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ABSTRACT

This paper presents analyses of the development of the European electricity sector that is in line with the
climate and energy targets of the European Union for 2030 and 2050. The role of energy storage and
transmission under various assumptions about a) development of electric battery costs, b) transmission
grid expansion restrictions, and c) the variability of future electricity demand is demonstrated. Two
models are soft-linked — LIBEMOD, a multimarket energy equilibrium model of Europe, and TIMES-
Europe, a bottom-up stochastic model of the European electricity and district heat sectors — to pro-
vide an analysis of the decarbonization of the electricity sector that has consistent assumptions about
electricity use and fuel prices. To explicitly value flexibility, a stochastic methodology is used to ensure
that investment decisions take into account different operational situations that can occur due to
weather-dependent renewable generation and the uncertainty of the electricity demand. It is demon-
strated that the European power sector can be decarbonised with a 65%—70% share of the electricity
supply from wind power and PV in 2050. The cost-efficient investment in stationary batteries is highly
dependent on technology development in PV and expansion of the international transmission grid.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The European Union (EU) energy and climate policy aims to cut
CO, emissions in the power sector significantly by 2030 [1] and to
establish a nearly carbon-free electricity sector by 2050 [2].
Increasing wind and solar electricity generation is considered
critical to reaching these policy goals. Because of policy instruments
directed at these technologies and significant technology im-
provements, the speed of installation of wind and solar power has
increased exponentially during the last decades.

Wind and solar power generation differ from conventional
thermal power due to their intermittency; this type of renewable
electricity generation is strictly weather dependent and cannot be
regulated to match the electricity demand. In general, there are four
strategies to reduce the mismatch between intermittent supply and
demand. First, flexible supply: variation in intermittent supply can
be counteracted by production from flexible electricity technolo-
gies, such as fossil-based thermal power and hydropower, to obtain
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a total supply that equals demand. Second, demand management:
demand can be shifted over time or curtailed. Third, energy stor-
age: in periods with a net surplus of electricity, the excess amount
of electricity can be stored, for example, in batteries, or used to
produce hydrogen. Then in periods with a net deficit of electricity,
batteries can be discharged, or hydrogen can be used to produce
electricity. Finally, trade: the instantaneous mismatch between
production and load in a country can be evened out through elec-
tricity trade by utilizing national differences in the electricity
technology mix, as well as in weather-dependent intermittent
generation. In this way, the net surplus in electricity in one country
is exported to countries with a net deficit.

The hypothesis of this paper is that the EU energy and climate
targets for 2030 and 2050 (i.e., policy goals for energy efficiency,
renewables and greenhouse gas (GHG) emission reductions) will
increase the capacity of intermittent power, storage technologies
and international transmission lines. To be more specific, this paper
answers the following research questions:
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1. What is the optimal mix of electricity generation technologies,
energy storage and transmission grid in the EU in 2030 and
2050?

2. How does a) technology improvement in wind power, solar PV,
and electric batteries, b) future variability in electricity demand,
and c) limitations in transmission grid expansions influence the
cost-optimal design of the European power market?

To analyse the hypothesis and the associated research questions
two numerical models are soft-linked. The first model, LIBEMOD
[3], analyses how the EU energy and climate targets for 2030 and
2050 impact future electricity demand. LIBEMOD is a multi-good,
multi-period equilibrium model covering the entire value chain
of eight energy goods from investment, extraction, and production
via trade to consumption in 30 European countries. LIBEMOD,
which draws on economic theory, determines all quantities and
prices in the European energy markets (electricity, fossil fuels and
bio energy) subject to a set of policy targets. In particular, the model
determines equilibrium demand for all types of energy carriers,
including electricity.

Output from LIBEMOD, including country- and year-specific
electricity demand, is used as input to the second model, TIMES-
Europe; this model has earlier been applied to energy modelling
studies, see [4], and was originally developed in [5]. This is a
bottom-up, long-term optimization model of the European elec-
tricity and district heat sector. To capture the weather-dependent
characteristics of wind and solar power, as well as the short-term
uncertainty of electricity demand, TIMES-Europe uses stochastic
programming. This gives investment strategies that are feasible and
cost-optimal for a range of possible future operational situations.
TIMES-Europe provides investment decisions for four model pe-
riods between 2020 and 2050 for electricity production capacities,
(e.g. coal power, hydro, wind power and solar), storage technolo-
gies (batteries and hydrogen), and the European transmission
network. In addition, the model determines hourly operation of
capacities.

LIBEMOD has a temporal resolution of eight periods throughout
the year, which can be insufficient to address the amount of flexi-
bility needed to handle ambitious climate targets. In contrast,
TIMES-Europe has a higher temporal resolution: a year consists of
48 time slices. Because these are combined with 15 scenarios, 720
(48 x 15) different operational situations can materialize during
one model year. LIBEMOD determines demand for electricity,
whereas TIMES-Europe takes demand for electricity as an exoge-
nous input. These two factors (temporal resolution and electricity
demand) are the main reasons to soft link the two models, thereby
ensuring that outputs from TIMES-Europe represent investment
and operational decisions in the electricity sector that are consis-
tent with EU policy goals.

The main research contribution of this paper is to derive the
cost-efficient mix of intermittent technologies, flexible supply
technologies, energy storage technologies, and international elec-
tricity transmission needed to meet the EU energy and climate
targets for 2030 and 2050. In particular, the cost-optimal trade-off
for investment in i) different types of power plants (e.g., conven-
tional stations vs. renewables with intermittent dispatch), ii)
different types of energy storage technologies (batteries vs.
hydrogen), and iii) the international transmission capacity that is
needed to meet the EU energy and climate targets is found. To this
end, a stochastic modelling framework that explicitly captures the
short-term uncertainty of intermittent supply and hourly elec-
tricity demand is used.

The research contributions in the context of the literature are
further elaborated in Section 2. The remainder of this paper is
structured as follows: Section 3 gives an overview of the data and
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methods applied. Section 4 provides information on key modelling
assumptions while Section 5 presents and discusses the modelling
results. Section 6 concludes.

2. Research contributions and literature review

This paper contributes to two strands of the literature: i) the
future European electricity market and the role of international
transmission and energy storage in achieving GHG emissions tar-
gets, and ii) modelling of electricity markets with substantial
intermittent supply. Below, a literature review that highlights our
contribution to the literature is provided.

There is a substantial literature on the future European elec-
tricity market: The PRIMES energy system model is used in [6] to
assess various scenarios where GHG emissions in the EU in 2050
are cut by 80%. The LIMES-EU' model with 29 European countries,
as well as countries in North Africa and the Middle East, is used in
[7] to examine a 90% emission reduction by 2050. To assess alter-
native renewable shares in electricity consumption in 2030, and
how the cost-effective renewable share depends on technology
characteristics [8], uses the LIMES-EU model. The elesplan-m po-
wer system model is used in [9] to examine cost-effective pathways
towards 2050 for all ENTSO-E member states under the restriction
that by 2050, GHG emissions in the electricity sector are reduced by
98.4% relative to 1990. To examine effects of a 95% reduction in CO,
emissions in 30 European countries [10], uses the perfect foresight
PyPSA-Eur-Sec-30 model. Finally [11], a PRIMES study commis-
sioned by the EU Commission, examines the 2030 EU Climate and
Energy Package from 2018.

In the studies referred to above, total costs of investment and
electricity production are minimized, and demand for energy or
electricity is taken as given. These studies use external sources that
offer demand predictions for future years. To our knowledge, there
is no check of consistency between the study producing the de-
mand forecast and the energy study using these demand estimates.
In contrast, our study soft-links two models to ensure consistency
between policy targets and demand: the electricity model TIMES-
Europe uses demand predictions from LIBEMOD that are derived
under the same policy restrictions as those imposed in TIMES-
Europe. This represents a novelty of the modelling framework.

Second, the studies above focus either on policy target(s) for
2030 or on emissions in 2050. In contrast, this paper assumes that
all EU energy and climate targets for 2030 and the 2050 EU emis-
sion target are met. Furthermore, except for [10], the studies above
either neglect or do not adequately model battery and hydrogen
storage technologies—these technologies can be decisive in man-
aging electricity markets with substantial intermittent supply. In
[7], the deterministic LIMES-EU" model contains two generic
storage technologies: one allowing for “day/night storage” and
another for “day to day storage”. In [9], the modelling of storage
technologies is simplified as these are represented by “a single ef-
ficiency parameter reflecting accumulated losses in several process
steps”. However, our study includes several types of storage tech-
nologies, for example, lithium-ion batteries, adiabatic compressed
air energy storage, underground thermal energy storage, hydrogen,
reservoir hydro and pumped hydro storage.

Finally, the studies listed above use deterministic energy
models, thereby providing investment decisions that considers one
operational situation only. As opposed to a deterministic model, a
stochastic modelling approach takes into consideration the possi-
bility that a range of operational situations may materialize in the
future, for example, due to short-term weather uncertainty. The
stochastic approach is used to explicitly capture the need for flex-
ibility by searching for investments that are feasible and cost
optimal for the range of possible future states. As demonstrated in
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e.g. [12], using a deterministic or a stochastic modelling approach
can indeed influence the model result. For example, in [13] it is
demonstrated that a deterministic investment strategy in the
decarbonization of an Artic settlement is not capable of meeting the
energy demand as this modelling approach overestimates the
contribution from wind energy. In contrast, this paper addresses
the role of flexibility in a European power market using a stochastic
modelling approach to characterize the short-term uncertainty of
supply and demand.

Only a small share of long-term energy system models applies a
stochastic modelling approach. Most long-term energy models use
a deterministic approach and hence consider one operational sit-
uation only. In the following, three stochastic energy models are
compared with our modelling approach.

To explore the role of intermittent supply [14], uses the sto-
chastic, multistage, cost-minimizing dispatch and investment
model DIMENSION for Central Europe. The paper examines how
alternative assumptions about the market share of intermittent
power affect investment in electricity generation capacity. Whereas
[14] assumes exogenous prices of CO, emissions for the whole
planning period 2008 to 2050, in our study the agreed upon
emission targets for 2030 and 2050 are imposed. Also, our study
covers more countries than those located in Central Europe, as well
as more technology options, for example, more types of electric
batteries. Finally, whereas [14] studies policy uncertainty as to
whether renewable targets will be reached, the present study fo-
cuses on uncertainty in demand and weather conditions. A key
result in [14] is that relative to perfect foresight, policy uncertainty
lowers investment in storage technologies. In contrast, our results
suggest that relative to no uncertainty, stochasticity in demand and
weather conditions triggers investment in storage technologies.

The stochastic, cost-minimizing European power model E2M2
in [15], which partly extends the basic model in [16], determines
investment and supply of electricity for a number of technologies,
including wind, solar and hydro, under scenarios that differ with
respect to parameter values for demand, fuel prices and CO,
emissions.

While there are similarities between [15] and our paper, there
are also important differences. First, the modelling of time differs
somewhat. In the E2M2 model, each season is represented by two
standard days, which are divided into seven time segments with
time resolution varying between 1 h and 6 h. In TIMES-Europe, each
of the four seasons (in each country) is represented by 12 2-h
blocks, and there are 15 stochastic scenarios for each 2-h block.

Second [15], does not contain a battery storage technology,
which may have an important role in the future technology mix. In
fact, a key goal of our paper is to study the trade-off between in-
vestment in electricity generation and storage. Third, the capacities
of interconnectors are fixed in [15], whereas in our paper these
capacities are determined as part of the cost-minimization prob-
lem. Because the case of no investment in international trans-
mission lines is also considered in our study, the importance of
international network investment and the trade-off between in-
vestments in hydropower, international transmission capacity and
batteries can be examined.

In [17], the stochastic EMPIRE model is used to study how de-
mand responses, aimed at reducing peaks in consumption and
transmission, impact the European electricity market when CO,
emissions are imposed to decrease linearly over time until they
have been cut by 90% in 2050. The present study has a different aim,
namely to identify how EU policy targets for energy and emissions
impact the European electricity markets (when there is no invest-
ment in demand management) and also how the outcome of the
European electricity market depends on whether there is cost-
efficient investment in international transmission lines or no
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transmission investment. Also [17], does not clearly describe their
modelling of storage technologies, making a comparison with our
study difficult.

The current article soft-link two models to improve the tem-
poral time resolution and also to ensure consistent demand input in
analysing effects of ambitious climate and energy policy targets. In
the modelling literature, it is rather common to link models in or-
der to benefit from the strength of a set of models. Typically, the
modeller links a model with a fine time resolution to a model that
offers a rich representation of technical and economic aspects of
the energy/electricity sector. Deane et al. [18] soft-linked TIMES to
the power system model PLEXOS to evaluate the appropriateness of
the electric power portfolio developed by the Irish TIMES model.
They concluded that the linear Irish TIMES model provided a reli-
able power system but undervalued flexibility elements. Brouwer
et al. [19] link a MARKAL energy system model for the Netherlands
to a Dutch power market model, and argues that the MARKAL
model is inadequate to capture required investment to sustain a
high share of renewables. Poncelet et al. [20] soft-linked TIMES to
the unit commitment model LYSUM to model the Belgian power
system. A key finding is that insufficient representation of solar and
wind variability can lead to biased results. Finally, Pavicevic¢ et al.
[21] soft-linked a long-term, multi-sectoral planning model (JRC-
EU-TIMES) to an optimal dispatch model with multiple sectors
(Dispa-SET) to examine an European energy system with a high
share of renewables.

Whereas the articles referred to above are example of unidi-
rectional linkage, i.e., output from an energy system model is used
as input to a power model, there are also studies with bidirectional
linkage, i.e., two models modify each other at least once. Some
examples are Rosen [22] for the German electricity sector, Pina [23]
for the power sector of Portugal, and Seljom et al. [24] for the
Norwegian electricity sector. In the energy literature, there are also
other types of soft-linking. An early example is Hoffman and Jor-
genson [25], where a macro-economic model is coupled with a
process analysis model of the energy sector. Drouet et al. [26] soft-
linked a model for the residential sector to a macro economic
model, whereas a model for the transport sector was soft-linked to
a macro model in Schafer and Jacoby [27]. Other examples are
Fortes et al. [28], establishing an integrated techno-economic
modelling platform by linking TIMES and GEM-E3, and Krook-
Riekkola et al. [29], which introduced a soft-linking procedure
between a CGE model (EMEC) and an energy system model (TIMES-
Sweden).

To summarize, while there are numerous papers investigating
the impacts of cutting emissions in the electricity sector, most of
them apply a deterministic approach where only one operational
situation is considered. Because of the stochastic nature of inter-
mittent supply and the load, these studies can underestimate the
need for flexibility, including investment in storage technologies
and international transmission capacity. Moreover, the few studies
that apply a stochastic approach typically neglect or inadequately
model either storage technologies or transmission expansion, or do
not include a sound description of all technologies. In contrast, our
paper studies the role of different types of stationary batteries and
hydrogen in reaching the EU energy and climate targets for 2030
and 2050 under alternative assumptions about demand variability,
transmission expansion and costs. Like a number of other studies,
(two) models are linked to obtain a fine time resolution. However,
for the current study another motivation for linking is to ensure
consistent demand input in analysing policy targets. To the best of
our knowledge, this is the first study applying linking of models for
that purpose.
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3. Methodology and assumptions

This section first provides an overview of the EU policy targets
for 2030 and 2050. Then it describes the equilibrium model LIBE-
MOD and the stochastic energy system model TIMES-Europe.
Thereafter, it details the stochastic modelling approach and the
scenario generation method before presenting the soft-linking of
the two models.

3.1. EU policy targets

The EU has for years set ambitious energy and climate targets.
This started in 2007 with the triple 20% targets: a 20% cut in GHG
emissions (relative to 1990), a renewable share in final energy
consumption of 20%, and an improvement in energy efficiency by
20%, see Europa (2020). In 2009, the EU formally adopted the
objective to reduce GHG emissions by 80—95% by 2050 in com-
parison to 1990. Later, the European Commission elaborated sector-
specific reduction targets: by 2050, emissions from the electricity
generation sector should be reduced by 95% [2].

In 2018, an agreement between the key EU institutions — the
Commission, the European Parliament, and the European Council —
was reached after a long debate over the 2030 EU climate and
energy policy package. The parties agreed to reduce GHG emissions
by (at least) 40% (relative to 1990), to reach an EU-wide renewable
share in final energy consumption of 32%, and to improve EU en-
ergy efficiency by 32.5% (relative to 2005), see [1]. Whereas the ETS
sectors (electricity generation, carbon-intensive manufacturing
firms, petroleum extraction and most of aviation) have to reduce
their GHG emissions by at least 43% relative to 2005, the corre-
sponding reduction for the non-ETS sectors is 30% (relative to
2005).

3.2. The multi-market equilibrium model LIBEMOD

LIBEMOD [3] is a numerical, deterministic, multi-good, multi-
period equilibrium model covering the value chain of eight energy
goods from investment, extraction, and production via interna-
tional trade to consumption in 30 European countries. All domestic
and international markets are competitive.

In each country, there are four end-user sectors demanding
energy goods. This is modelled by a multi-level demand system
with constant elasticity of substitution (CES); each end-user sector
in each country is represented by a set of CES parameters. Also, each
country has an electricity generation sector. There are several
technologies available for electricity generation (thermal stations,
hydro, intermittent, etc.), and each power producer chooses in-
vestment and time-dependent electricity supply to maximize
profits, subject to a set of technical constraints. For thermal power
plants (nuclear, bio power, coal power, gas power, and oil power), a
plant uses one type of fuel only. In each country, there is domestic
transportation and distribution of energy.

In LIBEMOD, all emitters of CO, in particular, fossil-fuel based
power stations, have to pay a price for CO, emissions.! For the
electricity sector, this price, which corresponds to the EU ETS price,
is determined from the requirement that total demand for ETS
quotas is equal to total supply of ETS quotas, where the latter is part
of the EU climate policy. The price for CO, emissions is one
component in the user price of a fossil fuel. In general, the user price

! In LIBEMOD, there is only one type of environmental cost, namely the price of
CO, emissions, which could be interpreted as the social cost of carbon for Europe.
The model does not cover other types of indirect effects (i.e., externalities), like
health damages and technology spillovers.
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of a fuel consists of i) the (model-determined) producer price of this
fuel, that is, how much the producer of the fuel receives for each
unit traded, ii) the (model-determined) price for CO, emissions
multiplied by the CO, emission coefficient of the fuel, iii) other
taxes (energy taxes, value-added taxes, etc.), and iv) costs of, and
losses in, transport and distribution of the fuel.

The LIBEMOD version applied in this article has cost and effi-
ciency parameters of electricity technologies from the New Policy
Scenario in IEA [30], see Tables 1 and 2 in [3]. Parameters in the CES
demand system are calibrated, using numerous sources, including
estimates for direct price elasticities, cross-price elasticities, and
income elasticities, see Aune et al. [31] and LIBEMOD [32] for
documentation.

In LIBEMOD, the set of policy targets and the set of instruments
that are available for reaching these targets are exogenous (“in-
puts”). The model finds the combination of policy instruments that
is consistent with reaching all policy goals and the associated en-
ergy prices and quantities in the European energy markets.

This paper imposes the policy goals of the 2030 EU energy and
climate package, and also requires that GHG emissions in the
electricity sector are reduced by 95% by 2050, see Section 3.1. In the
electricity sector, GHG emissions reductions are accomplished
through a different mix and scale of electricity technologies; a
higher price of emissions triggers less investment in, and produc-
tion of, fossil fuel-based electricity, thereby paving the way for
zero-emission technologies. For the end-user sectors, emissions
reductions require higher end-user prices, which are achieved by
imposing a price on emissions.

In LIBEMOD, the 2030 GHG targets are reached by a common
ETS quota system and an EU-wide uniform carbon tax in the non-
ETS sectors. Next, the 2030 EU-wide target of a 32% share of re-
newables in final energy consumption is reached through an EU-
wide renewable subsidy offered to all producers of renewable
electricity.” Furthermore, the 2030 EU-wide energy efficiency
target of a 32.5% improvement relative to the business-as-usual
level in 2005 is reached through imposing an EU-wide tax on all
types of energy being consumed by end users. To quantify the en-
ergy efficiency target and its implication for energy consumption in
LIBEMOD, calculations in [3] are drawn upon. Finally, in LIBEMOD
the EU 2050 policy target of a 95% emissions reduction in the
electricity sector is implemented through an EU-wide emission
price on all electricity producers.

3.3. The energy system model TIMES-Europe

TIMES-Europe is generated by the TIMES modelling framework
[33], which is widely used to develop long-term bottom-up in-
vestment models of local, national, international or global energy
systems, see [34]. It provides a detailed techno-economic descrip-
tion of resources, energy carriers, conversion technologies and
energy demand. The model minimizes the total discounted cost of
the energy system, subject to i) country-specific demand for energy
services, and ii) an upper limit on CO, emissions from the entire
electricity generation sector. The energy system cost includes a)
investment expenditures in supply technologies, storage technol-
ogies, and international transmission lines, b) operating costs, and
¢) costs of net electricity imports.

TIMES-Europe is based on a TIMES model of the Scandinavian

2 The share of renewables in final energy demand is defined as i) the sum of
renewable electricity generation and total end use of bioenergy (transformed to
TWh) relative to ii) total consumption of electricity (less the electricity used in
pumped storage hydro) and total consumption of primary energy among end users
(transformed to TWh).
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2020

Stage 1:
Investment decisions
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Stage 2:
Operational decisions

S1 S Sn

2030 2040 2050
0O O
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Fig. 1. The information structure of a two-stage stochastic model with short-term uncertainty.

energy system, see [35]. For the current study, the model has been
extended to cover the power and district heat sectors of 29 inter-
connected European countries (EU-28 minus Cyprus, plus Norway
and Switzerland). The model provides endogenous investment and
operation for 2020, 2030, 2040 and 2050 (each year represents a
period of 10 years) under uncertainty with respect to future de-
mand and technology development.

The model includes numerous investment options, like nuclear;
conventional power stations (thermal power plants combusting
either coal, natural gas or oil, thereby emitting CO,); renewable
generation capacity (including reservoir hydro, run-of-river hydro,
pumped storage hydro, bio power, onshore wind power, offshore
wind power, solar PV, and centralized solar production); hydrogen
production; energy storage (electric batteries and hydrogen); and
international transmission between pairs of countries.

Each of the four model periods is divided into four seasons, each
with a representative day with 12 2-h periods (48 time slices during
a year). For each representative day in a season, it is required that
the amount of charged electricity into the electric battery package
of a country is greater than or equal to the amount of discharged
electricity from the battery. Also, the stock of battery capacity de-
velops over time, i.e., from one model year to the next, according to
investment in this energy storage technology. In the model, there
are different types of batteries available; some are designed pri-
marily to store large amount of electricity, whereas others are used
primarily to charge or discharge a large amount of electricity during
a short period of time.

In TIMES-Europe, the capacities for the base year are calibrated
by using 2015 statistics and are primarily based on data for ENTSO-
E, see [36]. All values are measured in euroygqs.

3.3.1. Stochastic modelling approach

A two-stage stochastic framework, see [37], is applied to provide
investment decisions in TIMES-Europe that explicitly considers
various operational situations that can occur due to short-term
uncertainty in offshore and onshore wind power generation, solar
PV production and the load. The short-term uncertainty is
modelled as three uncertain parameters representing the hourly
capacity utilization rate for offshore wind power, onshore wind
power, and solar PV and one uncertain parameter representing the
hourly load.> Each of the four uncertain parameters can take 15
alternative values. A set of values for the four parameters is termed
a scenario, referred to as s1 to s15 in Fig. 1.

The first-stage decisions—investment decisions in a model year
(2020, 2030, 2040 or 2050)—are made under uncertainty, that is,

3 The hourly capacity utilization rates is defined as hourly electricity generation
relative to maximal generation, where the latter is obtained if the installed capacity
is fully utilized throughout the hour considered.

without knowing the parameters of intermittent electricity gener-
ation and load for the year considered. The second-stage deci-
sions—operational decisions for each of the 48 time slices in a
model year—are made after the realisation of the uncertain pa-
rameters are revealed.

In each model year, each country determines its operational
decisions for each of the 48 time slices, and for each time slice,
there are 15 possible values for each of the four uncertain param-
eters. Only one scenario will materialize for each time slice, thereby
revealing the value of the four parameters.

In our framework, operational decisions in each season within a
model year are assumed independent of each other. Therefore, two
interpretations are valid. First, the actors learn in the beginning of
each season which of the 15 scenarios that has materialized for
each of the 12 time slices in this season (hence actors learn four
times during each model year). Second, the actors learn in the
beginning of a model year which of the 15 scenarios that has
materialized for each of the 48 times slices during the model year
(hence actors learn only once during a model year).

The model solves all investment and operational decisions of all
periods simultaneously by minimizing the sum of investment costs
and expected operational costs, taking into account the capacities
in the previous period. A multi-horizon framework that assumes no
dependency of the operational decisions between the model years
is used, see [38]. Also, similar to most investment models of the
energy system, no forecast error of renewable generation and
electricity demand is assumed. This may underestimate the need
for flexibility. Still, with our approach a number of possible sce-
narios are considered at the time of investment. In contrast, with a
deterministic model only one operational situation is considered.*

3.3.2. Scenario generation method

Historical hourly electricity consumption data from 2010 to
2015 from ENTSO-E, see [36], and the satellite-based performance
database for renewable generation [39] are used to derive the 15
stochastic scenarios that represent the possible realizations of the
uncertain parameters of onshore and offshore wind conditions,
solar radiation and load.

To generate the stochastic scenarios, an iterative sampling
methodology that was introduced in [40] is used. It combines the

4 Our stochastic model is equivalent to a deterministic model where each season
consists of 15 representative days. This follows from (i) the fact that by construc-
tion, the probability that any scenario will materialize is 1/15, see Section 3.3.2, and
(ii) the modelling of batteries where the net amount of electricity charged into the
battery during any day is zero. With our requirement of (de facto) zero net charge
into the battery during any representative day, the sequence of representative days
in a season is of no importance in the “alternative deterministic model”. Also, it is
not necessary to specify an initial amount of electricity in the battery package (nor
to specify how the initial amount of electricity evolves over seasons).
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principles of random sampling and moment matching. This
methodology has been used in several papers, for example, in [13]
to study decarbonization strategies of the Arctic settlement at
Svalbard, and in [35] to addresses the impact of zero energy
buildings on the Scandinavian energy system towards 2050. In
short, it involves repetitive random sampling of several historical
days, in this paper 15 days, for each season and each country and
selects the set of days that has the best statistical match with the
historical data, measured by the first four moments.

In this study, the scenarios have been constructed under the
requirement that the probability that a scenario s will materialize is
equal for all scenarios. Note that no seasonal dependence of the
parameters is assumed. For each country and each time slice, a set
of parameters is generated for each scenario. Applying these in
TIMES-Europe ensures that (i) the correlation between parameters,
(ii) the correlation between European countries, and (iii) time de-
pendencies reflect the raw data in a consistent way.

3.4. Soft-linking of equilibrium and energy system models

The primary goal of linking LIBEMOD and TIMES-Europe is to
improve the decision support provided by these models. First,
LIBEMOD is run subject to achieve the 2030 EU policy goals on
emissions, renewables and energy efficiency. Next, LIBEMOD is run
subject to achieve the 2050 EU target for emissions. For each model
run, LIBEMOD provides model inputs to TIMES-Europe for annual
electricity demand by country, user prices of fuels (which includes
the model-determined price for CO; emissions), nuclear capacities
(projections from the World Nuclear Association, see [41]), and the
upper limit on CO, emissions that was imposed to represent the
climate target.

Third, the annual electricity demand from LIBEMOD, along with
data on hourly load from ENTSO-E, see [36], are used to construct
15 alternative load curves for a representative day for each season
and each country. Fourth, TIMES-Europe is run to solve all invest-
ment and operational decisions of all periods simultaneously,
subject to that for each time slice, there are 15 stochastic scenarios
representing uncertain hourly load and uncertain capacity utiliza-
tion rates for offshore wind power, onshore wind power, and solar.
For each model year, TIMES-Europe imposes the user prices of fossil
fuels, the nuclear capacities, and the upper limit on CO, emissions
from the LIBEMOD model run.

Finally, to explore the importance of policy targets, LIBEMOD is
run for 2030 and 2050 without imposing any policy targets. The
output from these model runs, and the associated levels of CO,
emissions that were generated, are used as inputs to TIMES-Europe
in the same way as above.

4. Model cases

This section presents the combinations of policy targets and
parameter assumptions that are used to address the research
questions in this paper, henceforth referred to as model cases.
Table 1 lists the 14 model cases. For model cases 1—13, the analysis
distinguishes between two set of policy targets; the case of EU
targets for 2030 and 2050, henceforth termed “Green”, and the case
of no EU policy targets, henceforth referred to as “No target”.
Finally, model case 14 studies the case of climate neutrality in the
EU by 2040, see discussion below.

For parameter assumptions, this study distinguishes between
various rates of technology learning in batteries, in PV technology,
and in the offshore wind technology (low or high learning rate, as
opposed to a medium learning rate—the reference value); whether
the European electricity transmission grid can be expanded or not;
and degree of demand variability (low or high variability, as
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opposed to medium variability—the reference value). Finally, in
addition to the stochastic version of the TIMES-Europe model, also
a deterministic version of this model is used. Whereas model cases
represent long-term characteristics of technology costs, trans-
mission grid expansion and electricity demand variability, the
stochastic scenarios describe the short-term uncertainty of elec-
tricity supply and demand.

In the supplementary materials, cost development of batteries is
described in part I, part II describes offshore wind power, onshore
wind power and solar PV cost development, whereas part IIl con-
tains information on transmission grid expansion.

4.1. Policy targets

This paper mainly distinguishes between two sets of policy
targets: green and no target. Green contains two policy goals for
GHG emissions (one for 2030 and another for 2050), one policy goal
for energy efficiency, and one policy goal for renewables, see
Table 2. In contrast, there is per construction no policy goal under
“no target”. Note that the Green policy targets “lower emissions”
and “improved energy efficiency” are accomplished by instruments
that reduce demand for electricity. Hence, total demand for elec-
tricity is higher under No target than under Green.

Model cases 1—13 build on demand inputs from LIBEMOD. By
construction, policy instruments do not trigger electrification in
end-user sectors in LIBEMOD. Whereas this is a weakness of the
model, the importance of an even more radical emission reduction
than Green is tested by using demand for electricity by country
from the scenario Directed Transition in [42]. This scenario assumes
significant intertemporal policy steering through economic in-
centives and technology-specific support schemes to decarbonize
the entire energy system by 2040, including (partial) electrification
of end-user sectors. With such a radical target, demand for elec-
tricity in 2050 is 16% higher than in Green and 7% higher than in No
Target.

4.2. Electricity demand variability

In model cases 1 to 11, it is assumed that the historical pattern of
hourly electricity demand over a year will remain unchanged until
2050. However, this pattern may change in the future for two
reasons. First, the government may want to use demand-side
management to reduce the mismatch between demand for, and
supply, of electricity; increased intermittent production tends to
enhance this mismatch. This can be done, for example, by
increasing the price of electricity faced by consumers when inter-
mittent supply is low, and similarly decrease the consumer price of
electricity when intermittent supply is high. Because weather
conditions that affect intermittent supply have small effect on de-
mand, such a policy will on average reduce demand variability. In
model case 12, the partial effect of lower demand variability is
studied.

Second, various policy instruments directed at lower CO,
emissions in the end-user sectors transportation, the
manufacturing industry and private and public heating/cooling
may, over time, trigger electrification. This will not only increase
demand for electricity, but also increase demand variability. In
model case 13, the partial effect of higher demand variability is
examined, whereas in model case 14 the joint effect of a higher
demand variability and a higher demand for electricity is studied.

How can a change in demand variability be studied within our
framework? In TIMES-Europe, demand in a country in each of the
four seasons is modelled by a representative day with 12 2-h pe-
riods. Hence, over a year there are 48 periods; these are termed
time slices. Let Dy(t,r) be the share of annual demand for



R. Golombek, A. Lind, H.-K. Ringkjeb et al.

Table 1

Model cases—combinations of policy targets, model type and parameter assumptions.
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Model case Policy target Model type Parameter assumptions

1 Green Stochastic Reference case

2 Green Deterministic Reference case

3 No target Stochastic Reference case

4 No target Deterministic Reference case

5 Green Stochastic Low battery technology learning

6 Green Stochastic High battery technology learning

7 Green Stochastic Low PV technology learning

8 Green Stochastic High PV technology learning

9 Green Stochastic Low offshore wind technology learning

10 Green Stochastic High offshore wind technology learning

11 Green Stochastic Constrained transmission grid expansion

12 Green Stochastic Low electricity demand variability

13 Green Stochastic High electricity demand variability

14 Climate neutrality Stochastic Climate neutrality by 2040, high electricity demand variability
Table 2
Policy targets assumptions.

No target Green

Emission reductions No target 40% reduction in GHG emissions by 2030 relative to 1990 levels, and 95% cuts in emissions in the power sector by 2050

Energy efficiency No target 32.5% improved energy efficiency in 2030 (reflected in electricity demand from LIBEMOD)

Renewables target No target At least 32% renewable share in final energy by 2030 (reflected in electricity demand from LIBEMOD)

electricity in time slice t, t = 1,2, ...,48, in country r in the reference
case. To study the partial impact of a change in demand variability,
annual consumption is kept unchanged but demand in each time
slice is adjusted so that demand variability over the year either
decreases, see Dy, (t, 1) below, or increases, see Dy (t, 1) below:

Dyes(t,1)
Diow(t,1) = —(g—F——
Zt:l Drf_’f(tv r)
Dy (t,1)?
Dhigh(£.7) = —g

Z?:S] Dref(tv r)2

Fig. 2 shows the resulting pattern of electricity demand for Spain
in 2050. By construction, in the low variability case maximum de-
mand in a time slice during the year is lower than in the reference
case while minimum demand in a time slice is higher than in the
reference case. In contrast, in the high variability case the hourly
demand profile is wider than in the reference case. In model case
12, the partial effect of a lower demand variability than in the
reference case (model case 1) is studied, whereas model case 13
examines the effect of a higher demand variability than in the
reference case. Finally, model case 14 focuses on partial electrifi-
cation, which, relative to the reference case, is the combined effect
of a) a higher demand for electricity, and b) a higher demand
variability.

5. Results and discussion
5.1. CO, emissions

This paper examines energy-related CO, emissions from the
European electricity and district heat sector. With No target (model
case 3), continued growth in the use of fossil fuels keeps CO,
emissions high, see Fig. 3. Emissions peak around 1,300 Mt CO; in
2030 before slowly declining to just below 1,200 Mt CO; in 2050.
Towards 2030, the use of coal, in particular, boosts emissions,
whereas the decline after 2030 reflects technology improvements
in climate-friendly energy. With Green (model case 1), energy-

related CO, emissions show a steep and sustained decline, fully in
line with the trajectory required to achieve the objectives of the
2030 EU climate and energy package and the EU 2050 climate
ambitions. The large reduction in emissions from 2015 to 2020 is
mainly due to fuel switch from coal to natural gas.

5.2. Installed capacity and electricity generation

Fig. 4 compares installed electricity generation capacity for the
two model cases Green and No Targets. For both cases, production is
almost tripled between 2015 and 2050. For Green, there is a huge
growth in the use of renewable technologies, especially solar PV
and onshore wind power. In terms of capacity, solar PV becomes the
largest electricity technology in the EU by 2050 with an installed
capacity of 1,200 GW. There is also a slight increase in installed
capacity of offshore wind power and biomass power. Because of the
climate targets in 2030 and 2050, fossil-fuel based technologies are
gradually phased out.

The most significant difference between the two model cases is
that the capacity of fossil fuel plants remains almost constant in No
target. In 2050, this capacity is close to 400 GW, as opposed to
70 GW in Green. Another major difference is that the capacity of
onshore wind power is close to 1,000 GW in Green compared to
575 GW in No target. The production capacity of renewables is just
above 2,600 GW in Green, whereas this capacity is 400 GW lower in
No target.’

Fig. 5 compares electricity generation for model cases 1 and 3.
Because there are 15 scenarios for each of the 48 time slices in a
model year, electricity production by technology will vary between
the scenarios of the same time slice. We therefore report expected
electricity production for each electricity technology in each model

5 For readability, concentrating solar power is grouped together with solar PV in
Figs. 4 and 5. In Green, the combination of the emission target for 2020 and the
large, existing capacities in the data year 2015 makes it optimal for most countries
not to increase total capacity from 2015 to 2020. For a few countries, there is in-
vestment in capacities in 2020 and the sum of these investments are slightly lower
than total depreciation of the 2015 capacities (aggregated over all countries and
technologies).
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year, i.e., expected electricity production for each electricity tech-
nology in each time slice, aggregated over all time slices in a model
year.

Whereas total capacity is almost at the same level in 2050 in
these two model cases, see discussion above, expected total elec-
tricity generation is higher under No Target than under Green
because of higher electricity demand under No target. With No
target, coal power has a dominant position until 2040, when it
peaks close to 1,500 TWh. In 2050, solar PV becomes the most
important source of electricity with an annual production just
above 1,600 TWh. For Green, electricity produced from coal is
nearly phased out by 2030, whereas natural gas is phased out by
2040. Onshore wind power becomes the most important source of
electricity in 2050, with expected production close to 2,200 TWh.
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Fig. 4. Installed electricity generation capacity for the model cases Green (left) and No target (right).
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Fig. 5. Expected electricity generation in the model cases Green (left) and No target (right).

This is followed by (expected) production from solar PV, which
reaches 1,400 TWh in 2050. For a comparison of our results for
2030 and 2050 with other studies, see the supplementary mate-
rials, part IV.

5.3. Flexibility requirements

We now turn to different types of flexibility: generation,
transmission and storage. In TIMES-Europe, hydropower is divided
into four groups: three cost classes for hydropower plants with
reservoirs and one cost class for run-of-river hydropower.
Furthermore, all new coal-fired power plants are of the advanced
type, with units that can be operated in a load-following mode.

Panel A in Fig. 6 reveals that for Green, hydropower is the main
provider of flexible electricity supply, followed by biomass. For No
target, coal power and hydropower contribute equally as flexibility
providers, followed by natural gas power.

In addition to flexible generation, additional sources of flexi-
bility can help the integration of large shares of intermittent re-
newables in the future European power system. Expanding and
upgrading grids can reduce congestion and increase the possibility
of transferring electricity to places where it is needed. Conse-
quently, significant investments in the European transmission grid

are seen in Fig. 6, Panel B. For No target, more than a doubling of
the total interconnection capacity (relative to 2015) is reached in
2050, whereas the grid capacity is five times higher in 2050 (than in
2015) for Green. Though the interconnection capacity is by con-
struction the same for all of the 15 scenarios, actual power trade
varies from scenario to scenario. For a discussion on how power
trade varies between model cases 1 and 3, see the supplementary
materials, part V.

As seen in Fig. 6, Panel A and B, power plants and grids are the
two main sources of flexibility for model cases 1 and 3. However,
energy storage will also be an important source of flexibility. Panel
C in Fig. 6 shows the discharge capacity of lithium-ion batteries.
Total battery discharge capacity is higher for No target than for
Green (326 GW vs 198 GW). This is because there is considerably
more electricity trade (reflecting higher transmission capacity) in
Green than in No target. Two types of batteries are installed in both
cases; one with an energy/power ratio of 4 kWh/kW and one with
1 kWh/KkW. The latter technology has the highest capacity, see
Panel C in Fig. 6.

5.4. Sensitivity analyses

As described in Table 1 in section 4, 14 model cases are analysed,

1000 1000
CSP Hydropower 6 900 m Batteries (1 kWh/kW)
900 ® Geothermal = Biomass w—Creen = CREARG
Natural Gas 1 Coal 800 Batteries (4 kWh/kW)
800 5 =No Targets - i
— Nuclear w &=
g 700 | 5 Z 700 |
= 4 £
Z 600 | 2 2600 |
Q > [&]
S k] -
& 500 | T3 & 500
o 2z =
B 400 | 3 2 400
= g, 1 S
g 300 } © é 300
1
100 L L —— WOO B .
0 0 - : . 0
Green No targets 2015 2025 2035 2045 Green No targets

Fig. 6. Sources of flexibility. Panel A shows installed capacity of baseload and flexible generation in 2050. Panel B shows the development of the transmission grid relative to 2015,

and Panel C shows storage discharge capacity of batteries in 2050.
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ten of which are sensitivities of the green policy model case.
Additionally, two deterministic cases and one stochastic case of
climate neutrality are analysed. A summary of some of the key
results from all model cases are described in Table 3, including grid
capacity (in 2030 and 2050) relative to 2015, battery storage ca-
pacity in 2050 and market share of intermittent power in 2050. The
latter is defined as the sum of production from solar PV, onshore
and offshore wind power, divided by total electricity production.
The green policy targets (defined in Table 2) can be obtained at an
intermittent power share ranging from 65% to 70%. For these cases,
battery capacity ranges from 80 to 351 GWh, and grid capacity in
2050 relative to grid capacity in 2015 varies from 4.3 to 6 (excluding
model case 11).

As seen in Table 3, the deterministic model run with Green
(model case 2) has 24% lower transmission grid capacity than the
model run with the stochastic model (model case 1) in 2050,
whereas for battery capacity the corresponding number is 41%. This
means that the need for flexibility is underestimated in the deter-
ministic model. Also under No target, battery storage capacity is
lowest in the deterministic case (model case 3 vs. model case 4), but
now transmission grid expansion is highest when the deterministic
model is used. Both under Green and No target, the intermittent
power share is highest in the deterministic case. This is similar to
the results in [40].

As illustrated in Fig. 7, with default assumptions in Green, PV
contributes 24% of the total electricity generation in 2050. With a
high solar PV technology learning rate (see Table S4 in Supple-
mentary materials for a definition of solar learning rates), this share
is increased to more than 30% in 2050, whereas it is reduced to 9%
with a low solar PV technology learning rate. As seen in the left
panel in Fig. 7, a change in the cost of solar production mainly af-
fects the market shares of solar PV and onshore wind power. If solar
PV becomes cheaper, it captures a higher market share. Then it is
not necessary with heavy investment in the expensive offshore
wind power technology to meet the imposed CO, emissions
constraint. Furthermore, whereas the cost of solar PV is important
for the system composition, the impact on total system cost is
moderate. With a high technology learning rate for solar PV, the
total system cost decreases by 3% (see right scale in the left panel in
Fig. 7). In this case, the investment cost for solar PV in 2050 is
approximately 10% lower than in the reference case. Note, however,
that R&D costs to ensure lower investment costs for solar PV are not

Table 3
Summary results from sensitivity analysis.
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included in the model. With a low technology learning rate for solar
PV, the investment cost of solar PV is almost 20% higher than in the
reference case, but the total system cost only increases by 2%.

With a high technology learning rate for offshore wind power
(see right panel in Fig. 7), the market share for offshore wind power
increases from 5% to 19% even though the reduction in investment
cost is only 2.5% in 2050 (see Table S2 in Supplementary materials
for a definition of offshore wind power learning rates). Further-
more, there is a reduction in the market share of onshore wind
power. With a low technology learning rate for offshore wind po-
wer, the investment cost is almost 50% higher than in the reference
case, and the market share of offshore wind power is close to 0%.

Although not shown here, a high technology learning rate for
batteries (see Table S1 in Supplementary materials for a definition
of battery learning rates) leads to an increase in the share of elec-
tricity from solar PV from 23% to 25%, whereas a low technological
learning rate leads to a solar PV share of 21%. At the same time, the
share of offshore wind power changes, but in the opposite direc-
tion. The impact on the total system cost is minor in both cases,
with a decrease of 0.3% for a high technology learning rate (model
case 6) and an increase of 0.2% for a low technology learning rate
(model case 5).

Fig. 8 shows that the shape of the hourly load curve has a negli-
gible impact on the composition of the future power system; this is
the case both with a lower demand variability than in the reference
case (the partial effect of demand management), and with a higher
demand variability. However, with more demand variability total
capacity of electricity technologies increases by 60 GW in 2050 (i.e.,
around 2%) relative to the reference case, and thus the system cost
increases slightly. Whereas installed solar capacity increases by
83 GW (around 7%), there is a drop in installed capacity of offshore
wind power, onshore wind power and bio power. To a large extent,
the changes in capacity transform into changes in expected elec-
tricity production.

With partial electrification (model case 14), i.e., a higher de-
mand for electricity combined with higher demand variability than
in the reference case, there is substantial expansion of the trans-
mission capacities, both in 2030 and 2050, whereas investment in
batteries increases more moderately relative to the reference case
(model case 1), see Table 3. The massive investment in transmission
reflects that a higher demand for electricity has to be handled by
more (renewable) intermittent power to meet the policy targets.

Model Policy target Parameter assumptions Grid capacity in 2030 Grid capacity in 2050 Battery storage capacity in  Share of intermittent

case relative to 2015 relative to 2015 2050 (GWh) power in 2050

1 Green Reference 23 51 198.5 0.68

2 Green Reference 24 3.9 117.3 0.73

3 No target Reference 1.7 2.0 326.1 0.49

4 No target Reference 2.1 2.8 263.7 0.68

5 Green Low battery technology 2.6 5.2 127.6 0.68
learning

6 Green High battery technology 25 5.0 2715 0.68
learning

7 Green Low PV technology learning 2.7 6.0 80.3 0.65

8 Green High PV technology learning 2.3 4.7 351.0 0.67

9 Green Low offshore wind technology 2.6 5.5 201.4 0.67
learning

10 Green High offshore wind technology 2.5 43 173.2 0.69
learning

11 Green Constrained transmission grid 1.6 1.6 308.5 0.69
expansion

12 Green Low demand variability 2.6 52 215.6 0.70

13 Green High demand variability 2.6 5.0 213.7 0.70

14 Climate High demand and high 5.9 7.9 245.9 0.75

neutrality demand variability

10
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Fig. 7. High and low solar PV technology learning rate (left panel) and high and low offshore wind power technology learning rate (right panel) in 2050.
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Because solar and wind conditions vary across countries, it is
optimal to concentrate intermittent investment in some countries
and transport more power across Europe.

Table 3 provides more information on effects of changes in
parameter values:

e With a low battery technology learning rate (i.e., lower than in
the reference case), investment in batteries is (of course) lower
than in the reference case, whereas the impact on grid invest-
ment is negligible.

e With a low offshore wind power technology learning rate, in-
vestments in both batteries and grid expansion are higher than
in the reference case. A low offshore wind power technology
learning rate decreases investment in offshore wind power,
thereby paving the way for more investment in solar PV.
Whereas solar PV has a very distinct hourly production profile,
this is indeed not the case for wind power. Therefore, with more
solar PV generation in all countries the need to store energy
between time slices increases, which can be handled by
investing more in both batteries and international grid capacity.

1

e With a low solar PV technology learning rate, investment in
batteries is lower than in the reference case, whereas investment
in grid expansion is higher. A low solar PV technology learning
rate decreases investment in, and output from, solar PV signif-
icantly, thereby reducing the need to store energy between time
slices over a day. With more expensive solar PV, the market
share of wind power increases. Because wind conditions differ
significantly between countries, the need for transmission ca-
pacity increases.

e With a low electricity demand variability, investments in bat-
teries and grid expansion are hardly affected.

Fig. 9 shows battery capacity by country for Green (model case
1) and Green with constrained transmission grid expansion
(model case 11). To control for country size, battery energy capacity
(GWh) is measured relative to average hourly electricity demand
(GWh), thereby making the ratio dimensionless. The darker the
colour, the larger the ratio. In Green (left panel), a few countries
have a relatively high ratio (Spain, Italy, Ireland and Lithuania), but
there are also several countries with a low ratio or even a zero ratio
(i.e., no capacity). For the model case Green with constrained
transmission grid expansion (right panel), more countries invest
in battery capacity: total battery capacity is almost 55% higher than
in model case 1. The difference in total battery capacity between the
two cases reflects that grid investment is preferred over investment
in battery capacity.

Although total investment in batteries is higher in the model
case without any expansion of the international transmission grid
(model case 11) than in the reference case, in some countries in-
vestment in batteries is higher in the reference case than in model
case 11. One example is Spain. Here, there is heavy investment in
solar PV and wind power (in model case 1), in particular, in solar PV
between 2040 and 2050. In order to utilize the additional power
capacity, Spain expands the capacity of batteries and international
transmission lines, thereby providing more flexibility.

To illustrate the stochastic nature of TIMES-Europe, the PV and
offshore wind power production in UK in 2050 is taken as an
example. Fig. 10 illustrates how power production varies between
the 15 stochastic scenarios for Green (model case 1). In each dia-
gram, the solid line represents the median of the scenarios. The
coloured area represents all possible values for each individual time
step, whereas the dark coloured area includes values between the
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Fig. 9. Battery energy capacity per average hourly electricity demand in 2050 for the model countries. Left panel: Green (model case 1). Right panel: Green with constrained

transmission grid expansion (model case 11).
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Fig. 10. Electricity generation from solar PV (left) and offshore wind power for the 15 stochastic scenarios in UK for Green (1) in 2050.

first and third quartile (50% of the values). As seen in Fig. 10, the
solar PV generation follows a clear pattern, although there is vari-
ation from scenario to scenario. For offshore wind power produc-
tion, the range of possible values is much larger than for PV,
especially for winter, spring and fall.

6. Conclusions

A key challenge in modelling energy systems is to have both a
sufficient detailed time resolution to mimic intermittent electricity
supply and an adequate representation of technological properties
and economic characteristics. In this paper, these concerns are
handled by linking two models, LIBEMOD, a multimarket energy
equilibrium model of Europe, and TIMES-Europe, a bottom-up
stochastic model with a fine time resolution, to analyse the
decarbonization of the electricity sector with consistent assump-
tions about future electricity demand and fuel prices.

The paper demonstrates the strength of using a stochastic
modelling approach that considers the short-term uncertainty of

12

intermittent supply and electricity demand to provide better de-
cision support. It demonstrates that a deterministic model provides
24% lower grid capacity and 41% lower battery capacity in 2050
than the stochastic model and thus underestimates the need for
flexibility. Furthermore, the deterministic approach overestimates
the share of intermittent wind power, but underestimates the share
of solar PV in the electricity generation mix.

The analysis shows that the European power sector can be
decarbonized with a 65%—70% share of electricity supply from wind
power and solar PV in 2050. The joint cost-optimal share of wind
power and solar PV depends critically on technology development
and grid expansion, whereas electricity demand variability is of less
importance. The analysis shows that a higher technology learning
rate for offshore wind power has a limited effect on solar PV in-
vestment. This is because a lower cost of offshore wind power
primarily decreases the market share for onshore wind power,
reflecting a high correlation between these two sources of supply.

This study provides support to the hypothesis that the EU en-
ergy and climate targets for 2030 and 2050 will increase the
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capacity of intermittent power, storage technologies and interna-
tional transmission lines. In 2050, investment in electric battery
capacity ranges from 80 GWh to 351 GWh. This type of investment
is highly dependent on the learning rates for electric batteries and
solar PV; the latter is due to the high variability of supply of solar
over the day. Finally, the transmission grid capacity in 2050,
measured relative to the capacity of 2015, ranges from 4.3 to 6.0.
The expansion is primarily dependent on the technology learning
rate of solar PV: to fully enjoy low PV costs, more transmission is
required because solar conditions differ across European countries.
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