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Abstract

The electron behaviour of the circular Rydberg state 5g(m=4) have been investi-
gated under the influence of circularly polarized laser fields, by solving the Schrödinger
equation numerically. Ionization dynamics were studied for fields that co- and
counter-rotated the motion of the electron, and in both cases atomic stabilization
were observed in a limited intensity regime. Angular distributions from both the
co- and counter-rotating fields were found to be consistent with the single-photon
selection rules given in [1]. Investigations were also performed using a field that
rotated perpendicular to the plane of the 5g(m=4) electron distribution.
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Atomic Units

For convenience, I will in this thesis mostly use atomic units when presenting num-
bers and equations related to quantum physics. A common name for this framework
of units is Hartree Atomic Units (a.u.), where important constants such as me, h̄,
e and a0 are all set to unity (= 1). When doing so, much of the mathematical
formulations (such as the Schrödinger equation) takes on a much simpler form. The
same goes for numbers involved in calculations, as they are simpler to work with
and interpret. The SI-values for some of the most used units can be seen in the table
below, and they are collected from the 2018 recommended data from Committee on
Data of the International Science Council (CODATA) [2]. However, note that the
displayed data have been rounded off to 4 significant digits.

Symbol Measurement Common Name Definition SI Value

a0 Distance Bohr Radius 4πε0h̄
2

(mee2)
5.292× 10−11m

h̄ Action Reduced Planck’s Constant h
2π

1.055× 10−34J · s
e Charge Fundamental Charge e 1.602 ∗ 10−19C
me Mass Electron Mass me 9.109 ∗ 10−31Kg

Eh Energy Hartre Energy h̄2

mea2o
4.360 ∗ 10−18J
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Chapter 1

Introduction

1.1 Background

It seem to be a very fundamental part of the human condition to explore unknown
territories, to go one step further than what people in previous generations has
been able to go before. Generation upon generation has contributed with new
fundamental insights and discoveries to their field of study, and of course this applies
to physics as well. There has been a rather steady advancement of new theoretical
theories, but I believe many will agree with me when I say that the discovery of
quantum mechanics and the wave-equation in the 1920’s, turned out to be one of
the most important ones for the field of physics [3].

Now in 2021, a wast amount of information on advanced topics such as Quantum
Mechanics (QM) is just a click away. In previous generations however, it was only a
selected few that got the training needed even to understand the slightest of physics,
and so I consider myself lucky to be a master student in this day and age, where
knowledge is available for those who seek it. With the recent fast development of
the semiconductor-industry, the personal computer has become stronger than ever
before. Even cheap laptops are now capable of performing simulations of complex
atomic systems, that past philosophers of nature only could have dreamt of.

In fact, the main topic of this thesis will involve a numerical simulation of the
interaction between a laser pulse and the electron in the hydrogen atom. Given that
we have the theoretical and computational capabilities to perform such simulations,
it is natural to ask what specific interactions we are interested in. When I start
the discussion of the theoretical aspects around the laser interaction I will assume
that that the reader of this thesis has a general background in physics, or at least
is familiar with the outline of the most famous theories. Now, when reflecting on
these simulations, there are many possible quantum states that the electron can
exist in, and so we will be very interested in the changes these states go trough
when interacting with the laser pulse. The first part will therefore contain a very
brief introduction to atomic orbital theory, so that the reader can get an intuition
on the geometry of the states we are interested in.

1.1.1 Atomic Orbitals

In introductory chemistry classes we quickly learn that the classical circular orbits
predicted by the Bohr model is wrong, and that electrons orbit in very special
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Introduction 1.1. BACKGROUND

patterns called atomic orbitals. The shape of these orbitals are defined by a specific
set of quantum numbers n, l and m originating from special requirements when
solving the wave equation governing them. I will later go into some detail on solving
this equation, but for now we should accept that these numbers are important and
that they define the overall electron density shape. It is also well known that these
orbitals often are labeled with letters s, p, d, e, f and g and so forth, instead of
using the angular quantum number l. The shape for all orbitals having l = 0 (s)
is simple and circular, but complexity quickly increase for larger values of l. This
can bee seen in figure (1.1), where the real part of the spherical harmonics for the
5g (n=5, l=4) state is visualized. The red and blue colors correspond to different
phases, but we are mostly concerned about the geometrical shape. If the z-axis is
defined to be parallel to the longest dimension of the first 5g(m=0) state (upper
left corner), then the state 5g(m=4) can be considered as a circular/torus shaped
electron distribution, where the circular cross section is located in the xy plane, and
can be seen in the bottom right corner of figure (1.1). However, these distributions
must be interpreted with care. There has been published several articles on common
misconceptions students have about orbitals, and in the article they usually state
the importance of treating the orbitals only as approximations, especially within the
field of chemistry where orbitals are frequently used [4].

Figure 1.1: The 9 different 5g atomic orbitals, specified by the principle quantum
number n = 5, the angular quantum number l = 4 and one value of the magnetic
quantum number m. Note that the first circular orbital arrangement is observed for
m = ±4. Later, this is referred to as the Rydberg state, 5g(m=4) or state |544〉. The
orbitals are symmetrical for positive and negative values of m, and it therefore exists
two identical versions with inverted phases (blue/red) related the sign of the wave
function. Both signs are included for each orbital, since in reality it is a convention
what sign one chooses to be a positive or negative phase. CopyRight-Certificate,
and Source

The torus-shaped circular orbital from figure (1.1) labeled 5g(m=4), will be the
main object of investigation in this thesis. As we will later see, this and similar
states turn out to have very interesting properties. They are also a subcategory of
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1.1. BACKGROUND CHAPTER 1. INTRODUCTION

something called Rydberg states, which I will discuss in the next section.

1.1.2 Thesis Main Topic - Rydberg States

Rydberg atoms are highly excited atoms, where one of the valance electrons occupy a
quantum state with a very large Principle Quantum Number (PQN) [5]. some of the
important properties of these Rydberg states, comes from the fact that the expected
distance the electron has from the nuclei, increase with the PQN. Therefore, since
the singly excited valence electron in the Rydberg atom has a PQN that is much
larger than many of the other electronic states, the average distance from the core
will also be much larger. This will essentially mean that the exited electron feels
the rest of the electrons as a combined coulombic potential originating from the
core, and hence the system can closely resembles that of hydrogen [6]. The Rydberg
atom have long been described in the scientific litterateur, without any significant
scientific attention. In recent years this has changed, and Rydberg atoms now seem
to be a hot topic within the physics community. For example, there has been
published a collection of new articles on the topic of Rydberg atoms in a special
issue from J. Phys. B, in 2017 [7]. One of the main reasons for the recent spike
in scientific interest, comes from the potential usage of Rydberg atoms in different
technologies, and especially quantum technologies [8]. A very important property
being exploited for these technologies, is the sensitivity of these states to other
adjacent Rydberg atoms and to small variations in the electric field (EF) [8]. For
large PQN’s the energy difference between neighboring quantum states are also very
small (microwave), and this can be exploited to produce sensors for this domain of
wavelengths. The sensitivity to other Rydberg atoms is often termed to be a result
of the so called Rydberg Blockade [9]. The blockade effect can be explained in terms
of the effective spatial expansion of an atom, accompanying its transformation into
a Rydberg state. The accompanying expansion will shift and destabilize the energy
levels of other close by atoms, resulting from the increased electron repulsion. If for
example the photon energy is just enough to excite electrons to a specific energy
level, then any upward shift in energy will prevent these electrons from reaching
this state. An illustration of this Rydberg Blockade is given in figure (1.2). Here the
left side shows three neighboring atoms, accompanied by an energy diagram for two
adjacent atoms. The right side illustrates the effect of exciting the center atom to a
Rydberg state, causing an upward shifts in the energy levels for the adjacent atoms,
due to the increased electron repulsion. It must also be mentioned that there has
been done experimental research on Rydberg atoms locally here at the University of
Bergen. One of the topics investigated here was intrashell dynamics in Li-Rydberg
atoms (n=25). In this research, internal transitions originating from Stark-Zeeman
energy splitting, within the same n-shell was investigated. The Stark-Zeeman effects
were induced by applying weak magnetic and electric fields. This resulted in a very
small separation of internal energy levels, and therefore low-energy radio frequency
photons were used as probes for these transitions [10]. Now, this was just some
examples of why Rydberg states are interesting in general. I will now present a
more specific subcategory of these states, namely circular Rydberg states.
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Introduction 1.1. BACKGROUND

Figure 1.2: An illustration of the Rydberg blockade. The left side of the blue arrow
shows the initial state before any excitation of the orange atoms. There is also
displayed energy diagrams for the two atoms at the sides. The right side of the blue
arrow, illustrates the effect of exciting the center atom into a Rydberg state, has
on the energy levels. The adjacent atoms will experience an upward shift in higher
energy levels, due to an effective increase in the electron repulsion. This is specified
by the red upward-pointing arrows in the figure.

1.1.3 Circular Rydberg States

The circular Rydberg state is defined by having a large PQN, but also having a large
value for the magnetic and angular quantum numbers, specifically where m = l =
|n−1| [11]. These circular states also turned out to be interesting for electromagnetic
sensing technologies, and a recent publication in Nature presents the creation of a
magnetic sensor, using an atom in a superposition between two circular Rydberg
states [12]. As mentioned in the article, these circular states also have a long life
expectancy (minutes) under certain conditions, making them suitable for interesting
experimental procedures.

A new exciting theoretical framework was presented in a recent article (2017),
where it was suggested to trap atoms in Rydberg states using laser physics [13]. The
end goal was to perform quantum simulations of many body spin-systems, which
have proven to be a very difficult task for the physics community to accomplish.

It must also be mentioned that circular Rydberg atoms have recently been a
fundamental part in the research awarded the Nobel price in physics (2012) [14]. In
this research, a special photon cavity (box) was created using two mirrors separated
by 2.7cm and the circular Rydberg atoms with n = 50, 51 were used for their relative
long life times as photon probes. In the experiments they managed to count, or mea-
sure individual photons by passing these circular atoms through this photon cavity.
The measurement of individual photons is a truly remarkable accomplishment, il-
lustrating the usefulness for researching these special states. The reader might now
be interested in how it is possible to experimentally prepare atoms in these circular
states in the first place. In the research performed at the University of Bergen, they
prepared elliptical Rydberg states, as documented in [15]. I also included previously
published material, containing a theoretical approach on how to prepare circular
Rydberg states, here [16]. I have now given a few examples as to why these systems
should be interesting to study, and illustrated that new theoretical insight in this
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1.1. BACKGROUND CHAPTER 1. INTRODUCTION

area could contribute to technological advancement in the future. The next section
will cover an overview over the main objectives of this thesis, and the essence of the
work that is to be done.

Thesis objective

The main objective that I want to accomplish in this thesis, is to perform an in-
vestigation of the electron behaviour in the circular Rydberg state 5g(m=4). The
electron will be exposed to circular polarized light, originating from a simulated laser
field. The electrons of the 5g(m=4) state rotates in a counter-clockwise manner, and
I created a figure that illustrates the three different field orientations (red) that will
be investigated, in relation to the electron motion (blue). The co-rotating field is
illustrated in figure (3.1a), the counter-rotating field in figure (3.1b), and the field
that rotates perpendicular to the xy-plane is illustrated in figure (1.3c), which is
later referred to as the xz-polarized field. It will be of interest to see how some im-
portant measurable quantities change for these different field orientations. Some of
these important quantities are ionization probabilities, kinetic energy distributions
and angular distributions. I will look at how these quantities change over a range of
field intensities, and compare some of my results to that of a previously published
article.

I will now move over to cover more theoretical concepts necessary for the under-
standing of this work. I hope that I have managed to capture the readers attention,
and that these systems seem meaningful to study, especially for their potential use
in future technologies.

(a) Co-rotation (b) Counter-rotation (c) Perpendicular-rotation

Figure 1.3: The figure illustrates different orientations of the circular polarized laser
pulse, in relation to the rotational motion of the electron distribution in the 5g(m=4)
state. a) Illustrates a co-rotating pulse in the xy-plane. b) Illustrates a counter-
rotating pulse in the xy-plane. c) Illustrates an xz-polarized pulse that rotates
perpendicular to the xy-plane.
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Chapter 2

Theory

As previously mentioned, the overall goal in this thesis is to perform a numerical
simulation of the interaction between the electron in the hydrogen atom, and a
polarized laser pulse. In order to do so, both the laser and the electron must be
expressed in a suitable mathematical form. Electrons are governed by quantum
mechanics, and so a brief overview on the basic concepts will be covered here.

2.1 Introduction to Quantum Mechanics

There are so many places one can start when introducing quantum mechanics, and
different text books have different approaches. One such approach would be to
start at the very beginning, including Max Planck’s discovery of the quanta. In this
section I will base much of the theory from a book used in some physics courses at
UiB, and within the book I found a precise quote that I want to start this section
with.

”Quantum theory is based on two constructs: wave functions and oper-
ators” [17, p. 91].

In the end, this section can be summarised by two key components; the fact that
we can express any system with wave functions, and that we can get information out
from these wave functions by using some mathematical operations called operators
on them. Now, let us have a look on some of the fundamentals of these wave
functions.

2.1.1 Wave Functions

In quantum mechanics a particle like an electron, or system of particles are described
by some wave function Ψ(r, t). There has been a big debate around whether or not
electrons really are particles or waves, since they show properties of being both under
different type of measurements, like in the double-slit experiment [18]. For now, I
will settle the debate by saying that electrons have both wave-like and particle-like
properties, but cannot be classified as either of them.

A consequence of the wave-like behavior of particles is that the wave function
describing the position of the particle is spread out in space. Therefore, calculating
a precise location of the particle is not possible, like it is in classical mechanics.
Nevertheless, we can calculate the probability for finding the particle between two
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Theory CHAPTER 2. THEORY

locations a and b, by integrating the absolute-square of the wave function between
the two positions, see equation (2.1). This is a very important and widely known
result, called Born’s statistical interpretation [17, p. 4].

Pab(a ≤ x ≤ b) =

∫ b

a

|Ψ(x)|2dx (2.1)

The Born-relation is also tightly connected to something called normalization, where
we demand that the integral over all possible values of |Ψ(x)|2, should equal 1, as
in equation (2.2). ∫ ∞

−∞
|Ψ(x)|2dx = 1 (2.2)

In statistical terms, this is the equivalent requirement that the probability density-
functions should integrate to 1 over their defined domains, and so the quantity
|Ψ(x)|2 should be interpreted as a probability density-function.

Now, I have introduced the first two integrals related to quantum mechanics, but
they will not be the last. Integrals on the form of the Dirac notation |Ψ〉 (as will
later be discussed) is one of the most common mathematical formulations we meet
in QM. You will also see a lot of inner products between wave functions. This begs
the question, since integrals are associated with functions, and inner products are
associated with vectors, what will be the correct description of the wave function
Ψ?

2.1.2 Hilbert Space

In quantum mechanics we express the wave functions in Hilbert space (H), which is
a vector space. This means that each wave function is built up by basis components
from this space, and that we primarily use vector mathematics when working with
these wave functions. We also know from basic linear algebra courses that matrices
play a crucial role in the manipulation of vector spaces, which is also true when
working in the Hilbert space.

As an example, if |S(t)〉 is a wave function defined on H containing a positional
basis. Then we can extract the coefficient for the x-component ψx(t), by taking the
inner product between x and S, as shown in equation (2.3) [17, p. 114].

cx(t) = 〈x|S(t)〉 (2.3)

And so, the total wave function |S(t)〉 is really represented as a vector, where the
basis units can be functions as well. This is perhaps best illustrated by expressing
the state as in equation (2.4).

|S(t)〉 =

cx(t)cy(t)
cz(t)

 (2.4)

Here the c(t)’s are time dependent coefficients, that express the relative occupation
of the different eigenstates at any moment in time. Rest assured, the concept of
eigenstates is something that will be discussed in a subsequent section.

To finish off, the answer to the question ” if Ψ is a vector or a function?”, is that
it is essentially both. The wave function is represented as a vector where the unit
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Theory 2.1. INTRODUCTION TO QUANTUM MECHANICS

components are functions. Nevertheless, the wave function can be expressed by any
set of basis functions, as long as they are a complete set, meaning they can span the
whole Hilbert space. Just as an example, the unit vectors x̂, ŷ and ẑ is a complete
set for R3. This means that any function part of the span of this space, can be
represented as a linear combination of these basis functions. On the other hand,
for the Hilbert space H the basis is the space of all square-integrable functions, on
an interval that Ψ is defined on [17, p. 92]. There is an infinite number of such
functions, and they can be complex, meaning that H can be represented by the
complex space C∞. Later, we will generate the wave functions numerically using a
suitable basis, but for now it is enough to consider the wave function as a vector,
where the basis components can be functions.

2.1.3 Basis Components of Psi

Now say that the quantum system |S(t)〉 is expressed in a basis of wave functions
as we just mentioned, then we can also retrieve the components cn(t) from the n-th
wave function ψn(t) by taking the inner product with this basis function. This is
expressed in equation (2.5).

cn(t) = 〈n|S(t)〉 (2.5)

Note that a very common notation for the n-th wave function is |n〉. This is also
known as the projection of the total wave function |S(t)〉, along that basis unit
ψn(t). Actually, the size of the projection coefficient squared, along a specific basis
function ψn(t), tells us how likely it is that the system will be measured in this state.
In other words, the probability of measuring the wave function in state |n〉, can be
expressed as equation (2.6).

Pn = |cn(t)|2 (2.6)

After performing simulations, we would like to compute the probability for the
electron to be torn away from the nuclei, known as the ionization probability. In order
to compute this probability, we must take the squared-sum of all the coefficients
corresponding to ionized states, and if Nion is the number of such states, then the
sum can be expressed as equation (2.7).

Pion =

NIon∑
i=1

|cioni (t)|2 (2.7)

In order to perform this sum, we must be able to differentiate between ionized
and bound states.

2.1.4 Bound and Scattering States

In this thesis I will differentiate between two different type of eigenstates, based on
their energy E. If the state has net-negative energy it is considered to be a bound
state, while if it has net-positive energy it is considered as a scattered or ionized
state. Since energy is a relative term, we can only make this generalization when
assuming that the potential energy between the electron and the atomic core V(r),
goes to zero at infinite distances [17, p. 63]. When using atomic units the potential
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Theory CHAPTER 2. THEORY

V(r) can be represented by equation (2.8), where r is the distance between the
electron and the core.

V (r) = −1

r
(2.8)

Also, the brackets in (2.9) simplifies the distinction between the scattered and
bound states. {

E < 0 =⇒ Bound State

E > 0 =⇒ Scattered State
(2.9)

So, going back to the formula for ionization probability in equation (2.7). The
total ionization probability can now be found by summing together the individual
probabilities from all the scattered states.

I will now move over to a slightly different topic, but which is still an essential
concept of quantum mechanics, namely the quantum mechanical operators.

2.1.5 Hermitian Operators

One of the key concepts that has to be introduced when talking about quantum
physics, is the quantum mechanical operator ô. The operator is a mathematical
operation that works on the wave functions and retrieves some information from the
system. In fact, the inner product with x that was previously introduced, is such
an operator.

In quantum mechanics we are often left working with complex functions and
values. However, in the end we usually want to calculate something that correspond
to a real physical quantity. These real quantities are called observables, and their
operators are called Hermitian [17, p. 95]. So what property does these Hermitian
operators have?

First, We can find the expectation value of any observable as shown with Dirac
notation in equation (2.10) [17, p. 94].

〈Q̂〉 = 〈ψ|Q̂ψ〉 =

∫
ψ?Q̂ψdx (2.10)

Since we now know that Hermitian operators return real values, this means the
complex conjugate of the expectation value for Q̂, has to be the same as shown in
(2.11).

〈Q̂〉 = 〈Q̂〉? (2.11)

This last constraint will allow us to reverse the operation order of Q̂ since it is
unchanged by complex conjugation, as in equation (2.12) [17, p. 94].

〈Q̂ψ|ψ〉 = 〈ψ|Q̂|ψ〉 (2.12)

.
Lastly, this has the final result that for any functions f and g we can swap

the operation order according to equation (2.13) [17, p. 94]. This shows that any
operator producing a real expectation value will do so for any general function, and
must be Hermitian.
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〈Q̂f |g〉 = 〈Q̂g|f〉 (2.13)

.
We now have some understanding of the mathematical operations that we will

use on the wave functions to retrieve observables, but I have not yet introduced how
to obtain the wave functions. Therefore, we must now discuss the equation that
must be solved in order to find these functions in the first place, the Schrödinger
equation.

2.1.6 The Schrödinger Equation

The Schrödinger equation (SE) is perhaps the most important equation in all of
quantum mechanics, since this is the equation we must solve in order to find the
wave functions Ψ(x, t), which of course contains every information on the quantum-
system we are working with. The Schrödinger equation can be seen seen in equation
(2.14), where V is a potential [17, p. 25].

ih̄
∂Ψ(x, t)

∂t
= − h̄

2Ψ(x, t)

2m
+ VΨ(x, t) (2.14)

Since time (t) is one of the variables in the equation, we are dealing with what is
commonly called the Time Dependent Schrödinger Equation, or in short TDSE. In
this section I will go through some of the important steps for solving this equation,
and discuss some of the terminology introduced in introductory QM courses.

Those familiar with differential calculus, will recognize the TDSE as a second
order partial differential equation, and so a common technique for solving these
differential equations, is to perform separation of variables. This means that we can
express Ψ as a product between one function depending only on position ψ(x), and
the other depending only on time ϕ(t). There are some steps, but the important
part is that we can put all the time dependent terms on one side, and x dependent
terms on the other. Now, this last part is only possible assuming that the potential
is time independent (e.g. Coulomb potential), then we can rewrite it as in equation
(2.15) by introducing Ψ(x, t) = ψ(x)ϕ(t) [17, p. 25].

ih̄
1

ϕ

dϕ

dt
= − h̄2

2m

1

ψ

d2ψ

dx2
+ V (2.15)

And so, since we have only time dependent terms on one side, and since this side
should always equal the other containing only x-dependent terms, the consequence
will be that both sides has to be equal to a constant E [17, p. 26]. This leaves us
with two solvable differential equations in (2.16) and (2.17), where the solution to
the time dependent part ϕ(t) has been given.

− h̄2

2m

d2ψ

dx2
+ V ψ = Eψ (2.16)

dϕ(t)

dt
= −iE

h̄
ϕ(t) → ϕ(t) = e−iEt/h̄ (2.17)

Lastly, the total energy of the system is encapsulated in the Hamiltonian op-
erator Ĥ (2.18)
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Ĥ = − h̄2

2m

∂2

∂x2
+ V (2.18)

And so consequently, the time independent Schrödinger equation (TISE) can be
rewritten in the short form as (2.19) [17, p. 27].

Ĥψ = Eψ (2.19)

This is known as an eigenvalue problem, where E is the eigenvalue for Ĥ, and ψ
the eigenvector or eigenstate. I will now discuss some of the fundamental aspects of
these problems and how to solve them.

2.1.7 Eigenvalues and Eigenfunctions

Eigenvalue equations are frequently solved using linear algebra, and treated with
matrices. We can follow the standard approach assuming the Hamiltonian is on
matrix form. First rearranging equation (2.19) to (2.20).

Ĥψ = Eψ → (Ĥψ − IE)ψ = 0 (2.20)

If ψ consists of N eigenstates, then the Hamiltonian matrix transforms to equa-
tion (2.21). 

H11 − E . . . H1N

. . .

. Hii − E .

. . .
HN1 . . . HNN − E

ψ = 0 (2.21)

This matrix problem correspond to N linear equations, that can be solved to find
the correct eigenstates.

Given that Ĥ is in fact an Hermitian operator, then there exists a special
theorem about the properties of the eigenfunctions of Ĥ. The theorem states that
”Eigenfunctions beloning to distinct eigenvalues are orthogonal” [17, p. 98]. This
concept will be exploited later, since the eigenfunctions for the Hamiltonian will
be used as a basis in our simulation, except that the dimension of ψ will be a lot
larger than two. Also, since we are working with the hydrogen system, in principle
we should find all the eigenstates of this system, corresponding to the ground state
(1s) and subsequent excited states (2s, 2p, 3s .. 5g..). However, it will shortly be
illustrated that due to our finite computational restrictions, the higher excited states
will not be approximated close enough to resemble the analytical solutions, and will
therefore be excluded from the simulation.

2.1.8 Schrödinger Equation - Spherical Coordinates

When representing the electron in hydrogen-like systems, where we can also assume
that one-electron approximations hold (no electron-electron interactions), then the
potential energy can often be expressed as a function of the electron’s distance from
the nucleus only. Therefore, in many cases it will be simpler to express the potential
energy by one variable V (r), instead of the three Cartesian points V (x, y, z). With
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this in mind, it looks to be very beneficial to express the Schrödinger equation in
spherical coordinates. I will quickly go through some of the important steps when
transforming it into the spherical coordinate system.

First, the Hamiltonian can be expressed as a sum of the kinetic and potential
energy operators, as (2.22).

Ĥ = T̂ + V̂ (2.22)

We know from classical mechanics that kinetic energy can be expressed by mo-
mentum T = 1

2m
p2, and so for 3 dimensions we have the result in (2.23) [17, p. 131].

Ĥ =
1

2m
(p̂2
x + p̂2

y + p̂2
y) + V (2.23)

Now, replacing the momentum operators with the quantum-mechanical short-
version p̂ = −ih̄∇, we have the form in (2.24).

ĤΨ(r, θ, ϕ) = − h̄

2m
∇2Ψ + VΨ (2.24)

In the transformation, the Laplacian operator (∇2) will be transformed to the
corresponding spherical coordinate version. Now, the solutions we are interested in,
should be separable into a product between a radial R(r) and an angular Y (θ, ϕ)
function, as in equation (2.25).

Ψ(r, θ, ϕ) = R(r)Y (θ, ϕ) (2.25)

This will lead to two equations, the Radial Equation (2.26) and the Angular
Equation (2.27) [17, p. 134].

d

dr

(
r2dR

dr

)
− 2mr2

h̄2 [V − E]R = l(l + 1)R (2.26)[
1

sin θ

∂

∂θ
− (sinθ

∂Y

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

]
= −l(l + 1)Y (2.27)

Introducing the reduced radial wave function, u(r) = rR(r) simplifies the radial
equation into (2.28).

− h̄2

2m

d2u

dr2
+

[
V +

h̄2

2m

l(l + 1)

r2

]
u = Eu (2.28)

Here the whole term enclosed in brackets is known as the effective potential,
where you can see there is a positive/destabilizing contribution from the angular
momentum quantum number l, which grows larger the closer the particle gets to
the nucleus due to the r2 term [17, p. 139]. For the hydrogen system, we replace V
with the Coulomb potential, and by using atomic units the radial equation can be
written as equation (2.29).

− 1

2

d2u

dr2
+

[
−1

r
+

1

2

l(l + 1)

r2

]
u = Eu (2.29)

In this thesis, we are going to work with hydrogen-like systems, and so solving
the radial equation in (2.29) will be important in order for us to find the reduced
radial wave functions u(r).
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2.2 B Splines

2.2.1 Definition and Properties

B splines have been introduced in recent years as a very convenient way of repre-
senting the wave function. I refer the reader to the well cited article Applications
of B-splines in atomic and molecular physics [19], which explains in more detail
why the B-spline basis can compete with more traditional methods, such as finite-
difference. Now, for the readers unfamiliar with the mathematical description of
these splines, a short introduction that is highly based on the article I just men-
tioned, will be given. In this section, I will present the mathematical definition of
the B splines, and introduce some of their properties.

B splines are piece wise polynomials of a certain degree k, having the recursive
mathematical description seen in equation (2.30), and the very related definition for
their derivative in equation (2.31) [19, p. 1823].

Bk
i (x) =

x− ti
ti+k−1 − ti

Bk−1
i (x) +

ti − x
ti+k − ti+1

Bk−1
i+1 (x) (2.30)

dBk
i (x)

dx
=

k − 1

ti+k−1 − ti
Bk−1
i (x)− k − 1

ti+k − ti+1

Bk−1
i+1 (x) (2.31)

Bk
i (x) is the numerical value of the i′th spline of order k evaluated at x. Also

having the following properties [19, p. 1823];

• tj are knot-points and define the interval Ii = [ti, ti+1], where only some specific
B splines contribute Bi−k+1, ...Bi.

• They are normalized and complete so ΣiBi(x) = 1 over the larger knot-interval
[tk, tn].

• Base condition k = 1, is defined as B1
i (x) = 1, when x ∈ [ti, ti+1], otherwise

B1
i (x) = 0.

• Bk
i (x) has compact support on [ti, ti+k], meaning Bk

i (x) = 0, when x 6∈ [ti, ti+k].

• B splines of order k (Bk
i (x)), are polynomials of degree k-1.

An important property of these splines, that we later want to exploit when
constructing the Hamiltonian matrix, is that they can be integrated exactly over the
knot interval they are defined on. The reason being that Gauss Legendre integration
(GL) (2.32) is capable of integrating polynomials of a certain degree exactly.∫ 1

−1

f(x)dx ≈
n∑
i=1

wif(xi) (2.32)

The necessary condition is that the polynomials that the integrated function f
consists of, must be of degree 2n-1 or lower when the GL weights (w) are constructed
using n points on each interval [19, 20]. Conveniently the degree we will get when
constructing the matrix elements, are polynomials of degree 2k-2, since we are taking
the product between two splines of order k, equivalent to the product between
two polynomials of order k-1. Therefore, when performing the integration of these
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functions, it is sufficient to use k number of points for each interval. So in general,
the GL integration makes it possible to approximate an infinite sum (the integral),
by only evaluating the polynomials at discrete points when introducing these GL
weights.

However, as the attentive reader might have noticed, the GL quadrature in (2.32)
poses a problem, since it is defined over the interval x ∈ [−1, 1]. The t-knots on
the other side, are defined over our box limit [0, rmax] and so what we actually want
to do, is to integrate our polynomials on each such knot interval x ∈ [ti, ti + 1]. In
order to do so, we use the corresponding transformation over to a general interval
[a, b], as shown in equation (2.33).∫ b

a

f(x)dx ≈ b− a
2

n∑
i=1

wif

(
b− a

2
xi +

a+ b

2

)
(2.33)

This method was implemented in the Python code to integrate the B splines
that we used as basis for our wave functions.

2.2.2 B Splines as Basis for Wave Functions

The degree k of the B splines play an important role on the overall shape of the
spline polynomials, and hence also its ability to represent a basis for wave functions.
This can easily be seen when comparing B splines of different degrees with each
other. A four-panel figure has been included in (2.1a)-(2.1d), where it is shown an
ensemble of 4 different B splines with an increasing order of k, going left to right.
Here it can be confirmed that the B splines having order k = 3 (2.1c) and k = 6
(2.1d) have a much closer resemblance with wave-like functions, than the splines
of degree k = 1 (2.1a) and k = 2 (2.1b). A consequence of this, is that you can
approximate the wave function with a set containing fewer B splines of higher-order,
than the necessary number of lower-order B splines, to achieve the same numerical
approximation. In fact, it is possible to approximate the wave functions using an
order of k = 2, as long as we compensate with a sufficient number of B splines. The
reason that k = 2 is the lowest possible order, is that the derivative of a k-order
B-spline is defined recursively by using the B splines of order k-1. This means that
the derivative would not be defined for k = 1, and so k = 2 is the lower bound.

Expressing the wave function with B splines therefore comes down to selecting
a sufficiently large degree for k, in combination with a large enough number of B
splines. An important note is that increasing the degree k, will not further improve
the numerical accuracy when a certain precision has been reached. Since increasing
the degree comes at the cost of computational time, it is desirable to choose the
lowest possible value for k in combination with the number of B splines, without
any significant loss in precision.

2.2.3 The Schrödinger Equation With B Splines

As has been previously mentioned, when solving the Schrödinger equation one uses
a set of complete basis vectors to represent the wave function. Here we will use the
B-spline functions as our initial basis to solve the eigenvalue equation as has been
documented [19, p 1825]. I will denote the overall linear combination for a specified
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(a) B-spline order k = 1. (b) B-spline order k = 2.

(c) B-spline order k = 3. (d) B-spline order k = 6.

Figure 2.1: Comparison between 4 sets of different B splines, having orders of k =
1, 2, 3 and 6 respectively. All of the above splines are plotted in the same radial box
of 25 (a.u.), and all with 5 breakpoints each. The figure illustrates that increasing
the order of k has a large effect for small values k = 1, 2, 3, but further increase
from k = 3, to k = 6 is less significant on the overall shape of the B splines. Also
note that there is a pair of B splines that does not converge towards 0 at the edge
of each box, these were removed in order to enforce that the wave function should
satisfy the boundary conditions.

radial wave function ukl(r) (2.34), referred to as a core orbital in [19].

ukl(r) =
N∗∑
i=1

ckli Bi(r) (2.34)

The symbol k was chosen instead of the commonly encountered principle quantum
number n, even if for some values they might be equivalent. However, for most
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values they will not be related in this work. Also, note that the asterisk sign (N*)
in the upper limit of the summation sign was included to separate it from another
upper bound symbol N, that I will later use to limit the number of core oribtals
included when calculating the matrix elements. This will be addressed in one of the
following sections.

Finding the coefficients ckli , belonging to a given ukl(r) state, is done by solving
the Schrödinger equation. It will have a slightly different form, since the B splines
are not orthogonal basis components. Nevertheless, they do span a complete basis
and so any wave function can be expressed as a linear combination of them. The
overlap matrix S will be included to take care of the non-orthogonality, and the
resulting form of the generalized eigenvalue problem is seen in equation (2.35).

Hukl(r) = ESukl(r) (2.35)

Where ukl(r) is a vector containing the corresponding coefficients with respect
to the B-spline basis, as illustrated in (2.36).

ukl =


ckl1

ckl2

.

.

.
cklN∗

 (2.36)

The elements of the Hamiltonian matrix Hij is calculated using the reduced radial
equation (2.29) for hydrogen, as was discussed in the previous section. The specific
mathematical expression for how the Hamiltonian elements Hij are related to the B
splines, is seen in equation (2.37), along with the definition for the elements of the
overlap matrix Sij in (2.38) [19, p. 1826]. Both of these expressions was implemented
in Python.

Hij = −1

2

∫ rmax

0

Bk
i (r)

d2

dr2
Bk
j (r)dr +

l(l + 1)

2

∫ rmax

0

Bi(r)Bj(r)

r2
dr

+

∫ rmax

0

Bk
i (r)V (r)Bk

j (r)

(2.37)

Sij =

∫ rmax

0

Bk
i (r)Bk

j (r)dr (2.38)

Now that we have H and S, the eigenvalue problem in (2.35) is something that
is readily solved with the push of a button, in either MATLAB or Python using the
SciPy library. We have now calculated our reduced radial wave functions ukl(r).

2.2.4 The Computational Box

In general we want to describe the wave functions as precisely as possible, in order
to get the best computational results in our simulations. The problem is that when
considering any radial wave function Rkl(r), for some quantum state specified by k
and l, it has a non-zero amplitude for all r. However, the radial wave functions decay
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exponentially with distance for bound states, that is R(r) ∝ e−λr, (see hydrogen ra-
dial WF (B.1) ). This means that it might be enough for certain calculations to only
include r values up to a certain maximum value rmax, where there would be little to
no change in the calculation precision by increasing this value for rmax. That is, the
results would essentially be the same, even if it would have been possible to simulate
a box with infinite limits. An illustration can be seen in figure (2.2a), where three of
the reduced radial wave functions ukl(r) = rRkl(r) have been calculated for kl values
matching the 1s, 2s and 3s states of hydrogen. The corresponding probability den-
sities given by [ukl(r)]

2, have been plotted in figure (2.2b). For those familiar with
the shape of these wave functions, they look very similar to the analytical results. It
is important to choose a sufficiently large box for the problem under investigation,
so that the desired wave function can be represented accurately. For instance, the
expected orbital distance for the electron 〈r〉n increases rapidly with the principle
quantum number n. In fact it is proportional to the square for Rydberg states,
that is 〈r〉n ∝ n2 [5]. This means that even if we can model the ground state of
hydrogen atom with a box having rmax of 25 atomic units (a.u.), we might fail to
approximate excited states of higher energy (larger n). In this thesis we are going to
simulate laser interactions with Rydberg states and these states are defined by their
large values for n. To illustrate this problem, we can look at the wave functions
we calculated in figures (2.2a) and (2.2b) and compare them to the exact analytical
values. This can be seen in figure (2.3a), where a comparison between two different
ukl(r) states has been performed. Here the calculated radial wave functions for the
2s and 3s states of hydrogen are plotted along with the exact analytical solutions.
The plots are virtually identical for the 2s state shown in fig (2.3a), and so it seems
that using box size of 25 (a.u.) is enough for this case. On the other hand, the radial
probability plot for the 3s state seen in figure (2.3b) clearly shows that the analytical
solution deviates from the calculated one. An important observation here, is that
the analytical solution (3s) in yellow is actually hitting the edge of the right wall!
This means that a box having rmax of 25 (a.u.), is not enough to approximate the
wave function for the 3s state, and we would need to increase the size of the box, if
we want a better approximation.
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(a) Radial wave functions for 1s, 2s and 3s. (b) Probability densities for 1s, 2s and 3s.

Figure 2.2: Radial and probability density plots for the 1s, 2s and 3s states of
hydrogen. The reduced radial wave functions ukl(r) = rRkl(r) are plotted using
a box with radial dimension of rmax = 25 (a.u.). B splines of order k = 5, and
with a total number of Nb = 100 breakpoints were used when calculating the wave
functions.

(a) 2s Radial probability density (match). (b) 3s Radial probability density (miss).

Figure 2.3: Comparison between the calculated and analytical solution for proba-
bility density plots belonging to the 2s and 3s states of hydrogen. The box has a
radial dimension of r ∈ [0, 25a0]. The orange curve is the calculated result using
B-splines as initial basis, while the blue curves are the exact analytical solutions.
The plot illustrates that the box size of 25 (a.u.) is enough when computing the
wave function for the 2s state (a), but not for the 3s state (b), where the density
from the analytical wave function exceeds the box boundary.
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Now that we have obtained wave functions describing the different electron
states, we can move over to look at how the laser will effect the system, in light-
matter interactions.

2.3 Laser Theory - Light Matter Interaction

In this section I will discuss the theory related to the light-matter interactions be-
tween the laser and the electrons. The laser has turned out to be one of the most
important experimental equipment for most branches of physics during the last
decades. It continues to be so, considering that parts of the 2018 Nobel prize in
physics were awarded for work related to the production of high-intensity, ultra-
short pulses [21]. In a recent publication researchers have used a femtosecond laser
pulse to probe for ultra-fast electronic dynamics in nanomaterials (nanowires) [22].
The use of nanowires in combination with laser technology seem to be a hot research
topic these days, exemplified by its recent use in experimental research at the Lund
Laser Center (LLC) in 2021 [23]. Here a 10 TW laser was used for laser driven
proton acceleration, illustrating yet another useful area. Lasers are monochromatic
electromagnetic waves, so in order to understand lasers we need to have an under-
standing of electromagnetism.

2.3.1 Electromagnetism - Light

Electromagnetic waves (or light) are represented by two fields that oscillate orthog-

onal upon each other. These fields are known as the electric ( ~E) and magnetic ( ~B)
fields. An illustration of light, represented by these fields in red and blue respectively,
can be seen in figure (2.4).

Figure 2.4: Illustration of the propagation of light. The light wave is composed of
perpendicular oscillating electric ( ~E) and magnetic ( ~B) fields, that follow properties
determined by Maxwell’s equations. The wavelength λ determines the oscillation
frequency, due to light moving at constant speed. Copyright License and image
source

The oscillation frequency of light is related to its wavelength, as shown in equa-
tion (2.39).

λ =
c

f
(2.39)
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And the angular frequency is related the frequency as in equation (2.40).

ω = 2πf (2.40)

The properties of the electromagnetic wave is determined by Maxwell’s equations
seen in (2.41),

∇ · ~E =
ρ

ε0
(2.41)

∇× ~E = −∂
~B

∂t

∇ · ~B = 0

∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t

where ρ is the electric charge density, ~J the current density vector and ε0, µ0 are the
vacuum constants of permittivity and permeability respectively. The four equations
in (2.41), are the compact differential form of the original set of 20 equations that
Maxwell presented in his article on electromagnetism in 1864 [24]. They all have
common names, which is from top to bottom, Gauss’s law, Faraday’s law, Gauss’s
law for magnetic fields and Ampere’s law. The equations shown in (2.42) and (2.43)
represent the E- and B-field when the electromagnetic wave is propagating along the
x-axis. Here the E-field will oscillate in the z-plane, and the B-field in the y-plane.

~E(x, t) = E0sin(kx+ ωt)ẑ (2.42)

~B(x, t) = B0sin(kx+ ωt)ŷ (2.43)

Both waves are described by the amplitude components E0 and B0, multiplied by
the oscillating sine-term. The direction of the fields are determined by multiplica-
tion along a unit vector ẑ and ŷ. Also, since the electric field only propagates along
a single dimension, we are dealing with a type of linear polarization. This is in con-
trast to the circular polarized electromagnetic fields, which contain two electric field
components, which will be further discussed later. In the next section I will discuss
the dipole approximation, which will simplify the modeling of the electromagnetic
interactions.

2.3.2 Dipole Approximation

In laser physics you frequently encounter papers that mention the so called dipole
approximation [25, 1, 26]. The essence of this approximation comes from having
an electromagnetic field that has a much larger wavelength than the system being
illuminated, as for example the hydrogen atom and a near infrared 800 nm laser.
Here the electric field strength will be spatially independent, and only depend on
time. Also, the magnetic field strength is related to the electric field strength by

| ~B| = | ~E|/c, where c is the speed of light. Since c is very large, the magnetic field can
be neglected for all electric field strengths investigated in this thesis. The concept of
the dipole approximation is illustrated in figure (2.5), where two hydrogen atoms are
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Figure 2.5: The figure illustrates why the dipole approximation can be considered
accurate when using a red laser, having a wavelength of λ = 800 nm. Each hydrogen
atom will be much smaller than the wavelength of the laser, which means they
will feel the same electric field strength at a given moment in time, therefore field
interactions are independent of position.

represented by blue dots within the laser pulse. Due to each atom being much smaller
than the wavelength of the laser, they experience the same electrical force from the
E-field, which is here represented by black arrows. However, in high-intensity fields
the dipole approximation might break down. Nevertheless, with lasers close to
the 800 nm wavelength regime, the dipole approximation is considered to be valid
for intensities below 5 × 1015 W/cm2 [26]. In this thesis every simulation will be
performed below the breakdown region just mentioned, so the dipole approximation
has been assumed to hold. I will now further discuss the representations of linear
and circular polarized fields.

2.3.3 Field Polarization

The direction of polarization is determined by the electric field components. If the
electric field oscillate in a single dimension it is a form of linear polarization, but
in this thesis I will only use circular polarization of the electric field. The circular
polarization is created by including field components in two orthogonal directions
with a relative phase shift between them.

The laser in this thesis will be described in terms of the vector potential ~A, which
is related to the electric field ( ~E) and magnetic field ( ~B) as shown in equation (2.44)
and (2.45).

~E = −∂
~A

∂t
(2.44)

~B = ~∇× ~A = 0 (2.45)
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Here equation (2.45) must equal zero if the magnetic field is to be neglected. A
suitable representation for the laser that satisfy both of the above equations, and is
expressed in terms of the vector potential ~A, is given in equation (2.46),

~Ap(t) = A0 sin2(
πt

T
) sin(ωt+ ϕj)ûp (2.46)

where we have that A0 = E0/ω, and ω being the oscillation frequency of the laser
[1]. E0 being the maximum electric field amplitude, and T is the pulse duration.
The direction of polarization will be along the unit vector ûp, and the symbol ϕj is
the carrier envelope phase or CEP, which is the relative phase difference between
the carrier and envelope wave. The number of cycles (Nc) the laser goes through is
related to the total time T and the frequency ω of the laser as in equation (2.47).

T = (Nc)×
2π

ω
(2.47)

Also, the CEP term can be modified to function as the phase difference between
the components in the circular polarized field, which I will discuss in the next section.

2.3.4 Representation - Circular Polarization

A circular polarized field having a clockwise rotation was created by setting the
CEPs ϕx = 0 and ϕy = π/2. The respective expressions for the laser in the x, and
y dimensions, then becomes as equation (2.48) and (2.49).

~Ax(t) = A0 sin2(
πt

T
) sin(ωt+ ϕx)̂i (2.48)

~Ay(t) = A0 sin2(
πt

T
) sin(ωt+ ϕy)ĵ (2.49)

The direction of rotation can easily be reversed to a counter-clockwise field by
interchanging the phase difference, setting ϕx = π/2 and ϕy = 0. For positive m-
values the rotational term in the wave function eimϕ, rotates in a counter-clockwise
manner. This means that the field that co-rotates with the electron motion is the
counter-clockwise rotating field, while the clockwise-rotating field will be counter-
rotating the motion of the electron.

I have now presented the mathematical representations of the linear and circular
polarized pulses, but in order to get an intuitive understanding of the pulse dynam-
ics, it might be useful to visualize the amplitude variations of the laser pulse through
time.

2.3.5 Pulse Visualization

The change in amplitude of the laser pulse through time can be illustrated by plotting
the mathematical representation shown in equation (2.46), by choosing a set of values
for the different parameters discussed in the previous section T, ω,E0 and ϕ. The
result for one such plot can be seen in figure (2.6), having the set of parameters
E0 = 10 (a.u.), ω = 50 (a.u.), Nc = 15, ϕ = 0.

The pulse in figure (2.6) illustrates how the intensity of this linear polarized field
evolves through time, and shows that it has the characteristic form of a wave-packet.
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Figure 2.6: Visualization of the change in amplitude through time for a linear po-
larized 15-cycle laser pulse, determined by equation (2.46). The parameters for the
pulse are E0 = 10 (a.u.), ϕ = 0 and ω = 50 (a.u.).

The laser amplitude is limited by the sine-squared term, and so it functions as an
envelope for the upper and lower bounds.

I have also included a two-panel figure that illustrates the difference in geometry
between a 4-cycle pulse in figure (2.7a) and a 12-cycle pulse in figure (2.7b), having
identical frequency and phase. Simulations using low-cycle pulses as the 4-cycle
case, will have a much smaller total simulation time compared to the many-cycle
pulses. This means that many-cycle pulses are more computational expensive to
simulate.

In the next section, I will demonstrate how the amplitude evolves through time
for the circular polarized fields.
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(a) 4-cycle laser pulse. (b) 12-cycle laser pulse.

Figure 2.7: Comparison between a 4-cycle (a) and a 12-cycle (b) laser pulse. Each
pulse duration was chosen according to the formula T = Nc

2π
ω

, in order to complete
the 4 and 12 cycles. The laser intensity was set to E0 = 10 (a.u.), using a CEP of
ϕ = 0 and frequency ω = 50 (a.u.). The laser amplitude A(t) was calculated using
equation (2.46).

Visualization - Circular Polarization

In the previous section, I visualized how the amplitude of a linear polarized pulse
behave over the full pulse duration. Since rotating fields are essential to the project of
this thesis, I also want to visualize how the geometry of these pulses change through
time. It is also of interest to see how the relative amplitudes of each component
change with respect to rotation of the field, and so I plotted the x and y components
of a 4-cycle ω = 50 (a.u.) field for the full pulse duration, as seen in figure (2.8).
Here the rotation is in the xy-plane, and the components of the laser Ax(t), Ay(t) are
determined by the mathematical expressions for the clockwise rotation, previously
given in equation (2.48) and (2.49). In order to illustrate the direction of rotation,
I plotted 50 vectors with an even spacing in time for the first third of a full pulse
duration. It can be seen from the figure that the vectors rotate in a clockwise
manner, if it is known that they started from the origin. It can also be seen that
the vectors goes through a symmetrical cycle, ending up in the same position that
they started from.
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Figure 2.8: Illustration of the circular polarized field at every point in time for a
4-cycle pulse, having ω = 50 (a.u.). Each point is determined by the components
(Ax(t), Ay(t)), at a given point in time. The direction of rotation is visualized by
plotting 50 vectors for the first third of the full simulation time T, expressed as the
combination ~A(t) = ~Ax(t) + ~Ay(t).

The next section covers how the light-matter interaction between the laser and
electron will be included in the Hamiltonian.

2.3.6 Minimal Coupling Hamiltonian

When the electric field is the only contributing field component, the form of the
minimal-coupling Hamiltonian H can be written as equation (2.50).

H =
1

2m
[~p− q ~A(t)]2 + V (2.50)

This minimal-coupling is also commonly referred to as the velocity-gauge Hamil-
tonian, and a more comprehensive discussion on this concept and beyond the dipole
approximation can be read here [27].

The minimal-coupling Hamiltonian belongs to a particle in a Coulomb potential
V , having mass m and charge q. ~A is known as the vector potential, which has
previously been related to the electric field in equation (2.44). In classical electro-
magnetism the Lorentz Force shown in equation (2.51), is the force acting upon an

electron with velocity v, moving through an electric field ( ~E) and magnetic field

( ~B). In order to include this force in the Hamiltonian, it must be expressed in terms

of the vector potential ~A. The reason being that it cannot be expressed as a scalar
potential-energy function under the formulation given in equation (2.51) [17, p. 181].
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~F = q( ~E + ~v × ~B) (2.51)

When the terms in the minimal-coupling Hamiltonian are expanded out com-
pletely, it transforms to equation (2.52).

H =
(~p)2

2m
+ V − q

m
~A · ~p+

q2

2m
( ~A)2 (2.52)

The last term containing ( ~A)2 can be neglected under the dipole approximation,
but is known to contribute in beyond-dipole effects, as in super-intense laser fields
[25]. This reduces the Hamiltonian to equation (2.53).

H =
(~p)2

2m
+ V − q

m
~A · ~p (2.53)

Using atomic units, we can rewrite it as equation (2.54), assuming the laser has
polarization in all of the spatial directions x, y and z.

H =
(~p)2

2
− 1

r
+ Axpx + Aypy + Azpz (2.54)

We now have all the necessary theoretical concepts in place, to generate the
minimal coupling Hamiltonian matrix, which will be the topic of the next section.

2.4 Generating Matrix Elements

In this section I will introduce how the elements of the minimal-coupling Hamiltonian
are generated, by using the previously established theoretical concepts. Each matrix
element is generated by using the minimal-coupling Hamiltonian between two states
of the system, as shown in equation (2.55).

〈ψklm(r, θ, ϕ)|H|ψk′ l′m′ (r, θ, ϕ)〉 = 〈ukl(r)
r

Y m
l (θ, ϕ)|H |uk

′ l′ (r)

r
Y m

′

l′
(θ, ϕ)〉 (2.55)

Here the wave function ψklm(r, θ, ϕ) has been expanded in terms of the reduced ra-
dial wave functions ukl(r), and the corresponding spherical harmonics Y m

l (θ, ϕ). As
mentioned, the radial functions were found by previously solving the time indepen-
dent radial equation, using B-splines as basis functions. The Hamiltonian here is
the version from equation (2.54), which was discussed in the previous section. Since
the basis functions correspond to quantum states specified by k, l and m we can
specify the general matrix element with a shorter notation, shown in (2.56).

〈klm|H |k′l′m′〉 (2.56)

The matrix element generation has now been reduced to a loop over all possible
state combinations, which was implemented in Python. In principle, there is an
infinite amount of eigenstates, however many of the states having large energies will
most likely be poor approximations. Therefore, we will truncate the number of total
states from each l-channel, and only compute the interaction between the first N
states. The value for N is then determined by setting a maximum energy Emax, so
that no state has an energy that exceeds this limit.
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This means that for a specific lm-combination we have a total of N ×N matrix
elements, where each element will be assigned a left index (i) and right index (j).
These indexes will then be used to represent the Hamiltonian on matrix form Hij,
which will be discussed in more detail shortly. The total number of lm-combinations
can be limited by setting an upper bound for l (lmax), in which the value for m will
also be limited according to the well know restriction rule in (2.57).

m ∈ [−l, l] (2.57)

The problem size grows rapidly with lmax, due to the N ×N element generation for
each unique lm-pair. The total number of pairs can be counted by considering the
restriction rule for m, which leads to a sum over m from -l to l for each l-value. The
total amount of m states will therefore be 1, 3, 5.. for l = 0, 1, 2.., and so forth. This
means that the total number of pairs can be expressed as the double summation in
equation (2.58), which conveniently turns out to be the sum of the first lmax+ 1 odd
numbers, having a short and precise mathematical expression.

lmpairs =
lmax∑
l=0

l∑
m=−l

= 1 + 3 + 5 + 7.. = (lmax + 1)2 (2.58)

Many of the matrix elements turn out to be zero, and it would be very convenient to
skip the evaluation of these integrals. There exist what is known as selection rules
for the quantum numbers l and m, allowing us to identify all non-zero elements [17,
p. 420]. These selection rules are unique for each of the px, py and pz momentum
terms, which can be seen in equation (2.59).

px : ∆l = ±1,∆m = ±1

py : ∆l = ±1,∆m = ±1

pz : ∆l = ±1, ∆m = 0

(2.59)

These selection rules were implemented, so that only non-zero integrals were
computed. I will demonstrate the origin of the py selection rule, when deriving the
Ay(t)py coupling element shortly. There are three terms we are interested in, one

for each of the directions in ~A · ~p, that contains px, py and pz respectively. All three
terms can be seen in equation (2.60).

〈klm|Ax · p̂x|k
′
l
′
m
′〉+ 〈klm|Ay · p̂y|k

′
l
′
m
′〉+ 〈klm|Az · p̂z|k

′
l
′
m
′〉 (2.60)

In the next section, I will go through the derivation of the py-elements.

2.4.1 Deriving py - Elements

The momentum operator p̂y is defined as p̂y = −i ∂
∂y

when using atomic units, and
involves the derivative expressed in the Cartesian system. However, since we have
expressed our wave functions in spherical coordinates using ukl(r) and Y m

l (θ, ϕ), then
we must also express d/dy in spherical coordinates. There is also the contribution
from the vector potential Ay. However, this contribution is just a time dependent
scalar under the dipole approximation, and can be moved outside the integral. If we
only consider the y-dimension, we are left with equation (2.61).

34



Theory 2.4. GENERATING MATRIX ELEMENTS

〈klm|Ay · p̂y|k
′
l
′
m
′〉 = Ay〈

ukl(r)

r
Y m
l (θ, ϕ)| − i ∂

∂y
|uk

′ l′ (r)

r
Y m

′

l′
(θ, ϕ)〉 (2.61)

In spherical coordinates, we have that ∂/∂y can be represented as (2.62).

∂

∂y
= sin(θ) sin(φ)

∂

∂r
+

1

r
sin(φ) cos(θ)

∂

∂θ
+

1

r

cos(φ)

sin(θ)

∂

∂φ
(2.62)

So the full expression can now be written out as (2.63)

−iAy〈
ukl(r)

r
Y m
l (θ, ϕ)| sin(θ) sin(φ)

∂

∂r
+

1

r
sin(φ) cos(θ)

∂

∂θ
+

1

r

cos(φ)

sin(θ)

∂

∂φ
|uk

′ l′ (r)

r
Y m

′

l′
(θ, ϕ)〉

(2.63)
The full derivation of this expression can be read in Appendix (A.1), but the im-
portant and final result for the py matrix elements are shown in (2.64).

−i〈ukl(r)
r

Y m
l (θ, ϕ)| ∂

∂y
|uk

′ l′ (r)

r
Y m

′

l′
(θ, ϕ)〉 =

−al,−mδl,l−1δm,m+1

∫ rmax

0

ukl

(
duk′ ,l−1

dr
− l

r
uk′ ,l−1

)
dr

−al,mδl,l−1δm,m−1

∫ rmax

0

ukl

(
duk′ ,l−1

dr
− l

r
uk′ ,l−1

)
dr

−al+1,m+1δl,l+1δm,m+1

∫ rmax

0

ukl

(
duk′ ,l+1

dr
+
l + 1

r
uk′ ,l+1

)
dr

−al+1,−m+1δl,l+1δm,m−1

∫ rmax

0

ukl

(
duk′ ,l+1

dr
+
l + 1

r
uk′ ,l+1

)
dr

(2.64)

Where the alm constant is defined as in equation (2.65).

alm =

√
(l +m)(l +m− 1)

4(2l − 1)(2l + 1)
(2.65)

Each of the four integrals in equation (2.64) has two Kronecker delta functions
associated with it, one for each of m and l. These Kronecker delta functions give rise
to the selection rules, since they will only be non-zero when l = l

′±1 and m = m
′±1.

The px element can be derived in a similar manner, and is shown in equation (2.66).
The selection rules and magnitudes of each integral are identical to the py elements,
but each integral now has a complex component, and sign alternation for the first
and last integrals.
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−i〈ukl(r)
r

Y m
l (θ, ϕ)| ∂

∂x
|uk

′ l′ (r)

r
Y m

′

l′
(θ, ϕ)〉 =

+ial,−mδl,l−1δm,m+1

∫ rmax

0

ukl

(
duk′ ,l−1

dr
− l

r
uk′ ,l−1

)
dr

−ial,mδl,l−1δm,m−1

∫ rmax

0

ukl

(
duk′ ,l−1

dr
− l

r
uk′ ,l−1

)
dr

−ial+1,m+1δl,l+1δm,m+1

∫ rmax

0

ukl

(
duk′ ,l+1

dr
+
l + 1

r
uk′ ,l+1

)
dr

+ial+1,−m+1δl,l+1δm,m−1

∫ rmax

0

ukl

(
duk′ ,l+1

dr
+
l + 1

r
uk′ ,l+1

)
dr

(2.66)

The pz element is given in equation (2.67), where the selection rule for m can be
seen to be ∆m = 0,

−i〈ukl(r)
r

Y m
l (θ, ϕ)| ∂

∂z
|uk

′ l′ (r)

r
Y m

′

l′
(θ, ϕ)〉 =

−ibl,mδl′ ,l−1δm′ ,m

∫ rmax

0

ukl

(
duk′ ,l−1

dr
− l

r
uk′ ,l−1

)
dr

−ibl+1,mδl,l+1δm′ ,m

∫ rmax

0

ukl

(
duk′ ,l+1

dr
− l

r
uk′ ,l+1

)
dr

(2.67)

and where the blm constant is defined as in equation (2.68).

blm =

√
l2 −m2

(2l − 1)(2l + 1)
(2.68)

2.5 Time Propagation

The final step is to propagate the system through time. This time propagation works
by solving the time dependent Schrödinger equation (TDSE), shown in (2.69).

ih̄
∂

∂t
Ψ(r, θ, ϕ, t) = HΨ(r, θ, ϕ, t) (2.69)

In order to express the TDSE on matrix form, we expand the total wave function as
a linear combination of the previously found bound and scattered states, as shown
in equation (2.70).

Ψ(r, θ, ϕ, t) =
lmax∑
l=0

l∑
m=−l

N∑
k=1

cklm(t)ψklm(r, θ, ϕ) (2.70)

It can be shown that by substituting this wave function into the TDSE, one can
derive the new matrix representation in equation (2.71).

ih̄
∂

∂t


c1(t)
.
.

ci(t)
.

cn(t)

 =


H1,1 H1,2(t) . . . H1,n(t)
. . .
. . . .

Hi,1(t) Hi,2(t) . Hi,i . Hi,n(t)
. . . .

Hn,1(t) Hn,2(t) . Hn,i(t) . Hn,n




c1(t)
.
.

ci(t)
.

cn(t)

 (2.71)
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The time dependent coefficients ci(t) are related to the corresponding wave function
ψklm by equation (2.72).

i = N ∗ (l(l + 1) +m) + k (2.72)

The coefficients are then found by solving the equations of the Hamiltonian, using
a technique developed by Shampine and Gordon [28].

2.5.1 Initial and End States

The simulation has to be initialized in a certain state at time (t = 0). In this thesis, I
work with the pure 5g(m=4) Rydberg state, meaning coefficients for all other states
were set to zero. After the simulation has been performed at time (t=T), most
likely we have transitioned from the pure initial state, to a distribution among all
the different possible states. An example of this transitioning is illustrated in (2.73).

(t = 0)→



0
.
.

c5g(m=4) = 1
.
.
0


→



0.0001
.

0.0156
0.6534
0.2140
.

0.0001


(t = T ) (2.73)

I have now covered the theoretical groundwork necessary to produce the results
obtained as part of this thesis, which I will present in the next chapter.
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Results

In this chapter I will present the results for all the different simulations that have
been performed as part of this thesis. The first part consists of testing the devel-
oped procedure by reproducing some ionization probability curves from a previously
published article [1]. After, I will discuss the effect that different orientations of the
circular polarized fields have on the ionization probability and on other quantities,
such as the angular distribution. The first orientations under investigation are the
co- and counter-rotating fields, as illustrated in figure (3.1a) and (3.1b), respectively.

(a) Co-rotation (b) Counter-rotation

Figure 3.1: The figure illustrates the co- (a) and counter-rotating fields (b), in
relation to the rotational motion and geometry of the electron distribution of the
5g(m=4) state.

3.1 Co- and Counter-Rotating Polarized Fields

In the previous section, it was mentioned that there had already been done theoret-
ical simulations using circularly polarized laser pulses on the circular 5g(m=4) state
[1]. In the referred article they documented a stabilization effect of the ionization
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probabilities, observed when increasing the laser intensity beyond a certain point.
This effect is counter intuitive, since the natural assumption is that the ionization
probability should increase when increasing the laser intensity. Since I will investi-
gate the same system, it was natural to try and reproduce the ionization probability
curves. The article documented ionization probabilities for several different laser
cycles, so for the comparative simulation, I chose a four-cycle (Nc = 4) laser pulse,
using the same 800 nm wavelength laser, having frequency ω = 0.057 (a.u.). For all
my simulations I used the smallest box mentioned in the article of 600 (a.u.) and
an upper limit of lmax = 15. Also, Emax was set to 7.5 (a.u.) leading to N = 740
basis functions for each eigenstate problem. The rotation of the electric field was
induced by introducing a relative phase difference of ϕ = π/2 between the x and y
component of the laser, as has been previously discussed in section (2.3.4).

The reproduced ionization probabilities for the co-rotating field can be seen in
figure (3.2a) and the result for the counter-rotating field in figure (3.2b). The ref-
erence data from [1] is plotted with a red-dashed line, while the blue line is the
reproduced results. The reproduction of ionization probabilities for the counter-
rotating case (figure (3.2b)), were almost identical to the results obtained in the
referred article, for field intensities below E0 = 0.06498 (a.u.), with an observed
deviation for intensities above this region (separation of blue and red curves). Even
though the curves separate, it is evident that the stabilization effect is present in the
reproduced result, where the ionization probability decreases after having reached a
maximum at a lower intensity.

The co-rotating case in figure (3.2a) proved to be a slightly more difficult case to
reproduce. Nevertheless, there seem to be a good agreement between my result and
the result of the article, for field intensities below E0 = 0.06 (a.u.). The simulation
performed in the reference article can be considered to be more trustworthy than my
thesis simulation, since it was done with larger box limits in the range between 600
and 2000 (a.u.). They also used a much larger upper bound for lmax, having lmax =
41 for intensities where E0 ≤ 0.3 (a.u.), and lmax = 63 otherwise. Nevertheless,
there is a slight deviation in the ionization probability just below E0 = 0.03 (a.u.)
and E0 = 0.02 (a.u.), which is well within the trusted intensity region and where I
expected the results to be identical. The deviation in my data has captured what
seems to be a small stabilization effect for E0 ≈ 0.03 (a.u.), not present in results
of the original publication. One possible explanation is that the reference curve has
been constructed by interpolation, and which did not include a sufficient number of
points to capture the full ionization structure.

In the article, they also argue that the steeper ionization curve in (3.2a), can be
explained by the electric field rotation being in the same direction as the motion of
the electron. From here, they make an analogy about a classical sling-shot effect,
caused by the electron experiencing a greater time of acceleration and deceleration
in the co-rotating case, than in the counter-rotating case.

The difference between the co- and counter-rotating fields can also be observed
by looking at the differential probability vs. kinetic energy for the electron at a given
field intensity. This was done, and the kinetic energy distribution for the electron in
the co-rotating field can be seen in figure (3.3a), and for the counter-rotating field
in figure (3.3b). Clearly, the probability for finding the electron at larger kinetic
energies is significantly lower for the counter-rotating field, than the co-rotating field
at the same field intensity of E0 = 0.02 (a.u.). This result is somewhat expected,
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(a) Co-rotating field (b) Counter-rotating field

Figure 3.2: a) Ionization probability using a co-rotating field at different field in-
tensities, having the circular 5g(m=4) as initial state. The blue curve are the re-
produced results from simulations performed as part of this thesis. The data from
the red curve has been obtained from a reference article that had done identical
simulations, but having used a larger basis [1]. b) The same simulation as in (a),
but from a counter-rotating field.

from the fact that the co-rotating field displayed a steeper ionization probability
curve.

(a) Co-rotating field (b) Counter-rotating field.

Figure 3.3: a) Differential probability vs. kinetic energy for the co-rotating field.
b) Differential probability vs. kinetic energy for the counter-rotating field. Both
curves results from a simulation performed at a field intensity of E0 = 0.02 (a.u.).

Also, to further increase the confidence that the simulation output was not highly
effected by restricting the box size (rmax) to 600 (a.u.), and the higher-energy quan-
tum states (lmax) to 15, several convergence tests were performed. The tests were
performed by selecting a reasonable high intensity of I0 = 1 × 1014 W/cm2, corre-
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sponding to E0 = 0.05338 (a.u.), and then fixating one of either rmax or lmax at a
specific value, while increasing the other until convergence. The result for the lmax-
convergence test can be seen in figure (3.4a), where the upper bound for the box
size was set to rmax = 400 (a.u.). From the figure, it can be seen that there is a large
improvement in the ionization probability when going from lmax 5 to 10, and lmax
10 to 15, but a very small change when going from lmax 15 to 20, and so it suggests
that an lmax of 15 is sufficient for achieving reasonable results at this intensity level.
The convergence-test for the box size (rmax) was performed by fixating lmax at 15
for all simulations, and the results can be seen in figure (3.4b). Here the change in
ionization probability is on a much smaller scale for the selected rmax values, than it
was in the lmax case. Nevertheless, the important point is that there is a very small
change in the ionization probability, when increasing the box size from 400 (a.u.)
to 600 (a.u.), indicating that a further increase of the box size, would have very
little effect on the overall ionization probability. The results from both convergence
tests suggest that an upper limit for lmax at 15, and a box size of 600 (a.u.), is more
than enough for calculating ionization probabilities at a reasonable accuracy, at an
intensity region below or slightly above E0 = 0.05338 (a.u.).

(a) Ionization probability vs. lmax. (b) Ionization probability vs. rmax.

Figure 3.4: In the figure, the results from lmax and rmax convergence tests are shown,
both having been performed at the same intensity of E0 = 0.05338 (a.u.), under the
same co-rotating field as in figure (3.2a). a) Plot of ionization probability vs. lmax.
All simulations were performed by fixating rmax at 400 (a.u.), and convergence was
reached at lmax = 15. b) Plot of ionization probability vs. rmax, having lmax fixed
at 15 for all simulations. Convergence was reached at rmax = 600 (a.u.).

Regardless, treating the values from the reference data as some sort of trusted
benchmark with respect to the ionization curves, in further simulations, I therefore
consider the field intensity E0 = 0.06498 (a.u.) as an upper bound for intensities
that should be considered accurate. This threshold is equivalent of I0 = 1.48× 1014

W/cm2, which is slightly above the convergence test intensity. However, even if the
simulation output might be considered somewhat inaccurate for intensities above
this threshold, I still believe it is highly likely that the general form of the curves, will
have a similar shape as more computationally exhaustive simulations. For example
that my thesis simulation deviates from the reference curve in figure (3.2b), but
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nevertheless has captured the overall reduction in ionization probability, up to a
field intensity of E0 = 0.06498 (a.u.). Therefore, when including intensities beyond
this region, it will be emphasized by plotting a dotted line.

The next section covers a discussion of the electron angular distributions for the
co- and counter-rotating fields.

3.2 Angular Distributions: Circular Fields

The electron angular distributions for the ionized states contain information on the
likelihood for the electron to be ejected along a specific path, determined by the an-
gles θ and ϕ. If every path is equally likely, then the resulting distribution would be
a completely symmetrical sphere. It would be of interest to know what the resulting
form of these distributions look like for the different types of polarized fields, but
also for different laser intensities. I first looked at the distributions belonging to the
co-rotating field.

3.2.1 Angular Distributions: Co-Rotating Field

For the co-rotating field, I first calculated angular distributions at two different in-
tensity values. The results are displayed in figure (3.5), where the distribution from
the smallest intensity (1) E0 = 0.00162 (a.u.) is placed on top of the distribution
from the larger intensity (2) E0 = 0.00505 (a.u.). Both distributions have the same
overall shape as the initial state 5g(m=4). The span in the x and y directions of
the smallest distribution (1), is 1/10th the span of the respective x and y com-
ponents of the larger distribution (2), I therefore scaled the x and y axis of the
smallest distribution by a factor of 5, to enlarge it to its current size. There are two
main takeaways from the figure; the first is that increasing the intensity increases
the size of the distribution, which reflects the increased total ionization yield from
Pion = 0.001 to Pion = 0.015. The second is that the ejection paths of the electron
remain unchanged at these intensity levels, which might be from the fact that we
are effectively dealing with single photon absorption in both cases.

In order to understand how the angular distribution evolves over a larger in-
tensity range, several additional distributions were calculated at larger intensities.
Thereafter, the angular distributions were combined with the corresponding ioniza-
tion probabilities into a single figure. The results are shown in figure (3.6), where
one can observe the evolution from a circular torus shape at low intensities, to more
pancake-shaped distributions having out-off plane ejection orbits around the torus
cavity, at larger intensities. The common feature over the whole intensity range is
that the electrons are mostly ejected within the xy-plane, which I will try to explain
after discussing the results from the counter-rotating field in the next section.
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Figure 3.5: Angular distributions from simulations having a co-rotating field. The
smallest torus 1) on top was calculated for an intensity of E0 = 0.00162 (a.u.), while
the larger at the bottom 2) with E0 = 0.00505 (a.u.). The figure demonstrates that
both angular distributions have a similar shape as the initial 5g(m=4) state, but
experience a scaling by a factor of 10 in the x, y dimensions, when going from
intensity (1) to intensity (2).

Figure 3.6: The evolution of angular distributions for the co-rotating field. The
evolution shows that a circular geometry dominates throughout the intensity sweep
for the co-rotating field, but that new out-off plane ionization trajectories forms
around the torus cavity at large intensities. Also note that the distributions are not
to scale.
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3.2.2 Angular Distributions: Counter-Rotating Field

The investigation of the angular distributions originating from the counter-rotating
field were performed at almost identical intensity values, as the co-rotating compar-
ison. The results are are displayed in the two-panel figure (3.7a) and (3.7b).

(a) Counter rotation: E0 = 0.00162 (a.u.). (b) Counter rotation: E0 = 0.00527 (a.u.).

Figure 3.7: Comparison between two angular distributions from simulations having
a counter-rotating electric field. Figure (a) displays the result from the smallest
intensity of E0 = 0.00162 (a.u.), while figure (b) shows the larger intensity of E0 =
0.00527 (a.u.). The figure demonstrates that the circular geometry of the torus
is broken, when the electric field rotates in the opposite direction of the electron
motion, and that the distribution-span in the xy-dimensions, are three orders of
magnitude smaller than for the equivalent spans in the co-rotating cases.

It can be seen from the figure that the circular geometry of the torus has been
broken, leaving us with cone-shaped angular distributions. One of the key differences
in the results between the cone and the torus from the co-rotating field, is that
the span of the distribution along the x and y axis are found to be three orders
of magnitudes smaller, reflecting the lower ionization probability. Also, the most
extreme difference between the torus- and cone-shape is located in the xy-plane at
z = 0, which transformed from the most probable, to the least probable region to
be ejected from in the counter-rotating field.

The evolution of angular distributions over a larger intensity range was also
created for the counter-rotating cases, by plotting selected distributions on top of the
corresponding ionization probability curve, which can be seen in figure (3.8). From
the evolution figure it can be seen that we start of with the cone-shaped distribution
at low intensities, followed by pillar-shaped distributions at intermediate intensities,
and lastly a combination between a disk and a pillar for large intensities. The
evolution of the counter-rotating shapes are vastly different than what we observed
for the co-rotating field in figure (3.6). Now, the dominant spatial direction is in the
z-direction, opposite of what was observed for the evolution to the co-rotating field.
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However, at larger intensities there seem to be a similarity between the counter- and
co-rotating cases, from the fact that both display distributions that have formations
of ejection trajectories close to the center of the original torus cavity. This might
be an anomaly or maybe a few-cycle effect, considering we are using a 4-cycle laser
pulse. The 4-cycle pulse has a total duration of 440 (a.u.), which leads to a time of
110 (a.u.) per revolution. The time for each revolution is then found to be close to
1/8th of the electron’s classical orbital period of 785 (a.u.). The orbital period for
the electron in the 5g(m=4) state was found considering a classical model, and the
full calculation can be read in appendix (C.1).

Since the rotational frequency of the laser is on the same order of magnitude
as the orbital period of the electron, we expect the rotational direction to play a
role, as we saw from the difference in ionization curves and angular distributions.
One way to think about this, will be to consider the electron distribution at two
different sides of the torus. If the laser is initialized to be parallel to the electron
velocity at one side, then it will be anti-parallel at the other side. If we now have
that the orbital period of the electron is the same as that of the laser, then the
distribution starting with a parallel field will continue to have so throughout the
revolution, considering no change in velocity for the electron.

However, for larger circular Rydberg states the orbital period increases signifi-
cantly, and so one would expect the rotation to play a smaller role in these cases,
due to the rotation of the field being so much faster than that of the electron. This
has been documented for the circular 10l(m = 9) state, which show much more
similar ionization curves for the co- and counter-rotating cases [1].

In order to explain the dominant circular shape of the distributions belonging to
the co-rotating field in figure (3.5), one must consider the electron orbits in the states
that are most probable for transition. The reason is that the electron will experience
a push from the laser when orbiting, and so the overall angular distribution represent
average ejection paths over all possible orbits of that occupied state, and should
therefore have a similar shape to the corresponding spherical harmonic. For single
photon absorption the selection rules for the co- and counter-rotating fields have
been found to be as in equation (3.1) [1].

Co-rotation

∆m = +1

∆l = +1

Counter-rotation

∆m = −1

∆l = ±1

(3.1)

Now, in all simulations we have the circular 5g(m=4) or 4l(m=4) as initial state,
and if we start by looking at the co-rotating field, then from the co-rotating selection
rule in (3.1), we have 5l(m=5) as the next excited state. This can also be recognized
to be a circular state, which means that all ejection paths will originate from circular
orbits, and can explain why the angular distributions keeps the circular shape when
we are dealing with low intensity or single-photon absorption. For larger intensities
the dominant shape still seem to be circular, but the overall distribution is probably
a combination between states having non-circular orbits due to the transition rule
not being totally absolute in the high-intensity regime.

For the counter rotating case the selection rules leads to two possible transitions;
one state having l=3, m=3, and the other having l=5, m=3. It was believed that the
overall cone-shape could be explained to be a combination between these two states.
This was tested by taking an equally weighted linear combination of the spherical
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Figure 3.8: The evolution of angular distributions, resulting from a field that
counter-rotates the motion of the electron, shown side by side with the correspond-
ing ionization probability. The evolution shows that a pillar-shape dominates at low
intensities, but that a growing circular disk forms at larger intensities. Also note
that the distributions are not to scale.

harmonics Y m
l (θ, ϕ) as such; Y 3

3 (θ, ϕ)+Y 3
5 (θ, ϕ), and then plotting the absolute value

of the combined spherical harmonic as the radius in a spherical coordinate system.
The plot of each individual harmonic can be seen in figure (3.9a) and (3.9b), while
the plot from the linear combination can be seen in figure (3.9c). It can be seen that
the geometry of the linear combination closely resemble the cone-shaped angular
distribution at low intensities for the counter-rotating field.

Also, if we assume the selection rule somewhat holds for multi-photon absorption,
then in all transitions we have that the m-value must decrease (∆m= -1). This means
we must pass the m = 0 state after a certain number of transitions. The m = 0 state
has a lobe in the z-direction for most l-values, where an example can be seen for
the 5g orbitals in figure (1.1). Therefore, if we pass the general state l∗(m=0), we
expect there to be some z-directionality to the angular distribution. This hypothesis
can explain some of the angular distributions observed at larger intensities for the
counter-rotating field, seen in figure (3.8). Another key observation is that if we
start off at the positive side of m-values (as we do in 5g(m=4)), then after a number
of transitions we will find ourselves in the negative m-regime. Effectively, this is
equivalent to a reversal of the electronic rotational direction, that occurs when the
field counter rotates the electron motion.
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(a) |Y m
l (θ, ϕ)| l=3, m=3 (b) |Y m

l (θ, ϕ)| l=5, m=3 (c) |Y 3
3 (θ, ϕ) + Y 3

5 (θ, ϕ)|

Figure 3.9: The figure illustrates that the cone geometry of the angular distri-
bution from the counter-rotating field, can be explained to result from the linear
combination of spherical harmonics between the two possible transition states for
single-photon absorption. Each figure is created by using the absolute value of these
spherical harmonics as the radius in a spherical coordinate system. (a) shows the
result from spherical harmonic Y m

l (θ, ϕ) having l=3, m=3. (b) for Y m
l (θ, ϕ) having

l = 5, m = 3. c) shows the linear combination of the spherical harmonics in (a) and
(b). Each plot was created in Python using the sph-harm package from the SciPy
libray to calculate spherical harmonics.

I am now done discussing the co- and counter-rotating fields. In the next section,
I will investigate the results from the perpendicular-rotating xz-polarized field. An
illustration of how the geometry of the laser relates to the geometry of the 5g(m=4)
state, can be seen in figure (3.10).

Figure 3.10: Illustration of the xz-polarized rotating field, in relation to the electron
distribution of the 5g(m=4) state.

3.3 Perpendicular Rotating Fields

The xz-polarized field that rotated perpendicular to the electron distribution of the
5g(m=4) state, was implemented by including the Ax(t), Az(t) components of the
laser, and setting the relative phase difference between them to ϕx = 0, ϕz = π/2.
A total of 45 simulations were conducted, having a linear intensity spacing in the
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interval E0 ∈ [0, 0.09747] (a.u.). The matrix elements were constructed using the
same basis of rmax = 600 (a.u.), lmax = 15, Emax = 7.5 (a.u.), N = 740, Nb = 890,
and identical parameters for the laser ω = 0.057 (a.u.), Nc = 4. The resulting
ionization probability curve for the perpendicular field orientation can be see in
figure (3.11), where the dotted blue line represent data points beyond the trusted
threshold of 0.06498 (a.u.). The red line correspond to additional simulation points
where the lmax value has been increased to 20, which gave close to identical results
within the trusted region, but started to deviate slightly when entering the beyond
trusted region, which is in accordance with expectations.

Figure 3.11: Ionization probability curve for the xz-polarized field, rotating perpen-
dicular to the torus-shaped electron distribution of the 5g(m=4) state. The curve
was created from ionization probabilities produced from 45 individual simulations,
having a linear separation of intensities in the interval E0 ∈ [0, 0.09747] (a.u.).

Comparing the ionization probability curve from the xz-polarized field, with the
corresponding curves for the in-plane co- and counter-rotating fields in figure (3.2b)
and (3.2a), it can be seen that the ionization probability is lower at identical inten-
sities, when the field rotates perpendicular to the plane of the electron distribution.
For example at the threshold region at E0 = 0.06498 (a.u.), the perpendicular xz-
rotating field produced an ionization probability of Pion = 0.15, which is less than
half of the corresponding Pion = 0.35 ionization probability for the counter-rotating
field, observed in figure (3.2b). The observation that the in-plane rotating fields
returns a steeper ionization probability curve than the perpendicular rotating field,
might be explained by an analogy with simple classical motion. It is naturally to
think that if the field have all components in the same plane as the electron rotates
within, then the maximum possible change of velocity will occur when all the vector
components align. There is only one component to align between the motion of
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the electron in the xy-plane, and the perpendicular xz-polarized field, and so it is
no surprise that the ionization probability is lower. Nevertheless, the shape of the
curve is rather similar to the in-plane fields, where the ionization probability display
a similar increase in value, also having the characteristic change from a convex to
concave shape at E0 ≈ 0.03 (a.u.). Lastly, as can be observed from the ”beyond
trusted” region, there is no sign of the stabilization effect that was present for the
in-plane co- and counter-rotating fields.

It is also of interest to investigate the distribution of kinetic energies for the
electron at different field intensities. This was done by plotting three selected dif-
ferential probability curves against the kinetic energy of the electron, which can be
seen in figure (3.12). The probability for finding the electron at a given energy in-
terval, is given by the area under the curve for that interval. The oscillating spikes
in probabilities occur at an even energy spacing, and can be reasoned to result from
multi-photon resonances, where the distance between each peak should equal a sin-
gle photon energy. The first peak correspond to a net-absorption of a single photon,
the second of two and so on. However, it must be emphasized that the electron can
also re-emit photons, and so in reality there might be a larger net number of pho-
tons involved than the specific numbering of the resonance peak. The elevation of
the probability curves in figure (3.12) illustrates that the probability for measuring
the electron at a larger kinetic energy increases rapidly with intensity. This is an
expected result, since intensity is in reality related to the average number of photons
(Np) present in the laser pulse, having total energy of (E = Np ∗ hf). Therefore,
larger intensities increases the probability for multi-photon absorption.

Figure 3.12: Three selected differential probability vs. kinetic energy plots for the
circular xz-polarized field. The intensities are 0.0038 (a.u.), 0.0126 (a.u.) and 0.0218
(a.u.), from top panel to bottom panel respectively.
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3.3.1 Angular Distributions: Perpendicular Field

The first investigation of the angular distributions related to the perpendicular xz-
polarized field were performed at an intensity of E0 = 0.00162 (a.u.), which corre-
spond to the absorption of a single-photon. A four-panel figure where this distribu-
tion has been viewed from four different angles, can be seen in figure (3.13a)-(3.13d).

(a) View (a). (b) View (b).

(c) View (c). (d) View (d).

Figure 3.13: Four-panel figure displaying different planes of view on the same angular
distribution from the xz-polarized field, resulting from an intensity of E0 = 0.00162
(a.u.).

The occupation of scattered states belonging to the distribution in figure (3.13a)-
(3.13d), were investigated and it was found that the most populated states consisted
of three different m, l combinations; one having l=5, m=5, another having l=5, m=4
and the last having l=3, m=3. The l=5, m=4 combination can be recognized to
come from the selection rule related to the z-polarization (∆l = +1, ∆m = 0), while
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the two other l, m pairs come from the x-related selection rules. A linear combination
was calculated between the three spherical harmonics, where each spherical harmonic
was weighted with the corresponding complex coefficient. The absolute value of the
linear combination was plotted as the radius in a spherical coordinate system, and
the resulting geometry can be seen in figure (3.14a) and (3.14b). The directional
orientation of this geometry is not completely identical to that of the calculated
angular distribution, which is probably because there is a significant contribution
from states other than the three most populated ones.

(a) View (1). (b) View (2).

Figure 3.14: Resulting shape for plotting the absolute value of the linear combination
between the three individual harmonics Y m

l (θ, ϕ) having l=5, m=5, l=5, m=4 and
l=3, m=3, as |a1Y

4
5 (θ, ϕ) + a2Y

5
5 (θ, ϕ) + a3Y

3
3 (θ, ϕ)|. These three m, l combinations

belong to the most occupied scattered states from the xz-polarized field, where a1,
a2, a3 are the corresponding complex coefficients for each of the three states.

The evolution of angular distributions were also investigated by combining them
with the corresponding ionization probabilities, as were done when investigating
the previous field orientations. Figure (3.15) shows the overall evolution from what
looks like a 2-blade propeller at low intensities, to more chaotic structures at larger
intensities. It is very plausible that the last four distributions are not completely
converged given their ”spiky” shapes, but which does not necessarily mean that
the ionization yields are not correct. The calculation of ionization yields is less
sensitive to slight deviations in simulation-output than the calculation of angular
distributions.

Lastly, I will present a summary and conclusion of the study carried out in this
thesis.
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Figure 3.15: The evolution of angular distributions under an xz-polarized field,
shown side by side with the corresponding ionization probability. Every distribution
is depicted under the same viewing angle, so that the rotation relative to the start
position would be captured.
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Summary and Conclusion

In this thesis, an investigation of the electron behaviour of the circular Rydberg state
5g(m=4) under the influence of circularly polarized laser fields, have been studied
by solving the time-dependent Schrödinger equation numerically. Ionization proba-
bility curves originating from different field orientations in relation to the electron
distribution of the 5g(m=4) state, were investigated in an intensity region below
E0 = 0.09747 (a.u.). Convergence tests were also performed on tuneable parameters
such as the box size (rmax), to ensure that the results would not be significantly
impacted by truncating parameters at too low values.

Ionization probability curves from a previously published article investigating co-
and counter-rotating fields on the 5g(m=4) state [1], were successfully reproduced
for intensities below E0 = 0.06498 (a.u.). The reproduced results confirmed that
the co-rotating laser-field (rotating in the same direction as the orbiting electron)
produced a larger ionization yield than the counter-rotating field, and that for both
field orientations atomic stabilization were observed in a limited intensity region.
However, small structural deviations in the ionization probability curve between my
results and that of the referred article, were found within a trusted intensity region
for the co-rotating field.

Angular distributions were also investigated for both the counter- and co-rotating
fields. The distributions from the co-rotating field produced shapes similar to the
initial torus geometry of the 5g(m=4) state for small intensities, which was found to
be consistent with the selection rules for single-photon absorption given in [1]. For
the counter-rotating field the angular distribution had a cone-shape at low intensi-
ties, which was reasoned to be the result of a superposition between the two states
from the single-photon transition rule; one having l=3, m=3 and the other having
l=5, m=3. This hypothesis was further strengthened when the linear combination
of spherical harmonics belonging to these two states, gave a very similar geometry
to that of the cone-shaped angular distribution.

The evolution of angular distributions over a wider intensity range were also
investigated for both the co- and counter-rotating fields, by combining them with
the corresponding ionization probability into two unified figures. From these figures
it was found that the co-rotating field continued to mostly produce circular angular
distributions throughout the intensity sweep, while the counter-rotating field gave
rise to more pillar shaped distributions.

Similar investigations to that performed on the in-plane co- and counter-rotating
fields, were also conducted using a field orientation that rotated perpendicular to
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the torus shaped electron distribution of the 5g(m=4) state. The perpendicular
rotation resulted in significantly lower ionization yields, than that observed for the
co- and counter-rotating fields. The kinetic energy distribution for this field was also
investigated by plotting differential probability vs. kinetic energy for three different
intensities. It was found that the differential probability curves experience a set
of peaks, where each peak is separated by a single photon energy, consistent with
multi-photon absorption.

4.1 Future Advancement

This study has shown that the orientation of circularly polarized laser fields have
an effect on the ionization probabilities and electron angular distributions for the
5g(m=4) Rydberg state. For future work, it would be of interest to model circular
states of higher l, m values, that were omitted in this thesis due to time limitations
and computational restrictions. One such state could be the 10l(m=9) state, where
the electron has a significantly larger orbital period. Another project could be to
investigate results from using the same co- and counter-rotating fields, but having
an identical rotational frequency as the orbital period of the electron. One way to
do this with the 5g(m=4) electron, would be to have an eight-fold increase in the
laser wavelength into the far-infrared regime, which in turn reduces the rotational
frequency to approximately the orbital period.

Looking ahead, the natural application I see for Rydberg physics is in relation
to quantum technologies, and especially for the development of next generation
transistors and quantum-bits (q-bits). The entanglement of large q-bit arrays is
one of the essential obstacles in quantum-computing, which might be overcome
by Rydberg mediated interactions, as addressed in this review article [29]. Also,
perhaps the Rydberg blockade will be a crucial effect to exploit for the production
of quantum logic gates, which all ready seem to be under research [30].
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Appendix A

Matrix Elements

This appendix contain the full derivation of the py element, and the px and pz
components have been included in section (2.4.1). I will frequently refer to a private
document [31], where previous students and researchers (including my supervisor)
have all ready derived many mathematical QM operations, and so much of the
credit for this derivation should go to them. I tried to keep the same format as this
document to make later comparisons easier.

A.1 py Element

The py operation to be derived can be seen in equation (A.1).

〈Ψk′ l′m′ | p̂y |Ψklm〉 = 〈uk
′ l′ (r)

r
Y m

′

l′
(θ, ϕ)| − ih̄ ∂

∂y
|ukl(r)

r
Y m
l (θ, ϕ)〉 (A.1)

The partial derivative ∂
∂y

contains three terms when transformed into spherical co-

ordinates, as shown in (A.2).

∂

∂y
= sin(θ) sin(ϕ)

∂

∂r
+

1

r
sin(ϕ) cos(θ)

∂

∂θ
+

1

r

cos(ϕ)

sin(θ)

∂

∂ϕ
(A.2)

Each term in the ∂
∂y

operation will work on Ψklm, where the spherical harmonics are

defined as in (A.3).

Y m
l (θ, ϕ) = Nm

l e
imϕ Pm

l (cosθ)

Nlm = 1

√
(2l + 1)(l −m)!

4π(l +m)!

(A.3)

I will now deal with each term separately, and later combine them to the full
expression.

First Term: sin(θ) sin(ϕ) ∂
∂r

ukl(r)
r
Y m
l (θ, ϕ)

The ∂
∂r

operation on u(r) will be dealt with later, so first expanding sin θ with Euler’s
relation: eiϕ = cosϕ + i sinϕ → sinϕ = 1

2i
[e−iϕ − eiϕ] gives us (A.4).
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sin(θ) sin(ϕ)Y m
l (θ, ϕ) =

1

2i
(eiϕ − e−iϕ)Nm

l e
imϕ Pm

l sin(θ)

=
1

2i
Nm
l e

i(m+1)ϕPm
l sin(θ)− 1

2i
Nm
l e

i(m−1)ϕPm
l sin(θ)

(A.4)

Now, using the relation for the Legendre polynomials in (A.5).

sin θPm
l =

1

2l + 1
[Pm+1
l−1 − P

m+1
l+1 ]

=
1

2l + 1
[(l −m+ 1)(l −m+ 2)Pm−1

l+1 − (l +m− 1)(l +m)Pm−1
l−1 ]

(A.5)

We can then select the appropriate expansion from (A.5) and combine with (A.4),
leaving us with four expressions containing P l±1

m±1. This will then allow us to combine
N(l±1)(m±1) and Pm±1

l±1 into new spherical harmonics Y m±1
l±1 , doing so leads to (A.6).

sin(θ) sin(ϕ)Y m
l =

1

2i
Nm
l e

i(m+1)ϕ 1

2l + 1
[Pm+1
l−1 − P

m+1
l+1 ]

− 1

2i
Nm
l e

i(m−1)ϕ 1

2l + 1
[(l −m+ 1)(l −m+ 2)Pm−1

l+1 − (l +m− 1)Pm−1
l−1 ]

(A.6)

One of these four expressions is written out in (A.7).

1

2l + 1
(l −m+ 1)(l −m+ 2)NlmP

m−1
l+1 =

(l −m+ 1)(l −m+ 2)√
2l + 1

√
2l + 3

∗

√
(2l + 3)(l −m)!

4π(l +m)!

=

√
(l −m+ 1)(l −m+ 2)√

2l + 1
√

2l + 3
Nm−1
l+1 Pm−1

l+1 = al+1,−m+1Y
m−1
l+1

(A.7)

Where I have defined the constant alm as in (A.8), identical to what was done in
the document [31].

alm =

√
(l +m)(l +m− 1)

4(2l − 1)(2l + 1)
(A.8)

After doing this for the 4 different terms, then we get slight modifications of the
constant alm. Also, when including the (1/i) term, we get the following four combi-
nations in (A.9).

+
1

i

√
(l −m)(l −m− 1)

4
√

2l − 1
√

2l + 1
Nm+1
l−1 Pm+1

l−1

−1

i

√
(l +m+ 2)(l +m+ 1)

4
√

2l + 1
√

2l + 3
Nm+1
l+1 Pm+1

l+1

−1

i

√
(l −m+ 2)(l +m+ 1)

4
√

2l + 1
√

2l + 3
Nm−1
l+1 Pm−1

l+1

+
1

i

√
(l +m)(l +m− 1)

4
√

2l − 1
√

2l + 1
Nm−1
l−1 Pm−1

l−1

= −i
(
al,−mY

m+1
l−1 − al+1,m+1Y

m+1
l+1 − al+1,−m+1Y

m−1
l+1 + al,mY

m−1
l−1

)

(A.9)
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This result is almost identical to the px case derived in the document [31], but
there is a complex component and a change in the sign for the last two terms.

Second Term: 1
r

sin(ϕ) cos(θ) ∂
∂θ
Y m
l

The 1
r

term can be left aside, and will be multiplied back later. Also for this term
we use Euler’s relationship and we can express the term as in (A.10).

1

r
sin(ϕ) cos(θ)

∂

∂θ
(Y m

l ) =
1

2i
(ei(m+1)ϕ − ei(m−1)ϕ)Nm

l cos θ
∂

∂θ
Pm
l (A.10)

Using the relationship for the derivative of the Legendre polynomials, shown in
(A.11).

∂

∂θ
Pm
l =

1

2
[Pm+1
l − (l +m)(l −m+ 1)Pm−1

l ] (A.11)

Replacing ∂
∂θ
Pm
l with this expansion, leads to (A.12).

1

2i
(ei(m+1)ϕ − ei(m−1)ϕ)Nm

l

1

2
[cos(θ)Pm+1

l − (l +m)(l −m+ 1) cos(θ)Pm−1
l ] (A.12)

The cosine-Legandre term can be expanded using equation (A.13).

cos(θ)Pm
l =

1

2l + 1
[(l −m+ 1)Pm

l+1 + (l +m)Pm
l−1] (A.13)

Then we can rewrite our equation into (A.14).

Nm
l

4i

1

2l + 1
(ei(m+1)ϕ − ei(m−1)ϕ)×

[(l −m)Pm+1
l+1 + (l +m+ 1)Pm+1

l−1

−(l +m)(l −m+ 1)
(
(l −m+ 2)Pm−1

l+1 − (l +m− 1)Pm−1
l+1

)
]

(A.14)

This leads to the final result for this term, as shown in equation (A.15), similar to
that of the px case in the document [31].

sin(ϕ) cos(θ)
∂

∂θ
Y m
l = (A.15)

+
1

4i
Nm
l e

i(m+1)ϕ 1

2l + 1

[
(l −m)Pm+1

l+1 + (l +m+ 1)Pm+1
l−1

]
(A.16)

+
1

4i
Nm
l e

i(m−1)ϕ (l +m)(l −m+ 1)

2l + 1

[
(l −m+ 2)Pm−1

l+1 + (l +m− 1)Pm−1
l−1

]
− 1

4i
Nm
l e

i(m−1)ϕ 1

2l + 1

[
(l −m)Pm+1

l+1 + (l +m+ 1)Pm+1
l−1

]
− 1

4i
Nm
l e

i(m+1)ϕ (l +m)(l −m+ 1)

2l + 1

[
(l −m+ 2)Pm−1

l+1 + (l +m− 1)Pm−1
l−1

]
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Third Term: 1
r

cos(ϕ)
sin(θ)

∂
∂ϕ
Y m
l

Using the Euler cosine-transformation we have (A.17).

cos(ϕ)

sin(θ)

∂

∂ϕ
Y m
l =

im

2
(ei(m+1)ϕ + ei(m−1)ϕ)Nm

l

Pm
l

sin(θ)
(A.17)

Rewriting this into 4 terms leads to (A.18).

cos(ϕ)

sin(θ)

∂

∂ϕ
Y m
l = +

im

2
Nm
l e

i(m+1)ϕ

(
l −m+ 1

2l + 1

Pm
l

sin(θ)
+
l +m

2l + 1

Pm
l

sin(θ)

)
(A.18)

+
im

2
Nm
l e

i(m−1)ϕ

(
l +m+ 1

2l + 1

Pm
l

sin(θ)
+
l −m
2l + 1

Pm
l

sin(θ)

)
Performing another expansion of the Legendre polynomials in (A.19).

Pm
l

sin(θ)
=− 1

2m
[Pm+1
l−1 + (l +m− 1)(l +m)Pm−1

l−1 ] (A.19)

=− 1

2m
[Pm+1
l+1 + (l −m+ 1)(l −m+ 2)Pm−1

l+1 ]

Moving the complex ”i” to the denominator changes the sign and leads to (A.20).

cos(ϕ)

sin(θ)

∂

∂ϕ
Y m
l = (A.20)

+
1

4i
Nm
l e

i(m+1)ϕ 1

2l + 1

[
(l +m)Pm+1

l+1 + (l −m+ 1)Pm+1
l−1

]
(A.21)

+
1

4i
Nm
l e

i(m−1)ϕ 1

2l + 1

[
(l −m)(l −m+ 1)Pm−1

l+1 + (l +m− 1)(l +m)(l +m+ 1)Pm−1
l−1

]
+

1

4i
Nm
l e

i(m−1)ϕ 1

2l + 1

[
(l −m)Pm+1

l+1 + (l +m+ 1)Pm+1
l−1

]
+

1

4i
Nm
l e

i(m+1)ϕ (l +m)(l −m+ 1)

2l + 1

[
(l −m+ 2)Pm−1

l+1 + (l +m− 1)Pm−1
l−1

]
These terms are very similar to the result in (A.15), and it can be noted that the
last two terms have the opposite sign. Conveniently this means that the unmatched
Legendre polynomials ei(m∓1)ϕPm±1 (last two terms) cancel out.

Combining Term 2+3

We will combine term 2+3 since they both contain 1
r
, so combining equations (A.20)

and (A.15) we have (A.22).

+
1

2i
Nm
l e

i(m+1)ϕ 1

2l + 1

[
(2l)Pm+1

l+1 + (2l + 2)Pm+1
l−1

]
(A.22)

+
1

4i
Nm
l e

i(m−1)ϕ 1

2l + 1

[
(l −m)(l −m+ 1)Pm−1

l+1 + (l +m− 1)(l +m)(l +m+ 1)Pm−1
l−1

]
+

1

4i
Nm
l e

i(m−1)ϕ (l +m)(l −m+ 1)

2l + 1

[
(l −m+ 2)Pm−1

l+1 + (l +m− 1)Pm−1
l−1

]
Rewriting to the same format as the document leads to (A.23).
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+
l

2i
Nm
l e

i(m+1)ϕ 1

2l + 1
Pm+1
l+1 (A.23)

+
l

2i
Nm
l e

i(m−1)ϕ (l −m− 1)(l −m+ 2)

2l + 1
Pm−1
l+1

+
l + 1

2i
Nm
l e

i(m+1)ϕ 1

2l + 1
Pm+1
l−1

+
l + 1

2i
Nm
l e

i(m−1)ϕ (l +m− 1)(l +m)

2l + 1
Pm−1
l−1

=−i
(
lal+1,m+1Y

m+1
l+1 + lal+1,−m+1Y

m−1
l+1 + (l + 1)al,−mY

m+1
l−1 + (l + 1)al,mY

m−1
l−1

)

Final Result

The partial derivative with respect to y in spherical coordinates can therefore be
written as (A.24).

∂

∂y
Y m
l = −i

(
al,−mY

m+1
l−1 − al+1,m+1Y

m+1
l+1 − al+1,−m+1Y

m−1
l+1 + al,mY

m−1
l−1

) ∂
∂r

(A.24)

−i
(
lal+1,m+1Y

m+1
l+1 + lal+1,−m+1Y

m−1
l+1 + (l + 1)al,−mY

m+1
l−1 + (l + 1)al,mY

m−1
l−1

) 1

r

And when reintroducing that the derivative of ukl(r) as (A.25),

d

dr

ukl(r)

r
=
−1

r2
ukl +

1

r

dukl
dr

(A.25)

then the complete integral can be expressed as equation (A.26).

∂

∂y

[
ukl(r)

r
Y m
l (θ, ϕ)

]
= −i(1

r

dukl
dr
− l + 1

r2
ukl)al+1,m+1Y

m+1
l+1 (A.26)

−i(1

r

dukl
dr
− l + 1

r2
ukl)al+1,−m+1Y

m−1
l+1

−i(1

r

dukl
dr

+
l

r2
ukl)al,−mY

m+1
l−1

−i(1

r

dukl
dr

+
l

r2
ukl)al,mY

m−1
l−1

Inserting this into the expression for the matrix element, we have our final ex-
pression in (A.27).
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〈ukl
r
Y m
l |

∂

∂y
|uk

′ l′

r
Y m

′

l′
〉 =

−ial,−mδl,l−1δm,m+1

∫ rmax

0

ukl

(
duk′ ,l−1

dr
− l

r
uk′ ,l−1

)
dr

−ial,mδl,l−1δm,m−1

∫ rmax

0

ukl

(
duk′ ,l−1

dr
− l

r
uk′ ,l−1

)
dr

−ial+1,m+1δl,l+1δm,m+1

∫ rmax

0

ukl

(
duk′ ,l+1

dr
+
l + 1

r
uk′ ,l+1

)
dr

−ial+1,−m+1δl,l+1δm,m−1

∫ rmax

0

ukl

(
duk′ ,l+1

dr
+
l + 1

r
uk′ ,l+1

)
dr

(A.27)

The px and pz elements can be derived in a similar manner, however the final
results for these elements are given in one of the previous sections, and can be seen
in equation (2.67) and (2.66).
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Equations

ψnlm =

√(
2

na

)3
(n− l − 1)!

2n(n+ l)!
e−r/na

(
2r

na

)l [
L2l+1
n−l−1(2r/na)

]
Y m
l (θ, φ) (B.1)

Equation from [17, p. 151].

Y m
l (θ, ϕ) =

√
(
(2l + 1)(l −m)!

4π(l +m)!
)Pm

l (cosθ)e−imϕ = NlmP
m
l e

imϕ (B.2)

Equation from [17, p. 151].
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Appendix C

Calculations

C.1 Classical Time of Orbit 5g(m=4) State

The energy for a general quantum state |nlm〉 is expressed according to equation
(C.1), when using atomic units.

En =
−1

2n2
(C.1)

The total energy of the electron (Ee), is the sum of the kinetic and potential energy.
Using atomic units this becomes as in equation (C.2).

Ee =
1

2
v2 − 1

r
(C.2)

The force from the core on the electron can be expressed using the Coulomb force
(Fc), and when using atomic units we have the result in equation (C.3).

Fc = (me = 1)× a =
1

r2
(C.3)

This can be combined with the expression for acceleration (a) from a classical circular
orbit, as in equation (C.4).

a =
v2

r
= Fc =

1

r2
(C.4)

Substituting n = 5 into the energy En, and using that 1/r = v2, we have that

v = ±
√

1
25

(a.u.), as shown in (C.5).

−1

2 ∗ (25)
=

1

2
v2 − v2 =

−1

2
v2 → v = ±

√
1

25
(a.u.) (C.5)

The value for v can then be re substituted into (C.2), leading to r = 25 (a.u.). From
here, the circumference of orbit can be estimated using O = 2πr, and classical time
can be found using t = s/v, leading to the final answer in (C.6).

t =
s

v
=

2π ∗ 25

1/5
= 785.4 (a.u.) (C.6)
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