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Abstract

Depression symptom heterogeneity limits the identifiability of treatment-response

biomarkers. Whether improvement along dimensions of depressive symptoms relates

to separable neural networks remains poorly understood. We build on work describ-

ing three latent symptom dimensions within the 17-item Hamilton Depression Rating

Scale (HDRS) and use data-driven methods to relate multivariate patterns of patient

clinical, demographic, and brain structural changes over electroconvulsive therapy

(ECT) to dimensional changes in depressive symptoms. We included 110 ECT patients

from Global ECT-MRI Research Collaboration (GEMRIC) sites who underwent struc-

tural MRI and HDRS assessments before and after treatment. Cross validated random

forest regression models predicted change along symptom dimensions. HDRS symp-

toms clustered into dimensions of somatic disturbances (SoD), core mood and anhe-

donia (CMA), and insomnia. The coefficient of determination between predicted and

actual changes were 22%, 39%, and 39% (all p < .01) for SoD, CMA, and insomnia,

respectively. CMA and insomnia change were predicted more accurately than

HDRS-6 and HDRS-17 changes (p < .05). Pretreatment symptoms, body-mass index,

and age were important predictors. Important imaging predictors included the right

transverse temporal gyrus and left frontal pole for the SoD dimension; right trans-

verse temporal gyrus and right rostral middle frontal gyrus for the CMA dimension;
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and right superior parietal lobule and left accumbens for the insomnia dimension. Our

findings support that recovery along depressive symptom dimensions is predicted

more accurately than HDRS total scores and are related to unique and overlapping

patterns of clinical and demographic data and volumetric changes in brain regions

related to depression and near ECT electrodes.
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electroconvulsive therapy, machine learning, major depressive disorder, structural neuroimaging,
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1 | INTRODUCTION

Depression is a leading cause of disability worldwide (James

et al., 2018). Despite its prevalence, effective treatment remains chal-

lenging. Antidepressant and behavioral interventions serve as first-line

treatments but roughly one third of patients remain unresponsive to

these interventions (Trivedi et al., 2006). Heterogeneity of depressive

symptoms likely contributes to treatment failures as a variety of

mechanisms and etiologies may be associated with particular dimen-

sions of depressive symptoms.

Limited alignment between DSM-based categorizations of psychi-

atric disorders and underlying neurobiological processes related to

these disturbances has motivated an effort to characterize these dys-

functions along symptom dimensions. The National Institutes of Men-

tal Health's Research Domain Criteria (RDoCs) has attempted to

formalize this research. In support of this approach, a high degree of

symptomatic heterogeneity is often observed across individuals shar-

ing the same diagnosis. A DSM-V depression diagnosis, for example,

requires presentation of at least five out of nine symptoms in addition

to one of two core symptoms; yielding 227 potential symptom con-

stellations for a single diagnosis (van Loo, de Jonge, Romeijn,

Kessler, & Schoevers, 2012). Moreover, there may be nuanced differ-

ences in neural systems involved across this potentially varied spec-

trum of symptom manifestations. Thus, a clearer mapping between

neural systems and symptom constellations would inform more

targeted antidepressant neurostimulation techniques such as trans-

cranial magnetic stimulation, high-definition transcranial direct current

stimulation, or more focal electroconvulsive therapy (ECT) strategies.

ECT is a rapidly acting and effective treatment for major depres-

sive disorder (MDD) boasting response rates between 50 and 80%

(Haq, Sitzmann, Goldman, Maixner, & Mickey, 2015; Tokutsu

et al., 2013). Previous studies have investigated neuroimaging-based

biomarkers for various clinical outcomes following ECT (Jiang

et al., 2018; Leaver et al., 2018; Schmitgen et al., 2020). Among these,

Jiang et al. identified separable treatment-predictive and treatment-

responsive neuroimaging biomarkers of ECT response with gray mat-

ter morphometry of the right hippocampus, right orbitofrontal gyrus,

left post central gyrus, and left lingual area among treatment predic-

tive markers. Treatment-related gray matter density increases

included the left supplementary motor cortex, left postcentral gyrus,

and left precuneus (Jiang et al., 2018). A recent report by Schmitgen

et al. identified pre- and post-ECT associations between the cortical

thickness of the left rostral anterior cingulate, left medial orbitofrontal

cortex, and gyrification of the right middle frontal gyrus, and

treatment-related reductions in depressive symptoms; pretreatment

symptom severity was also a key predictor of symptom change

(Schmitgen et al., 2020). Previous work from our group reported on

volumetric increases in the accumbens, pallidum, and caudate among

ECT-responsive patients (Wade et al., 2016). Using resting state func-

tional connectivity measures, Leaver et al. reported that pretreatment

connectivity of networks encompassing the dorsolateral prefrontal

cortex, subgenual anterior cingulate, and motor cortex were predictive

of ECT response (Leaver et al., 2018).

Many earlier studies tracked the course of depressive symptoms

using only aggregate scores from multi-item scales (Ousdal

et al., 2020) such as the Hamilton Depression Rating Scale (HDRS),

thereby ignoring potentially separable symptom dimensions. Validity

of the HDRS total score and related scales as measures of depression

severity have been established, but aggregated scales may fail to sep-

arate distinct symptom dimensions (Michael Bagby, Ryder, Deborah

Schuller, & Marshall, 2004). Moreover, use of a total score as a pri-

mary outcome ignores potentially subtle differences between symp-

tom profiles that might relate to clinical outcomes.

Several strategies could be used to model symptom heterogeneity

in the context of biomarker-identification studies including relating

neuroimaging measures to changes in: (1) individual items of a scale;

(2) scale sub-scores related to depression subtypes (i.e., atypical, mel-

ancholic, psychotic depression); or (3) weighted combinations of scale

items. The first approach is limited as it ignores between-item correla-

tion and overlooks more parsimonious models. The second approach

overcomes this, but, a priori depression subtypes based on clinical

observations may not align with clustering tendencies of observed

data. The third approach is commonly implemented using either

exploratory factor analysis (EFA) or principal components analysis

(PCA) and addresses potential limitations of the first two strategies by

identifying compact, lower-dimensional representations of outcomes

in a data-driven manner.

Previous studies used PCA decompositions of the HDRS; how-

ever, results have yielded between two to eight factors with inconsis-

tent loadings (Michael Bagby et al., 2004). Others have applied Rasch

logistic analysis to extract a subset of six HDRS items (i.e., the HDRS-

6) that provide a consistent unidimensional measure (Bech
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et al., 1981). Factor analysis and item response theory have also been

explored (Faries et al., 2000; Williams, 2001). While these approaches

improve psychometric properties of the HDRS by enforcing a more

valid unidimensional internal structure, additional information perti-

nent to other aspects of depression is then discarded by item

exclusion.

More recently, we used EFA to identify latent symptom dimen-

sions in a large, multisite patient cohort undergoing electroconvulsive

therapy (ECT) for depression (Wade et al., 2020). We identified three

symptom dimensions from pretreatment HDRS-17 items: somatic

symptoms, core mood and anhedonia, and insomnia. Here, we build

on this work and aim to relate patient demographic, clinical, and pat-

terns of regional ECT-induced volumetric brain changes to changes in

latent symptom dimensions using data-driven methods. We hypothe-

sized that demographic and clinical measures would be broadly

related to symptom changes, and as has been previously reported,

that regional volumetric changes of the hippocampus, motor cortex,

striatum, and cingulate would be commonly related to changes along

separate symptom dimensions. However, at the same time we

hypothesized that there would be unique volumetric changes related

to individual symptom dimensions based on the assumption that these

dimensions recruit different functional networks. Finally, we hypothe-

sized that prediction of symptom changes would be more accurate

along latent symptom dimensions rather than the HDRS-17 total

score. Characterizing these unique and shared predictors and mecha-

nisms of treatment response will inform development of targeted

interventions such as neurostimulation techniques capable of

targeting specific neural circuits and thus directly targeting important

dimensions of depression.

2 | METHODS

2.1 | Patients

All 110 patients with depression (N = 67 female; age = 52.23

± 14.71) and 23 unaffected controls (N = 15 female; age = 44.34

± 11.52) were drawn from the Global ECT-MRI Research Collabora-

tion (GEMRIC) database. Patients were diagnosed with a major

depressive episode at the time of study entry and were drawn from

four independent sites; control participants were only available

from one site. Depressive symptoms for all participants were assessed

using the 17-item Hamilton Depression Rating Scale (HDRS). For

patients, the HDRS was recorded approximately 24 hr prior to their

first ECT session and again after completing the full ECT index series.

Control participant symptoms were recorded twice, approximately

6 weeks apart; approximately the same interval as patients from Site

4. Patients with comorbid disorders included nine with bipolar disor-

der and 19 with psychotic features. The primary diagnosis of

96 patients was recurrent MDD. Patient clinical, demographic, and

treatment information is summarized in Table 1.

Treatment protocols were naturalistic as stimulus parameters

were not manipulated for research purposes. Local physicians

determined each patient's need for ECT. As reported (Wade

et al., 2020), several treatment procedures differed across sites. Site

1 used a MECTA Spectrum 5000Q device (Oswego, Oregon); all other

sites used Thymatron IV devices (Somatics Inc.). All sites used barbitu-

rate (Methohexitol or Thiopental) induction. Modes of ECT adminis-

tration were mixed within and across the sites and included right

unilateral d'Elia, bitemporal, and left anterior right temporal. Sites

1 and 2 used ultrabrief pulse widths (<0.5 ms) while sites 3 and 4 used

brief pulse widths (0.5 ms). ECT pulse amplitude was 800 and 900 mil-

liamps for sites 1 and 2–4, respectively. Only Site 1 tapered patients

off antidepressant medications before ECT. Treatment resistance was

defined as failure to respond to two or more medication trials at Sites

1 and 2; one or more unsuccessful psychotherapy trials for Site 4; Site

3 had no formalized criteria.

HDRS-17 assessments and MR imaging occurred immediately

before ECT index series and within 2 weeks of completing the index

series for all sites. ECT was administered 3 times weekly for Sites 1, 2,

and 3 and 2–3 times weekly for Site 4. Treatment duration was deter-

mined based on clinical response and was suspended either upon

achieving maximal clinical response defined by either the HDRS or

Quick Inventory of Depressive Symptoms or after no appreciable ben-

efit was observed.

All participants provided written informed consent as approved

by their local ethical committees or Institutional Review Boards (IRBs),

and centralized analysis of pooled data was approved by the Regional

Ethic Committee South-East in Norway (2018/769).

2.2 | Image processing

Image processing details have previously been outlined (Oltedal

et al., 2018). Images were acquired on Siemens 3T (Erlangen, Ger-

many) system for Sites 1, 2 and 3 and a Philips 3T (Gyroscan Intera

3T, Philips Medical Systems, Best, NL) at Site 4. Each site provided

pretreatment and post-treatment 3T T1-weighted MRI images,

with a minimum resolution of 1.3 mm in any direction. Sites

uploaded MRIs to a common server for a unified preprocessing

approach which included correction for scanner-specific gradient

nonlinearity, registration to a common atlas space, and resampling

to a 1 mm isotropic grid. Images were segmented using FreeSurfer

version 5.3 and Quarc (Holland & Dale, 2011) was used to estimate

regional cortical and subcortical volumes. Table S1 lists the

included regions of interest (ROIs).

2.3 | Symptom dimensions

We previously applied EFA to the pretreatment HDRS-17 items

of this cohort (Wade et al., 2020). Three latent dimensions were

identified: somatic disturbances (SoD), core mood and anhedo-

nia (CMA), and insomnia. Symptom dimension change was com-

puted by subtracting its baseline from the post-treatment

score.
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2.4 | Predictive modeling

We used random forest regression (RFR) to predict changes along

each symptom dimensions based on patient age, sex, body mass index

(BMI), pretreatment symptom dimension severity, primary and sec-

ondary electrode placements (patients unresponsive to the initial elec-

trode placement were often transitioned to an alternative electrode

configuration), and regional volumetric brain changes. Models were

TABLE 1 Demographic and clinical features

Patients Controls
p (T or χ2)

Total Site 1 Site 2 Site 3 Site 4 Site 4

N 110 27 39 16 28 23

Age, mean (SD) years 52.2

(14.7)

40.9 (14.7) 64.4 (9.0) 52.1 (10.8) 46.1 (10.2) 44.4

(11.5)

<.001

Male/female 43/67 14/13 13/26 5/11 11/17 8/15 >.05

BMI, mean (SD) 25.9

(5.3)

25.5 (4.4) 26.3 (5.7) 23.6 (4.9) 27.2 (5.9) 24.7

(5.0)

>.05

Clinical info

RUL, primary/secondary 90/2 25/0 37/0 0/2 28/0 — <.001

BT, primary/secondary 18/19 1/11 2/5 15/0/1 N/A 0/3 — <.001

LART, primary/secondary 1/0 1/0 0/0 0/0 0/0 — —

BF, primary/secondary 0/1 0/1 0/0 0/0 0/0 — —

RUL number, mean (SD) 9.2 (5.2) 8.07 (3.6) 10.3 (3.0) — 13.4 (4.4) <.001

BT number, mean (SD) 6.6 (6.5) — 7.2 (3.5) 14.2 (4.9) 6.3 (1.5) — <.001

ECT device — MECTA Thymatron Thymatron Thymatron —

Titration method — Seizure threshold

(n = 27)

Seizure threshold

(n = 39)

Seizure threshold

(n = 2)

½ age (n = 14)

½ age

(n = 28)

— —

ECT pulse width, milliseconds — 0.3 (n = 25)

0.5 (n = 2)

0.25 (n = 36)

1 (n = 3)

0.5 (n = 15)

NA (n = 1)

0.5 (n = 28) — —

ECT pulse amplitude, milliamps — 800 (n = 27) 900 (n = 39) 900 (n = 15)

NA (n = 1)

900

(n = 28)

— —

Treatment duration, weeks,

mean (SD)

4.1 (1.4) 3.7 (1.0) 3.7 (1.0) 4.7 (2.1) 4.7 (1.6) — —

Antidepressant medication — None (n = 27) None (n = 2)

SSRI (n = 17)

SNRI (n = 16)

TCA (n = 4)

None (n = 3)

SSRI (n = 4)

SNRI (n = 3)

TCA (n = 6)

None

(n = 5)

SSRI (n = 4)

SNRI

(n = 15)

TCA (n = 4)

— —

Antipsychotic medication,

yes/no/NA

— 0/27/0 20/19/0 8/7/1 19/0/9 — <.001

Benzodiazepines, yes/no/NA — 0/27/0 16/22/1 8/8/0 0/28/0 — <.001

Lithium, yes/no/NA — 0/27/0 0/39/0 1/15/0 4/0/24 — <.001

Bipolar 9 4 0 5 0 — <.001

Psychotic features 19 0 16 3 0 — <.001

Single episode 6 0 2 2 2 — >.05

Treatment resistant, yes/no,

count

104/3 27/0 36/3 13/0/N/A 28/0 — >.05

HDRS 17 baseline score, mean

(SD)

24.4

(6.3)

23.8 (6.8) 23.9 (6.9) 28.0 (4.8) 21.7 (4.0) 0.8 (1.7) <.001

HDRS 17 follow-up score, mean

(SD)

11.9

(9.1)

20.0 (9.5) 6.6 (7.1) 13.0 (6.7) 10.9 (6.5) 0.5 (1.5) <.001

Note: Significance tests are applied within the patient group.

Abbreviations: BMI, body mass index; BT, bi-temporal stimulation; BF, bi-frontal stimulation; LART, left anterior right temporal stimulation; N/A, not

available; RUL, right unilateral stimulation; SNRI, serotonin–norepinephrine reuptake inhibitor; SSRI, selective serotonin reuptake inhibitors; TCA, tricyclic

antidepressants.
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trained and tested using 10-repeated 10-fold cross validation in which

roughly 90% of the samples were randomly assigned to a training set

and the remaining 10% were assigned to a test set. RFR models were

fit with 1,000 regression trees and were trained to minimize the root

mean squared error (RMSE) of the predicted versus actual symptom

change. Prior to model training, two transformations were applied

separately to patient data in the training and testing sets to prevent

biasing model performance (information leakage). First, to isolate the

contributions of regional brain volumes independently apart from any

correlated clinical or demographic features, regional volumetric data

in the training set was residualized with respect to patient age, sex,

BMI, primary and secondary electrode placements, and pretreatment

symptom dimension severity. Regression model parameters identified

for the training data were used to residualize test set imaging data.

Similarly, because multisite imaging data is commonly confounded by

scanner-specific idiosyncrasies, we used an adapted ComBat harmoni-

zation algorithm (Fortin et al., 2017; Radua et al., 2020) to harmonize

(i.e., mitigate unwanted influences of acquisition site) training and

testing imaging data, separately. Harmonization parameters acquired

from the training set were applied to the test cohort (see Figure S1).

Model performance was assessed using the sum-of-squares R2

value (i.e., the fraction of explained variance), R2 =1 �
P
i

yi�byi� �2

P
i

yi�yð Þ2 ,

where yi is the actual symptom change for the i-th subject; byi is the

predicted symptom change for the i-th subject; and y is the mean

symptom change. The normalized RMSE (NRMSE) value was also

reported to facilitate comparisons across scales with different ranges,

NRMSE = RMSE
ymax�ymin

where ymax and ymin are the maximum and minimum

outcome values, respectively, in the test set; each metric was evalu-

ated across test set predictions (Poldrack, Huckins, &

Varoquaux, 2020). The significance of each model's fit was assessed

using permutation tests with 100 shuffles. Multiple comparisons made

across latent symptom dimensions and benchmarks were jointly

adjusted using the false discovery rate method with a significance

level of .05. Performance differences for models across symptom

dimensions were done using one-way ANOVAs to test the difference

in R2 scores resulting from cross validation. The importance of each

feature was computed using permutation-based calculations of the

percent increase in mean squared error (PIMSE). This formulation is

detailed in Supplementary Methods.

2.5 | Benchmarks

We compared the performance of models using latent symptom dimen-

sions as outcomes to models using the HDRS-17 and HDRS-6 total scores.

2.6 | Post-hoc sensitivity analyses

Several sensitivity analyses were conducted to probe model robust-

ness and specificity. First, to directly understand the contribution of

neuroimaging features, we evaluated the performance of models that

included only regional brain volume predictors, rather than the joint set

of volumetric, clinical, and demographic predictors. In this approach, we

again regressed the effects of demographic and clinical variables out of

the imaging predictors and harmonized them using ComBat.

We secondly explored whether models trained on a specific

dimension would be uniquely predictive of the symptom dimension it

was trained on or whether it is equally predictive of other dimensions.

This would inform potentially unique mechanisms underlying reduc-

tion of specific symptom clusters.

Thirdly, we evaluated whether model performance improved

when Site 1 participants, where patient symptoms were significantly

less improved, were excluded.

We next excluded patients with psychotic features as their symp-

toms were significantly more reduced than those without psychotic

features and were predominantly from Site 2 (see Section 3). How-

ever, because psychotic features are known to be indicative of better

response to ECT (van Diermen et al., 2018), we kept these patients in

the primary analysis.

Lastly, we performed leave-one-site out cross validation to

evaluate model generalizability to data from sites unseen by the

model. Here, however, an additional step was necessary to permit

data harmonization. Because these models were each trained on

three of the four sites, harmonization parameters for the held-out

site were not available from the training data set. To correct this,

an intermediary random forest model was trained to predict site

labels of the training observations. This model was then used to

predict pseudo-site labels for the held-out site. Data from the

hold-out site was then harmonized using these pseudo-site labels

as an approximation.

2.7 | Code availability

Code for this project is available at https://github.com/bscwade/

gemric_latent_symptom_dimension_study.

3 | RESULTS

3.1 | Clinical and demographic effects

Patient age differed significantly except for site pairs 1 & 4 and 3 &

4. Neither sex (χ2 = 2.80, df = 3, p = .42) nor BMI (F = 1.54, p> .05)

differed significantly across sites. Site 3 had the lowest proportion of

patients who underwent right unilateral ECT and the largest number

of bitemporal ECT patients. Change in patient HDRS-17 total score

differed across all sites except site pairs 2 & 3 and 3 & 4. Patient

HDRS-17 scores from all sites were reduced more than observed in

the healthy control cohort (all p< .05, one-tailed). The degree of symp-

tom reduction did not differ between those with and without a diag-

nosis of bipolar disorder (t = 1.3, df = 9.7, p> .05). Symptoms were

significantly more reduced among patients with psychotic features
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compared to those without (t = �4.4, df = 20.1, p< .001). Detailed

patient characteristics are provided in Table 1.

3.2 | Pretreatment symptom dimensions

As detailed in Wade et al. (2020), the SoD dimension included somatic

gastrointestinal (G.I.) symptoms, hypochondriasis, feelings of guilt,

genital symptoms, general somatic symptoms, somatic anxiety, psy-

chic anxiety, and psychomotor agitation HDRS items. The CMA

dimension was composed of work and interests, weight loss, psycho-

motor retardation, and depressed mood. The insomnia dimension

included early, middle, and late insomnia items (see Figure S2). Nota-

bly, suicide and insight items did not adequately load onto a single fac-

tor and thus were omitted. The correlated change in symptom

dimensions over treatment ranged between .23 and .91 (see

Figure S3). The degree of dimension changes also varied by site

(Figure S4). All symptom dimensions were significantly reduced across

patients relative to controls (all p < .01, one-tailed).

3.3 | Models including clinical and demographic
predictors

The fractional variance explained, R2, for the SoD dimension was

22% with an NRMSE of 0.19 (p< .01). Model performances are tabu-

lated in Table 2. Here, the most predictive features were baseline

symptom dimension severity (PIMSE = 6.4%), BMI (PIMSE = 2.5%),

and age (PIMSE = 1.0%). Predictive imaging measures included the

left frontal pole, right transverse temporal gyrus, and the left pallidum

volumetric changes (all PIMSE <1%). Mappings between important

predictors and symptom dimensions are illustrated in Figure 1a and

plots of the predicted versus actual change along each symptom

dimension is shown in Figure 2. Partial dependence plots (PDP)

highlighting the expected marginal change in symptoms for

important predictors are illustrated in Figures 3 and 4. Higher reduc-

tion of SoD symptoms is expected at higher levels of pretreatment

symptoms, BMI, age, and increased transverse temporal gyrus volume

change. Conversely, increased volumetric change of the left frontal

pole and left pallidum associated with poorer SoD symptom

outcomes.

The CMA dimension R2 was 39% with an NRMSE of 0.16

(p< .01). The most predictive features included baseline symptom

dimension severity (PIMSE = 5.1%), BMI (PIMSE = 2.0%), and age

(PIMSE = 0.8%). The most predictive imaging features included the

left postcentral gyrus, right transverse temporal gyrus, and right ros-

tral middle frontal gyrus (RMFG) volume changes (all PIMSE <1%).

Increased pretreatment CMA symptoms, age, and transverse temporal

gyrus volumetric changes were indicative of more reduced CMA

symptoms while increased BMI, and volumetric change of the left

post central and RMFG associated with poorer CMA outcomes.

Performance for the insomnia dimension was R2 of 39% with an

NRMSE of 0.15 (p< .01). Top predictors for insomnia were baseline

symptom severity (PIMSE = 2.6%) and BMI (1.0%). Important imaging

features included the right superior parietal lobule, left accumbens,

and right pars triangularis volume changes (all PIMSE <1%). Higher

pretreatment insomnia symptoms, BMI, age, and volumetric reduc-

tions of the right superior parietal lobule, left accumbens, and pars

triangularis associated with more reduced insomnia symptoms.

3.4 | Models excluding clinical and demographic
predictors

Model performance was substantially lower when clinical and demo-

graphic features were not used though all were predicted significantly

above chance levels. The R2 score for the SoD dimension was 2.5%

while the NRMSE was 0.21 (both p< .05). Important predictors for

these models are reported in Supplementary Results, illustrated in

Figure 1b, and Figure S5 illustrates PDP plots for these models. The

CMA dimension R2 score was reduced to 5.6% with an NRMSE of

0.20 (both p< .05). The insomnia symptom R2 score lowered to 1.4%

with an NRMSE of 0.19 (both p< .05). Here, CMA dimension change

was predicted significantly more accurately than SoD and insomnia

symptoms (all p< .01).

3.5 | Benchmark predictions

When clinical and demographic predictors were included, R2 scores

for the prediction of HDRS-6 change was 24% with an NRMSE of

0.21 (p< .01). The R2 score for the HDRS-17 change was 25% with an

TABLE 2 Model performance

Symptom set
Clinical/demographic predictors No clinical/demographic predictors

R2 NRMSE R2 NRMSE

SoD 22% 0.19 2.5% 0.21

CMA 39% 0.16 5.6% 0.20

INS 39% 0.15 1.4% 0.19

HDRS-6 24% 0.21 4.9% 0.24

HDRS-17 25% 0.21 10% 0.23

Abbreviations: CMA, core mood and anhedonia; INS, insomnia; HDRS-6, Six-item Hamilton Depression

Rating Scale; HDRS-17, 17-item Hamilton Depression Rating Scale; SoD, somatic disturbances.
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(a) (b)

F IGURE 1 Circular plots highlighting the most important predictors for (a) the full models including patient clinical, demographic, and regional
volumetric change predictors and (b) models including only regional volumetric change predictors. Lower halves of the circles represent latent

symptom dimensions while upper halves represent important predictors. Color-coded lines connect symptom dimensions to the predictors that
most informed their outcomes

F IGURE 2 Predicted versus actual change along each latent symptom dimension, HDRS-6, and HDRS-17 total scores. Bottom right boxplot
shows the distribution of R2 scores obtained across repeated cross validation folds

WADE ET AL. 7



NRMSE of 0.21 (p< .01). Important features for benchmark predictors

are outlined in Supplementary Results. The CMA and insomnia dimen-

sions were predicted significantly more accurately than the HDRS-6,

HDRS-17, and SoD dimension (p< .0001); the performance of SoD

and HDRS-6 and HDRS-17 models did not significantly differ (p> .05).

In models that excluded clinical and demographic predictors and

instead used only neuroimaging predictors, the HDRS-6 R2 score was

4.9% with an NRMSE of 0.24 while the HDRS-17 R2 was 10% with an

NRMSE of 0.23 (all p< .05). With clinical and demographic measures

excluded, the HDRS-17 change was predicted significantly more accu-

rately than the CMA, SoD, insomnia, and HDRS-6 symptom sets (all

p< .0001).

3.6 | Cross factor predictions and model specificity

Model performance was lower, on average, when models were

trained and tested on separate symptom dimensions. However,

models trained on CMA symptoms and used to predict SoD symp-

toms, or vice versa, did not significantly differ in distributions of R2

scores from models trained and tested within these respective

dimensions.

3.7 | Models excluding Site 1

Models excluding patients from Site 1 and including clinical and demo-

graphic predictors performed higher, on average with R2 scores of 35%,

38%, and 47% for SoD, CMA, and insomnia dimensions, respectively.

R2 scores were 22% and 28% for the HDRS-6 and HDRS-17 bench-

marks, respectively. When these models excluded clinical and demo-

graphic predictors, however, all R2 scores were below zero.

3.8 | Leave-one-site-out cross validation

When clinical and demographic predictors were included, all R2 scores

were negative under leave-one-site-out cross validation (LOOCV)

except for the insomnia dimension (R2 = 30%). Exclusion of clinical

and demographic predictors produced negative R2 scores for all symp-

tom dimensions.

When patients from Site 1 were excluded, LOOCV models were

generally improved with R2 scores of 6.2%, 24%, 52%, �10%, and 3%

for CMA, SoD, insomnia, HDRS-6, and HDRS-17 symptoms, respec-

tively; however, dropping pretreatment symptoms lowered all R2

scores below zero except for the insomnia dimension (R2 = 1.9%).

F IGURE 3 Partial dependence plots illustrating the expected degree of symptom dimension change (y-axis) for observed values of the
important clinical or demographic predictors (x-axis) while holding all other model predictors at their observed median values

8 WADE ET AL.



F IGURE 4 Top: Locations of top three important brain regional change predictors illustrated in Montreal Neurological Institute (MNI) space.
Bottom: Partial dependence plots illustrating the expected degree of symptom dimension change (y-axis) for observed values of the important
regional volumetric change predictors (x-axis) while holding all other model predictors at their observed median values
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4 | DISCUSSION

Our study extends recent work using exploratory factor analysis to

identify three homogenous latent symptom dimensions of treatment-

resistant MDD. We used data-driven methods to identify clinical,

demographic, and distributed patterns of regional volumetric brain

changes associated with ECT-related recovery along these latent

symptom dimensions of depression. Models predicting recovery along

core mood and anhedonia and insomnia dimensions were predicted

significantly more accurately than the more widely used HDRS-6 and

HDRS-17 total scores. Further, treatment-related recovery along

these symptom dimensions was associated with unique and over-

lapping sets of clinical, demographic, and volumetric brain regions.

Brain regions informative of symptom changes were generally well-

aligned with existing literature.

Easily-acquired and inexpensive clinical and demographic mea-

sures including pretreatment symptom severity, patient age, and body

mass index (BMI) were generally the most informative predictors of

change. Previous studies have reported that increased symptom

severity and presence of psychotic features are indicative of better

response to ECT (van Diermen et al., 2018). Increased patient age has

widely been linked with better ECT responsivity (Kranaster et al., 2018;

O'Connor et al., 2001). However, the etiology of depression in elderly

patients more frequently involves cardiovascular pathology, cognitive

impairment, or chronic medical illness (Alexopoulos, 2005), which in

addition to normal aging effects of brain tissue loss, could impact

response to ECT. In our sample, patient age differed significantly by site

that may have limited our model generalizability to new sites. Earlier

work has also reported that elevated BMI is associated with reduced

white matter integrity (Repple et al., 2018), gray matter reductions of

frontal regions, and a more chronic course of depression (Opel

et al., 2015). Interestingly, while elevated BMI predicted poorer out-

comes for the CMA symptom dimension, it predicted better treatment

response for the SoD and insomnia symptom clusters. This effect is

likely driven by the inclusion of the HDRS weight loss item in the CMA

factor. Here, we observed that, relative to patients who exhibited no

change in the weight loss item, those who reduced their weight loss

symptoms had a significantly lower pretreatment BMI (p < .05).

Although clinical and demographic measures were the most infor-

mative predictors of outcomes, models using only changes in regional

brain volumes as predictors were highly significant and explained

between 1 and 10% of outcome variability across symptom dimen-

sions and remain valuable. Regional volumetric predictors of change

along the CMA dimension included the left postcentral gyrus, right

transverse temporal gyrus, and right rostral middle frontal gyrus

(RMFG). Earlier studies have identified ECT-related volumetric

changes in the left postcentral gyrus (Jiang et al., 2018), and rostral

middle frontal gyrus (Mulders et al., 2020), while other studies have

identified the pretreatment middle frontal gyrus structure (Jiang

et al., 2018) as a predictor of ECT response. Several temporal regions

have been reported to change over ECT index (Ota et al., 2015; van

Eijndhoven et al., 2016). As regional volumetric changes are correlated

with the local magnitude of the electric field (Argyelan et al., 2019),

volumetric changes in the postcentral gyrus and transverse temporal

lobes are expected as they are proximal to electrodes in RUL ECT.

Imaging predictors of SoD symptom reduction included volumet-

ric changes in the left frontal pole, right transverse temporal gyrus,

and the left pallidum. The transverse temporal gyrus was also a pre-

dictor of CMA change. As SoD and CMA symptom changes were

highly correlated and the temporal gyrus is proximal to ECT elec-

trodes, this is perhaps unsurprising but may also suggest a common

neurobiological basis for these symptoms. Volumetric increases of the

right frontal pole was likewise inversely related to antidepressant

response in a related cohort using the Montgomery-Asberg Depres-

sion Rating Scale and HDRS total scores as outcomes (Mulders

et al., 2020). Similarly, an earlier study of our own in a partially over-

lapping cohort identified that volumetric increases in the right palli-

dum were associated with poorer ECT response (Wade et al., 2016);

here, we report the same trend for the contralateral pallidal volume.

Volumetric changes of the right superior parietal lobule, left

accumbens, and right pars triangularis were predictive of change in

the insomnia dimension. Although their specific relationships to symp-

toms of insomnia are difficult to interpret, ECT-related changes in the

accumbens have previously been related to antidepressant response

(Wade et al., 2016). The superior parietal lobule is a component of the

default-mode network (DMN) which may indirectly modulate emo-

tional processes underlying depressive symptoms (Zhang, Peng,

Sweeney, Jia, & Gong, 2018); this structure also neighbors the sup-

ramarginal gyrus which has been shown to relate to ECT response

(Mulders et al., 2020).

The imaging measures informative of treatment-related symptom

changes are biologically plausible. Despite differences in analysis

methods and samples, findings also appear collectively aligned with

previous reports of treatment-predictive and treatment-responsive

biomarkers of ECT response, which point to the involvement of

somatomotor cortex (Leaver et al., 2018), RMFG (Mulders

et al., 2020), and striatum and basal ganglia (Wade et al., 2016). Nota-

bly, the current findings expand on previous work by shedding new

light on how these broad neural systems along with patient clinical/

demographic characteristics relate to more specific symptom

constellations.

Importantly, because heterogeneity was a factor not only at the

level of symptoms but also across sites, we decided to conduct leave-

one-site-out cross validation (LOOCV) to evaluate how generalizable

models were across sites. Here, model performances were widely

reduced to chance levels. Because patients from Site 1 were signifi-

cantly less responsive to ECT, we evaluated LOOCV models when

these patients were excluded. Here, models generalized well across

sites, highlighting that model extrapolation to outcome ranges outside

of those in which the model was trained remains challenging, though

recent advancements may be of use in future studies (Wachinger &

Reuter, 2016; Zhang, Nettleton, & Zhu, 2019). This further under-

scores the importance of considering heterogeneity of treatment pro-

tocols in naturalistic multisite studies as this is a demonstrable source

of variance. Though model performance was improved for both the

primary analysis and under LOOCV, we chose to retain patients from
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Site 1 in the main analysis in order to evaluate the performance of

these models across the natural variety of ECT protocols observed

across the world. Clearly, however, models can be refined by ensuring

outcomes are similar across sites.

4.1 | Limitations

Naturalistic treatment protocols across this multisite study are a

potential limitation; however, this design also builds the natural diver-

sity of ECT treatment protocols and outcomes seen worldwide into

our models. Variation in treatment parameters was naturally con-

founded with acquisition site. We did, however, include both site and

electrode placement as predictors though electrode placement was

not an important predictor. Relatedly, patient inclusion/exclusion

criteria varied by site though all had in common that patients were

required to have failed at least one prior treatment or that patients

immediately needed ECT. A minority of patients were included with

diagnoses of bipolar disorder and depression with psychotic features.

Symptom changes did not significantly differ among those with bipo-

lar disorder but were significantly more reduced among those with

psychotic features as is commonly observed (van Diermen

et al., 2018). Site 1 patients were also least responsive with an aver-

age HDRS-17 reduction of 3.8 points. These patients were tapered

off of antidepressant medication prior to ECT index, though concur-

rent medications do not reliably effect the efficacy of ECT

(Fink, 1994; Haskett & Loo, 2010). Exclusion of patients from Site

1 largely improved model performance and generalizability but this

gain is counterbalanced against the benefit of training these models

using the range of ECT outcomes seen around the world. Lastly, we

emphasize that prospective prediction of clinical outcomes was not

attempted; this would require exclusive use of pretreatment

predictors.

4.2 | Conclusions and future directions

Taken together, our findings provide new evidence that use of

homogenized latent symptom dimensions of multi-item scales can

improve the detection of imaging, demographic, and clinical bio-

markers related to the trajectories of specific symptom constellations.

While clinical and demographic measures accounted for more out-

come variability, neuroimaging measures of regions often implicated

in the pathology of depression and ECT-related treatment response

were significantly predictive and accounted for between 1 and 10% of

outcome variability when used alone. As neurostimulation methods

become more refined and capable of targeting more specific neural

systems, it is plausible that findings such as these will inform the

targeting of neural systems underlying more specific symptom dimen-

sions. Future work will explore whether prospective prediction of

change in these symptom dimensions will similarly be predicted more

accurately than more heterogenous total scores.
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