovery
observed amongst lobster larvae in the present study.

Fig. 1. The toxicity of azamethiphos and deltamethrin to stage I and stage II H. gammarus larvae following a 1 h exposure and a 24 h recovery period. Dose-response curves showing
(:) total effect (mortality þ immobility, (C) mortality and (-) immobility amongst larvae exposed to nominal concentrations of (AeB) azamethiphos (1e1000 mg L�1) and (CeD)
deltamethrin (0.01e200 ng L�1). Each point on the graphs represents an individual replicate glass dish containing 5 larvae and the lines represent the best fit model for the data,
calculated using a binomial log-probit GLM in R (model output summarised in Tables S1 and S2).
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Fig. 2. Azamethiphos LC50 impact zones. (AeW) Maps illustrating the areas around 23 Norwegian fish farms which, based on multiple dispersal simulations (covering a range of
tide and weather conditions), experienced lethal concentrations of azamethiphos (20 mg L�1) in the 24 h after the simulated release of a bath treatment effluent from a standard size
salmon pen which had been treated at the recommended dose of 100 mg L�1. The colour legend displays the number of releases which have resulted in an area experiencing a lethal
concentration of azamethiphos. The dark blue colour indicates an area which has experienced lethal concentration of azamethiphos in a high proportion of simulated releases (i.e.
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It is important to note that water chemistry was beyond the
scope of the current study and therefore dose-response curves and
the associated lethal and effective threshold concentrations were
generated based on nominal concentrations and not measured
concentrations. Previous studies, however, recovered and
measured azamethiphos at concentrations consistent with the
nominal concentrations (Burridge et al., 2014; Bechmann et al.,
2020), which would suggest that the lobster larvae here were
exposed to concentrations similar to the nominal concentrations. In
contrast, in several studies deltamethrin was either not detected,
below the limit of detection or measured at much lower concen-
trations than the nominal concentrations (Ernst et al., 2014;
Burridge et al., 2014; Bechmann et al., 2020). Given that the larvae
were severely affected after the 1 h exposure period in the present
study, this suggests that deltamethrin was in fact present in the
treatment water, however it should be considered that the
threshold concentrations estimated here may underestimate the
toxicity of deltamethrin.

3.2. Azamethiphos and deltamethrin impact zones

When all farms were considered together, the areas at risk of
exposure to lethal concentrations of azamethiphos (corresponding

to a dilution limit of 20%) were relatively small (Fig. 2, Table 1). For
example, the mean (±SD) areal and radial extent of the azamethi-
phos LC50 impact zones were 0.04 (±0.04) km2 and 0.4 (±0.6) km,
respectively. The areas at risk of exposure to effective azamethiphos
concentrations (corresponding to a dilution limit of 10%) were only
slightly larger (Fig. S5, Table 1), with the mean (±SD) areal and
radial extent of the EC50 impact zones calculated to be 0.2 (±0.2)
km2 and 1.3 (±1.4) km, respectively. A summary of the areal and
radial extent of the lethal and effective azamethiphos impact zones
for each farm is presented in Table 2 and Table S5, respectively.

While field measurements were beyond the scope of this study,
previous studies have also shown the dispersal of azamethiphos
from fish farms to be limited (Ernst et al., 2014; Langford et al.,
2015). Very low concentrations of azamethiphos (26 ng L�1), well
below the lethal concentrations reported here for H. gammarus,
were measured at the edge of a Norwegian fish farm 1 week
following a bath treatment procedure and concentrations were
reported to decrease with increasing distance from the farm
(0.5 ng L�1 at 1000 m). It should be noted, however, that the long
period between treatment and sampling may explain the low
concentrations observed (Langford et al., 2015). The dispersal of
azamethiphos from a Canadian fish farm was also limited in the
2e3 h after bath treatment releases. While relatively high

under various environmental conditions) whereas the yellow colour indicate areas which have experienced lethal concentrations of azamethiphos in a low proportion of simulated
releases (i.e. under only very specific weather conditions). (XeY) Boxplots showing the variation in the extent (areal and radial) of the LC50 impact zones at each farm (28 simulated
releases were performed per farm). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 1
Summary of the total areal and radial extent of the azamethiphos and deltamethrin LC50 and EC50 impact zones for the Norwegian fish farms. Minimum, maximum and mean
(±SD) values are shown.

Bath Treatment Pesticide Lethal and Effective Threshold Areal Extent of Impact Zones (km2) Radial Extent of Impact Zones (km)

Min Max Mean Min Max Mean

Azamethiphos LC50 0.0 0.3 0.04 (±0.04) 0.0 5.0 0.04 (±0.04)
EC50 0.01 1.3 0.2 (±0.2) 0.1 18.5 1.3 (±1.4)

Deltamethrin LC50 0.1 87.9 21.1 (±13.9) 0.2 28.2 10.6 (±5.6)
EC50 0.1 144.2 39.0 (±26.5) 0.2 28.2 12.2 (±6.0)

Table 2
Summary of the areal and radial extent of the azamethiphos and deltamethrin LC50 impact zones around the selected fish farms. Minimum, maximum and mean (±SD) values
are shown.

Farm Azamethiphos Deltamethrin

Areal extent (km2) Radial extent (km) Areal extent (km2) Radial extent (km)

Min. Max. Mean Min. Max. Mean Min. Max. Mean Min. Max. Mean

A 0.00 0.2 0.02 ± 0.03 0.0 1.5 0.1 ± 0.3 3.5 29.4 8.6 ± 6.2 3.2 23.9 7.9 ± 5.6
B 0.01 0.1 0.02 ± 0.01 0.1 0.5 0.2 ± 0.1 8.5 37.4 20.8 ± 7.5 7.6 20.1 14.1 ± 3.4
C 0.01 0.3 0.07 ± 0.07 0.1 3.5 0.7 ± 0.9 16.9 87.9 42.2 ± 15.0 7.9 28.2 19.9 ± 6.5
D 0.00 0.2 0.05 ± 0.06 0.0 2.5 0.5 ± 0.6 8.4 26.5 15.7 ± 4.9 3.6 13.0 8.0 ± 2.9
E 0.01 0.1 0.05 ± 0.03 0.1 1.1 0.5 ± 0.3 16.6 52.0 31.0 ± 7.3 7.1 17.6 11.7 ± 2.7
F 0.00 0.2 0.06 ± 0.04 0.0 5.0 0.6 ± 1.0 12.5 59.0 23.5 ± 11.1 4.7 18.0 10.0 ± 3.9
G 0.01 0.2 0.04 ± 0.03 0.1 1.7 0.4 ± 0.4 14.6 57.3 30.0 ± 10.7 6.2 25.2 12.9 ± 5.1
H 0.01 0.1 0.03 ± 0.02 0.1 0.7 0.2 ± 0.2 16.0 79.7 36.9 ± 15.3 3.9 20.7 10.5 ± 4.2
I 0.00 0.2 0.06 ± 0.05 0.0 1.7 0.4 ± 0.4 0.1 51.9 28.7 ± 10.9 0.2 23.2 14.6 ± 5.5
J 0.00 0.1 0.05 ± 0.04 0.0 1.9 0.6 ± 0.5 7.8 79.6 31.7 ± 17.4 4.7 23.1 15.0 ± 5.5
K 0.00 0.1 0.02 ± 0.01 0.0 0.4 0.1 ± 0.1 3.8 24.5 8.0 ± 5.0 3.4 15.6 5.9 ± 2.7
L 0.00 0.3 0.06 ± 0.05 0.0 2.1 0.5 ± 0.4 7.4 43.9 25.1 ± 10.9 5.2 22.0 11.2 ± 4.5
M 0.01 0.1 0.02 ± 0.01 0.1 0.7 0.2 ± 0.1 10.3 36.8 21.2 ± 7.7 4.9 20.2 12.2 ± 5.0
N 0.01 0.2 0.06 ± 0.05 0.1 3.0 0.7 ± 0.7 16.1 52.8 30.6 ± 10.9 5.4 20.5 12.0 ± 4.6
O 0.00 0.2 0.05 ± 0.05 0.0 3.4 0.6 ± 0.3 6.2 38.5 16.1 ± 7.4 3.9 22.2 9.3 ± 4.7
P 0.01 0.1 0.04 ± 0.02 0.1 1.1 0.4 ± 0.3 12.7 51.7 27.1 ± 10.3 3.2 21.8 13.6 ± 6.4
Q 0.00 0.1 0.03 ± 0.03 0.0 2.4 0.4 ± 0.5 4.0 28.0 14.4 ± 5.2 2.5 18.0 11.7 ± 3.7
R 0.00 0.2 0.03 ± 0.05 0.0 3.6 0.5 ± 0.9 2.4 20.4 6.4 ± 3.8 1.8 8.2 4.4 ± 1.7
S 0.00 0.2 0.05 ± 0.04 0.0 3.5 0.6 ± 0.8 6.3 56.4 22.6 ± 14.9 3.9 24.3 12.2 ± 5.4
T 0.00 0.1 0.03 ± 0.02 0.0 1.8 0.5 ± 0.5 0.5 21.3 9.3 ± 5.7 1.6 10.7 6.5 ± 2.8
U 0.00 0.1 0.04 ± 0.03 0.0 2.7 0.7 ± 1.0 7.1 36.1 19.0 ± 7.0 3.2 18.4 10.0 ± 4.2
V 0.00 0.1 0.03 ± 0.03 0.0 3.6 0.6 ± 0.9 1.4 7.0 4.1 ± 1.7 1.5 6.7 4.6 ± 1.7
W 0.00 0.1 0.03 ± 0.02 0.0 1.0 0.2 ± 0.2 2.9 33.6 13.2 ± 7.2 2.3 14.6 6.8 ± 2.9
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concentrations of azamethiphos (25 mg L�1), similar to the lethal
concentrations observed in the present study, were measured in
water sampled very close (within 1 m) to the edge of the pen,
concentrations decreased significantly with increasing distance
from the farm (approx. 1 mg L�1 was detected 1000 m from the
cage) (Ernst et al., 2014). While our results are generally in line with
these field based studies, in that areas likely to be exposed to high
concentrations of azamethiphos appear to be small, the field
studies may underestimate the size of the impacted areas. For
instance, our results show that, on average, lethal concentrations of
azamethiphos dispersed 400 m from a fish farm, in comparison to
the field studies in which similar concentrations were only detec-
ted 1 m from a farm. This discrepancy is likely a result of the fact
that concentrations measured don’t necessarily reflect the
maximum concentration that might occur in any given area. Water
samples are taken at a single point in time and location, and any
slight deviations from these may lead to a very different mea-
surement. The discrepancy could also be a result of differences in
the topography, geography, geology and ocean currents between
Norwegian and Canadian farm sites. Indeed, we also found that the
extent (both areal and radial) of the zones varied greatly between
the Norwegian farms selected for this study. For example, the mean
radial extent of the azamethiphos LC50 and EC50 impact zones
varied between 0.1-0.7 km and 0.4e2.9 km across the selected
farms, respectively. In addition, the extent of the impact zones
varied substantially within the selected farms. For example, on
Farm C the radial extent of the azamethiphos LC50 and EC50 impact
zone varied between 0.1-3.5 km and 0.3e18.5 km, respectively
(Table 1). This between-farm and in-farm variation in the extent of
the impact zones suggests that the degree to which azamethiphos
will negatively affect non-target species in the wild is likely to vary
substantially between geographical regions and under different
environmental conditions (e.g. ocean currents and weather).

Compared to azamethiphos, the deltamethrin LC50 impact zones
(corresponding to a dilution limit of 0.1%) were extensive (Fig. 3,
Table 1). When all farms were considered together, the mean (±SD)
areal and radial extent of the deltamethrin LC50 impact zones were
21.1 (±13.9) km2 and 10.6 (±5.6) km, respectively. Our results also
show that even larger areas are at risk of exposure to effective
concentrations of deltamethrin (Fig. S6, Table 1), with the mean
(±SD) areal and radial extent of the EC50 impact zones (corre-
sponding to a dilution limit of 0.02%) reaching 39.0 (±26.5) km2 and
12.2 (±6.0) km, respectively. The areal and radial extent of the lethal
and effective deltamethrin impact zones for each farm is presented
in Table 2 and Table S5, respectively. Earlier field measurement
studies from Canada have suggested that low levels of deltamethrin
may disperse into large areas around fish farms, however our re-
sults suggest that the deltamethrin impact zones could be far larger
than previously predicted. For example, low concentrations of
deltamethrin (approx. 1 ng L�1), similar to the lethal and effective
concentrations observed here, were measured in water sampled
1000 m from a Canadian fish farm after bath treatment release
(Ernst et al., 2014). Our results on the other hand indicate that these
low levels of deltamethrin could disperse to a distance approxi-
mately 10x greater than that sampled in the Canadian study. Since
the extent of the deltamethrin impact zones, like the azamethiphos
impact zones, varied considerably both between and within farm

sites, the impact on non-target species will depend on the specific
geographical region and the weather conditions occurring at the
time of treatment.

It is important to discuss our findings in relation to the under-
lying assumptions and limitations of the hydrodynamic model. It
should be stressed that several of the assumptions assigned to the
model could result in worst case scenario impact zones. For
example, the model assumes that deltamethrin remains in the
water and does not adsorb to organic matter for 24 h post release.
Deltamethrin, however, has a high Log Kow value (5.43) and
therefore is likely to partition to the particulate phase soon after
bath treatment releases (International Programme on Chemical
Safety & World Health Organization, 1990; Muir et al., 1985).
Particle-bound deltamethrin has a greater tendency to sequester to
sediments and therefore some of the pesticide would adhere to the
seafloor rather than transported over large distances. Conse-
quently, the current model may overestimate the dispersal of del-
tamethrin and the extent of the potential impact zones. In addition,
the model does not consider the length of time of pesticide expo-
sure, but simply maps the areas around the farms that experience
lethal/effective concentrations of the pesticides at any point during
the 24 h simulation. The threshold concentrations selected here
were based on a 1 h toxicity test but some areas around farms may
experience these concentrations for much shorter periods of time.
If this is the case, the impacts on non-target species in these areas
may be less than the model predicts.

While the previous assumptions may result in the over-
estimation of the extent of the impact zones, other assumptions of
the model may lead to an underestimation of their extent. For
example, we have assumed the ocean to be pristine after each
release, therefore there is no residual levels of the compound left in
the water by the time the next release occurs. In reality, delousing
operations with azamethiphos and deltamethrin can involve the
concurrent and sequential applications of many pens within a
single fjord. These treatment methods may result in cumulative
loading of the pesticides and subsequently higher concentrations
and larger impact zones around the farms. Future studies are
necessary to further advance the model described here by incor-
porating absorption coefficients and allowing for multiple bath
treatment releases, which would better reflect dispersal situations
in the Norwegian marine environment. Finally, future work that
robustly models the interactions between lobster larvae and
contaminated plumes of water that are released from aquaculture
sites would greatly increase our understanding of the impact of
bath treatment pesticides on wild lobster populations. The hydro-
dynamic model described in this paper does, however, provides a
first order estimate of the dispersal of both azamethiphos and
deltamethrin into the Norwegian marine environment and their
potential risk to wild lobster larvae after bath treatment releases
from fish farms. Our results clearly demonstrate that large areas
around aquaculture facilities are exposed to lethal and effective
concentrations of deltamethrin following anti-sea lice treatments,
and therefore this compound is likely to have widespread adverse
effects on sensitive non-target crustacean species living in areas
close to farms delousing with this compound. It is important to
highlight, however, that the consumption of deltamethrin on Nor-
wegian fish farms has reduced dramatically in recent years, with

Fig. 3. Deltamethrin LC50 impact zones. (AeW) Maps illustrating the areas around 23 Norwegian fish farms which, based on multiple dispersal simulations (covering a range of tide
and weather conditions), experienced lethal concentrations of deltamethrin (2 ng L�1) in the 24 h after the simulated release of a bath treatment effluent from a standard size
salmon pen which had been treated at the recommended dose of 2 mg L�1. The colour legend displays the number of releases which have resulted in an area experiencing a lethal
concentration of deltamethrin. The dark blue colour indicates an area which has experienced lethal concentration of deltamethrin in a high proportion of simulated releases (i.e.
under various environmental conditions) whereas the yellow colour indicate areas which have experienced lethal concentrations of deltamethrin in a low proportion of simulated
releases (i.e. under only very specific weather conditions). (XeY) Boxplots showing the variation in the extent (areal and radial) of the LC50 impact zones at each farm (28 simulated
releases were performed per farm). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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only 10 kg of the active substance used in 2019
(Folkehelseinstituttet, 2019). Therefore, the use of deltamethrin
may have population level effects on H. gammarus but only in very
specific regions where the consumption is highest. In contrast to
deltamethrin, the areas exposed to lethal and effective concentra-
tions of azamethiphos are relatively small and therefore the impact
of this compound will likely be less severe. These findings should
be considered by legislators both in Norway and in other salmonid
aquaculture regions around the world when carrying out future
environmental risk assessments of these compounds and in
assessing the potential risks associated with the expansion of
aquaculture into new sites and increasing production at existing
sites.

4. Conclusion

It is clear from the present study that deltamethrin is extremely
toxic to H. gammarus larvae, in line with various other studies on
non-target marine crustaceans. For the first time, we have
demonstrated that azamethiphos is also acutely toxic to
H. gammarus larvae following short 1 h exposures. The hydrody-
namic model described in this paper assesses the dispersal of both
azamethiphos and deltamethrin into the Norwegian marine envi-
ronment and their potential risk to wild lobster larvae after bath
treatment releases from fish farms. Our results clearly demonstrate
that large areas around aquaculture facilities are exposed to lethal
and effective concentrations of deltamethrin following anti-sea lice
treatments, and therefore this compound is likely to have wide-
spread adverse effects on sensitive non-target crustacean species
living in these areas. On the other hand, the areas exposed to lethal
and effective concentrations of azamethiphos are relatively small in
comparison and therefore the impact of this compound is likely to
be less severe.
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