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GLOBAL EXISTENCE OF WEAK SOLUTIONS TO UNSATURATED
POROELASTICITY

Jakub Wiktor Both1 , Iuliu Sorin Pop2 and Ivan Yotov3

Abstract. We study unsaturated poroelasticity, i.e., coupled hydro-mechanical processes in variably
saturated porous media, here modeled by a non-linear extension of Biot’s well-known quasi-static con-
solidation model. The coupled elliptic-parabolic system of partial differential equations is a simplified
version of the general model for multi-phase flow in deformable porous media, obtained under similar
assumptions as usually considered for Richards’ equation. In this work, existence of weak solutions is
established in several steps involving a numerical approximation of the problem using a physically-
motivated regularization and a finite element/finite volume discretization. Eventually, solvability of
the original problem is proved by a combination of the Rothe and Galerkin methods, and further
compactness arguments. This approach in particular provides the convergence of the numerical dis-
cretization to a regularized model for unsaturated poroelasticity. The final existence result holds under
non-degeneracy conditions and natural continuity properties for the constitutive relations. The assump-
tions are demonstrated to be reasonable in view of geotechnical applications.

Mathematics Subject Classification. 35K61, 65M12, 74F10, 76S05.

Received August 4, 2020. Accepted October 2, 2021.

1. Introduction

Strongly coupled hydro-mechanical processes in porous media are occurring in various applications of societal
relevance within, e.g., geotechnical, structural, and biomechanical engineering. Examples for instance are soil
subsidence due to groundwater withdrawal, induced seismicity in geothermal reservoirs, swelling and drying
shrinkage of concrete, and deformation of soft biological tissue components, to mention a few.

In the field of porous media, such microscopically complex processes are typically modeled by a continuum
mechanics approach [17]. The multi-phasic solid-fluid mixture is considered a homogenized continuum, and
both geometry, skeleton, and fluid properties are averaged over representative elementary volumes, consisting
of a mixture of solid and fluid particles. Ultimately, the interaction of the different microscopic constituents is
described by macroscopic effective equations.
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The simplest macroscopic model accounting for the two-way coupling of single-phase flow and elastic defor-
mation in a porous medium is Biot’s linear quasi-static consolidation model. Its phenomenological derivation
dates back to the seminal works by Terzaghi, [41] and Biot [4]. In the course of the last century, many more
advanced models have been developed, accounting, e.g., for the presence of different interacting fluids, thermal
effects, or chemical reactions [16,23].

In this paper, we consider a non-linear coupled system of partial differential equations, modeling the quasi-
static consolidation of variably saturated porous media – also called unsaturated poroelasticity. The model is in
particular relevant in soil mechanics. It can be obtained by simplifying the more general model for two-phase flow
in deformable porous media, founded on macroscopic momentum and mass balances combined with constitutive
relations [23] – it is assumed that one fluid phase can be simply neglected. This is a common practice for fluids
with high viscosity ratios if the negligible fluid phase is continuous and connected to the atmosphere, i.e., the
same hypotheses as for Richards’ equation [30,39]. Finally, the resulting model generalizes Biot’s consolidation
model, now essentially non-linearly coupling Richards’ equation and linear elasticity equations. It is highly non-
linear, potentially strongly coupled, and potentially degenerate, which makes its analysis challenging. In the
fully saturated regime, it simplifies to the classical Biot equations.

Regarding the mathematical theory of poroelasticity, in particular Biot’s linear quasi-static consolidation
model has been well studied. Well-posedness including the existence, uniqueness, and regularity of solutions,
has been established [3, 35, 47]. Lately, linear and non-linear extensions have become of increased interest.
Well-posedness has been analyzed for the dynamic Biot-Allard system [24], Biot-Stokes systems [2, 36], Biot’s
consolidation model with deformation dependent permeability [5,40], poroelasticity in fractured media modeled
by phase-fields [26], general non-linear single-phase poroelasticity [42], poro-visco-elasticity [5,9], thermoporoe-
lasticity [11, 43], and further extensions modeled within a gradient flow framework [9], among others. In most
problems, the coupling is linear.

Despite the large interest, rather few theoretical results have been established for unsaturated or multi-
phase poroelasticity. We highlight the results in [37] which constitute the first ever mathematical analysis of
the consolidation of a variably saturated porous medium. In the aforementioned work, the existence of weak
solutions is established under two strict model assumptions: (i) the coupling term in the fluid flow equation is
linear; and (ii) after introducing a new pressure variable by applying the Kirchhoff transformation, the coupling
and the diffusion terms in the mass balance equation simultaneously become linear. The second assumption
implies a specific, artificial form of the so-called pore pressure, a non-linearity arising in the linear momentum
balance. Ultimately, the result does not apply to the more general unsaturated poroelasticity model considered
here. Moreover, the analysis accounts for non-linearly variable densities and porosities, and most importantly
allows for degenerate situations.

On the other hand, the development of robust and efficient solution techniques for unsaturated or multi-
phase poroelasticity models is a very active research field; we mention [8, 12, 46]. So far, the development of
discretization techniques and their analysis has mostly been limited to linear poroelasticity models; we merely
mention [13], in which a stabilization technique for a finite element/finite volume discretization for multi-phase
poroelasticity is numerically studied, and [7], in which convergence of the gradient discretization method is
proved for two-phase flow in fractured, deformable media.

In this paper, the existence of weak solutions for the general model for unsaturated poroelasticity is estab-
lished. The analysis, in essence, involves a variable transformation, a numerical approximation, and a discussion
of the convergence of that approximation, using a priori estimates and compactness arguments, as pointed out
in more detail in the following.

To simplify the analysis, the problem is first transformed utilizing the Kirchhoff transformation, a technique
commonly used for the analysis of non-linear diffusion problems [1,37]. By this, the diffusion component of the
mass balance becomes linear; for the considered model, a fully non-linear coupling and a non-linear storage
coefficient remain present.

The subsequent analysis employs concepts of Rothe’s method and the Galerkin method. A finite dimensional,
numerical approximation is introduced by discretization in space and time, combining an implicit time stepping,
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a finite element method (FEM) for the mechanics equation, and a finite volume method involving a two-point
flux approximation (TPFA) for the flow equation. The motivation for the chosen discretization is two-fold: (i) it
is a common discretization in the field of poroelasticity, both in the research literature [13,45] as well as in the
industry; and important for this work, (ii) the specific choice of the discretization will allow for straightforward
cancelling of the non-linear coupling terms, which will be crucial for deriving a priori estimates.

The analysis here relies on compactness arguments. Due to the nonlinear coupling terms, one needs a sufficient
regularity of the solution, and appropriate a priori estimates. To this, prior to the discretization, a physically-
motivated regularization is introduced, accounting for the primary and secondary consolidation of variably
saturated porous media with compressible grains [16]. From a mathematical point of view, the regularization
transforms both balance equations into non-degenerate parabolic ones, and thereby naturally leads to higher
regularity in time. Similar ideas have been used previously, e.g., for saturated poroelasticity [5, 22, 28, 35, 42],
and for unsaturated flow in porous media [1, 29,31,33].

In the remaining steps of the proof, a priori estimates are derived and compactness arguments are utilized
in order to deduce, first, the convergence of the finite element/finite volume discretization to a (continuous)
regularized solution for vanishing discretization parameters, and furthermore, convergence of the regularized
solution to a weak solution of the transformed model for vanishing regularization parameters. Thereby, the
existence of a weak solution to the transformed model will be proved. In the discussion of the limit of the spatial
discretization specific finite volume techniques are utilized, inspired by [19,21,34].

The present analysis requires an overall parabolic character of the coupled problem and natural continuity
properties for the non-linearities. When passing the regularization to zero, those are ensured under specific
material assumptions. The most important one requires the presence of a compressible fluid or solid grains, and
a sufficiently stiff bulk. In the appendix, the assumptions are demonstrated to be satisfied for non-degenerating
constitutive relations typically utilized in practical applications. Furthermore, focusing on the non-linear coupled
character, some simplifying assumptions are made as the presence of an isotropic material, no gravity, and merely
homogeneous essential along with inhomogeneous natural boundary conditions.

The rest of the paper is organized as follows. In Section 2, the model is introduced as derived in the engineering
literature, and then transformed using the Kirchhoff transformation. In Section 3, the notion of a weak solution
to the transformed problem is introduced, and the main result is stated: existence of a weak solution to the
transformed problem under certain model assumptions and non-degeneracy conditions. The idea of the proof,
consisting of six steps, is presented. The details of those six steps are the subject of the remaining Sections 4–9.
In Section 10, a brief numerical test is provided illustrating the convergence of the used numerical scheme.
In Appendix A, the feasibility of the required assumptions for the main result are discussed for widely used
constitutive models from the literature. In addition, in Appendix B, technical results from the literature used
in the proof of the main result are recalled for a comprehensive presentation.

2. Mathematical model for unsaturated poroelasticity

We consider a continuum mechanics model for unsaturated poroelasticity, a particular simplification of general
multi-phase poroelasticity. As Biot’s consolidation model, it is based on the fundamental principles of momentum
and mass balance combined with constitutive relations. The model accounts for slight compressibility of the
fluid as well as changing porosity due to compressible grains and volumetric deformation, as well pore pressure
acting on the solid skeleton in the context of unsaturated media. It is valid under the assumptions of infinitesimal
strains and the presence of two fluid phases, of which one is an active and the other is a passive phase; the
displacement of the passive phase does not impede the advance of the active phase and can be neglected.
Effectively, the model non-linearly couples the Richards equation and linear elasticity equations. For a detailed
derivation, we refer to the textbooks [16,23].

In the following, we recall the mathematical model employing the mechanical displacement and fluid pressure
as primary variables. Additionally, the problem is transformed using the Kirchhoff transformation, a standard
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tool for the analysis of non-linear diffusion problems, cf., e.g., [1]. The resulting model will be subject of the
subsequent analysis.

2.1. The original mathematical model

We consider a poroelastic medium occupying the open, connected, and bounded domain Ω ⊂ R𝑑, 𝑑 ∈ {1, 2, 3}.
Let 𝑇 > 0 denote the final time and (0, 𝑇 ) denote the time interval of interest. Under the assumption of
infinitesimal deformations of the skeleton, the poroelastic medium can be approximated as fixed in time. Let
𝑄𝑇 := Ω× (0, 𝑇 ) denote the space-time domain.

The momentum and mass balance equations as derived in [23] read on 𝑄𝑇 :

−∇ · [2𝜇𝜀 (𝑢) + 𝜆∇ · 𝑢 I− 𝛼𝑝pore(𝑝w)I] = 𝑓 , (2.1a)

𝜑𝜕𝑡𝑠w(𝑝w) + 𝜑𝑐w𝑠w(𝑝w)𝜕𝑡𝑝w +
1
𝑁
𝑠w(𝑝w)𝜕𝑡𝑝pore(𝑝w) + 𝛼𝑠w(𝑝w)𝜕𝑡∇ · 𝑢 + ∇ · 𝑞 = ℎ, (2.1b)

where 𝑢 and 𝑝w are the primal variables, and denote the structural displacement and the fluid pressure (of the
active phase), respectively. Furthermore, the volumetric flux 𝑞 is described by the generalized Darcy law

𝑞 = −𝜅abs 𝜅rel(𝑠w(𝑝w))(∇𝑝w − 𝜌w𝑔). (2.2)

Moreover, in (2.1) and (2.2), 𝜇 and 𝜆 denote Lamé parameters, 𝜀 (𝑢) is the linearized strain tensor, 𝛼 ∈ [0, 1]
is the Biot coefficient, 𝑝pore is an arbitrary pore pressure (in [23], the derivation is merely formulated using
the so-called averaged pore pressure), 𝑓 is an external volume force density; 𝜑 is the porosity, 𝑠w is the fluid
saturation, 𝑐w ∈ [0,∞) is the constant storage coefficient associated to fluid compressibility, 𝑁 ∈ (0,∞] is the
constant Biot modulus associated to the compressibility of solid grains, 𝑞 is the volumetric flux, and ℎ is an
external source term; 𝜅abs is a spatially varying absolute permeability, 𝜅rel is the relative permeability, 𝜌w is
the fluid density, and 𝑔 is the gravitational acceleration. Typical ranges of values in geotechnical applications
are 𝜇, 𝜆 ∼ 107 . . . 1011 Pa, 𝜑 ∼ 0.01 . . . 0.7, 𝑐w ∼ 10−11 . . . 10−7 Pa−1, 𝑁 ∼ 1010 . . . 1012 Pa, 𝛼 ∼ 0.05 . . . 1,
𝜅abs ∼ 10−21 . . . 10−9 m2; see [16] for concrete examples.

To briefly explain the structure of (2.1), we note that the total stress in (2.1a) is defined via the Biot effective
stress [16]; the first four terms in (2.1b) correspond to the weighted change in fluid mass 𝜌−1

w 𝜕𝑡(𝜑𝑠w𝜌w). They
are obtained after applying the product rule, employing 𝜌−1

w 𝜕𝑡𝜌w = 𝑐w𝜕𝑡𝑝w for slightly compressible fluids, as
well as the relation 𝜕𝑡𝜑 = 𝛼𝜕𝑡∇ · 𝑢 + 1

𝑁 𝜕𝑡𝑝pore for varying porosity [16,23].
Constitutive laws are assumed to be given for the fluid saturation 𝑠w, the relative permeability 𝜅rel, and the

pore pressure 𝑝pore. The medium is assumed homogeneous, aside from a heterogeneous matrix permeability.
Consequently, the constitutive relationships remain the same everywhere. Commonly accepted in practice are
the van Genuchten–Mualem relations [27,44] with a non-decreasing saturation and a possibly degenerate relative
permeability

𝑠w(𝑝w) :=
{︂
𝑠w,res + (1− 𝑠w,res)[1 + (−𝛼vG𝑝w)𝑛vG ]−𝑚vG , 𝑝w ≤ 0,
1, 𝑝w ≥ 0,

(2.3a)

𝑠w,eff(𝑠w) :=
𝑠w − 𝑠w,res

1− 𝑠w,res
, (2.3b)

𝜅vG(𝑠w) :=
√︁
𝑠w,eff(𝑠w)

[︁
1− (1− 𝑠w,eff(𝑠w)

1
𝑚vG )𝑚vG

]︁2
, (2.3c)

𝜅rel(𝑠w) :=
{︂
𝜅vG(𝑠w,res + 𝑠𝜀), 𝑠w < 𝑠w,res + 𝑠𝜀,
𝜅vG(𝑠w), 𝑠w ≥ 𝑠w,res + 𝑠𝜀,

(2.3d)

where 𝑚vG ∈ (0, 1), 𝑛vG = (1 − 𝑚vG)−1, and 𝛼vG > 0 are model parameters, 𝑠w,res ∈ [0, 1) is the residual
saturation, 𝑠w,eff is the effective saturation, and 𝑠𝜀 ∈ [0, 1 − 𝑠w,res) is a regularization parameter, ensuring
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non-degeneracy when chosen positive. In addition, we consider the widely-used equivalent pore pressure [16]

𝑝pore(𝑝w) :=
∫︁ 𝑝w

0

𝑠w(𝑝) d𝑝. (2.4)

In the fully saturated regime, when 𝑝w ≥ 0, the equivalent pore pressure reduces to the fluid pressure, which
is consistent with poroelasticity models for fully saturated media. In the unsaturated regime, the pore pres-
sure is equal to the volume averaged fluid pressure with a correction accounting for interfacial energy. As the
fluid pressure equals the negative capillary pressure, it becomes negative in the unsaturated regime. We stress
that although the subsequent analysis has these particular relations as examples, it does not depend on these
particular choices for 𝑠w, 𝑝pore and 𝜅rel.

Under the hypothesis of small perturbations of the porosity, which are often applied along with the assump-
tions of linear elasticity [16], we can assume that the porosity 𝜑, acting as weight, is constant in time, equal to
some reference porosity field 𝜑0. With this, we also note that in the fully saturated regime, i.e., when 𝑠w ≡ 1
and, equivalently, 𝑝w ≥ 0, the model equations reduce to the classical quasi-static Biot equations.

From now on, we consider a compact form of (2.1) and (2.2). Specifically, we seek (𝑢, 𝑝w) such that on 𝑄𝑇

−∇ · [2𝜇𝜀 (𝑢) + 𝜆∇ · 𝑢 I− 𝛼𝑝pore(𝑝w)I] = 𝑓 , (2.5a)
𝜕𝑡𝑏(𝑝w) + 𝛼𝑠w(𝑝w)𝜕𝑡∇ · 𝑢−∇ · (𝜅abs𝜅rel(𝑠w(𝑝w))(∇𝑝w − 𝜌w𝑔)) = ℎ, (2.5b)

where in accordance to (2.1b) the function 𝑏 is defined as

𝑏(𝑝w) = 𝜑0𝑠w(𝑝w) + 𝑐w𝜑0

∫︁ 𝑝w

0

𝑠w(𝑝) d𝑝+
1
𝑁

∫︁ 𝑝w

0

𝑠w(𝑝)𝑝′pore(𝑝) d𝑝. (2.6)

In order to close the system (2.5), we consider non-overlapping partitions {Γm
D ,Γ

m
N} and {Γf

D,Γ
f
N} of the

boundary 𝜕Ω, with Γm
D ∪ Γm

N = Γf
D ∪ Γf

N = 𝜕Ω, and Γm
D as well as Γf

D having positive measure. Then mixed
boundary conditions are imposed,

𝑢 = 𝑢D on Γm
D × (0, 𝑇 ), (2.7a)

(2𝜇𝜀 (𝑢) + 𝜆∇ · 𝑢I− 𝛼𝑝pore(𝑝w)I)𝑛 = 𝜎N on Γm
N × (0, 𝑇 ), (2.7b)

𝑝w = 𝑝w,D on Γf
D × (0, 𝑇 ), (2.7c)

−𝜅abs 𝜅rel(𝑠w(𝑝w))(∇𝑝w − 𝜌w𝑔) · 𝑛 = 𝑤N on Γf
N × (0, 𝑇 ). (2.7d)

Furthermore, the pressure satisfies the initial condition

𝑝w = 𝑝w,0, in Ω× {0}. (2.8)

Finally, for the initial displacement, 𝑢(0), we only consider compatible states, satisfying

−∇ · [2𝜇𝜀 (𝑢(0)) + 𝜆∇ · 𝑢(0)I− 𝛼𝑝pore(𝑝w,0)I] = 𝑓(0). (2.9)

This also implicitly defines an initial condition for the volumetric deformation ∇ · 𝑢(0). Putting the focus on
the non-linear and coupled character of the balance equations, in the subsequent, mathematical analysis, we
consider a simplified setting, resulting in particular in a simpler notation. We neglect gravity and consider
merely homogeneous essential boundary conditions, i.e., from now on we set 𝑔 ≡ 0, 𝑢D ≡ 0 and 𝑝w,D ≡ 0.

2.2. The mathematical model under the Kirchhoff transformation

The Kirchhoff transformation defines a new pressure-like variable

𝜒(𝑝w) =
∫︁ 𝑝w

0

𝜅rel(𝑠w(𝑝)) d𝑝. (2.10)
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Assuming the constitutive laws satisfy 𝜅rel(𝑠w(𝑝)) > 0, for all 𝑝 ∈ R, the transformation (2.10) can be inverted.
Given constitutive laws for 𝑏, 𝑠w, 𝜅rel, 𝑝pore, as e.g., the equivalent pore pressure (2.4) and the van Genuchten–
Mualem relations (2.3), from now on, we consider the Kirchhoff transformation 𝜒 as unknown instead of 𝑝w,
and redefine all functions accordingly

𝑝w := 𝜒−1, 𝑝pore := 𝑝pore ∘ 𝜒−1, 𝑏̂ := 𝑏 ∘ 𝜒−1, (2.11a)
𝑠w := 𝑠w ∘ 𝜒−1, 𝜅̂rel := 𝜅rel ∘ 𝑠w. (2.11b)

Then under the assumption of a homogeneous relative permeability and saturation, the non-linear Biot equa-
tions (2.5)–(2.9) reduce to finding (𝑢, 𝜒), satisfying

−∇ · (2𝜇𝜀 (𝑢) + 𝜆∇ · 𝑢I− 𝛼𝑝pore(𝜒)I) = 𝑓 in 𝑄𝑇 , (2.12a)

𝜕𝑡𝑏̂(𝜒) + 𝛼𝑠w(𝜒)𝜕𝑡∇ · 𝑢−∇ · (𝜅abs∇𝜒) = ℎ in 𝑄𝑇 , (2.12b)

subject to the adapted boundary conditions

𝑢 = 0 on Γm
D × (0, 𝑇 ), (2.13a)

(2𝜇𝜀 (𝑢) + 𝜆∇ · 𝑢I− 𝛼𝑝pore(𝜒)I)𝑛 = 𝜎N on Γm
N × (0, 𝑇 ), (2.13b)

𝜒 = 0 on Γf
D × (0, 𝑇 ), (2.13c)

−𝜅abs∇𝜒 · 𝑛 = 𝑤N on Γf
N × (0, 𝑇 ), (2.13d)

and the initial conditions

𝜒 = 𝜒0 := 𝜒(𝑝w,0) in Ω× {0}, (2.14)

with 𝑢(0) satisfying

−∇ · [2𝜇𝜀 (𝑢(0)) + 𝜆∇ · 𝑢(0)I− 𝛼𝑝pore(𝑝w,0)I] = 𝑓(0). (2.15)

We highlight that after applying the Kirchhoff transformation, the transformed system (2.12) remains non-
linear and coupled. The main nonlinearities are 𝑏̂, 𝑝pore, 𝑠w. Yet, the diffusion term is now linear.

3. Main result – existence of a weak solution for the unsaturated
poroelasticity model

The main result of this work is the existence of a weak solution for the unsaturated poroelasticity model under
the Kirchhoff transformation, cf., Section 2.2. It should be noted, that the proof utilizes the convergence of a
numerical approximation towards a weak solution and thereby also suggests a numerical scheme. The scheme
involves the finite element and the finite volume method.

In the following, we state the main result. This includes the notion of a weak solution, required assumptions
and the idea of the proof. The details of the proof are the subject of the remainder of this paper.

3.1. Definition of a weak solution

We use the standard notation for 𝐿𝑝, Sobolev (𝐻𝑘 and 𝑊 𝑘,𝑝) and Bochner spaces, together with their inherent
norms and scalar products. Let ⟨·, ·⟩ denote the duality pairing between a dual and its primal space; for 𝐿2(Ω)
this becomes the standard scalar product for scalars, vectors and tensors. Let

𝑉 :=
{︁

𝑣 ∈ 𝐻1(Ω)𝑑
⃒⃒⃒
𝑣|Γm

D
= 0

}︁
,

𝑄 :=
{︁
𝑞 ∈ 𝐻1(Ω)

⃒⃒⃒
𝑞|Γf

D
= 0

}︁
,
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denote the function spaces corresponding to mechanical displacement and fluid pressure, respectively, incorpo-
rating essential boundary conditions. We abbreviate the bilinear form associated to linear elasticity

𝑎(𝑢,𝑣) := 2𝜇
∫︁

Ω

𝜀 (𝑢) : 𝜀 (𝑢)d𝑥+ 𝜆

∫︁
Ω

∇ · 𝑢 ∇ · 𝑣 d𝑥, 𝑢,𝑣 ∈ 𝑉 ,

and define ‖ · ‖𝑉 := 𝑎(·, ·)1/2, which induces a norm on 𝑉 due to Korn’s inequality. Moreover, we combine
the external body and surface sources as elements in 𝑉 ⋆ and 𝑄⋆, the duals of 𝑉 and 𝑄, respectively. Let
𝑓 ext = (𝑓 ,𝜎N) and ℎext = (ℎ,𝑤N) be defined by

⟨𝑓 ext,𝑣⟩ :=
∫︁

Ω

𝑓 · 𝑣 d𝑥+
∫︁

Γm
N

𝜎N · 𝑣 d𝑠, 𝑣 ∈ 𝑉 ,

⟨ℎext, 𝑞⟩ :=
∫︁

Ω

ℎ 𝑞 d𝑥+
∫︁

Γf
N

𝑤N 𝑞 d𝑠, 𝑞 ∈ 𝑄.

Definition 3.1 (Weak solution). A weak solution to (2.12)–(2.15) is a pair (𝑢, 𝜒) ∈ 𝐿2(0, 𝑇 ; 𝑉 )× 𝐿2(0, 𝑇 ;𝑄)
satisfying the following (W1)–(W4):

(W1) 𝑝pore(𝜒) ∈ 𝐿2(𝑄𝑇 ), 𝑠w(𝜒) ∈ 𝐿∞(𝑄𝑇 ).
(W2) 𝑏̂(𝜒) ∈ 𝐿∞(0, 𝑇 ;𝐿1(Ω)) and 𝜕𝑡𝑏̂(𝜒) ∈ 𝐿2(0, 𝑇 ;𝑄⋆) such that∫︁ 𝑇

0

⟨
𝜕𝑡𝑏̂(𝜒), 𝑞

⟩
d𝑡+

∫︁ 𝑇

0

⟨
𝑏̂(𝜒)− 𝑏̂(𝜒0), 𝜕𝑡𝑞

⟩
d𝑡 = 0,

for 𝑞 ∈ 𝐿2(0, 𝑇 ;𝑄) ∩𝑊 1,1(0, 𝑇 ;𝐿∞(Ω)) with 𝑞(𝑇 ) = 0.
(W3) 𝜕𝑡∇ · 𝑢 ∈ 𝐿2(𝑄𝑇 ) such that∫︁ 𝑇

0

⟨𝜕𝑡∇ · 𝑢, 𝑞⟩d𝑡+
∫︁ 𝑇

0

⟨∇ · 𝑢−∇ · 𝑢0, 𝜕𝑡𝑞⟩d𝑡 = 0,

for all 𝑞 ∈ 𝐻1(0, 𝑇 ;𝐿2(Ω)) with 𝑞(𝑇 ) = 0, where for all 𝑣 ∈ 𝑉 , 𝑢0 ∈ 𝑉 satisfies

𝑎(𝑢0,𝑣)− 𝛼⟨𝑝pore(𝜒0),∇ · 𝑣⟩ = ⟨𝑓 ext(0),𝑣⟩. (3.1)

(W4) (𝑢, 𝜒) satisfies for all (𝑣, 𝑞) ∈ 𝐿2(0, 𝑇 ; 𝑉 )× 𝐿2(0, 𝑇 ;𝑄)∫︁ 𝑇

0

[𝑎(𝑢,𝑣)− 𝛼⟨𝑝pore(𝜒),∇ · 𝑣⟩]d𝑡 =
∫︁ 𝑇

0

⟨𝑓 ext,𝑣⟩d𝑡, (3.2a)∫︁ 𝑇

0

[︂⟨
𝜕𝑡𝑏̂(𝜒) + 𝛼𝑠w(𝜒)𝜕𝑡∇ · 𝑢, 𝑞

⟩
+⟨𝜅abs∇𝜒,∇𝑞⟩

]︂
d𝑡 =

∫︁ 𝑇

0

⟨ℎext, 𝑞⟩d𝑡. (3.2b)

Remark 3.2 (Discussion of (W1)). For the constitutive relations (2.3) and the equivalent pore pressure (2.4),
(W1) is satisfied if, e.g., 𝜒 ∈ 𝐿2(𝑄𝑇 ), as discussed in more detail in Appendix A.

Remark 3.3. We note that the weak formulation of the initial conditions (W3) of the volumetric deformation
allows for a stronger formulation. See Lemma 9.6 for more information. In fact, more regularity is asked for in
(W3) than required for 𝑠w(𝜒)𝜕𝑡∇ · 𝑢 ∈ 𝐿2(0, 𝑇 ;𝑄⋆) to be well-defined; however, the higher regularity will be
required for interpreting the initial data properly.
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3.2. Assumptions on model and data

For proving the existence of a weak solution, we require several assumptions on the model, including the
constitutive laws, model parameters, and data. The assumptions on the constitutive laws read:

(A0) 𝑠w : R → (0, 1] and 𝜅rel : [0, 1] → [0, 1] are such that 𝜅rel(𝑠w(𝑝)) > 0, for all 𝑝 ∈ R allowing for defining
𝑝w, 𝑏̂, 𝑠w, 𝑝pore, and 𝜅̂rel as in (2.11).

(A1) 𝑏̂ : R → R is continuous and non-decreasing.
(A2) 𝑠w : R → (0, 1] is continuous and differentiable a.e., and 𝑠w(𝜒) = 1 for 𝜒 ≥ 0.
(A3) 𝑝pore : R → R is continuously differentiable, non-decreasing, and 𝑝pore(𝜒) = 𝜒 for 𝜒 ≥ 0.
(A4) 𝑝pore

𝑠w
: R → R is invertible and uniformly increasing, i.e., there exists a constant 𝑐𝑝pore/𝑠w > 0 satisfying(︁

𝑝pore
𝑠w

)︁′
(𝜒) ≥ 𝑐𝑝pore/𝑠w for all 𝜒 ∈ R.

Assumptions (A0)–(A4) are valid for standard constitutive laws, as those presented in Section 2, cf.,
Appendix A for more details. The assumptions on the model parameters read:

(A5) 𝜇 > 0, 𝜆 ≥ 0, 𝛼 ≥ 0 are (for simplicity) constant, defining the bulk modulus 𝐾dr := 2𝜇
𝑑 + 𝜆 > 0.

(A6) 𝜅abs is continuous in Ω and uniformly bounded from below and above, such that there exist constants
0 < 𝜅m,abs ≤ 𝜅M,abs <∞ with 𝜅abs ∈ [𝜅m,abs, 𝜅M,abs] in Ω.

The assumptions on the external load and source terms read:

(A7) 𝑓 ∈ 𝐻1
(︀
0, 𝑇 ;𝐿2(Ω)𝑑

)︀
, 𝜎N ∈ 𝐻1

(︀
0, 𝑇 ;𝐻−1/2(Γm

N)
)︀
, ℎ ∈ 𝐻1

(︀
0, 𝑇 ;𝐿2(Ω)

)︀
, 𝑤N ∈ 𝐻−1/2

(︀
Γf

N

)︀
such that

𝑓 ext ∈ 𝐻1(0, 𝑇 ; 𝑉 ⋆) and ℎext ∈ 𝐻1(0, 𝑇 ;𝑄⋆), where for 𝑡 ∈ (0, 𝑇 )

‖𝑓 ext(𝑡)‖𝑉 ⋆ := sup
0 ̸=𝑣∈𝑉

⟨𝑓 ext(𝑡),𝑣⟩
‖𝑣‖𝑉

,

‖ℎext(𝑡)‖𝑄⋆ := sup
0 ̸=𝑞∈𝑄

⟨ℎext(𝑡), 𝑞⟩
‖𝑞‖𝑄

,

and analogously norms corresponding to Bochner spaces as ‖𝑓 ext‖𝐻1(0,𝑇 ;𝑉 ⋆), etc.

The assumptions on the initial data read:

(A8) (𝑢0, 𝜒0) ∈ 𝑉 ×𝑄 is sufficiently regular such that there exists a constant 𝐶0 satisfying

‖𝑢0‖2𝑉 + ‖∇𝜒0‖2𝐿2(Ω) +
⃦⃦⃦
𝑏̂(𝜒0)

⃦⃦⃦
𝐿1(Ω)

+
⃦⃦⃦
𝐵̂(𝜒0))

⃦⃦⃦
𝐿1(Ω)

+
⃦⃦⃦⃦
𝐵̄

(︂
𝑝pore(𝜒0)
𝑠w(𝜒0)

)︂⃦⃦⃦⃦
𝐿1(Ω)

+ ‖𝑝pore(𝜒0)‖2𝐿2(Ω) ≤ 𝐶0,

where 𝐵̂ and 𝐵̄ are energies defined as

𝐵̂(𝑧) :=
∫︁ 𝑧

0

(𝑏̂(𝑧)− 𝑏̂(𝑠)) d𝑠 ≥ 0, (3.3a)

𝐵̄(𝑧) :=
∫︁ 𝑧

0

(𝑏̄(𝑧)− 𝑏̄(𝑠)) d𝑠 ≥ 0. (3.3b)

Note, that (A1) implies the existence of a convex 𝐶1-potential 𝜓 : R → R, such that 𝑏̂ = 𝜓′. In this
context, 𝐵̂ can be related to the Legendre transform of 𝜉 ↦→ 𝜓(𝜉) − 𝜓(0) composed with 𝑏̂,[1] see also
Lemma B.12 – similarly for 𝐵̄.

Additionally, the following non-degeneracy conditions are assumed:

(ND1) There exists a constant 𝐶ND,1 > 0 such that⃒⃒⃒⃒
𝑝pore(𝜒)
𝑠w(𝜒)𝜒

⃒⃒⃒⃒
≤ 𝐶ND,1, for all 𝜒 ∈ R.
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(ND2) There exists a constant 𝐶ND,2 > 0 such that

𝐶−1
ND,2 ≤ 𝑝′pore(𝜒) ≤ 𝐶ND,2, for all 𝜒 ∈ R.

(ND3) The bulk modulus 𝐾dr = 2𝜇
𝑑 + 𝜆 is sufficiently large and satisfies

𝐾dr ≥
𝛼2

2

(︀
𝑠w(𝜒)− 𝑝′pore(𝜒)

)︀2
𝑏̂′(𝜒)

, for all 𝜒 ∈ R.

Physical interpretation of the non-degeneracy conditions. The condition (ND1) essentially means that
the equivalent pore pressure essentially behaves like the transformed pressure. The condition (ND2) states that
the pore pressure 𝑝pore essentially behaves as the transformed pressure 𝜒; in Appendix A, (ND2) is showed to
be satisfied for the equivalent pore pressure involving regularized hydraulic properties. Finally, the condition
(ND3) essentially requires the mechanical system to be sufficiently stiff in relation to the system’s effective
compressibility governed by the compressibilities of the fluid and solid grains, as well as the hydraulic properties.
In Appendix A, the conditional relation (ND3) is discussed for the constitutive laws presented in Section 2. To
conclude, (ND3) can be expected to be satisfied in several practical situations.

3.3. Existence of solutions for the unsaturated poroelasticity model

This section is presenting the main result together with the main steps of the proof.

Theorem 3.4 (Existence of a weak solution to the unsaturated poroelasticity model). Under the model assump-
tions (A0)–(A8) and the non-degeneracy conditions (ND1)–(ND3), there exists a weak solution of (2.12)–(2.15)
in the sense of Definition 3.1.

We observe that uniqueness is not addressed here. The fully coupled, and nonlinear character of the problem
makes it in particular difficult to use any monotonicity arguments. This aspect is left open, for further research.

The main idea of the proof of Theorem 3.4 is to use the Galerkin method in combination with compactness
arguments. The main difficulty here is the control over the non-linear coupling terms. For this a regular-
ization approach is used. After all, the proof consists of six steps. In the following, we present the idea of
each step. Details are subject of the remainder of the article and will be presented in the six, subsequent sections.

Step 1: physically meaningful regularization. Applying the Galerkin method along with compactness
arguments for the original problem (3.2) is challenging due to the coupling terms. A simple way to control the
term 𝜕𝑡∇ · 𝑢 is to add a suitable regularization term in the mechanics equation (3.2a). As the coupling terms
also involve non-linearities in the Kirchhoff pressure, ultimately strong compactness is required. Therefore, we
add a coercive term in the flow equation, which allows for controlling the term 𝜕𝑡𝜒. In this way, one can control
the coupling terms, and eventually leading to convergence.

From a physical point of view, the regularized model accounts for secondary consolidation and compressible
solid grains. In mathematical terms, it reads as follows. For given regularization parameters 𝜁, 𝜂 > 0, find
(𝑢𝜁𝜂, 𝜒𝜁𝜂) to be the solution to the variational equations∫︁ 𝑇

0

[︁
𝜁𝑎(𝜕𝑡𝑢𝜁𝜂,𝑣) + 𝑎(𝑢𝜁𝜂,𝑣)− 𝛼⟨𝑝pore(𝜒𝜁𝜂),∇ · 𝑣⟩

]︁
d𝑡 =

∫︁ 𝑇

0

⟨𝑓 ext,𝑣⟩d𝑡, (3.4a)

∫︁ 𝑇

0

[︂⟨
𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂) + 𝛼𝑠w(𝜒𝜁𝜂)𝜕𝑡∇ · 𝑢𝜁𝜂, 𝑞

⟩
+ ⟨𝜅abs∇𝜒𝜁𝜂,∇𝑞⟩

]︂
d𝑡 =

∫︁ 𝑇

0

⟨ℎext, 𝑞⟩d𝑡, (3.4b)

for all (𝑣, 𝑞) ∈ 𝐿2(0, 𝑇 ; 𝑉 )×𝐿2(0, 𝑇 ;𝑄), where 𝑏̂𝜂 is a strictly increasing regularization of 𝑏̂ (see (A1)𝜂 below for
further properties). The next two steps prove that the regularized problem has a weak solution in an analogous
sense to Definition 3.1.
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Step 2: discretization in space and time. To obtain a fully discrete counterpart of (3.4), we employ the
implicit Euler scheme for the discretization in time, a conforming Galerkin finite element discretization of
the elasticity equation, and a finite volume discretization of the fluid flow equation, based on two-point flux
approximations [19,20]. We stress that such a combination of discretization methods is common in the context
of poromechanics [13,45], in particular in the engineering community as well as the industry.

Let 𝑁 ∈ N and {𝑡𝑛; 𝑛 = 0, . . . , 𝑁} be an equidistant partition of the interval [0, 𝑇 ] with constant time
steps 𝜏 = 𝑇/𝑁 . Furthermore, given an admissible mesh 𝒯 = {𝐾}𝐾 , cf., Definition 5.1, let 𝑉ℎ ⊂ 𝑉 denote
a conforming, discrete function space for displacements. Let 𝑄ℎ ̸⊂ 𝑄 denote the discrete function space of
piecewise constant functions. Then the discretization for time step 𝑛 ≥ 1 reads:

Problem 𝑃ℎ𝑛: given the solution at the previous time step
(︀
𝑢𝑛−1

ℎ , 𝜒𝑛−1
ℎ

)︀
∈ 𝑉ℎ × 𝑄ℎ, find (𝑢𝑛

ℎ, 𝜒
𝑛
ℎ) ∈ 𝑉ℎ × 𝑄ℎ

satisfying for all (𝑣ℎ, 𝑞ℎ) ∈ 𝑉ℎ ×𝑄ℎ

𝜁𝜏−1𝑎
(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ ,𝑣ℎ

)︀
+ 𝑎(𝑢𝑛

ℎ,𝑣ℎ)− 𝛼⟨𝑝pore(𝜒𝑛
ℎ),∇ · 𝑣ℎ⟩ = ⟨𝑓𝑛

ext,𝑣ℎ⟩, (3.5a)

⟨𝑏̂𝜂(𝜒𝑛
ℎ)− 𝑏̂𝜂

(︀
𝜒𝑛−1

ℎ

)︀
, 𝑞ℎ⟩+ 𝛼⟨𝑠w(𝜒𝑛

ℎ)∇ ·
(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
, 𝑞ℎ⟩+ 𝜏⟨∇ℎ𝜒

𝑛
ℎ,∇ℎ𝑞ℎ⟩𝜅abs = 𝜏⟨ℎ𝑛

ext, 𝑞ℎ⟩. (3.5b)

This specific choice for the discretization will turn out to be crucial due to two reasons: (i) the piecewise
constant approximation of the pressure allows for choosing non-linear test functions and thereby cancelling
the coupling terms in the analysis; (ii) the two-point flux approximation encoded by the discrete gradients ∇ℎ

retain the local character of the differential operator ∇. These together allow for simultaneously cancelling the
coupling terms and utilizing the coercivity of the diffusion term, which will be crucial for proving existence of
discrete solution via a corollary of Brouwer’s fixed point theorem, and for deriving stability estimates.

Step 3: existence of a weak solution to the regularized model. Based on the discrete values {(𝑢𝑛
ℎ, 𝜒

𝑛
ℎ)}𝑛,

we define suitable interpolations in time, (𝑢ℎ𝜏 , 𝜒ℎ𝜏 ), yielding approximations of (𝑢𝜁𝜂, 𝜒𝜁𝜂). We remark that
various interpolations are in fact introduced in the course of steps 3 and 4. To avoid an excess in notations and
for the ease of the presentation, we use the same notation, (𝑢ℎ𝜏 , 𝜒ℎ𝜏 ), for all interpolations throughout this
section.

The goal is to show convergence (in a certain sense) of {(𝑢ℎ𝜏 , 𝜒ℎ𝜏 )}ℎ,𝜏 along a monotonically decreasing
sequence of pairs (ℎ, 𝜏) → (0, 0) (from now on denoted ℎ, 𝜏 → 0) towards a solution of (3.4). This is achieved
using compactness arguments; however, due to the coupled and non-linear nature of (3.4), several terms require
careful discussion:

– Products of independent variables as 𝑠w(𝜒𝜁𝜂)𝜕𝑡∇ · 𝑢𝜁𝜂 and non-linearities as 𝑝pore(𝜒𝜁𝜂) require partially
strong convergence.

– Since 𝑏̂𝜂 is not necessarily Lipschitz continuous, it is not sufficient to show uniform stability for {𝜕𝑡𝜒ℎ𝜏}ℎ,𝜏

to conclude weak convergence of {𝜕𝑡𝑏̂𝜂(𝜒ℎ𝜏 )}ℎ,𝜏 towards 𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂). Instead, we apply techniques from [1]
utilizing an energy 𝐵̂𝜂 based on 𝑏̂𝜂 analogously to (4.2).

– Weak convergence (up to a subsequence) of the discrete gradients ∇ℎ𝜒ℎ𝜏 towards ∇𝜒𝜁𝜂 is not an obvious
consequence of uniform stability. For this, we apply techniques from the finite volume literature [19,34].

Motivated by that, we first derive stability estimates that are uniform wrt. the discretization parameters

‖𝑢ℎ𝜏‖𝐻1(0,𝑇 ;𝑉 ) + ess sup
𝑡∈(0,𝑇 )

‖𝜒ℎ𝜏 (𝑡)‖1,𝒯 + ‖𝜕𝑡𝜒ℎ𝜏‖𝐿2(𝑄𝑇 ) + ‖𝑝pore(𝜒ℎ𝜏 )‖𝐿2(𝑄𝑇 )

+
⃦⃦⃦
𝐵̂𝜂(𝜒ℎ𝜏 )

⃦⃦⃦
𝐿∞(0,𝑇 ;𝐿1(Ω))

+
⃦⃦⃦
𝜕𝑡𝑏̂𝜂(𝜒ℎ𝜏 )

⃦⃦⃦
𝐿2(0,𝑇 ;𝐻−1(Ω))

≤ 𝐶𝜁𝜂

for some constant 𝐶𝜁𝜂 > 0 independent of ℎ, 𝜏 – as already indicated in step 2, the specific spatial discretization
is beneficial for obtaining this result. Therefore, one obtains weak convergence for subsequences (denoted the
same as before) for ℎ, 𝜏 → 0

𝑢ℎ𝜏 ⇀ 𝑢𝜁𝜂 weakly in 𝐻1(0, 𝑇 ; 𝑉 ),
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𝑝pore(𝜒ℎ𝜏 ) ⇀ 𝑝pore(𝜒𝜁𝜂) weakly in 𝐿2(𝑄𝑇 ),

𝜕𝑡𝑏̂𝜂(𝜒ℎ𝜏 ) ⇀ 𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂) weakly in 𝐿2(0, 𝑇 ;𝑄⋆),
𝑠w(𝜒ℎ𝜏 )𝜕𝑡∇ · 𝑢ℎ𝜏 ⇀ 𝑠w(𝜒𝜁𝜂)𝜕𝑡∇ · 𝑢𝜁𝜂 weakly in 𝐿2(𝑄𝑇 ).

Moreover, by employing finite volume techniques the following convergence of the discrete diffusion term can
be showed ∫︁ 𝑇

0

⟨∇ℎ𝜒ℎ𝜏 ,∇ℎ𝑞ℎ⟩𝜅abs
d𝑡→

∫︁ 𝑇

0

⟨∇𝜒𝜁𝜂,∇𝑞⟩𝜅abs
d𝑡,

for arbitrary discrete test functions 𝑞ℎ, which strongly converge towards continuous functions 𝑞. Here, ⟨·, ·⟩𝜅abs

denotes suitably defined 𝜅abs-weighted scalar products. Finally, the limit, (𝑢𝜁𝜂, 𝜒𝜁𝜂), can be identified as weak
solution of the regularized problem (3.4).

Step 4: increased regularity for the weak solution of the regularized model. When discussing the limit
𝜁 → 0 in step 5, it will be beneficial to have access to the derivative in time of the mechanics equation (3.4a).
Under the additional non-degeneracy condition (ND2), stating that 𝑝pore is Lipschitz continuous, an increased
regularity can be showed for the weak solution of the regularized model, (𝑢𝜁𝜂, 𝜒𝜁𝜂). For instance, for all 𝑣 ∈
𝐿2(0, 𝑇 ; 𝑉 ) it holds that∫︁ 𝑇

0

[𝜁𝑎(𝜕𝑡𝑡𝑢𝜁𝜂,𝑣) + 𝑎(𝜕𝑡𝑢𝜁𝜂,𝑣)− 𝛼⟨𝜕𝑡𝑝pore(𝜒𝜁𝜂),∇ · 𝑣⟩] d𝑡 =
∫︁ 𝑇

0

⟨𝜕𝑡𝑓 ext,𝑣⟩d𝑡. (3.6)

The proof follows the same line of argumentation as step 3. First a fully discrete counterpart of (3.6) is con-
structed by considering differences of (3.5a) between subsequent time steps

𝜁𝜏−1𝑎
(︀
𝑢𝑛

ℎ − 2𝑢𝑛−1
ℎ + 𝑢𝑛−2

ℎ ,𝑣ℎ

)︀
+ 𝑎
(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ ,𝑣ℎ

)︀
− 𝛼

⟨︀
𝑝pore(𝜒𝑛

ℎ)− 𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀
,∇ · 𝑣ℎ

⟩︀
=
⟨︀
𝑓𝑛

ext − 𝑓𝑛−1
ext ,𝑣ℎ

⟩︀
for 𝑣ℎ ∈ 𝑉ℎ.

In addition, suitable interpolations 𝑢̂𝑡,ℎ𝜏 and 𝑝pore,ℎ𝜏 of the discrete values {𝜏−1
(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
}𝑛 and

{𝑝pore(𝜒𝑛
ℎ)}𝑛, respectively, define approximations of 𝜕𝑡𝑢𝜁𝜂 and 𝑝pore(𝜒𝜁𝜂). The uniform stability estimate

‖𝜕𝑡𝑢̂𝑡,ℎ𝜏‖2𝐿2(0,𝑇 ;𝑉 ) + ‖𝜕𝑡𝑢ℎ𝜏‖2𝐿2(0,𝑇 ;𝑉 ) + ‖𝜕𝑡𝑝pore,ℎ𝜏‖2𝐿2(𝑄𝑇 ) ≤ 𝐶𝜁𝜂

guarantees the weak convergences

𝜕𝑡𝑢̂𝑡,ℎ𝜏 ⇀ 𝜕𝑡𝑡𝑢𝜁𝜂, weakly in 𝐿2(0, 𝑇 ; 𝑉 ),
𝜕𝑡𝑢ℎ𝜏 ⇀ 𝜕𝑡𝑢𝜁𝜂, weakly in 𝐿2(0, 𝑇 ; 𝑉 ),

𝜕𝑡𝑝pore(𝜒)ℎ𝜏 ⇀ 𝜕𝑡𝑝pore(𝜒𝜁𝜂), weakly in 𝐿2(𝑄𝑇 )

up to subsequences, for ℎ, 𝜏 → 0. Finally, one can identify (3.6) in the limit.

Step 5: vanishing regularization in the mechanics equation. For each 𝜁, 𝜂 > 0, there exists a solution
(𝑢𝜁𝜂, 𝜒𝜁𝜂) to (3.4). For the discussion of the limit 𝜁 → 0, we employ compactness arguments similar to step 3.
We derive the uniform stability estimates

‖𝑢𝜁𝜂‖𝐻1(0,𝑇 ;𝑉 ) + ‖𝜒𝜁𝜂‖𝐿∞(0,𝑇 ;𝑄) + ‖𝑝pore(𝜒𝜁𝜂)‖𝐿2(𝑄𝑇 )

+
⃦⃦⃦
𝐵̂𝜂(𝜒𝜁𝜂)

⃦⃦⃦
𝐿∞(0,𝑇 ;𝐿1(Ω))

+
⃦⃦⃦
𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂)

⃦⃦⃦
𝐿2(0,𝑇 ;𝐻−1(Ω))

≤ 𝐶, (3.7)

and

‖𝜕𝑡𝜒𝜁𝜂‖𝐿2(𝑄𝑇 ) ≤ 𝐶𝜂. (3.8)
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In order to derive (3.7), we take inspiration from the analysis of the linear Biot equations in [25] and utilize
the differentiated-in-time momentum equation (3.6). We use 𝑣 = 𝜕𝑡𝑢𝜁𝜂 as test function in (3.6) (essentially
generating ‖𝜕𝑡𝑢𝜁𝜂‖𝐻1(0,𝑇 ;𝑉 )), and 𝑞 = 𝜕𝑡𝜒𝜁𝜂 in the fluid flow equation (3.4b), tested with (allowing for simple
discussion of the transformed diffusion term). This generates mostly positive terms, which in principle would
lead to (3.7). However, unlike in the linear Biot case, the coupling terms do not cancel, and leave behind a non-
positive term. The main idea to recover (3.7) is then to compensate the non-positive term, under a condition
on the data and constitutive laws. For this, we apply the mean inequality ‖𝑣‖2𝑉 ≥ 𝐾dr‖∇ · 𝑣‖2𝐿2 , the binomial
identity (App. B.2), together with the non-degeneracy condition (ND3) to obtain

‖𝜕𝑡𝑢𝜁𝜂‖2𝐿2(0,𝑇 ;𝑉 )⏟  ⏞  
≥ 1

2‖𝜕𝑡𝑢𝜁𝜂‖2𝐿2(0,𝑇 ;𝑉 )
+ 1

2 𝐾dr‖𝜕𝑡∇·𝑢𝜁𝜂‖2𝐿2(0,𝑇 ;𝐿2(Ω))

+
∫︁ 𝑇

0

⟨
𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂), 𝜕𝑡𝜒𝜁𝜂

⟩
+ 𝛼

∫︁ 𝑇

0

⟨𝑠w𝜕𝑡𝜒𝜁𝜂 − 𝜕𝑡𝑝pore, 𝜕𝑡∇ · 𝑢𝜁𝜂⟩ ≥
1
2
‖𝜕𝑡𝑢𝜁𝜂‖2𝐿2(0,𝑇 ;𝑉 ).

(3.9)

This intermediate calculation allows to drop the coupling terms in the analysis and retrieve the uniform
bound (3.7) at the cost of (ND3). This calculation carefully demonstrates the interpretation of uniform com-
pressibility provided by (ND3), cf., the physical interpretation discussed in Section 3.2.

With this, letting 𝜁 → 0, one obtains for subsequences (denoted the same as before)

𝑢𝜁𝜂 ⇀ 𝑢𝜂 weakly in 𝐿2(0, 𝑇 ; 𝑉 ),
𝜕𝑡𝑢𝜁𝜂 ⇀ 𝜕𝑡𝑢𝜂 weakly in 𝐿2(0, 𝑇 ; 𝑉 ),
𝜁𝜕𝑡𝑢𝜁𝜂 → 0 weakly in 𝐿2(0, 𝑇 ; 𝑉 ),

𝜒𝜁𝜂 ⇀ 𝜒𝜂 weakly in 𝐿∞(0, 𝑇 ;𝑄),
𝑝pore(𝜒𝜁𝜂) ⇀ 𝑝pore(𝜒𝜂) weakly in 𝐿2(𝑄𝑇 ),

𝑠w(𝜒𝜁𝜂)𝜕𝑡∇ · 𝑢𝜁𝜂 ⇀ 𝑠w(𝜒𝜂)𝜕𝑡∇ · 𝑢𝜂 weakly in 𝐿2(𝑄𝑇 ),

𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂) ⇀ 𝜕𝑡𝑏̂𝜂(𝜒𝜂) weakly in 𝐿2(0, 𝑇 ;𝑄⋆).

Finally, it is straightforward to see that the limit (𝑢𝜂, 𝜒𝜂) is a weak solution of (3.4) for 𝜁 = 0.
We underline, that for showing (3.9), the time-continuous character of the variational problem is required.

It is not obvious how to use a similar strategy on time-discrete level. Therefore, step 5 has been performed
separately from steps 3 and 4.
Step 6: vanishing regularization in the flow equation. In the presence of fluid or solid grain compressibility
in the original formulation, i.e., 𝑐w > 0 or 1

𝑁 > 0, respectively, this final step is obsolete. Otherwise, we consider
the limit process 𝜂 → 0 for the sequence of solutions {(𝑢𝜂, 𝜒𝜂)}𝜂, derived in step 5. The overall idea is the same
as in step 5, namely to obtain estimates that are uniform wrt. 𝜂 and to use compactness arguments. Referring
to (3.7), the following estimate is uniform in 𝜂

‖𝑢𝜂‖𝐻1(0,𝑇 ;𝑉 ) + ‖𝜒𝜂‖𝐿∞(0,𝑇 ;𝐻1
0 (Ω)) + ‖𝑝pore(𝜒𝜂)‖𝐿2(𝑄𝑇 )

+
⃦⃦⃦
𝐵̂𝜂(𝜒𝜂)

⃦⃦⃦
𝐿∞(0,𝑇 ;𝐿1(Ω))

+
⃦⃦⃦
𝜕𝑡𝑏̂𝜂(𝜒𝜂)

⃦⃦⃦
𝐿2(0,𝑇 ;𝐻−1(Ω))

≤ 𝐶. (3.10)

For estimating 𝜕𝑡𝜒𝜂, we first show that the time derivative of the mechanics equation (3.5a) is well-defined for
𝜁 = 0, i.e., it holds for all 𝑣 ∈ 𝐿2(0, 𝑇 ; 𝑉 ) that∫︁ 𝑇

0

𝑎(𝜕𝑡𝑢𝜂,𝑣) d𝑡−
∫︁ 𝑇

0

𝛼⟨𝜕𝑡𝑝pore(𝜒𝜂),∇ · 𝑣⟩d𝑡 =
∫︁ 𝑇

0

⟨𝜕𝑡𝑓 ext,𝑣⟩d𝑡. (3.11)

Since ‖𝜕𝑡𝜒𝜂‖ . ‖𝜕𝑡𝑝pore(𝜒𝜂)‖, the uniform stability for 𝜕𝑡𝜒𝜂 follows by an inf-sup argument (3.11), and the
stability bound (3.10). Due to the lack of a suitable bound on 𝜕𝑡𝑡𝑢𝜁𝜂 in step 5, this approach only works for
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𝜁 = 0. Standard compactness arguments allow for extracting subsequences (again denoted as before) such that
for 𝜂 → 0 it holds that

𝑢𝜂 ⇀ 𝑢 weakly in 𝐿2(0, 𝑇 ; 𝑉 ),
𝜒𝜂 ⇀ 𝜒 weakly in 𝐿∞(0, 𝑇 ;𝑄),

𝑝pore(𝜒𝜂) ⇀ 𝑝pore(𝜒) weakly in 𝐿2(𝑄𝑇 ),
𝑠w(𝜒𝜂)𝜕𝑡∇ · 𝑢𝜂 ⇀ 𝑠w(𝜒)𝜕𝑡∇ · 𝑢 weakly in 𝐿2(𝑄𝑇 ),

𝜕𝑡𝑏̂𝜂(𝜒𝜂) ⇀ 𝜕𝑡𝑏̂(𝜒) weakly in 𝐿2(0, 𝑇 ;𝑄⋆).

Ultimately, (𝑢, 𝜒) can be identified as a weak solution to the unsaturated poroelasticity model in the sense of
Definition 3.1. This finishes the proof of Theorem 3.4.

4. Step 1: Physical regularization – secondary consolidation and enhanced
grain compressibility

We introduce a physical regularization of the weak formulation (3.2) by enhancing the mechanics and the
flow equations. Specifically, we let 𝜁 > 0 and 𝜂 > 0 be two regularization parameters. We include secondary
consolidation, which effectively adds a linear viscoelastic contribution in the mechanics equation of the form
𝜁𝑎(𝜕𝑡𝑢,𝑣). Additionally, we assume non-vanishing solid grain compressibility by defining the regularization 𝑏̂𝜂
of 𝑏̂ as

𝑏̂𝜂(𝜒) := 𝑏̂(𝜒) + 𝜂

∫︁ 𝑝w(𝜒)

0

𝑠w(𝑝)𝑝′pore(𝑝) d𝑝, (4.1)

i.e., 𝑏̂𝜂 has the same structure as 𝑏̂, but with 1
𝑁 + 𝜂 replacing 1

𝑁 refering to the physical example (2.6).
Refering to Section 3.2, the function 𝑏̂𝜂 still satisfies (A1). Additionally, now the following growth condition

holds

(A1)𝜂 There exists a 𝑏̂m > 0 s.t. 𝑏̂m‖𝜒1 − 𝜒2‖2𝐿2(Ω) ≤
⟨
𝑏̂𝜂(𝜒1)− 𝑏̂𝜂(𝜒2), 𝜒1 − 𝜒2

⟩
for all 𝜒1, 𝜒2 ∈ 𝐿2(𝑄𝑇 ),

cf., also Appendix A. In the subsequent discussion, a growth condition for 𝑏̂𝜂 (or 𝑏̂) of type (A1)𝜂 will be required
in order to utilize strong compactness arguments for the pressure variable. Note, that if min

{︀
𝑐w,

1
𝑁

}︀
> 0 in (2.6),

the growth condition (A1)𝜂 is fulfilled even for 𝜂 = 0, and the regularization of the flow equation actually is not
necessary, cf., Step 6 in Section 9.

Also (A8) can be adapted for the regularization 𝑏̂𝜂. With 𝑏̄𝜂 := 𝑏̂𝜂 ∘
(︁

𝑝pore
𝑠w

)︁−1

, we define energies 𝐵̂𝜂 and 𝐵̄𝜂,

related to the Legendre transformations of convex potentials of 𝑏̂𝜂 and 𝑏̄𝜂, respectively, cf., [1] or Lemma B.12.
Let

𝐵̂𝜂(𝑧) :=
∫︁ 𝑧

0

(𝑏̂𝜂(𝑧)− 𝑏̂𝜂(𝑠)) d𝑠 ≥ 0, (4.2)

𝐵̄𝜂(𝑧) :=
∫︁ 𝑧

0

(𝑏̄𝜂(𝑧)− 𝑏̄𝜂(𝑠)) d𝑠 ≥ 0. (4.3)

(A8)𝜂 There exists a 𝜂0 > 0 and 𝐶0 > 0, not depending on 𝜂0, such that

‖𝑢0‖2𝑉 + ‖∇𝜒0‖2𝐿2(Ω) +
⃦⃦⃦
𝐵̂𝜂(𝜒0))

⃦⃦⃦
𝐿1(Ω)

+
⃦⃦⃦⃦
𝐵̄𝜂

(︂
𝑝pore(𝜒0)
𝑠w(𝜒0)

)︂⃦⃦⃦⃦
𝐿1(Ω)

≤ 𝐶0

for all 𝜂 ∈ (0, 𝜂0). Without loss of generality, we assume 𝐶0 in (A8) and (A8)𝜂 to be the same.
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For a non-degenerate initial condition 𝜒0, the additional terms in 𝐵̂𝜂 and 𝐵̄𝜂 can be essentially bounded by
𝜂‖𝜒0‖2𝐿2(Ω), which itself is bounded by (A8).

Finally, we introduce the doubly regularized unsaturated poroelasticity model by defining the notion of a
weak solution.

Definition 4.1 (Weak solution of the doubly regularized model). For 𝜁 > 0 and 𝜂 > 0, we call (𝑢𝜁𝜂, 𝜒𝜁𝜂) ∈
𝐿2(0, 𝑇 ; 𝑉 )×𝐿2(0, 𝑇 ;𝑄) a weak solution of the doubly regularized unsaturated poroelasticity model if it satisfies:

(W1)𝜁𝜂 𝑝pore(𝜒𝜁𝜂) ∈ 𝐿2(𝑄𝑇 ), 𝑠w(𝜒𝜁𝜂) ∈ 𝐿∞(𝑄𝑇 ).
(W2)𝜁𝜂 𝑏̂𝜂(𝜒𝜁𝜂) ∈ 𝐿∞(0, 𝑇 ;𝐿1(Ω)) and 𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂) ∈ 𝐿2(0, 𝑇 ;𝑄⋆) such that∫︁ 𝑇

0

⟨
𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂), 𝑞

⟩
d𝑡+

∫︁ 𝑇

0

⟨
𝑏̂𝜂(𝜒𝜁𝜂)− 𝑏̂𝜂(𝜒0), 𝜕𝑡𝑞

⟩
d𝑡 = 0,

for all 𝑞 ∈ 𝐿2(0, 𝑇 ;𝑄) ∩𝑊 1,1(0, 𝑇 ;𝐿∞(Ω)) with 𝑞(𝑇 ) = 0.
(W3)𝜁𝜂 𝜕𝑡𝑢𝜁𝜂 ∈ 𝐿2(0, 𝑇 ; 𝑉 ) such that∫︁ 𝑇

0

𝑎(𝜕𝑡𝑢𝜁𝜂,𝑣) d𝑡+
∫︁ 𝑇

0

𝑎(𝑢𝜁𝜂 − 𝑢0, 𝜕𝑡𝑣) d𝑡 = 0,

for all 𝑣 ∈ 𝐻1(0, 𝑇 ; 𝑉 ) with 𝑣(𝑇 ) = 0, where 𝑢0 satisfies (3.1).
(W4)𝜁𝜂 (𝑢𝜁𝜂, 𝜒𝜁𝜂) satisfies for all (𝑣, 𝑞) ∈ 𝐿2(0, 𝑇 ; 𝑉 )× 𝐿2(0, 𝑇 ;𝑄)∫︁ 𝑇

0

[︁
𝜁𝑎(𝜕𝑡𝑢𝜁𝜂,𝑣) + 𝑎(𝑢𝜁𝜂,𝑣)− 𝛼⟨𝑝pore(𝜒𝜁𝜂),∇ · 𝑣⟩

]︁
d𝑡 =

∫︁ 𝑇

0

⟨𝑓 ext,𝑣⟩d𝑡, (4.4a)

∫︁ 𝑇

0

[︂⟨
𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂) + 𝛼𝑠w(𝜒𝜁𝜂)𝜕𝑡∇ · 𝑢𝜁𝜂, 𝑞

⟩
+ ⟨𝜅abs∇𝜒𝜁𝜂,∇𝑞⟩

]︂
d𝑡 =

∫︁ 𝑇

0

⟨ℎext, 𝑞⟩d𝑡. (4.4b)

Furthermore, we call (𝑢𝜁𝜂, 𝜒𝜁𝜂) a weak solution for the doubly regularized unsaturated poroelasticity model
with increased regularity if it additionally satisfies (W1)𝜁𝜂–(W4)𝜁𝜂 and:

(W5)𝜁𝜂 𝑢𝜁𝜂 ∈ 𝐻2(0, 𝑇 ; 𝑉 ) and 𝜕𝑡𝑝pore(𝜒𝜁𝜂) ∈ 𝐿2(𝑄𝑇 ).
(W6)𝜁𝜂 Given that 𝑓 ext ∈ 𝐻1(0, 𝑇 ; 𝑉 ⋆), for all 𝑣 ∈ 𝐿2(0, 𝑇 ; 𝑉 ) it holds that∫︁ 𝑇

0

[︁
𝜁𝑎(𝜕𝑡𝑡𝑢𝜁𝜂,𝑣) + 𝑎(𝜕𝑡𝑢𝜁𝜂,𝑣)− 𝛼⟨𝜕𝑡𝑝pore(𝜒𝜁𝜂),∇ · 𝑣⟩

]︁
d𝑡 =

∫︁ 𝑇

0

⟨𝜕𝑡𝑓 ext,𝑣⟩d𝑡. (4.5)

We will later separately consider 𝜁 → 0 and 𝜂 → 0. Therefore, we give the definition of a weak solution for
the simply regularized unsaturated poroelasticity model, obtained for 𝜂 > 0 and 𝜁 = 0.

Definition 4.2 (Weak solution of the simply regularized model). For 𝜂 > 0, we call (𝑢𝜂, 𝜒𝜂) a weak solution
of the simply regularized unsaturated poroelasticity model if it satisfies (W1)𝜁𝜂–(W4)𝜁𝜂 for 𝜁 = 0.

To distinguish between the equations satisfied by the weak solution of a doubly regularized model and the
one of the simply regularized one, where 𝜁 = 0, we use the notation (W1)𝜂–(W4)𝜂.

Lemma 4.3 (Existence of a weak solution to the doubly regularized model). Let 𝜁 > 0 and 𝜂 > 0 be given.
Under the assumptions (A0)–(A8) and (ND1) there exists a weak solution to the doubly regularized unsaturated
poroelasticity model, in the sense of Definition 4.1.

Proof. The assertion follows from steps 2 and 3. �
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Remark 4.4. The proof of Lemma 4.3 presented in Section 6 does in fact allow for replacing the regularizing
term 𝜁𝑎(𝜕𝑡𝑢,𝑣) in (4.4a) with a reduced regularization merely applied to the temporal derivative of the volu-
metric deformation, i.e., 𝜁⟨𝜕𝑡∇ · 𝑢,∇ · 𝑣⟩. The statement of Lemma 4.3 remains true with an adapted version
of (W3)𝜁𝜂 addressing only the initial condition for the volumetric deformation. Such regularized model is of
wider interest in the literature [16,22,28,35,42], in particular in the context of biomedical applications [5].

Lemma 4.5 (Existence of a weak solution with increased regularity for the doubly regularized model). Let
𝜁 > 0 and 𝜂 > 0 be given. Under the assumptions (A0)–(A8) and the non-degeneracy conditions (ND1)–(ND2),
the doubly regularized unsaturated poroelasticity model has a weak solution with increased regularity, in the sense
of Definition 4.1.

Proof. The assertion follows from steps 2 to 4. �

Lemma 4.6 (Existence of a weak solution for the simply regularized model). Let 𝜂 > 0 be given. Under the
assumptions (A0)–(A8) and the non-degeneracy conditions (ND1)–(ND3), the simply regularized unsaturated
poroelasticity model has a weak solution with increased regularity, in the sense of Definition 4.2.

Proof. The assertion follows from step 5. �

5. Step 2: Implicit Euler non-linear FEM-TPFA discretization

The next two sections, identified with steps 2 and 3, are providing the proof of Lemma 4.3. To this aim,
we employ a discretization in space and time. We apply the implicit Euler time stepping method, combined
with a conforming Galerkin finite element method for the mechanics equation (4.4a) and a cell-centered finite
volume method utilizing a two point flux approximation (TPFA) for the flow equation (4.4b). In this section,
we establish the existence of a fully discrete solution. We start with introducing the notations used in the
discretization.

5.1. Finite volume and finite element notation

We use standard notations in the finite volume literature, cf., e.g., [19,34]. In particular, we introduce notation
for elements, faces, their measures, transmissibilities etc. We assume that the domain Ω is polygonal such that
it can be discretized by an admissible mesh, as introduced in [20].

Definition 5.1 (Admissible mesh 𝒯 ). Let 𝒯 be a regular mesh of Ω with mesh size ℎ, consisting of simplices
in 2D or 3D, or convex quadrilaterals in 2D and convex hexahedrals in 3D. Furthermore, we introduce the
following terminology:

– 𝐾 ∈ 𝒯 denotes a single element.
– 𝒩 (𝐾) :=

{︀
𝐿 ∈ 𝒯 |𝐿 ̸= 𝐾, 𝐿̄ ∩ 𝐾̄ ̸= ∅

}︀
denotes the set of neighboring elements of 𝐾 ∈ 𝒯 .

– ℰ denotes the set of all faces, i.e., boundaries of all elements; let ℰ𝐾 denote the faces of a single element
𝐾 ∈ 𝒯 ; let ℰext denote the faces lying on the boundary 𝜕Ω.

– 𝐾|𝐿 ∈ ℰ denotes the face between two neighboring elements 𝐾,𝐿 ∈ 𝒯 .
– {𝑥𝐾}𝐾∈𝒯 is such that for all 𝐾 ∈ 𝒯 , 𝐿 ∈ 𝒩 (𝐾) the connecting line between 𝑥𝐾 and 𝑥𝐿 is perpendicular to
𝐾|𝐿.

– 𝑑𝐾,𝜎 denotes the distance between center of 𝐾 and 𝜎 ∈ ℰ𝐾 ;

𝑑𝜎 =
{︂
𝑑𝐾,𝜎 + 𝑑𝐿,𝜎, 𝐾 ∈ 𝒯 , 𝐿 ∈ 𝒩 (𝐾), 𝜎 = 𝐾|𝐿,
𝑑𝐾,𝜎, 𝜎 ∈ ℰext ∩ ℰ𝐾 .

– 𝜏𝜎 = |𝜎|/𝑑𝜎 denotes the transmissibility through 𝜎 ∈ ℰ .
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Figure 1. Admissible mesh 𝒯 (consisting of elements) in two dimensions, together with the
corresponding dual grid 𝒯 ⋆ (consisting of diamonds).

The additional regularity property is assumed. There exists a constant 𝐶 > 0 such that∑︁
𝐿∈𝒩 (𝐾)
𝜎=𝐾|𝐿

|𝜎|𝑑𝜎 ≤ 𝐶|𝐾| for all 𝐾 ∈ 𝒯 .

In addition, we introduce a dual grid 𝒯 ⋆ with diamonds as elements. It will be used for the approximation of
heterogeneous permeability fields. Additionally, it will be utilized within the proof, to define suitable projection
operators.

Definition 5.2 (Dual grid to 𝒯 ). Let 𝒯 be an admissible mesh, cf., Definition 5.1. For each face 𝐾|𝐿 ∈ ℰ ,
𝐾 ∈ 𝒯 , 𝐿 ∈ 𝒩 (𝐾), define a prism 𝑃𝐾|𝐿 ⊂ Ω with 𝑥𝐾 , 𝑥𝐿 and the vertices of 𝐾|𝐿 as vertices. For all
𝜎 ∈ ℰext ∩ℰ𝐾 , 𝐾 ∈ 𝒯 define 𝑃𝜎 ⊂ Ω to be the prism with 𝑥𝐾 and the vertices of 𝜎 as vertices. By construction,
𝒯 ⋆ := {𝑃𝜎}𝜎∈ℰ defines a partition of Ω.

Figure 1 displays a two-dimensional admissible mesh and its auxiliary dual grid.
The final discrete scheme is written in variational form. Given an admissible mesh 𝒯 , we introduce the discrete

function spaces and implicitly their bases

𝑉ℎ = span {𝑣ℎ,𝑖}𝑖∈{1,...,𝑑V},

𝑄ℎ = span {𝑞ℎ,𝑗}𝑗∈{1,...,𝑑Q},

providing spaces for the discrete displacement and pressure, respectively. For the analysis below, we assume
that the discrete function spaces satisfy the following conditions:
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(D1) 𝑄ℎ is the space of all piecewise constant functions (P0) on 𝒯 and the basis {𝑞ℎ,𝑗}𝑗 is equal to the indicator
functions of all single elements. Note 𝑄ℎ ̸⊂ 𝑄.

(D2) 𝑉ℎ ⊂ 𝑉 such that 𝑉ℎ ×𝑄ℎ is inf-sup stable regarding the bilinear form

𝑉ℎ ×𝑄ℎ → R, (𝑣ℎ, 𝑞ℎ) ↦→ ⟨𝑞ℎ,∇ · 𝑣ℎ⟩.

In more detail, there exists a constant 𝛾is = 𝐶−1
Ω,is > 0 (independent of ℎ), such that

inf
0̸=𝑞ℎ∈𝑄ℎ

sup
𝑣ℎ∈𝑉ℎ

⟨𝑞ℎ,∇ · 𝑣ℎ⟩
‖𝑞ℎ‖ ‖𝑣ℎ‖𝑉

≥ 𝛾is. (5.1)

In the analysis, (D1) will allow for intuitively handling non-linearities in the pressure variable. Assumption (D2)
will allow for using standard inf-sup arguments. In two dimensions, e.g., piecewise quadratic elements can be
used for 𝑉ℎ [6]; alternatively, both in two and three dimensions, piecewise linear elements enhanced by face
bubbles result in a fairly cheap choice, in particular when utilizing localization techniques [32].

In order to define the discrete scheme, we use a discrete 𝐻1
0 (Ω) inner product and the corresponding norm,

as introduced in [19], incorporating averaging of the mobility field.

Definition 5.3 (Discrete 𝐻1
0 (Ω) inner product and norm on 𝑄ℎ). We define the inner product

⟨∇ℎ𝜒ℎ,∇ℎ𝑞ℎ⟩𝜔 :=
∑︁
𝐾∈𝒯

∑︁
𝐿∈𝒩 (𝐾)

𝜏𝐾|𝐿 {𝜔}𝐾|𝐿

(︁
𝜒ℎ|𝐾 − 𝜒ℎ|𝐿

)︁(︁
𝑞ℎ|𝐾 − 𝑞ℎ|𝐿

)︁
+

∑︁
𝜎∈ℰext∩ℰ𝐾

𝜏𝐾,𝜎 {𝜔}𝜎 𝜒ℎ|𝐾 𝑞ℎ|𝐾

for any 𝜒ℎ, 𝑞ℎ ∈ 𝑄ℎ, where the the weight 𝜔 evaluated at faces is approximated as weighted average incorporating
the neighboring elements {𝜔}𝜎 := 1

|𝑃𝜎|
∫︀

𝑃𝜎
𝜔(𝑥) d𝑥, 𝜎 ∈ ℰ , utilizing the dual mesh 𝒯 ⋆. In addition, we define the

induced norm ‖ · ‖1,𝒯 ,𝜔 := ⟨∇ℎ·,∇ℎ·⟩1/2
𝜔 , as well as the special case for 𝜔1 := 𝜔 ≡ 1, ‖ · ‖1,𝒯 := ⟨∇ℎ·,∇ℎ·⟩1/2

𝜔1
.

Remark 5.4 (Two-point flux approximation). Let 𝐾 ∈ 𝒯 be a single element. When choosing 𝑞ℎ = 1𝐾 as
the indicator function of the element 𝐾, defined as 1𝐾(𝑥) = 1 if 𝑥 ∈ 𝐾 and 1𝐾(𝑥) = 0 otherwise, simple
calculations yield

⟨∇ℎ𝜒ℎ,∇ℎ1𝐾⟩𝜔 =
∑︁

𝐿∈𝒩 (𝐾)

𝑡𝐾|𝐿

(︁
𝜒ℎ|𝐾 − 𝜒ℎ|𝐿

)︁
+

∑︁
𝜎∈ℰext∩ℰ𝐾

𝑡𝐾,𝜎 𝜒ℎ|𝐾 .

Hence, a standard two point flux approximation with averaged transmissibilities 𝑡𝐾|𝐿 = 2|𝜎| {𝜔}𝜎

𝑑𝜎
for neighboring

cells 𝐾, 𝐿 with common face 𝜎 = 𝐾|𝐿; and 𝑡𝐾,𝜎 = |𝜎| {𝜔}𝐾,𝜎

𝑑𝐾,𝜎
for boundary faces 𝜎.

A discrete Poincaré inequality is proved in [19] for ‖·‖1,𝒯 , introducing a discrete Poincaré constant 𝐶Ω,DP > 0
such that

‖𝑞ℎ‖ ≤ 𝐶Ω,DP‖𝑞ℎ‖1,𝒯 for all 𝑞ℎ ∈ 𝑄ℎ,

cf., Lemma B.1. A similar result also holds for ‖ · ‖1,𝒯 ,𝜔.

5.2. Approximation of source terms and initial conditions

Let 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑁 = 𝑇 define a partition of the time interval (0, 𝑇 ) with constant time step size
𝜏 = 𝑡𝑛 − 𝑡𝑛−1, 𝑛 ∈ N. We interpolate the source terms at discrete time steps. Let

𝑓𝑛
ext :=

1
𝜏

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑓 ext(𝑡) d𝑡,
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ℎ𝑛
ext :=

1
𝜏

∫︁ 𝑡𝑛

𝑡𝑛−1

ℎext(𝑡) d𝑡.

Discrete initial conditions are chosen to imitate the compatibility assumption (3.1). Let 𝜒0
ℎ ∈ 𝑄ℎ be defined by

the piecewise constant projection of 𝜒0, i.e., on 𝐾 ∈ 𝒯 , we define

𝜒0
ℎ|𝐾

:=
1
|𝐾|

∫︁
𝐾

𝜒0 d𝑥.

As 𝜒0 ∈ 𝐿2(Ω), cf., (A8)𝜂, it follows by classical approximation theory for ℎ→ 0

𝜒0
ℎ → 𝜒0 strongly in 𝐿2(Ω), (5.2)

and it holds that ‖𝜒0
ℎ‖1,𝒯 ,𝜅abs ≤ 𝐶‖𝜒0‖1 for some constant 𝐶 > 0, cf., e.g., [20]. Furthermore, since 𝑝pore ∈ 𝐶(R),

cf., (A3), and 𝑝pore(𝜒0) ∈ 𝐿2(Ω), cf., (A8)𝜂, it follows for ℎ→ 0

𝑝pore

(︀
𝜒0

ℎ

)︀
→ 𝑝pore(𝜒0) strongly in 𝐿2(Ω),

similarly for {𝐵̂𝜂

(︀
𝜒0

ℎ

)︀
}ℎ and

{︁
𝐵̄𝜂

(︁
𝑝pore(𝜒

0
ℎ)

𝑠w(𝜒0
ℎ)

)︁}︁
ℎ
. Furthermore, we define the initial approximate displacement

𝑢0
ℎ ∈ 𝑉ℎ to satisfy the compatibility condition

𝑎(𝑢0
ℎ,𝑣ℎ)− 𝛼

⟨︀
𝑝pore

(︀
𝜒0

ℎ

)︀
,∇ · 𝑣ℎ

⟩︀
= ⟨𝑓 ext(0),𝑣ℎ⟩, for all 𝑣ℎ ∈ 𝑉ℎ. (5.3)

Using standard finite element techniques and the convergence of 𝜒0
ℎ it follows as ℎ→ 0

𝑢0
ℎ → 𝑢0 strongly in 𝑉 , (5.4)

with 𝑢0 defined in (W3). All in all, due to the convergence, (A8)𝜂 also applies on discrete level.

(A8)𝜂,ℎ For bounded 𝜂 > 0, there exists a constant 𝐶0 > 0 (wlog. the same as in (A8)) such that

‖𝑢0
ℎ‖2𝑉 +

⃦⃦
𝜒0

ℎ

⃦⃦2

1,𝒯 ,𝜅abs
+
⃦⃦⃦
𝐵̂𝜂

(︀
𝜒0

ℎ

)︀⃦⃦⃦
𝐿1(Ω)

+
⃦⃦⃦⃦
𝐵̄𝜂

(︂
𝑝pore(𝜒0

ℎ)
𝑠w(𝜒0

ℎ)

)︂⃦⃦⃦⃦
𝐿1(Ω)

≤ 𝐶0.

5.3. Approximation of the evolutionary problem

The discretization of (4.4) is defined by the Galerkin method combined with the standard implicit Euler
time discretization: for 𝑛 ≥ 1, given (𝑢𝑛−1

ℎ , 𝜒𝑛−1
ℎ ) ∈ 𝑉ℎ × 𝑄ℎ, find (𝑢𝑛

ℎ, 𝜒
𝑛
ℎ) ∈ 𝑉ℎ × 𝑄ℎ satisfying for all

(𝑣ℎ, 𝑞ℎ) ∈ 𝑉ℎ ×𝑄ℎ

𝜁𝜏−1 𝑎
(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ ,𝑣ℎ

)︀
+ 𝑎(𝑢𝑛

ℎ,𝑣ℎ)− 𝛼⟨𝑝pore(𝜒𝑛
ℎ),∇ · 𝑣ℎ⟩ = ⟨𝑓𝑛

ext,𝑣ℎ⟩, (5.5a)⟨
𝑏̂𝜂(𝜒𝑛

ℎ)− 𝑏̂𝜂
(︀
𝜒𝑛−1

ℎ

)︀
, 𝑞ℎ

⟩
+ 𝛼

⟨︀
𝑠w(𝜒𝑛

ℎ)∇ ·
(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
, 𝑞ℎ
⟩︀

+ 𝜏⟨∇ℎ𝜒
𝑛
ℎ,∇ℎ𝑞ℎ⟩𝜅abs

= 𝜏⟨ℎ𝑛
ext, 𝑞ℎ⟩. (5.5b)

Remark 5.5 (Finite volume formulation of the discrete flow problem). Based on Remark 5.4, the discrete
variational formulation of the fluid flow equation (5.5b) can be equivalently formulated in a standard finite
volume fashion. More precisely, if 𝜒𝐾 := 𝜒ℎ|𝐾 denotes the value of 𝜒ℎ in the cell 𝐾 ∈ 𝒯 , then (5.5b) becomes

|𝐾|
(︁
𝑏̂𝜂(𝜒𝑛

𝐾)− 𝑏̂𝜂
(︀
𝜒𝑛−1

𝐾

)︀)︁
+ 𝛼𝑠w(𝜒𝑛

𝐾)
∫︁

𝐾

∇ ·
(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
d𝑥

+ 𝜏
∑︁

𝐿∈𝒩 (𝐾)

𝑡𝐾|𝐿(𝜒𝐾 − 𝜒𝐿) + 𝜏
∑︁

𝜎∈ℰext∩ℰ𝐾

𝑡𝐾,𝜎 𝜒𝐾 = 𝜏

∫︁
𝐾

ℎ𝑛
ext d𝑥

for all 𝐾 ∈ 𝒯 . and with the transmissibilities 𝑡𝐾|𝐿 and 𝑡𝐾,𝜎 as introduced in Remark 5.4. For the remaining
discussion the variational formulation (5.5b) is more convenient and is therefore used.
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Lemma 5.6 (Existence of a discrete solution). Let 𝑛 ≥ 1. (A0)–(A8), (ND1), and (D1)–(D2) hold true. Then
there exists a discrete solution (𝑢𝑛

ℎ, 𝜒
𝑛
ℎ) ∈ 𝑉ℎ ×𝑄ℎ satisfying (5.5), and⃦⃦⃦⃦

𝐵̄𝜂

(︂
𝑝pore(𝜒𝑛

ℎ)
𝑠w(𝜒𝑛

ℎ)

)︂⃦⃦⃦⃦
𝐿1(Ω)

+ ‖𝑢𝑛
ℎ‖

2
𝑉 <∞ for all 𝑛 ≥ 1. (5.6)

Proof. The proof is by induction. We present only the general step, since the proof for 𝑛 = 1 is similar. We
employ a corollary of Brouwer’s fixed point theorem, cf., Lemma B.4, to show the existence of a solution of a
non-linear algebraic system, which is equivalent to (5.5).

Introduction of a pressure-reduced algebraic problem. We introduce an isomorphism between the dis-
crete function space corresponding to the fluid pressure 𝜒 and a suitable coefficient vector space

𝜒ℎ : R𝑑Q → 𝑄ℎ, 𝛽 ↦→
𝑑𝑄∑︁
𝑗=1

(︁
𝑝pore
𝑠w

)︁−1

(𝛽𝑗) 𝑞ℎ,𝑗 .

Due to (A4), 𝜒ℎ is well-defined. Similarly, let

𝑢ℎ : R𝑑V → 𝑉ℎ, 𝛼 ↦→
𝑑𝑉∑︁
𝑖=1

𝛼𝑖𝑣ℎ,𝑖.

For given 𝛽 ∈ R𝑑Q , define 𝛼 = 𝛼(𝛽) ∈ R𝑑V to be the unique solution to

𝜁𝜏−1𝑎
(︀
𝑢ℎ(𝛼)− 𝑢𝑛−1

ℎ ,𝑣ℎ

)︀
+ 𝑎(𝑢ℎ(𝛼),𝑣ℎ) = ⟨𝑓𝑛,𝑣ℎ⟩+ 𝛼⟨𝑝pore(𝜒ℎ(𝛽)),∇ · 𝑣ℎ⟩, for all 𝑣ℎ ∈ 𝑉ℎ. (5.7)

Finally, we define 𝐹 : R𝑑Q → R𝑑Q component-wise by

𝐹𝑗(𝛽) =
⟨
𝑏̂𝜂(𝜒ℎ(𝛽))− 𝑏̂𝜂

(︀
𝜒𝑛−1

ℎ

)︀
, 𝑞ℎ,𝑗

⟩
+ 𝛼

⟨︀
𝑠w(𝜒ℎ(𝛽))∇ ·

(︀
𝑢ℎ(𝛼(𝛽))− 𝑢𝑛−1

ℎ

)︀
, 𝑞ℎ,𝑗

⟩︀
+ 𝜏⟨∇ℎ𝜒ℎ(𝛽),∇ℎ𝑞ℎ,𝑗⟩𝜅abs

− 𝜏⟨ℎ𝑛
ext, 𝑞ℎ,𝑗⟩, 𝑗 ∈ {1, . . . , 𝑑Q}.

We note, the existence of a discrete solution of equation (5.5) is equivalent to the existence of 𝛽 ∈ R𝑑Q , satisfying
𝐹 (𝛽) = 0. To prove the existence of a zero of 𝐹 , we employ Lemma B.4; we consider the expression

⟨𝐹 (𝛽),𝛽⟩ =
⟨
𝑏̂𝜂(𝜒ℎ(𝛽))− 𝑏̂𝜂

(︀
𝜒𝑛−1

ℎ

)︀
,
𝑝pore(𝜒ℎ(𝛽))
𝑠w(𝜒ℎ(𝛽))

⟩
+ 𝛼

⟨︀
∇ · (𝑢ℎ(𝛼)− 𝑢𝑛−1

ℎ ), 𝑝pore(𝜒ℎ(𝛽))
⟩︀

(5.8)

+ 𝜏
⟨
∇ℎ𝜒(𝛽),∇ℎ

𝑝pore(𝜒ℎ(𝛽))
𝑠w(𝜒ℎ(𝛽))

⟩
𝜅abs

− 𝜏
⟨
ℎ𝑛

ext,
𝑝pore(𝜒ℎ(𝛽))
𝑠w(𝜒ℎ(𝛽))

⟩
=: 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 (5.9)

where we dropped the explicit dependence of 𝛼 on 𝛽 and used the identity

𝑑Q∑︁
𝑗=1

𝛽𝑗𝑞ℎ,𝑗 =
𝑝pore(𝜒ℎ(𝛽))
𝑠w(𝜒ℎ(𝛽))

·

We discuss the terms 𝑇1, 𝑇2, 𝑇3, 𝑇4 separately.

Discussion of 𝑇1. Let 𝑏̄𝜂 := 𝑏̂𝜂 ∘
(︁

𝑝pore
𝑠w

)︁−1

, the energy 𝐵̄𝜂 as in (4.3), and 𝛽𝑛−1 ∈ R𝑑Q such that 𝜒𝑛−1
ℎ =

𝜒ℎ(𝛽𝑛−1). Using Lemma B.12, we obtain

𝑇1 ≥
⃦⃦⃦⃦
𝐵̄𝜂

(︂
𝑝pore(𝜒ℎ(𝛽))
𝑠w(𝜒ℎ(𝛽))

)︂⃦⃦⃦⃦
𝐿1(Ω)

−
⃦⃦⃦⃦
𝐵̄𝜂

(︂
𝑝pore(𝜒ℎ(𝛽𝑛−1))
𝑠w(𝜒ℎ(𝛽𝑛−1))

)︂⃦⃦⃦⃦
𝐿1(Ω)

.
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Discussion of 𝑇2. The coupling term 𝑇2 can be reformulated and estimated by employing (5.7) tested with
𝑣ℎ = 𝑢ℎ(𝛼) − 𝑢𝑛−1

ℎ . Under the use of the binomial identity (App. B.2), the Cauchy–Schwarz inequality and
Young’s inequality, the coupling term 𝑇2 can be bounded as

𝑇2 ≥ 𝜁𝜏−1
⃦⃦
𝑢ℎ(𝛼)− 𝑢𝑛−1

ℎ

⃦⃦2

𝑉
+ 1

2‖𝑢ℎ(𝛼)‖2𝑉 + 1
4

⃦⃦
𝑢ℎ(𝛼)− 𝑢𝑛−1

ℎ

⃦⃦2

𝑉
− 1

2

⃦⃦
𝑢𝑛−1

ℎ

⃦⃦2

𝑉
− ‖𝑓𝑛‖2𝑉 ⋆ .

Discussion of 𝑇3. By the mean value theorem and (A4), the diffusion term 𝑇3 can be estimated from below

𝑇3 ≥ 𝑐𝑝pore/𝑠w𝜏‖𝜒ℎ(𝛽)‖21,𝒯 ,𝜅abs
.

Here, the specific definition of the two-point flux approximation is crucial.

Discussion of 𝑇4. Employing the definition of ℎext = (ℎ,𝑤N), the non-degeneracy condition (ND1), a discrete
trace inequality (introducing 𝐶tr), cf., Lemma B.2, together with a discrete Poincaré inequality (introducing
𝐶Ω,DP), cf., Lemma B.1, we obtain⟨

ℎ𝑛
ext,

𝑝pore(𝜒ℎ(𝛽))
𝑠w(𝜒ℎ(𝛽))

⟩
≤
⃦⃦⃦

𝑝pore(𝜒ℎ(𝛽))
𝑠w(𝜒ℎ(𝛽))𝜒ℎ(𝛽)

⃦⃦⃦
∞

(︁
‖ℎ𝑛‖𝐿2(Ω) ‖𝜒ℎ(𝛽)‖𝐿2(Ω) + ‖𝑤𝑛

N‖𝐿2(Γf
N) ‖𝜒ℎ(𝛽)‖𝐿2(Γf

N)

)︁
≤ 𝐶(𝐶ND,1, 𝐶tr, 𝐶Ω,DP)

(︁
‖ℎ𝑛‖𝐿2(Ω) + ‖𝑤𝑛

N‖𝐿2(Γf
N)

)︁
‖𝜒ℎ(𝛽)‖1,𝒯

for a constant 𝐶(𝐶ND,1, 𝐶tr, 𝐶Ω,DP) > 0. Hence, by (A6) and Young’s inequality, for the term 𝑇4 it holds that

𝑇4 ≤
𝐶(𝐶ND,1, 𝐶tr, 𝐶Ω,DP)2

2𝑐𝑝pore/𝑠w𝜅m,abs
𝜏
(︁
‖ℎ𝑛‖𝐿2(Ω) + ‖𝑤𝑛

N‖𝐿2(Γf
N)

)︁2

+
𝑐𝑝pore/𝑠w

2
𝜏‖𝜒ℎ(𝛽)‖21,𝒯 ,𝜅abs

.

Combination of all results. By inserting the estimates for 𝑇1, 𝑇2, 𝑇3, and 𝑇4, (5.9) becomes

⟨𝐹 (𝛽),𝛽⟩ ≥

(︃⃦⃦⃦⃦
𝐵̄𝜂

(︂
𝑝pore(𝜒ℎ(𝛽))
𝑠w(𝜒ℎ(𝛽))

)︂⃦⃦⃦⃦
𝐿1(Ω)

+
𝑐𝑝pore/𝑠w

2 𝜏‖𝜒ℎ(𝛽)‖21,𝒯 ,𝜅abs

+
1
4
‖𝑢ℎ(𝛼)‖2𝑉 +

(︂
𝜁𝜏−1 +

1
4

)︂⃦⃦
𝑢ℎ(𝛼)− 𝑢𝑛−1

ℎ

⃦⃦2

𝑉

)︃

−

(︃⃦⃦⃦⃦
⃦𝐵̄𝜂

(︃
𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀
𝑠w
(︀
𝜒𝑛−1

ℎ

)︀ )︃⃦⃦⃦⃦⃦
𝐿1(Ω)

+
1
2

⃦⃦
𝑢𝑛−1

ℎ

⃦⃦2

𝑉

+
5
4
‖𝑓𝑛‖2𝑉 ⋆ +

𝐶(𝐶ND,1, 𝐶tr, 𝐶Ω,DP)2

2𝑐𝑝pore/𝑠w𝜅m,abs
𝜏
(︁
‖ℎ𝑛‖𝐿2(Ω) + ‖𝑤𝑛

N‖𝐿2(Γf
N)

)︁2
)︃
. (5.10)

Finally, since ‖ · ‖1,𝒯 ,𝜅abs defines a norm on 𝑄ℎ and (5.6) holds by induction for 𝑛− 1 if 𝑛 ≥ 2 or from (A8)𝜂 for
𝑛 = 1, by Lemma B.4 (a corollary of Brouwer’s fixed point theorem), there exists a 𝛽 ∈ R𝑑Q such that 𝐹 (𝛽) = 0.
This implies the existence of a discrete solution. The bound (5.6) for 𝑛 follows immediately from (5.10) due to
(A7). �

6. Step 3: Limit ℎ, 𝜏 → 0

In the following, we show that the fully-discrete FEM-TPFA discretization, introduced in the previous section,
converges (up to subsequence) to a weak solution of the doubly regularized unsaturated poroelasticity model,
i.e., we prove Lemma 4.3. For this, we employ standard compactness arguments. Throughout the entire section,
we assume (A0)–(A8) and (ND1) hold true.
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6.1. Stability estimates for the fully-discrete approximation

Lemma 6.1 (Stability estimate for the primary variables). Let 𝜏 < 1
8 . There exists a constant 𝐶(1) > 0

(independent of ℎ, 𝜏, 𝜁, 𝜂), such that

𝜁

𝑁∑︁
𝑛=1

𝜏−1
⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

𝑉
+ sup

𝑛
‖𝑢𝑛

ℎ‖2𝑉 +
𝑁∑︁

𝑛=1

‖𝑢𝑛
ℎ − 𝑢𝑛−1

ℎ ‖2𝑉 +
𝑁∑︁

𝑛=1

𝜏‖𝜒𝑛
ℎ‖21,𝒯

≤ 𝐶(1)

(︂
𝐶0, 𝐶ND,1, ‖ℎext‖𝐿2(0,𝑇 ;𝑄⋆), ‖𝑓 ext‖𝐻1(0,𝑇 ;𝑉 ⋆)

)︂
,

where 𝐶0 and 𝐶ND,1 are defined in (A8⋆)ℎ and (ND1), respectively.

Proof. The proof follows essentially the same steps as the proof of Lemma 5.6. Therefore, we are brief on
similar steps. We consider the reduced displacement-pressure formulation (5.5). We choose 𝑣ℎ = 𝑢𝑛

ℎ−𝑢𝑛−1
ℎ and

𝑞ℎ = 𝑝pore(𝜒
𝑛
ℎ)

𝑠w(𝜒𝑛
ℎ) as test functions and sum the two equations; note that the second is well-defined as 𝑠w(𝜒) > 0

for all 𝜒 ∈ R, by (A2). We obtain

𝜁𝜏−1
⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

𝑉
+ 𝑎
(︀
𝑢𝑛

ℎ,𝑢
𝑛
ℎ − 𝑢𝑛−1

ℎ

)︀
+
⟨
𝑏̂𝜂(𝜒𝑛

ℎ)− 𝑏̂𝜂
(︀
𝜒𝑛−1

ℎ

)︀
,
𝑝pore(𝜒𝑛

ℎ)
𝑠w(𝜒𝑛

ℎ)

⟩
+ 𝜏

⟨
∇ℎ𝜒

𝑛
ℎ,∇ℎ

𝑝pore(𝜒𝑛
ℎ)

𝑠w(𝜒𝑛
ℎ)

⟩
𝜅abs

=
⟨︀
𝑓𝑛

ext,𝑢
𝑛
ℎ − 𝑢𝑛−1

ℎ

⟩︀
+ 𝜏

⟨
ℎ𝑛

ext,
𝑝pore(𝜒𝑛

ℎ)
𝑠w(𝜒𝑛

ℎ)

⟩
·

On the left hand side, we employ the binomial identity (App. B.2), Lemma B.12 for the energy term 𝐵̄𝜂 defined
in (4.3), and the uniform increase of 𝑝pore

𝑠w
, cf., (A4). It holds that

𝜁𝜏−1
⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

𝑉
+

1
2
(︀
‖𝑢𝑛

ℎ‖2𝑉 − ‖𝑢𝑛−1
ℎ ‖2𝑉 + ‖𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ ‖2𝑉

)︀
+
⃦⃦⃦⃦
𝐵̄𝜂

(︂
𝑝pore(𝜒𝑛

ℎ)
𝑠w(𝜒𝑛

ℎ)

)︂⃦⃦⃦⃦
𝐿1(Ω)

−

⃦⃦⃦⃦
⃦𝐵̄𝜂

(︃
𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀
𝑠w
(︀
𝜒𝑛−1

ℎ

)︀ )︃⃦⃦⃦⃦⃦
𝐿1(Ω)

+ 𝑐𝑝pore/𝑠w𝜏‖𝜒
𝑛
ℎ‖21,𝒯 ,𝜅abs

≤
⟨︀
𝑓𝑛

ext,𝑢
𝑛
ℎ − 𝑢𝑛−1

ℎ

⟩︀
+
⟨
ℎ𝑛

ext,
𝑝pore(𝜒𝑛

ℎ)
𝑠w(𝜒𝑛

ℎ)

⟩
· (6.1)

Later on, we sum over the time steps 1 to 𝑁 and utilize a telescope sum. Let us first separately discuss the sums
of the two terms on the right hand side. For the first of them, we employ summation by parts, cf., Lemma B.6,
as well as the Cauchy–Schwarz inequality and Young’s inequality. We obtain

𝑁∑︁
𝑛=1

⟨︀
𝑓𝑛

ext,𝑢
𝑛
ℎ − 𝑢𝑛−1

ℎ

⟩︀
=
⟨︀
𝑓𝑁

ext,𝑢
𝑁
ℎ

⟩︀
−
⟨︀
𝑓1

ext,𝑢
0
ℎ

⟩︀
−

𝑁−1∑︁
𝑛=1

⟨︀
𝑓𝑛+1

ext − 𝑓𝑛
ext,𝑢

𝑛
ℎ

⟩︀
≤ ‖𝑓𝑁

ext‖2𝑉 ⋆ +
1
4
‖𝑢𝑁

ℎ ‖2𝑉 +
1
2
‖𝑓1

ext‖2𝑉 ⋆ +
1
2
‖𝑢0

ℎ‖2𝑉 +
𝑁∑︁

𝑛=1

𝜏−1
⃦⃦
𝑓𝑛

ext − 𝑓𝑛−1
ext

⃦⃦2

𝑉 ⋆ +
𝑁∑︁

𝑛=1

𝜏‖𝑢𝑛
ℎ‖2𝑉 . (6.2)
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The second term is estimated as in the discussion of 𝑇4 within the proof of Lemma 5.6. We obtain

𝑁∑︁
𝑛=1

𝜏

⟨
ℎ𝑛

ext,
𝑝pore(𝜒𝑛

ℎ)
𝑠w(𝜒𝑛

ℎ)

⟩

≤ 𝐶(𝐶ND,1, 𝐶tr, 𝐶Ω,DP)2

2𝑐𝑝pore/𝑠w𝜅m,abs

𝑁∑︁
𝑛=1

𝜏
(︁
‖ℎ𝑛‖𝐿2(Ω) + ‖𝑤𝑛

N‖𝐿2(Γf
N)

)︁2

+
𝑐𝑝pore/𝑠w

2

𝑁∑︁
𝑛=1

𝜏‖𝜒𝑛
ℎ‖21,𝒯 ,𝜅abs

. (6.3)

Summing (6.1) over time steps 1 to 𝑁 , inserting (6.2) and (6.3), and rearranging terms, yields

𝜁

𝑁∑︁
𝑛=1

𝜏−1
⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

𝑉
+

1
4
‖𝑢𝑁

ℎ ‖2𝑉 +
1
4

𝑁∑︁
𝑛=1

‖𝑢𝑛
ℎ − 𝑢𝑛−1

ℎ ‖2𝑉

+
⃦⃦⃦⃦
𝐵̄𝜂

(︂
𝑝pore(𝜒𝑁

ℎ )
𝑠w(𝜒𝑁

ℎ )

)︂⃦⃦⃦⃦
𝐿1(Ω)

+
𝑐𝑝pore/𝑠w

2

𝑁∑︁
𝑛=1

𝜏‖𝜒𝑛
ℎ‖21,𝒯 ,𝜅abs

≤ ‖𝑢0
ℎ‖2𝑉 +

⃦⃦⃦⃦
𝐵̄𝜂

(︂
𝑝pore(𝜒0

ℎ)
𝑠w(𝜒0

ℎ)

)︂⃦⃦⃦⃦
𝐿1(Ω)

+ max
𝑛=0,...,𝑁

‖𝑓𝑛
ext‖2𝑉 ⋆ +

𝑁∑︁
𝑛=1

𝜏−1
⃦⃦
𝑓𝑛

ext − 𝑓𝑛−1
ext

⃦⃦2

𝑉 ⋆ +
𝑁∑︁

𝑛=1

𝜏‖𝑓𝑛
ext‖2𝑉 ⋆

+
𝐶(𝐶ND,1, 𝐶tr, 𝐶Ω,DP)2

2𝑐𝑝pore/𝑠w𝜅m,abs

𝑁∑︁
𝑛=1

𝜏
(︁
‖ℎ𝑛‖𝐿2(Ω) + ‖𝑤𝑛

N‖𝐿2(Γf
N)

)︁2

+ 2
𝑁∑︁

𝑛=1

𝜏‖𝑢𝑛
ℎ‖2𝑉 .

Finally, the last term on the right hand side can be controlled after applying a discrete Grönwall inequality, cf.,
Lemma B.7, using that 2𝜏 < 1

4 . The thesis follows from the assumptions on the regularity of the source terms
(A7) (together with a Sobolev embedding) and initial data (A8)𝜂,ℎ. �

Lemma 6.2 (Stability for the Kirchhoff pressure). There exists a constant 𝐶(2)
𝜁𝜂 > 0 (independent of ℎ, 𝜏) such

that

𝑏𝜒,𝑚

𝑁∑︁
𝑛=1

𝜏−1
⃦⃦
𝜒𝑛

ℎ − 𝜒𝑛−1
ℎ

⃦⃦2

𝐿2(Ω)
+
⃦⃦
𝜒𝑁

ℎ

⃦⃦2

1,𝒯 +
𝑁∑︁

𝑛=1

⃦⃦
𝜒𝑛

ℎ − 𝜒𝑛−1
ℎ

⃦⃦2

1,𝒯 ≤ 𝐶
(2)
𝜁𝜂

(︂
𝐶0,

1 + 𝜁−1

𝑏𝜒,m
𝐶(1)

)︂
,

where 𝑏𝜒,m is from the growing condition (A1⋆), 𝐶(1) is the stability constant from Lemma 6.1, and 𝐶0 is the
bound in (A8⋆)ℎ.

Proof. We test (5.5b) with 𝑞ℎ = 𝜒𝑛
ℎ − 𝜒𝑛−1

ℎ . By using the binomial identity (App. B.2), for the diffusion term,
we obtain ⟨

𝑏̂𝜂(𝜒𝑛
ℎ)− 𝑏̂𝜂

(︀
𝜒𝑛−1

ℎ

)︀
, 𝜒𝑛

ℎ − 𝜒𝑛−1
ℎ

⟩
+ 𝛼

⟨︀
𝑠w(𝜒𝑛

ℎ)∇ ·
(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
, 𝜒𝑛

ℎ − 𝜒𝑛−1
ℎ

⟩︀
+
𝜏

2

(︁
‖𝜒𝑛

ℎ‖
2
1,𝒯 ,𝜅abs

−
⃦⃦
𝜒𝑛−1

ℎ

⃦⃦2

1,𝒯 ,𝜅abs
+
⃦⃦
𝜒𝑛

ℎ − 𝜒𝑛−1
ℎ

⃦⃦2

1,𝒯 ,𝜅abs

)︁
= 𝜏

⟨︀
ℎ𝑛

ext, 𝜒
𝑛
ℎ − 𝜒𝑛−1

ℎ

⟩︀
.

Dividing by 𝜏 and summing over time steps 1 to 𝑁 , yields

𝑁∑︁
𝑛=1

𝜏−1
⟨
𝑏̂𝜂(𝜒𝑛

ℎ)− 𝑏̂𝜂
(︀
𝜒𝑛−1

ℎ

)︀
, 𝜒𝑛

ℎ − 𝜒𝑛−1
ℎ

⟩
+

1
2

⃦⃦
𝜒𝑁

ℎ

⃦⃦2

1,𝒯 ,𝜅abs
+

1
2

𝑁∑︁
𝑛=1

⃦⃦
𝜒𝑛

ℎ − 𝜒𝑛−1
ℎ

⃦⃦2

1,𝒯 ,𝜅abs

=
1
2

⃦⃦
𝜒0

ℎ

⃦⃦2

1,𝒯 ,𝜅abs
+

𝑁∑︁
𝑛=1

⟨︀
ℎ𝑛

ext, 𝜒
𝑛
ℎ − 𝜒𝑛−1

ℎ

⟩︀
− 𝛼

𝑁∑︁
𝑛=1

𝜏−1
⟨︀
𝑠w(𝜒𝑛

ℎ)∇ ·
(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
, 𝜒𝑛

ℎ − 𝜒𝑛−1
ℎ

⟩︀
.
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Employing the growth condition (A1)𝜂 for the first term on the left hand side, and the Cauchy–Schwarz inequal-
ity and Young’s inequality for the last two terms on the right hand side, yields

𝑏𝜒,𝑚

4

𝑁∑︁
𝑛=1

𝜏−1‖𝜒𝑛
ℎ − 𝜒𝑛−1

ℎ ‖2𝐿2(Ω) +
1
2
‖𝜒𝑁

ℎ ‖21,𝒯 ,𝜅abs
+

1
2

𝑁∑︁
𝑛=1

‖𝜒𝑛
ℎ − 𝜒𝑛−1

ℎ ‖21,𝒯 ,𝜅abs

≤ 1
2
‖𝜒0

ℎ‖21,𝒯 ,𝜅abs
+

1
2𝑏𝜒,m

𝑁∑︁
𝑛=1

𝜏‖ℎ𝑛
ext‖2𝑄⋆ +

𝛼2

𝑏𝜒,m

𝑁∑︁
𝑛=1

𝜏−1‖∇ ·
(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
‖2𝐿2(Ω).

Finally, the first two terms on the right hand side are bounded by (A8⋆)ℎ and (A7), whereas the last term can
be bounded by Lemma 6.1. On the left hand side, we employ (A6). �

Lemma 6.3 (Stability for the energy term 𝐵̂𝜂). Let 𝐵̂𝜂(𝑧) denote the energy term based on 𝑏̂ defined in (4.2).
There exists a constant 𝐶(3)

𝜁 > 0 (independent of ℎ, 𝜏, 𝜂), such that

max
𝑛=0,...,𝑁

⃦⃦⃦
𝐵̂𝜂(𝜒𝑛

ℎ)
⃦⃦⃦

𝐿1(Ω)
≤ 𝐶

(3)
𝜁

(︁
𝐶0, 𝐶

(1)
(︀
1 + 𝜁−1

)︀)︁
,

where 𝐶0 and 𝐶(1) are the constants from (A8⋆)ℎ and Lemma 6.1, respectively.

Proof. Testing (5.5b) with 𝑞ℎ = 𝜒𝑛
ℎ and employing Lemma B.12, yields for all 𝑛⃦⃦⃦

𝐵̂𝜂(𝜒𝑛
ℎ)
⃦⃦⃦

𝐿1(Ω)
−
⃦⃦⃦
𝐵̂𝜂

(︀
𝜒𝑛−1

ℎ

)︀⃦⃦⃦
𝐿1(Ω)

+ 𝜏‖𝜒𝑛
ℎ‖

2
1,𝒯 ,𝜅abs

≤ 𝜏⟨ℎ𝑛
ext, 𝜒

𝑛
ℎ⟩ − 𝛼

⟨︀
𝑠w(𝜒𝑛

ℎ)∇ ·
(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
, 𝜒𝑛

ℎ

⟩︀
.

For the first term on the right hand side, we employ a similar bound as in the discussion of 𝑇4 within the proof
of Lemma 5.6. For the second term, we employ the Cauchy–Schwarz inequality, a discrete Poincaré inequality
(introducing 𝐶Ω,DP), and (A6). We obtain⃦⃦⃦

𝐵̂𝜂(𝜒𝑛
ℎ)
⃦⃦⃦

𝐿1(Ω)
−
⃦⃦⃦
𝐵̂𝜂

(︀
𝜒𝑛−1

ℎ

)︀⃦⃦⃦
𝐿1(Ω)

+
𝜏

2
‖𝜒𝑛

ℎ‖21,𝒯 ,𝜅abs

≤ 𝐶(𝐶ND,1, 𝐶tr, 𝐶Ω,DP)2

𝜅m,abs
𝜏‖ℎ𝑛

ext‖2𝑄⋆ +
𝐶Ω,DP

𝜅m,abs

𝛼2

𝐾dr
𝜏−1

⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

𝑉
.

Finally, summing over time steps 1 to 𝑁 and employing Lemma 6.1 and (A7) proves the assertion. �

Lemma 6.4 (Stability for the pore pressure). There exists a constant 𝐶(4) > 0 (independent of ℎ, 𝜏, 𝜁, 𝜂), such
that

𝑁∑︁
𝑛=1

𝜏‖𝑝pore(𝜒𝑛
ℎ)‖2𝐿2(Ω) ≤ 𝐶(4)

(︁
𝐶(1)

)︁
,

where 𝐶(1) is the stability constant from Lemma 6.1.

Proof. We utilize a standard inf-sup argument (introducing 𝐶Ω,is), cf., Lemma B.11. Due to (D2), there exists
a 𝑣ℎ ∈ 𝑉ℎ such that

‖𝑝pore(𝜒𝑛
ℎ)‖2𝐿2(Ω) = 𝛼⟨𝑝pore(𝜒𝑛

ℎ),∇ · 𝑣ℎ⟩, and

‖𝑣ℎ‖𝑉 ≤ 𝐶Ω,is‖𝑝pore(𝜒𝑛
ℎ)‖𝐿2(Ω),

Employing the mechanics equation (4.4a), we obtain

‖𝑝pore(𝜒𝑛
ℎ)‖𝐿2(Ω) ≤ 𝐶Ω,is

(︀
𝜁𝜏−1

⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦
𝑉

+ ‖𝑢𝑛
ℎ‖𝑉 + ‖𝑓𝑛

ext‖𝑉 ⋆

)︀
,
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and hence,

𝑁∑︁
𝑛=1

𝜏‖𝑝pore(𝜒𝑛
ℎ)‖2𝐿2(Ω) ≤ 3𝐶2

Ω,is

(︃
𝜁2

𝑁∑︁
𝑛=1

𝜏−1
⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

𝑉
+

𝑁∑︁
𝑛=1

𝜏‖𝑢𝑛
ℎ‖2𝑉 +

𝑁∑︁
𝑛=1

𝜏‖𝑓𝑛
ext‖2𝑉 ⋆

)︃
.

Finally, the assertion follows from Lemma 6.1, assuming wlog. 𝜁 is bounded from above. �

Lemma 6.5 (Stability for the temporal change of 𝑏̂). There exists a constant 𝐶(5)
𝜁 > 0 (independent of ℎ, 𝜏, 𝜂),

such that

sup
{𝑞𝑛

ℎ}𝑛⊂𝑄ℎ∖{0}

∑︀𝑁
𝑛=1 𝜏

⟨
𝑏̂𝜂(𝜒𝑛

ℎ)−𝑏̂𝜂(𝜒𝑛−1
ℎ )

𝜏 , 𝑞𝑛
ℎ

⟩
(︁∑︀𝑁

𝑛=1 𝜏‖𝑞𝑛
ℎ‖21,𝒯

)︁1/2
≤ 𝐶

(5)
𝜁

(︁
𝐶(1)

(︀
1 + 𝜁−1

)︀)︁
,

where 𝐶(1) is the stability constant from Lemma 6.1.

Proof. Let {𝑞𝑛
ℎ}𝑛 ⊂ 𝑄ℎ ∖ {0} be an arbitrary sequence of test functions. Employ 𝑞𝑛

ℎ as test function in (5.5b).
Summing over time steps 1 to 𝑁 and applying the Cauchy–Schwarz inequality, yields

𝑁∑︁
𝑛=1

𝜏

⟨
𝑏̂𝜂(𝜒𝑛

ℎ)− 𝑏̂𝜂
(︀
𝜒𝑛−1

ℎ

)︀
𝜏

, 𝑞𝑛
ℎ

⟩
≤

(︃
𝛼2

𝐾dr

𝑁∑︁
𝑛=1

𝜏−1
⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

𝑉

)︃1/2(︃ 𝑁∑︁
𝑛=1

𝜏‖𝑞𝑛
ℎ‖2𝐿2(Ω)

)︃1/2

+

(︃
𝑁∑︁

𝑛=1

𝜏‖𝜒𝑛
ℎ‖21,𝒯 ,𝜅abs

)︃1/2(︃ 𝑁∑︁
𝑛=1

𝜏‖𝑞𝑛
ℎ‖21,𝒯 ,𝜅abs

)︃1/2

+ (1 + 𝐶tr)𝐶Ω,DP

(︃
𝑁∑︁

𝑛=1

𝜏‖ℎ𝑛
ext‖2𝑄⋆

)︃1/2(︃ 𝑁∑︁
𝑛=1

𝜏‖𝑞𝑛
ℎ‖21,𝒯

)︃1/2

.

For the last term, we employed a discrete trace inequality (introducing 𝐶tr), cf., Lemma B.2, and a discrete
Poincaré inequality (introducing 𝐶Ω,DP), cf., Lemma B.1. Finally, after utilizing a discrete Poincaré inequality
for the first term on the right hand side, (A6) on the second term, the assertion follows by Lemma 6.1 with

𝐶
(5)
𝜁 :=

√
𝐶(1)

(︂
𝐶Ω,DP

𝛼

𝜁1/2𝐾
1/2
dr

+ 𝜅
1/2
M,abs + (1 + 𝐶tr)𝐶Ω,DP

)︂
. �

6.2. Stability estimates for interpolants in time

Utilizing the discrete-in-time approximations (𝑢𝑛
ℎ, 𝜒

𝑛
ℎ)𝑛, defined by (5.5), we define continuous-in-time approx-

imations on (0, 𝑇 ] by piecewise constant interpolation

𝑢̄ℎ𝜏 (𝑡) := 𝑢𝑛
ℎ, 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛],

𝜒̄ℎ𝜏 (𝑡) := 𝜒𝑛
ℎ, 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛],

and by piecewise linear interpolation

𝑢̂ℎ𝜏 (𝑡) := 𝑢𝑛−1
ℎ +

𝑡− 𝑡𝑛−1

𝜏

(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
, 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛], (6.4)

𝜒̂ℎ𝜏 (𝑡) := 𝜒𝑛−1
ℎ +

𝑡− 𝑡𝑛−1

𝜏

(︀
𝜒𝑛

ℎ − 𝜒𝑛−1
ℎ

)︀
, 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛]. (6.5)

We deduce stability for the interpolants from the stability of the fully discrete approximation.
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Lemma 6.6 (Stability estimate for time interpolants of the mechanical displacement). For all ℎ, 𝜏 > 0 and
𝜏 ∈ [0, 𝜏) it holds that

𝜁

∫︁ 𝑇

0

‖𝜕𝑡𝑢̂ℎ𝜏‖2𝑉 d𝑡+ ‖𝑢̄ℎ𝜏‖2𝐿∞(0,𝑇 ;𝑉 ) ≤ 𝐶(1),∫︁ 𝑇−𝜏

0

‖𝑢̄ℎ𝜏 (𝑡+ 𝜏)− 𝑢̄ℎ𝜏 (𝑡)‖2𝑉 d𝑡 ≤ 𝐶(1)𝜏 ,

‖𝑢̄ℎ𝜏 − 𝑢̂ℎ𝜏‖2𝐿2(𝑄𝑇 ) ≤ 𝐶(1)𝜏,

where 𝐶(1) is the stability constant from Lemma 6.1.

Proof. Application of the definition of the interpolation operators and simple calculations yield

𝜁

∫︁ 𝑇

0

‖𝜕𝑡𝑢̂ℎ𝜏‖2𝑉 d𝑡+ ‖𝑢̄ℎ𝜏‖2𝐿∞(0,𝑇 ;𝑉 ) = 𝜁

𝑁∑︁
𝑛=1

⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

𝑉
+ max

𝑛=0,...,𝑁
‖𝑢𝑛

ℎ‖
2
𝑉 ,∫︁ 𝑇−𝜏

0

‖𝑢̄ℎ𝜏 (𝑡+ 𝜏)− 𝑢̄ℎ𝜏 (𝑡)‖2𝑉 d𝑡 = 𝜏

𝑁∑︁
𝑛=1

⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

𝑉
,

‖𝑢̄ℎ𝜏 − 𝑢̂ℎ𝜏‖2𝐿2(𝑄𝑇 ) =
1
3
𝜏

𝑁∑︁
𝑛=1

⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

𝐿2(Ω)
.

Hence, the assertion follows directly from Lemma 6.1. �

Analogously, we conclude stability for the interpolants of the Kirchhoff pressure.

Lemma 6.7 (Stability estimate for time interpolants of the Kirchhoff pressure). For all ℎ, 𝜏 > 0 and 𝜏 ∈ [0, 𝜏)
it holds that ∫︁ 𝑇

0

‖𝜒̄ℎ𝜏 (𝑡)‖21,𝒯 d𝑡 ≤ 𝐶(1), (6.6a)

𝑏𝜒,m‖𝜕𝑡𝜒̂ℎ𝜏‖2𝐿2(𝑄𝑇 ) + ‖𝜒̄ℎ𝜏‖2𝐿∞(0,𝑇 ;𝐿2(Ω)) ≤ 𝐶
(2)
𝜁𝜂 , (6.6b)∫︁ 𝑇−𝜏

0

‖𝜒̄ℎ𝜏 (𝑡+ 𝜏)− 𝜒̄ℎ𝜏 (𝑡)‖2𝐿2(Ω) d𝑡 ≤ 𝐶2
Ω,DP𝐶

(2)
𝜁𝜂 𝜏 , (6.6c)

‖𝜒̄ℎ𝜏 − 𝜒̂ℎ𝜏‖2𝐿2(𝑄𝑇 ) ≤ 𝐶2
Ω,DP𝐶

(2)
𝜁𝜂 𝜏, (6.6d)

where 𝐶(1) and 𝐶(2)
𝜁𝜂 are the stability constants from Lemmas 6.1 and 6.2, respectively, and 𝐶Ω,DP is the discrete

Poincaré constant, cf., Lemma B.1.

Proof. The proof is analogous to the proof Lemma 6.6. For (6.6c) and (6.6d), a discrete Poincaré inequal-
ity, cf., Lemma B.1, has to be applied before utilizing the stability bound on

∑︀𝑁
𝑛=1 ‖𝜒𝑛

ℎ − 𝜒𝑛−1
ℎ ‖21,𝒯 from

Lemma 6.2. �

Similarly, by definition of the piecewise constant interpolation, we deduce stability for some of the non-
linearities used in the model.

Lemma 6.8 (Stability estimates for non-linearities evaluated in interpolants). It holds that⃦⃦⃦
𝐵̂𝜂(𝜒̄ℎ𝜏 )

⃦⃦⃦
𝐿∞(0,𝑇 ;𝐿1(Ω))

≤ 𝐶
(3)
𝜁 ,

‖𝑝pore(𝜒̄ℎ𝜏 )‖2𝐿2(𝑄𝑇 ) ≤ 𝐶(4),

where 𝐶(3)
𝜁 and 𝐶(4) are the bounds from Lemmas 6.3 and 6.4, resp.
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Lemma 6.9 (Stability estimate for the temporal change of 𝑏̂). Let

𝜆̄ℎ𝜏 (𝑡) :=
𝑏̂𝜂(𝜒𝑛

ℎ)− 𝑏̂𝜂
(︀
𝜒𝑛−1

ℎ

)︀
𝜏

, 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛], 𝑛 ≥ 1. (6.7)

It holds that

‖𝜆̄ℎ𝜏‖𝐿2(0,𝑇 ;𝐻−1(Ω)) ≤ 𝐶
1/2
Ω,P𝐶

(5)
𝜁 ,

where 𝐶(5)
𝜁 is the bound from Lemma 6.5, and 𝐶Ω,P is a Poincaré constant.

Proof. Let 𝑞 ∈ 𝐿2(0, 𝑇 ;𝑄). We define a piecewise constant interpolation in both space and time, and only time.
For 𝑛 ≥ 1, let

𝑞𝑛
ℎ(𝑥, 𝑡) := 1

𝜏

∫︁ 𝑡𝑛

𝑡𝑛−1

1
|𝐾|

∫︁
𝐾

𝑞 d𝑥d𝑡, (𝑥, 𝑡) ∈ 𝐾 × (𝑡𝑛−1, 𝑡𝑛], 𝐾 ∈ 𝒯 ,

𝑞𝑛(𝑥, 𝑡) := 1
𝜏

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑞 d𝑡, (𝑥, 𝑡) ∈ Ω× (𝑡𝑛−1, 𝑡𝑛].

Then by Lemma 6.5 it holds that

∫︁ 𝑇

0

⟨︀
𝜆̄ℎ𝜏 , 𝑞

⟩︀
=

𝑁∑︁
𝑛=1

𝜏

⟨
𝑏̂𝜂(𝜒𝑛

ℎ)− 𝑏̂𝜂
(︀
𝜒𝑛−1

ℎ

)︀
𝜏

, 𝑞𝑛
ℎ

⟩
≤ 𝐶

(5)
𝜁

(︃
𝑁∑︁

𝑛=1

𝜏‖𝑞𝑛
ℎ‖21,𝒯

)︃1/2

.

Exploiting the stability of discrete gradients, cf., Lemma B.3, and a (continuous) Poincaré inequality (combined
introducing 𝐶Ω,P), the triangle inequality and the Cauchy–Schwarz inequality, we obtain

𝑁∑︁
𝑛=1

𝜏‖𝑞𝑛
ℎ‖21,𝒯 ≤ 𝐶Ω,P

𝑁∑︁
𝑛=1

𝜏‖∇𝑞𝑛‖2𝐿2(Ω) = 𝐶Ω,P

𝑁∑︁
𝑛=1

𝜏

⃦⃦⃦⃦
⃦𝜏−1

∫︁ 𝑡𝑛

𝑡𝑛−1

∇𝑞 d𝑡

⃦⃦⃦⃦
⃦

2

𝐿2(Ω)

≤ 𝐶Ω,P

𝑁∑︁
𝑛=1

𝜏−1

(︃∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇𝑞‖d𝑡

)︃2

≤ 𝐶Ω,P

𝑁∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

‖∇𝑞‖2𝐿2(Ω) d𝑡

= 𝐶Ω,P‖𝑞‖2𝐿2(0,𝑇 ;𝐻1
0 (Ω)),

which concludes the proof. �

6.3. Relative (weak) compactness for the limit ℎ, 𝜏 → 0

We utilize the stability results from the previous section to conclude relative compactness. We deduce limits
for the interpolants which eventually converge towards a weak solution of the doubly regularized unsaturated
poroelasticity model, i.e., it fulfills (W1)𝜁𝜂–(W4)𝜁𝜂.

Lemma 6.10 (Convergence of the mechanical displacement). There exist subsequences of {𝑢̄ℎ𝜏}ℎ,𝜏 and
{𝑢̂ℎ𝜏}ℎ,𝜏 , denoted by the same subscript, and 𝑢𝜁𝜂 ∈ 𝐿∞(0, 𝑇 ; 𝑉 ) with 𝜕𝑡𝑢𝜁𝜂 ∈ 𝐿2(0, 𝑇 ; 𝑉 ) such that for ℎ, 𝜏 → 0

𝑢̄ℎ𝜏 ⇀ 𝑢𝜁𝜂 weakly in 𝐿∞(0, 𝑇 ; 𝑉 ), (6.8a)
𝑢̄ℎ𝜏 → 𝑢𝜁𝜂 strongly in 𝐿2(𝑄𝑇 ), (6.8b)
𝑢̂ℎ𝜏 ⇀ 𝑢𝜁𝜂 weakly in 𝐿2(0, 𝑇 ; 𝑉 ), (6.8c)

𝜕𝑡𝑢̂ℎ𝜏 ⇀ 𝜕𝑡𝑢𝜁𝜂 weakly in 𝐿2(0, 𝑇 ; 𝑉 ). (6.8d)
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Proof. The assertion essentially follows from the stability result in Lemma 6.6. In particular, equation (6.8a)
follows together with the Eberlein–Šmulian theorem, cf., Lemma B.8. For (6.8b), we employ a relaxed Aubin–
Lions–Simon type compactness result for Bochner spaces, cf., Lemma B.9. Furthermore, by the Eberlein–Šmulian
theorem, there exists a 𝑢̂ ∈ 𝐿2(0, 𝑇,𝑉 ) such that up to a subsequence

𝑢̂ℎ𝜏 ⇀ 𝑢̂ weakly in 𝐿2(0, 𝑇 ; 𝑉 ),
𝜕𝑡𝑢̂ℎ𝜏 ⇀ 𝜕𝑡𝑢̂ weakly in 𝐿2(0, 𝑇 ; 𝑉 ).

We can identify 𝑢̂ = 𝑢𝜁𝜂 as follows. Employing the triangle inequality and Lemma 6.6, yields

‖𝑢̂ℎ𝜏 − 𝑢𝜁𝜂‖𝐿2(𝑄𝑇 ) ≤ ‖𝑢̂ℎ𝜏 − 𝑢̄ℎ𝜏‖𝐿2(𝑄𝑇 ) + ‖𝑢̄ℎ𝜏 − 𝑢𝜁𝜂‖𝐿2(𝑄𝑇 )

≤ 𝐶(1)𝜏 + ‖𝑢̄ℎ𝜏 − 𝑢𝜁𝜂‖𝐿2(𝑄𝑇 ),

which converges to zero for ℎ, 𝜏 → 0. This proves (6.8c) and (6.8d). �

In order to discuss the limit of the pressure, we utilize techniques employed in the finite volume literature [19,
34]. For this, we define a piecewise constant discrete gradient of 𝜒̄ℎ𝜏 utilizing the dual grid 𝒯 ⋆, cf., Definition 5.2,

(︀
∇𝜒

)︀
ℎ𝜏

:=

⎧⎨⎩𝑑
𝜒𝑛

ℎ |𝐿
−𝜒𝑛

ℎ |𝐾
𝑑𝐾|𝐿

𝑛𝐾|𝐿, (𝑥, 𝑡) ∈ 𝑃𝐾|𝐿 × (𝑡𝑛−1, 𝑡𝑛], 𝐾 ∈ 𝒯 , 𝐿 ∈ 𝒩 (𝐾),

𝑑
𝜒𝑛

ℎ |𝐾
𝑑𝜎,𝐾

𝑛𝜎,𝐾 , (𝑥, 𝑡) ∈ 𝑃𝜎 × (𝑡𝑛−1, 𝑡𝑛], 𝜎 ∈ ℰext ∩ ℰ𝐾 ,

where 𝑛𝐾|𝐿 denotes the outward normal on 𝐾|𝐿 ∈ ℰ , pointing towards 𝐿; and 𝑛𝜎,𝐾 denotes the outward normal
on 𝜎 ∈ ℰext ∩ ℰ𝐾 , pointing towards 𝐾.

Lemma 6.11 (Convergence of the Kirchhoff pressure). There exists a subsequence of {𝜒̄ℎ𝜏}ℎ,𝜏 , denoted by the
same subscript, and 𝜒𝜁𝜂 ∈ 𝐻1(0, 𝑇 ;𝑄) such that

𝜒̄ℎ𝜏 → 𝜒𝜁𝜂 strongly in 𝐿2(𝑄𝑇 ), (6.9a)(︀
∇𝜒

)︀
ℎ𝜏
⇀ ∇𝜒𝜁𝜂 weakly in 𝐿2(𝑄𝑇 ), (6.9b)

𝜕𝑡𝜒̂ℎ𝜏 ⇀ 𝜕𝑡𝜒𝜁𝜂 weakly in 𝐿2(𝑄𝑇 ). (6.9c)

Proof. Let ℎ̂ ∈ R𝑑 and Ωℎ̂ := {𝑥 ∈ Ω |𝑥+ ℎ̂ ∈ Ω}. Using a translation property for piecewise constant functions,
cf., e.g., Lemma 4 in [19], we obtain the following uniform translation property in space for 𝜒̄ℎ𝜏∫︁ 𝑇

0

∫︁
Ωℎ̂

⃦⃦⃦
𝜒̄ℎ𝜏 (𝑥+ ℎ̂)− 𝜒̄ℎ𝜏 (𝑥)

⃦⃦⃦2

𝐿2(Ω)
d𝑥d𝑡 =

𝑁∑︁
𝑛=1

𝜏

∫︁
Ωℎ̂

⃦⃦⃦
𝜒𝑛

ℎ(𝑥+ ℎ̂)− 𝜒𝑛
ℎ(𝑥)

⃦⃦⃦2

𝐿2(Ω)
d𝑥

≤ 𝐶|ℎ̂|
(︁
|ℎ̂|+ |Ω|

)︁ 𝑁∑︁
𝑛=1

𝜏‖𝜒𝑛
ℎ‖

2
1,𝒯

for some constant 𝐶 > 0. Consequently, together with Lemma 6.7, 𝜒̄ℎ𝜏 satisfies a translation property in space
and time wrt. 𝐿2(𝑄𝑇 ). We conclude by the Riesz–Frechet–Kolmogorov compactness criterion, cf., Lemma B.10,
that there exists a 𝜒𝜁𝜂 ∈ 𝐿2(𝑄𝑇 ) satisfying (6.9a).

For the proof of (6.9b), we refer to Proposition 8.1 in [34], which essentially proves the same assertion under
the same assumption on uniform stability for

∑︀𝑁
𝑛=1 𝜏‖𝜒𝑛

ℎ‖
2
1,𝒯 , here following from Lemma 6.7.

The proof of (6.9c) is standard and follows mainly from the stability results in Lemma 6.7 and the Eberlein–
Šmulian theorem, cf., Lemma B.8. This concludes the proof. �
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The main purpose of the double regularization has been the aim to get control over the non-linear coupling
terms, and eventually establish convergence.

Lemma 6.12 (Convergence of the coupling terms). There exists a subsequence of {𝜒̄ℎ𝜏}ℎ,𝜏 , denoted by the
same subscript, such that

𝑝pore(𝜒̄ℎ𝜏 ) ⇀ 𝑝pore(𝜒𝜁𝜂) weakly in 𝐿2(𝑄𝑇 ), (6.10a)
𝑠w(𝜒̄ℎ𝜏 )𝜕𝑡∇ · 𝑢̂ℎ𝜏 ⇀ 𝑠w(𝜒𝜁𝜂)𝜕𝑡∇ · 𝑢𝜁𝜂 weakly in 𝐿2(𝑄𝑇 ). (6.10b)

Proof. By the Eberlein–Šmulian theorem, cf., Lemmas B.8 and 6.8, there exists a subsequence of {𝜒̄ℎ𝜏}ℎ,𝜏 ,
denoted by the same index, and a 𝑝 ∈ 𝐿2(𝑄𝑇 ) such that

𝑝pore(𝜒̄ℎ𝜏 ) ⇀ 𝑝 weakly in 𝐿2(𝑄𝑇 ).

The identification of 𝑝 = 𝑝pore(𝜒𝜁𝜂) follows from the continuity of 𝑝pore, cf., (A3), and the fact that 𝜒̄ℎ𝜏 → 𝜒𝜁𝜂

a.e. in 𝑄𝑇 for a subsequence, denoted by the same index, cf., Lemma 6.11. This concludes (6.10a).
The convergence property (6.10b) follows from the convergence properties of the single contributions. Let

𝑞 ∈ 𝐿2(𝑄𝑇 ); it holds that 𝑠w(𝜒̄ℎ𝜏 )𝑞 → 𝑠w(𝜒𝜁𝜂)𝑞 in 𝐿2(𝑄𝑇 ) (up to a subsequence). Indeed, by Lemma 6.11, we
have 𝜒̄ℎ𝜏 → 𝜒𝜁𝜂 a.e. in 𝑄𝑇 (up to a subsequence); due to (A2), it holds that 𝑠w(𝜒̄ℎ𝜏 )𝑞 → 𝑠w(𝜒𝜁𝜂)𝑞 a.e. in 𝑄𝑇

and |𝑠w(𝜒̄ℎ𝜏 )𝑞| ≤ |𝑞| a.e. in 𝑄𝑇 ; hence, by the dominated convergence theorem 𝑠w(𝜒̄ℎ𝜏 )𝑞 → 𝑠w(𝜒𝜁𝜂)𝑞 in 𝐿2(𝑄𝑇 ).
In particular, it holds that 𝑠w(𝜒𝜁𝜂)𝑞 ∈ 𝐿2(Ω). Moreover from Lemma 6.10, we have 𝜕𝑡∇ · 𝑢̂ℎ𝜏 ⇀ 𝜕𝑡∇ · 𝑢𝜁𝜂 in
𝐿2(𝑄𝑇 ). The product of weak and strong convergence results in

⟨𝜕𝑡∇ · 𝑢̂ℎ𝜏 , 𝑠w(𝜒̄ℎ𝜏 )𝑞⟩ → ⟨𝜕𝑡∇ · 𝑢𝜁𝜂, 𝑠w(𝜒𝜁𝜂)𝑞⟩, ℎ, 𝜏 → 0.

This proves (6.10b). �

Lemma 6.13 (Initial conditions for the fluid flow). Let 𝜆̄ℎ𝜏 as in (6.7). There exists a subsequence, denoted by
the same index, such that

𝜆̄ℎ𝜏 ⇀ 𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂) weakly in 𝐿2(0, 𝑇 ;𝑄⋆), (6.11)

where 𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂) ∈ 𝐿2(0, 𝑇 ;𝑄⋆) is understood in the sense of (W2)𝜁𝜂.

Proof. The stability result in Lemma 6.9 implies by the Eberlein–Šmulian theorem, cf., Lemma B.8, that there
exist a subsequence of {𝜆̄ℎ𝜏}ℎ𝜏 , denoted by the same index, and a 𝑏̂𝑡 ∈ 𝐿2(0, 𝑇 ;𝑄⋆) such that

𝜆̄ℎ𝜏 ⇀ 𝑏̂𝑡 weakly in 𝐿2(0, 𝑇 ;𝑄⋆).

It remains to show that 𝑏̂𝑡 = 𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂) in the sense of (W2)𝜁𝜂. We do this in three steps.
First, by Lemma 6.11, there exists a subsequence of {𝜒̄ℎ𝜏}ℎ𝜏 , denoted by the same index, such that 𝜒̄ℎ𝜏 → 𝜒𝜁𝜂

a.e. in 𝑄𝑇 . Since 𝑏̂𝜂 is continuous, cf., (A1) and (4.1), it also holds 𝑏̂𝜂(𝜒̄ℎ𝜏 ) → 𝑏̂𝜂(𝜒𝜁𝜂) a.e. in 𝑄𝑇 . In addition,
based on the definition of 𝐵̂𝜂, cf., (4.2), and its properties, cf., Lemma B.12, it holds that

|𝑏̂𝜂(𝜒̄ℎ𝜏 )| ≤ 𝛿𝐵̂𝜂(𝜒̄ℎ𝜏 ) + sup
|𝑦|≤𝛿−1

|𝑏̂𝜂(𝑦)|, a.e. in 𝑄𝑇 ,

for all 𝛿 > 0. Since 𝐵̂𝜂(𝜒̄ℎ𝜏 ) is uniformly bounded in 𝐿∞(0, 𝑇 ;𝐿1(Ω)) by Lemma 6.8, we conclude

𝑏̂𝜂(𝜒̄ℎ𝜏 ) → 𝑏̂𝜂(𝜒𝜁𝜂) strongly in 𝐿1(0, 𝑇 ;𝐿1(Ω)) (6.12)

by the dominated convergence theorem. By the properties of 𝐵̂𝜂, it actually follows 𝑏̂𝜂 ∈ 𝐿∞(0, 𝑇 ;𝐿1(Ω)).
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Second, a similar argument based on the strong convergence of {𝜒0
ℎ}ℎ in 𝐿2(Ω), cf., (5.2), the continuity of

𝑏̂𝜂, the regularity assumption on 𝐵̂𝜂(𝜒0), cf., (A8)𝜂, and the properties of 𝐵̂𝜂, cf., Lemma B.12, leads to

𝑏̂𝜂
(︀
𝜒0

ℎ

)︀
→ 𝑏̂𝜂(𝜒0) strongly in 𝐿1(Ω). (6.13)

Third, let 𝑞 ∈ 𝐿2(0, 𝑇 ;𝑄)∩𝑊 1,1(0, 𝑇 ;𝐿∞(Ω)) with 𝑞(𝑇 ) = 0. By definition of 𝜆̄ℎ𝜏 , after applying summation
by parts, cf., Lemma B.6, we obtain∫︁ 𝑇

0

⟨︀
𝜆̄ℎ𝜏 , 𝑞

⟩︀
d𝑡 =

𝑁∑︁
𝑛=1

⟨
𝑏̂𝜂(𝜒𝑛

ℎ)− 𝑏̂𝜂
(︀
𝜒𝑛−1

ℎ

)︀
, 𝜏−1

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑞 d𝑡

⟩

=

⟨
𝑏̂𝜂(𝜒𝑁

ℎ )− 𝑏̂𝜂
(︀
𝜒0

ℎ

)︀
, 𝜏−1

∫︁ 𝑇

𝑇−𝜏

𝑞 d𝑡

⟩

+
∫︁ 𝑇−𝜏

0

⟨
𝑏̂𝜂
(︀
𝜒0

ℎ

)︀
− 𝑏̂𝜂(𝜒̄ℎ𝜏 ), 𝜕𝑡𝑞𝜏 − 𝜕𝑡𝑞

⟩
d𝑡

+
∫︁ 𝑇−𝜏

0

⟨
𝑏̂𝜂
(︀
𝜒0

ℎ

)︀
− 𝑏̂𝜂(𝜒̄ℎ𝜏 ), 𝜕𝑡𝑞

⟩
d𝑡

=: 𝑇1 + 𝑇2 + 𝑇3.

In 𝑇2, we have used the piecewise linear function 𝑞𝜏 , defined as

𝑞𝜏 (𝑡) := 𝜏−1

∫︁ 𝑡𝑛

𝑡𝑛−𝜏

𝑞 d𝑡+
𝑡− (𝑡𝑛 − 𝜏)

𝜏

(︂
𝜏−1

∫︁ 𝑡𝑛+𝜏

𝑡𝑛

𝑞 d𝑡− 𝜏−1

∫︁ 𝑡𝑛

𝑡𝑛−𝜏

𝑞 d𝑡
)︂
.

with 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛] and 𝑛 ∈ {1, . . . , 𝑁 − 1}. Due to the uniform boundedness of
⃦⃦⃦
𝑏̂𝜂(𝜒̄ℎ𝜏 )

⃦⃦⃦
𝐿∞(0,𝑇 ;𝐿1(Ω))

and⃦⃦⃦
𝑏̂𝜂
(︀
𝜒0

ℎ

)︀⃦⃦⃦
𝐿1(Ω)

and since 𝜏−1
∫︀ 𝑇

𝑇−𝜏
𝑞d𝑡 → 𝑞(𝑇 ) = 0 and 𝜕𝑡𝑞𝜏 → 𝜕𝑡𝑞 in 𝐿1(0, 𝑇 ;𝐿∞(Ω)) for ℎ, 𝜏 → 0, it follows

that 𝑇1 → 0 and 𝑇2 → 0 for ℎ, 𝜏 → 0. Finally, the convergence in (6.12) and (6.13) result in

𝑇3 →
∫︁ 𝑇

0

⟨
𝑏̂𝜂(𝜒0)− 𝑏̂𝜂(𝜒𝜁𝜂), 𝜕𝑡𝑞

⟩
d𝑡, for ℎ, 𝜏 → 0,

by the dominated convergence theorem. This concludes the proof. �

Lemma 6.14 (Initial conditions for the mechanical displacement). The limit 𝑢𝜁𝜂 ∈ 𝐻1(0, 𝑇 ; 𝑉 ) from
Lemma 6.10 satisfies (W3)𝜁𝜂.

Proof. Let 𝑣 ∈ 𝐻1(0, 𝑇 ; 𝑉 ) with 𝑣(𝑇 ) = 0. We obtain, using the same calculations as in the proof of Lemma 6.13,∫︁ 𝑇

0

𝑎(𝜕𝑡𝑢̂ℎ𝜏 ,𝑣) d𝑡 = 𝑎

(︃
𝑢𝑁

ℎ − 𝑢0
ℎ, 𝜏

−1

∫︁ 𝑇

𝑇−𝜏

𝑣 d𝑡

)︃
+
∫︁ 𝑇−𝜏

0

𝑎
(︀
𝑢0

ℎ − 𝑢̄ℎ𝜏 , 𝜕𝑡𝑣̂𝜏

)︀
,

with the piecewise linear function defined on 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛], 𝑛 ∈ {1, . . . , 𝑁 − 1} by

𝑣̂𝜏 (𝑡) = 𝜏−1

∫︁ 𝑡𝑛−1

𝑡𝑛−2

𝑣 d𝑡+
𝑡− 𝑡𝑛−1

𝜏

(︃
𝜏−1

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑣 d𝑡− 𝜏−1

∫︁ 𝑡𝑛−1

𝑡𝑛−2

𝑣 d𝑡

)︃
.

Based on the stability and convergence results for {𝑢̄ℎ𝜏}ℎ𝜏 and {𝑢0
ℎ}ℎ, cf., (5.4), we get (for a subsequence,

denoted by the same index) ∫︁ 𝑇

0

𝑎(𝜕𝑡𝑢𝜁𝜂,𝑣) d𝑡 = −
∫︁ 𝑇

0

𝑎(𝑢𝜁𝜂 − 𝑢0, 𝜕𝑡𝑣),

for ℎ, 𝜏 → 0 and thereby (W3)𝜁𝜂. �
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6.4. Identifying a weak solution for ℎ, 𝜏 → 0

Finally, we show the limit (𝑢𝜁𝜂, 𝜒𝜁𝜂), introduced above, is a weak solution of the doubly regularized unsatu-
rated poroelasticity model, cf., Definition 4.1.

Lemma 6.15 (Limit satisfies (W1)𝜁𝜂–(W4)𝜁𝜂). The limit (𝑢𝜁𝜂, 𝜒𝜁𝜂) introduced in the previous section is a
weak solution to the doubly regularized unsaturated poroelasticity model, cf., Definition 4.1.

Proof. The limit (𝑢𝜁𝜂, 𝜒𝜁𝜂) satisfies (W1)𝜁𝜂–(W3)𝜁𝜂 by Lemmas 6.10, 6.11, 6.12, and 6.14. It remains to
show (W4)𝜁𝜂, i.e., that (𝑢𝜁𝜂, 𝜒𝜁𝜂) satisfies the balance equations (4.4). We first consider sufficiently smooth
test functions and then use a density argument. Let (𝑣, 𝑞) ∈ 𝐿2(0, 𝑇 ; 𝑉 ∩𝐶∞(Ω)𝑑)×𝐿2(0, 𝑇 ;𝑄 ∩𝐶∞(Ω)). For
a given mesh 𝒯 , we define spatial projection and interpolation operators, respectively, by

Π𝑉ℎ
: 𝑉 ∩ 𝐶∞(Ω) → 𝑉ℎ, s.t. ⟨Π𝑉ℎ

𝑣,𝑣ℎ⟩ = ⟨𝑣,𝑣ℎ⟩ for all 𝑣ℎ ∈ 𝑉ℎ, (6.14)
ℐ𝑄ℎ

: 𝑄 ∩ 𝐶∞(Ω) → 𝑄ℎ, s.t. ℐ𝑄ℎ
𝑞|𝐾

= 𝑞(𝑥𝐾) for all 𝐾 ∈ 𝒯 . (6.15)

Using those, we define piecewise-constant-in-time interpolants of (𝑣, 𝑞)

𝑣̄ℎ𝜏 (𝑡) := 𝑣𝑛
ℎ, 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛], 𝑣𝑛

ℎ := Π𝑉ℎ
𝑣𝑛, 𝑣𝑛 := 𝜏−1

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑣 d𝑡, (6.16)

𝑞ℎ𝜏 (𝑡) := 𝑞𝑛
ℎ , 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛], 𝑞𝑛

ℎ := ℐ𝑄ℎ
𝑞𝑛, 𝑞𝑛 := 𝜏−1

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑞 d𝑡. (6.17)

Similarly, let

𝑓 ext,𝜏 (𝑡) := 𝑓𝑛
ext, 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛],

ℎ̄ext,𝜏 (𝑡) := ℎ𝑛
ext, 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛].

Combining classical results, based on the assumed regularity (A7), for ℎ, 𝜏 → 0 it holds that

𝑣̄ℎ𝜏 → 𝑣 strongly in 𝐿2(0, 𝑇 ; 𝑉 ),
𝑞ℎ𝜏 → 𝑞 strongly in 𝐿2(0, 𝑇 ;𝑄),

𝑓 ext,𝜏 → 𝑓 ext strongly in 𝐿2(0, 𝑇 ; 𝑉 ⋆),

ℎ̄ext,𝜏 → ℎext strongly in 𝐿2(0, 𝑇 ;𝑄⋆).

We choose 𝑣ℎ = 𝑣𝑛
ℎ and 𝑞ℎ = 𝑞𝑛

ℎ as test functions in (5.5), multiply both equations with 𝜏 and sum over all
time steps 1 to 𝑁 ; we obtain∫︁ 𝑇

0

[𝜁𝑎(𝜕𝑡𝑢̂ℎ𝜏 , 𝑣̄ℎ𝜏 ) + 𝑎(𝑢̄ℎ𝜏 , 𝑣̄ℎ𝜏 )− 𝛼⟨𝑝pore(𝜒̄ℎ𝜏 ),∇ · 𝑣̄ℎ𝜏 ⟩] d𝑡 =
∫︁ 𝑇

0

⟨︀
𝑓 ext,𝜏 , 𝑣̄ℎ𝜏

⟩︀
d𝑡, (6.18a)

∫︁ 𝑇

0

[︀⟨︀
𝜆̄ℎ𝜏 , 𝑞ℎ𝜏

⟩︀
+ 𝛼⟨𝑠w(𝜒̄ℎ𝜏 )𝜕𝑡∇ · 𝑢̂ℎ𝜏 , 𝑞ℎ𝜏 ⟩+ ⟨∇ℎ𝜒̄ℎ𝜏 ,∇ℎ𝑞ℎ𝜏 ⟩𝜅abs

]︀
d𝑡 =

∫︁ 𝑇

0

⟨︀
ℎ̄ext,𝜏 , 𝑞ℎ𝜏

⟩︀
d𝑡. (6.18b)

For most terms we can apply the fact that the product of weakly and strongly convergent sequences converge to
the product of their limits. The only term needing special attention is the diffusion term in the flow equation. For
this, we follow a similar argument as in the proof of Theorem 3.4 in [34] – here for a heterogeneous permeability
field. The technical calculations are the same. Hence, we only summarize the idea.

We exploit the definition of the piecewise constant gradient
(︀
∇𝜒

)︀
ℎ𝜏

. Similarly, we define a piecewise constant
gradient of the smooth test function and the permeability field(︀

∇𝑞
)︀
ℎ𝜏

(𝑥, 𝑡) := ∇𝑞𝑛(𝑥𝜎), (𝑥, 𝑡) ∈ 𝑃𝜎 × (𝑡𝑛−1, 𝑡𝑛], 𝜎 ∈ ℰ ,
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{𝜅abs}𝒯 (𝑥) := {𝜅abs}𝜎, 𝑥 ∈ 𝑃𝜎, 𝜎 ∈ ℰ ,

where 𝑥𝜎 ∈ 𝑃𝜎 is chosen by the mean value theorem satisfying (here only for an internal edge)
1

𝑑𝐾|𝐿
(𝑞𝑛(𝑥𝐾)− 𝑞𝑛(𝑥𝐿)) = ∇𝑞𝑛(𝑥𝐾|𝐿) ·𝑛𝐿|𝐾 , i.e., connecting the two-point flux approximation with the actual

gradient of 𝑞. A calculation, just as in [34], yields∫︁ 𝑇

0

⟨∇ℎ𝜒̄ℎ𝜏 ,∇ℎ𝑞ℎ𝜏 ⟩𝜅abs
d𝑡 =

∫︁ 𝑇

0

∫︁
Ω

{𝜅abs}𝒯
(︀
∇𝜒

)︀
ℎ𝜏
·
(︀
∇𝑞
)︀
ℎ𝜏

d𝑥 d𝑡.

Due to sufficient regularity, it holds that {𝜅abs}𝒯 → 𝜅abs strongly in 𝐿∞(𝑄𝑇 ) and
(︀
∇𝑞
)︀
ℎ𝜏
→ ∇𝑞 strongly in

𝐿2(𝑄𝑇 ). Since by Lemma 6.11 it also holds that
(︀
∇𝜒

)︀
ℎ𝜏
⇀ ∇𝜒𝜁𝜂 weakly in 𝐿2(𝑄𝑇 ), we finally conclude that∫︁ 𝑇

0

⟨∇ℎ𝜒̄ℎ𝜏 ,∇ℎ𝑞ℎ𝜏 ⟩𝜅abs
d𝑡→

∫︁ 𝑇

0

∫︁
Ω

𝜅abs∇𝜒𝜁𝜂 ·∇𝑞 d𝑥 d𝑡, ℎ, 𝜏 → 0.

All in all, together with the convergence properties of the test functions 𝑣̄ℎ𝜏 , 𝑞ℎ𝜏 , the source terms 𝑓 ext,𝜏 ,
ℎ̄ext,𝜏 , and the interpolants for the fully discrete approximations (cf., Lems. 6.10–6.13), we conclude that (6.18)
converges to (4.4), evaluated in (𝑢𝜁𝜂, 𝜒𝜁𝜂) and tested with (𝑣, 𝑞) ∈ 𝐿2(0, 𝑇 ; 𝑉 ∩𝐶∞(Ω)𝑑)×𝐿2(0, 𝑇 ;𝑄∩𝐶∞(Ω)).
Finally, a density argument yields the final result. �

7. Step 4: Increased regularity in a non-degenerate case

In the following, further stability estimates for the fully-discrete problem are derived, allowing for showing
that the limit (𝑢𝜁𝜂, 𝜒𝜁𝜂) introduced in the previous section also satisfies (W5)𝜁𝜂 and (W6)𝜁𝜂, i.e., we prove
Lemma 4.5. For this, non-degeneracy assumptions are required. For compact presentation throughout the entire
section, we assume (A0)–(A8) and (ND1)–(ND2) hold true, and we define 𝑢−1

ℎ := 𝑢0
ℎ.

7.1. Improved stability estimates for fully-discrete approximation

Lemma 7.1 (Improved stability estimate for the structural velocity). There exists a constant 𝐶(6)
𝜁𝜂 > 0 (inde-

pendent of ℎ, 𝜏), satisfying

𝜁 sup
𝑛∈{1,...,𝑁}

⃦⃦
𝜏−1

(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀⃦⃦2

𝑉
+

𝑁∑︁
𝑛=1

𝜏−1‖𝑢𝑛
ℎ − 𝑢𝑛−1

ℎ ‖2𝑉

+ 𝜁

𝑁∑︁
𝑛=1

⃦⃦
𝜏−1

(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
− 𝜏−1

(︀
𝑢𝑛−1

ℎ − 𝑢𝑛−2
ℎ

)︀⃦⃦2

𝑉

+
𝑁∑︁

𝑛=1

𝜏−1‖𝑝pore(𝜒𝑛
ℎ)− 𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀
‖2𝐿2(Ω)

≤ 𝐶
(6)
𝜁𝜂

(︂
‖𝜕𝑡𝑓 ext‖2𝐿2(𝑄𝑇 ),

𝐶ND,2

𝑏𝜒,m
𝐶

(2)
𝜁𝜂

)︂
,

where 𝐶(2)
𝜁𝜂 is the stability constant from Lemma 6.2, 𝐶ND,2 corresponds to the non-degeneracy condition (ND2),

and 𝑏𝜒,m corresponds to the growth condition (A1⋆).

Proof. First we observe, that the compatibility condition for the initial conditions (5.3) is equivalent to the
mechanics equation (5.5a) for 𝑛 = 0, since 𝑢0

ℎ − 𝑢−1
ℎ = 0. This allows for considering the difference of the

mechanics equation (5.5a) at time steps 𝑛 and 𝑛− 1, 𝑛 ≥ 1,

𝜁𝑎
(︀
𝜏−1

(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
− 𝜏−1(𝑢𝑛−1

ℎ − 𝑢𝑛−2
ℎ ),𝑣ℎ

)︀
+ 𝑎(𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ ,𝑣ℎ)

− 𝛼⟨𝑝pore(𝜒𝑛
ℎ)− 𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀
,∇ · 𝑣ℎ⟩ = ⟨𝑓𝑛

ext − 𝑓𝑛−1
ext ,𝑣ℎ⟩
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for all 𝑣ℎ ∈ 𝑉ℎ. By testing with 𝑣ℎ = 𝜏−1
(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
and using the binomial identity (App. B.2), we obtain

𝜁

2

(︁⃦⃦
𝜏−1

(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀⃦⃦2

𝑉
−
⃦⃦
𝜏−1(𝑢𝑛−1

ℎ − 𝑢𝑛−2
ℎ )

⃦⃦2

𝑉

+
⃦⃦
𝜏−1

(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
− 𝜏−1(𝑢𝑛−1

ℎ − 𝑢𝑛−2
ℎ )

⃦⃦2

𝑉

)︁
+ 𝜏−1‖𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ ‖2𝑉

= 𝜏−1
⟨︀
𝑓𝑛

ext − 𝑓𝑛−1
ext ,𝑢

𝑛
ℎ − 𝑢𝑛−1

ℎ

⟩︀
+ 𝛼𝜏−1

⟨︀
𝑝pore(𝜒𝑛

ℎ)− 𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀
,∇ ·

(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀⟩︀
.

Summing over 𝑛 ∈ {1, . . . , 𝑁}, yields after applying the Cauchy–Schwarz inequality and Young’s inequality for
the right hand side terms

𝜁

2

⃦⃦
𝜏−1

(︀
𝑢𝑁

ℎ − 𝑢𝑁−1
ℎ

)︀⃦⃦2

𝑉
+

1
2

𝑁∑︁
𝑛=1

𝜏−1‖𝑢𝑛
ℎ − 𝑢𝑛−1

ℎ ‖2𝑉

+
𝜁

2

𝑁∑︁
𝑛=1

⃦⃦
𝜏−1

(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
− 𝜏−1(𝑢𝑛−1

ℎ − 𝑢𝑛−2
ℎ )

⃦⃦2

𝑉

≤
𝑁∑︁

𝑛=1

𝜏−1
⃦⃦
𝑓𝑛

ext − 𝑓𝑛−1
ext

⃦⃦2

𝑉 ⋆ +
𝛼2

𝐾dr

𝑁∑︁
𝑛=1

𝜏−1
⃦⃦
𝑝pore(𝜒𝑛

ℎ)− 𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀⃦⃦2

𝐿2(Ω)
. (7.1)

Due to (ND2), 𝑝pore = 𝑝pore(𝜒) is Lipschitz continuous. Therefore, by Lemma 6.2 it holds that

𝑁∑︁
𝑛=1

𝜏−1‖𝑝pore(𝜒𝑛
ℎ)− 𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀
‖2𝐿2(Ω) ≤ 𝐶2

ND,2

𝐶
(2)
𝜁𝜂

𝑏𝜒,m
,

which together with (7.1) concludes the proof. �

Lemma 7.2 (Consequence for the structural acceleration). There exists a constant 𝐶(7)
𝜁𝜂 > 0 (independent of

ℎ, 𝜏), such that

𝑁∑︁
𝑛=1

𝜏

⃦⃦⃦⃦
𝑢𝑛

ℎ − 2𝑢𝑛−1
ℎ + 𝑢𝑛−2

ℎ

𝜏2

⃦⃦⃦⃦2

𝑉

≤ 𝐶
(7)
𝜁𝜂

(︁
𝜁−2𝐶

(6)
𝜁𝜂

)︁
,

where 𝐶(6)
𝜁𝜂 is the stability constant from Lemma 7.1.

Proof. Let {𝑣𝑛
ℎ}𝑛 ⊂ 𝑉ℎ ∖ {0} be an arbitrary sequence of test functions. Consider the difference of (5.5a) at 𝑛

and 𝑛− 1, 𝑛 ≥ 1, tested with 𝑣𝑛
ℎ; it holds that

𝜏−1 𝜁𝑎
(︀
𝑢𝑛

ℎ − 2𝑢𝑛−1
ℎ + 𝑢𝑛−2

ℎ ,𝑣𝑛
ℎ

)︀
=
⟨︀
𝑓𝑛

ext − 𝑓𝑛−1
ext ,𝑣

𝑛
ℎ

⟩︀
− 𝑎
(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ ,𝑣𝑛

ℎ

)︀
+ 𝛼

⟨︀
𝑝pore(𝜒𝑛

ℎ)− 𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀
,∇ · 𝑣𝑛

ℎ

⟩︀
.

Summing over 𝑛 ∈ {1, . . . , 𝑁}, applying the Cauchy–Schwarz inequality and Lemma 7.1, yields

sup
{𝑣𝑛

ℎ}𝑛⊂𝑉ℎ∖{0}

𝜁
∑︀𝑁

𝑛=1 𝜏
−1𝑎(𝑢𝑛

ℎ − 2𝑢𝑛−1
ℎ + 𝑢𝑛−2

ℎ ,𝑣𝑛
ℎ)(︁∑︀𝑁

𝑛=1 𝜏‖𝑣𝑛
ℎ‖2𝑉

)︁1/2
≤ 3
√︁
𝐶

(6)
𝜁𝜂 .

As ‖ · ‖2𝑉 = 𝑎(·, ·), we obtain equivalence of norms, which concludes the proof. �
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7.2. Improved stability estimates for interpolants in time

We define piecewise linear interpolations of the discrete structural velocity and the pore pressure. For 𝑡 ∈
(𝑡𝑛−1, 𝑡𝑛], 𝑛 ≥ 1, let

𝑢̂𝑡,ℎ𝜏 (𝑡) :=
𝑢𝑛−1

ℎ − 𝑢𝑛−2
ℎ

𝜏
+
𝑡− 𝑡𝑛−1

𝜏

𝑢𝑛
ℎ − 2𝑢𝑛−1

ℎ + 𝑢𝑛−2
ℎ

𝜏
, (7.2a)

𝑝pore,ℎ𝜏 (𝑡) := 𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀
+
𝑡− 𝑡𝑛−1

𝜏

(︀
𝑝pore(𝜒𝑛

ℎ)− 𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀)︀
. (7.2b)

Note that 𝜕𝑡𝑢̂ℎ𝜏 defines the piecewise constant analog of 𝑢̂𝑡,ℎ𝜏 . Stability bounds are obtained as direct conse-
quences of Lemmas 7.1 and 7.2.

Lemma 7.3 (Stability estimates for interpolations of the structural velocity). Let 𝑢̂ℎ𝜏 and 𝑢̂𝑡,ℎ𝜏 , as defined
by (6.4) and (7.2a). For all ℎ, 𝜏 > 0 and 𝜏 ∈ (0, 𝜏), it holds that

‖𝜕𝑡𝑢̂ℎ𝜏‖2𝐿2(0,𝑇 ;𝑉 ) ≤ 𝐶
(6)
𝜁𝜂 , (7.3a)∫︁ 𝑇−𝜏

0

‖𝜕𝑡𝑢̂ℎ𝜏 (𝑡+ 𝜏)− 𝜕𝑡𝑢̂ℎ𝜏 (𝑡)‖2𝐿2(Ω) d𝑡 ≤ 𝐶2
Ω,PK𝐶

(6)
𝜁𝜂 𝜏 , (7.3b)

‖𝑢̂𝑡,ℎ𝜏‖2𝐿2(0,𝑇 ;𝑉 ) ≤ 2𝐶(6)
𝜁𝜂 , (7.3c)

‖𝑢̂𝑡,ℎ𝜏 − 𝜕𝑡𝑢̂ℎ𝜏‖2𝐿2(𝑄𝑇 ) ≤
𝐶2

Ω,PK𝐶
(7)
𝜁𝜂

𝜁
𝜏2, (7.3d)

‖𝜕𝑡𝑢̂𝑡,ℎ𝜏‖2𝐿2(0,𝑇 ;𝑉 ) ≤
𝐶

(7)
𝜁𝜂

𝜁
, (7.3e)

where 𝐶(6)
𝜁𝜂 and 𝐶(7)

𝜁𝜂 are the stability constants from Lemmas 7.1 and 7.2, respectively, and 𝐶Ω,PK is the product
of the Poincaré and the Korn constants.

Proof. By construction, it holds that

‖𝜕𝑡𝑢̂ℎ𝜏‖2𝐿2(0,𝑇 ;𝑉 ) =
𝑁∑︁

𝑛=1

𝜏−1
⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

𝑉
.

Hence, (7.3a) follows directly from Lemma 7.1. The time-translation property (7.3b) follows from the fact that
𝜕𝑡𝑢̂ℎ𝜏 is piecewise constant. Analogous to the proof of Lemma 6.6, one can show∫︁ 𝑇−𝜏

0

‖𝜕𝑡𝑢̂ℎ𝜏 (𝑡+ 𝜏)− 𝜕𝑡𝑢̂ℎ𝜏 (𝑡)‖2𝐿2(Ω) d𝑡 = 𝜏

𝑁∑︁
𝑛=1

⃦⃦
𝜏−1

(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
− 𝜏−1

(︀
𝑢𝑛−1

ℎ − 𝑢𝑛−2
ℎ

)︀⃦⃦2

𝐿2(Ω)
.

Finally, after using a Poincaré inequality and Korn’s inequality, (7.3b) follows from Lemma 7.1.
In order to show (7.3c), we expand the integral over the time interval. By definition of 𝑢̂𝑡,ℎ𝜏 , it holds that

‖𝑢̂𝑡,ℎ𝜏‖2𝐿2(0,𝑇 ;𝑉 )

=
𝑁∑︁

𝑛=1

𝜏−2

∫︁ 𝑡𝑛

𝑡𝑛−1

⃦⃦⃦⃦(︀
𝑢𝑛−1

ℎ − 𝑢𝑛−2
ℎ

)︀
+
𝑡− 𝑡𝑛−1

𝜏

(︀
𝑢𝑛

ℎ − 2𝑢𝑛−1
ℎ + 𝑢𝑛−2

ℎ

)︀⃦⃦⃦⃦2

𝑉

d𝑡

≤ 2
𝑁∑︁

𝑛=2

𝜏−2

∫︁ 𝑡𝑛

𝑡𝑛−1

(︂
𝑡− 𝑡𝑛
𝜏

)︂2⃦⃦
𝑢𝑛−1

ℎ − 𝑢𝑛−2
ℎ

⃦⃦2

𝑉
d𝑡+ 2

𝑁∑︁
𝑛=2

𝜏−2

∫︁ 𝑡𝑛

𝑡𝑛−1

(︂
𝑡− 𝑡𝑛−1

𝜏

)︂2⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

𝑉
d𝑡
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≤ 4
3

𝑁∑︁
𝑛=1

𝜏−1
⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

⃦⃦2

𝑉
.

Hence, equation (7.3c) follows by Lemma 7.1. In order to show (7.3d), we again expand the integral over the
time interval. Employing the definitions of 𝑢̂𝑡,ℎ𝜏 and 𝑢̂ℎ𝜏 , a simple calculation yields

‖𝑢̂𝑡,ℎ𝜏 − 𝜕𝑡𝑢̂ℎ𝜏‖2𝐿2(𝑄𝑇 ) =
1
3

𝑁∑︁
𝑛=1

𝜏−1
⃦⃦
𝑢𝑛

ℎ − 2𝑢𝑛−1
ℎ + 𝑢𝑛−2

ℎ

⃦⃦2

𝐿2(Ω)
.

Hence, after employing a Poincaré inequality and Korn’s inequality, equation (7.3d) follows from Lemma 7.2.
Finally, equation (7.3e) follows directly from Lemma 7.2, since

‖𝜕𝑡𝑢̂𝑡,ℎ𝜏‖2𝐿2(0,𝑇 ;𝑉 ) =
𝑁∑︁

𝑛=1

𝜏

⃦⃦⃦⃦
𝑢𝑛

ℎ − 2𝑢𝑛−1
ℎ + 𝑢𝑛−2

ℎ

𝜏2

⃦⃦⃦⃦2

𝑉

.
�

Lemma 7.4 (Stability result for the interpolation of the pore pressure). For 𝑝pore,ℎ𝜏 defined in (7.2b). It holds
that

‖𝜕𝑡𝑝pore,ℎ𝜏‖2𝐿2(𝑄𝑇 ) ≤ 𝐶
(6)
𝜁𝜂 ,

‖𝑝pore,ℎ𝜏 − 𝑝pore(𝜒̄ℎ𝜏 )‖2𝐿2(𝑄𝑇 ) ≤ 𝐶
(6)
𝜁𝜂 𝜏

2,

where 𝐶(6)
𝜁𝜂 is the stability constant from Lemma 7.1.

Proof. By construction, it holds that

‖𝜕𝑡𝑝pore,ℎ𝜏‖2𝐿2(𝑄𝑇 ) =
𝑁∑︁

𝑛=1

𝜏−1‖𝑝pore(𝜒𝑛
ℎ)− 𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀
‖2𝐿2(Ω), and

‖𝑝pore,ℎ𝜏 − 𝑝pore(𝜒̄ℎ𝜏 )‖2𝐿2(𝑄𝑇 ) =
𝑁∑︁

𝑛=1

𝜏

3
‖𝑝pore(𝜒𝑛

ℎ)− 𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀
‖2𝐿2(Ω),

where the second result follows by expanding time integration. Hence, the assertion follows directly from the
stability result for the discrete time derivative of the pore pressure, cf., Lemma 7.1. �

7.3. More relative (weak) compactness for ℎ, 𝜏 → 0

The previous stability results allow for analyzing the limit in relation to (𝑢𝜁𝜂, 𝜒𝜁𝜂).

Lemma 7.5 (Convergence of the structural velocity and acceleration). There exist subsequences subsequences
of {𝑢̂ℎ𝜏}ℎ,𝜏 and {𝑢̂𝑡,ℎ𝜏}ℎ,𝜏 , denoted by the same subscript, such that 𝜕𝑡𝑢𝜁𝜂, 𝜕𝑡𝑡𝑢𝜁𝜂 ∈ 𝐿2(0, 𝑇 ; 𝑉 ) and

𝜕𝑡𝑢̂ℎ𝜏 ⇀ 𝜕𝑡𝑢𝜁𝜂 weakly in 𝐿2(0, 𝑇 ; 𝑉 ), (7.4a)
𝜕𝑡𝑢̂𝑡,ℎ𝜏 ⇀ 𝜕𝑡𝑡𝑢𝜁𝜂 weakly in 𝐿2(0, 𝑇 ; 𝑉 ). (7.4b)

Proof. The convergence result (7.4a) follows from the stability result (7.3a), the Eberlein–Šmulian theorem,
cf., Lemma B.8, and the fact that 𝑢̂ℎ𝜏 ⇀ 𝑢𝜁𝜂 weakly in 𝐿2(0, 𝑇 ; 𝑉 ), cf., Lemma 6.10. Furthermore, due to
the additional translation property (7.3b), a relaxed Aubin–Lions–Simon type compactness result for Bochner
spaces, cf., Lemma B.9 yields the existence of a subsequence, denoted by the same index, satisfying

𝜕𝑡𝑢̂ℎ𝜏 → 𝜕𝑡𝑢𝜁𝜂 strongly in 𝐿2(𝑄𝑇 ). (7.5)
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Using the stability result (7.3e), by the Eberlein–Šmulian theorem, cf., Lemma B.8, there exists a subsequence,
denoted by the same index, such that 𝜕𝑡𝑢̂𝑡,ℎ𝜏 ⇀ 𝑢𝑡𝑡 weakly in 𝐿2(0, 𝑇 ; 𝑉 ) for some 𝑢𝑡𝑡 ∈ 𝐿2(0, 𝑇 ; 𝑉 ). It
holds that 𝑢𝑡𝑡 = 𝜕𝑡𝑡𝑢𝜁𝜂 if also 𝑢̂𝑡,ℎ𝜏 ⇀ 𝜕𝑡𝑢𝜁𝜂 weakly in 𝐿2(0, 𝑇 ; 𝑉 ). From the stability result (7.3c), and the
Eberlein–Šmulian theorem, cf., Lemma B.8, there exists a 𝑢𝑡 ∈ 𝐿2(0, 𝑇 ; 𝑉 ) such that 𝑢̂𝑡,ℎ𝜏 ⇀ 𝑢𝑡 weakly in
𝐿2(0, 𝑇 ; 𝑉 ) (up to a subsequence). Employing the triangle inequality, yields

‖𝑢̂𝑡,ℎ𝜏 − 𝜕𝑡𝑢𝜁𝜂‖𝐿2(𝑄𝑇 ) ≤ ‖𝑢̂𝑡,ℎ𝜏 − 𝜕𝑡𝑢̂ℎ𝜏‖𝐿2(𝑄𝑇 ) + ‖𝜕𝑡𝑢̂ℎ𝜏 − 𝜕𝑡𝑢𝜁𝜂‖𝐿2(𝑄𝑇 ).

Hence, due to (7.3d) and (7.5), it holds that 𝑢𝑡 = 𝜕𝑡𝑢𝜁𝜂, and consequently 𝑢𝑡𝑡 = 𝜕𝑡𝑡𝑢𝜁𝜂, concluding the
proof. �

Lemma 7.6 (Convergence of the time derivative of the pore pressure). There exists a subsequence of
{𝑝pore,ℎ𝜏}ℎ,𝜏 , denoted by the same index, satisfying

𝜕𝑡𝑝pore,ℎ𝜏 ⇀ 𝜕𝑡𝑝pore(𝜒𝜁𝜂) weakly in 𝐿2(𝑄𝑇 ).

Proof. By Lemma 6.11, we have 𝜒̄ℎ𝜏 → 𝜒𝜁𝜂 strongly in 𝐿2(𝑄𝑇 ) (up to a subsequence). Hence, also 𝑝pore(𝜒̄ℎ𝜏 ) →
𝑝pore(𝜒𝜁𝜂) strongly in 𝐿2(𝑄𝑇 ). From Lemma 7.4, it follows 𝑝pore,ℎ𝜏 → 𝑝pore(𝜒𝜁𝜂) strongly in 𝐿2(𝑄𝑇 ) and
𝜕𝑡𝑝pore,ℎ𝜏 ⇀ 𝑝𝑡 weakly in 𝐿2(𝑄𝑇 ) for some 𝑝𝑡 ∈ 𝐿2(𝑄𝑇 ) (up to a subsequence). Consequently, 𝑝𝑡 = 𝜕𝑡𝑝pore(𝜒𝜁𝜂),
which concludes the proof. �

7.4. Identifying a weak solution with increased regularity for ℎ, 𝜏 → 0

Finally, we show the limit (𝑢𝜁𝜂, 𝜒), derived in Section 6.3, also satisfies (W5)𝜁𝜂–(W6)𝜁𝜂, i.e., (𝑢𝜁𝜂, 𝜒𝜁𝜂)
is a weak solution for the doubly regularized unsaturated poroelasticity model with increased regularity, cf.,
Definition 4.1.

Lemma 7.7 (Limit satisfies (W1)𝜁𝜂–(W6)𝜁𝜂). The limit (𝑢𝜁𝜂, 𝜒𝜁𝜂), derived in Section 6.3, is a weak solution
for the doubly regularized unsaturated poroelasticity model with increased regularity, cf., Definition 4.1.

Proof. The limit (𝑢𝜁𝜂, 𝜒𝜁𝜂) satisfies (W1)𝜁𝜂–(W4)𝜁𝜂 by Lemma 6.15. Furthermore, (W5)𝜁𝜂 follows directly
from Lemmas 7.5 and 7.6. In order to show (W6)𝜁𝜂, let 𝑣 ∈ 𝐿2(0, 𝑇 ; 𝑉 ∩ 𝐶∞(Ω)𝑑). We utilize 𝑣̄ℎ𝜏 and 𝑣𝑛

ℎ, as
introduced in (6.14) and (6.16), respectively; again it holds that

𝑣̄ℎ𝜏 → 𝑣 strongly in 𝐿2(0, 𝑇 ; 𝑉 ). (7.6)

We consider the difference of the mechanics equation (5.5a) at time steps 𝑛 and 𝑛 − 1, 𝑛 ≥ 1, tested with
𝑣ℎ = 𝑣𝑛

ℎ; we obtain

𝜁𝜏−1𝑎(𝑢𝑛
ℎ − 2𝑢𝑛−1

ℎ + 𝑢𝑛−2
ℎ ,𝑣𝑛

ℎ) + 𝑎(𝑢𝑛
ℎ − 𝑢𝑛−1

ℎ ,𝑣𝑛
ℎ)− 𝛼

⟨︀
𝑝pore(𝜒𝑛

ℎ)− 𝑝pore

(︀
𝜒𝑛−1

ℎ

)︀
,∇ · 𝑣𝑛

ℎ

⟩︀
=
⟨︀
𝑓𝑛

ext − 𝑓𝑛−1
ext ,𝑣

𝑛
ℎ

⟩︀
.

Summing over 𝑛 ∈ {1, . . . , 𝑁}, and employing the definitions of 𝑣̄ℎ𝜏 , 𝑢̂𝑡,ℎ𝜏 , 𝑢̂ℎ𝜏 , and 𝑝pore,ℎ𝜏 , yields∫︁ 𝑇

0

[︁
𝜁𝑎(𝜕𝑡𝑢̂𝑡,ℎ𝜏 , 𝑣̄ℎ𝜏 ) + 𝑎(𝜕𝑡𝑢̂ℎ𝜏 , 𝑣̄ℎ𝜏 )− 𝛼⟨𝜕𝑡𝑝pore,ℎ𝜏 ,∇ · 𝑣̄ℎ𝜏 ⟩

]︁
d𝑡 =

∫︁ 𝑇

0

⟨
𝜕𝑡𝑓𝜏 , 𝑣̄ℎ𝜏

⟩
d𝑡, (7.7)

where 𝑓𝜏 denotes the piecewise linear interpolation

𝑓 ext,𝜏 (𝑡) := 𝑓𝑛−1
ext +

𝑡− 𝑡𝑛−1

𝜏

(︀
𝑓𝑛

ext − 𝑓𝑛−1
ext

)︀
, 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛], 𝑛 ∈ {1, . . . , 𝑁}.

It holds that 𝑓 ext,𝜏 → 𝑓 ext strongly in 𝐿2(0, 𝑇 ; 𝑉 ⋆) and also 𝜕𝑡𝑓 ext,𝜏 ⇀ 𝜕𝑡𝑓 ext weakly in 𝐿2(0, 𝑇 ; 𝑉 ⋆), for 𝜏 → 0.
Hence, together with the weak convergence properties of 𝑢̂𝑡,ℎ𝜏 , 𝑢̂ℎ𝜏 and 𝑝pore,ℎ𝜏 , cf., Lemmas 7.5 and 7.6, and
the strong convergence properties of the test function 𝑣̄ℎ𝜏 , cf., (7.6), we conclude that∫︁ 𝑇

0

[︁
𝜁𝑎(𝜕𝑡𝑡𝑢𝜁𝜂,𝑣) + 𝑎(𝜕𝑡𝑢𝜁𝜂,𝑣)− 𝛼⟨𝜕𝑡𝑝pore(𝜒𝜁𝜂),∇ · 𝑣⟩

]︁
d𝑡 =

∫︁ 𝑇

0

⟨𝜕𝑡𝑓 ext,𝑣⟩d𝑡,

for all 𝑣 ∈ 𝐿2(0, 𝑇 ; 𝑉 ∩ 𝐶∞(Ω)𝑑). A density argument yields the final result. �
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8. Step 5: Limit 𝜁 → 0 from poroviscoelasticity to poroelasticity

In this section, we prove Lemma 4.6, i.e., the existence of a weak solution to the simply regularized unsaturated
poroelasticity model, cf., Definition 4.2. For this we utilize the fact that there exists a weak solution, (𝑢𝜁𝜂, 𝜒𝜁𝜂),
with increased regularity for the doubly regularized unsaturated poroelasticity model, cf., Definition 4.1. We
show that {(𝑢𝜁𝜂, 𝜒𝜁𝜂)}𝜁 has a limit for 𝜁 → 0, which is a weak solution to the simply regularized unsaturated
poroelasticity model, i.e., it satisfies (W1)𝜂–(W4)𝜂. For this, we employ compactness arguments. The central
uniform stability bound is derived utilizing (W6)𝜁𝜂 and the non-degeneracy condition (ND3). Throughout the
entire section, we assume (A0)–(A8) and (ND1)–(ND3) hold true.

8.1. Stability estimates independent of 𝜁

The key ingredients for the subsequent discussion are stability estimates, which are independent of 𝜁. As a
result of the stability results derived in Section 6.2, there exists a constant 𝐶 = 𝐶

(︀
𝐶(1), 𝐶(4)

)︀
> 0 (independent

of 𝜁 > 0 and 𝜂 > 0), such that

‖𝑢𝜁𝜂‖2𝐿∞(0,𝑇 ;𝑉 ) + ‖𝑝pore(𝜒𝜁𝜂)‖2𝐿2(𝑄𝑇 ) ≤ 𝐶, (8.1)

where Lemmas 6.6 and 6.10 yield stability for the displacement, and Lemmas 6.8 and 6.12 yield stability for
the pore pressure. Further stability bounds can be obtained by exploiting the continuous nature of the balance
equations and the time derivative of the mechanics equation. The following result is crucial.

Lemma 8.1 (Stability for the primal variables). There exists a constant 𝐶(8) > 0 (independent of 𝜁 and 𝜂),
such that

𝜁‖𝜕𝑡𝑢𝜁𝜂‖2𝐿∞(0,𝑇 ;𝑉 )+ ‖𝜕𝑡𝑢𝜁𝜂‖2𝐿2(0,𝑇 ;𝑉 )+ ‖∇𝜒𝜁𝜂‖2𝐿∞(0,𝑇 ;𝐿2(Ω)) ≤ 𝐶(8)
(︁
𝐶0, ‖𝜕𝑡𝑓 ext‖2𝐿2(0,𝑇 ;𝑉 ⋆), ‖ℎext‖2𝐻1(0,𝑇 ;𝑄⋆)

)︁
,

where 𝐶0 comes from (A8⋆).

Proof. Let 𝑇 ∈ [0, 𝑇 ]. Consider the flow equation (4.4b) and the mechanics equation differentiated in time (4.5),
tested with 𝑞 = 1[0,𝑇 ]𝜕𝑡𝜒𝜁𝜂 and 𝑣 = 1[0,𝑇 ]𝜕𝑡𝑢𝜁𝜂, respectively, where 1[0,𝑇 ] = 1[0,𝑇 ](𝑡), 𝑡 ∈ [0, 𝑇 ], is the charac-
teristic function of the time interval. Summing both equations yields

𝜁

∫︁ 𝑇

0

𝑎(𝜕𝑡𝑡𝑢𝜁𝜂, 𝜕𝑡𝑢𝜁𝜂) d𝑡+
∫︁ 𝑇

0

⟨𝜅abs∇𝜒𝜁𝜂,∇𝜕𝑡𝜒𝜁𝜂⟩d𝑡

+
∫︁ 𝑇

0

𝑎(𝜕𝑡𝑢𝜁𝜂, 𝜕𝑡𝑢𝜁𝜂) d𝑡+
∫︁ 𝑇

0

⟨
𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂), 𝜕𝑡𝜒𝜁𝜂

⟩
+ 𝛼

∫︁ 𝑇

0

⟨𝑠w𝜕𝑡𝜒𝜁𝜂 − 𝜕𝑡𝑝pore, 𝜕𝑡∇ · 𝑢𝜁𝜂⟩

=
∫︁ 𝑇

0

⟨𝜕𝑡𝑓 ext, 𝜕𝑡𝑢𝜁𝜂⟩d𝑡+
∫︁ 𝑇

0

⟨ℎext, 𝜕𝑡𝜒𝜁𝜂⟩d𝑡. (8.2)

We discuss the individual terms separately. For the first two terms on the left hand side of (8.2), we employ the
fundamental theorem of calculus

𝜁

∫︁ 𝑇

0

𝑎(𝜕𝑡𝑡𝑢𝜁𝜂, 𝜕𝑡𝑢𝜁𝜂) d𝑡+
∫︁ 𝑇

0

⟨𝜅abs∇𝜒𝜁𝜂,∇𝜕𝑡𝜒𝜁𝜂⟩d𝑡

=
𝜁

2

⃦⃦⃦
𝜕𝑡𝑢𝜁𝜂(𝑇 )

⃦⃦⃦2

𝑉
+

1
2

(︂⃦⃦⃦√
𝜅abs ∇𝜒𝜁𝜂(𝑇 )

⃦⃦⃦2

𝐿2(Ω)
− ‖

√
𝜅abs ∇𝜒𝜁𝜂(0)‖2𝐿2(Ω)

)︂
,

where we used that 𝜕𝑡𝑢𝜁𝜂(0) = 0. This follows from the temporal derivative of the mechanics equation (4.5)
and the compatibility condition for the initial conditions (3.1).
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For the remaining terms on the left hand side of (8.2), we apply the binomial identity (App. B.2), employ
that 𝑏̂′𝜂 ≥ 𝑏̂′ ≥ 0 (cf., (A1)), condition (ND3), and 𝑎(𝑣,𝑣)= ‖𝑣‖𝑉 ≥ 𝐾dr‖∇ · 𝑣‖2𝐿2(Ω) for all 𝑣 ∈ 𝑉 with
𝐾dr = 2𝜇

𝑑 + 𝜆. We get

‖𝜕𝑡𝑢𝜁𝜂‖2𝐿2(0,𝑇 ;𝑉 ) +
∫︁ 𝑇

0

⟨
𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂), 𝜕𝑡𝜒𝜁𝜂

⟩
+ 𝛼

∫︁ 𝑇

0

⟨𝑠w𝜕𝑡𝜒𝜁𝜂 − 𝜕𝑡𝑝pore, 𝜕𝑡∇ · 𝑢𝜁𝜂⟩

= ‖𝜕𝑡𝑢𝜁𝜂‖2𝐿2(0,𝑇 ;𝑉 ) +
∫︁ 𝑇

0

∫︁
Ω

[︂(︁
𝜕𝑡𝑏̂𝜂𝜕𝑡𝜒𝜁𝜂

)︁1/2

+
𝛼

2
𝑠w𝜕𝑡𝜒𝜁𝜂−𝜕𝑡𝑝pore

(𝜕𝑡𝑏̂𝜂𝜕𝑡𝜒𝜁𝜂)1/2 𝜕𝑡∇ · 𝑢𝜁𝜂

]︂2
d𝑥d𝑡

− 𝛼2

4

∫︁ 𝑇

0

∫︁
Ω

|𝑠w𝜕𝑡𝜒𝜁𝜂−𝜕𝑡𝑝pore|2

|𝜕𝑡𝑏̂𝜂𝜕𝑡𝜒𝜁𝜂| |𝜕𝑡∇ · 𝑢𝜁𝜂|2 d𝑥 d𝑡

≥ 1
2
‖𝜕𝑡𝑢𝜁𝜂‖2𝐿2(0,𝑇 ;𝑉 ) +

𝐾dr

2
‖𝜕𝑡∇ · 𝑢𝜁𝜂‖2𝐿2(0,𝑇 ;𝐿2(Ω)) −

𝛼2

4

∫︁ 𝑇

0

∫︁
Ω

(𝑠w(𝜒𝜁𝜂)−𝑝′pore(𝜒𝜁𝜂))2

𝑏̂′(𝜒𝜁𝜂)
|𝜕𝑡∇ · 𝑢𝜁𝜂|2 d𝑥d𝑡

≥ 1
2
‖𝜕𝑡𝑢𝜁𝜂‖2𝐿2(0,𝑇 ;𝑉 ).

For the first term on the right hand side of (8.2), we apply the Cauchy–Schwarz and Young’s inequality∫︁ 𝑇

0

⟨𝜕𝑡𝑓 ext, 𝜕𝑡𝑢𝜁𝜂⟩d𝑡 ≤ ‖𝜕𝑡𝑓 ext‖2𝐿2(0,𝑇 ;𝑉 ⋆) +
1
4
‖𝜕𝑡𝑢𝜁𝜂‖2𝐿2(0,𝑇 ;𝑉 ).

For the second term on the right hand side of (8.2), we apply integration by parts, a Cauchy–Schwarz inequality
and Young’s inequality, a Poincaré inequality and a Sobolev embedding, involving the constants 𝐶Ω,P and
𝐶T,Sob, as well as (A6). This gives∫︁ 𝑇

0

⟨ℎext, 𝜕𝑡𝜒𝜁𝜂⟩d𝑡 =
⟨
ℎext(𝑇 ), 𝜒𝜁𝜂(𝑇 )

⟩
− ⟨ℎext(0), 𝜒(0)⟩ −

∫︁ 𝑇

0

⟨𝜕𝑡ℎext, 𝜒𝜁𝜂⟩d𝑡

≤
𝐶2

Ω,P

𝜅m,abs

(︂⃦⃦⃦
ℎext(𝑇 )

⃦⃦⃦2

𝐿2(Ω)
+ ‖ℎext(0)‖2𝐿2(Ω) + ‖𝜕𝑡ℎext‖2𝐿2(𝑄𝑇 )

)︂
+
𝜅m,abs

4𝐶2
Ω,P

(︂⃦⃦⃦
𝜒𝜁𝜂(𝑇 )

⃦⃦⃦2

𝐿2(Ω)
+ ‖𝜒𝜁𝜂(0)‖2𝐿2(Ω) + ‖𝜒𝜁𝜂‖2𝐿2(𝑄𝑇 )

)︂
≤ 3(𝐶T,Sob𝐶Ω,P)2

𝜅m,abs
‖ℎext‖2𝐻1(0,𝑇 ;𝑄⋆)

+
1
4

(︃⃦⃦⃦√
𝜅abs ∇𝜒𝜁𝜂(𝑇 )

⃦⃦⃦2

𝐿2(Ω)
+ ‖

√
𝜅abs ∇𝜒𝜁𝜂(0)‖2𝐿2(Ω) +

∫︁ 𝑇

0

‖
√
𝜅abs ∇𝜒𝜁𝜂‖2𝐿2(Ω) d𝑡

)︃
.

Altogether, (8.2) becomes

𝜁

2

⃦⃦⃦
𝜕𝑡𝑢𝜁𝜂(𝑇 )

⃦⃦⃦2

𝐿2(0,𝑇 ;𝑉 )
+

1
4

⃦⃦⃦√
𝜅abs ∇𝜒𝜁𝜂(𝑇 )

⃦⃦⃦2

𝐿2(Ω)
+

1
4
‖𝜕𝑡𝑢𝜁𝜂‖2𝐿2(0,𝑇 ;𝑉 )

≤ 3
4
‖
√
𝜅abs ∇𝜒𝜁𝜂(0)‖2𝐿2(Ω) + ‖𝜕𝑡𝑓 ext‖2𝐿2(0,𝑇 ;𝑉 ⋆)

+
3(𝐶T,Sob𝐶Ω,P)2

𝜅m,abs
‖ℎext‖2𝐻1(0,𝑇 ;𝑄⋆) +

1
4

∫︁ 𝑇

0

‖
√
𝜅abs ∇𝜒𝜁𝜂‖2𝐿2(Ω) d𝑡.

A Grönwall inequality, and the general choice of 𝑇 , yields the assertion under the given assumptions. �

The previous stability estimate allows for deriving revised stability estimates in the previous section.
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Lemma 8.2 (Stability for the energy 𝐵̂𝜂). There exists a constant 𝐶(9) > 0 (independent of 𝜁, 𝜂), such that⃦⃦⃦
𝐵̂𝜂(𝜒𝜁𝜂)

⃦⃦⃦
𝐿∞(0,𝑇 ;𝐿1(Ω))

≤ 𝐶(9)
(︁
𝐶0, 𝐶

(8)
)︁
,

where 𝐶(8) is the stability constant from Lemma 8.1, and 𝐶0 is the stability constant from (A8⋆).

Proof. Testing the flow equation (4.4b) with 𝑞 = 𝜒𝜁𝜂, yields∫︁ 𝑇

0

⟨
𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂), 𝜒𝜁𝜂

⟩
d𝑡+

∫︁ 𝑇

0

‖∇𝜒𝜁𝜂‖2𝜅abs
d𝑡 =

∫︁ 𝑇

0

⟨ℎext, 𝜒𝜁𝜂⟩d𝑡− 𝛼

∫︁ 𝑇

0

⟨𝑠w𝜕𝑡∇ · 𝑢𝜁𝜂, 𝜒𝜁𝜂⟩d𝑡.

For the first term on the left hand side, we apply a property of 𝐵̂𝜂, cf., Lemma B.12,∫︁ 𝑇

0

⟨
𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂), 𝜒𝜁𝜂

⟩
d𝑡 =

⃦⃦⃦
𝐵̂𝜂(𝜒𝜁𝜂(𝑇 ))

⃦⃦⃦
𝐿1(Ω)

−
⃦⃦⃦
𝐵̂𝜂(𝜒0)

⃦⃦⃦
𝐿1(Ω)

.

On the right hand side, we apply the Cauchy–Schwarz inequality, Young’s inequality, a Poincaré inequality
(introducing 𝐶Ω,P) and (A6), and obtain

⃦⃦⃦
𝐵̂𝜂(𝜒𝜁𝜂(𝑇 ))

⃦⃦⃦
𝐿1(Ω)

+
1
2

∫︁ 𝑇

0

‖∇𝜒𝜁𝜂‖2𝜅abs
d𝑡 ≤

⃦⃦⃦
𝐵̂𝜂(𝜒0)

⃦⃦⃦
𝐿1(Ω)

+
𝐶2

Ω,P

𝜅m,abs

(︁
‖ℎext‖2𝐿2(0,𝑇 ;𝑄⋆) + 𝛼2‖𝜕𝑡∇ · 𝑢𝜁𝜂‖2𝐿2(𝑄𝑇 )

)︁
.

Finally, the thesis follows from Lemma 8.1. �

Lemma 8.3 (Stability for the temporal change of 𝑏̂𝜂). There exists a constant 𝐶(10) > 0 (independent of 𝜁, 𝜂),
such that

sup
0̸=𝑞∈𝐿2(0,𝑇 ;𝑄)

∫︀ 𝑇

0

⟨
𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂), 𝑞

⟩
d𝑡

‖∇𝑞‖𝐿2(𝑄𝑇 )
≤ 𝐶(10)

(︁
𝐶(8)

)︁
,

where 𝐶(8) is the stability constant from Lemma 8.1.

Proof. The proof is similar to the proof of Lemma 6.5. However, this time, we exploit

‖𝜕𝑡∇ · 𝑢𝜁𝜂‖𝐿2(𝑄𝑇 ) ≤
1

𝐾
1/2
dr

‖𝜕𝑡𝑢𝜁𝜂‖𝐿2(0,𝑇 ;𝑉 ) ≤
𝐶(8)

𝐾
1/2
dr

by Lemma 8.1. Thus, we can drop the dependence on 𝜁. �

We will require to show strong convergence of the Kirchhoff pressure. Having that in mind, we conclude
with a stability estimate for 𝜕𝑡𝜒𝜁𝜂. We note, this is the only stability estimate in this section, requiring the
regularizing growth condition (A1)𝜂.

Lemma 8.4 (Stability estimate for the temporal change of the Kirchhoff pressure). There exists a constant
𝐶

(11)
𝜂 > 0 (independent of 𝜁), such that

‖𝜕𝑡𝜒𝜁𝜂‖2𝐿2(𝑄𝑇 ) ≤ 𝐶(11)
𝜂

(︁
𝑏−1
𝜒,m𝐶0, 𝑏

−2
𝜒,m𝐶

(8)
)︁
,

where 𝐶(8) is the stability constant from Lemma 8.1, 𝑏𝜒,m is from (A1⋆), and 𝐶0 is from (A8⋆).
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Proof. We repeat parts of the proof of Lemma 8.1. We test the flow equation (4.4b) with 𝑞 = 𝜕𝑡𝜒𝜁𝜂 and
apply (A1)𝜂 and the Cauchy–Schwarz inequality; we obtain

𝑏𝜒,m‖𝜕𝑡𝜒𝜁𝜂‖2𝐿2(𝑄𝑇 ) +
1
2
‖
√
𝜅abs ∇𝜒𝜁𝜂(𝑇 )‖2𝐿2(Ω)

≤
∫︁ 𝑇

0

⟨
𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂), 𝜕𝑡𝜒𝜁𝜂

⟩
d𝑡+

1
2
‖
√
𝜅abs ∇𝜒𝜁𝜂(𝑇 )‖2𝐿2(Ω)

=
1
2
‖
√
𝜅abs ∇𝜒𝜁𝜂(0)‖2𝐿2(Ω) +

∫︁ 𝑇

0

(⟨ℎext, 𝜕𝑡𝜒𝜁𝜂⟩ − 𝛼⟨𝑠w𝜕𝑡∇ · 𝑢𝜁𝜂, 𝜕𝑡𝜒𝜁𝜂⟩) d𝑡

≤ 1
2
‖
√
𝜅abs ∇𝜒𝜁𝜂(0)‖2𝐿2(Ω) +

1
𝑏𝜒,m

(︁
‖ℎext‖2𝐿2(0,𝑇 ;𝑄⋆) + 𝛼2‖𝜕𝑡∇ · 𝑢𝜁𝜂‖2𝐿2(𝑄𝑇 )

)︁
+
𝑏𝜒,m

2
‖𝜕𝑡𝜒𝜁𝜂‖2𝐿2(𝑄𝑇 ).

After rearranging terms, applying the regularity of the data, and applying Lemma 8.1, the assertion
follows. �

8.2. Relative (weak) compactness for 𝜁 → 0

We utilize the stability results from the previous section to conclude relative compactness.

Lemma 8.5 (Convergence of the primary variables). There exist subsequences of {𝑢𝜁𝜂}𝜁 and {𝜒𝜁𝜂}𝜁 , denoted
by the same subscript, and there exist 𝑢𝜂 ∈ 𝐻1(0, 𝑇 ; 𝑉 ) and 𝜒𝜂 ∈ 𝐻1(0, 𝑇 ;𝐿2(Ω)) ∩ 𝐿∞(0, 𝑇 ;𝑄) such that for
𝜁 → 0

𝑢𝜁𝜂 ⇀ 𝑢𝜂 weakly in 𝐻1(0, 𝑇 ; 𝑉 ), (8.3a)
𝜁𝜕𝑡𝑢𝜁𝜂 → 0 strongly in 𝐿2(0, 𝑇 ; 𝑉 ), (8.3b)

𝜒𝜁𝜂 → 𝜒𝜂 strongly in 𝐿2(𝑄𝑇 ), (8.3c)
𝜒𝜁𝜂 ⇀ 𝜒𝜂 weakly in 𝐿∞(0, 𝑇 ;𝑄), (8.3d)

𝜕𝑡𝜒𝜁𝜂 ⇀ 𝜕𝑡𝜒𝜂 weakly in 𝐿2(𝑄𝑇 ). (8.3e)

Proof. The proof follows standard arguments based on the Eberlein–Šmulian theorem, cf., Lemma B.8, the
Aubin–Lions lemma, cf., Lemma B.9, and the stability results for 𝑢𝜁𝜂, cf., Lemma 8.1 and (8.1), as well as
the stability results for 𝜒𝜁𝜂, cf., Lemmas 8.1 and 8.4. In particular, for (8.3b), we employ the uniform stability
result from Lemma 8.1 yielding⃒⃒⃒⃒

⃒
∫︁ 𝑇

0

𝜁𝑎(𝜕𝑡𝑢𝜁𝜂,𝑣) d𝑡

⃒⃒⃒⃒
⃒ ≤ 𝜁𝐶(8)‖𝑣‖𝐿2(0,𝑇 ;𝑉 ) → 0 for 𝜁 → 0

for all fixed 𝑣 ∈ 𝐿2(0, 𝑇 ; 𝑉 ). �

Lemma 8.6 (Convergence of the coupling terms). There exist subsequences of {𝑢𝜁𝜂}𝜁 and {𝜒𝜁𝜂}𝜁 , denoted by
the same subscript, satisfying for 𝜁 → 0

𝑝pore(𝜒𝜁𝜂) ⇀ 𝑝pore(𝜒𝜂) weakly in 𝐿2(𝑄𝑇 ), (8.4a)
𝑠w(𝜒𝜁𝜂)𝜕𝑡∇ · 𝑢𝜁𝜂 ⇀ 𝑠w(𝜒𝜂)𝜕𝑡∇ · 𝑢𝜂 weakly in 𝐿2(𝑄𝑇 ). (8.4b)

Proof. The proof is analogous to the proof of Lemma 6.12. Essentially, first, one has to utilize stability estimates
together with the Eberlein–Šmulian theorem, cf., Lemma B.8; second, continuity properties of the non-linearities
have to be employed together with the convergence of {𝑢𝜁𝜂}𝜁 and {𝜒𝜁𝜂}𝜁 , cf., Lemma 8.5. We note that for (8.4a)
the stability result (8.1) has to be utilized. �
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Lemma 8.7 (Initial conditions for the fluid flow). Up to subsequences it holds for 𝜁 → 0

𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂) ⇀ 𝜕𝑡𝑏̂𝜂(𝜒𝜂) weakly in 𝐿2(0, 𝑇 ;𝑄⋆), (8.5)

where 𝜕𝑡𝑏̂𝜂(𝜒𝜂) is understood in the sense of (W2)𝜂.

Proof. The proof is similar to the proof of Lemma 6.13. In particular, an analogous argument implies that
‖𝑏̂𝜂(𝜒𝜁𝜂)‖𝐿∞(0,𝑇 ;𝐿1(Ω) is uniformly bounded wrt. 𝜁, and therefore

𝑏̂𝜂(𝜒𝜁𝜂)→ 𝑏̂𝜂(𝜒𝜂) strongly in 𝐿1(0, 𝑇 ;𝐿1(Ω)) for 𝜁 → 0, (8.6)

(up to a subsequence). Furthermore, by Lemma 8.3 and the Eberlein–Šmulian theorem, cf., Lemma B.8, there
exists some 𝑏𝑡 ∈ 𝐿2(0, 𝑇 ;𝑄⋆) such that 𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂) ⇀ 𝑏𝑡 weakly in 𝐿2(0, 𝑇 ;𝑄⋆) (up to a subsequence). We can
identify 𝑏𝑡 = 𝜕𝑡𝑏(𝜒𝜂) by showing (W2)𝜂. For this we utilize (W2)𝜁𝜂. For 𝑞 ∈ 𝐿2(0, 𝑇 ;𝑄) ∩𝑊 1,1(0, 𝑇 : 𝐿∞(Ω))
and 𝑞(𝑇 ) = 0, it holds that ∫︁ 𝑇

0

⟨
𝜕𝑡𝑏̂𝜂(𝜒𝜁𝜂), 𝑞

⟩
d𝑡 =

∫︁ 𝑇

0

⟨
𝑏̂𝜂(𝜒0)− 𝑏̂𝜂(𝜒𝜁𝜂), 𝜕𝑡𝑞

⟩
d𝑡.

The assertion follows immediately for 𝜁 → 0, using (8.6), and the dominated convergence theorem. �

Lemma 8.8 (Initial condition for the mechanical displacement). The displacement 𝑢𝜂 satisfies (W3)𝜂.

Proof. Using the uniform stability bound for {𝜕𝑡𝑢𝜁𝜂}𝜁 by Lemma 8.1 and the weak convergence 𝑢𝜁𝜂 ⇀ 𝑢𝜂

weakly in 𝐿2(0, 𝑇 ; 𝑉 ) (up to a subsequence) by Lemma 8.5, standard compactness arguments yield

𝜕𝑡𝑢𝜁𝜂 ⇀ 𝜕𝑡𝑢𝜂 weakly in 𝐿2(0, 𝑇 ; 𝑉 )

(up to a subsequence). Hence, 𝜁 → 0 of (W3)𝜁𝜂 yields (W3)𝜂. �

8.3. Identifying a weak solution for 𝜁 → 0

Finally, we show the limit (𝑢𝜂, 𝜒𝜂), introduced above, is a weak solution of the simply regularized unsaturated
poroelasticity model.

Lemma 8.9 (Limit satisfies (W1)𝜂–(W4)𝜂). The limit (𝑢𝜂, 𝜒𝜂), derived in Section 8.2, is a weak solution of
the simply regularized unsaturated poroelasticity model, cf., Definition 4.2.

Proof. The limit (𝑢𝜂, 𝜒𝜂) satisfies (W1)𝜂–(W3)𝜂 by Lemmas 8.5–8.8. It remains to show (W4)𝜂, i.e., that
(𝑢𝜂, 𝜒𝜂) satisfies the balance equations (4.4) for 𝜁 = 0. By definition, the sequence (𝑢𝜁𝜂, 𝜒𝜁𝜂) satisfies (W4)𝜁𝜂

for 𝜁 > 0. Utilizing the weak convergence results, cf., Lemmas 8.5 and 8.6, (W4)𝜂 follows directly for
𝜁 → 0. �

Remark 8.10 (Existence of a weak solution for a compressible system). If compressibility is present either for
the fluid or the solid grains, the regularizing property (A1⋆) is fulfilled even for 𝜂 = 0. For instance, for 𝑏 as
in (2.6) with the equivalent pore pressure and the van Genuchten–Mualem model, it holds that 𝑏𝜒,m = 𝜑0𝑐w+ 1

𝑁 ,
cf., Appendix A. Consequently, the limit (𝑢𝜂, 𝜒𝜂) in Lemma 8.9 is also well-defined for 𝜂 = 0. In particular, it
is a weak solution of (2.12)–(2.15), cf., Definition 3.1.

9. Step 6: Limit 𝜂 → 0 in the incompressible case

In this section, we show the main result, Theorem 3.4, for the more demanding case: the presence of an
incompressible fluid and incompressible solid grains. Otherwise, by Remark 8.10 the main result of this paper
follows already. In the incompressible case, 𝑏 as in (2.6) is monotone but with 𝑏̂′ = 0 on a part of the domain
with non-zero measure. Under the use of regularization with 𝜂 > 0, it holds that 𝑏𝜒,m = 𝜂. In the following, we
prove that the limit of {(𝑢𝜂, 𝜒𝜂)}𝜂 exists for 𝜂 → 0, and that it is a weak solution of (2.12)–(2.15) according to
Definition 3.1. Throughout the entire section, we assume (A0)–(A8) and (ND1)–(ND3) hold true.
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9.1. Stability estimates independent of 𝜂

In Section 8, many stability bounds are independent of 𝜂. To summarize, there exists a constant 𝐶 > 0
(independent of 𝜂) such that

‖𝑢𝜂‖𝐻1(0,𝑇 ;𝑉 ) + ‖𝜒𝜂‖𝐿∞(0,𝑇 ;𝐻1
0 (Ω)) + ‖𝑝pore(𝜒𝜂)‖𝐿2(𝑄𝑇 )

+
⃦⃦⃦
𝐵̂𝜂(𝜒𝜂)

⃦⃦⃦
𝐿∞(0,𝑇 ;𝐿1(Ω))

+
⃦⃦⃦
𝜕𝑡𝑏̂𝜂(𝜒𝜂)

⃦⃦⃦
𝐿2(0,𝑇 ;𝐻−1(Ω))

≤ 𝐶. (9.1)

The only stability bound depending on 𝜂 is the one of 𝜕𝑡𝜒𝜂, cf., Lemma 8.4. We recall, there exists a constant
𝐶𝜂 > 0, depending on 𝜂, satisfying

‖𝜕𝑡𝜒𝜂‖𝐿2(𝑄𝑇 ) ≤ 𝐶𝜂. (9.2)

In order to conclude that (𝑢𝜂, 𝜒𝜂) converges towards a weak solution of the unsaturated poroelasticity model,
it will be sufficient to replace the stability result (9.2) by a uniform stability estimate. The remaining discussion
for 𝜂 → 0 can be done along the lines of Sections 8.2 and 8.3.

In the following, we prove a uniform stability bound replacing (9.2) in two steps. We show that the temporal
derivative of the mechanics equation, i.e., (W5)𝜁𝜂 for 𝜁 = 0, is well-defined; and then we use an inf-sup argument
and the uniform stability estimate (9.1).

Lemma 9.1 (Temporal derivative of the mechanics equation). It holds for all 𝑣 ∈ 𝐿2(0, 𝑇 ; 𝑉 )∫︁ 𝑇

0

𝑎(𝜕𝑡𝑢𝜂,𝑣) d𝑡−
∫︁ 𝑇

0

𝛼⟨𝜕𝑡𝑝pore(𝜒𝜂),∇ · 𝑣⟩d𝑡 =
∫︁ 𝑇

0

⟨𝜕𝑡𝑓 ext,𝑣⟩d𝑡. (9.3)

Proof. First, we argue that the mechanics equation (3.2a) holds pointwise on [0, 𝑇 ]. Let 𝑣 ∈ 𝐿2(0, 𝑇 ; 𝑉 ) ∩
𝐶∞(0, 𝑇 ; 𝑉 ). By Lemma 8.9, it holds that∫︁ 𝑇

0

𝑎(𝑢𝜂,𝑣) d𝑡−
∫︁ 𝑇

0

𝛼⟨𝑝pore(𝜒𝜂),∇ · 𝑣⟩d𝑡 =
∫︁ 𝑇

0

⟨𝑓 ext,𝑣⟩d𝑡.

By the fundamental lemma of calculus of variations it follows a.e. in [0, 𝑇 ]

𝑎(𝑢𝜂,𝑣)− 𝛼⟨𝑝pore(𝜒𝜂),∇ · 𝑣⟩ = ⟨𝑓 ext,𝑣⟩, for all 𝑣 ∈ 𝑉 . (9.4)

Applying a standard embedding for Bochner spaces,[18] we can assume wlog. that 𝑢𝜂 ∈ 𝐶(0, 𝑇 ; 𝑉 ) and
𝑝pore(𝜒𝜂) ∈ 𝐶(0, 𝑇 ;𝐿2(Ω)), as 𝜕𝑡𝑢𝜂 ∈ 𝐿2(0, 𝑇 ; 𝑉 ) and 𝜕𝑡𝑝pore(𝜒𝜂) ∈ 𝐿2(𝑄𝑇 ) by (9.2) and assumption (ND2).
Hence, (9.4) holds pointwise on [0, 𝑇 ].

Now we show (9.3). Let 𝑣 ∈ 𝐿2(0, 𝑇 ; 𝑉 ) ∩ 𝐶∞(0, 𝑇 ; 𝑉 ). By Lemma 8.9, it holds that∫︁ 𝑇

0

𝑎(𝑢𝜂, 𝜕𝑡𝑣) d𝑡− 𝛼

∫︁ 𝑇

0

⟨𝑝pore(𝜒𝜂),∇ · 𝜕𝑡𝑣⟩d𝑡 =
∫︁ 𝑇

0

⟨𝑓 ext, 𝜕𝑡𝑣⟩d𝑡.

Since 𝜕𝑡𝑢𝜂 ∈ 𝐿2(0, 𝑇 ; 𝑉 ), 𝜕𝑡𝑝pore(𝜒𝜂) ∈ 𝐿2(𝑄𝑇 ) and 𝜕𝑡𝑓 ext ∈ 𝐿2(0, 𝑇 ; 𝑉 ⋆), integration by parts is well-defined.
Together with (9.4), we obtain∫︁ 𝑇

0

𝑎(𝜕𝑡𝑢𝜂,𝑣) d𝑡− 𝛼

∫︁ 𝑇

0

⟨𝜕𝑡𝑝pore(𝜒𝜂),∇ · 𝑣⟩d𝑡 =
∫︁ 𝑇

0

⟨𝜕𝑡𝑓 ext,𝑣⟩d𝑡.

The assertion follows after applying a density argument allowing for arbitrary test functions in 𝐿2(0, 𝑇 ; 𝑉 )
in (9.3). �
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Lemma 9.2 (Stability estimate for the temporal derivative of the Kirchhoff pressure). There exists a constant
𝐶(12) > 0 (independent of 𝜂) such that

‖𝜕𝑡𝜒𝜂‖𝐿2(𝑄𝑇 ) ≤ 𝐶(12).

Proof. We show that 𝜕𝑡𝑝pore(𝜒𝜂) is uniformly bounded in 𝐿2(𝑄𝑇 ). The assertion follows then from the assump-
tion (ND2), as

‖𝜕𝑡𝜒𝜂‖𝐿2(𝑄𝑇 ) ≤ 𝐶ND,2‖𝜕𝑡𝑝pore(𝜒𝜂)‖𝐿2(𝑄𝑇 ).

By Lemma 9.1, the time derivative of the mechanics equation is well-defined, cf., (9.3). Using a standard inf-sup
argument (introducing the constant 𝐶Ω,is), cf., Lemma B.11, it follows from (9.3) that

‖𝜕𝑡𝑝pore(𝜒𝜂)‖𝐿2(𝑄𝑇 ) ≤ 𝐶Ω,is

(︁
‖𝜕𝑡𝑢𝜂‖𝐿2(0,𝑇 ;𝑉 ) + ‖𝜕𝑡𝑓 ext‖𝐿2(0,𝑇 ;𝑉 ⋆)

)︁
.

Since ‖𝜕𝑡𝑢𝜂‖𝐿2(0,𝑇 ;𝑉 ) is uniformly bounded by (9.1), and (A7) holds true, ‖𝜕𝑡𝑝pore(𝜒𝜂)‖𝐿2(𝑄𝑇 ) is uniformly
bounded, which concludes the proof. �

9.2. Relative (weak) compactness for 𝜂 → 0

Using the same line of argumentation as used in Section 8.2, we can discuss the limit process 𝜂 → 0.

Lemma 9.3 (Convergence of the primary variables). There exist subsequences of {𝑢𝜂}𝜂 and {𝜒𝜂}𝜂, denoted by
the same subscript, and there exist 𝑢 ∈ 𝐻1(0, 𝑇 ; 𝑉 ) and 𝜒 ∈ 𝐻1(0, 𝑇 ;𝐿2(Ω))∩𝐿∞(0, 𝑇 ;𝑄) such that for 𝜂 → 0

𝑢𝜂 ⇀ 𝑢 weakly in 𝐻1(0, 𝑇 ; 𝑉 ),
𝜒𝜂 → 𝜒 strongly in 𝐿2(𝑄𝑇 ),
𝜒𝜂 ⇀ 𝜒 weakly in 𝐿∞(0, 𝑇 ;𝑄),

𝜕𝑡𝜒𝜂 ⇀ 𝜕𝑡𝜒 weakly in 𝐿2(𝑄𝑇 ).

Proof. The proof is analogous to the proofs of Lemma 8.5. �

Lemma 9.4 (Convergence of the coupling terms). There exist subsequences of {𝑢𝜂}𝜂 and {𝜒𝜂}𝜂, denoted by
the same subscript, satisfying for 𝜂 → 0

𝑝pore(𝜒𝜂) ⇀ 𝑝pore(𝜒) weakly in 𝐿2(𝑄𝑇 ),
𝑠w(𝜒𝜂)𝜕𝑡∇ · 𝑢𝜂 ⇀ 𝑠w(𝜒)𝜕𝑡∇ · 𝑢 weakly in 𝐿2(𝑄𝑇 ).

Proof. The proof is analogous to the proof of Lemma 8.6. �

Lemma 9.5 (Initial conditions for the fluid flow). There exist a subsequence of {𝜒𝜂}𝜂, denoted by the same
subscript, satisfying

𝜕𝑡𝑏̂𝜂(𝜒𝜂) ⇀ 𝜕𝑡𝑏̂(𝜒) weakly in 𝐿2(0, 𝑇 ;𝑄⋆),

where 𝜕𝑡𝑏̂(𝜒) is understood in the sense of (W2).

Proof. The proof is analogous to the proof of Lemma 8.7. We only stress that due to construction of 𝑏̂𝜂, one
can show that if 𝜒𝜂 → 𝜒 in 𝐿2(𝑄𝑇 ), it also holds

𝑏̂𝜂(𝜒0) → 𝑏̂(𝜒0) strongly in 𝐿1(0, 𝑇 ;𝐿1(Ω)),

𝑏̂𝜂(𝜒𝜂) ⇀ 𝑏̂(𝜒) strongly in 𝐿1(0, 𝑇 ;𝐿1(Ω)),

for 𝜂 → 0. Hence, (W2) follows from (W2)𝜂 for 𝜂 → 0. �
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Figure 2. Solution at time 𝑇 = 3, at refinement level 4, cf., Table 1. (A) 𝑥-component of 𝑢.
(B) 𝑝w. (C) 𝑠w.

Lemma 9.6 (Initial condition for the volumetric deformation). The volumetric deformation ∇·𝑢 satisfies (W3).

Proof. The proof is almost identical to the proof of Lemma 8.8. Standard compactness arguments and (W3)𝜂

yield ∫︁ 𝑇

0

𝑎(𝜕𝑡𝑢,𝑣) d𝑡+
∫︁ 𝑇

0

𝑎(𝑢− 𝑢0, 𝜕𝑡𝑣) d𝑡 = 0

for all 𝑣 ∈ 𝐻1(0, 𝑇 ; 𝑉 ) with 𝑣(𝑇 ) = 0. Hence, 𝑢(0) = 𝑢0 in 𝑉 , with 𝑢0 satisfying (3.1); note that 𝑢 ∈ 𝐶(0, 𝑇 ; 𝑉 )
by a Sobolev embedding. Therefore also ∇ · 𝑢(0) = ∇ · 𝑢0 in 𝐿2(Ω), which yields (W3). �

9.3. Identifying a weak solution for 𝜂 → 0

Finally, we conclude the existence of a weak solution to the unsaturated poroelasticity model.

Lemma 9.7 (Limit satisfies (W1)–(W4)). The limit (𝑢, 𝜒) is a weak solution of (2.12)–(2.15), cf., Defini-
tion 3.1.

Proof. The proof follows directly from the convergence results in Lemmas 9.3–9.6 together with the validity of
the regularized problem (4.4) for 𝜁 = 0. �

10. Numerical test

We illustrate the convergence properties of the numerical scheme introduced in Sections 4 and 5. For this, we
consider a numerical example based on a manufactured solution to the original continuous model (2.1) and (2.2)
with corresponding source terms. Subsequently, we solve the regularized and discretized model, and study the
convergence towards the analytical solution as the discretization and regularization parameters tend towards
zero. In the above analysis, the convergence of the approximations is used to prove the existence of solutions,
and no convergence order is provided. Therefore, this order is left aside here as well.

We consider a poroelastic medium with constitutive laws given by the van Genuchten–Mualem relations (2.3)
and the equivalent pore pressure (2.4). In particular, let Ω = (0, 1)2 denote the medium with the properties
𝜑 = 0.1, 𝑐w = 0, 𝜅abs = 10−8, 𝑁 = 109, 𝛼 = 1, 𝜇 = 108, 𝜆 = 107, 𝛼vG = 0.02, 𝑛vG = 2.5, 𝑠w,res = 10−6,
𝑠𝜀 = 0.01 – the same set of parameters is considered in Section A.

For the original model (2.1) and (2.2), we consider the manufactured solution for (𝑥, 𝑦) ∈ (0, 1)2, 𝑡 ∈ [0, 3]

𝑢(𝑥, 𝑦, 𝑡) = 𝑡 · 10−5

[︂
sin(2𝜋𝑥) sin(2𝜋𝑦)
sin(3𝜋𝑥) sin(3𝜋𝑦)

]︂
, 𝑝w(𝑥, 𝑦, 𝑡) = 𝑡 · 10 sin(2𝜋𝑥) sin(𝜋𝑦),
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Table 1. Convergence of the (physical) fluid pressure and displacement for consecutively
refined spatial and temporal discretization, and regularization.

Level ℎ 𝜏 𝜁 𝜂 ‖𝑝w(𝜒̄ℎ𝜏 (𝑇 ))− 𝑝w(𝑇 )‖𝐿2(Ω) ‖𝑢̄ℎ𝜏 (𝑇 )− 𝑢(𝑇 )‖𝐿2(Ω)

1 1/20 0.2 1 1e-9 1.70e1 7.12e-6
2 1/40 0.1 0.25 0.25e-9 8.11e0 1.77e-6
3 1/80 0.05 0.0625 0.0625e-9 4.01e0 4.42e-7
4 1/160 0.025 0.015625 0.015625e-9 2.00e0 1.11e-7

with the corresponding transform 𝜒 for 𝑝w. The solution combines both saturated and unsaturated zones. The
configuration at final time 𝑇 = 3 is displayed in Figure 2.

We solve the regularized and discretized approximation of the continuous model, cf., Sections 4 and 5, with
source terms corresponding to the manufactured solution of the continuous model (2.1) and (2.2). For this
we consider four levels of structured quadrilateral meshes, time partitions, and regularization parameters, as
displayed in Table 1. For the discretization of the displacement, we employ piecewise quadratic elements, which,
in combination with the finite volume formulation based on piecewise constant functions, are inf-sup stable.
We measure the total approximation error – we simply consider the 𝐿2(Ω) errors of the pressure, 𝑝w, and
displacement, 𝑢, at the final time 𝑇 = 3. The evolution of errors is displayed in Table 1.

We can observe numerical convergence, consistent with the above analysis. Further study of accuracy prop-
erties, as well as existence and uniqueness, of the discretization of the unregularized model are planned in the
future.

Appendix A. Practical set of constitutive laws

In this section, we consider the constitutive laws for 𝑠w, 𝜅rel and 𝑝pore, as presented in Section 2.1, and
show that in this case that the existence theory presented in this work is applicable. In particular, we consider
the van Genuchten–Mualem model (2.3) and the equivalent pore pressure (2.4). Furthermore, we consider a
non-degenerate system with 𝑠w,res > 0 and 𝑠𝜀 > 0, ensuring uniformly positive values for the fluid saturation
and relative permeability. Finally, we consider 𝑏 as given in (2.6). In the following, we check all assumptions
on the constitutive laws, i.e., both the assumptions (A0)–(A4) and the conditions (ND2) and (ND3). We also
check the statement made in Remark 3.2.

Assumption (A0). By definition, it holds 𝑠w(R) = (𝑠w,res, 1] and 𝜅rel(𝑠w) > 0 for any 𝑠w ∈ (𝑠w,res, 1].

Assumption (A2). By definition, 𝑠w is differentiable with a non-negative and uniformly bounded derivative
𝑠′w, and it holds that 𝑠′w(𝜒) = 𝑠′w(𝑝w(𝜒))

𝜅̂rel(𝜒) ≥ 0 for all 𝜒 ∈ R.

Assumption (A3). By definition, it holds that 𝑝′pore(𝑝w) = 𝑠w(𝑝w) and hence 𝑝′pore(𝜒) = 𝑠w(𝜒)
𝜅̂rel(𝜒) . In addition,

for 𝑝w ≥ 0 it holds that 𝑠w(𝑝w) = 1 and, consequently, 𝑝pore(𝑝w) = 𝑝w as well as 𝑝pore(𝜒) = 𝜒 for 𝜒 ≥ 0.

Assumption (A1)/(A1)𝜂. We consider simultaneously (A1) and (A1)𝜂, with 𝑏̂ = 𝑏̂𝜂 for 𝜂 = 0. It holds that

𝑏̂′𝜂(𝜒) = 𝜑0
𝑠′w(𝑝w(𝜒))
𝜅̂rel(𝜒)

+ 𝑐w𝜑0
𝑠w(𝜒)
𝜅̂rel(𝜒)

+
(︂

1
𝑁

+ 𝜂

)︂
𝑠w(𝜒)2

𝜅̂rel(𝜒)
≥ 0, (App. A.1)

where the positivity results since 𝑠w is non-decreasing, and 𝑠w and 𝜅̂rel are positive functions. From (App. A.1),
it becomes also clear that 𝑏̂′𝜂 is uniformly positive if 𝜂 > 0. In fact, if 𝑐w > 0 or 1

𝑁 > 0, i.e., the fluid or the grains
are compressible. The uniform positivity of 𝑏̂′𝜂 also follows for 𝜂 = 0, cf., Remark 8.10. Without presenting any
calculations, we stress that (A1)𝜂 also follows in the degenerate case 𝑠w,res = 𝑠𝜀 = 0.
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Assumption (A4). Using the definition of the equivalent pore pressure (2.4) and the saturation (2.3), it holds
that 𝑝′pore(𝑝w) = 𝑠w(𝑝w) ∈ [0, 1]. Consequently, for all 𝑝w ∈ R, one has

d
d𝑝w

(︂
𝑝pore

𝑠w

)︂
= 1− 𝑝pore(𝑝w)𝑠′w(𝑝w)

𝑠w(𝑝w)2
≥ 1.

Here, we note that by definition for 𝑝w ≥ 0 it holds 𝑠w ≡ 1 and therefore 𝑠′w(𝑝w) = 0, and for 𝑝w < 0 it holds
𝑠′w(𝑝w) > 0 and 𝑝pore(𝑝w) < 0, resulting in the above lower bound. In addition, by the definition of the Kirchhoff
transform (2.10) and the fact that 𝜅rel(𝑠w) ∈ [0, 1] for all 𝑠w ∈ (0, 1], it holds that 𝜒′(𝑝w) = 𝜅rel(𝑠w(𝑝w)) ≤ 1.
Hence, using the chain rule, 𝑝pore

𝑠w
satisfies the uniform growth condition (A4) with

d
d𝜒

(︂
𝑝pore

𝑠w

)︂
=

d
dpw

(︂
𝑝pore

𝑠w

)︂
1

𝜒′(𝑝w)
≥ 1.

Condition (ND2). A simple calculation yields 𝑝′pore(𝜒) = 𝑠w
𝜅̂rel

, which is bounded from below and above in the
non-degenerate case, since 𝑠w and 𝜅̂rel are uniformly positive.

Condition (ND3). First, we note that condition (ND3) is automatically satisfied for 𝜒 ≥ 0 since 𝑠w ≡ 𝜅̂rel ≡ 1
and thereby 𝑠w(𝜒) − 𝑝′pore(𝜒) ≡ 0. We focus on 𝜒 < 0. For the equivalent pore pressure with 𝑝′pore = 𝑠w

𝜅̂rel
, the

condition (ND3) equivalently reads (the arguments are suppressed)

𝐾dr

!
≥ 𝑓ND,3(𝜒) :=

𝛼2

2

(︀
𝑠w(𝜒)− 𝑝′pore(𝜒)

)︀2
𝑏̂′(𝜒)

=
𝛼2

2
𝜅̂rel

(︀
1− 𝜅̂−1

rel

)︀2
𝜑0

𝑠′w
𝑠2
w

+ 𝑐w
𝑠w

+ 1
𝑁

for all 𝜒 ≤ 0. (App. A.2)

If the bulk is sufficiently stiff (meaning that 𝐾dr is sufficiently large), and the system is just slightly compressible,
i.e., 𝑐w and/or 1

𝑁 are positive, there exists a regularization parameter 𝑠𝜀 > 0 such that (ND3) is satisfied.
In this sense, we consider a realistic example material, which is relevant in the context of unsaturated

poroelasticity: a sandy clay loam saturated with water. Typical values [16, 44] of the model parameters are
given by 𝛼vG = 0.02, 𝑛vG = 2.5, 𝜑0 = 0.4, 𝛼 = 1, 𝑁 = 109 Pa, 𝑐w = 10−10 Pa−1. We plot the right hand side
expression of (App. A.2) for different regularization parameters, 𝑠𝜀 ∈ {0.01, 0.05, 0.1}, and residual saturations,
𝑠w,res ∈ {10−6, 10−2}, cf., Figure A.1. We observe, that for each scenario, the right hand side expression
of (App. A.2) is uniformly bounded. Hence, if 𝐾dr is larger than this bound, (ND3) holds. Comparing with the
realistic value 𝐾dr ∼ 108 Pa, we conclude that the condition (ND3) can be indeed expected to be satisfied for
certain materials in geotechnical applications.

Discussion of (W1). Assume 𝜒 ∈ 𝐿2(𝑄𝑇 ). By the definition of 𝑠w, 𝑠w(𝜒) has values in [0, 1] a.e., and therefore
𝑠w(𝜒) ∈ 𝐿∞(𝑄𝑇 ). Furthermore, one has 𝑝pore(𝜒) =

∫︀ 𝑝w(𝜒)

0
𝑠w(𝑞)𝑑𝑞 =

∫︀ 𝜒

0
𝑠w(𝑥)
𝜅̂rel(𝑥) d𝑥. Hence, assuming 𝑠𝜀 > 0, it

holds that 𝜅rel is uniformly bounded from below, and ‖𝑝pore(𝜒)‖𝐿2(𝑄𝑇 ) ≤ ‖ 𝑠w
𝜅rel

‖𝐿∞(𝑄𝑇 ) ‖𝜒‖𝐿2(𝑄𝑇 ) < ∞. This
gives 𝑝pore(𝜒) ∈ 𝐿2(𝑄𝑇 ).

Appendix B. Useful results from literature

Lemma B.1 (Discrete Poincaré inequality [19]). Let 𝒯 be an admissible mesh, cf., Definition 5.1, and 𝑢 a
piecewise constant, scalar function. Then there exists a constant 𝐶Ω,DP ∈ (0,diam(Ω)] such that

‖𝑢‖𝐿2(Ω) ≤ 𝐶Ω,DP‖𝑢‖1,𝒯 ,

where ‖ · ‖1,𝒯 denotes the discrete 𝐻1
0 (Ω) norm, introduced in Definition 5.3.
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Figure A.1. The dependence of 𝑓ND,3 from (App. A.2), for various values of 𝑠w,res and 𝑠𝜀.

Lemma B.2 (Discrete trace inequality [20]). Let 𝒯 be an admissible mesh, cf., Definition 5.1, and 𝑢 a piecewise
constant function. Let 𝛾(𝑢) denote the restriction of 𝑢 onto the boundary, defined by 𝛾(𝑢) = 𝑢𝐾 on 𝜎 ∈ ℰext∩ℰ𝐾 ,
𝐾 ∈ 𝒯 . Then there exists a constant 𝐶tr > 0 such that

‖𝛾(𝑢)‖𝐿2(𝜕Ω) ≤ 𝐶tr

(︀
‖𝑢‖1,𝒯 + ‖𝑢‖𝐿2(Ω)

)︀
,

where ‖ · ‖1,𝒯 denotes the discrete 𝐻1
0 (Ω) norm, introduced in Definition 5.3.

Lemma B.3 (Stability of discrete gradients [19]). Let 𝒯 be an admissible mesh of some domain Ω, cf., Defi-
nition 5.1, and 𝑢 ∈ 𝐻1

0 (Ω). Define a piecewise constant function 𝑢̃ by

𝑢̃(𝑥) :=
1
|𝐾|

∫︁
𝐾

𝑢(𝑥) d𝑥, 𝑥 ∈ 𝐾 ∈ 𝒯 .

Then there exists a constant 𝐶 > 0 (independent of ℎ for regular meshes) such that

‖𝑢̃‖1,𝒯 ≤ 𝐶‖𝑢‖𝐻1(Ω).

Lemma B.4 (Corollary of Brouwer’s fixed point theorem [14]). Let ⟨·, ·⟩ denote the standard R𝑑 scalar product
and let 𝐹 : R𝑑 → R𝑑 be a continuous function, satisfying

⟨𝐹 (𝑥),𝑥⟩ ≥ 0 (App. B.1)

for all 𝑥 ∈ R𝑑 with ⟨𝑥,𝑥⟩ ≥ 𝑀 for some fixed 𝑀 ∈ R+. Then there exists a 𝑥⋆ ∈ R𝑑 with ⟨𝑥⋆,𝑥⋆⟩ ≤ 𝑀 and
𝐹 (𝑥⋆) = 0.

Lemma B.5 (Binomial identity). For 𝑎, 𝑏 ∈ R it holds that

𝑎(𝑎− 𝑏) =
1
2
(︀
𝑎2 + (𝑎− 𝑏)2 − 𝑏2

)︀
. (App. B.2)

Lemma B.6 (Summation by parts). Given two sequences (𝑎𝑘)𝑘∈N0 , (𝑏𝑘)𝑘∈N0 ⊂ R, for all 𝑁 ∈ N it holds that

𝑁∑︁
𝑛=1

𝑎𝑛(𝑏𝑛 − 𝑏𝑛−1) = 𝑎𝑁𝑏𝑁 − 𝑎1𝑏0 −
𝑁−1∑︁
𝑛=1

𝑏𝑛(𝑎𝑛+1 − 𝑎𝑛).
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Lemma B.7 (Discrete Grönwall inequality [15]). Let (𝑎𝑛)𝑛 ⊂ R+, (𝜆𝑛)𝑛 ⊂ R+, 𝐵 ≥ 0. Assume for all 𝑛 ∈ N
it holds that 𝑎𝑛 ≤ 𝐵+

∑︀𝑛−1
𝑘=0 𝜆𝑘𝑎𝑘. Then it follows 𝑎𝑛 ≤ 𝐵

∏︀𝑛−1
𝑘=0(1+𝜆𝑘). In particular, if 𝜆𝑘 = 𝜆𝑇

𝑁 for all 𝑘 ∈ N
for some 𝜆, 𝑇 ∈ R+ and 𝑁 ∈ N, it holds that 𝑎𝑁 ≤ 𝐵 exp(𝜆𝑇 ).

Lemma B.8 (Eberlein–Šmulian theorem [14]). Assume that 𝐵 is a reflexive Banach space and let {𝑥𝑛}𝑛 ⊂ 𝐵
be a bounded sequence in 𝐵. Then there exists a subsequence {𝑥𝑛𝑘

}𝑘 that converges weakly in 𝐵.

Lemma B.9 (Relaxed Aubin–Lions lemma [38]). Let {𝑓𝑛}𝑛 ⊂ 𝐿𝑝(0, 𝑇 ;𝐵), 1 ≤ 𝑝 < ∞, 𝐵 a Banach space.
{𝑓𝑛}𝑛 is relatively compact in 𝐿𝑝(0, 𝑇 ;𝐵) if the following two are fulfilled:

– {𝑓𝑛}𝑛 is uniformly bounded in 𝐿𝑝(0, 𝑇 ;𝑋), for 𝑋 ⊂ 𝐵 with compact embedding.
–
∫︀ 𝑇

𝜏
‖𝑓𝑛(𝑡)− 𝑓𝑛(𝑡− 𝜏)‖𝑝

𝐵 d𝑡 ≤ 𝒪(𝜏), as 𝜏 → 0.

For the second property it is sufficient that {𝜕𝑡𝑓𝑛}𝑛 is uniformly bounded in 𝐿𝑝(0, 𝑇 ;𝐵).

Lemma B.10 (Riesz–Frechet–Kolmogorov compactness criterion [10]). Let 𝐹 be a bounded set in 𝐿𝑝(R𝑁 ) with
1 ≤ 𝑝 <∞, 𝑁 ∈ N. Assume that

lim
|ℎ|→0

‖𝑓(·+ ℎ)− 𝑓(·)‖𝐿𝑝(R𝑁 ) = 0 uniformly in 𝑓 ∈ 𝐹.

Then the closure of 𝐹 |Ω := {𝑓 : Ω → R | 𝑓 ∈ 𝐹} is compact for any measurable set Ω ⊂ R𝑁 with finite measure.

Lemma B.11 (Standard inf-sup argument [6]). Let 𝑉 and 𝑄 be Hilbert spaces, and let 𝐵 be a linear continuous
operator from 𝑉 to 𝑄′. Denote by 𝐵𝑡 the transposed operator of 𝐵. Then, the following two statements are
equivalent:

– 𝐵𝑡 is bounding, i.e., there exists a 𝛾 > 0 such that ‖𝐵𝑡𝑞‖𝑉 ′ ≥ 𝛾‖𝑞‖𝑄 for all 𝑞 ∈ 𝑄.

– There exists a 𝐿𝐵 ∈ ℒ(𝑄′, 𝑉 ) such that 𝐵(𝐿𝐵(𝜉)) = 𝜉 for all 𝜉 ∈ 𝑄′ with ‖𝐿𝑏‖ =
1
𝛾

=: 𝐶Ω,is.

Lemma B.12 (Properties of energies based on the Legendre transformation [1]). Given 𝑏 : R → R continuous
and non-decreasing, i.e., with a differentiable convex potential 𝜙 : R → R, we define the energy 𝐵 via the
Legendre transformation of 𝜙 evaluated in 𝑏

𝐵(𝑧) := sup
𝜎∈R

(𝑏(𝑧)𝜎 − 𝜙(𝜎) + 𝜙(0)) =
∫︁ 𝑧

0

(𝑏(𝑧)− 𝑏(𝑠)) d𝑠 ≥ 0.
It holds for all 𝑥, 𝑦 ∈ R and for all 𝛿 > 0

0 ≤ 𝐵(𝑥),
𝐵(𝑥)−𝐵(𝑦) ≤ (𝑏(𝑥)− 𝑏(𝑦))𝑥,

|𝑏(𝑥)| ≤ 𝛿 𝐵(𝑥) + sup
|𝑦|≤𝛿−1

|𝑏(𝑦)|.
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