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The arrival of modern humans into previously unoccupied island
ecosystems is closely linked to widespread extinction, and a key
reason cited for Pleistocene megafauna extinction is anthropogenic
overhunting. A common assumption based on late Holocene records
is that humans always negatively impact insular biotas, which
requires an extrapolation of recent human behavior and technology
into the archaeological past. Hominins have been on islands since at
least the early Pleistocene and Homo sapiens for at least 50 thou-
sand y (ka). Over such lengthy intervals it is scarcely surprising that
significant evolutionary, behavioral, and cultural changes occurred.
However, the deep-time link between human arrival and island ex-
tinctions has never been explored globally. Here, we examine ar-
chaeological and paleontological records of all Pleistocene islands
with a documented hominin presence to examine whether humans
have always been destructive agents. We show that extinctions at a
global level cannot be associated with Pleistocene hominin arrival
based on current data and are difficult to disentangle from records
of environmental change. It is not until the Holocene that large-scale
changes in technology, dispersal, demography, and human behavior
visibly affect island ecosystems. The extinction acceleration we are
currently experiencing is thus not inherent but rather part of a more
recent cultural complex.

Holocene | island biogeography | human colonization | megafauna |
extinction

hen humans first arrived on the islands of New Zealand,

they encountered a diverse and rich ecosystem including
nine species of moa (1). Within 200 y of human arrival, all these
were extinct (2), alongside at least 25 other vertebrates (3). Over
the late Holocene, this sequence of events played out across more
than 40 islands of the Pacific: On average, almost 50% of Pacific
island birds have become extinct following human colonization (4),
with the bulk of these extinctions occurring prior to European
contact (5, 6). These patterns mirror the extinction records of Indian
Ocean islands, such as the Mascarenes and Madagascar (7, 8), sug-
gesting a global pattern of island extinction immediately following
human colonization.

Islands are particularly prone to widespread extinction and
extirpation of biota because of their smaller resident faunas and
populations, lower genetic diversities, susceptibility to stochastic
processes, less opportunity for recolonization, and higher levels
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of endemism compared to continents (9). The stunning extinction
record of the Pacific and Indian Ocean islands is attributed to human
activities, especially overhunting, habitat alteration, and intro-
duction of invasive species (2, 10, 11). The chronology of island
extinctions and human colonization have provided an enticing
analog for understanding megafauna extinctions on the conti-
nents (3). Martin (12, 13) formulated the overkill hypothesis with
explicit reference to anthropogenic extinctions on Madagascar
and New Zealand, respectively, arguing that similar mechanisms
could be invoked to explain African and North and South American
megafauna extinctions.

Island records have subsequently often been considered ideal
models for understanding how Pleistocene extinctions unfolded
on the continents (14-19), despite the acknowledged and significant
differences that exist between island and continental ecosystems
(3, 20). Today, island extinctions are overwhelmingly interpreted
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as a continuation of a global extinction event initiated more than
50,000 y ago by humans (21-25). Well-known records of island
extinctions, in which a close association between human arrival
and faunal extinction have been firmly established, continue to be
widely cited in support of anthropogenic extinction scenarios on
other landmasses (e.g., refs. 24-26). Island extinction records are
thus a key component in the debate over causes of megafauna losses.

The hypothesis that humans are the primary driver of island
extinctions relies on penecontemporaneous records indicating human
arrival into virgin ecosystems (i.e., those without prior human contact)
closely linked with extinction (19, 21, 26). However, although many
islands have been considered in appraising global extinction scenarios
(e.g, refs. 2, 4-8, 10, 11), those considerations have focused almost
entirely on those with a Holocene human presence. Despite the
importance of Pleistocene islands for this paradigm, and the growing
archaeological record of island colonization events during the
Quaternary, few islands with Pleistocene records have been ex-
plicitly included in any global assessment of Quaternary extinc-
tions. This is important because technologies, behaviors, and
even the hominin species involved are not homogenous across
islands. Hominins have visited or lived on oceanic islands since at
least the early Pleistocene (27-29), and Homo sapiens for at least
50 thousand y (ka) (30), and during this time, many significant
evolutionary, behavioral, and cultural changes have occurred
(31). A review of whether an association between hominin arrival
and extinction exists for all islands occupied during the Pleisto-
cene is a critical first step in addressing this deficit.

Here, we examine whether any data support the hypothesis that
Pleistocene hominin arrival on an island is coincident with the
disappearance of insular taxa. We examine the archaeological and
paleontological records of all islands with a documented Pleistocene
hominin presence and some record of faunal extinction. We treat
oceanic islands (islands that have never been connected to conti-
nental landmasses during the Quaternary) and continental islands
(promontories that were connected to continents during the Last
Glacial Maximum (LGM) and earlier periods of time but are
islands today) separately. We also explore data relating to large-
scale geologic events (e.g., vulcanism) and the apparent ecological
impact of different hominins on island ecosystems. We restricted
our assessment to establishing whether a temporal overlap exists
between taxon extinction and hominin arrival. We do not argue
that this implies a causal relationship between arrival and extinction;
rather, we take it as the first indication that such a relationship
might exist. This allows us to evaluate the suggestion that modern
humans and our immediate antecedents have always had a neg-
ative influence on virgin island ecosystems (e.g., refs. 15, 19, 23, 32,
33; see also ref. 34). This long-term perspective is a necessary step
in understanding the impacts of humans on modern ecosystems
globally and informing island conservation efforts today (11, 35).

Results

Islands Prior to H. sapiens. The earliest records of hominins on
oceanic islands (Figs. 1 and 2) are represented by simple toolkits
recovered from early to middle Pleistocene deposits on Flores
(>1 Ma) (29) and Sulawesi (194 to 118 ka) (36) and cut-marked
rhino bones and stone tools associated with a variety of fossil faunas
from Luzon, Philippines (~709 ka) (28). It is possible that extinction
of Nesorhinus philippinensis and Celebochoerus cagayanensis in Luzon
are broadly synchronous with first hominin arrivals (Figs. 1 and 2),
but at present, the evidence is based only on a single-dated locality,
providing no firm insights into length of coexistence. It seems that
much of the Philippines megafauna might have been extinct by 50
to 60 ka, and no clear extinctions are linked to Homo luzonensis. A
giant rat (Batomys species [sp.]) and a dwarf buffalo (Bubalus sp.)
are from the same palimpsest bone beds as the H. luzonensis
fossils. They are not present in later deposits at Callao Cave or in
any other sites so far excavated in Luzon, suggesting they might
have gone extinct before the end of the Pleistocene. On Flores,
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there are no known extinctions closely associated with the first
hominin appearance. Sulawesi shows no clear temporal associa-
tions between the arrival of an as-yet unidentified hominin and
faunal losses, although the extinction of a stegodon (Stegodon sp.)
and a buffalo (Bubalus grovesi) may be associated if minimum ages
are close to the true ages. The only extinct taxon recorded on
Naxos (Paleoloxodon lomolinoi) occurred well after the arrival of
hominins. In Sardinia, the appearance of hominins is likewise
associated with no losses. On Crete, however, the extinction of two
birds (Athene cretensis and Aquila chrysaetos simurgh) and a mus-
telid (Lutrogale cretensis) could be synchronous with hominin ar-
rival. On continental islands, the earliest record of hominins come
in the form of Homo erectus on Java at 1.3 Ma (27) and Homo ?
antecessor in Britain, perhaps as early as 1 Ma (37). Taiwan also
has an as-yet unassigned hominin dated to perhaps as early as 450
ka (38). While no extinctions are recorded coincident with these
arrivals (Fig. 3), they occurred during periods when the islands
were connected to continental landmasses (Fig. 4) and should be
understood in the context of range expansions of these hominins
rather than colonization of virgin ecosystems. While the paleon-
tological and archaeological records are admittedly limited, on this
evidence seven extinctions across three islands may be the result of
pre-sapiens hominin arrival.

Oceanic Islands with H. sapiens. The earliest direct evidence of H.
sapiens on oceanic islands dates to around 50 ka and are situated
in Asia (Fig. 1). Extinctions temporally associated with first arrivals
in the broadest possible sense considered here (i.e., within 5,000 y)
include the loss of two proboscideans (Mammuthus columbia and
Mammuthus exilis) and a vole (Microtus miguelensis) from the
California Channel Islands, a giant deer (Megaloceros giganteus)
and a lemming (Dicrostonyx torquatus) from Ireland, an elephant
from Sulawesi (Elephas/Paleoloxodon large sp.), and a crane (Grus
sp.) from Timor. On Flores, a stork (Leptoptilos robustus), a vul-
ture (Trigonoceps sp.), a songbird (confer Acridotheres), a stegodon
(Stegodon florensis insularis), and Homo floresiensis disappear close
to the first H. sapiens arrival as well as being coeval with a volcanic
eruption on the island (Fig. 2). In the Philippines, H. luzonensis
continued to inhabit Luzon until or shortly before 55 ka, with the
first evidence of modern humans in the Philippines (on Palawan)
currently around >47 ka (39). On only two islands, Cyprus and
Kume, is there any evidence that all recorded island extinctions
occur shortly after human arrival. Based on these data, most
known extinctions on oceanic islands cannot be correlated with
Pleistocene hominin arrival or separated from nonanthropogenic
processes.

Continental Islands with H. sapiens. On continental islands, the
earliest record of H. sapiens is Sumatra at 73 to 63 ka (40), al-
though it was not an island at this time: As noted above, human
arrival on these islands occurred during connections with conti-
nental landmasses and should be interpreted in this light (Figs. 3
and 4). Extinctions in Borneo and Sumatra are very poorly docu-
mented, especially with reference to extinctions on Java. Most large
mammals such as rhinos, tigers, and tapirs, resident when modern
humans arrived, all survived at least until very recently. Extinctions
on Java occurred prior to the first documentation of likely H.
sapiens on the island and have been tied to faunal turnover events
resulting from episodic connection to the Southeast Asian main-
land during glacial periods (41). These extinctions were likely
triggered by the loss of extensive savannahs on the island and
replacement by closed forests (42). Likewise, in Britain, most ex-
tinctions occurred prior to the arrival of H. sapiens. Extinctions
during island phases are perhaps due to the expansion of the
British-Irish Ice Sheet (43); however, most extinctions likely oc-
curred during connections with the mainland (Fig. 4) and should be
understood within the context of European continental extinctions
(44). These have generally been attributed to environmental change
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Fig. 1.

Oceanic island groups with a documented record of Pleistocene hominins and faunal extinction. Clockwise from the top are San Miguel, Santa Rosa,

and Santa Cruz (A); Ireland (B); Sardinia (C); Honshu, Shikoku, and Kyushu (D); Ishigaki, Miyako, Kume, and Okinawa (E); Luzon, Mindanao, Mindoro, and
Palawan (F); New Ireland and Buka (G); Sulawesi (H); Timor, Alor, Flores, and Sumba (/); and Cyprus, Crete, and Naxos (J). MP, middle Pleistocene; LP, late

Pleistocene.

(44). Almost all Pleistocene extinctions on New Guinea occurred a
considerable time after human arrival, with both extinctions and
arrival likely occurring while a connection with Australia existed
(Fig. 4). Two extinctions (Hulitherium tomassetti and Casuarius
lydekkeri) may be considered coeval with human arrival if the
minimum ages are close to the true ages of the fossils. Likewise, on
Kangaroo Island, three marsupial species (Procoptodon browneo-
rum, Procoptodon gilli, and Procoptodon sp. indeterminant) could
have disappeared close in time with first human arrival, provided
minimum ages are considered close to true ages. Only two mar-
supials (Protemnodon anak and Simosthenurus occidentalis) dis-
appeared from Tasmania close in time to the first human records
on the island and neither of them are associated with archaeo-
logical records. Continental islands were islands for very little of
the Pleistocene, and although some extinctions appear coincident
with the beginning of insularity, most likely they occurred during
periods of connection with continents (Fig. 4). Thus, the mecha-
nisms underlying these extinctions are unlikely to be directly
comparable to those acting on oceanic islands.

Summary of Extinctions. If Pleistocene hominin populations, in-
cluding Pleistocene members of our own species, were as de-
structive as humans in the late Holocene, their impacts should be
particularly visible in the records of isolated oceanic islands. This
was not observed in our data. Only on Cyprus and Kume do the
data support all recorded extinctions coeval with human arrival.

Louys et al.
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All other Pleistocene extinctions on oceanic islands appear un-
related as to the cause or staggered, at least within the chrono-
logical resolution currently available (see also ref. 45). Oceanic
and distant continental island cumulative extinctions are modest
in absolute terms—the maximum recorded are 12 each for Sar-
dinia and Flores. Both islands are relatively large and not par-
ticularly isolated, although separated by deep-sea passages from
nearby continents. Extinctions on continental shelf islands, when
well represented and constrained, are staggered and appear largely
confined to periods of connections with the mainland. Separations
from the nearest continent was relatively uncommon across con-
tinental islands, at least during the last 500 ka, and largely de-
pendent on interglacial conditions and associated with significant
environmental changes (42, 44). In continental islands with good
fossil records (e.g., Java and Britain), extinctions are numerous,
but their causes should be considered largely as an extension of
the mechanisms underlying continental losses (42, 44).

Discussion

Faunal turnovers are common on oceanic islands and extinctions
are a natural process as ecosystems move toward equilibrium,
even on very large islands (46, 47). Smaller and more isolated
islands severely impact genetic diversity, precipitating extinctions
even in the absence of humans (e.g., ref. 48). This process can be
intensified by rising sea levels in an effect known as relaxation (49).
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and are not lengthened to scale. More details on how this figure was constructed are presented in S/ Appendix, Supplementary Information Text, and dates

and associated references are listed in S/ Appendix, Table S1.

The size of an island and thus diversity of its resources are
likely the most important factors for successful hominin coloni-
zation, with a lack of terrestrial protein an obvious challenge (50,
51). Specialization in marine resources can remove this limita-
tion (51). Other raw material limitations include lithics, bamboo
and/or wood, and availability of fresh water; these provide some
measure of how, where, and which islands had exploitable re-
sources. In oceanic islands, the availability of freshwater may have
been the biggest limitation for occupation, as many tiny islands
were not settled until very late in the Holocene, when strategies
for capturing freshwater became available, even if marine protein
was abundant (52).

In Martin’s overhunting concept (12-14), island extinctions
were regarded as accelerated versions of mainland losses, with the
added feature that there was very little choice of what to hunt.
K-selected taxa are considered most vulnerable to extinction from
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overhunting in megafauna extinction models (53). However, oceanic
island conditions independent of humans tend to favor r-selected
taxa, such that large, slow-breeding species are less likely to be
found on islands than continents. Notable exceptions include
tortoises and proboscideans; although, the latter exhibit dwarfing
on islands, potentially signaling an evolutionary shift in response
to insular conditions (54). Nevertheless, island overhunting re-
mains one of the key factors explaining Pleistocene and Holocene
extinctions (6, 10, 11).

Early hominins on islands such as H. floresiensis and H. luzonensis
exploited a range of terrestrial fauna (28, 55). While access to
maritime resources was available to H. erectus on Java (56), there
is no unambiguous evidence that anything other than terrestrial
resources were consumed (57). There is evidence from Callao
Cave that a hominin hunted or scavenged the Philippine brown deer
(Rusa marianna) and the Philippine warty pig (Sus philippensis).

Louys et al.
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Fig. 3. Continental island groups with a documented record of Pleistocene hominins and faunal extinction. Clockwise from the top are Britain (A); Sri Lanka
(B); Taiwan (C); Hokkaido (D); King Island and Tasmania (E); Kangaroo Island (F); New Guinea (G); and Borneo, Java, and Sumatra (H). LP, late Pleistocene.

Both species are still extant on Luzon. Zooarchaeological re-
cords from Borneo and Java indicate that H. sapiens used a range
of techniques to hunt and trap terrestrial, aquatic, and arboreal
vertebrates (58, 59). The introduction of ranged weaponry (e.g.,
bows, arrows, and spears) more broadly across Southeast Asia
seems to have had an impact on the diversity of fauna hunted and
especially arboreal taxa such as monkeys and civets. However,
those species hunted most intensively, such as long-tailed ma-
caques, leaf monkeys, and binturongs, are still extant today (59).

Pleistocene records associated with H. sapiens in oceanic is-
lands in Wallacea are dominated by marine fish and shellfish and
include early evidence of pelagic fishing and complex fishing
technologies (57). A notable exception is Sulawesi, where cave
art dated to ~44 ka depicts therianthropes in a hunting scene with
anoa and Sulawesi warty pigs (60), and the earliest archaeological
deposits are dominated by babirusa (Babyrousa babyrussa) and
anoa (Bubalus depressicornis) (61). Both taxa are extant on the
island. On Okinawa of the central Ryukyus, the Jomon people
hunted wild boars (Sus scrofa) intensively, which became smaller
until 6 ka. Subsistence shifted to shellfish, and wild boars became
larger again (62), suggesting that cultural and/or environmental
controls may have existed on some islands to curb overhunting to
extinction.

While three terrestrial taxa are recorded as going extinct at the
same time as human arrival on the California Channel Islands,
there is no indication that mammoths were ever hunted, and sub-
sistence focused on marine resources (63). Similarly, archaeological
records on Tasmania show that only small to medium animals were

Louys et al.
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hunted, and there is no evidence that any extinct species were
exploited by humans or that people were responsible for their ex-
tinction (64, 65). Archaeological records from Cyprus suggest large-
scale extinctions directly following human arrival around 12 ka (66),
and this is one of only two islands where a convincing overlap exists
between island extinction and first human arrival.

Extinctions, when present and tied to subsistence activities, are
difficult to disentangle from records of environmental change. In
the Tabon Caves in Palawan, Philippines, the first humans arrived
at ~47 ka, when forest cover on the island was limited and open
woodland dominated. Late Pleistocene forager communities pre-
dominately hunted deer (67). In the early Holocene, rainforests
expanded, and Palawan lost more than 80% of its landmass be-
cause of rising sea levels. Deer populations diminished, and the
bearded pig became the principal large mammal resource. By ~3
ka, deer populations were extinct. While humans hunting played a
significant role in their disappearance, gross changes in climate
and environment also impacted population resilience (67), as
demonstrated by the continuing survival of deer on three islands in
the Calamian group still supporting more open environments.

Hominins also became extinct on at least some islands in the
Pleistocene (Fig. 1), and several archaeological records appear
to represent island abandonment. The tiny island of Kisar in
Wallacea, for example, was first occupied about 16 ka. Human
occupation was only successfully achieved following the estab-
lishment of extensive maritime trading networks, and island
abandonment in the early Holocene may have been linked to the
collapse of these networks (51). Kangaroo Island preserves the
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islands. Purple vertical bars represent periods when these landmasses were islands. Extinct taxon LADs are represented by horizontal lines. In cases in which
the LAD was highly imprecise, occurrence was represented by a dashed line only. When dates had been provided for individual taxa, associated sedimentary
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and are not lengthened to scale. More details on how this figure was constructed is presented in S/ Appendix, Supplementary Information Text, and dates and

associated references are listed in S/ Appendix, Tables S1 and S2.

best direct positive evidence of abandonment. There, records
suggest that Indigenous Australian occupation ceased by around
4 ka, and although transient visits (or perhaps continued limited
settlement) may have continued for a further 2,000 y (68), by the
time Europeans arrived there were no human inhabitants on the
island. Cyprus shows that after pygmy hippos became extinct
human presence was limited until the Early Neolithic (66).
Because of their size and isolation, islands, especially small
distant islands, are particularly prone to random events. We found
few instances in which volcanic activity was perhaps coeval with
extinction (Figs. 2 and 4); however, these events were also indis-
tinguishable in time from the first arrival of humans on islands.
The Quaternary history of large-scale volcanic eruptions have
been particularly well investigated in Honshu, Shikoku, Kyushu,
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and Hokkaido (69), and eruptions seem not to be synchronous
with the extinctions of mammalian species (Figs. 2 and 4). This
also applies to the eruption record for Flores. The effects of major
eruptions on local extinctions are difficult to assess, even for rel-
atively well-documented major eruptions that occurred on islands
in historic times. Nevertheless, studies of the ecological impacts of
volcanic eruptions have indicated short recovery times and no
long-term changes in mammal communities (70).

The arrival of humans on islands in the Holocene is often
considered synchronous with large-scale extinctions of insular
endemics. These extinctions are conceptually associated with
human agency through mechanisms such as overhunting, habitat
alteration, and the introduction of domestics and commensals
(2-4). The latter arguably have had a much greater impact on
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island extinctions than overhunting, particularly for small mam-
mals and birds but also larger mammals. On Miyako Island of the
Ryukyus, for example, endemic deer (Capreolus tokunagai) were
not displaced by first human arrival, but rather, their extinction
coincides with the human introduction of suids in the late
Pleistocene or early Holocene (71). As a result, what happened on
islands in the Holocene has often provided the theoretical and
practical framework for understanding extinction processes asso-
ciated with people (11). This makes sense when considering the
Holocene expansion of H. sapiens into previously unreachable or
untenable regions. It also applies to continental islands, where
insular conditions and technological changes were coincident with
the onset of the Holocene (e.g., ref. 72). However, the Pleistocene
record is significantly more ambiguous regarding the impacts of
hominins on island biota. This is due to factors intimately tied to
subsistence strategies, technological and behavioral changes oc-
curring throughout the Pleistocene, and the distinct nature of is-
lands and their resources globally.

Our data shows that hominins, including our own species, have
not always had the negative impacts on island ecosystems that
humans have today. Rather, extinctions accelerated beginning in
the early to late Holocene, following expanded migration opportu-
nities, increased seafaring and thus dispersal abilities, the introduc-
tion of widespread land clearance, the introduction of commensals
and synathropics, increased human densities, and the development
of technologies allowing for the overexploitation of animal pop-
ulations. Acknowledging that humans may not have always been
detrimental to virgin ecosystems is important for identifying in-
stances in which they have had a more passive or even beneficial
impact. Such cases are critical for comparative studies aimed at
identifying the factors increasing extinction risks of endemic island
faunas. It is only through this process that we can hope to preserve
the biodiversity that remains on islands today.

Materials and Methods

The aim of our study was to examine the coincidence of Pleistocene, as
opposed to Holocene, hominin arrival with disappearance, so we restricted
our analyses only to islands with evidence of Pleistocene hominin presence.
For each island, we recorded the earliest appearance date (EAD) of the first
hominin species on the island, as well as the EAD of H. sapiens (if different) on
that island (S/ Appendix, Table S1). In many instances, EADs were indirectly
inferred based on archaeological records and the most widely accepted
species attributions available (source references in SI Appendix). For each
island, we also compiled a list of every extinct vertebrate (i.e., mammals,
birds, and reptiles) taxon recorded from the literature, as well as its last
appearance date (LAD) (S/ Appendix, Table S1). Most species considered here
have no direct dates associated with their remains, let alone their last ap-
pearance. Many are from sites that exceed the radiocarbon dating window,
were historically collected with minimal stratigraphic information, and/or
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