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In the last decade, numerical models have become an
increasingly important tool in biological and medical science.
Numerical simulations contribute to a deeper understanding of
physiology and are a powerful tool for better diagnostics and
treatment. In this paper, a nonlinear multi-scale model
framework is developed for blood flow distribution in the full
vascular system of an organ. We couple a quasi one-
dimensional vascular graph model to represent blood flow in
larger vessels and a porous media model to describe flow in
smaller vessels and capillary bed. The vascular model is based
on Poiseuille’s Law, with pressure correction by elasticity and
pressure drop estimation at vessels’ junctions. The porous
capillary bed is modelled as a two-compartment domain
(artery and venous) using Darcy’s Law. The fluid exchange
between the artery and venous capillary bed compartments is
defined as blood perfusion. The numerical experiments show
that the proposed model for blood circulation: (i) is closely
dependent on the structure and parameters of both the larger
vessels and of the capillary bed, and (ii) provides a realistic
blood circulation in the organ. The advantage of the proposed
model is that it is complex enough to reliably capture the main
underlying physiological function, yet highly flexible as it offers
the possibility of incorporating various local effects.
Furthermore, the numerical implementation of the model is
straightforward and allows for simulations on a regular
desktop computer.
1. Introduction
Nowadays, computational approaches have become one of the
complementary tools in studying structure, function and blood
regulation of the vascular systems [1–10]. The fundamental
purpose of developing a numerical model is to understand how
changes in the vascular structure affect transport mechanisms in
organs, giving important clinical information. However, one of
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the challenging modelling issues for these systems is the fact that vascular systems are made of vessels at
different scales [8], ranging from large arteries with close to turbulent blood flow, to smaller arteries and
arterioles with mostly laminar flow, and to capillaries, with perfusion of cellular particles between artery
and vein capillaries. This complexity makes it difficult to fully understand the connection between scales
and the effect of localized changes on the whole organ.

The multi-scale mathematical modelling for blood circulation offers a reasonable solution to these
difficulties. By combining the well-established flow models at various vascular scale levels, one may
achieve a global model that also takes into account multiple local properties. The coupling between each
level is the key to creating a complete model with a suitable balance between computational cost and
detail, as required for pathological characterization [6,8,11]. To this end, several earlier studies have
proposed suitable modelling set-ups [1,5,7,12–16]. The authors in [5] propose a three-dimensional/one-
dimensional coupling for combining large and small arteries in the cerebral vasculature. In [10], the
authors consider a network representation that includes arteries, veins and capillaries. This model
assumes that the whole vasculature is an interconnected tube network and results in a much larger
system. However, the computational cost of this approach limits its applicability at a clinically relevant
scale. To overcome the limitation, the authors in [10] replaced the capillaries and arterioles with a coarser
network with similar resistivity. In a recent study [3], the authors treat vessels as a one-dimensional
network model and the capillary bed as a three-dimensional continuum model, thus decreasing
significantly the computational cost and allowing for full brain simulations. Other works addressing a
discrete-continuum system have investigated the blood flow simulation for cerebral and liver
microvasculature, both in humans and animals [7,12,17,18]. It must be mentioned, however, that zero-
dimensional and one-dimensional models have a reduction in accuracy when compared to full three-
dimensional models, in particular when applied to describe large vessels [19].

In the current work, we propose a multi-scale model for blood circulation that incorporates
nonlinearities induced by the vascular structure. The blood flow in the vascular network (arteries and
veins) is described using a vascular graph model [10] in which vessel segments are represented as long
cylindrical tubes with constant radii. To compensate for the accuracy loss of this model, a model for
pressure drop is included at vessel bifurcations [19,20] and we allow for a vessel radius dependence on
pressure due to vessel elasticity [21]. Darcy flow is used to describe the continuum representation of the
micro-circulation in the smaller vessels and the capillary bed. Further, a continuous distribution is
introduced to model the unresolved structure between the vascular network terminals and the Darcy
domain, with the purpose of reflecting the micro-vessel structure surrounding each terminal node.
Differently from [3], we investigate the impact of nonlinear interactions between pressure and flow, as
well as the role of vessel bifurcations in the flow network, and the effect of vessel occlusion in an organ.
Our model was developed for full-organ simulations with parameters from experiment data on frogs
[22–25] accompanied by estimations [21,26–28] to obtain results purely from governing equations and
the given anatomy.
2. Material and methods
In this section, we present our modelling framework. We construct a system consisting of an arterial and
venous vascular network, a two-compartment capillary bed and the couplings between the parts. A
realization of the model configuration is illustrated in figure 1, where the dotted line represents the
coupling and connection between compartments. Blood flows from the roots of the arterial network
(bottom left) through the arterial network (red), then to the continuous domains of the capillary
compartments (light red for arterial and light blue for venous compartment), and finally to the
venous network structure (blue) and to the venous roots at the bottom right of the venous network.
The arterial and venous terminal nodes are connected to the respective continuous capillary domains
in the capillary bed (red solid and blue dashed dotted-lines).

2.1. Model simplifications and hypotheses
Ourmodelling framework is quite generic and, as such, does not take into account all micro andmacro effects
related to the flow in the vascular system. Yet, by expressing the system in a multi-scale framework, we
manage to capture some of the underlying micro-scale details using the macro-scale parameters.

The main simplification in this model is that the capillary bed is assumed to be a homogeneous and
isotropic porous media. Further, the nonlinearities induced by the capillary physiology and the blood



artery capillary bed vein

mode

y

x

Figure 1. The quasi-three-dimensional numerical model for a two-dimensional spatial problem. The xy (vertical) axis represents the
two-dimensional computational domain in space and the third axis (horizontal) is the model axis. Blood flows from the roots of the
arterial network through the arterial network (red), then to the continuous domains of the capillary compartments (light red for
arterial and light blue for venous compartment) and finally to the venous network structure (blue) and to the venous roots at the
bottom of the venous network. The arterial and venous terminal nodes are connected to their respective continuous capillary
domains in the capillary bed (red solid and blue dashed dotted lines). The green dotted lines represent the pixel-wise bridge
between capillary compartments, which is modelled as the blood perfusion in §2.4.
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itself are neglected [29]. These include, among others, the non-Newtonian behaviour of the blood [30],
the Fahraeus–Lindqvist effect [31], plasma skimming [32] as well as viscoelasticity in the capillary
bed. The effect of these limitations is partly studied in a recent simulation framework [33].
Nevertheless, the reported simulations are only performed on a micro-scale and, to our knowledge,
no current simulation framework is able to incorporate all these micro-effects into a multiscale model.

With the simplifications mentioned above, the nonlinearities in this work are restricted to effects
arising from and affecting the vascular network, namely pressure drop at bifurcations and vessel
elasticity. Other than that, we limit our model to situations where the structure of the vascular system
is in a fixed passive condition (steady-state), so that all parameters and coefficients are constant over
the simulation time.

2.2. Graph structure model for vascular networks
A system of equations was constructed based on a network structure for both arteries and veins.
Assuming laminar flow and non-slip conditions on the vessel walls, each vessel segment n was
modelled as a long cylindrical tube of length Ln with constant radius rn≪ Ln. The vessel radius was
computed as an average radius value from the segmentation data. The pressure drop ΔPn in a single
vessel segment n was computed using Hagen–Poiseuille’s Law [10]

DPh
n ¼ 8mLnqn

pr4n
, ð2:1Þ

where the upper index h stands for hydrodynamic, μ is the blood viscosity and qn is a volumetric blood
flow. At a junction node, a pressure match scheme was used to define vessel pressure drop connected to
the junction node [34]. An additional pressure drop estimation was defined from [19,20]

DPb
n ¼ rq2dat

2p2r4dat
1þ q2nr

4
dat

q2datr
4
n
� 2qnr2dat

qdatr2n
cos

3
4
uðdat,nÞ

� �� �
, ð2:2Þ

where the upper index b stands for bifurcation and the index dat refers to the datum vessel, i.e. the vessel
from which the flow approaches the junction. Further, θ(dat,n) is the angle between the datum vessel and
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Figure 2. Illustration of pressure drop at junctions, see (2.3). The arrow represents the direction of blood flow.
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vessel n. The pressure drop equation was constructed based on Bernoulli equation to match the total
pressure at the inlet and outlet vessels at bifurcation. The derivation details were described in [20] for
converging and diverging flow at a junction. Hence, the total pressure drop after a bifurcation node
was computed as the sum of both equations (2.1) and (2.2)

DPn ¼ DPh
n þ DPb

n, ð2:3Þ
see figure 2. The other governing equation was the conservation of mass at a nodeX

qin ¼
X

qout, ð2:4Þ

with qin representing the blood that flows into the node and qout is a flow out of the node.
949
2.3. Elasticity on vessel walls
Vessel wall elasticity provides capacitance and pulse-wave dampening, allowing the arteries to maintain a
relatively constant pressure despite the pulsating nature of the blood flow.On the other hand, the vesselwall
elasticity also allows for a vessel radius dependence on the pressure gradient, to regulate blood supply in
case of an alteration of the vascular system [21]. The change in radius due to pressure was described by

Dr ¼ r� rinit ¼ ð1� l2Þr2init
hE

ðPin � PextÞ, ð2:5Þ

where rinit is the initial vessel radius without pressure gradient, h is the vessel wall thickness, E is the Young
modulus, λ is the Poisson ratio, and Pin, Pext are the pressures inside and outside the vessel, respectively. The
vessel thickness is assumed to be proportional to the vessel radius, with h = 0.22r for the arteries and h = 0.1r
for the veins. This is within the approximated range reported in [24]. For the elasticity parameters, the Young
modulus in the arteries Ea is two times bigger than Ev in the veins, Ea = 2Ev = 1 MPa, and λ = 0.5 [21,27]. Pin is
defined as the average pressure in the segment, that is the average pressures at both segment endpoints, and
Pext as the capillary pressure at the midpoint outside the vessel. The elasticity equation (2.5) has the effect of
introducing a nonlinearity to the system. Thus, the pressure difference between two adjacent nodes in avessel
is determined by substituting equation (2.5) into equations (2.1) and (2.2).
2.4. Capillary model
In the capillary model, smaller vessels and the capillary bed were discretized with a uniform grid and
described by Darcy’s single-phase flow equation. Darcy’s Law, describing the flow of a fluid in a porous
medium, states that a fluid flows from regions of higher pressure to regions of lower pressure in a linear
manner. Thus

v ¼ �K
m
rP, ð2:6Þ

where v is the Darcy flux (volumetric flow rate per unit area (m3 s−1 m−2)),K is the permeability tensor of the
porousmedium and μ is the viscosity [35]. In addition, we assume conservation of mass (continuity equation)

r � v ¼ Q, ð2:7Þ
whereQ is the source term (s−1). In thismodel,Q is a source or sink, for instance describing the flow in or out a
terminal node in the arterial or venous system, or describing the passage of flow fromone compartment to the
other. We assume blood to be an incompressible fluid, and by incorporating Darcy flow into the continuity
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equation, we obtain

�r � K
m
rP

� �
¼ Q: ð2:8Þ

The capillary bed is described as a two-compartment system, using one compartment for the arterial part and
one for the venous part. Blood perfusion is interpreted as the interchange between the two compartments, i.e.
the exchange of oxygenated blood with deoxygenated blood in the capillary bed. The driving force for
perfusion is the pressure difference between the two compartments [3], giving the linear relation

F ¼ aðPa � PvÞ, ð2:9Þ

where α is the perfusion parameter. The Darcy model for the two compartments becomes

�r � Ka
m rPa

� �
¼ Qa � aðPa � PvÞ in Va

�r � Kv
m rPv

� �
¼ Qv þ aðPa � PvÞ in Vv

and ub � nb ¼ 0 ðNeumann BCÞ on @Vb,

9>>>=
>>>;

ð2:10Þ

where Vb is the Darcy capillary volume and the index β= {a, v} stands for artery and vein, respectively.
:201949
2.5. Coupling vascular structure and capillary models
To complete the system, both the arterial and venous Darcy systems were combined with the terminal
nodes of the arterial and venous networks as point sources/sinks. The analytic solution of the Darcy
equation around these points is a Dirac delta function, with a singularity at the source/sink point,
creating a problem at the three-dimensional–one-dimensional interface. To avoid this problem, a fluid
distribution function was introduced [3]

f ðxÞ ¼ C exp �1
1�jxj2

� �
if jxj , 1

0 if jxj � 1,

(
ð2:11Þ

and this function was used with a finite radius ε, fε(x) = f (x/ε) on the Darcy domain. The finite radius ε
can be set to a user-chosen constant or to a fraction of the terminal vessel’s radius. In this manuscript, it is
set to three pixels to represent the vessels that are not observable in the imaging data. As a result, the flow
at a terminal node Qt is coupled to the capillary compartment as a number of sources/sinks QbðxÞ
according to the relation

Qe
t ¼

ð
Vb

QbðxÞf eðx� xtÞdx: ð2:12Þ

Beside mass continuity, we have to describe pressure continuity between the one-dimensional vascular
graph and the three-dimensional Darcy model. The pressure drop between the terminal node t and
the surrounding tissue was thus given as

Pt �
ð
Vb

PbðxÞf eðx� xlÞdx ¼ kQt, ð2:13Þ

where κ represents the resistance estimation for capillary system around terminal t in the Darcy model. In
this work, the resistance κ was estimated as a constant by using equation (2.1) to compute the resistance
of a cylindrical tube connecting a terminal node to the Darcy domain inside the sphere of radius ε centred
at the terminal node. The tube has a length of ε and a radius of m−1/3rt, where m is the number of
computational cells within the sphere.

Both flow and pressure couplings between the vascular graph and Darcy model close the loop from
the arterial roots to the venous roots. While a well-posedness analysis of the full model with nonlinear
effects is beyond the scope of this paper, a linearized model similar to the one considered in this paper
was recently shown to be well posed, both in the continuous setting and when discretized by low-order
finite volume methods [36].
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2.6. Numerical implementation of the flow

2.6.1. The vascular network

It consists of vessel segments and nodes and is governed by (2.1), (2.4) and (2.11). For each graph segment
n, the pressure drop (2.1) (linear part) and the pressure drop at junctions (2.2) (nonlinear part) were
considered. When considering elasticity, equation (2.5) was used.

The equations at the nodes are of three different types: at the root nodes, we have control equations/
boundary conditions (given with the problem); at the internal nodes (connecting two or more segments)
we have conservation of volume (2.4), and at the terminal nodes we have coupling equations with the
Darcy model. In our four roots terminal (two arterial and two venous roots), there were several
options to assign the boundary conditions.

Five further control equations must be considered for the system to have a unique solution. These
were constructed by assigning constant pressure on the arterial and the venous root nodes (Dirichlet
BC) and conservation of mass for the whole system

Proot,b ¼ PBC ð2:14Þ
and X

n[Nroot

qn ¼ 0, ð2:15Þ

where root, β = a, v is a root node on the arterial or the venous structure, PBC represents the constant
pressure on two arterial roots (input) and two venous roots (output), and Nroot are root segments,
with qn > 0 for the artery and qn < 0 for the vein. Finally, the whole complex is represented as a system
of nonlinear equations F(x) = b, where F(x) =A(x)x.

2.6.2. The Darcy domains (capillary bed)

The Darcy equations (2.10) in the capillary bed were solved using a two-point flux approximation (TPFA)
on a uniform grid. We assume that the permeability K in the capillary bed is constant and uniform, and
represent it by K (scalar). First, we computed the fluid transmissibility between adjacent cells i and j,

tij ¼ 2Sij
Dximi

Kb,i
þ Dxjmj

Kb,j

� ��1

, ð2:16Þ

where Sij is the face area between cells i and j, and, as above β∈ {a, v}. Because of the homogeneity of the
system, constant parameters and uniform discretization, equation (2.16) simplifies to

tij ¼ S
Kb

mDx
: ð2:17Þ

Then, applying TPFA to (2.6) in single cell i and adjacent cells j∈Ni, neighbour cells around i, we obtainX
j[Ni

tijðPi � PjÞ ¼ Qi: ð2:18Þ

Applying this procedure for all cells in the domain, we obtain a system of equations AD−Dx = b, where
AD−D is a symmetric matrix with elements

aik ¼
P

j[Ni
tij if k ¼ i

�tik if k = i:

�
ð2:19Þ

We note that while the TPFA method is not a consistent discretization for general grids, it is consistent
and convergent on the uniform grids used in this study [37].

2.6.3. The full coupling

Finally, the vascular networks and the Darcy domains were combined in a (nonlinear) system of
equations Ax = b, A =A(x), with unknown x consisting of the pressure and the flow rate in the model

AN�N AN�T 0
AT�N AT�T AT�D
0 AD�T AD�D

0
@

1
A xN

xT
xD

0
@

1
A ¼

bN
0
0

0
@

1
A: ð2:20Þ
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The indexes N and T refer to the internal and terminal nodes in the vascular network, and index D stands
for the Darcy equation discretization. The unknown xN is the pressure at the internal nodes and flow rate
in the corresponding segment, xT is the pressure in the terminal nodes, and xD is the pressure on the
Darcy domain. The blocks matrices represent systems of equations in the following domains:

— Matrix AN−N∈RN×N is a matrix representation of the vascular graph model’s system of nonlinear
equations. It is based on equations (2.3)–(2.5) and consists of as many equations as the number of
vessels and nodes in the internal nodes network. It also has no more than four non-zero entries
per row.

— Matrix AT−T∈RT×T is the system of nonlinear equations on terminal nodes at the coupling between
the vascular graph and the capillary model. It is based on equations (2.3) and (2.5). The matrix is a
diagonal matrix.

— Matrices AN−T∈RN×T and AT−N∈RT×N are couplings between the internal nodes and the terminal
nodes from equations (2.3)–(2.5).

— Matrix AD−D∈RD×D is the system of linear equations based on the Darcy’s Law discretization in
equation (2.19). Its number of variables is the number of discretization cells in the capillary
domain and the system is symmetric.

— Matrices AD−T∈RD×T and AT−D∈RT×D are couplings between the terminal nodes and Darcy
discretization cells. The pressure and mass continuity are based on equations (2.13) and (2.12).

— The bN term in the r.h.s. is from the boundary conditions of the circulation system in equation (2.14).

Despite the nonlinearity in the governing equations, it can be solved efficiently by using the Schur
complement method. Let

B ¼ AT�T AT�D
AD�T AD�D

� �
:

The Schur complement of block AD−D for the matrix B is defined as B=AD�D :¼ AT�T �AT�DA�1
D�DAD�T .

A�1
D�D is not computed explicitly, due to of the large size of the matrix. Instead, the system of linear

equation AD−DC =AD−T is solved giving C ¼ A�1
D�DAD�T . Substituting back in matrix A (2.20), we have

AN�N AN�T
AT�N

B
AD�D

� �
xN
xT

� �
¼ bN

0

� �
: ð2:21Þ

The above nonlinear system (2.21) is solved using an iterative nonlinear least-square optimization
algorithm based on the Powell dogleg method [38]. The solution of the linearized system (by omitting
the nonlinearities) was used as the initial approximation. The entire framework was solved using
MATLAB 2019b on a desktop PC with an Intel(R) Core(TM) i7-7700 CPU 3.60GHz and 32 GB RAM,
and the codes and instructions for reproducing the results are included in the dataset [39].
2.7. Vascular structures in image data
The model described above is generic and applicable to any two-dimensional or three-dimensional
domain. As an illustrative example, we used the model to simulate blood flow in a frog tongue from
a two-dimensional anatomical image from a classical biology textbook [23]. This example resembles a
realistic vascular system while still being more easy to visualize, interpret and analyse compared to a
full three-dimensional system. A drawback of this choice is that the original sample is not available,
thus we cannot validate the correctness of the vessel structure. Furthermore, there is an apparent
deformation of the geometry. The vascular networks are simplified into two flat networks, as shown
in figure 1 as we do not have information about thickness and curvature in the third dimension.
Incorrect vessel structure and incorrect geometry may have an impact on the blood flow in the entire
domain, especially for intertwined vessels, which are not captured from the two-dimensional image.
Still, we believe that the balance between arteries and veins in the image is highly realistic. Since the
application to this two-dimensional domain is included as an illustrative example, a deeper analysis of
the limitations is outside the scope of the current work.

Figure 3 shows the original image of the frog tongue, with the physiologist’s segmentation of the
main vessels. The frog tongue was stretched flat and nailed to a canvas. Thereafter, the trained
physiologist manually traced the arterial and venous network structures on it. One may notice that
only a few vessels serve the middle part of the tongue.



Figure 3. An anatomical frog tongue image from a classical textbook [23], with arterial (red) and venous (blue) vascular network
structures. The networks are obtained by segmenting the anatomical vessel structures. Our capillary domain is the region inside the
tongue’s boundary. Vessel A connects two arterial networks, while Vessel B connects two vein networks.

Table 1. Vascular model parameters.

parameter value unit reference

capillary model size (two-dimensional) 515 × 634 pixel —

real size 30.9 × 38 mm [23]

porosity of the capillary bed (ϕ) 0.1 dimensionless [12]

permeability of arterial compartment (Ka) 3 × 10−6 mm2 [41]

permeability of venous compartment (Kv) 6 × 10−6 mm2 [41]

perfusion parameter (α) 5 × 10−4 kg−1 mm s−1 [3]

viscosity of blood (μ) 3 · 10−6 kPa s−1 [3]

artery inlet pressure 30 mmHg [22]

vein outlet pressure 7.5 mmHg [24]

Young modulus (E) 1 MPa [28]

Poisson’s ratio (λ) 0.5 dimensionless [28]

arterial vessel wall thickness ratio 0.22 dimensionless [24]

venous vessel wall thickness ratio 0.1 dimensionless [24]

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:201949
8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 D

ec
em

be
r 

20
21

 

Both the arterial and venous network structures consist of two main vessels (left and right). Our
network structure was based on an image segmentation of these using the method in [40]. The small
arteries and veins that are near the roots but not visibly connected to the main vessels were discarded
in our segmentation, as we need control over inlets and outlets.

We observed that both the arterial and venous networks have some level of anastomoses. The two
arterial networks are connected in the uppermost part of the tongue (point A in figure 3) by a small
vessel, and the venous networks are connected in the middle of the tongue by a large vessel (point
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B). These connected structures have a regulation effect, maintaining blood circulation for the whole organ
when some vessel is severed or occluded.

The frog tongue model parameters for our simulations are found in table 1. The real size of the image
was estimated based on information from the original source [23]. The pressure inlet is defined as the
blood pressure in an average adult frog Pseudis paradoxsus [22], and the pressure outlet is assumed to
be equal to the average vein pressure in a male frog Rana pipiens mesentery [24]. The vessel elasticity
parameters were chosen based on the mechanical properties of vessels around those sizes [21,27,28].
The isotropic and homogeneous permeability of the capillary bed was estimated using a simplified
Darcy in scalar setting

Q
A

¼ �Kb

m

DP
DL

, b ¼ a, v, ð2:22Þ

with frog cerebral cortex values as reference data [42]. The blood velocity is approximately 0.5 mm s−1 in
an arteriole with length of 2mm for a pressure drop of ΔP = 7.5 mmHg. We obtain an estimated
permeability of 1.2 × 10−6 mm2. However, the value was adjusted in the simulation (refer to table 1) to
match a normal blood flow in veins vessels based on the experimental data in Rana pipiens, which is
166.61 ± 21.33 μm s−1 (mean ± standard deviation) in the veins with a radius around 10–20 μm [42].
The venous capillary compartment was assumed to be twice as permeable as the arterial capillary
compartment.
:201949
3. Results and discussion
Using the model proposed above, we have simulated blood flow in several numerical experiments: a
baseline model simulation, partial models and linearized simulations, and simulations with vessel
occlusions. In particular, the occlusion experiments demonstrate possible applications to the study of
blood circulation for an alteration or pathology of the vascular system.

3.1. Baseline model
The baseline model is the fully nonlinear model with nonlinearities due to both pressure drop at
junctions as well as vessel elasticity. It was based on equations (2.1), (2.2), (2.4), (2.10), (2.5), (2.12)
and (2.13). Figure 4 shows the computed pressure distribution in the whole vascular domain. The
simulated pressure distribution has a good resemblance to the experimental data on Rana pipiens
mesentery in [24]. We see a stronger agreement with the data for the big vessels compared to the
smaller vessels close to the capillary bed (labels a and b in figure 4). The smaller vessels appear to
have an overestimated pressure exceeding the observed data slope. This may be caused by
rounding discretization effects as the vessel radius approaches pixel size. Further, the frog tongue
vascular image from the textbook [23] was hand-drawn with a pen, with no emphasis on
estimating diameters. In addition, the tongue was flat-streched, thus deformed from its original
shape. The inaccuracy of vessel radii caused by a combination of the three above-mentioned
reasons may result in a lower pressure drop across the vessel compared to the anatomically realistic
pressure drop (label a in figure 4). We might expect the flow pattern in the system to be impacted
accordingly.

The total computational time for the baseline simulation is 82.6 s, with the nonlinear equation
(2.21) taking 63.1 s to solve. The total pressure drop in the whole system was 22.5 mmHg (table 1),
with the arterial network being the major contributor (71.6% of total). Further, the arterial
compartment contributed with 2.7%, the venous compartment with 2.8%, and the vein vascular
network had a 5.15 mmHg pressure drop (22.9%). These values are in a realistic range and indicate
the importance of the arterial vascular structure to provide the blood circulation through the whole
organ. If there is an alteration on an arterial vessel, its impact for the blood circulation will be
greater than for a similar vein alteration. The pressure distribution is consistent with the
distribution on humans or other animals [25,43,44]. From figure 4, we see that the arterioles are the
biggest contributor to the pressure drop in the whole vasculature. The arterioles with a radius less
than 100 μm provided 80% of the total pressure drop in the arterial network. In contrast to our
result, the numerical experiments in [45] show that the smallest capillary vessels (r < 5 μm)
contribute the most resistance in the mouse cortex micro-circulation simulation. Their
haemodynamic modelling was conducted in a micro-scale vascular network with diameter less
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Figure 5. The pressure distribution for the baseline model: the segment thickness in the vascular graphs is proportional to the flow
rate passing through it and the local pressure distribution in the Darcy domain. (a) The arterial network structure and the arterial
compartment with pressure ranging from 7.6 to 11 mmHg (8.6 ± 0.7 mmHg). The right arterial vessel input provides 16% more
blood flow compared to the left vessel, causing higher pressure in the right area. (b) The vein network structure and venous
compartment with pressure ranging from 7.4 to 10.8 mmHg (8.5 ± 0.8 mmHg). The right vein vessel output has 4.3 times
more blood flow than the left vessel, playing a vital role in blood distribution in the vein compartment.
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than 50 μm, which, in our simulation set-up, is inside the range of the capillary bed (modelled as a
Darcy domain). Hence, this particular detail could not be captured in our experiment due to the
difference in the simulation scale and set-up.



Table 2. Numerical simulation results for several experiments: flow resistance, like the electrical resistance, is equal to the total
pressure drop divided by the total volumetric flow in the system, R = (Pin− Pout)/Q (kg mm

−4 s−1). The indexes aN and vN refer
to the arterial and venous vascular networks, the indexes aC and vC to the arterial and vein capillary compartments respectively.
The total computational time for simulation is denoted by ttot, while tsys refers to the time for the solution of the system (2.21).

simulation Qtotal (mm
3 s−1) Rtotal (kg mm

−4 s−1) RaN RvN RaC RvC ttot(tsys) (s)

baseline modela 1.644 1.825 1.306 0.418 0.049 0.051 82.6 (63.1)

elasticity modelb 1.646 1.823 1.307 0.416 0.049 0.051 66.5 (47.1)

junction modelc 1.643 1.825 1.307 0.418 0.049 0.051 90.2 (70.7)

linear model 1.754 1.710 1.319 0.357 0.018 0.017 19.4 (10−5)

artery-1 occlusiona 1.410 2.127 1.614 0.420 0.046 0.047 3216.4

artery-2 occlusiona 1.286 2.332 1.819 0.411 0.050 0.052 374.1

vein-1 occlusiona 1.644 1.824 1.297 0.442 0.042 0.044 757.2

vein-2 occlusiona 1.554 1.930 1.320 0.488 0.060 0.062 157.1

artery-1 occlusion 1.460 2.054 1.663 0.354 0.019 0.017 20.3

artery-2 occlusion 1.339 2.240 1.850 0.359 0.016 0.015 20.1

vein-1 occlusion 1.724 1.740 1.319 0.387 0.018 0.017 20.1

vein-2 occlusion 1.709 1.755 1.319 0.401 0.018 0.017 20.1
aBaseline model refers to the fully nonlinear model.
bElasticity model: baseline model omitting the pressure drop at junctions equation (2.2).
cJunction model: baseline model omitting the elasticity equation (2.5). Occlusion: a 50% reduction of the original artery/vein radius.
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In [17], the authors demonstrated a qualitatively comparable result to the experimental data using
isotropic and homogeneous porous media as the capillary bed in the human cerebral cortex. Our
result shows a similar agreement, that is, the dual Darcy compartment provided a good
approximation as a replacement for small arterioles, venules and capillaries (see the capillary pressure
drop in figure 4). The defined capillary bed covered not only capillaries but also unresolved vessels
with diameter less than 60 μm, in which small arterioles and venules are covered. Figure 5 shows the
local pressure distribution in the capillary bed. It was observed that the pressure is high around the
top edges and low in the left bottom edges of the domain. This result is related to the vascular
structure having a small number of branches from the arterial input vessel in the lower region.
Pressures at the right area for both compartments are high compared to the left region, reflecting the
blood distribution in the vascular network. The right arterial vessel input provides 16% more blood
flow compared to the left vessel and the right vein vessel output has 4.3 times more blood flow
compared to the left vessel.

Note that there is a good correlation between the pressures in the arterial and venous compartments,
see figure 5, as the pressure follows the same distribution in both compartments. The pixel-wise pressure
difference between the compartments is expected to be the driving force for local perfusion.
3.2. The partial models and the linearized model
The simulation with the linearized model follows the same set-up as the baseline model, but without the
nonlinearities due to vessel elasticity and pressure drops at junctions. We have also tested a setup
involving only one of the mentioned nonlinearities at the time (partial models). The macroscopic changes
caused by each nonlinearity were compared across the entire system, including the total volumetric flow,
total flow resistance and average resistance of the model components. Flow resistance, like an electrical
resistance, is equal to the pressure drop divided by the volumetric flow in the system, R = (Pin− Pout)/Q
(kg mm−4 s−1). The flow resistance of the model component is an approximation; for example, the pressure
drop in the arterial network is the difference between the average pressure at the arterial network
terminals and the input pressure. In this section, the models are defined as:

— The Elasticity model: baseline model omitting the pressure drop at junctions equation (2.2).
— The Junction model: baseline model omitting the elasticity equation (2.5).
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— The Linear model: fully linear model omitting both equations (2.2) (pressure drop at junctions) and
(2.5) (elasticity equation) from the baseline model. The linearized model coincides with the model
considered in [3]. The solution of this model is used as the initial value for the nonlinear solver in
the other models.

3.2.1. Elasticity model

The vessel’s elasticity operates similarly to the capacitance in an electrical system. Thus, elasticity can
maintain pressure constant by increasing or decreasing the vessel radii. However, this effect also gives
additional resistance to blood flow, equivalent to impedance in electricity. Table 2 reports and
compares the flow resistance in the system, which is equal to the total pressure drop divided by the
total volumetric flow and is analogous to an electrical resistor.

The arterial vessel tends to expand if the pressure in the surrounding Darcy domain is lower than
vessel inner pressure. On the other hand, the vein vessel tends to tighten and increase resistance. In our
experiments, the elasticity model gives a total resistance of 1.823 kg mm−4 s−1 (table 2), which is smaller
than the baseline model. The elasticity model provided some small differences in arterial flow input and
the resistance distribution compared to the baseline model. The computational time is less than the
baseline, with the nonlinear system being solved in 47.1 s (table 2). The elasticity model has a shorter
running time because it only modifies the Poiseuille equation (2.1) by removing the junction term from
the baseline model. The linear model solution is used as the initial value for the nonlinear solver.

3.2.2. Junction model

The pressure drop at the junctions increased the total resistance in the vascular structure, both in
arteries and veins [20]. It is also causing the total blood flow in the whole system to decrease, since
the volumetric blood flow, Q, changes according to the relation ΔP =RQ. This bifurcation set-up is
known as pressure matching at a junction node, which introduces nonlinearity in the flow model [34].
The resistance distribution in the whole system is 0.00069 kg mm−4 s−1 bigger than the baseline model
resistance (after rounding the values, the difference is lost in table 2). The junction model takes
slightly longer time than the baseline model, mostly due to taking a longer time to achieve
convergence in the nonlinear system.

The junction and the elasticity models only incorporate one of the nonlinear equations into the system
at a time. Both simulations give results almost similar to the simulation with the baseline model. These
results indicate that the effect of the junction pressure drop and the vessels elasticity do not stack up
when combined. Indeed, the elasticity decreases the resistance built up by the junction pressure drop
relaxing the vessel walls across the network. In this comparison setup, both nonlinearities play an
essential role in describing blood regulation in the organ.

3.2.3. Linear model

This model is the fully linear setup based on equations (2.1), (2.4), (2.10), (2.12) and (2.13). The total
resistance in this model was lower compared to the above models, thus allowing a larger volumetric
blood flow (table 2). The arterial structure provided 77.1% of the total resistance and venous structure
20.9%, the Darcy compartments contributing only 1.0% and 1.0% of the total value. This is a notable
change in resistance distribution compared to the partial models and the baseline model. The total
resistance was reduced by 6.3% with respect to the baseline model. This result is consistent with
another independent study [19], in which it was found that the average resistance underestimation
using a fully linearized one-dimensional blood flow model was in the range 4.6–6.4% for human
cerebral networks modelling. These findings indicate that, by removing all nonlinearities, both the
total resistance and the resistance distribution of the system are altered (table 3) .

3.3. Occlusion in root vessels
In this section, we demonstrate how our model framework can be applied to understand the blood flow
regulation due to pathology or network alterations. A series of simulations were performed by occluding
one root vessel at a time, in each network. The occlusions were in a range between 5% and 100% of the
original vessel radius (figure 6). When the occlusion reaches 80% of the initial radius value, the resistance
becomes almost constant, for both arteries and veins, and for both baseline and linear models. The
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Figure 6. The vascular system resistance R as a function of the occlusion rate in vessels: (a) Resistance estimates for occlusions,
baseline model. (b) Resistance estimates for occlusions, linear model. The occlusion rate (x-axis) in a vessel varies from 5% to 100%
of the original radius for each simulation. Arteries 1 and 2 refer to a segment in the right and left big vessel of the arterial structure.
Veins 1 and 2 refer to a segment in the right and left big vessel of the venous structure. The artery occlusions cause an increment of
the macroscopic flow resistance in the whole system for both the baseline and linear models. For the vein 1 occlusion, the entire
vascular resistance is almost constant (+3% of the original total resistance). By contrast, the increment of the total resistance in
vein 2 occlusion shows that the vein 2 plays vital role in draining blood from the organ tissue. This effect is only observed in the
nonlinear simulation, while the linear model failed to capture this anomaly.
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Figure 7. Pressure drop distribution in the capillary compartments with simulated occlusions (marked by black circle) computed
with the baseline model. (a,b) Pressure drop distribution for artery occlusions are not mirroring each other due to the asymmetric
structure of the arterial network with artery 1 occlusion generated bigger pressure drop. (c) Even with a negligible change in the
macroscopic pressure drop (table 2), the pressure drop distribution in vein 1 experiment shows a notable pressure drop distribution
for both compartments. (d ) A higher pressure gradient between several terminal nodes in the bottom right corner enhances blood
flow through the venous vessel rather than in the venous capillary. This microscopic alteration can occur with small change in the
macroscopic flow.
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occlusion experiments in the baseline model take considerably longer to run than the non-occluded
experiments, due to the time required to achieve convergence in the nonlinear system (2.21). The
occlusion location and the initial values determined using the linear model solution may be the cause
of the large difference in convergence time (table 2).

3.3.1. Artery occlusion

Artery 1 and artery 2 occlusions generated expected results, increasing total resistances for both the
occlusion on the baseline model and the linear model. The pressure above the occluded part of the
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structure was notably lower than the rest. Furthermore, the artery 1 occlusion caused a steeper pressure
gradient (left to right) compared to the artery 2 occlusion (figure 7a,b). This is due to the asymmetric
structure of the left and right of the arterial network.

Table 2 reports a summary of the occlusion experiments with both baseline and linear models. Note
that occlusions in the arterial roots increase resistance in the arterial structure and decrease total flow into
the system. The driving pressure has to be raised around 20% compared to the non-occluded model to
keep a similar volumetric blood flow. The artery 2 occlusion had a higher total resistance because the
artery 2 vessel provides 16% more blood flow compared to the artery 1 vessel in the baseline model
(figure 5). It shows that a prior higher blood flow in the occluded vessel will, in general, cause a more
severe change to the system resistance. For artery occlusions, the linear model performs similarly to
the baseline model, particularly for fully occluded vessels.

Figure 7 shows the pressure drop in the capillary compartments. Experimental studies of
penetrating arteriole occlusion demonstrate similar effects. Table 3 summarizes the comparison
between our findings and previous studies in the occlusion experiment. The observation in [46]
reports a pressure drop in a region close to the occluded vessel and tissue hypoxia was detected in 6
h post-occlusion. The impact of vessel occlusion in penetrating arterioles in animal and human cortex
has been studied both experimentally and numerically [2,46–48,51]. Although the two-dimensional
frog tongue in this work differs extensively in terms of anatomical and functional properties to the
cerebral cortex, the results show a good agreement for artery occlusion. In our simulation set-up, with
only a pair of arteries and veins penetrating the capillary bed, the occlusion of one of the two main
vessels had a more notable effect than for one vessel occlusion in the cerebral cortex, having instead
several penetrating arterioles and venules [2,46].

3.3.2. Vein occlusion

The numerical results for the occluded venous networks show that the resistance changes for vein 1 and
vein 2 occlusions had different character. While the vein 1 occlusion resulted in an almost constant total
resistance, the vein 2 occlusion provided a resistance increase.

For the vein 1 occlusion, the total resistance only changed around +3% of the baseline model,
regardless of the occlusion percentage. This was due to vein 2 having 4.3 times more blood flow than
vein 1, so that blood was drained from the vein compartment mainly through the vein 2 vessel. We
also observed that the downstream vessels from the occlusion point were able to support blood influx
from nearby terminals with an almost constant volumetric flow. In the converse situation, the vein 1
vessel could not support the blood flow when the vein 2 vessel was collapsed.

The vein 2 occlusion effects were consistent with venule occlusion in [2]. It generated a notable total
resistance compared to the arteriole occlusion, except the capillary pressure increased instead of
decreasing. In our simulation, the pressure drop in the vein 2 occlusion is less than for the artery
occlusions (figure 7).

The simulated occlusions, both in arteries and veins, had a detectable impact to the blood circulation
in general. These results are in good agreement with the experimental result on occlusions of one
penetrating arterioles and venules in rats cortex (table 3) [46].

Without being necessarily physiologically consistent, the linear and baselinemodels occlusion results for
vein 1 illustrate the models’ capability to account for collateral circulation effects. A finer tuning of the
modelling parameters may enable the system to maintain a close-to-constant net flow in varying
anatomical setups. Yet, the present structure of the venous network has a good collateral circulation and
maintains blood circulation in the whole system. This condition was mainly supported by the existence of
anastomosis in the form of a big connected vessel in the venous network system, that allows flow across
both sides of the vein network. These phenomena were consistent with the experimental result in [50],
which showed that occlusion of one surface venule left the system’s blood regulation almost unchanged
when a collateral vessel provided a new drain.

Our vessel occlusion experiments do not take into account possible anatomical auto-regulating
changes that can occur in the system over time. After a certain period, a real vascular system may
change or heal to compensate for a blood circulation imbalance. This is a limitation of the model at
present. An adaption of the model to allow for vessel tree growth would be highly interesting for
instance in infarction modelling, but it is outside the main scope of this paper.

The resulting pressure distribution change in the venous compartment allows for blood going
through the veins more than once and thereby also causes reduced blood flow in the capillary bed.
Figure 7d shows an example of blood flow in the reverse direction due to a high-pressure difference
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in the venous Darcy compartment. Higher pressure gradients between several terminal nodes in the
bottom left corner make blood flow through venous vessels rather than in the capillary bed. In the
vein 2 occlusion, around 5% of blood flow direction in the venous vessels was reversed, 28% of
venous vessels had an average 23% blood flow increase, while the remaining vessels had a decrease
of 16%. This result was also shown in the experimental result in the venule occlusion [50]: cortical
ascending venules occlusions caused blood flow decrease and reversed flow direction (table 3). They
also observed a radius dilation up to 25%, while the radii dilation in our simulation was less than 5%.
The simulation design and parameters are crucial in determining vessel change, which may allow for
greater radius dilation similar to experimental values.
/journal/rsos
R.Soc.Open

Sci.8:201949
4. Conclusion
We have introduced a nonlinear multi-scale modelling framework incorporating important features
of blood flow in a full organ vasculature. The model is demonstrated using a two-dimensional
geometry domain and vasculature from a frog tongue [23]. Our numerical experiments indicate that
the modelling complexity is sufficient to account for important physiological and structural features.
The combination of the explicit vessel representation and a generic Darcy model representation yields
realistic full-organ simulations, without having a detailed knowledge of the local microvasculature.
The framework is also highly flexible allowing for inclusion of other local nonlinear processes.

In the numerical experiments, the baseline simulations are in good agreement with empirical data from
a male frog Rana pipiens mesentery [24]. Further, we conduct simulations with a pressure drop distribution
in the whole vasculature consistent with the average distribution in other animals as well as humans
[25,43,44]. The linearized simulations indicate the nonlinearities have an impact on the system. The
simulations with partial models suggest that the nonlinear effects of vessel elasticity and pressure drop
at vessel junctions do not stack up when combined, indicating that the two compensate for each other.

We illustrate the modelling potential by applying the method to vascular occlusions. Vessel networks
alteration simulations confirm that both local and global blood circulations in the vascular system
depend on the vascular structure. In our simulations, the existence of an anastomosis in form of a big
connected vessel in the venous network system has an important role in maintaining blood circulation
when a main root is occluded. We illustrate how an occlusion in the venous structure alters the
microscopic flow resistance, while at the same time has negligible effects on the macroscopic flow.

Our simulations indicate that it is important to simulate the complete vascular system including the
venous system, and not just the arterial system. In line with [50], our results of the venous occlusion
experiments emphasize the importance of introducing elasticity and nonlinearities to provide a more
accurate simulation of the blood flow.
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