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A B S T R A C T

It is well known that there are asymmetric dependence structures between financial returns. This
paper describes a portfolio selection method rooted in the classical mean–variance framework
that incorporates such asymmetric dependency structures using a nonparametric measure of
local dependence, the local Gaussian correlation (LGC). It is shown that the portfolio opti-
mization process for financial returns with asymmetric dependence structures is straightforward
using local covariance matrices. The new method is shown to outperform the equally weighted
(‘‘1/N’’) portfolio and the classical Markowitz portfolio when applied to historical data on six
assets.

. Introduction

Modern portfolio theory aims to allocate assets by maximizing the expected return while minimizing risk. Markowitz (1952)
rovides the foundation for the mean–variance (MV) approach under the crucial assumption that the asset returns follow a
oint-Gaussian distribution. The idea is simple; highly correlated assets should be avoided to obtain a diverse portfolio. Several
mpirical studies, however, document asymmetries in the distribution of financial returns. In particular, one often observes stronger
ependence between assets when the market is going down. This phenomenon is known as asymmetric dependence structures, see
.g. Silvapulle and Granger (2001), Campbell et al. (2002), Okimoto (2008), Ang and Chen (2002), Hong et al. (2007), Chollete
t al. (2009), Aas et al. (2009), Garcia and Tsafack (2011).

Asymmetric dependence may lead to less effective diversification of mean–variance balanced portfolios. Several studies seek to
vercome this shortcoming by modeling the dependence structure using copula theory and then applying this modeling into the
ortfolio allocation problem, see e.g. Patton (2004), Hatherley and Alcock (2007), Low et al. (2013), Kakouris and Rustem (2014),
ekiros et al. (2015) and Han et al. (2017). These procedures are quite complicated, and a non-technical asset manager might be
verwhelmed by such choices. Moreover, there is no guarantee that portfolio allocations based on complex models will improve
erformance compared with simpler methods, see e.g., DeMiguel et al. (2009) and Low et al. (2016), who show that outperforming
he naive 1∕𝑁 portfolio remains an elusive task.

Without making assumptions about the nature of the underlying probability model, we present a simple adjustment to the MV
pproach by replacing the correlation matrix of the assets with a local correlation matrix. This approach is based on the local Gaussian
orrelation (LGC), see Tjøstheim and Hufthammer (2013), and has been applied successfully to analyze dependence structures
etween asset returns, see e.g., Støve and Tjøstheim (2014), Støve et al. (2014), Bampinas and Panagiotidis (2017) and Nguyen
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et al. (2020), but has yet to be utilized in the portfolio allocation setting. The LGC provides a market-dependent adjustment to
the correlation matrix that takes the current state of the market into account, and the main goal of this paper is to extend the
classical MV framework by using the theory of the local Gaussian correlation, hence taking into account any asymmetric dependence
structures between returns, and providing a simple alternative to the copula-based approaches. The organization of the paper is as
follows. Section 2 presents the classical mean–variance portfolio approach and the extension using the local Gaussian correlation.
In Section 3, we present a data set consisting of six asset returns, and in Section 4, we investigate the performance of portfolios
constructed by our new approach and other methods. Finally, Section 5 offers some conclusions. In the supplementary material, we
briefly review the local Gaussian correlation and provide some additional empirical study results.

2. Portfolio allocation using local Gaussian correlation

Denote the returns on 𝑁 risky assets at time 𝑡 = 1,… , 𝑛 by 𝑹𝑡 ∈ R𝑁 . Let 𝑓𝑡(𝒓𝑡) denote the probability density function of 𝑹𝑡, and let
𝑡 ∈ R𝑁 and 𝜮𝑡 ∈ R𝑁 ×R𝑁 denote its expectation vector and covariance matrix, respectively. Finally, let 𝒘𝑡 = (𝑤1,𝑡,… , 𝑤𝑁,𝑡)𝑇 ∈ R𝑁

be the vector of portfolio weights at time 𝑡, to be determined by the portfolio selection strategy. We adopt the full investment
constraint: 𝑤1,𝑡 +⋯ +𝑤𝑁,𝑡 = 1, for 𝑡 = 1,… , 𝑛. Moreover, in the empirical example in Section 4, we investigate the performance of
our proposed procedure with and without the long-only constraint (0 ≤ 𝑤𝑖,𝑡 ≤ 1, 𝑖 = 1,… , 𝑁, 𝑡 = 1,… 𝑛). We do not include a risk-free
asset in our treatment of the portfolio allocation problem, but this does not impact our main findings.

The general portfolio optimization problem requires the investor to select weights 𝒘𝑡 that maximizes an expected utility function
at each time 𝑡. We consider the classical mean–variance as well as the minimum-variance utility functions, given respectively as

𝑈1 = 𝒘𝑇
𝑡 𝝁𝑡 −

𝛾
2
𝒘𝑇

𝑡 𝜮𝑡𝒘𝑡 and 𝑈2 = −𝒘𝑇
𝑡 𝜮𝑡𝒘𝑡, (2.1)

where 𝛾 represents the investor’s degree of risk aversion. Maximizing 𝑈1 with respect to the portfolio weights provides a trade-off
between expected volatility and expected returns for a given level of risk aversion (for simplicity fixed at 𝛾 = 1 throughout the
paper). Maximizing 𝑈2 results in the minimum variance portfolio.

We take as our point of departure the portfolio allocation approach as described by DeMiguel et al. (2009), Tu and Zhou (2011),
and Low et al. (2016) when estimating the expected return vector 𝝁𝑡 and covariance matrix 𝜮𝑡 for monthly data. The approach is
given as follows;

1. Select a sampling window of 𝑀 trading months.
2. In each month 𝑡 > 𝑀 , estimate the expected return vector 𝝁𝑡 and the covariance matrix 𝜮𝑡 by their empirical counterparts,

using the 𝑀 preceding monthly returns.
3. Rebalance the portfolio on the first trading day of each month by solving the relevant optimization problem, i.e. optimizing

one of the utility functions in (2.1).

The above algorithm implicitly assumes that the covariance matrix 𝜮𝑡 completely describes the dependence structure among
the assets under consideration. This property is not true in general unless the returns are jointly normally distributed, which is a
strong assumption that is rarely satisfied in practice. Indeed, as mentioned in Section 1, there have been many attempts to replace
the normality assumption in portfolio selection with more sophisticated distributions that better fit the return density 𝑓𝑡. However,
this also results in a more complicated optimization routine than under the classical Markowitz framework indicated in the three
steps listed above.

We propose to describe asymmetric dependence by making adjustments directly to the covariance matrix 𝜮𝑡, which allows us to
use the classical Markowitz formulation. To this end, we employ the local Gaussian correlation. The idea originated in Tjøstheim and
Hufthammer (2013), who in turn based themselves on the local parameter concept of Hjort and Jones (1996). The latter authors
approximate an unknown density function 𝑓 (𝒓) by fitting a parametric family 𝑓 (𝒓,𝜽) locally to 𝑓 (𝒓), where 𝜽 ∈ 𝛩 is an unknown
parameter in a parameter space 𝛩. This means that instead of constructing a single estimate 𝜽̂ of 𝜽, they rather estimate a parameter
function, 𝜽̂(𝒓), meaning that different members of the parametric family {𝑓 (𝒓,𝜽),𝜽 ∈ 𝛩} approximate 𝑓 (𝒓) in different parts of the
domain of 𝑓 (𝒓). Here, 𝒓 represents a generic location in the domain of 𝑹𝑡.

Hjort and Jones (1996) estimate 𝜽(𝒓) using a nonparametric local likelihood procedure, and Tjøstheim and Hufthammer (2013)
consider the special case where {𝑓 (𝒓,𝜽)} is the multivariate Gaussian distribution, that is, 𝜽 = (𝝁,𝜮). Under this specification, it is
natural to interpret the local covariance matrix 𝜮(𝒓) as a measure of local dependence, which in particular gives a natural description
of the asymmetric dependence relationships so often observed in financial returns.

Consider, for example, the observed returns on two of the assets in our data set displayed in the left panel of Fig. 1. The classical
Gaussian assumption results in a single estimated covariance matrix 𝜮̂; while the local likelihood estimate 𝜮̂(𝒓) is a function of 𝒓.
In the right-hand panel of Fig. 1 we see the corresponding local Gaussian correlation, which clearly indicates that these returns are
most strongly dependent in the lower left part of the distribution.

In order to incorporate the asymmetry observed in the right-hand panel of Fig. 1, we propose to replace step 2 in the above
procedure with the following:

2.’ In each month 𝑡 > 𝑀 , estimate the expected return vector 𝝁𝑡 by its empirical counterpart, and the local Gaussian covariance
matrix 𝜮 (𝒓), using the 𝑀 preceding monthly returns.
2
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Fig. 1. Observations on two of the assets considered in the empirical analysis and the corresponding estimated local Gaussian correlation.

Table 1
Overview of the data series and abbreviations.

Name Description

FTALLSH FTSE Actuaries All Share Index
S&P500 Standard and Poor’s 500 Index
BMUK10Y UK Benchmark 10 Year DS government bond Index
BMUS10Y US Benchmark 10 Year DS government bond Index
EWCI Thomson Reuters Equal Weight Commodity Index
GSGCSPT Standard and Poor’s GSCI Gold Index

There are several approaches for choosing the evaluation point 𝒓. A risk-averse investor can guard against large losses by selecting
an evaluation point representing the asset returns during crisis periods. In this way, the corresponding estimated local covariance
matrix reflects the (historical) dependence structure during crisis periods, provided that the window length 𝑀 is chosen sufficiently
large. However, the selection of the evaluation point can also be dynamic, i.e. 𝒓 = 𝒓𝑡. For instance, the evaluation point may
correspond to a subjective opinion of where the investor thinks the market is heading in the following trading month. The selection
may also be based on more advanced statistical predictions.

In the empirical analysis in Section 4, we opt for a simple data-driven selection of evaluation points by computing the average
of the last three months of observed returns. More specifically, the evaluation point at time 𝑡 is defined for all pairs of assets 𝑖, 𝑗 as

𝒓𝑡 =

(

1
3

3
∑

𝑘=1
𝑅𝑖
𝑡−𝑘,

1
3

3
∑

𝑘=1
𝑅𝑗
𝑡−𝑘

)

. (2.2)

This is a simple way of letting the covariance matrix dynamically adapt to the dependence structure of the market under the
naïve assumption that the dependence structure between asset returns in month 𝑡 is similar to the dependence structure of asset
returns in the neighborhood of 𝒓𝑡. As the empirical analysis in Section 4 will demonstrate, this simple selection of evaluation points
performs well in practice.

3. Data

Our data set consists of monthly closing prices on six US dollar-denominated indices sourced from Refinitiv (past Thompson
Reuters) Datastream. We calculate the returns as 100 times the difference in the log of the price indices. The sample period extends
from February 1980 to August 2018, yielding 463 monthly return observations of the following assets: FTSE Actuaries All Share
Index, (FTALLSH), Standard and Poor’s 500 Index (S&P500), UK Benchmark 10 Year DS government bond Index (BMUK10Y), US
Benchmark 10 Year DS government bond Index (BMUS10Y), Thomson Reuters Equal Weight Commodity Index (EWCI), and Standard
and Poor’s GSCI Gold Index (GSGCSPT) (see Table 1).

From the descriptive statistics in Table 2, we note that all of the returns are skewed and show relatively high kurtosis. Normality
is rejected with the Jarque–Bera test on the 1% level for all series. This suggests that the multivariate normal distribution with
a global covariance matrix does not provide a sufficient description of the dependence structure, particularly in the tails of the
3
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Table 2
Correlations and descriptive statistics for the asset returns studied in the empirical analysis.

FTALLSH S&P500 BMUK10Y BMUS10Y EWCI GSGCSPT

Global correlation matrix
FTALLSH 1
S&P500 0.760 1
BMUK10Y 0.184 0.017 1
BMUS10Y −0.067 −0.029 0.489 1
EWCI 0.246 0.288 −0.094 −0.185 1
GSGCSPT 0.038 0.031 0.080 0.077 0.483 1

Local correlation matrix, bear market (lower 5% percentiles)
FTALLSH 1
S&P500 0.843 1
BMUK10Y 0.174 −0.017 1
BMUS10Y 0.020 0.034 0.635 1
EWCI 0.161 0.185 −0.140 −0.224 1
GSGCSPT −0.135 −0.131 0.204 0.215 0.480 1

Descriptive statistics
Observations 463 463 463 463 463 463
Mean 0.628 0.704 0.769 0.583 0.079 0.177
Std. Dev. 4.588 4.406 2.376 2.417 3.511 5.211
Variance 21.050 19.413 5.643 5.839 12.326 27.159
Skewness −1.300 −0.968 −0.128 0.453 −0.592 0.026
Kurtosis 6.288 3.665 1.325 1.960 3.775 3.036
Jarque–Bera 903.903 335.969 36.135 91.622 306.377 180.971
Sharpe ratio 0.137 0.160 0.324 0.241 0.023 0.034
Max. drawdown 49.887 59.811 15.764 12.035 48.397 73.680
Min −32.711 −24.677 −7.824 −7.600 −20.050 −21.887
1 Quartile −1.474 −1.694 −0.585 −0.922 −1.794 −2.668
Median 1.176 1.242 0.843 0.497 0.151 −0.161
3 Quartile 3.559 3.265 2.151 1.853 1.998 2.899
Max 12.523 14.612 8.851 12.660 13.384 26.336

The two top panels in Table 2 show the global and local correlation matrices over the entire sampling period. The latter is
onstructed for a bear market scenario using the lower 5% percentiles for the evaluation point selection in the pairwise calculation

approach described in the supplementary material. The strongest positive and negative correlation is observed between the stock
indices FTALLSH and S&P500 (𝜌̂ = 0.76), and between EWCI and BMUS10Y (𝜌̂ = −0.185), respectively. The corresponding LGCs
in the bear market scenario are 𝜌̂ = 0.843 and 𝜌̂ = −0.224, respectively, indicating the ability of the LGC to capture asymmetric
dependence structures, see also Tjøstheim and Hufthammer (2013).

4. Empirical results

Our analysis1 compares the portfolio selection strategies listed in Table 3 by evaluating their performance using both terminal
wealth as well as a range of risk-adjusted performance measures. Following Low et al. (2016), we use the naïve 1∕𝑁 weighted
portfolio strategy as a benchmark model in the analysis. This strategy distributes weights equally across the portfolio at the start
of the sampling period and is left unadjusted for the rest of the investment horizon. Tu and Zhou (2011) find that longer sampling
windows result in improved portfolio strategy performance; hence we use both 𝑀 = 120 and 𝑀 = 240 month sampling windows.
We report the 𝑀 = 240 in the following sections. The corresponding results using 𝑀 = 120 months are given in the supplementary
material.

Inspired by Low et al. (2013), we proceed to evaluate the portfolio rebalancing, terminal wealth as well as the risk-adjusted
performance for each of the strategies. A descriptive analysis of out-of-sample results is available in the supplementary material.

4.1. Portfolio rebalancing and terminal wealth

Table 4 provides a summary of the portfolio rebalancing analysis and the terminal wealth reached by each of the strategies. The
average standard deviation within target portfolio weights across the entire out-of-sample time period is calculated as follows:

𝜎̄𝑘 =
∑𝑛−𝑀

𝑡=1 𝜎𝑡,𝑘
𝑛 −𝑀

,

where

𝜎𝑡,𝑘 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑤̂𝑖,𝑡,𝑘 − 𝑤̄⋅,𝑡,𝑘)2,

1 Reproduce results or perform new studies with: https://gitlab.com/sleire/lgportf
4
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Table 3
Portfolio strategies applied in the empirical analysis. All strategies allowing short sales have a lower limit on portfolio weights
equal to −0.5.

Strategy Description

Benchmark strategy
EW 1∕𝑁 (equal weight portfolio) without rebalancing
Global approach
MVS Mean–variance portfolio with short sales
MVSC Mean–variance portfolio with short sales constraint
MIN Minimum variance portfolio
MINC Minimum variance portfolio with short sales constraint
Local approach
MVS-L Mean–variance portfolio with short sales using local covariance matrices
MVSC-L Mean–variance portfolio with short sales constraint using local covariance matrices
MIN-L Minimum variance portfolio using local covariance matrices
MINC-L Minimum variance portfolio with short sales constraint using local covariance matrices

Table 4
Portfolio rebalancing analysis and terminal wealth based on an initial investment of $1 for the different strategies (cf. Table 3) considered. Window size 𝑀 = 240
months.

𝜎̄𝑘 Max. adj. Min. adj. Avg.turnover Wealth Wealth incl.tcost

Benchmark strategy
EW 0 0 0 0 2.231 2.231

Global approach
MVS 16.663 9.228 −6.741 6.325 2.605 2.551
MVSC 15.813 9.228 −7.426 5.622 2.571 2.524
MIN 16.249 5.036 −4.434 3.090 2.729 2.701
MINC 15.952 5.039 −4.428 2.793 2.742 2.717

Local approach
MVS-L 15.660 73.184 −89.316 16.967 2.855 2.698
MVSC-L 14.253 18.096 −26.245 12.105 2.745 2.637
MIN-L 17.014 53.636 −79.931 21.617 2.953 2.749
MINC-L 15.243 19.646 −26.028 13.762 2.910 2.780

The Max.adj. and Min.adj. is the maximum values for positive and negative weight adjustments, respectively. Avg.turnover is defined in Eq. (4.1). Basis points
of 15 per transaction are imposed as costs.

and where 𝑤̂𝑖,𝑡,𝑘 is the portfolio weight for asset 𝑖 at time 𝑡 using portfolio strategy 𝑘, and 𝑤̄⋅,𝑡,𝑘 is the average weight across the 𝑁
ssets in portfolio 𝑘 at time 𝑡. The maximum values for positive and negative weight adjustments are the largest positive and negative
eight changes on the asset level. Following DeMiguel et al. (2009), we also report the average turnover, which is calculated as

Average turnover = 1
𝑛 −𝑀

𝑛−𝑀
∑

𝑡=1

𝑁
∑

𝑖=1
(|𝑤̂𝑖,𝑡+1,𝑘 − 𝑤̂𝑖,𝑡,𝑘|), (4.1)

We compute terminal wealth with and without a transaction cost of 15 basis points; such cost is comparable to prior studies, see
e.g Low et al. (2016).

The variability of portfolio weights reported in Table 4 shows no systematic differences between the local and global approaches.
Looking at the maximum and minimum adjustments of portfolio weights, however, there are clear differences. The local Gaussian
strategies require adjustments of larger magnitude in both directions. This is particularly the case for the unconstrained models
allowing short sales. Viewed across all strategies, we see larger and more frequent adjustments in the local portfolio strategies.

We see that increased trading volume translates into lower terminal wealth when transaction costs are included in the analysis.
However, all local Gaussian strategies achieve higher terminal wealth than their traditional counterparts, also when transaction costs
are included. The top-ranked strategy exclusive costs is MIN-L. When costs are included, the long-only portfolio MINC-L achieves
the best result.

Fig. 2 shows wealth accumulation and drawdowns for the hypothetical investment of $1 in each of the nine strategies included
in the analysis. As seen in the upper part of the figure, the local Gaussian MIN-L produces the largest final wealth when disregarding
trade costs. It remains top-ranked during most months in the sample and suffers from smaller drawdowns in volatile periods such
as the 2008 Financial Crisis. During this period, the EW strategy loses out substantially, which partially explains the overall poor
performance of this strategy relative to the rest. The other local strategies also performs better than the corresponding global ones
during this period. This is as expected, as we typically observe higher local dependence between asset returns during crisis periods
(see e.g. Støve and Tjøstheim (2014)). When transaction costs are included, the strategy MIN-L still performs well but is surpassed
by the constrained MINC-L, which has a lower turnover.

In Fig. 3, we see an illustration of the difference between the traditional Markowitz minimum variance, short sale constrained
portfolio (MINC), and the proposed local counterpart (MINC-L). In the top panel, we see the estimated global and local variances
5
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Fig. 2. Wealth accumulation of the different strategies based on an initial investment of $ 1, using a rolling window of size 𝑀 = 240 monthly observations, top
lot excluding transaction costs, bottom plot including transaction cost of 15 basis points per transaction.

ore volatile due to their nonparametric estimation. However, they are also more sensitive to the state of the market, which is
ost easily visible during the financial crisis of 2008. The local variance of the asset increases sharply in this period, which is

mmediately reflected in the portfolio weight that quickly decreases to zero. We see similar effects for other instances of increased
6
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Fig. 3. Top panel: The estimated variance for one of the assets (EWCI) in our sample for the minimum variance and short sales constrained portfolio with
traditional (global) Markowitz optimization (MINC), as well as the corresponding local version (MINC-L). In the bottom panel, we see the corresponding weight
for this asset under the two strategies. See the online appendix for a corresponding plot covering all the assets in this example. The sample window is 𝑀 = 240
months.

local variance. Note also that under the traditional (global) estimate, the estimated global variance reflects the financial crisis in
the entire remaining sample period, leading to smaller investments in this asset than for the locally estimated portfolio.

4.2. Evaluation of risk-adjusted performance

Table 5 reports the out-of-sample performance of the different strategies considered using the following risk-adjusted metrics;
The Sharpe ratio (Sharpe, 1966), the two modified Sharpe ratios VaR Sharpe, and ES Sharpe, where the Value at Risk and Expected
Shortfall are used as risk measures Gregoriou and Gueyie (2003) and Favre and Galeano (2002). We also consider the Certainty
Equivalent (CEQ), the Sortino ratio (Sortino and Price, 1994) and finally, the Omega ratio (Keating and Shadwick, 2002). All metrics
produce high values for the best-performing strategies. Furthermore, we have performed the z-test of Ledoit and Wolf (2008), which
is applied to the Sharpe Ratios to indicate the statistical differences for all MV optimizations against the 1∕𝑁 benchmark.

Results excluding and including transaction costs are reported in Panel A and B, respectively. In both cases, the local portfolio
trategies systematically outperform their traditional counterparts. Furthermore, we note that the local minimum variance portfolio
as the highest performance across all metrics. The Sharpe and the annualized Sharp ratios prefer the long-only version (MINC-
), while the Var Sharpe, ES Sharpe, Sortino, and Omega ratios prefer the unconstrained version (MIN-L). The CEQ prefers the
onstrained version when costs are excluded and the unconstrained version when costs are included.

. Concluding remarks

The results in this paper suggest that challenges related to return asymmetries may be handled in a familiar and well-established
ramework for portfolio management by replacing the global covariance matrix with a local version. Improved performance and
implicity are some of the appeals with the local Gaussian approach to portfolio management, even when considering higher
ransaction costs due to increased rebalancing requirements. There are, however, matters to keep in mind when implementing the
pproach. The selection of evaluation points for calculating the pairwise local correlations will affect the local Gaussian covariance
atrix. We have evaluated alternative approaches to the moving evaluation point selection without observing substantial changes

n results and conclusions. Nevertheless, there is a variety of options and possibilities for this choice. A more thorough analysis of
hese effects is left for future studies.
7
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Table 5
Out-of-sample performance for the different portfolio strategies (cf. Table 3) considered. The sample window is 𝑀 = 240 months.

Sharpe VaR Sharpe ES Sharpe Ann. Sharpe CEQ Sortino Omega

Panel A: Ex. transaction costs

Benchmark strategy
EW 0.174 0.110 0.057 0.577 0.353 0.263 1.593

Global approach
MVS 0.267 0.179 0.099 0.919 0.433 0.427 2.025
MVSC 0.264 0.175 0.097 0.905 0.426 0.417 2.009
MIN 0.289∗ 0.198 0.116 0.999 0.455 0.474 2.120
MINC 0.290∗ 0.199 0.117 1.000 0.457 0.474 2.120

Local approach
MVS-L 0.276∗ 0.203 0.115 0.951 0.472 0.472 2.126
MVSC-L 0.270∗ 0.193 0.107 0.929 0.454 0.453 2.075
MIN-L 0.301∗ 0.317 0.317 1.041 0.489 0.567 2.303
MINC-L 0.309∗ 0.240 0.157 1.070 0.482 0.554 2.268

Panel B: Incl. transaction costs

Benchmark strategy
EW 0.179 0.113 0.058 0.593 0.362 0.270 1.613

Global approach
MVS 0.261 0.174 0.097 0.895 0.423 0.415 1.989
MVSC 0.258 0.171 0.095 0.885 0.418 0.407 1.978
MIN 0.285∗ 0.194 0.114 0.982 0.449 0.465 2.095
MINC 0.285∗ 0.195 0.115 0.985 0.451 0.466 2.097

Local approach
MVS-L 0.262 0.188 0.106 0.900 0.448 0.440 2.041
MVSC-L 0.260 0.183 0.101 0.890 0.438 0.430 2.014
MIN-L 0.281 0.279 0.279 0.969 0.456 0.518 2.174
MINC-L 0.295∗ 0.225 0.148 1.019 0.461 0.522 2.182

The maximum values for the risk-adjusted performance metrics are in bold. 15 basis points per transaction is imposed as costs in Panel B. ‘*’ indicates that the
Sharpe ratio is statistically different on the 5 percent level from the benchmark (EW) strategy using the z-test of Ledoit and Wolf (2008).
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