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1. Introduction

The pseudo H-type Lie algebras are two step nilpotent Lie algebras nr,s(U) = (U ⊕
Rr,s, [. , .]) endowed with a non-degenerate scalar product 〈 . , . 〉U + 〈 . , . 〉Rr,s , where U is 
the orthogonal complement to the center Rr,s and the commutation relations are defined 
by

〈Jzu, v 〉U = 〈 z, [u, v] 〉Rr,s , u, v ∈ U, z ∈ Rr,s.

Here Jz ∈ End(U), J2
z = − 〈 z, z 〉Rr,s IdU is the defining map for the representation 

(J, U) of the Clifford algebra Cl(Rr,s). These Lie algebras are the natural generalisation 
of the H (eisenberg)-type algebras nr,0(U), introduced in [30,31], and they are related to 
the Clifford algebras Cl(Rr,s) generated by a vector space endowed with the quadratic 
form of an arbitrary signature (r, s). The pseudo H-type Lie algebras were introduced 
in [10,27] and studied in [11,12,23–25]. These types of algebras arise in study of parabolic 
subgroups with square integrable nilradicals [46], as maximal transitive prolongation 
of super Poincaré algebras [1,2] and the nilpotent part of 2-gradings for semisimple 
Lie algebras [26,28]. These algebras are some special examples of metric Lie algebras, 
studied in [4,15,19,20,22]. The pseudo H-type Lie groups is a fruitful source for study of 
geometry with non-holonomic constrains or nilmanifolds [16,18,21,34], symmetric spaces 
and harmonic spaces [7,8,14,39], differential operators on Lie groups [6,9,38,40].

The main goal of the present paper is to describe the automorphism groups 
Aut(nr,s(U)) of pseudo H-type algebras nr,s(U) depending on the integer parameters 
(r, s) and the structure of the representation U of the Clifford algebra Cl(Rr,s). The au-
tomorphism groups preserving metric on nr,0(U) were studied in [41,42] and the general 
automorphism groups of nr,0(U) were first described in [44], see also [5,32,45]. Some at-
tempt for study of Aut(n0,1(U)) was done in [17]. An automorphism group Aut(nr,s(U))
is decomposed into an abelian subgroup of dilatations, the group Hom(U, Rr,s), the group 
generated by Pin(r, s), and a group Aut0(nr,s(U)) that acts trivially on the center Rr,s, 
see Section 3.2. We determine the group Aut0(nr,s(U)) in terms of classical groups over 
R, C, and H. The structure of the paper is the following. In Sections 2 and 3 we recall 
the necessary material about Clifford algebras, pseudo H-type Lie algebras, and classical 
groups. Section 4 is dedicated to the determination of Aut0(nr,s(U)). The main result 
is contained in Table 3. In Appendix one can find a recapture over the relation between 
the isomorphic pseudo H-type Lie algebras and their groups of automorphisms.

2. Clifford algebras

2.1. Definition of Clifford algebras

We denote by Rr,s the space Rm, r+ s = m, with the non-degenerate quadratic form 
Qr,s(z) =

∑r
i=1 z

2
i −

∑s
j=1 z

2
r+j , z ∈ Rm of the signature (r, s). The non-degenerate 



K. Furutani, I. Markina / Journal of Algebra 568 (2021) 91–138 93
bi-linear form obtained from Qr,s by polarization is denoted by 〈 · , · 〉r,s and we call it a 
scalar product. A vector z ∈ Rr,s is called positive if 〈 z, z 〉r,s > 0, negative if 〈 z, z 〉r,s < 0, 
and null if 〈 z, z 〉r,s = 0. We use the orthonormal basis {z1, . . . , zr, zr+1, . . . , zr+s} for 
Rr,s, where 〈 zi, zi 〉r,s = 1 for i = 1, . . . , r, 〈 zj , zj 〉r,s = −1 for j = r + 1, . . . , r + s and 
〈 zi, zj 〉 = 0 for i �= j.

Let Clr,s be the real Clifford algebra generated by Rr,s, that is the quotient of the 
tensor algebra

T (Rr+s) = R⊕
(
Rr+s

)
⊕
(

2
⊗ Rr+s

)
⊕
(

3
⊗ Rr+s

)
⊕ · · · ,

divided by the two-sided ideal Ir,s which is generated by the elements of the form z⊗z+
〈 z, z 〉r,s, z ∈ Rr+s. The explicit determination of the Clifford algebras is given in [3] and 
they are isomorphic to the matrix algebras M(n, F) or M(n, F) ⊕M(n, F), for F = R, 
C or H, where the size n is determined by r and s, see for instance [36].

Given an algebra homomorphism Ĵ : Clr,s → End(U), we call the space U a Clifford 
module and the operator Jφ a Clifford action or a representation map of an element 
φ ∈ Clr,s. If there is a map

J : Rr,s → End(U)
z 	→ Jz,

satisfying J2
z = − 〈 z, z 〉r,s IdU for an arbitrary z ∈ Rr,s, then J can be uniquely extended 

to the algebra homomorphism Ĵ by the universal property, see, for instance [29,35,36]. 
We recommend to read [33] for a wonderful introduction to the Clifford algebras Clr,s. 
Even though the representation matrices of the Clifford algebras Clr,s, and the Clifford 
modules U are given over the fields R, C or H, we refer to Clr,s as a real algebra and U
as a real vector space.

If r − s �≡ 3 (mod 4), then Clr,s is a simple algebra. In this case, there is only one 
irreducible module U = V r,s

irr . If r − s ≡ 3 (mod 4), then the algebra Clr,s is not simple, 
and there are two non-equivalent irreducible modules. They can be distinguished by the 
action of the ordered volume form Ωr,s =

∏r+s
k=1 zk. In fact, the elements φ = 1

2
(
1 ∓Ωr,s

)
act as an identity operator on the Clifford module, so JΩr,s ≡ ± IdU . Thus we denote by 
V r,s
irr;± two non-equivalent irreducible Clifford modules on which the action of the volume 

form is given by JΩr,s =
∏r+s

k=1 Jzk ≡ ± Id.

Proposition 2.1.1. [36, Proposition 4.5] Clifford modules are completely reducible; any 
Clifford module U can be decomposed into irreducible modules:

U =

⎧⎨⎩
p
⊕ V r,s

irr , if r − s �≡ 3 (mod 4),( p+
⊕ V r,s

irr;+
)
⊕
( p−
⊕ V r,s

irr;−
)
, if r − s ≡ 3 (mod 4).

(2.1)

The numbers p, p+, p− are uniquely determined by the dimension of U .
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The first type of module U in (2.1) is called isotypic and the second one is called
non-isotypic. The Clifford algebras possess the periodicity properties [3]:

Clr,s ⊗Cl0,8 ∼= Clr,s+8, Clr,s ⊗Cl8,0 ∼= Clr+8,s, Clr,s ⊗Cl4,4 ∼= Clr+4,s+4 . (2.2)

The Clifford algebras Clμ,ν for (μ, ν) ∈ {(8, 0), (0, 8), (4, 4)} are isomorphic to the matrix 
algebra M(16, R).

2.2. Admissible modules

Definition 2.2.1. [10] A module U of the Clifford algebra Clr,s is called admissible if there 
is a scalar product 〈 · , · 〉U on U such that

〈 Jzx, y 〉U + 〈x, Jzy 〉U = 0, for all x, y ∈ U and z ∈ Rr,s. (2.3)

We write (U, 〈 · , · 〉U ) for an admissible module to emphasise the scalar product 〈 · , · 〉U
and call it an admissible scalar product. We collect properties of admissible modules in 
several propositions.

Proposition 2.2.2. Let Clr,s be the Clifford algebra generated by the space Rr,s.

(1) If 〈 · , · 〉U is an admissible scalar product on a Clifford module U for Clr,s, then 
K 〈 · , · 〉U is also admissible for any constant K �= 0. We can assume that K = ±1
by normalisation of the scalar products.

(2) Let (U, 〈 · , · 〉U ) be an admissible module for Clr,s and let (U1, 〈 · , · 〉U1
) be such that 

U1 is a submodule of U and 〈 · , · 〉U1
is a non-degenerate restriction of 〈 · , · 〉U to U1. 

Then the orthogonal complement U1
⊥ = {x ∈ U | 〈x, y 〉U = 0, for all y ∈ U1} with 

the scalar product obtained by the restriction of 〈 · , · 〉U to U1
⊥ is also an admissible 

module.
(3) Condition (2.3) and the property J 2

z = − 〈 z, z 〉r,s IdU imply

〈 Jzx, Jzy 〉U = 〈 z, z 〉r,s 〈x, y 〉U . (2.4)

(4) If s > 0, then any admissible module (U, 〈 · , · 〉U ) of Clr,s is neutral, i.e., dimU = 2l, 
l ∈ N, and U is isometric to Rl,l, see [10, Proposition 2.2].

(5) If s = 0, then any Clifford module of Clr,0 is admissible and it is isometric either to 
Rl,0 or to R0,l, see [29, Theorem 2.4].

Proposition 2.2.3 describes the relation between irreducible and admissible modules. 
An admissible module of the minimal possible dimension is called a minimal admissible 
module.

Proposition 2.2.3. [10, Theorem 3.1][24, Proposition 1] Let Clr,s be the Clifford algebra 
generated by the space Rr,s.
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(1) If s = 0, then any irreducible Clifford module is minimal admissible with respect to 
a positive definite or a negative definite scalar product.

(2) If r−s ≡ 0, 1, 2 mod 4, s > 0, then a unique irreducible module V r,s
irr is not necessary 

admissible. The following situations are possible:
(2-1) The irreducible module V r,s

irr is minimal admissible or,
(2-2) The irreducible module V r,s

irr is not admissible, but the direct sum V r,s
irr ⊕ V r,s

irr

is minimal admissible.
(3) If r − s ≡ 3 mod 4, s > 0, then for two non-equivalent irreducible modules V r,s

irr;±
the following can occur:
(3-1) If r ≡ 3 mod 4, s ≡ 0 mod 4, or

r ≡ 1 mod 8, s ≡ 6 mod 8, or
r ≡ 5 mod 8, s ≡ 2 mod 8

then each irreducible module V r,s
irr;± is minimal admissible.

(3-2) Otherwise none of the irreducible modules V r,s
irr;± is admissible.

(3-2-1) If r ≡ 1 mod 8, s ≡ 2 mod 8, or
r ≡ 5 mod 8, s ≡ 6 mod 8

then V r,s
irr;+ ⊕ V r,s

irr;+, V r,s
irr;− ⊕ V r,s

irr;− are minimal admissible modules, 
and the module V r,s

irr;+ ⊕ V r,s
irr;− is not admissible.

(3-2-2) If s is odd, then the module V r,s
irr;+ ⊕ V r,s

irr;− is minimal admissible and 
neither V r,s

irr;+ ⊕ V r,s
irr;+ nor V r,s

irr;− ⊕ V r,s
irr;− is admissible.

2.3. System of involutions PIr,s and common 1-eigenspace Er,s

2.3.1. Mutually commuting isometric involutions
Recall that a linear map Λ defined on a vector space U with a scalar product 〈 · , · 〉U

is called symmetric with respect to the scalar product 〈 · , · 〉U , if 〈Λx, y 〉U = 〈x, Λy 〉U . 
We say that Λ is positive if it maps positive vectors to positive vectors and negative 
vectors to negative vectors and Λ is negative if it reverses the positivity and negativity 
of the vectors. Let Jzi be representation maps for an orthonormal basis {z1, . . . , zr+s}
of Rr,s. The simplest positive involutions, written as a product of the maps Jzi , have 
one of the following forms:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

type (1) : P1 = Jzi1Jzi2Jzi3Jzi4 , all zik are positive,
type (2) : P1 = Jzi1Jzi2Jzi3Jzi4 , all zik are negative,
type (3) : P2 = Jzi1Jzi2Jzi3Jzi4 , two zil are positive and two are negative,
type (4) : P3 = Jzi1Jzi2Jzi3 , all three zik are positive,
type (5) : P4 = Jzi1Jzi2Jzi3 , one zil is positive and two are negative.

For a given minimal admissible module V r,s
min, we denote by PIr,s a set consisting of 

possible maximal number of mutually commuting symmetric positive involutions of types 
(1)-(5) such that none of them is a product of other involutions in PIr,s. The set PIr,s
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Table 1
Dimensions of minimal admissible modules.

8 16± 32± 64± 64±
×2 128± 128± 128± 128±

×2 256±

7 16N 32N 64N 64± 128N 128N 128N 128± 256N

6 16N 16N
×2 32N 32± 64N 64N

×2 128N 128± 256N

5 16N 16N 16N 16± 32N 64N 128± 128N 256N

4 8± 8± 8± 8±
×2 16± 32± 64± 64±

×2 128±

3 8N 8N 8N 8± 16N 32N 64N 64± 128N

2 4N 4N
×2 8N 8± 16N 16N

×2 32N 32± 64N

1 2N 4N 8N 8± 16N 16N 16N 16± 32N

0 1± 2± 4± 4±
×2 8± 8± 8± 8±

×2 16±

s/r 0 1 2 3 4 5 6 7 8

is not unique, while the number of involutions pr,s = #{PIr,s} in PIr,s is unique for the 
given signature (r, s). The set PIr,s can be ordered, if necessary, in such a way that at 
most one involution of the type (4) or (5) is included in PIr,s and it is the last one. We 
denote by PI∗r,s the reduced system of involution, that contains only involutions of type 
(1)-(3). In the case when there are no involutions of type (4) or (5), we have PIr,s = PI∗r,s
and we write PIr,s if no confusion arises.

We define the subspace Er,s of a minimal admissible module V r,s
min by

Er,s = {v ∈ V r,s
min | Piv = v, i ≤ pr,s,

r − s �= 3 mod 4, or r − s ≡ 3 mod 4 with odd s},

Er,s = {v ∈ V r,s
min | Piv = v, i ≤ pr,s − 1, r − s ≡ 3 mod 4 with even s}.

We call Er,s the “common 1-eigenspace” for the system of involutions PIr,s. The space 
Er,s is the minimal subspace of V r,s

min that is invariant under the action of all the involu-
tions from PIr,s. The system of involutions PIr,s does not depend on the scalar product 
on the admissible modules V r,s

min = (V r,s
min, 〈 · , · 〉V r,s

min
) and V r,s

min = (V r,s
min, − 〈 · , · 〉V r,s

min
). 

Nevertheless, the restrictions of the admissible scalar products on the respective Er,s will 
have opposite signs. Namely,

(1) the restriction of the admissible scalar product to Er,s is sign definite for r ≡ 0, 1, 2
mod 4 and s ≡ 0 mod 4 or for r ≡ 3 mod 4 and arbitrary s;

(2) otherwise the restriction of the admissible scalar product to the common 1-
eigenspaces Er,s is neutral,

see Table 1 and [25, Section 2.6] for details of the proof.
The dimensions of minimal admissible modules need to be determined only for basic 

cases
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(r, s) for 0 ≤ r ≤ 7 and 0 ≤ s ≤ 3,
(r, s) for 0 ≤ r ≤ 3 and 4 ≤ s ≤ 7, and
(r, s) ∈ {(8, 0), (0, 8), (4, 4)}.

(2.5)

We use periodicity property (2.2) to find the dimension of a minimal admissible module 
dim(V r+μ,s+ν

min ) = dim(V r,s
min) · dim(V μ,ν

min) = 16 dim(V r,s
min) provided that V r,s

min is mini-
mal admissible and (μ, ν) ∈ {(8, 0), (0, 8), (4, 4)}. Moreover dim(V r,s

min) = 2r+s−pr,s . We 
describe the number and the dimension of minimal admissible modules V r,s

min in Table 1.
We make the following comments to Table 1:

(1) We use the bold characters when dim(V r,s
min) = 2 dim(V r,s

irr ), see Proposition 2.2.3, 
statements (2-2) and (3-2).

(2) Writing the subscript “×2” we mean that the Clifford algebra has two minimal 
admissible modules corresponding to the non-equivalent irreducible modules, see 
Proposition 2.2.3, statements (3-1) and (3-2-1).

(3) The upper index “N” means that the scalar product restricted to the common 1-
eigenspace Er,s is neutral.

(4) The upper index “±” indicates that the scalar product restricted to the common 
1-eigenspace Er,s of the system PIr,s is sign definite.

From now on we use ± or N as the upper index and write V r,s;+
min (V r,s;−

min ) or V r,s;N
min if 

the restriction of the admissible scalar product on Er,s is positive (negative) definite or 
neutral. We also use the lower index ± to distinguish the minimal admissible modules, 
corresponding to a choice of non-equivalent irreducible modules that were mentioned in 
Proposition 2.2.3, statements (3-1) and (3-2-1).

According to these agreements, any admissible module can be decomposed into the 
orthogonal sum of minimal admissible modules, see Proposition 2.2.2, statement (2). We 
distinguish the following possibilities.

If r − s �≡ 3 mod 4 and s is arbitrary or r − s ≡ 3 mod 4 and s is odd, then

U =
( p+

⊕ V r,s;+
min

)⊕( p−

⊕ V r,s;−
min

)
. (2.6)

If r − s ≡ 3 mod 4 and s is even, then

U =
( p+

+
⊕ V r,s;+

min;+
)⊕( p−

+
⊕ V r,s;−

min;+
)⊕( p+

−
⊕ V r,s;+

min;−
)⊕( p−

−
⊕ V r,s;−

min;−
)
. (2.7)

Since the involutions in PIr,s are symmetric, the eigenspaces of involutions are mu-
tually orthogonal. The involutions commute, therefore, they decompose the eigenspaces 
of other involutions into smaller (eigen)-subspaces. We give an example, that is crucial 
for the paper.
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Example 1. The set PIμ,ν for (μ, ν) ∈ {(8, 0), (0, 8), (4, 4)} is given by

T1 = Jζ1Jζ2Jζ3Jζ4 , T2 = Jζ1Jζ2Jζ5Jζ6 , T3 = Jζ1Jζ2Jζ7Jζ8 , T4 = Jζ1Jζ3Jζ5Jζ7 .

The module V μ,ν
min is decomposed into 16 one dimensional common eigenspaces of the 

four involutions Ti. Let v ∈ Eμ,ν and | 〈 v, v 〉V μ,ν
min

| = 1. Then other common eigenspaces 
are spanned by Jζiv, i = 1, . . . , 8, and Jζ1Jζjv, j = 2, . . . , 8. Hence we have

V μ,ν
min = Eμ,ν

8⊕
i=1

Jζi(Eμ,ν)
8⊕

j=2
Jζ1Jζj (Eμ.ν). (2.8)

The value 〈 v, v 〉V μ,ν
min

can be ±1 according to the admissible scalar product, however we 
may assume 〈 v, v 〉V μ,ν

min
= 1, see [25, Example 1, Lemma 3.2.5].

3. Pseudo H-type Lie algebras

3.1. Definitions of pseudo H-type Lie algebras and their Lie groups

Let (U, 〈 · , · 〉U ) be an admissible module of a Clifford algebra Clr,s. We define a vector 
valued skew-symmetric bi-linear form

[· , ·] : U × U → Rr,s

(x, y) 	−→ [x, y]

by the relation

〈 Jzx, y 〉U = 〈 z, [x, y] 〉r,s . (3.1)

Definition 3.1.1. [10] The space U ⊕Rr,s endowed with the Lie bracket

[(x, z), (y, w)] = (0, [x, y])

is called a pseudo H-type Lie algebra and it is denoted by nr,s(U).

A pseudo H-type Lie algebra nr,s(U) is 2-step nilpotent, the space Rr,s is the center, 
and the direct sum U ⊕Rr,s is orthogonal with respect to 〈 · , · 〉U + 〈 · , · 〉r,s.

The Baker-Campbell-Hausdorff formula allows us to define the Lie group structure on 
the space U ⊕Rr,s by

(x, z) ∗ (y, w) =
(
x + y, z + w + 1

2[x, y]
)
.

The Lie group is denoted by Nr,s(U) and is called pseudo H-type Lie group. Note that 
the scalar product 〈 · , · 〉U is implicitly included in the definitions of the H-type Lie 
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algebra and the corresponding Lie group. In general, the Lie algebra structure might 
change if we replace the admissible scalar product on U , see [4,19,20].

3.2. General structure of the group Aut(nr,s(U))

In the present section, all the matrix groups are considered over the field R. Let 
n = (U⊕z, [. , .]) be a real 2-step nilpotent graded Lie algebra with the center z and Aut(n)
be a group of automorphisms of this Lie algebra. We use the identification U ∼= Rn

and z ∼= Rm. An automorphism has to preserve the center and therefore an element 
Φ ∈ Aut(n) has to be of the form

Φ =
(
A 0
B C

)
, A ∈ GL(n,R), C ∈ GL(m,R), B ∈ Hom(Rn,Rm),

and C([u, v]) = [Au, Av]. The subgroup

B(n) =
{(

t Idn 0
B t2 Idm

)
, B ∈ Hom(Rn,Rm), t �= 0

}
is a normal subgroup of Aut(n). The factor group

Aut(n)/B(n) =
{(

A 0
0 C

)
, A ∈ SL(n,R), C ∈ GL(m,R), C([u, v]) = [Au,Av]

}
is a subgroup of Aut(n) and it will be denoted by C(n) := Aut(n)/B(n). Thus the group 
Aut(n) is a semi-direct product of B(n) and C(n), and it is enough to determine the group 
C(n).

Let us assume now, that n is a pseudo H-type Lie algebra nr,s(U) = U ⊕ z with 
z = Rr,s, r + s = m. If we write A ⊕ C for an element of C(n), then (3.1) implies

〈JzAx,Ay 〉U = 〈 z, [Ax,Ay] 〉r,s = 〈 z, C[x, y] 〉r,s = 〈 JCτ (z)x, y 〉U .

Thus the condition C([u, v]) = [Au, Av] is equivalent to AτJzA = JCτ (z), where the 
transpositions Aτ and Cτ are taken with respect to the corresponding scalar products 
on U and on Rr,s. The group

Aut0(nr,s(U)) =
{
A⊕ Idm, A ∈ SL(n,R), AτJzA = Jz for any z ∈ Rr,s

}
(3.2)

is a normal subgroup in C(n).

Lemma 3.2.1. [24, Theorem 2] The subgroup of the maps C ∈ GL(m, R) such that A ⊕C ∈
C(nr,s(U)) is contained in O(r, s), r + s = m.
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Due to Lemma 3.2.1, we conclude that

C(nr,s(U)) =
{
A⊕ C, A ∈ SL(n,R), C ∈ O(r, s), AτJzA = JCτ (z) z ∈ Rr,s

}
.

In the next step we show that the map

C(nr,s(U)) → O(r, s) : A⊕ C 	→ C

is surjective. To achieve the goal we recall the definition of the group Pin(r, s). For 
the beginning we introduce two useful involutions. The tensor algebra T (Rr,s) has an 
involution given on simple elements by the reversal of order:

(v1 ⊕ . . .⊕ vk)T = vk ⊕ . . .⊕ v1.

Since the map preserves the ideal Ir,s it descends to a map (·)T : Clr,s → Clr,s. The map

Rr,s � z 	→ −z ∈ Rr,s ⊂ Clr,s

is extended to the Clifford algebra automorphism α : Clr,s → Clr,s by the universal 
property of the Clifford algebras. The norm mapping N : Clr,s → Clr,s is defined by 
N(φ) = φ · α(φT ). It is easy to see that N(z) = 〈 z, z 〉r,s for any z ∈ Rr,s. More about 
the properties of the maps ∗ 	→ ∗T and N can be found in [36, Page 15].

We denote by Cl×r,s the group of invertible elements in Clr,s and in particular Rr,s× =
{z ∈ Rr,s| 〈 z, z 〉r,s �= 0}. The representation Ãd: Rr,s× → End(Rr,s), is defined as

Ãdz(w) = −zwz−1 =
(
w − 2

〈w, z 〉r,s
〈 z, z 〉r,s

z

)
∈ Rr,s for w ∈ Rr,s, z ∈ Rr,s×.

The map Ãdz : Rr,s → Rr,s is the reflection of the vector w ∈ Rr,s with respect to the 
hyperplane orthogonal to the vector z ∈ Rr,s. Then it extends to the twisted adjoint 
representation Ãd: Cl×r,s → GL(Clr,s) by setting

Cl×r,s � ϕ 	−→ Ãdϕ, Ãdϕ(φ) = α(ϕ)φϕ−1, φ ∈ Clr,s . (3.3)

The map Ãdz for z ∈ Rr,s×, leaving the space Rr,s ⊂ Clr,s invariant, is also an isometry: 
〈 Ãdz(w), Ãdz(w) 〉r,s = 〈w, w 〉r,s. Moreover, the properties of preserving the space Rr,s

and the bilinear symmetric form 〈 . , . 〉r,s are fulfilled by the group

P(Rr,s) = {v1 · · · vk ∈ Cl×r,s | 〈 vi, vi 〉r,s �= 0}. (3.4)

The map Ãd: P(Rr,s) → O(r, s) is a surjective homomorphism [36, Theorem 2.7]. It 
particularly implies Ãdϕ−1 = Ãd

τ

ϕ. The subgroups of P (Rr,s) ⊂ Cl×r,s defined by
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Pin(r, s) = {v1 · · · vk ∈ Cl×r,s | 〈 vi, vi 〉r,s = ±1},
Spin(r, s) = {v1 · · · vk ∈ Cl×r,s | k is even, 〈 vi, vi 〉r,s = ±1},

are called pin and spin groups, respectively.

Proposition 3.2.2. [3,36] The map Ãd: Pin(r, s) → O(r, s) is the double covering map.

Proposition 3.2.3. Let J : Clr,s → End(U) be a Clifford algebra representation and ϕ ∈
Pin(r, s). Then the map P : Pin(r, s) → C(nr,s(U)) defined by

ϕ 	→ P(ϕ) =
(
Jϕ 0
0 (−1)nN(ϕ)Ãdϕ

)
,

is a group homomorphism.

Proof. First we show that P(ϕ) ∈ C(nr,s(U)); that is

Jτ
ϕJzJϕ = J(−1)nN(ϕ)Ãdτ

ϕ
.

Let ϕ ∈ Pin(r, s). Then Ãd
τ

ϕ ∈ O(r, s). Moreover, Ãd
τ

ϕ(z) = Ãdϕ−1(z) = α(ϕ−1)zϕ. 
Thus for any ϕ =

∏n
k=1 xk ∈ Pin(r, s) we obtain

ϕT = (x1 · . . . · xn)T = (xn · . . . · x1) and N(ϕ) = ϕ · α(ϕT ) =
n∏

k=1

〈xk, xk〉r,s.

Then since x−1
k = α(xk)

〈xk,xk〉r,s , k = 1, . . . , n, and Jτ
xk

= −Jxk
we have α(ϕ−1) = ϕT

N(ϕ) and 
JϕT = (−1)nJτ

ϕ. Thus

JÃdτ

ϕ(z) = JÃdϕ−1 (z) = Jα(ϕ−1)JzJϕ = (−1)n

N(ϕ) J
τ
ϕJzJϕ.

This proves the proposition. �
Proposition 3.2.4. Let J : Clr,s → End(U) be a Clifford algebra representation and ϕ ∈
Pin(r, s). Both lines in the following diagram

{Id} −−−−→ Aut0(nr,s(U)) ι−−−−→ C(nr,s(U)) ψ−−−−→ O(r, s) −−−−→ {Id}�⏐⏐ P
�⏐⏐ �⏐⏐Id

{Id} −−−−→ Z2 −−−−→ Pin(r, s) Ãd−−−−→ O(r, s) −−−−→ {Id}

(3.5)

are short exact sequences. The kernel Aut0(nr,s(U)) is defined in (3.2).
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Proof. It is a well known fact that the second line is a short exact sequence, see, for in-
stance [36]. Let C ∈ O(r, s) and ϕ be any element of Pin(r, s) such that Ãdϕ = C. Then 
for any C ∈ O(r, s) there is ψ−1(C) = P(ϕ) ∈ C(nr,s(U)), given by Proposition 3.2.3. It 
shows that the map ψ is surjective. Note that diagram (3.5) is not necessarily commu-
tative. �
Lemma 3.2.5. Let

{Id} −→ N
ι−→ G

ψ−→ H −→ {Id} (3.6)

be a short exact sequence of groups. We assume that K is a subgroup in G such that 
ψ|K is surjective. Then there is a group homomorphism ρ : N �φ K → G with ker ρ =
{(n, n−1) | n ∈ K ∩N}.

Proof. Since N is a normal subgroup of G, the subgroup K acts on N by conjugation

φ : K → Aut(N), φk(n) = knk−1, for n ∈ N, k ∈ K.

We have the surjective group homomorphism

ρ : N �φ K � (n, k) 	→ nk ∈ G.

In fact, ρ((n, k) · (n′, k′)) = nkn′k−1kk′ = ρ((n, k))ρ((n′, k′)). The kernel of ρ is

ker ρ = {(n, k) | nk = e, n ∈ N, k ∈ K} = {(n, n−1) | n ∈ K ∩N},

where e is the unit element in G. Consequently, (N �φ K)/ ker ρ ∼= G. �
We set G = C(nr,s(U)), K = P

(
Pin(r, s)

)
and N = Aut0(nr,s(U)) in Lemma 3.2.5. 

Then ker ρ = Aut0(nr,s(U)) ∩P
(
Pin(r, s)

)
. Now we determine the order of the intersec-

tion Aut0(nr,s(U)) ∩ P
(
Pin(r, s)

)
.

Theorem 3.2.6. In the notations above, we have

(1) Aut0(nr,s(U)) ∩ P
(
Pin(r, s)

)
= {± Id⊕ Id} in the following cases

(1a) r is even, s is arbitrary;
(1b) r = 1 mod 4, s = 1, 2 mod 4;
(1c) r = 3 mod 4, s = 0, 3 mod 4 and the admissible module is isotypic;

(2) Aut0(nr,s(U)) ∩ P
(
Pin(r, s)

)
= {± Id⊕ Id; ±JΩr,s ⊕ Id} in the following cases

(2a) r = 1 mod 4, s = 0, 3 mod 4;
(2b) r = 3 mod 4, s = 1, 2 mod 4;
(2c) r = 3 mod 4, s = 0, 3 mod 4 and the admissible module is non-isotypic.
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Proof. To prove the theorem we need to find φ ∈ Pin(r, s) such that

Ψ(φ) = (−1)nN(φ)Ãdφ = Id .

Then ±Jφ ⊕ Id will belong to Aut0(nr,s(U)) ∩ P
(
Pin(r, s)

)
. Note that Ψ(±1) = Id. We 

also note that

N(Ωr,s) = α(Ωr,s)(Ωr,s)T = (−1)s and zΩr,s = (−1)r+s−1Ωr,sz for any z ∈ Rr,s.

Thus

(−1)r+sN(Ωr,s)ÃdΩr,sz = (−1)2r+4s(−1)r−1zΩr,s(Ωr,s)−1 = (−1)r−1z.

Hence Ψ(Ωr,s) = Id for odd values of r and arbitrary values of s. Thus, if r is even, then 
for arbitrary s elements in Aut0(nr,s(U)) ∩P

(
Pin(r, s)

)
are ± Id⊕ Id. Moreover, in this 

case all the modules are isotypic. This shows (1a).
Before we proceed, we remind some properties of the volume form:

(Ωr,s)2 =
{

(−1)s, if r + s = 3, 4 mod 4,
(−1)s+1, if r + s = 1, 2 mod 4.

(3.7)

We need to check the values r = 1, 3 mod 4.

Let r = 1 mod 4. In this case all admissible modules are isotypic. Moreover (3.7)
implies

(Ωr,s)2 =
{

1, if s = 1, 2 mod 4,
−1, if s = 0, 3 mod 4.

Thus, if r = 1 mod 4 and s = 1, 2 mod 4, then we have JΩr,s = ± Id and it proves (1b). 
In the case r = 1 mod 4 and s = 0, 3 mod 4 we obtain (2a).

Let r = 3 mod 4. In this case we need to distinguish isotypic and non-isotypic ad-
missible modules. The property (3.7) implies

(Ωr,s)2 =
{

1, if s = 0, 3 mod 4,
−1, if s = 1, 2 mod 4.

Thus if r = 3 mod 4 and s = 1, 2 mod 4 we obtain (2b). If r = 3 mod 4, s = 0, 3
mod 4 and module is isotypic then JΩr,s = ± Id, that shows (1c). In the case r = 3
mod 4, s = 0, 3 mod 4 with a non-isotypic module we obtain (2c).

At the end we notice that the cases (1a), (1c), and (2c) contain a result of [44]. �
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We conclude that any element of C(nr,s(U)) has the form AJϕ⊕ (−1)nN(ϕ)Ãdϕ. The 
only thing that we left to find is a subgroup of SL(n, R) containing maps A such that

AτJzA = Jz for all z ∈ Rr,s. (3.8)

3.3. Relation between the structure of involutions PIr,s and Aut0
(
nr,s(U)

)
In this section we show that Aut0

(
nr,s(U)

)
is closely related to the structure of the 

set of involutions PI∗r,s of types (1)-(3) acting on U . The proof of the following lemma 
is obtained from (3.8) by induction and can be found in [24, Lemma 3] for the product 
of any number of Jzk .

Lemma 3.3.1. Let {zi}r+s
i=1 be an orthonormal basis for Rr,s and let Φ = A ⊕ Id ∈

Aut0(nr,s(U)). Then the following relations hold:

AJzkJzl = JzkJzlA, AJzkJzlJzmJzn = JzkJzlJzmJznA, (3.9)

AτJzjJzkJzlA = JzjJzkJzl . (3.10)

Lemma 3.3.2. Let {zi}r+s
i=1 be an orthonormal basis for Rr,s and U an admissible module. 

If a linear map A : U → U satisfies the conditions

AτJzk0
A = Jzk0

for one index k0 ∈ {1, . . . r + s}, and
AJzk0

Jzl = Jzk0
JzlA for all indices l = 1, . . . r + s,

(3.11)

then Φ = A ⊕ Id ∈ Aut0(nr,s(U)).

Proof. We only need to show (3.8) for all z = zl for l = 1, . . . r + s. If (3.11) is fulfilled, 
then

AτJzlA = ±AτJzk0
Jzk0

JzlA = ±AτJzk0
AJzk0

Jzl = ±J2
zk0

Jzl = Jzl . �
Corollary 3.3.3. Φ = A ⊕ Id ∈ Aut0(nr,s(U)) if and only if (3.11) holds.

Let (V r,s
min, J) be a minimal admissible module of Clr,s. Let P : V r,s

min → V r,s
min be an 

involution from the set PI∗r,s that is the product of four generators. We denote by Ek
P , 

k ∈ {1, −1} the eigenspace of the involution P with the eigenvalue k = ±1. In order to 
denote the intersection of eigenspaces of several involutions Pl ∈ PI∗r,s, l = 1, . . . , N =
#(PI∗r,s), we use the multi-index I = (k1, . . . , kN ), kl = ±1 and write EI =

⋂N
l=1 E

kl

Pl
. 

Assume that Φ = A ⊕ Id ∈ Aut0(nr,s(V r,s
min)). Then

1. A = ⊕AI , where AI : EI → EI for any choice of I = (k1, . . . , kN );
2. if Jzj , JzjJzk , JzjJzkJzm : EI → EI for some I, then

AIJzj = Jzj (Aτ
I )−1, AIJzjJzkJzm = JzjJzkJzm(Aτ

I )−1



K. Furutani, I. Markina / Journal of Algebra 568 (2021) 91–138 105
AIJzjJzk = JzjJzkAI ,

and

Aτ
IJzj = Jzj (AI)−1, Aτ

IJzjJzkJzm = JzjJzkJzm(AI)−1,

Aτ
IJzjJzk = JzjJzkA

τ
I .

Proof. The first statement follows from the fact that APl = PlA for all l = 1, . . . , N .
The second statement is the direct consequence of (3.8) and Lemma 3.3.1. �
Thus the construction of the map A : V r,s

min → V r,s
min can be reduced to the construction 

of the maps AI : EI → EI and setting A = ⊕AI . Theorem 3.3.4 states that, under some 
conditions, the construction of all maps AI can be obtained from the map A1 : E1 → E1, 
where we denote E1 =

⋂N
l=1 E

1
Pl

. Note that E1 is exactly the subspace E∗
r,s ⊂ V r,s

min that 
is the common 1-eigenspace of involutions from PI∗r,s that are of types (1)-(3).

Theorem 3.3.4. Under the previous notation we assume that
(a) there exist maps GI : E1 → EI for all multi-indices I of the form either GI = Jzi or 
JziJzk for some i, k = 1, . . . , r + s, and
(b) there exists a linear map A1 : E1 → E1 such that if Jzj , JzjJzk , JzjJzkJzm : E1 → E1, 
then the map A1 satisfies

A1Jzj = Jzj (Aτ
1)−1, A1JzjJzkJzm = JzjJzkJzm(Aτ

1)−1, (3.12)

and the same for any other product of odd number of generators Jzl, leaving the space 
E1 invariant; also

A1JzjJzk = JzjJzkA1, (3.13)

and the same for any other product of even number of generators Jzl, leaving the space 
E1 invariant.

Then the map A : V r,s
min → V r,s

min, A = ⊕AI with AI : EI → EI such that

AI =
{
GI(A−1

1 )τG−1
I , if GI = Jzi for some i = 1, . . . , r + s,

GIA1G
−1
I , if GI = JziJzk for some i, k = 1, . . . , r + s,

(3.14)

uniquely defines the automorphism Φ = A ⊕ Id ∈ Aut0(nr,s(V r,s
min)).

Proof. The spaces EI are mutually orthogonal because all the involutions in PI∗r,s are 
symmetric. Thus V r,s

min = ⊕EI , where the direct sum is orthogonal. For the convenience 
we also write the maps defining Aτ

I :
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Aτ
I =

{
GIA

−1
1 G−1

I , if GI = Jzi ,

GIA
τ
1G

−1
I , if GI = JziJzk .

(3.15)

Then we set A = ⊕AI . We only need to check the condition AJzj0A
τ = Jzj0 for an 

arbitrary zj0 in the orthonormal basis for Rr,s.
We choose y ∈ V r,s

min = ⊕EI . Then we write y = ⊕yI with yI ∈ EI . Thus we 
distinguish the cases when the map GI is the product of an odd or an even number of 
maps Jzi . Moreover, we find a multi-index K for the multi-index I, such that G−1

K Jzj0GI

leaves the space E1 invariant. Since GK can also be the product of an even or an odd 
number of Jzk , we distinguish the following cases: AJzj0A

τyI = AKJzj0A
τ
IyI

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
GK(A−1

1 )τG−1
K Jzj0GIA

−1
1 G−1

I yI if GI = Jzi , GK = Jzl ,

GKA1G
−1
K Jzj0GIA

−1
1 G−1

I yI if GI = Jzi , GK = JzkJzl ,

GK(A−1
1 )τG−1

K Jzj0GIA
τ
1G

−1
I yI if GI = JziJzm , GK = Jzl ,

GKA1G
−1
K Jzj0GIA

τ
1G

−1
I yI if GI = JziJzm , GK = JzkJzl ,

by definitions (3.14) and (3.15) of AK and Aτ
I . We only check the first condition, since 

the others can be verified similarly. The condition that G−1
K Jzj0GI leaves the space E1

invariant, reads as (A−1
1 )τG−1

K Jzj0GIA
−1
1 = G−1

K Jzj0GI . Indeed from (3.12) we have

(A−1
1 )τG−1

K Jzj0GIA
−1
1 = (A−1

1 )τJ−1
zl

Jzj0JziA
−1
1 = J−1

zl
Jzj0Jzi = G−1

K Jzj0GI .

We calculate

GK(A−1
1 )τG−1

K Jzj0GIA
−1
1 G−1

I yI = GKG−1
K Jzj0GIG

−1
I = Jzj0 .

Thus, AJzj0A
τyI = Jzj0 yI .

Now we show the uniqueness. Let us assume that GI , GĨ : E1 → EI and both GI , GĨ

are products of even numbers of Jzk . Then A1GI = GIA1, and A1GĨ = GĨA1. It implies

AI ◦A−1
Ĩ

= GIA1G
−1
I GĨA

−1
1 G−1

Ĩ
= GIG

−1
I GĨA1A

−1
1 G−1

Ĩ
= Id,

because G−1
I GĨ is the product of an even number of Jzk that allows to apply (3.13).

Let now GI , GĨ : E1 → EI and both of them are products of odd numbers of genera-
tors. Then by making use of (3.14) and (3.13) we obtain

AI ◦A−1
Ĩ

= GI(Aτ
1)−1G−1

I GĨA
τ
1G

−1
Ĩ

= GI(Aτ
1)−1Aτ

1G
−1
I GĨG

−1
Ĩ

= Id

since G−1
I GĨ is the product of an even number of generators.

Finally, if GI : E1 → EI is the product of an odd number of generators and GĨ : E1 →
EI is the product of an even number of generators, then we obtain

AI ◦A−1
˜ = GI(Aτ

1)−1G−1
I GĨA

−1
1 G−1

˜ = GIG
−1
I GĨA1A

−1
1 G−1

˜ = Id

I I I
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Table 2
Classification result for nr,s(V r,s

min).
8 ∼=
7 d d d �

6 d ∼= ∼= h
5 d ∼= ∼= h
4 ∼= h h h
3 d � � d d d �

2 ∼= h � d ∼= ∼= h
1 ∼= d � d ∼= ∼= h
0 ∼= ∼= h ∼= h h h ∼=

s/r 0 1 2 3 4 5 6 7 8

by (3.14). Here we used the fact that G−1
I GĨ is the product of an odd number of gener-

ators and then applied (3.12). �
3.4. Classification of pseudo H-type Lie algebras nr,s(U)

We start from the necessary condition for isomorphisms between two H-type Lie 
algebras.

Theorem 3.4.1. [24, Theorem 2]. Let (V r,s, 〈 · , · 〉V r,s) and (V r̃,s̃, 〈 · , · 〉V r̃,s̃) be admissi-
ble modules of the Clifford algebras Clr,s and Clr̃,s̃, respectively. Assume that r+s = r̃+s̃, 
dim(V r,s) = dim(V r̃,s̃), and that the Lie algebras nr,s(V r,s) and nr̃,s̃(V r̃,s̃) are isomor-
phic. Then, either (r, s) = (r̃, ̃s) or (r, s) = (s̃, ̃r).

The classification of pseudo H-type algebras nr,s(V r,s
min), constructed from the minimal 

admissible modules was done in [24]. We summarise the results of the classification in 
Table 2.

Here “d” stands for “double”, meaning that dimV r,s
min = 2 dimV s,r

min and “h” (half) 
means that dimV r,s

min = 1
2 dimV s,r

min. The corresponding pairs are trivially non-isomorphic 
due to the different dimension of minimal admissible modules. The symbol ∼= denotes the 
Lie algebra nr,s(V r,s

min) having isomorphic counterpart ns,r(V s,r
min), the symbol � shows 

that the Lie algebra nr,s(V r,s
min) is not isomorphic to ns,r(V s,r

min).
The result of the classification for the cases when the Lie algebras have the same 

signature (r, s) of the scalar product on the center and arbitrary admissible modules is 
contained in [25, Theorems 4.1.1-4.1.3]. We summarise the result here.

Theorem 3.4.2. Let U = (U, 〈 · , · 〉U ) and Ũ = (Ũ , 〈 · , · 〉Ũ ) be admissible modules of a 
Clifford algebra Clr,s.

1. If r = 0, 1, 2 mod 4, then nr,s(U) ∼= nr,s(Ũ), if and only if dim(U) = dim(Ũ).
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2. Let r = 3 mod 4 and s = 0 mod 4 and let the admissible modules be decomposed 
into the direct sums of the type (2.7). Then the Lie algebras nr,s(U) and nr,s(Ũ) are 
isomorphic, if and only if,

p = p+
+ + p−− = p̃+

+ + p̃−− = p̃ and q = p−+ + p+
− = p̃−+ + p̃+

− = q̃, or
p = p+

+ + p−− = p̃−+ + p̃+
− = q̃ and q = p−+ + p+

− = p̃+
+ + p̃−− = p̃.

3. Let r = 3 mod 4 and s = 1, 2, 3 mod 4 and let U and Ũ be decomposed into the 
direct sums (2.6) Then nr,s(U) ∼= nr,s(Ũ), if and only if

p = p+ = p̃+ = p̃ and q = p− = p̃− = q̃, or
p = p+ = p̃− = q̃ and q = p− = p̃+ = p̃.

According to Theorem 3.4.2 in the cases r = 3 mod 4 and s = 0 mod 4, we can 

substitute 
p+
−
⊕ V r,s;+

min;− by 
p−
+
⊕ V r,s;−

min;+ if p+
− = p−+. Analogously, we replace 

p−
−
⊕ V r,s;−

min;− by 
p+
+
⊕ V r,s;+

min;+ if p−− = p+
+. Hence we reduce the decompositions of an admissible module to 

the sums containing only V r,s;±
min;+. Moreover, we omit the subscript “+” below and simply 

write V r,s;±
min . Thus, if r = 3 mod 4, then the type of the Lie algebra nr,s(U) depends 

only on the decomposition

U =
( p
⊕ V r,s;+

min

)⊕( q
⊕ V r,s;−

min

)
, (3.16)

where the numbers p, q are defined in items 2 and 3 of Theorem 3.4.2. We call admissible 
modules with decompositions (3.16) isotypic if one of the numbers p or q vanishes. 
Otherwise the admissible module is called non-isotypic of type (p, q).

Now we state the classification when the Lie algebras have opposite signatures (r, s)
and (s, r) of the scalar products on the centers and arbitrary admissible modules, see [25, 
Theorems 4.6.2]. We formulate here the revised version of the result obtained in [25, 
Theorem 4.6.2].

Theorem 3.4.3. Let r = 0, 1, 2 mod 4 and s = 0, 1, 2 mod 4. Then nr,s(Ur,s) ∼=
ns,r(Us,r) if dim(Ur,s) = dim(Us,r).

Let r = 3 mod 8, s = 0, 4, 5, 6 mod 8 or r = 7 mod 8, s = 0, 1, 2 mod 8. Then 

nr,s(Ur,s) ∼= ns,r(Us,r) if dim(Ur,s) = dim(Us,r) and Ur,s =
( p
⊕ V r,s;+

min

)⊕( p
⊕ V r,s;−

min

)
.

Let r ≡ 3 (mod 8) and s ≡ 1, 2, 7 (mod 8). Then nr,s(Ur,s) is never isomorphic to 
ns,r(Us,r).

3.5. Periodicity of Aut(nr,s(U)) in parameters (r, s)

To obtain Aut0(nr,s(U)) for all the range of the parameters (r, s), we need only to 
describe basic cases (2.5), since the rest follows from the theorems on periodicity.
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Proposition 3.5.1. [25, Propositions 4.2.1 and 4.2.2] Let (Ur,s
min, 〈 · , · 〉Ur,s

min
) be a minimal 

admissible module of Clr,s and Jzi , i = 1, . . . , r+s the Clifford actions of an orthonormal 
basis {zi}. Let also (V μ,ν

min, 〈 · , · 〉V μ,ν
min

) be a minimal admissible module of Clμ,ν for (μ, ν) ∈
{(8, 0), (0, 8), (4, 4)} and Jζi , i = 1, . . . , 8 the Clifford actions of an orthonormal basis 
{ζi}. Then

Ur,s
min ⊗ V μ,ν

min = (Ur,s
min ⊗Eμ,ν)

8⊕
i=1

(
Ur,s
min ⊗ Jζi(Eμ,ν)

) 8⊕
j=2

(
Ur,s
min ⊗ Jζ1Jζj (Eμ,ν)

)
(3.17)

is a minimal admissible module Ur+μ,s+ν
min of the Clifford algebra Clr+μ,s+ν .

Conversely, if Ur+μ,s+ν
min is a minimal admissible module of the algebra Clr+μ,s+ν , then 

the common 1-eigenspace E0 of the involutions Ti, i = 1, 2, 3, 4 from Example 1 can be 
considered as a minimal admissible module Ur,s

min of the algebra Clr,s. The action of the 
Clifford algebra Clr,s on E0 is the restricted action of Clr+μ,s+ν obtained by the natural 
inclusion Clr,s ⊂ Clr+μ,s+ν .

According to the correspondence between minimal admissible modules stated in Propo-
sition 3.5.1, there is a natural injective map

B : C(nr,s(Ur,s
min)) → C(nr+μ,s+ν(Ur+μ,s+ν

min )). (3.18)

Conversely, automorphisms of the form A ⊕ C ∈ C(nr+μ,s+ν(Ur+μ,s+ν
min )) with the 

property that C(ζj) = ζj, j = 1, . . . , 8, defines an automorphism A|E0 ⊕ C|Rr,s of the 
algebra nr,s(E0), where the space E0 is the common 1-eigenspace of the involutions Tj, 
j = 1, 2, 3, 4, viewed as a minimal admissible module of Clr,s.

Corollary 3.5.2. Let Ur,s and Ur+μ,s+ν = Ur,s ⊗ V μ,ν
min be admissible modules. Then

Aut0(nr+μ,s+ν((Ur+μ,s+ν)) = B
(
Aut0(nr,s(Ur,s))

)
,

that is the group Aut0(nr,s(Ur,s)) is invariant under the map B defined in (3.18).

Proof. The proof follows from Proposition (3.2.4). �
Finally, we state the result of the periodicity of isomorphisms for the Lie algebras.

Theorem 3.5.3. [25, Theorem 4.6.1] The Lie algebras nr,s(Ur,s) and ns,r(Us,r) are iso-
morphic if and only if the Lie algebras nr+μ,s+ν(Ur+μ,s+ν) and ns+ν,r+μ(Us+ν,r+μ) are 
isomorphic for (μ, ν) ∈ {(8, 0), (0, 8), (4, 4)}.

3.6. Definition of classical groups

We aim to determine a subgroup A of the group SL(n, R) such that if A ∈ A, then 
A ⊕ Id ∈ Aut0(nr,s(U). In what follows we will identify A and Aut0(nr,s(U)). The maps 
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A : U → U are linear maps over the field of real numbers. From the other side the 
admissible modules U can carry complex or quaternion structures such that the map A
commutes with them. Thus, the map A has to be linear with respect to these additional 
algebras. We recall some useful embeddings of the algebras C, H into the space of real 
matrices.

The use of the notation ∗T for the transpose matrix and the reverse ordered element 
in the Clifford algebras will not cause any confusion.

We write λ = a + bi, i2 = −1, for λ ∈ C and h = a + bi + cj + dk for h ∈ H. Recall 
that

i2 = j2 = k2 = ijk = −1. (3.19)

We describe here the embeddings of the algebras F = C, H and square matrices 
M(n, F) into the set of real square matrices M(n, R) and complex square matrices 
M(n, C), respectively. We define an embedding

ρC : C → M(2,R)

λ = a + bi 	→
(
a −b
b a

)
.

(3.20)

Then one has

A = ρC(AC) = ρC

((
λ11 λ12
λ21 λ22

))
=

⎛⎜⎝a11 −b11 a12 −b12
b11 a11 b12 a12
a21 −b21 a22 −b21
b21 a21 b22 a22

⎞⎟⎠
for λkl = akl + bkli. The map ρC is the algebra homomorphism:

ρC(ACBC) = ρC(AC)ρC(BC) = AB,

ρC(λ) =
(
ρC(λ)

)T
, λ ∈ C,

ρC(AC
T ) =

(
ρC(AC)

)T = AT , AC ∈ M(n,C),

where superscript AT denotes the transposition of A. Note also that if we denote by 
diagn L a block-diagonal real matrix with the blocks L on the diagonal, then

diagn
(

1 0
0 −1

)
ρC(AC) diagn

(
1 0
0 −1

)
= ρC(ĀC). (3.21)

A quaternion number can be expressed by using complex numbers by

h = a + bi + cj + dk = λ + jμ, λ = a + bi, μ = c + di,

with the conjugation h̄ = a − bi − cj − dk = λ̄− jμ̄. Thus we define
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ρH : H → M(2,C)

h = λ + jμ 	→
(
λ −μ
μ λ

)
.

Consider the space Hn as a right quaternion space. Thus, AH(vh) = (AHv)h for h ∈ H, 
for the quaternion column vector v ∈ Hn, and for the quaternion matrix AH. A column 
vector h = (h1, . . . , hn)T ∈ Hn with hl = λl + jμl will be represented by the column 
vector (λ1, . . . , λn, μ1, . . . , μn)T ∈ C2n. Then the quaternion matrix QH ∈ M(n, H)
written as QH = ΛC + jΨC with ΛC, ΨC ∈ M(n, C) will be represented as

ρH(QH) =
(

ΛC −ΨC

ΨC ΛC

)
∈ M(2n,C).

This representation is convenient by the following reason: if H � h = λ + jμ is given as a 

column vector 
(
λ
μ

)
, then multiplication from the left by a complex matrix representation 

of a quaternion produces a new column vector representing the correct quaternion. The 
map ρH is also the algebra homomorphism:

ρH(AHBH) = ρH(AH)ρH(BH),

ρH(h) =
(
ρH(h)

)T
, h ∈ H,

ρH(BH
T ) =

(
ρH(BH)

)T
, BH ∈ M(n,H).

We recall the following definitions of the classical groups that will be used in the 
sequel. The general linear group GL(n, F) of degree n over the fields F = R, C is

GL(n,F) := {M ∈ M(n,F) | M is invertible}.

The general orthogonal group O(n, F) over the fields F = R, C is

O(n,F) := {M ∈ GL(n,F) | MTM = Idn},

where Idn is the (n × n) identity matrix. In the case F = R we also use the pseudo-
orthogonal group O(p, q)

O(p, q) := {M ∈ GL(p + q,R) | MT Idp,q M = Idp,q}, Idp,q =
(

Idp 0
0 − Idq

)
.

All the groups over R preserving a symmetric bilinear form of index (p, q) are isomorphic 
to O(p, q). The groups over C preserving a symmetric bilinear form of index (p, q) are 
isomorphic to O(n, C) with n = p + q, see [43, Chapter 3.1].

The symplectic group Sp(2n, F) of degree 2n over the fields F = R, C is

Sp(2n,F) := {M ∈ GL(2n,F) | MTΩnM = Ωn}, Ωn =
(

0 − Idn

Id 0

)
.

n
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All the groups preserving a skew-symmetric bilinear form are isomorphic to Sp(2n, F).
The general unitary group U(p, q) of degree n is

U(p, q) := {M ∈ GL(n,C) | MT Idp,q M = Idp,q}.

The subgroup U(p, 0) ⊂ U(p, q) is denoted by U(p). Note that from a qualitative point 
of view, consideration of skew-Hermitian forms (up to isomorphism) provides no new 
groups, since the multiplication by i renders a skew-Hermitian form Hermitian, and vice 
versa. Thus only the Hermitian case needs to be considered.

Now we turn to define the groups over the algebra H. Under the identification de-
scribed above

GL(n,H) = {M ∈ GL(2n,C) | ΩnM = MΩn, detM �= 0}
SL(n,H) = {M ∈ GL(n,H) | detM = 1},

Sp(p, q) = {M ∈ GL(n,H) | M
T Idp,q M = Idp,q, p + q = n}

=
{
M ∈ GL(2n,C) | M

T diag
(

Idp,q 0
0 Idp,q

)
M = diag

(
Idp,q 0

0 Idp,q

)}
.

The group Sp(p, q) is called quaternionic unitary group. If p = 0 or q = 0, then Sp(0, p) ∼=
Sp(p, 0) is denoted by U(p, H) and called hyperunitary group. The reason for the notation 
Sp(p, q) is that this group can be represented, as a subgroup of Sp(2n, C) preserving an 
Hermitian form of signature (2p, 2q) for p + q = n.

The last group is the quaternionic orthogonal group denoted by O∗(2n) = O(n, H)
and it is defined by

O∗(2n) = O(n,H) = {M ∈ GL(n,H) | M̄T diagn jM = diagn j}
= {M ∈ GL(2n,C) | M̄TΩnM = Ωn}.

Here j is the quaternionic unit represented by ρH(j) ∈
(

0 −1
1 0

)
∈ M(2, C). The defi-

nition of O∗(2n) = O(n, H) can be given equivalently as

O∗(2n) = O(n,H) = {M ∈ GL(n,H) | M̄T diagn iM = diagn i}
= {M ∈ GL(n,H) | M̄T diagn kM = diagn k}.

This is true due to the fact that by conjugation with some h, ̃h ∈ Sp(1) = U(1, H) we can 
get hih−1 = j and analogously h̃kh̃−1 = j. The group O∗(2n) = O(n, H) can be viewed 
as a subgroup of O(2n, C) that preserves an Hermitian form of index (n, n). Particularly, 
if n = 1, then one needs to check the condition(

λ̄ μ̄
−μ λ

)(
0 −1
1 0

)(
λ −μ̄
μ λ̄

)
=
(

0 −1
1 0

)
,
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with λ = a + ib, μ = c + id. It leads to the solution of the system

{
Im(λ̄μ) = 0
λ2 + μ2 = 1

=⇒

⎧⎪⎪⎨⎪⎪⎩
ad = bc

ab + cd = 0
a2 − b2 + c2 − d2 = 1

=⇒
{
a2 + c2 = 1
b = d = 0.

Thus (
λ −μ̄
μ λ̄

)
=
(
a −c
c a

)
= α = a + ic and a2 + c2 = |α|2 = 1,

and we conclude that O∗(2) ∼= U(1).

4. Determination of Aut0(nr,s(U))

4.1. Integral basis

Definition 4.1.1. We fix the standard orthonormal basis {zk} for Rr,s. Then we call a 
basis {xi} of the minimal admissible module Vmin, an integral basis with respect to the 
orthonormal basis {zk}, if it satisfies the conditions that

• the basis {xi} is orthonormal with respect to the admissible scalar product,
• for any zk and xi, there exists a unique xj such that either Jzk(xi) = xj or Jzk(xi) =

−xj .

One way to construct such a basis is given by taking a suitable vector v ∈ Er,s and 
choosing an orthonormal basis for V r,s

min from the vectors

{v,±Jzkv, . . . ,±Jzk1
Jzk2

. . . Jzkl
v, . . . ,±Jz1Jz2 . . . Jzr+s

v, 1 ≤ k1 < . . . < kl ≤ r + s}.

The choice of the integral basis is not unique. For the construction of an integral basis 
for the H-type Lie algebras nr,0(U), see [13]. The presence of an integral basis on a Lie 
algebra guaranties the existence of a lattice of the corresponding Lie group, see [37]. 
Nevertheless, once we fix an integral basis, we denote by η the matrix of the admissible 

scalar product. Thus either η = Id2n or η =
(

Idn 0
0 − Idn

)
according to the ordering 

from positive vectors to negative vectors of a fixed integral basis. The construction of an 
integral basis can be found in [23].

Recall that Jτ
zi is the transposition with respect to an admissible scalar product and 

JT
zi the transposition with respect to the standard Euclidean scalar product. The relation 

between two transpositions is given by Jτ
zi = ηJT

ziη.

Lemma 4.1.2. If Jτ
zi = −Jzi , J2

zi = ± Id, i = 1, 2, 3, JziJzj = −JzjJzi , i, j = 1, 2, 3, 
i �= j, and ηT = η, η2 = Id is non-degenerate bi-linear form, then
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(1.) (ηJzi)T = −ηJzi ;
(2.) (ηJzk)2 = − Id;

(3.) ηJzi =
{
−Jziη if J2

zi = Id
Jziη if J2

zi = − Id
;

Proof. (1.) We obtain (ηJzi)T = JT
zzi

ηT = −ηJzi from ηJzi = −JT
ziη.

(2.) We consider four cases:
(a) Let J2

zi = − Id and xj an element of the integral basis such that 〈xj , xj 〉 > 0. 
Then ηJzixj = Jzixj and (ηJzi)2(xj) = ηJ2

zixj = −xj .
(b) Let J2

zi = − Id and 〈xj , xj 〉 < 0. Then ηJzixj = −Jzixj and

(ηJzi)2(xj) = −ηJ2
zixj = ηxj = −xj .

(c) Let J2
zi = Id and 〈xj , xj 〉 > 0. Then ηJzixj = −Jzixj and

(ηJzi)2(xj) = −ηJ2
zixj = −ηxj = −xj .

(d) Let J2
zi = Id and 〈xj , xj 〉 < 0. Then ηJzixj = Jzixj and

(ηJzi)2(xj) = ηJ2
zixj = ηxj = −xj .

(3.) The property ηJziηJzi = − Id implies JziηJ2
zi = −ηJzi . �

4.2. Description of the procedure of determination of Aut0(nr,s(U))

In this section, we describe step by step the procedure of determination of 
Aut0(nr,s(U)).

Step 1. We determine the groups Aut0(nr,s(V r,s)) for the basic cases (2.5). According 
to Corollary 3.5.2 it provides the groups for all range of (r, s). Thus, the next steps are 
explained only for basic cases.

Step 2. We determine the groups Aut0(nr,s(V r,s
min)) for minimal admissible modules.

2.1 We find the sets PIr,s of involutions of all types (1)-(5) and their subsets P ∗
r,s ⊂ PIr,s

that are involutions of types (1)-(3). We write Pk for the operators from PIr,s. 
We denote by E∗

r,s the common 1-eigenspace of involutions from P ∗
r,s and Er,s the 

common 1-eigenspace of involutions from PIr,s. We find operators that commute 
with all involutions from P ∗

r,s. These operators will leave the space E∗
r,s invariant. 

Among these operators we denote by I the almost complex structure, and by I, J, K
the almost quaternion structure, i.e. the operators satisfying (3.19) and being the 
product of an even number of Jzk . We use the notation Q for a negative operator 
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Q = JziJzj such that Q2 = Id. Apart from mentioned operators it could be at most 
one more, denoted by Π that is the product of an even number of Jzk commuting 
with all involutions from P ∗

r,s. All these operators will be indicated for each case in 
tables. We denote by A an operator on P ∗

r,s such that A ⊕ Id ∈ Aut0(nr,s(V r,s
min)) and 

satisfying (3.8).
2.2 We choose an integral basis generated from a vector v ∈ Er,s, 〈 v, v 〉Er,s

= 1. Here 
we emphasise that Er,s ⊂ E∗

r,s is the common 1-eigenspace of all types of involutions 
from PIr,s. The details of the construction of the integral basis can be found in [24]. 
The basis of E∗

r,s will be indicated for each case. We use the black colour to denote 
the basis vectors xk such that 〈xk, xk 〉E∗

r,s
= 1 and use the red colour for the basis 

vectors xl such that 〈xl, xl 〉E∗
r,s

= −1.
2.3 In this step we distinguish 6 possible collections of operators I, J, K, Q, Π on E∗

r,s

that leave it invariant.
2.3.1 The set E∗

r,s has neither complex, quaternion structure, no operator Q. In this 
case the operator A : E∗

r,s → E∗
r,s is real. In the presence of an operator Π we 

check the condition (3.8), that we write in the form:

AT ηΠA = ηΠ . (4.1)

These are the cases

(r, s) ∈ {(1, 0), (0, 1), (7, 0), (0, 7), (8, 0), (0, 8), (3, 4), (4, 3), (4, 4)}.

2.3.2 The set E∗
r,s has a complex structure, but neither quaternion structure, no 

operator Q. Since A commutes with I we conclude that A ∈ GL(k, C), where 
k = dimC(E∗

r,s). If there is no operator Π on E∗
r,s, then Aut0(nr,s(V r,s

min)) =
GL(k, C). Otherwise we check the condition (4.1). There are two options: if 
the map ηΠ is complex liner (ηΠ commutes with I), then

Aut0(nr,s(V r,s
min)) ∼= Sp(k,C) or Aut0(nr,s(V r,s

min)) ∼= U(k).

If the operator ηΠ is not complex linear, then Aut0(nr,s(V r,s
min)) ∼= O(k, C). 

These are the cases

(r, s) ∈ {(2, 0), (0, 2), (6, 0), (0, 6), (2, 4), (4, 2), (3, 5), (5, 3), (7, 1), (1, 7)}.

2.3.3 The set E∗
r,s has a quaternion structure, and has no operator Q. Since A

commutes with I, J, K we conclude A ∈ GL(k, H), where k = dimH(E∗
r,s). All 

the operators ηΠ will be quaternion linear and by checking (4.1), we make the 
conclusions in the cases

(r, s) ∈ {(3, 0), (0, 3), (4, 0), (0, 4), (5, 0), (0, 5), (4, 1), (1, 4), (5, 2), (2, 5),
(6, 1), (1, 6), (6, 2), (2, 6), (6, 3), (3, 6), (7, 2), (2, 7)}.
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2.3.4 The set E∗
r,s has an operator Q and neither has complex no quaternion struc-

ture. In the presence of the operator Q we decompose E∗
r,s into eigenspaces 

of the involution Q that we denote by N±. Thus E∗
r,s = N+ ⊕ N−. Since A

commutes with Q, we get A = A+⊕A−, where A± : N± → N±. We check (4.1)
and make the conclusion. Since in this case there are no other conditions on A±
the group Aut0(nr,s(V r,s

min)) will be given by the direct product of subgroups of 
GL(k, R) with k = dim(N±). These are the cases

(r, s) ∈ {(1, 1), (3, 3)}.

2.3.5 The set E∗
r,s has a complex structure and an operator Q but does not have a 

quaternion structure. We start from the decompositions E∗
r,s = N+ ⊕N− and 

A = A+ ⊕ A−. In all these cases we have QI = −I Q and therefore we define 
A− = −IA+I. If it needs, we check (4.1) on N+ and make the conclusions. 
These are the cases

(r, s) ∈ {(2, 2), (3, 2), (2, 3), (2, 1), (1, 2)}.

2.3.6 The set E∗
r,s has a quaternion structure and an operator Q. We start from the 

decompositions E∗
r,s = N+ ⊕ N− and A = A+ ⊕ A−. The result depends on 

the situation whether N+ carries the complex or quaternion structure. These 
are the cases

(r, s) ∈ {(3, 1), (1, 3), (5, 1), (1, 5), (7, 3), (3, 7)}.

2.4 Having in hands the operator A : E∗
r,s → E∗

r,s, we can extend it to the operator 
A : V r,s

min → V r,s
min. The operator A is completely and uniquely determined by the 

operator A according to Theorem 3.3.4. To match the notation of the present de-
scription and Theorem 3.3.4 we note that E∗

r,s = E1 and A = A1 in Theorem 3.3.4. 
The operators GI used for the construction of A are indicated for all the cases in 
tables. We emphasise that we present only some of the operators GI , since the ex-
tension of A from A does not depend on the choice of a specific operator GI, but 
only on its existence. The map A will satisfy (3.8) by Theorem 3.3.4. Thus the group 
Aut0(nr,s(V r,s

min)) is already defined in steps 2.3.1-2.3.6.

Step 3. We determine the groups Aut0(nr,s(V r,s)) for arbitrary admissible modules 
V r,s = ⊕V r,s

min. It follows from the following procedure. We decompose the module V r,s

into the orthogonal direct sum (3.16) of minimal admissible modules following the classi-
fication of Theorem 3.4.2. We write V r,s ⊃ E =

∑p
l=1 ⊕(E∗

r,s)l, where (E∗
r,s)l ⊂ (V r,s

min)l. 
In each (E∗

r,s)l will be chosen a vector vl, with 〈 vl, vl 〉(Er,s)l = ±1, generating an 
orthonormal basis on (V r,s

min)l. We draw the attention of the reader to the fact that 
〈 vl, vl 〉(E ) = 1 if (Er,s)l ∈ (V r,s;+

min )l, 〈 vl, vl 〉(E ) = −1 if (Er,s)l ∈ (V r,s;−
min )l and 
r,s l r,s l
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Sp(p, p) Sp(p, q) × Sp(p, q)
GL(p,H) Sp(p, q)

p) O∗(2p) U(p, q)
O(p,C) O(p, q) GL(p,R)

6 7 8
Table 3
Groups Aut0(nr,s(U).

8 GL(p,R)
7 O(p, p) U(p, p) Sp(p, p) Sp(p, q) × Sp(p, q)
6 O(2p,C) O∗(2p) GL(p,H) Sp(p, q)
5 O∗(4p) O∗(2p) × O∗(2p) O∗(2p) U(p, q)
4 GL(p,H) O∗(2p) O(p,C) O(p, q) GL(p,R)
3 Sp(p, p) U(p, p) O(p, p) O(p, q) × O(p, q) O(p, p) U(p, p)
2 Sp(2,C) Sp(2p,R) GL(2p,R) O(2p, 2q) O(2p,C) O∗(2p)
1 Sp(2p,R) Sp(2p,R) × Sp(2p,R) Sp(4p,R) U(2p, 2q) O∗(4p) O∗(2p) × O∗(2
0 Sp(2p,R) Sp(2p,C) Sp(p, q) GL(p,H) O∗(2p)

0 1 2 3 4 5
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always 〈 vl, vl 〉(Er,s)l = 1 for (Er,s)l ∈ (V r,s;N
min )l. We write v = ⊕l=p

l=1vl for the generat-
ing vector on E ⊂ V r,s. The result for E ⊂ V r,s is the direct sum of the results for 
(E∗

r,s)l ⊂ (V r,s
min)l, l = 1, . . . , p, that will allow us to make the conclusion in each case.

We list the final result and then we proceed to consider case by case.
In the following sections, we will write the calculation in the order that was described 

in steps 2.3.1-2.3.6. We write Jk for Jzk for shortness.

4.3. Modules over R

4.3.1. dimR(E∗
r,s) = 1: cases n7,0(U), n3,4(U), n8,0(U), n4,4(U), n0,8(U)

V 7,0
min dim = 8
E±

P1
+ - dim = 4

E±
P2

+ - + - dim = 2
E±

P3
+ E∗

7,0 - + - + - + - dim = 1

Basis for E∗
7,0 v . . . . . . . . . . . . . . . . . . . . .

P1 = J1J2J4J5
P2 = J1J2J6J7
P3 = J1J3J4J6
P4 = J1J2J3
Π = J1J2J3

GI J3 J7 J6 J5 J4 J2 J1

There are four types of minimal admissible modules:

V 7,0;+
min;+, V 7,0;−

min;+, V 7,0;+
min;−, V 7,0;−

min;−.

According to the classification Theorem 3.4.2, we can reduce the consideration to the 
non-isotypic (p, q)-module

U =
( p
⊕ V 7,0;+

min;+
)
⊕
( q
⊕ V 7,0;−

min;+
)
. (4.2)

We consider non-isotypic (p, q)-module (4.2) and a vector space E =
( p
⊕ (E∗

7,0)+
)
⊕
( q
⊕

(E∗
7,0)−

)
, with (E∗

7,0)+ ⊂ V 7,0;+
min;+ and (E∗

7,0)− ⊂ V 7,0;−
min;+. Note that Π acts as Id on E

and η = Idp,q. The unique condition that needs to be checked is

AT ηΠA = ηΠ ⇐⇒ AT Idp,q A = Idp,q .

We conclude Aut0(n7,0(U)) = O(p, q).
Structure of the minimal admissible modules and the involutions for n3,4(U) are similar 

to n7,0(U) and we conclude that Aut0(n3,4(U)) ∼= O(p, q) for a non-isotypic (p, q)-module 
U .
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V 8,0
min dim = 16
E±

P1
+ - dim = 8

E±
P2

+ - + - dim = 4
E±

P3
+ - + - + - + - dim = 2

E±
P4

+ E∗
8,0 - + - + - + - + - + - + - + - dim = 1

Basis for E∗
8,0 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P1 = J1J2J3J4
P2 = J1J2J5J6
P3 = J1J2J7J8
P4 = J1J3J5J7

GI J1J2 J8 J7 J6 J5 J1J3 J1J4 J4 J3 J1J5 J1J6 J1J7 J1J8 J2 J1

The tables for (r, s) ∈ {(0, 8), (4, 4)} are the same. There are no operators Π leaving 

the space E =
p
⊕ E∗

r,s, (r, s) ∈ {(8, 0), (0, 8), (4, 4)}, invariant. This means that there 
are no restrictions on the group of automorphisms acting on an admissible module. We 

conclude that Aut0(U) = GL(p, R) for U =
p
⊕ V r,s;+

min and for (r, s) ∈ {(8, 0), (0, 8), (4, 4)}.

4.3.2. dimR(E∗
r,s) = 2: cases n1,0(U), n0,1(U); n0,7(U), n4,3(U)

n1,0 dim=2
Basis x1 = v

x2 = J1v

n0,1 dim=2
Basis x1 = v

x2 = J1v

Let U =
p
⊕ V 1,0;+

min . In this case A ∈ Aut0(n1,0(U)) has to fulfil the relation ATJ1A = J1

for J1 = diagp
(

0 −1
1 0

)
. We conclude Aut0(n1,0(U)) ∼= Sp(2p, R)

Let U =
p
⊕ V 0,1;N

min . Then AT ηJ1A = ηJ1, where ηJ1 = diagp
(

0 1
−1 0

)
. It follows that 

Aut0(n0,1(U)) = Sp(2p, R) as in the previous case.

V 0,7
min dim = 16
E±

P1
+ - dim = 8

E±
P2

+ - + - dim = 4
E±

P3
+ E∗

0,7 - + - + - + - dim = 2

Basis for E∗
0,7 x1 = v . . . . . . . . . . . . . . . . . . . . .

P1 = J1J2J3J4
P2 = J1J2J5J6

x2 = J1J2J7v . . . . . . . . . . . . . . . . . . . . .
P3 = J1J3J5J7
Π = J1J2J7

GI J7 J6 J5 J4 J3 J2 J1

We need to check the condition

AT ηΠA = ηΠ ⇐⇒ AT diagp
(

0 1
1 0

)
A = diagp

(
0 1
1 0

)
. (4.3)

In the basis y1 = x1 + x2 and y2 = x1 − x2 for E∗
0,7 ⊂ V 0,7;N

min condition (4.3) becomes

AT diagp
(

1 0
0 −1

)
A = diagp

(
1 0
0 −1

)
.

We conclude that Aut0(n0,7(U)) ∼= O(p, p) for U =
p
⊕ V 0,7;N

min .



120 K. Furutani, I. Markina / Journal of Algebra 568 (2021) 91–138
For the case n4,3(U) the system of involutions and operators are similar to n0,7(U). 
We conclude that Aut0(n4,3(U)) = O(p, p).

4.4. Modules over C

In this section we first consider the cases when the operators ηΠk are complex linear, 
or in other words they commute with the almost complex structure I. In this case the 
group of automorphisms is related to unitary transformations. The last part of the cases 
is related to the situations when the operators ηΠk are not complex linear.

4.4.1. dimC(E∗
r,s) = 1: cases n7,1(U), n3,5(U); n6,0(U), n2,4(U)

V 7,1
min dim = 16
E±

P1
+ - dim = 8

E±
P2

+ - + - dim = 4
E±

P3
+ E∗

7,1 - + - + - + - dim = 2

Basis for E∗
7,1 x1 = v . . . . . . . . . . . . . . . . . . . . .

P1 = J1J2J4J5
P2 = J1J2J6J7

x2 = Iv . . . . . . . . . . . . . . . . . . . . .

P3 = J1J3J5J7
P4 = J1J2J3
I = J1J2J3J8
Π = J1J2J3

GI J3 J6 J7 J4 J5 J2 J1

We have E∗
7,1 = E+1

Π ⊕ E−1
Π , with E+1

Π = span{v} and E−1
Π = span{Iv}. We let 

U = (
p
⊕ V 7,1;+

min ) ⊕ (
q
⊕ V 7,1;−

min ). Since ηΠ is complex linear, we need to check

AT ηΠA = ηΠ ⇐⇒ ĀT
C Idp,q AC = Idp,q . (4.4)

Here we used the embedding (3.20) and denoted by AC the matrix with complex entries 
such that ρC(AC) = A. It shows that A ∈ U(p, q) and Aut0(n7,1(U)) ∼= U(p, q).

The table and calculations for n3,5(U) are analogous to n7,1(U) and we conclude that 
Aut0(n3,5(U)) = U(p, q) for U = (

p
⊕ V 3,5;+

min ) 
⊕

(
q
⊕ V 3,5;−

min ).

We consider now cases when the operators ηΠ are not complex linear.

V 6,0
min dim = 8
E±

P1
+ - dim = 4

E±
P2

+ E∗
6,0 - + - dim = 2

Basis for E∗
6,0 x1 = v . . . . . . . . .

P1 = J1J2J3J4
P2 = J1J2J5J6
P3 = J1J3J5

x2 = Iv . . . . . . . . .
I = J1J2
Π = J1J3J5
GI J5 J3 J1
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We have E∗
6,0 = E+

Π ⊕ E−
Π with E+

Π = span{v}, E−
Π = span{Iv} and A ∈ GL(1, C). 

We also have that ΠI = −I Π with Π =
(

1 0
0 −1

)
. We obtain

AT ΠA = Π ⇐⇒ Π ρC(ĀT
C)Π ρC(AC) = Id . (4.5)

By making use of (3.21), we conclude that AT
CAC = Id. For an admissible module 

U = (
p
⊕ V 6,0;+

min ) we obtain Aut0(n6,0(U)) = O(p, C).

Calculations and the table for n2,4(U) are similar to the case n6,0(U). Thus 
Aut0(n2,4(U)) = O(p, C).

4.4.2. dimC(E∗
r,s) = 2: cases n1,7(U), n5,3(U); n2,0(U), n0,2(U); n0,6(U), n4,2(U)

V 1,7
min dim = 32
E±

P1
+ - dim = 16

E±
P2

+ - + - dim = 8
E±

P3
+ E∗

1,7 - + - + - + - dim = 4
Basis for E∗

1,7 x1 = v . . . . . . . . . . . . . . . . . . . . . P1 = J2J3J4J5

x2 = Iv . . . . . . . . . . . . . . . . . . . . .
P2 = J2J3J6J7
P3 = J2J4J6J8

x3 = J1v . . . . . . . . . . . . . . . . . . . . . I = J1J6J7J8
x4 = IJ1v . . . . . . . . . . . . . . . . . . . . . Π = J1

GI J8 J7 J6 J5 J4 J3 J2

First we consider a minimal admissible module. We have A ∈ GL(2, C) and ηΠI =

IηΠ. Thus the complex linear map ηΠ =
(

0 −1
1 0

)
is skew-Hermitian. As it was 

noticed, from a qualitative point of view, consideration of skew-Hermitian forms (up 
to isomorphism) provides no new classical groups, since the multiplication by i renders 
a skew-Hermitian form Hermitian, and vice versa. The form iηΠ is Hermitian of the 
signature (1, 1) and the condition ĀT

CiηΠAC = iηΠ leads to Aut0(n1,7(V 1,7;N
min )) ∼=

U(1, 1). It shows that Aut0(n1,7(U)) ∼= U(p, p) for U = (
p
⊕ V 1,7;N

min ).

The calculations and the table for n5,3(U) are similar to n1,7(U) and we conclude that 
Aut0(n5,3(U)) ∼= U(p, p).

V 2,0
min dim=4

Basis x1 = v

x2 = Ix1 I = J1J2
x3 = J1v Π = J1

V 0,2
min dim = 4

Basis x1 = v

x2 = Iv I = J1J2
x3 = J1v Π = J1
x4 = Ix3 x4 = Iv
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We make calculations for U = V 2,0;+
min . We have A ∈ GL(2, C), ΠI = −I Π, and

Π =

⎛⎜⎝0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞⎟⎠ = diag2

(
1 0
0 −1

)
·
(

0 − Id2
Id2 0

)
.

The condition AT ΠA = Π is equivalent to

diag2

(
1 0
0 −1

)
ρC(ĀT

C) diag2

(
1 0
0 −1

)(
0 − Id2

Id2 0

)
ρC(AC) =

(
0 − Id2

Id2 0

)
.

Observation (3.21) implies that

AT
C

(
0 −1
1 0

)
AC =

(
0 −1
1 0

)
=⇒ Aut0(n2,0(V 2,0;+

min )) ∼= Sp(2,C).

We obtain that Aut0(n2,0(U)) ∼= Sp(2p, C) for U =
p
⊕ V 2,0;+

min .

Let now U =
p
⊕ V 0,2;N

min . For the neutral metric η we obtain

ηΠ = −

⎛⎜⎝0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞⎟⎠ .

Thus by calculations for AT ηΠA = ηΠ as above we get Aut0(n0,2(U)) = Sp(2p, C).

V 0,6
min dim = 16
E±

P1
+ - dim = 8

E±
P2

+ E∗
0,6 - + - dim = 4

Basis for E∗
0,6 x1 = v . . . . . . . . . P1 = J1J2J3J4

x2 = Iv . . . . . . . . . P2 = J1J2J5J6
x3 = J1J3J5v . . . . . . . . . I = J1J2

x4 = Ix3 . . . . . . . . . Π = J1J3J5

GI J5 J3 J1

We start from U = V 0,6
min. Note that A ∈ GL(2; C), ηΠI = −IηΠ and

ηΠ =

⎛⎜⎝ 0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

⎞⎟⎠ = diag2

(
1 0
0 −1

)
·
(

0 Id2
Id2 0

)
.

Therefore,

AT ηΠA = ηΠ ⇐⇒ AT
C

(
0 1
1 0

)
AC =

(
0 1
1 0

)
.



K. Furutani, I. Markina / Journal of Algebra 568 (2021) 91–138 123
The matrix 
(

0 1
1 0

)
is symmetric of signature (1, 1). Thus Aut0(n0,6(V 0,6;N

min )) ∼=

O(1, 1, C) ∼= O(2, C). We obtain Aut0(n0,6(U)) ∼= O(2p, C) for U =
p
⊕ V 0,6;N

min .

The calculations and the table for n4,2(U) are similar to n0,6(U) and we conclude that 
Aut0(n4,2(U)) = O(2p, C).

4.5. Modules over H

4.5.1. dimH(E∗
r,s) = 1: cases n4,0(U), n0,4(U), n6,2(U), n2,6(U), n6,1(U), n1,6(U), 

n5,2(U), n2,5(U), n5,0(U), n1,4(U), n3,0(U), n3,6(U), n7,2(U)

V 4,0
min dim = 8
E±

P1
+ E∗

4,0 - dim = 4
Basis for E∗

4,0 x1 = v . . . P1 = J1J2J3J4
x2 = Iv . . . I = J1J2
x3 = Jv . . . J = J2J3
x4 = Kv . . . K = J3J1

GI J1

The table for n0,4(V 0,4
min) is analogous, with I = J1J2, J = J2J3, K = J1J3.

V 6,2
min dim = 32
E±

P1
+ - dim = 16

E±
P2

+ - + - dim = 8
E±

P3
+ E∗

6,2 - + - + - + - dim = 4

Basis for E∗
6,2 x1 = v . . . . . . . . . . . . . . . . . . . . .

P1 = J1J2J3J4
P2 = J1J2J5J6
P3 = J1J2J7J8

x2 = Iv . . . . . . . . . . . . . . . . . . . . . I = J1J2
x3 = Jv . . . . . . . . . . . . . . . . . . . . . J = J1J3J5J7
x4 = Kv . . . . . . . . . . . . . . . . . . . . . K = J2J3J5J7

GI J7 J5 J1J3 J3 J1J5 J1J7 J1

The table for n2,6 is similar. In all 4 cases there are no conditions except the require-
ment to commute with the quaternion structure. We conclude that Aut0(n4,0(U)) =
Aut0(n0,4(U)) = Aut0(n6,2(U)) = Aut0(n2,6(U)) = GL(p, H).

V 1,6
min dim = 16
E±

P1
+ - dim = 8

E±
P2

+ E∗
1,6 - + - dim = 4

Basis for E∗
1,6 x1 = v . . . . . . . . .

P1 = J2J3J4J5
P2 = J2J3J6J7
P3 = J1J2J3

x2 = Iv . . . . . . . . . I = J1J2J4J6
x3 = Jv . . . . . . . . . J = J2J3

x4 = Kv . . . . . . . . . K = J1J3J4J6
Π = J1
GI J6 J4 J2
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Observe that P3 = − Id on E∗
1,6 according to the agreement that E∗

1,6 ⊂ V 1,6;N
min;+ with 

the volume form Ω1,6 acting as identity on V 1,6;N
min;+. We consider U =

p
⊕ V 1,6;N

min;+. Since 
ηΠ = diagp j and

AT ηΠA = ηΠ ⇐⇒ ĀT
H diagp jAH = diagp j,

we conclude that Aut0(n1,6(U)) ∼= O∗(2p).

V 5,2
min dim = 16
E±

P1
+ - dim = 8

E±
P2

+ E∗
5,2 - + - dim = 4

Basis for E∗
5,2 x1 = v . . . . . . . . .

P1 = J1J2J3J4
P2 = J1J2J6J7
P3 = J1J2J5

x2 = Iv . . . . . . . . . I = J2J3J5J6
x3 = Jv . . . . . . . . . J = J1J2

x4 = Kv . . . . . . . . . K = J1J3J5J6
Π = J5

GI J7 J3 J1

Observe that P3 = − Id according to E∗
5,2 ⊂ V 5,2

min;+ with Ω5,2 = Id on V 5,2;N
min;+. The 

calculation, similar to the case of n1,6(U), shows that Aut0(n5,2(U)) ∼= O∗(2p).

V 6,1
min dim = 16
E±

P1
+ - dim = 8

E±
P2

+ E∗
6,1 - + - dim = 4

Basis for E∗
6,1 x1 = v . . . . . . . . .

P1 = J1J2J3J4
P2 = J1J2J5J6
P3 = J1J3J5

x2 = Iv . . . . . . . . . I = J1J2
x3 = Jv . . . . . . . . . J = J1J3J5J7

x4 = Kv . . . . . . . . . K = J2J3J5J7
Π = J7

GI J5 J3 J1

Observe that E∗
6,1 = E+

P3
⊕ E−

P3
, with E+

P3
= span{v, Kv} and E−

P3
= span{Iv, Jv}. 

We obtain ηΠ = diagp j for U = ⊕pV 6,1;N
min . Thus, Aut0(n6,1(U)) ∼= O∗(2p).

The calculations and the table for n2,5(U) are similar to n6,1(U) and we conclude 
Aut0(n2,5(U)) ∼= O∗(2p).

V 5,0
min dim = 8
E±

P1
+ E∗

5,0 - dim = 4

Basis for E∗
5,0 x1 = v . . .

P1 = J2J3J4J5
P2 = J1J2J3

x2 = Iv . . . I = J3J4
x3 = Jv . . . J = J3J2

x4 = Kv . . .
K = J4J2
Π = J1
GI J5
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Note that E∗
5,0 = E+

P2
⊕ E−

P2
with E+

P2
= span{v, Jv} and E−

P2
= span{Iv, Kv}. Thus 

Π = diagp j and we conclude that Aut0(n5,0(U)) ∼= O∗(2p) for U = ⊕pV 5,0;+
min .

For the case n1,4(U) we use the quaternion structure I = J3J4, J = J3J2, K = J2J4. 
The rest of calculations are similar to n5,0(U) and we obtain Aut0(n1,4(U)) ∼= O∗(2p).

V 3,0
min dim=4

Basis x1 = v P1 = J1J2J3
x2 = Iv I = J1J2
x3 = Jv J = J2J3

x4 = Kv
K = J3J1
Π = J1J2J3

Observe that Π = Ω3,0 = Id. We obtain that AT ΠA = Π is equivalent to 

ĀT
H Idp,q AH = Idp,q. Thus Aut0(n3,0(U)) = Sp(p, q) for U =

( p
⊕ V 3,0;+

min;+
)
⊕
( q
⊕ V 3,0;−

min;+
)
.

V 3,6
min dim = 32
E±

P1
+ - dim = 16

E±
P2

+ - + - dim = 8
E±

P3
+ E∗

3,6 - + - + - + - dim = 4

Basis for E∗
3,6 x1 = v . . . . . . . . . . . . . . . . . . . . .

P1 = J1J2J8J9
P2 = J4J5J8J9

x2 = Iv . . . . . . . . . . . . . . . . . . . . .
P3 = J6J7J8J9
P4 = J3J8J9

x3 = Jv . . . . . . . . . . . . . . . . . . . . .
I = J8J9
J = J1J4J7J8

x4 = Kv . . . . . . . . . . . . . . . . . . . . .
K = −J1J4J7J9
Π = J3J8J9

GI J7 J4 J5 J1 J1J6 J7J8 J9

We have E∗
3,6 = E+

P4
⊕ E−

P4
, with E+

P4
= span{v, Iv}, E−

P4
= span{Jv, Kv}. Since 

ηΠ = Idp,q, we obtain

AT ηΠA = ηΠ ⇐⇒ ĀH Idp,q AH = Idp,q .

So Aut0(n3,6(U)) = Sp(p, q) for U =
( p
⊕ V 3,6;+

min
)
⊕
( q
⊕ V 3,6;−

min
)
.

The calculation and the table for n7,2(U) are similar to the case n3,6(U) and we 
conclude that Aut0(n7,2(U)) = Sp(p, q).

4.5.2. dimH(E∗
r,s) = 2: cases n0,3(U), n6,3(U), n2,7(U), n0,5(U), n4,1(U)

V 0,3
min dim = 8

Basis x1 = v

x2 = Iv I = J2J1
x3 = Jv J = J3J2
x4 = Kv K = J1J3

x5 = J1J2J3v

x6 = Ix5
x7 = Jx5 Π = J1J2J3

x8 = Kx5
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We make calculations on V 0,3
min and note that ηΠ =

(
0 1
1 0

)
. In the basis

y1 = x1 + x5, y2 = Iy1, y3 = Jy1, y4 = Ky1,

y5 = x1 − x5, y6 = Iy5, y7 = Jy5, y8 = Ky5,
(4.6)

the operator ηΠ takes the form Id1,1. Thus

AT ηΠA = ηΠ ⇐⇒ ĀT
H Id1,1 AH = Id1,1 =⇒ A ∈ Sp(1, 1).

We conclude that Aut0(n0,3(U)) ∼= Sp(p, p) for U =
p
⊕ V 0,3;N

min .

V 6,3
min dim = 64
E±

P1
+ - dim = 32

E±
P2

+ - + - dim = 16
E±

P3
+ E∗

6,3 - + - + - + - dim = 8
Basis for E∗

6,3 x1 = v . . . . . . . . . . . . . . . . . . . . . P1 = J1J2J3J4
x2 = Iv . . . . . . . . . . . . . . . . . . . . . P2 = J1J2J5J6
x3 = Jv . . . . . . . . . . . . . . . . . . . . . P3 = J1J2J7J8
x4 = Kv . . . . . . . . . . . . . . . . . . . . . I = J1J3J6J8

x5 = J2J1J9v . . . . . . . . . . . . . . . . . . . . . J = J2J1
x6 = IJ2J1J9v . . . . . . . . . . . . . . . . . . . . . K = J2J3J6J8
x7 = JJ2J1J9v . . . . . . . . . . . . . . . . . . . . . Π = J2J1J9
x8 = KJ2J1J9v . . . . . . . . . . . . . . . . . . . . .

GI J7 J5 J1J3 J3 J1J5 J1J7 J1

We have that ηΠ = Id1,1 in the basis (4.6). It leads to Aut0(n6,3(U)) ∼= Sp(p, p).

The calculations for n2,7(U) are similar to n6,3(U) and Aut0(n2,7(U)) ∼= Sp(p, p).

V 0,5
min dim = 16
E±

P1
+ E∗

0,5 - dim = 8
Basis for E∗

0,5 x1 = v . . . P1 = J1J2J3J4
x2 = Iv . . .

x3 = Jv . . . I = J1J2
x4 = Kv . . . J = J1J3
x5 = J5v . . . K = J3J2
x6 = IJ5v . . .

x7 = JJ5v . . . Π = J5
x8 = KJ5v . . .

GI J1

We have ηΠ =
(

0 1
−1 0

)
on V 0,5

min, and ηΠ =
(

j 0
0 j

)
in the basis

y1 = x1 + x3 − x5 + x7, y2 = Iy1, y3 = Jy1, y4 = Ky1,

y5 = x2 + x4 + x6 − x8, y6 = Iy5, y7 = Jy5, y8 = Ky5.
(4.7)

It leads to AT ηΠA = ηΠ that is equivalent to ĀT
H diagp

(
j 0
0 j

)
AH = diagp

(
j 0
0 j

)
. 

Thus we showed that Aut0(n0,5(U)) ∼= O∗(4p).
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In the case n4,1(U) we use the quaternion structure I = J1J2, J = J4J2, K = J1J4. 
The rest of calculations are similar to n0,5(U). Thus Aut0(n4,1(U)) ∼= O∗(4p).

4.6. Modules over R caring a negative involution

4.6.1. Cases n1,1(U), n3,3(U)
In these cases there are no complex or quaternion structures, but only a negative 

involution Q leaving the space E∗
r,s invariant. The involution Q commutes with invo-

lutions of type (1)-(3) and therefore decomposes the space E∗
r,s into its eigenspaces: 

E∗
r,s = N+ ⊕ N−. The admissible scalar product is degenerate on both N±, but the 

decomposition still orthogonal with respect to the admissible product. In these cases the 
determination of Aut0(nr,s(U)) reduces to the calculations on N±.

V 1,1
min dim = 4

Basis x1 = v

x2 = Q v Q = J1J2
x3 = J1v

x4 = QJ1v Π = J1

We have V 1,1;N
min = N+ ⊕N− with the bases

N+ = span
{
y1 = x1 + x2

2 , y2 = x3 + x4

2

}
, N− = span

{
y3 = x1 − x2

2 , y4 = x3 − x4

2

}
Since A Q = QA we can decompose A = A+ ⊕ A− such that A± : N± → N±. We have 

ηΠQ = Q ηΠ and ηΠ = diag2

(
0 −1
1 0

)
in the basis {yk}4

k=1. Thus the condition 

AT ηΠA = ηΠ is equivalent to two independent conditions

AT
±

(
0 −1
1 0

)
A± =

(
0 −1
1 0

)
.

We conclude that Aut0(n1,1(V 1,1;N
min )) ∼= Sp(2, R) × Sp(2, R). We obtain Aut0(n1,1(U)) ∼=

Sp(2p, R) × Sp(2p, R) for a general admissible module U =
p
⊕ V 1,1;N

min .

V 3,3
min dim = 8
E±

P1
+ - dim = 4

E±
P2

+ E∗
3,3 - + - dim = 2

Basis for E∗
3,3 x1 = v . . . . . . . . .

P1 = J1J2J5J6
P2 = J1J3J4J6
P3 = J1J2J3

x2 = Q v . . . . . . . . .
Q = J1J6
Π = P3

GI J3 J2 J6

We have E∗
3,3 = E+

Π ⊕ E−
Π, with E+

Π = span{v}, E−
Π = span{Q v}. Thus

E∗
3,3 = N+ ⊕N−, N+ = span

{
y1 = x1 + x2

}
, N− = span

{
y2 = x1 − x2

}
.
2 2
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We write A± : N± → N±. We have ηΠQ = Q ηΠ and ηΠ = Id2 in the basis {yk}, 
k = 1, 2. The condition AT ηΠA = ηΠ is equivalent to two independent conditions 
AT

±A± = Id. We conclude Aut0(n3,3(V 3,3;+
min )) ∼= O(1) ×O(1). We obtain Aut0(n3,3(U)) ∼=

O(p, q) × O(p, q) for U = (
p
⊕ V 3,3;+

min ) ⊕ (
q
⊕ V 3,3;−

min ).

4.7. Modules over C, caring a negative involution

In these cases we continue to consider eigenspaces of the negative involution Q. The 
complex structure can preserve eigenspaces of Q or reverse them. It leads to the different 
results.

4.7.1. Cases n2,2(U), n3,2(U), n2,3(U), n1,2(U)

V 2,2
min dim = 8
E±

P1
+ E∗

2,2 - dim = 4
Basis for E∗

2,2 x1 = v . . .

x2 = Iv . . . P1 = J1J2J3J4
x3 = J2J3v . . . I = J1J2
x4 = IJ2J3v . . . Q = J2J3

GI J3

We have the decomposition E∗
2,2 = N+ ⊕N− with the bases:

N+ = span
{
y1 = x1 + x3

2 , y2 = x2 − x4

2

}
, (4.8)

N− = span
{
y3 = x1 − x3

2 , y4 = x2 + x4

2

}
.

We write A = A+ ⊕A−, where A+ ∈ GL(2, R), A+ : N+ → N+. The map A− : N− →
N− can be found from the relation A− = J1J2A+J2J1. We conclude that for minimal 
admissible module A ∈ GL(2; R). In general Aut0(n2,2(U)) = GL(2p, R) for U =

p
⊕

V 2,2;N
min .

V 1,2
min dim = 4

Basis x1 = v

x2 = Iv I = J2J3
x3 = J1J2v Q = J1J2
x4 = IJ1J2v Π = J1J2J3

In this case there are two minimal admissible modules but they are metrically isotypic 
and we set Π v = v. We start from a minimal admissible module and write V 1,2;N

min =
N+ ⊕N−. We also write A = A+ ⊕ A−, where A+ ∈ GL(2; R) and A− = J2J3A+J3J2. 

We obtain ηΠ =
(

0 Id2
Id2 0

)
in the basis (4.8). The condition

AT ηΠA = ηΠ ⇐⇒ AT
+ ⊕AT

−

(
0 Id2

Id 0

)
A+ ⊕A− =

(
0 Id2

Id 0

)

2 2
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is equivalent to

AT
+A− = Id2 ⇐⇒ AT

+J2J3A+J3J2 = Id ⇐⇒ AT
+

(
0 −1
1 0

)
A+ =

(
0 −1
1 0

)
.

Thus we conclude that Aut0(n1,2(V 1,2;N
min )) = Sp(2, R). For a general admissible module 

U =
p
⊕ V 1,2;N

min we obtain Aut0(n1,2(U)) = Sp(2p, R).

V 3,2
min dim = 8
E±

P1
+ E∗

3,2 - dim = 4

Basis for E∗
3,2 x1 = v . . .

P1 = J1J2J4J5
P2 = J3J4J5

x2 = Iv . . . I = J4J5
x3 = Q v . . . Q = J1J4
x4 = IQ v . . . Π = J3J4J5

GI J1

We have E∗
3,2 = E+

Π ⊕ E−
Π, with E+

Π = span{v, Iv} and E−
Π = span{Q v, QIv}, 

and ηΠ = Id in the basis (4.8). As before we decompose A = A+ ⊕ A− on E∗
3,2 with 

A+ ∈ GL(2p + 2q; R) and A− = −IA+I. The condition

AT
+ Id2p,2q A+ = Id2p,2q on U =

( p
⊕ V 3,2;+

min

)
⊕
( q
⊕ V 3,2;−

min

)
leads to the conclusion that Aut0(n3,2(U)) = O(2p, 2q).

V 2,3
min dim = 8
E±

P1
+ E∗

2,3 - dim = 4

Basis for E∗
2,3 x1 = v . . .

P1 = J1J2J4J5
P2 = J1J3J5

x2 = Iv . . . I = J4J5
x3 = Q v . . . Q = J1J4
x4 = IQ v . . . Π = J1J3J5

GI J1

Arguing as in the case V 3,2
min and by making use the basis (4.8), we come to condition

AT
+

(
1 0
0 −1

)
A+ =

(
1 0
0 −1

)
, for V 2,3;N

min .

For a general module U =
p
⊕ V 2,3;N

min we conclude that Aut0(n2,3(U)) = O(p, p).

V 2,1
min dim = 8

Basis x1 = v

x2 = Iv
x3 = Q v

x4 = IQ v I = J1J2
x5 = J1J2J3v Q = J2J3
x6 = IJ1J2J3v Π = J1J2J3
x7 = Q J1J2J3v
x8 = IQJ1J2J3v
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We use the basis

y1 = x1+x3
2 , y2 = x2−x4

2 , y3 = x5+x7
2 , y4 = x6−x8

2 ,

y5 = x1−x3
2 , y6 = x2+x4

2 , y7 = x5−x7
2 , y8 = x6+x8

2 ,
(4.9)

for V 2,1;N
min = N+ ⊕ N− with N+ = span{y1, y2, y3, y4}, N− = span{y5, y6, y7, y8}. We 

write A = A+⊕A− with A+ ∈ GL(4; R) and A− = J1J2A+J2J1 in the basis (4.9). Then

ηΠ =
(

0 S
S 0

)
with S = −

(
0 Id2

Id2 0

)
.

Thus we need to check the condition

AT
+SA− = S ⇐⇒ AT

+SJ1J2A+ = SJ1J2 with SJ1J2 =

⎛⎜⎝ 0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞⎟⎠ .

Finally, we conclude that Aut0(n2,1(U)) ∼= Sp(4p, R).

4.8. Modules over H caring a negative involution

4.8.1. Cases n1,3(U), n3,1(U), n1,5(U), n5,1(U), n7,3(U), n3,7(U),

V 1,3
min dim = 8

Basis x1 = v

x2 = Iv P = J1J2J3
x3 = Jv
x4 = Kv I = J2J3
x5 = J4v J = J3J4
x6 = IJ4v K = J2J4
x7 = JJ4v Q = J1J2
x8 = KJ4v Π = J1

We choose P1v = v and the basis for V 1,3;N
min = N+ ⊕N−:

N+ = span
{
y1 = x1 + x7

2 , y2 = x3 − x5

2 , y3 = x4 + x6

2 , y4 = x2 − x8

2

}
,

N− = span
{
y5 = x1 − x7

2 , y6 = x3 + x5

2 , y7 = x4 − x6

2 , y8 = x2 + x8

2

}
.

(4.10)

Since A Q = QA and QI = −I Q we write A = A+ ⊕ A−, where A+ ∈ GL(4; R) and 
A− = J2J3A+J3J2. Since QJ = J Q we deduce that A+ ∈ GL(2; C). Moreover

N+ = span{y1, y2 = Jy1, y3 = y3, y4 = Jy3}. (4.11)

We also have ηΠQ = Q ηΠ, ηΠJ = JηΠ with the matrix ηΠ |N+ =
(

0 i
i 0

)
. It 

leads to
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AT
+ηΠA+ = ηΠ ⇐⇒ (A+)TC

(
0 1
1 0

)
(A+)C =

(
0 1
1 0

)
.

The matrix 
(

0 1
1 0

)
is Hermitian of index (1, 1). We conclude that Aut0(n1,3(V 1,3;N

min )) ∼=

U(1, 1) and Aut0(n1,3(U)) ∼= U(p, p) for U =
p
⊕ V 1,3;N

min .

n3,1 dim = 8
Basis x1 = v

x2 = Iv P1 = J1J2J3
x3 = Jv
x4 = Kv I = J2J3
x5 = J4v J = J1J2
x6 = IJ4v K = J1J3
x7 = JJ4v Q = J3J4
x8 = KJ4v Π = J4

We have V 3,1;+
min = E+

P1
⊕ E−

P1
, with

E+
P1

= span{v, Iv,Jv,Kv}, E−
P1

= span{J4v, IJ4v,JJ4v,KJ4v}.

The negative involution Q decomposes V 3,1;+
min = N+⊕N− with the basis given by (4.10). 

Since A Q = QA and QI = −I Q we write A = A+ ⊕ A−, where A+ ∈ GL(4; R)
and A− = −IA+I. The condition QJ = J Q implies A+ ∈ GL(2; C). We also have 

ηΠQ = Q ηΠ and ηΠJ = JηΠ with ηΠ |N+ = diag2

(
0 −1
1 0

)
in the basis (4.11). It 

leads to

AT
+ηΠA+ = ηΠ ⇐⇒ (A+)TC(A+)C = Id2 .

The conclusion is that Aut0(n3,1(V 3,1;+
min )) ∼= U(2) and Aut0(n3,1(U)) ∼= U(2p, 2q) for 

U = (
p
⊕ V 3,1;+

min ) ⊕ (
q
⊕ V 3,1;−

min ).

V 5,1
min dim = 16
E±

P1
+ E∗

5,1 - dim = 8
Basis for E∗

5,1 x1 = v . . . P1 = J1J2J3J4
x2 = Iv . . . P2 = J1J2J5
x3 = Jv . . .

x4 = Kv . . . I = J1J3
x5 = J6v . . . J = J1J2
x6 = IJ6v . . . K = J3J2
x7 = JJ6v . . . Q = J5J6
x8 = KJ6v . . . Π = J6

GI J1

We have E∗
5,1 = E+

P2
⊕ E−

P2
, with

E+
P = span{v,Jv, IJ6v,KJ6v}, E−

P = span{J6v, Iv,JJ6v,Kv, }.

2 2
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The negative involution Q decomposes E∗
5,1 into two eigenspaces E∗

5,1 = N+ ⊕N− with 
the bases

N+ = span
{
y1 = x1 + x7

2 , y2 = x2 + x8

2 , y3 = x3 − x5

2 , y4 = x4 − x6

2

}
,

N− = span
{
y5 = x1 − x7

2 , y6 = x2 − x8

2 , y7 = x3 − x5

2 , y8 = x4 + x6

2

}
.

(4.12)

Since A Q = QA and QI = I Q, QJ = J Q we write A = A+ ⊕ A−, where A± ∈
GL(1; H). Moreover

N+ = span{y1, y2 = Iy1, y3 = y3, y4 = Iy3}. (4.13)

We also have ηΠQ = Q ηΠ, ηΠI = IηΠ, ηΠJ = JηΠ. Thus ηΠ is quaternion linear 
and ηΠ |N± = j, written in the basis (4.13). It leads to

AT
±ηΠA± = ηΠ |N+ ⇐⇒ (A±)THj(A±)H = j.

The conclusion is that Aut0(n5,1(V 5,1;N
min )) ∼= O∗(2) ×O∗(2) and Aut0(n5,1(U)) ∼= O∗(2p) ×

O∗(2p) for U =
p
⊕ V 5,1;N

min .

V 1,5
min dim = 16
E±

P1
+ E∗

1,5 - dim = 8
Basis for E∗

1,5 x1 = v . . . P1 = J2J3J4J5
x2 = Iv . . . P2 = J1J2J3
x3 = Jv . . .

x4 = Kv . . . I = J3J4
x5 = J6v . . . J = J2J3
x6 = IJ6v . . . K = J4J2
x7 = JJ6v . . . Q = J1J6
x8 = KJ6v . . . Π = J6

GI J5

With the chosen operators I, J, Q, Π the calculations are identical to the case of n5,1

and we conclude that Aut0(n1,5(U)) ∼= O∗(2p) × O∗(2p) for U =
p
⊕ V 1,5;N

min .

V 7,3
min dim = 64
E±

P1
+ - dim = 32

E±
P2

+ - + - dim = 16
E±

P3
+ E∗

7,3 - + - + - + - dim = 8
Basis for E∗

7,3 x1 = v . . . . . . . . . . . . . . . . . . . . . P1 = J1J2J4J5
x2 = Iv . . . . . . . . . . . . . . . . . . . . . P2 = J1J2J6J7
x3 = Jv . . . . . . . . . . . . . . . . . . . . . P3 = J1J2J8J9
x4 = Kv . . . . . . . . . . . . . . . . . . . . . P4 = J1J2J3
x5 = J10v . . . . . . . . . . . . . . . . . . . . . I = J1J2
x6 = IJ10v . . . . . . . . . . . . . . . . . . . . . J = J1J4J6J8
x7 = JJ10v . . . . . . . . . . . . . . . . . . . . . K = J2J4J6J8

x8 = KJ10v . . . . . . . . . . . . . . . . . . . . .
Q = J3J10
Π = J10
GI J8 J6 J1J4 J4 J1J6 J1J8 J1



K. Furutani, I. Markina / Journal of Algebra 568 (2021) 91–138 133
Observe that E∗
7,3 = E+

P4
⊕ E−

P4
, with

E+
P4

= span{v, Iv,JJ10v,KJ10v}, E−
P4

= span{J10v, IJ10v,Jv,Kv}.

We start from the minimal admissible module. The negative involution Q decomposes 
E∗

7,3 into two eigenspaces E∗
7,3 = N+ ⊕N− with the bases

N+ = span
{
y1 = x1 + x6

2 , y2 = x2 − x5

2 , y3 = x4 + x7

2 , y4 = x8 − x3

2

}
,

N− = span
{
y5 = x1 − x6

2 , y6 = x2 + x5

2 , y7 = x7 − x4

2 , y8 = x8 + x3

2

}
.

(4.14)

Since A Q = QA and QI = I Q, QJ = J Q we write A = A+ ⊕ A−, where A± ∈
GL(1; H). Moreover

N+ = span{y1, y2 = Iy1, y3 = y3, y4 = Iy3}. (4.15)

We also have ηΠQ = Q ηΠ, ηΠI = IηΠ, ηΠJ = −JηΠ with 
(
ηΠ |N±

)
C

= i Id2, 
written in the basis (4.15). It leads to

AT
±ηΠA± = ηΠ |N+ ⇐⇒ (A±)TC Id2(A±)C = Id2 .

Thus we conclude Aut0(n7,3(V 7,3;+
min )) ∼= Sp(1) ×Sp(1) for a minimal admissible module. 

If U = (
p
⊕ V 7,3;+

min ) ⊕ (
q
⊕ V 7,3;−

min ), then Aut0(n7,3(U)) ∼= Sp(p, q) × Sp(p, q).

The calculations and the table for n3,7(U) are identical to n7,3(U) and we conclude 

that Aut0(n3,7(U)) ∼= Sp(p, q) × Sp(p, q) for U = (
p
⊕ V 3,7;+

min ) ⊕ (
q
⊕ V 3,7;−

min ).

5. Appendix

5.1. Comparison of Aut0(nr,s(U)) for isomorphic algebras

Cases n1,0(U), n0,1(V ); n2,0(U), n0,2(V ); n5,1(U), n1,5(V ).

n1,0(
p
⊕ V 1,0;+

min ) ∼= n0,1(
p
⊕ V 0,1;N

min ), n2,0(
p
⊕ V 2,0;+

min ) ∼= n0,2(
p
⊕ V 0,2;N

min )

n5,1(
p
⊕ V 5,1;N

min ) ∼= n1,5(
p
⊕ V 1,5;N

min )

Aut0(n1,0(U)) = Aut0(n0,1(V )) ∼= Sp(2p,R),

Aut0(n2,0(U)) = Aut0(n0,2(V )) = Sp(2p,C),

Aut0(n1,5(U)) = Aut0(n5,1(V )) = O∗(2p) × O∗(2p).

Cases n4,0(V ), n0,4(U); n2,6(U), n6,2(V ); n8,0(U), n0,8(V ), n4,4(W ); n1,6(U), n6,1(U); 
n2,5(U), n5,2(V ).
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n4,0(
p
⊕ V 4,0;+

min ) ∼= n0,4(
p
⊕ V 0,4;N

min ), n2,6(
p
⊕ V 2,6;N

min ) ∼= n6,2(
p
⊕ V 6,2;N

min )

n1,6(
p
⊕ V 1,6;N

min ) ∼= n6,1(
p
⊕ V 6,1;N

min ), n2,5(
p
⊕ V 2,5;N

min ) ∼= n5,2(
p
⊕ V 5,2;N

min )

n8,0(
p
⊕ V 8,0;+

min ) ∼= n0,8(
p
⊕ V 0,8;+

min ) � n4,4(
p
⊕ V 4,4;+

min )

Aut0(n4,0(V )) = Aut0(n0,4(U)) = Aut0(n2,6(U)) = Aut0(n6,2(V ) = GL(p,H);

Aut0(n1,6(U)) = Aut0(n6,1(V )) = Aut0(n2,5(U)) = Aut0(n5,2(V )) = O∗(2p).

Aut0
(
n8,0(U)

)
= Aut0

(
n0,8(V )

)
= Aut0

(
n4,4(W )

)
= GL(p,R).

Cases n5,0(U), n0,5(V ); n1,4(U), n4,1(V ); n6,0(U), n0,6(U); n2,4(U), n4,2(U); n1,2(U), 
n2,1(U) Here we have that

n5,0(
2p
⊕ V 5,0;+

min ) ∼= n0,5(
p
⊕ V 0,5;N

min ), n1,4(
2p
⊕ V 1,4;+

min ) ∼= n4,1(
p
⊕ V 4,1;N

min )

n6,0(
2p
⊕ V 6,0;+

min ) ∼= n0,6(
p
⊕ V 0,6;N

min ), n2,4(
2p
⊕ V 2,4;+

min ) ∼= n4,2(
p
⊕ V 4,2;N

min ),

n1,2(
2p
⊕ V 1,2;N

min ) ∼= n2,1(
p
⊕ V 2,1;N

min ).

We also showed

Aut0
(
n5,0(

p
⊕ V 5,0;+

min )
) ∼= O∗(2p) and Aut0(n0,5(

p
⊕ V 0,5;N

min )) ∼= O∗(4p).

Aut0
(
n1,4(

p
⊕ V 1,4;+

min )
) ∼= O∗(2p) and Aut0(n4,1(

p
⊕ V 4,1;N

min )) ∼= O∗(4p).

Aut0
(
n6,0(

p
⊕ V 6,0;+

min )
) ∼= O(p,C) and Aut0

(
n0,6(

p
⊕ V 0,6;N

min )
) ∼= O(2p,C).

Aut0
(
n2,4(

p
⊕ V 2,4;+

min )
) ∼= O(p,C) and Aut0

(
n4,2(

p
⊕ V 4,2;N

min )
) ∼= O(2p,C).

Aut0(n1,2(
p
⊕ V 1,2;N

min )) ∼= Sp(2p,C) and Aut0
(
n2,1(

p
⊕ V 2,1;N

min )
) ∼= Sp(4p,R).

Cases n3,0(V ), n0,3(U); n7,0(U), n0,7(V ); n3,4(U), n4,3(V ).

n0,3(V 0,3;N
min ) ∼= n3,0

(( p
⊕ V 3,0;+

min;+
)
⊕
( p
⊕ V 3,0;−

min;+
))

,

n0,7(
p
⊕ V 0,7;N

min ) ∼= n7,0

(( p
⊕ V 7,0;+

min;+
)
⊕
( p
⊕ V 7,0;−

min;+
))

,

n4,3(
p
⊕ V 4,3;N

min ) ∼= n3,4

(( p
⊕ V 3,4;+

min;+
)
⊕
( p
⊕ V 3,4;−

min;+
))

,

Aut0(n0,3
( p
⊕ V 0,3;N

min

)
= Sp(p, p), Aut0(n3,0

(( p
⊕ V 3,0;+

min;+
)
⊕
( q
⊕ V 3,0;−

min;+
))

= Sp(p, q),

Aut0(n0,7
( p
⊕ V 0,7;N

min

) ∼= Aut0(n4,3
( p
⊕ V 4,3;N

min

) ∼= O(p, p),

Aut0(n7,0

(( p
⊕ V 7,0;+

min;+
)
⊕
( q
⊕ V 7,0;−

min;+
)) ∼= Aut0(n3,4

(( p
⊕ V 3,4;+

min;+
)
⊕
( q
⊕ V 3,4;−

min;+
))

∼
= O(p, q).
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Cases n1,7(U), n7,1(V ); n5,3(U), n3,5(V ); n2,7(U), n7,2(V ); n6,3(U), n3,6(V ).

n1,7(
p
⊕ V 1,7;N

min ) ∼= n7,1
(
(
p
⊕ V 7,1;+

min ) ⊕ (
p
⊕ V 7,1;−

min )
)
.

n5,3(
p
⊕ V 5,3;N

min ) ∼= n3,5
(
(
p
⊕ V 3,5;+

min ) ⊕ (
p
⊕ V 3,5;−

min )
)
.

n2,7(
p
⊕ V 2,7;N

min ) ∼= n7,2
(
(
p
⊕ V 7,2;+

min ) ⊕ (
p
⊕ V 7,2;−

min )
)
,

n6,3(
p
⊕ V 6,3;N

min ) ∼= n3,6
(
(
p
⊕ V 3,6;+

min ) ⊕ (
p
⊕ V 3,6;−

min )
)
,

Aut0
(
n5,3(

p
⊕ V 5,3;N

min )
) ∼= Aut0

(
n1,7(

p
⊕ V 1,7;N

min )
) ∼= U(p, p)

Aut0(n7,1
( p
⊕ V 7,1;+

min ) ⊕ (
q
⊕ V 7,1;−

min )
) ∼= Aut0(n3,5

( p
⊕ V 3,5;+

min ) ⊕ (
q
⊕ V 3,5;−

min )
) ∼= U(p, q).

Aut0
(
n2,7(

p
⊕ V 2,7;N

min )
) ∼= Aut0

(
n6,3(

p
⊕ V 6,3;N

min )
) ∼= Sp(p, p),

Aut0(n7,2
( p
⊕ V 7,2;+

min ) ⊕ (
q
⊕ V 7,2;−

min )
) ∼= Aut0(n3,6

( p
⊕ V 3,6;+

min ) ⊕ (
q
⊕ V 3,6;−

min )
) ∼= Sp(p, q).

Cases n1,3(U), n3,1(V ); n2,3(U), n3,2(V ); n3,7(U), n7,3(V ). In all these cases the pairs 
of the Lie algebras are not isomorphic for any choice of admissible modules. We have

Aut0(n1,3(U)) = U(p, p), Aut0(n3,1(V )) = U(2p, 2q);

Aut0(n2,3(U)) ∼= O(p, p), Aut0(n3,2(V )) = O(2p, 2q);

Aut0(n3,7(U)) ∼= Aut0(n7,3(V )) ∼= Sp(p, q) × Sp(p, q).

5.2. Some isomorphisms

In the work [24, Theorem 11] it was shown the existence of an isomorphism 
n1,7(U1,7;N

min ) ∼= n7,1(V 7,1;±
min ⊕ V 7,1;±

min ). The proof was not constructive and did not show 
how the metric changes under the isomorphism. Therefore we propose here the construc-
tive proof of n1,7(U1,7;N

min ) ∼= n7,1(V 7,1;+
min ⊕ V 7,1;−

min ). We will construct the isomorphism 
only for minimal dimensional module. Thus we choose the basis (z1, . . . , z8)

〈 zk, zk 〉1,7 = −1, k = 1, . . . , 7, 〈 z8, z8 〉1,7 = 1 for R1,7.

y1 = u, y2 = Iyl1, y3 = Jz1Jz2Jz7y1, y4 = Iy3 = Jz8y1 for E1,7 ⊂ U1,7;N
min

with 〈u, u 〉E1,7 = 1 and the complex structure I = Jz1Jz2Jz7Jz8 . We also choose the 
basis (w1, . . . , w8)

〈wk, wk 〉7,1 = 1, k = 1, . . . , 7, 〈w8, w8 〉7,1 = −1 for R7,1.

x1 = v1, x2 = Ĩx1 = −Jw8v1, x3 = Jw1Jw2Jw7v2, x4 = Ĩx3 = −Jw8v2

for E7,1;+⊕E7,1;− ⊂ V 7,1;+
min ⊕V 7,1;−

min with 〈 v1, v1 〉E7,1;+1
Jw1Jw2Jw7

= − 〈 v2, v2 〉E7,1;+1
Jw1Jw2Jw7

= 1

and the complex structure Ĩ = Jw1Jw2Jw7Jw8 . According to [24, Corollary 5, Theorem 3]
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we define C : R1,7 → R7,1 by C(zk) = wk and Cτ (wk) = −zk, k = 1, . . . , 8. The complex 
structure I will correspond the complex structure Ĩ.

We define A : E1,7;N → E7,1;+ ⊕ E7,1;− by setting

Ay1 =
4∑

m=1
amxm, Ay3 =

4∑
m=1

bmxm.

Using the properties AI = ĨA we deduce that

AC =
(
λ̄1 μ̄1
λ̄2 μ̄2

)
, η1,7Jz8 =

(
0 −i
−i 0

)
, η7,1Jw8 =

(
−i 0
0 i

)
.

We need to check the condition

AT η7,1Jw8A = −η1,7Jz8 ⇐⇒ ĀT
C

(
−1 0
0 1

)
AC =

(
0 1
1 0

)
It leads to finding the solution of the system⎧⎪⎪⎨⎪⎪⎩

−|λ1|2 + |λ2|2 = 0
−|μ1|2 + |μ2|2 = 0
−λ1μ̄1 + λ2μ̄2 = 1.

=⇒
{
−λ1 = λ2 = 1

2 ,

μ1 = μ2 = 1.

As we see the Lie algebras n1,7(V 1,7;N
min ) and n7,1(V 7,1;+

min ⊕ V 7,1;−
min ) are isomorphic.

The isomorphism is extended to any modules and the algebras n1,7(
p
⊕ V 1,7;N

min ) and 

n7,1
(
(
p
⊕ V 7,1;+

min ) ⊕ (
p
⊕ V 7,1;−

min )
)
. Analogously we can show

n2,7(
p
⊕ V 2,7;N

min ) ∼= n7,2
(
(
p
⊕ V 7,2;+

min ) ⊕ (
p
⊕ V 7,2;−

min )
)
,

nl,3(
p
⊕ V l,3;N

min ) ∼= n3,l
(
(
p
⊕ V 3,l;+

min ) ⊕ (
p
⊕ V 3,l;−

min )
)
, l = 5, 6,

n0,l(
p
⊕ V 0,l;N

min ) ∼= nl,0

(( p
⊕ V l,0;+

min;+
)
⊕
( p
⊕ V ,0;−

min;+
))

, l = 3, 7,

n4,3(
p
⊕ V 4,3;N

min ) ∼= n3,4

(( p
⊕ V 3,4;+

min;+
)
⊕
( p
⊕ V 3,4;−

min;+
))

.
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