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ABSTRACT Magnetic resonance imaging has achieved an increasingly important role in the clinical
work-up of renal diseases such chronic kidney disease (CKD). A large panel of parameters have been
proposed to diagnose CKD among them total kidney volume (TKV) which recently qualified as biomarker.
Volume estimation in renal MRI is based on image segmentation of the kidney and/or its compartments.
Beyond volume estimation renal segmentation supports also the quantification of other MR based parameters
such as perfusion or filtration. The aim of the present article is to discuss the recent existing literature on renal
image segmentation techniques and show today’s limitations of the proposed techniques that might hinder
clinical translation. We also provide pointers to open source software related to renal image segmentation.

INDEX TERMS Renal MRI, image segmentation, deep learning.

I. INTRODUCTION

Magnetic resonance imaging (MRI) has achieved an increas-
ingly important role in the clinical work-up of renal dis-
eases [1]. Today a panel of parameters can be measured
minimal-invasive that can play an important step for the diag-
nosis and monitoring of renal diseases. This comprises among
others assessment of kidney volumes [2], [3], microstruc-
ture via diffusion weighted imaging [4], hemodynamic
parameters by arterial spin labeling (ASL) [5], or dynamic
contrast-enhanced (DCE-) MRI [6], [7] and eventually oxy-
genation by blood oxygen level dependant (BOLD) [8]. Total
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kidney volume (TKYV) is the most accessed parameter in
patients with autosomal dominant polycystic kidney disease
(ADPKD). It has been shown that with disease progres-
sion the total volume of the kidney increases while kidney
function declines [9]. TKV has been recently qualified as
a biomarker by the Federal Drug Association (FDA) [10]
for use in drug development in ADPKD. It is also the only
MRI-based biomarker so far. Figure 1 shows an example of
patients with ADKPD at different disease stages and there-
fore, increased load of cysts. The TKV is depicted by the
green lines in the images. The segmentation of the kidney to
derive the total kidney volume is delineated in for the left and
right kidney respectively. Such segmentation can be either
derived by manual annotation which is tedious and operator
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FIGURE 1. Example of MRI of patients with different stages of cyst load. The segmentation of the kidney is in green for the left and right
kidney respectively.Repeating such segmentation for all slices of the data set enables the calculation of the TKV.

dependant, or by automated segmentation algorithms as
shown in Figure 2.

Image segmentation is therefore an important step in the
assessment of TKV but also can be used to derive kid-
ney contours and its compartments i.e. the renal cortex and
medulla [12], [13], and renal tumors [14] or cysts [15]-[17].
This drives further the automation of voxel based analy-
sis of functional MRI techniques like perfusion, diffusion
or BOLD to help improving diagnosis in kidney diseases like
renal hydronephrosis, renal hypoplasia and chronic kidney
disease (CKD) related to diabetes, cardiovascular disease,
hypertension, and obesity. Furthermore, assessment of graft
function in renal transplantation via volumetry and applica-
tion in renal artery stenosis (RAS) have been reported. Image
segmentation has also been reported in the treatment of renal
tumors via cryoablation [18].

A challenge in renal image segmentation is similar signal
intensities of the renal tissue to adjacent liver, spleen, ver-
tebrae, and parts of the gastrointestinal tract. This problem
increases in thin subjects where the fat surrounding the kid-
ney is lacking [19]. Thus signal intensity based approaches
like thresholding alone do not provide sufficient information
for a robust segmentation. More complex approaches like
shape analysis of the kidney is needed. This involves regu-
larization to provide required robustness to noise, low con-
trast, heterogeneity, and highly variable shape of the organ.
Thereby, also multi-modal approaches [15] seem promising
incorporating complementary information e.g. from T1-and
T2-weighted images.

The Working Group 2 of the COST (European Cooperation
in Science and Technology) action PARENCHIMA (Mag-
netic Resonance Imaging Biomarkers for Chronic Kidney
Disease) (http://www.renalmri.org) investigates renal data
analysis algorithms including image registration [20] and
segmentation to provide a core software library for a com-
prehensive and standardized approach to renal data analysis.
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In 2012, Zollner et al. published a review on image seg-
mentation techniques for renal MRI summarizing existing
literature at that time [2]. The survey of Torres et al. reviews
beside MRI also methods applied to computer tomography
and ultrasound [3]. The aim of the present article is to discuss
the recent existing literature on renal image segmentation
techniques and show today’s limitations of the proposed
techniques that might hinder clinical translation. We also
provide pointers to open source software related to renal
image segmentation.

Il. METHODS

A. SEARCH STRATEGY AND SELECTION CRITERIA

We performed a computer assisted search on PubMed
(https://pubmed.ncbi.nlm.nih.gov/). We restricted the search
to the following selection criteria:

o papers published between January 2013 and Decem-
ber 2020

« studies using magnetic resonance images

« study on human subjects

« describe image segmentation of the kidney

« published in English language

From this the following query was derived:

(“kidney”’[MeSH Terms] OR “kidney”’ [All Fields]
OR “kidneys”[All Fields]) AND (‘“‘segmenta-
tion” [All Fields] OR “‘segmentations’ [All Fields]
OR “segmented”[All Fields] OR ‘“segment-
ing”[All Fields]) AND (‘‘magnetic resonance
imaging”’[MeSH Terms] OR (‘““magnetic”’[All
Fields] AND ‘“‘resonance”[All Fields] AND
“imaging”’ [All Fields]) OR “magnetic resonance
imaging”’[All Fields] OR “mri”[All Fields])
AND (““human’’[All Fields] OR “humans”’[MeSH
Terms]) AND (2013/01/01:2020/12/31[Date - Pub-
lication] AND “English”[Language])

VOLUME 9, 2021
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FIGURE 2. Example of TKV segmentation in ADPKD using a deep learning multi observer approach. Reproduced from Kline et al. [11].

The found papers were reviewed to exclude reviews, case
reports and papers not focusing the kidney and segmentation
such as studies on cardio-renal syndromes, clinical imaging
studies and image acquisition developments.

B. SEARCH RESULTS

The PubMed search resulted in 110 papers. Out of these
42 papers passed our manual review of the automated search
and were included in this review.

Ill. IMAGE SEGMENTATION TECHNIQUES

One of the approaches to classification of the segmentation
methods stems from needed amount of user participation in
the process of ROI delineation. Accordingly, the methods
are manual, semi—automated (with limited user intervention)
and automated (i. e. fully automated). The obvious trend,
especially considering the increasing demand for fast and
accurate extraction of medical diagnostic information from
3D and 4D datasets, is to focus on development of automated
and semi—automated techniques. The most recent and high
performing automated methods are deep learning segmenta-
tion approaches. However, their design and training phases
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typically require large amounts of labeled data for which
manual labeling methods are extensively used.

The amount of automation of the reviewed methods will
be indicated in the following. Moreover, to better illustrate
the principles, performance, and comparison of selected seg-
mentation techniques experiments were carried out on a set of
images downloaded from a free and openly available kidney
MRI database.

A. MANUAL SEGMENTATION
Manual segmentation of the kidney is used in different
contexts:

o to delineate kidney region boundaries in situations
where automated tools are not incorporated in the clini-
cal setting or in the kidney research environment,

« for high quality labeling of imaging data in the training
phase of deep learning end-to-end workflow designs,
and

o to obtain ‘“ground truth” either from a single opera-
tor or by consensus within a panel of operators (typ-
ically experienced abdominal radiologists) in order to
assess performance of (semi)automated segmentation
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algorithms. The inference part of a deep learning
approach is then regarded as a fully automated method.

The intrinsically laborious and time—consuming manual
techniques are used as a starting point for semi—automated
ones [21], [22]. Image editing software applications, for
example Analyze in [16], [23]; MRIcron in [24]; Mango
in [22], are used for tracing the kidney boundaries. Results
of manual segmentation play the role of a reference (ground
truth) data to the other methods, e.g. in [16].

Stereology data, produced by labeling the nodes of
a sparse regular grid superimposed on the image by a
trained operator, are used for renal cysts and parenchyma
volumetric measurements [25]. Stereology is not a segmen-
tation method, but it is much faster compared to planime-
try [24]. Stereology was used in [23] to generate seed
points for semi—automated kidney segmentation. The pro-
cessing times were 45-90 min., 10-20 min., and 7s, respec-
tively for planimetry, stereology, and automatic mathematical
morphology-based segmentation.

Due to the subjective nature of the manual methods,
the effects of inter-observer and intra—observer variability
have to be quantified. A consensus planimetry tracing by a
few experts should be considered as a reference for evaluation
of automated techniques performance.

B. IMAGE-PROCESSING-BASED SEGMENTATION
METHODS

The image segmentation techniques addressed in this section,
loosely classified as ‘““image—processing—based”’, originate in
a variety of different theoretical approaches to characteriza-
tion and differentiation of the regions of interest (ROIs). The
considered ROIs are the kidney organ as a whole (separated
from other abdominal structures through the segmentation),
and its internal structures — pelvis, medulla, cortex, and/or
cysts. In the reviewed papers, the distinct properties of the
regions (used to quantify voxels) are image intensity and,
in the cases of DCE-MRI, time courses of it. One assumes
that voxels belonging to a region share the selected property
and that property takes different values in the other ROIs.
Some dedicated, advanced algorithms are designed to detect
and quantify glomeruli, based on their shape and convexity
of the intensity spatial function [26].

Image—processing—based methods [27]-[31] applied to
renal MRI segmentation in the reviewed papers are

« intensity thresholding [19], [22], [32]-[35],

« seeded region growing [16], [21], [33],

« watershed segmentation [23],

« intuitionistic fuzzy sets [35],

« graph cuts [36]-[38],

« mathematical morphology operations [29], [30],

« connected component analysis [16], [33].

Typically, these methods do not require much com-
putation time. Some of them can be implemented on a
parallel-processor machine. On the other hand, they usually
do not produce accurate segmentation results, even after post-
procecessing. In some cases, they are used as a preliminary
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step for further, more accurate segmentation with more com-
plex and computation—time demanding algorithms.

Intensity thresholding 1is perhaps the most intuitive
segmentation technique. In the simplest case, for input
gray—level images (e.g. T1-weighted MRI), the output image
is a binary one of the same size as the input. If the intensity
I(i,j,k) of a voxel at coordinates (i,j,k) is larger than a specified
threshold ¢, the output image voxel S(i,j,k) is assigned one of
two values, say 1. In the other case, it takes the other value:

. I i IG,j, k) >t
SG,j, k)= 1
0., k) 0 otherwise M

In thresholding, image intensity is the only property taken
into account to disinguish voxels located inside objects from
those in the background. No spatial information, such as the
region shape or voxel neighbourhood, is considered. A post-
processing step of the resulting binary image is then needed
to obtain geometric representation of the organs and tissues
of interest. Moreover, thresholding result depends on image
random noise, always present in MRI and causing rough
appearance of otherwise smooth object edges. This might
increase segmentation errors, e.g. resulting in inaccurate esti-
mation of kidney geometrical parameters. On top of that,
due to image intensity/contrast nonuniformity, e.g. caused by
spatially varying sensitivity of the MR scanner coils, single
value of threshold 7 (so—called global threshold) is not appro-
priate. It should be locally adjusted to reflect spatially varying
image properties, e.g. intensity profile around the edges.
Optimum threshold selection is a classical topic in image
processing; one of the most frequently used algorithms is the
one proposed in [39], based on image regions histogram. For
two voxel classes (foreground and background), the optimum
Otsu’s threshold maximizes the inter—class intensity variance.

Example 1: To illustrate the operation and performance
of selected methods of image segmentation applied to kid-
ney MRI, T1-weighted (T1w) in—phase and T2-weighted
(T2w) volumes stored for healthy subject #1 in CHAOS
database [40], were used. The Tlw image consists of 35
5.5-mm-thick slices. Its in—plane pixel size is 1.895 mm x
1.895 mm. Applying the ITK-SNAP program [41] at mutual
information setting, the T2w image was co-registered and
resampled to the T1w volume. In brief, the rigid registra-
tion model was selected in the ITK-SNAP context menu.
The T2w was set the “moving” image and mutual infor-
mation served as the similarity metric. The *“multireso-
lution schedule” comprised scales from 8x down to Ix.
The moving image was finally resampled to the T1w mesh
using linear interpolation. The corresponding expert—-marked
ground-truth kidney regions in the slices are available in
the CHAOS database as PNG files. The right kidney image
was selected in this example; its sections are visible in slices
#11-#28. Figure 3 shows slices #16 for T1w, co-registered
T2w, and the corresponding ground-truth binary objects.
A MATLAB® (The MathWorks Inc., Natick, MA, USA)
code was developed in—house for the task of analysis and
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FIGURE 3. Example MRI slices #16 for subject #1 from CHAOS database: T1w in—phase (left); T2w registered to T1w (middle-left); expert annotation -
right kidney in dark blue, left kidney in light blue (middle-right). Right: visualization of an expert-annotated right-kidney ground-truth (G-T) 3D region

inside a cuboid volume of interest (VOI).

segmentation of the considered T1w and T2w images. It was
made freely available in the supplemental files to this paper
on GitHub (https://github.com/MMIV-ML/KidneySegm)
and Code Ocean (https://codeocean.com/capsule/b2a34704-
867e-4545-b069-10699685a26b/).

Altogether, there are 10,076 voxels representing the right
kidney in the MRI of subject #1. The values of mean and
standard deviation of those voxels intensity are, respectively,
307.1+61.6 for Tlw and 658.44+129.0 for T2w. Although
the coefficient of variation for both T1w and T2w inside the
organ ROI seemed to be quite small (around 0.2), a closer
inspection showed the actual range of kidney T1w intensity
values overlapped much more with the values representing
the surrounding organs, compared to the corresponding T2w
case. One can find in fact, the histogram of T1w images is
far from being bimodal, Fig. 4. There is no peak representing
the kidney and a very well separated peak for its background,
which would lead to a standard threshold placement in a
histogram valley. In general, multilevel thresholding meth-
ods [42]-[44] better suit extraction of the whole—organ ROL.
Among the two kinds of MR images, T2—weighted ones are
more specific for the kidney ROI segmentation task (Fig.4,
right column). This is illustrated in Fig. 5 where results of
T1w and T2w image thresholding within the ranges limited
by respective mean =+ standard deviation values are compared
(in the last two rows).

Apparently, it seems difficult to separate the kidney ROI
from other objects in the T1w—thresholded image (/>245 and
1<370). This is more easy in the case of binary images
obtained via T2w thresholding (/>530 and /<790).

One can see in Fig. 6 that retaining the largest connected
components (CC) in thresholded T2w slices allows better
identification of the kidney organ silhouette. (Other condi-
tions could include selection of the most-kidney—shaped CC
objects or the ones whose centroids are closest to the likely
localization of the organs estimated from anatomical atlas.)
Still the shapes of the identified objects are different from the
ground-truth ones. They can be made closer to the ground
truth via postprocessing, e.g. through holes filling.

An alternative approach to thresholding is the region—
growing segmentation. This technique needs seed points
placed inside the kidney region, e.g. manually or taken
from anatomical atlas. In this example, the seed points were
computed as 3 x 3 pixel squares located at centroids of the
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regions shown in the lower row of Fig. 6 (marked by red
crosses).

To form the initial region for region—growing segmentation
in a zero—valued image A, the seed pixels were assigned the
value of 1. The mean m of this region in T2w image was then
computed. Each 4—connected neighbor of each seed point was
then added to the region, on the conditions it has not been
the region member already and its intensity value was within
the range (m—d,m+d), where d is a hyperparameter of the
algorithm. In this example, d=0.2m for slices #11-#26 and
d=0.16m for slice #29. Each time a new pixel was added,
the region mean value m was updated, until no 4—neighbor
had satisfied the region inclusion criteria. The results are
shown in the upper row in Fig. 7. The m value update allows
the algorithm to adapt to T2w intensity variation within the
organ, especially noticeable in the case of slice #16. The
large opening visible in the upper part of this kidney section
in Figs. 5 and 6 (caused by T2w local average value increasing
from its lower left to upper right) is much reduced in Fig. 7.

Post processing of the results of region—growing segmen-
tation, with the use of mathematical morphology operations,
allows filling the holes in the regions and somewhat smooth-
ing their boundaries, as shown in the middle row of Fig. 7.
Visual comparison with the ground truth is illustrated in the
bottom row of this figure. The corresponding quantitative
metrics are given in Table 1 and discussed in Section IV.

The whole-organ kidney region obtained in result of T2w
image segmentation can be used as a mask for further delin-
eation of the kidney internal parts. Figure 8 illustrates an
attempt to extraction of the renal cortex via T1w thresholding:
the intensity / of all the T1w pixels within the kidney mask
being /<=260 and />=450 was turned down to zero.

Other segmentation techniques, especially those involving
machine and deep learning can be successfully used to refine
the initial segmentation resulting from application of the basic
approaches illustrated in this example.

C. MODEL-BASED IMAGE SEGMENTATION

Imposing some reasonable geometrical constraints on the
expected result of image segmentation may help in extract-
ing the target region among other objects, such as those
representing the abdominal organs that surround the kidney.
The constraints can also improve robustness of the result,
e.g. to image noise or to local average intensity variations.
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FIGURE 4. Histograms of T1w (left column) and T2w (right column) MR images for subject #1 in CHAOS database. Upper row: a
cuboid 52 x 56x26-voxel volume of interest (VOI) comprising the right kidney; middle row: expert-annotated ground-truth (G-T) 3D
region for the right kidney; lower row: background voxels located inside VOI and outside the G-T kidney region.

Parametric or non-parametric geometrical models are used in
this category of segmentation techniques. Such models can
be fitted to the image via their parameters optimization or,
respectively, they are obtained as an iterative solution of a
differential equation constrained by the image properties and
expected kidney shape. The model-based methods used in the
reviewed papers comprise

« level set (LS) segmentation [12], [45],

o active contours (snakes) [46],

« use of a priori knowledge about kidney shape and its

localisation [45].

Example 2: Results of 3D image segmentation with the
use of combined model-based, manual, and mathematical
morphology techniques are illustrated in Fig. 9. The seg-
mentation was implemented in 3 steps. First, in step I,
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double-threshold-based level-set technique was applied to
T2w volume stored for subject #1 in CHAOS database. The
ITK-SNAP package [41] was used for this task with thresh-
olds defined by />530 and /<790. The obtained binary
volume was corrected in step 2 via manual removal of the
elongated protrusions which represented blood vessels in
this case. (Automatic cleaning could be applied as well,
as those elongated objects are detectable with the use of
scale-space Frangi filtering.) In step 3, the 3D holes present
in the segmented object were filled out via morphologi-
cal post-processing which involved the closing operation
using a ‘“‘spherical” structuring element of radius 3. One
can notice in Fig. 9 that the subsequent steps make the seg-
mented object closer to the ground truth. Quantitative simi-
larity metrics emphasize specific shape differences between
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FIGURE 5. Selected slices of subject #1 right kidney images. The bottom two rows show results of thresholding the intensity / of the T1w and T2w sections.
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the ground-truth and the obtained 3D binary regions. Those
topics are discussed in Section IV and illustrated quantita-
tively in Table 1. Apparent local average intensity variations
in the T2w kidney image under consideration affected the
overall accuracy of LS-based segmentation. These effects
can be reduced by using an adaptive version of the level—
set algorithm.

D. MACHINE LEARNING AND DEEP LEARNING
APPROACHES

A fourth category of methods and different from the ““clas-
sical” image-processing-based and model-based approaches,
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ts (CC) in the thresholded images of Fig. 5.

is the application of machine learning (ML) techniques, for
which the deep learning sub-class (DL) is generally the
most prominent regarding segmentation speed and accu-
racy. This subsection introduces some terms and definitions
related to ML and DL where these are applied to different
medical image segmentation domains and tasks. Our aim is
to familiarize the novice reader with some basic concepts
that are important to ML/DL based kidney image segmen-
tation methods. The inquisitive reader will find multitude
of source materials related to machine and deep learning
in medical applications e.g. [47]-[55]. Since DL models
applied to MR kidney images are scarce, we refer to CT
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Region growing in
T2w

Region growing in
T2w, close-
opening

Ground-truth
comparison

FIGURE 7. Upper row: segmentation of T2w images using region growing. Middle row: results of binary morphological close-opening with a 5-pixel
octagon structuring element (a cross). Bottom row: comparison with the ground truth.

Image\Slice 11

Thresholded T1w
(I>260)&(1<450),
within kidney

FIGURE 8. Renal cortex extraction through T1w image thresholding within the whole-kidney mask.

Ground truth Step 1

Step 2 Step 3

FIGURE 9. Example visualization of 3 segmentation steps of the right-kidney volume in subject #1 T2w MRI from CHAOS database. The blue wireframe
model in 3 pictures on the right represents the ground-truth surface shown on the left. Step 1: Level-set segmentation; Step 2: Removing protrusions;

Step 3: Applying morphological closing.

kidney image segmentation examples and challenges
[56]-[59] as well.

Machine learning has been gaining enormous development
for the last years in many aspects of medical image segmen-
tation and medical image analysis in general. In contrast to
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traditional programming, in which one must encode a set
of rules, ML algorithms build a mathematical model based
on provided sample data, known as training data. In other
words, to make predictions or decisions such models can
learn from data without being explicitly programmed. This is
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why ML algorithms are often seen as a sub-field of artificial
intelligence domain. The trained model is able to perform its
task, e.g. to make diagnostic prediction in the future on the
basis of unseen data, as a regular piece of software.

As it was mentioned in previous sections, it is not an easy
task to prepare labels for large training data collections. As a
consequence, the vast majority of the available data is unla-
beled. That is the reason why ML approaches, among others
utilized within biomedical image segmentation, are divided
into two main categories: supervised and unsupervised learn-
ing. In supervised learning an algorithm learns from data,
that are described by an expert — called labeled data.
Such labels might be e.g. manually segmented MR kidney
images. Supervised learning tasks are divided into two main
areas:

o classification, that predicts a category, e.g. renal tis-

sue or background

« regression which predicts continuous values, like quan-

tified kidney volume.

In unsupervised learning the training data are unlabeled.
It is said that the learning system tries to find patterns and
relationships hidden in data without a ““teacher”. In kidney
image segmentation tasks, these methods are often a part of
a collection of more advanced algorithms. Within unsuper-
vised methods, one of the most popular algorithms of objects
grouping is clustering. This method, when applied to kid-
ney image segmentation, groups voxels that share common
feature into clusters. In MR imaging, such a feature might
be voxel intensity or texture of its neighbourhood. Combi-
nation of supervised learning with unsupervised one, where a
labeled training dataset is used together with a much larger set
of unlabeled data is also utilized, known as semisupervised
learning. Semisupervised learning can be of great practical
value since it contributes to increased model accuracy at
reduced cost, as unlabeled images are much more easily
available.

Most of ML methods used for kidney image segmentation
are automatic, they do not need any user interaction [38], [45],
[60]. However, both supervised and unsupervised methods
are often supported by various image pre— or post—processing
procedures e.g. manual, image processing—based or model—
based (Sections III-A-III-C).

A very engrossing sub-field of ML that has seen dramatic
developments, embraces methods known as Deep Learn-
ing (DL) approaches. Those methods are inspired by bio-
logical systems. The first attempt to build a simplified brain
cell, that was named neuron, was performed by McCulloch
and Pitts in 1943 [61]. Since then, an enormous increase of
computational power took place. Now computers are capable
to model many such neurons connected together to build
an artificial neural net (ANN). Neurons arranged into many
layers, with multitude of them in each layer, form a deep
neural network. Each neuron is attributed with special fea-
tures called parameters or weights whose values are mod-
ified during the learning process — to adjust the strengths
of connections between neurons in the network. Thus the
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input—output mapping implemented by the neural net is a
mathematical function that is extremely flexible depending
on its weights. The universal approximation theorem states
that such a network can approximate any measurable function
to any level of accuracy.

The increased capacity of the NN models was accompanied
by substantial increase of the amount of available training
data and the significant improvements of training algorithms
efficiency. These resulted in a boost in prediction accuracy,
surpassing that of humans in some applications.

The intended application of a DL model is to make pre-
dictions about new, unseen data. To ensure this, the available
dataset is usually split into three collections:

o the training set seen during learning process,

o the validation set used only for evaluation,

o the festing set put aside and used for testing the trained

model.

To achieve good learning results, many versions of the
model are usually explored by changing its hyperparameters,
like number of hidden layers, number of epochs, activation
function type, learning rate, data augmentation strategy, and
others. All of these actions aim to ensure the model to gen-
eralize well, i.e. learns general features from the training set
such that the model makes good prediction on new, unseen
data. When the model memorizes features from training data,
instead of learning a general relation, overfitting takes place.
To avoid such a situation, a validation set is employed, used
to evaluate how well the model is doing on hold-out data
during training. If the prediction error on the validation set
starts increasing while the error over the training set still
decreases, the network starts memorising the training data
and the learning session should be stopped. However, when
the model hyperparameters are repeatedly tuned, it sees both
the training and validation sets many times. This might lead
to overfitting the validation data also. That is the reason
to introduce one more level of reserved data, which is the
test set.

In the image processing domain, an especially effective
model type is the convolutional neural network (CNN).
This model is able to efficiently process spatial patterns
with the use of one or more convolutional layers. Those
layers consist of kernels (small-size spatial filters) that
convolve with the image across it. Kernels contain the
weights which are adjusted during training. CNNs have
many applications in computer vision domain, among them
is image segmentation. Thus, CNNs are applied to seg-
ment the whole kidney region or its subregions (cortex,
medulla, pelvis) from images. Such a task, of linking each
pixel/voxel within ROI/VOI to a class label it represents (e.g.
cortex, medulla, pelvis), for this pixel, is called semantic
segmentation.

A very handy technique in training a DL model is to take
advantage of having another model which has already been
trained on a distinct dataset to perform some tasks. Such a
neural network is called a pretrained model. Selected weights
of the pretrained network are copied to the new-application
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model which learns more quickly, with more accuracy, pos-
sibly with less data and usually in shorter time. The use
of the pretrained model for a task different than that it
was originally trained for is known as transfer learning.
An example of such approach is described in the following
paragraph.

Example 3: An interesting approach to 3D kidney segmen-
tation using CNNs, where a common stumbling block for
supervised learning methods is the large number of labeled
examples required for training, is to use domain adapta-
tion and transfer learning. To address this approach Lunder-
vold et al. [62] used segmentation results from automated
brain hippocampus labeling to obtain fast semi-supervised
segmentation of the kidneys from 4D DCE-MRI record-
ings. The “neuro — nephro” domain adaptation was based
on transfer learning between the bean-shaped hippocam-
pus in the temporal lobes of the brain as imaged in 3D
T1-w MRI of the head and the kidney as appearing in the
4D DCE-MRI of the abdomen. After training a network
(https://github.com/deepmedic/deepmedic) to produce accu-
rate hippocampus segmentations (https://surfer.nmr.mgh.
harvard.edu), they copied the weights to a CNN designed
for segmenting kidneys, freezing the weights of the first few
layers in this network during training. By a combination
of transfer learning, dropout regularization, residual connec-
tions and semi-supervised learning through pseudo-labeling,
they were able to train a three-dimensional CNN (Fig. 10)
that could rather accurately [in terms of Dice coefficient
values in the range 0.8-0.9, Eq. (4)] and very fast (in terms
of seconds) segment both the left and right kidney, based on
a small number of manually annotated training examples. For
their experiments they were using a single standard NVIDIA
GeForce 1080Ti GPU for training and executing the CNN
model.

IV. EVALUATION OF IMAGE SEGMENTATION RESULTS
As it can be seen from previous sections, the extensive
research has been done in creating many different image seg-
mentation algorithms, but still there is no universal and ‘the
best’ method yet. For many reasons, it is difficult to compare
different segmentation algorithms, or to assess whether one of
the algorithms is more suitable for a particular image, or part
of the image, or set of images, or more generally, for a
whole class of images, and also for a particular purpose.
Evaluation of image segmentation is usually performed by a
visual inspection, by comparison of the segmentation results
with a ground truth or by computing some objective func-
tion value from the segmentation results. These evaluation
approaches require an expert user interaction either for visual
evaluation or to define the ground truth. The ground truth is
usually obtained by manual delineation of the kidney or the
kidney compartment borders by an expert user. But, manual
delineation by an expert user from a large amount of MRI
images generated in standard clinical routine, is a difficult
and time consuming task and it is subject to intra— and
inter—observer variability.
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Therefore, to obtain a probabilistic estimate of the
ground truth segmentation, some authors [24], [63] have
used the simultaneous truth and performance level estima-
tion (STAPLE) method. This method considers a collection
of segmentations obtained by expert observers or an auto-
mated segmentation algorithm and computes a probabilistic
estimate of the true segmentation and a measure of the per-
formance level represented by each segmentation. However,
in most cases, there are not enough expert observer segmen-
tations available for using that method.

The most common way to quantitatively evaluate segmen-
tation results is to calculate some metrics based on the overlap
with the ground truth or on the spatial distance between
corresponding region boundaries.

A. SPATIAL DISTANCE BASED METRICS

The primary spatial distance metric is the Hausdorff distance,
which is defined as the maximum distance of a set to the
nearest point in the other set. For image segmentation the sets
A’ and B’ are defined as boundary pixels/voxels a and b of the
segmented region (A) and the ground truth (B) respectively.
The basic variant is a directed Hausdorff distance dHD and
measures the maximum Euclidean distance for all boundary
points of A’, to the closest boundary point of B" in millime-
ters [64].

dHD (A, B) = max min d(a, b) 2)
acA’ beB

The limitation here is that narrow excrescences of B do not
affect the final result, as shown in Figure 11a. An improve-
ment is the symmetric Hausdorff distance (mHD), defined as
a maximum of two directed Hausdorff distances computed
in opposite directions [65]. To evaluate an overall agreement
of two regions and not only the largest error, an average
directed Hausdorff distance (adHD) can be used, or more
commonly its symmetric variant (a¢HD) also known as mean
Hausdorff distance or average symmetric surface distance
(ASSD), which is an average of the two directed average
Hausdorff distances [65]-[67].

> mind(a, B) + Y mind(b, A")

acA’ beB’
ASSD (A, B) = YURATS

3

Another important distance measure is the 95% percentile
Hausdorff distance, which is a value greater or equal to the
distance for 95% of the total number of points and, thus,
leaves out 5% of the boundary points with the highest dis-
tances. Usually, the symmetric variant (95pHD) is used, also
called modified Hausdorff distance (MHD), which is again
an average of 95% percentile Hausdorff distances in both
directions [68]-[74].

Different variants of Hausdorff distance provide different
and complementary information of the segmented region
boundary agreement and some authors compute more than
one variant [65].
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FIGURE 10. Fast semi-supervised segmentation of the kidneys in 4D DCE-MRI using convolutional neural networks and
transfer learning from brain hippocampus segmentation. Adapted from Lundervold et al. [62].

B. OVERLAP BASED METRICS

The most often used evaluation measure in medical image
segmentation is a Dice similarity coefficient (DSC) also
known as F'1 score. It measures the spatial overlap between
the segmented region, A, and the reference region from the
annotated image (the ground truth), B, by normalising the size
of their intersection over the average of their sizes:

_ 2|ANB
|Al + |B|
DSC values are in the range between 0 and 1, where it has

value 0 if there is no overlap between the two segmentations
and 1 if both segmentations are identical, see Figure 11b.

“
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The overlap based metrics can be derived from true pos-
itive (TP), true negative (TN), false positive (FP) and false
negative (FN) image region. TP represents an object region
correctly labelled as the object and TN denotes the non-object
region successfully labelled as such. FN is the object region
falsely identified as the non-object region, while FP denotes
the non-object region mislabelled as the object (Figure 11b).
Using the definition of TP, FP, and FN, DSC can be written as

B 2TP
" 2TP+ FP+FN

In[11], [17],[23],[32], [36], [45], [66], [68], [75]-[84], the
accuracy of the segmentation methods is measured by using

DSC 5)
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No overlap: DSC=0

Partial overlap: 0 <DSC< 1

A B

(a) Asymmetry of directed boundary distance measurement for Haus-
dorff distance (HD). The point a, belonging to A’, is the closest one to
the point b which belongs to B’. On the other hand, c is the nearest
point on B’ to the point a lying on A’. Due to different distances
between the points the directed HD is asymmetric and dH D (A, B) #

dHD(B, A).

Complete overlap: DSC=1

(b) Dice similarity coefficient.

FIGURE 11. Visualizations of evaluation metrics between segmentation A and ground truth B.

the mean and standard deviation of DSC, while in [24], [85]
the median values of DSC have been calculated.

A similar measure is a Jaccard similarity coefficient (JSC)
[11], [23], [32], [72], [86]-[90] which is defined as the inter-
section between two regions (segmented and ground truth)
divided by their union. When computed in 3D it is also called
volume overlap (VO) [24], [32].

_JAnB| TP

JSC = =
JAUB| TP+ FP+FN

(6)

DSC is closely associated with the JSC, and it is easy to
convert the scores of one to the other. Therefore, using both
of them as evaluation measures does not provide additional
information.

DSC = TS @)
JSC +1
Additional overlap based metrics have been used in [23],
[72], [76], [88], [91], [92]. Precision also called the positive
predictive value (PPV) indicates the correct portion of the
segmented region. Recall also known as sensitivity or true
positive rate (TPR) indicates the correctly segmented portion
of the ground truth region. Specificity also known as true
negative rate (TNR) represents the image fraction enclosed
by the ““true” boundary that was missed by the segmentation
algorithm. Finally, the overlap error (OE) [32], does not dif-
ferentiate between the type of error (FP or FN) and considers
both.

ANB| TP

PPV = -
A| TP + FP

®)
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|AN B TP
TPR = - )
|B| TP + FN
TN
TNR = —— (10)
TN + FP
IAUB| — |AN B|

PPV and TPR are joined in the DSC mentioned earlier:

2
DSC = ———— (12)

PPV T PR

C. OTHER EVALUATION CRITERIA

Another evaluation method is comparison of segmented and
ground truth region volumes, which can be performed in
absolute volume units (ml) or relatively, from the Total Kid-
ney Volume (TKV'). Volumetric estimation error (VEE) [84]
is an absolute measure, but for more reliable indication of
segmentation correctness, the overlap needs to be considered.
In addition to previously described overlap methods volumet-
ric measures include the volume error (VE) [32], [45], and
volume overlap ratio (VOR) [69].

VEE = abs(|A| — |B|) (13)
v (|A| - |B|>
= abs [ ——— (14)
1B|
|A N B
L B (15)
min(Al, |B])

Even though in the literature used for this review, authors
haven’t used the probabilistic metrics, it is worth to mention
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that such metrics are also an option for evaluation of the seg-
mentation results. Examples of such metrics are the intraclass
correlation (ICC), probabilistic distance, Cohen’s kappa and
area under ROC curve [93].

The last in our list but nevertheless the primary evaluation
criterion is the visual inspection [36], [80]. It is generally
used to quickly assess segmentation correctness with the
disadvantage of being subjective, unsound and reliable only
for expert observers.

D. SELECTION OF EVALUATION METRICS

By analysing the papers used for this review, one can
notice that the authors are presenting their evaluation results
using different evaluation metrics, but most of them prefer
DSC as the main indicator of the segmentation algorithm
accuracy.

DSC and other overlap based methods take into account
only the correctly or incorrectly segmented image region
without taking into account the respective spatial distribu-
tion. Thus, a segmentation result with a segmented region
extending to a non-object part of the image will be considered
similarly good or bad as a result with a segmented region
propagating in another non-object part of the image, where
the incorrectly segmented regions are in both cases of the
same size. One advantage of the overlap based methods is that
their values are in the range [0 1], so that makes the obtained
results in the literature easily comparable. Specificity (TPR)
and recall (TNR) are sensible to the size of the regions, and
they are less suitable for evaluation of the renal MR image
segmentation. It can be seen in Table 1 and Fig.7, the slice
29 have TPR value 1, because the overlap region between the
segmented region A and the ground truth B is equal to B. But,
by visual inspection can be easily concluded that the slice was
oversegmented, i.e. the surrounding tissue was included into
the kidney region. So, oversegmentation is missed by 7PR
and TNR. Also, the visual inspection reveals that the kidney
was undersegmented in the slices 11, 16 and 21, i.e. a part
of the kidney was missed by the segmentation algorithm.
The shape in the slice 26 is the simplest and most accurately
segmented. On the other hand, DSC and JSC confirm the
result of visual inspection.

PPV and TNR give high score to the undersegmented
kidney regions, where TNR shows a little variability for all
slices and all steps (Table 1). So, the experimental results
presented in Table 1, Fig 7 and 9 give preference to Dice
and Jaccard evaluation metrics over precision, 7PR and TNR.
But, taking into account the relation between DSC and
JSC, only one of them should be used for the segmentation
evaluation.

The distance based methods take into account the minimal
distances between boundary points in the segmented region
and the ground truth only. Among them, Hausdorff metric
calculation is computationally expensive and extremely sen-
sitive to outliers and holes within the segmented region, e.g.
one can show for the segmented T2w slice #16 in Fig.7
top row that the directional distances differ significantly:
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dHD(B,A) = 6.8 mm and dHD(A, B) = 20.8 mm, while
they take the same value for the slice #16 image shown
in Fig. 7 middle row (Table 1). Similar Hausdorff metrics
differences can be noticed in that table where large val-
ues of dHD(A, B) correspond to external protrusions for
Fig. 9 Step 1 and, respectively, internal holes for Fig. 9 Step 2.
These metrics reflect the geometric mismatch of segmented
boundaries, expressed in easily understandable distance units,
usually millimetres.

Finally, in the authors opinion, the selection of the seg-
mentation evaluation measure should depend on the purpose
of the segmentation. If the purpose is to perform medical
examination, the results are mostly affected by the overlap
between the segmented and the correct volume and, thus,
overlap based measures with DSC being the most accepted
one are the most convenient choice. On the other hand,
if the purpose includes treatment planning, the localiza-
tion may become more important than the overlap and dis-
tance based measures, with the Haussdorf distance metrics
as commonly accepted choice, provide better basis for risk
estimation.

V. DATASETS AND DATABASES RELEVANT TO KIDNEY
IMAGE SEGMENTATION

While for brain imaging databases of freely available datasets
are provided [94] that allow for comparing software for auto-
mated segmentation of the brain from MR images [95] in
renal MRI, however, such databases are not publicly avail-
able and therefore, the working group 2 of the EU COST
action PARENCHIMA (http://www.renalmri.orq)
is working towards this. In the US, the National Institute of
Diabetes and Digestive and Kidney Diseases (NIDDK) has
compiled a large database of Tlw and T2w MRI images
of patients with ADPKD [96], [97] fueled from the CRISP
consortium and its related studies [25], [98]. Besides ded-
icated renal imaging databases, cohort studies like the UK
Biobank or the German National Cohort might be valuable
resources to further foster renal image segmentation and
its evaluation [99]. However, these resources are not Open
Access, e.g. you have to apply for access to the data and for
the UK Biobank you have to pay access fees.

VI. SOFTWARE AND GitHub PROJECTS RELEVANT TO
KIDNEY IMAGE SEGMENTATION

As described in the aforementioned sections, the right choice
of segmentation algorithm is a crucial task. Besides many
algorithms and libraries — the building blocks for develop-
ment of in-house programs, there are numerous freely avail-
able, ready to apply programs and GitHub repositories that
can be used for initial experimentation at least. An extensive
insight into different 2-D and 3-D MRI image segmentation
techniques, for researchers who are new in this field or who
test new methods with their data, provides [100]. When the
number of MRI images is relatively small, ready to use solu-
tions might be useful indeed. There exist several 3D segmen-
tation software tools that enable test procedures or perform
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TABLE 1. Exemplary evaluation metrics for segmented individual slices shown in the middle row of Fig. 7 (Slices) and for the segmented image volumes
in Fig. 9 (Steps). Arrows indicate whether higher or lower metric values represent a better segmentation. Hausdorff metrics dHD(B, A), dHD(A, B) and

ASSD are expressed in millimetres, other quantities are dimensionless.

Slices Steps
11 16 21 26 29 1 2 3
DSC 1t 0.831 0916 0.898 0.979 0.734 0.851 0.858 0.913
JSC 1 0.711 0.845 0.815 0.959 0.580 0.740 0.751 0.839
PPV 1t 0.958 0.987 0.984 0.977 0.580 0.921 0.940 0.927
TPR?T 0.734 0.855 0.826 0.981 1.000 0.790 0.789 0.899
TNR?T 0.999 0.996 0.996 0.995 0.983 0.990 0.992 0.989
dHD(B,A) |l 5.36 6.83 8.04 3.79 5.36 6.94 8.04 9.47
dHD(A,B) | 5.36 6.83 11.05 3.79 8.47 25.05 20.64 9.36
ASSD | 1.96 2.14 2.43 0.51 2.54 2.74 2.53 1.50
VE] 0.234 0.134 0.161 0.004 0.723 0.142 0.161 0.030

some part of complex algorithms, e.g. to prepare ground truth
images [101], or to design new methods from a set of imple-
mented universal segmentation routines (ITK [102], Sim-
pleITK [103], VTK [104], SciPy [105], scikit-image [106]).
Challenges and open-source projects are continuously get-
ting more and more popular. A few GitHub repositories on
kidney segmentation are freely available. Yoruk [38], [107]
aimed at evaluation of a fully automated renal segmentation
technique for glomerular filtration rate (GFR) assessment
in children. Yang et. al proposed a method for renal com-
partment segmentation in DCE-MRI images implemented in
MATLAB [60], [108]. KiTS19 is a challenge of CT kid-
ney tumor segmentation [59]. Its goal was to accelerate the
development of reliable kidney and kidney tumor seman-
tic segmentation methods. The organizers produced ground
truth semantic segmentations for arterial phase abdominal CT
scans of 300 unique kidney cancer patients who underwent
partial or radical nephrectomy. MIScnn [109] is another gen-
eral framework that allows fast building of medical image
segmentation pipelines including: data I/O, preprocessing,
data augmentation, patch-wise analysis, metrics, a library
with state-of-the-art deep learning models and model utiliza-
tion like training, prediction as well as fully automatic evalu-
ation. It was applied to the KiTS19 segmentation task [110].
A semi-automatic segmentation tool called ‘“‘rilcontour”
[111] has been utilized by the MIROS [24] and the Sheffield
TKV Tool [112]. It comprises semi-automated contouring
combined with deep learning segmentation techniques.

VIi. APPLICATIONS OF RENAL SEGMENTATION
TECHNIQUES

In this section we will briefly describe renal segmentation
approaches applied to renal diseases obtained by our liter-
ature search. The papers are grouped according to manual,
image-based, model-based and machine learning methods
similar to section III. An overview of the methods and its main
characteristics like the used algorithms, number of datasets
and type of data as well as the evaluation strategy and respec-
tive performance is given in Table 2. In all reported projects,
the ground-truth reference was the result of image volumes
segmentation by expert radiologists.
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A. APPLICATIONS USING MANUAL KIDNEY
SEGMENTATION

Compared to studies reported in 2013 [2], only a few papers
reported manual delineation [113]-[115] to access TKV
though the manual delineation is still considered as gold stan-
dard reference [116], [117]. In the study by Shi et al, the ellip-
soid method (EL) vs. mid slice (MS) was compared with
respect to the prognostic performance of the Mayo Clinic
Imaging Classification (MCIC). They found a high intra class
correlation (ICC) of TKV measurements in their 308 patient
data set (0.991,p < 0.001) between EL vs. MS. However,
in 5.5% of the cases a disagreement of TKV measurements
> 20% was reported. A similar study was reported by Turco
et al. [115]. Furthermore, a high degree of agreement of the
individual MCIC risk classes was found but in nearly 14% of
the cases EL based TKV measurements lead to a miss classifi-
cation [113]. In the study of Lai et al. morphological imaging
was supplemented with dynamic contrast enhanced perfusion
imaging to access normal enhancing renal parenchima and
fibrotic tissue in the kidney. The qualitative enhancement
maps were used to guide the segmentation of the kidneys.

A comparison of renal cortex volume (RCV) segmented
by manual delineation vs the EL method for estimating split
renal function in DCE-MRI and CE-CT was investigated by
Siedeck et al. [118]. For both imaging techniques the two
volume estimation methods had no influence on the split renal
function estimation.

Manual kidney segmentation using 3DSlicer tools was
employed by Dwivedi et al. aiming at a 3D printed model of a
renal cell cancer to allow for targeted tissue procurement and
radiomics analysis of renal masses [119]. In this study single
time points of a DCE-MRI scans of six patients maximiz-
ing the contrast between tumor and renal parenchima were
selected for segmentation. The resulting label maps of the
segmentations were transferred for to a 3D modelling system
to produce STL style files for 3D printing. The mold was then
used to slice the resected tumor specimen and to allow for a
direct matching to the obtained MRI scans.

A similar work by Wake et al. was presented to create 3D
printed renal tumor model that could be used in an augmented
reality assisted surgery scenario [14]. An essential step is
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the segmentation of the kidney and its tumor to be then
transferred into STL files for printing. In this work, image
segmentation is realized by manually placing ROIs and use
subsequently image processing tools to further refine the seg-
mentation [120]. This approach was evaluated on 20 patients
with a single renal tumor using pre- and post-contrast axial
T1w fat-saturated MR images. Image segmentation accuracy
was not reported.

B. APPLICATIONS USING IMAGE-BASED APPROACHES
Mushrif et al. [35] proposed to apply intuitionistic fuzzy sets
and rough sets theories for presegmented T2* kidney image
analysis prior to its further multithreshold segmentation
into medulla and cortex regions. The intuitionistic fuzzy-set
image representation includes membership, non-membership
and hesitance components for each voxel, to cope with
the inherent heterogeneity within the tissue class and the
overall intensity inhomogeneity present in the kidney MR
images. The rough sets approach allows to map the impre-
cise histogram-based thresholding into an approximation
space, limited by lower approximation (histogram) and upper
approximation (histon). The histon is computed on the basis
of fuzzy image representation. Finally, a roughness mea-
sure is defined combining the two approaches, being a bet-
ter representation than histogram. Peaks and valleys of the
roughness-intensity function are used to threshold the image
intensity for medulla and pelvis segmentation. The study
shows the potential of the method, whose performance needs
to be further evaluated on larger datasets.

Warner at al. [23] studied a possibility of obtaining
fully segmented polycystic kidney region from undersampled
stereology grid data given as the a priori information. The
planimetry (reference) and stereology images were prepared
independently by two experts. The algorithm starts with mor-
phological closing of the labeled stereology 2D image. The
kidney region border together with the original 3D volume are
passed to minimal-spanning-tree watershed algorithm. Due
to noise, the resulting rough edges of left and right kidney
are smoothed via thresholding of the image obtained after
fuzzy-set processing with a spherical Gaussian membership
function. The method is faster than manual planimetry seg-
mentation and offers high accuracy.

The problem of renal region segmentation in very low con-
trast images is considered in [37]. The postulated method is a
single-step process based on improved graph-cuts algorithm.
The improvement stems from pixel/voxel connectivity com-
ponent incorporated in graph-cuts formulation based on one
of their three predefined different groups. In result, no shape
prior and/or user intervention are needed. A high segmenta-
tion accuracy in terms of Dice coefficient is achieved as seen
in Table 2.

Sandmair et al. [22] proposed and evaluated a simple semi-
automatic technique of unimodal thresholding which requires
approximate manual delineation which can be done by a
non-expert with some training, using e. g. the Photoshop
application. The Multi-image Analysis GUI Mango was used
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in the study involving 24 T2-w images. Unimodal thresh-
olding was performed within the delineated region, on the
basis of Gaussian kernel probability density estimation. The
maximum (or rarely maxima) of the density function are
found and applied to geometric construction which defines
the two threshold values — below and above the peak. A visual
feedback is provided to the user for the thresholding result
assessment.

In [21], [121], an attempt is made to develop a
semi-automatic technique of polycystic kidney segmenta-
tion for renal volume estimation from T2-w images. Both
coronal and axial views were considered and compared.
An operator is expected to mark a single point within renal
parenchyma region in the central slice of the volume. This
is a starting point for region growing with similar or higher
intensity level. The result of this segmentation step is
refined using morphological operators with subsequent con-
tour refinement using curvature motion in areas of negative
curvature.

Woodard et al. [34] designed an automated method for
kidney volume segmentation in DCE-MRI. Raw images
were preprocessed to reduce signal inhomogeneity. Each
kidney 3D image region was then registered to pre—contrast
reference image. The unenhanced kidney image was thresh-
olded to extract the organ contour, with some manual cor-
rection where needed. Templates for synchronized intensity
time course were then identified for cortex, medulla and
the collecting system using 29 out of 493 volumes. Signal
intensity was normalized by linear rescaling. Each voxel
of the kidney region was classified by comparison (sum of
squared errors and correlation coefficient) with the collected
templates. The estimated kidney parts volumes were well
correlated with independently evaluated values of eGFR,
urine-creatinine ratio (ACR) and risk factors for and compli-
cations of CKD. Based on that extensive study, it was con-
cluded that DCE-MRI approach to automatic segmentation
of kidney images can provide novel and unique information
about the organ structure and function.

Yoruk et al. [38] developed an automatic technique for
kidney and its parts segmentation in DCE-MRI. They applied
the graph-cuts GrabCut algorithm implemented in OpenCV
framework, originally designed for color image segmenta-
tion. Based on a uniquely-distinctive time-course appearance
of the medulla voxels enhancement signal, a medulla-score
was defined as a function of the signal values at selected
moments of time. Then, the medulla-score map was thresh-
olded with the Otsu’s method to reveal the medulla clusters,
further morphologically dilated to obtain a bounding box con-
taining the whole kidney and some background. To achieve
input data compatibility with GrabCut, the authors applied
principal component analysis (PCA) to voxel enhancement
signals inside the bounding box and mapped the 3 largest
PCA coefficients of the signal expansion to RGB input chan-
nels of GrabCut. The GrabCut algorithm was applied to the
renal bounding boxes to obtain the segmentation map of
the renal parenchima. After that, a random forest classifier
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TABLE 2. Summary of applications of automated and semi-automated image processing-based methods to kidney MRI segmentation.

Literature refer- Methods Type No. of im- Aim of Linear Dice Volume error Software/
ence of ages segmentation regression comput. time
MRI
Bae 2013 [16]  Manual pre- T2-w 20 Renal cysts number Number: - - Analyze,
segmentation, and volume estima- 0.98, ITK, C++
region growing, tion R?> = 0.98,
morphologic P < 0.001
watershed, level- Volume:
set 0.98,
R® = 0.98,
P < 0.001
Hanson 2013 Mumford-Shah DCE 3 Kidney - - - MATLAB, 15
[36] model with local segmentation min
and non-local
regularization, graph
cuts
Khalifa 2013 2D  Markov-Gibbs DCE 50 subjects whole kidney, cortex — Kidney: - -
[79], [122] random field with 0.97 £ 0.02,
level-set, three Cortex:
feature speed 0.90 £0.03
function
Rudra 2013 [37] Graph cuts, pixel Tl-w 25 Kidney - 0.98 £0.005 — -
connectivity segmentation from
very low contrast
images
Bae 2014 [127] iterative T2-w 241 cyst  segmentation average - - Imagel]
thresholding and counting difference plugin
in the total
numbers  of
cysts: -0.52
Chav 2014 [78] renal shape model ~ Tl-w 10 whole kidney seg- - 1.9+14 MATLAB
mentation
Chiusano 2014 dictionary represen- DCE- 26 whole kidney seg- 0.83 £0.09 - -
[125] tation, clustering MRI mentation
Hodneland 2014 normalized gradients DCE- 10 simultaneous regis- — 0.719 36.4 ml -
[136] as data term MRI tration and segmen-
for registration; tation of the whole
Mabhalanobis kidney
distance between
signal time courses
to a training set
for supervised
segmentation
Warner 2014 Planimetry, T2-w 12 Polycystic kidney - 0.969+0.007 — Analyze/
[23] stereology, 45-90  min.
morphologic 10-20  min.
closing, watershed, Python/7s
fuzzy-logic
smoothing
Will 2014 [32], Adapted Tl-w 12 Whole organ, cortex, Kidney: Kidney: Kidney: MATLAB/
[129] thresholding, shape T2-w medulla, pelvis R? = 0.98, 0.936 + 4.97+4.08%, 50 s for the
analysis Cortex: 0.001, Cortex: whole MRI
R* = 0.88, Cortex: 7.03+5.56% dataset
Medulla: 0.808 +
R? = 0.92, 0.003,
Pelvis: Medulla:
R?>=087 0.726 +
0.004, Pelvis:
0.71940.007
Continued on next page
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TABLE 2. (Continued.) Summary of applications of automated and semi-automated image processing-based methods to kidney MRI segmentation.

Lit. ref. Methods MRI  #img. Aim Lin. reg. DSC VE SW/CT
Abdulahi 2015 Thresholding, region T1-w 10 Whole organ - - - MATLAB/
[33] growing, fast level- Threshold:
set, connected com- ~4 S,
ponent shape analy- Level-set:
sis ~40's
Gloger 2015 prior shape masks, T2-w 35 renal tissue volume- — 0.92 £ 0.022 6.1 £55% -
[12], [45] subject-specific & try (cortex, medulla) (cortex: 0.821
probability maps T1-w + 0.037,
and level set DIXON medulla:
segmentation (in- 0.749 +
phase, 0.058
out-
phase,
fat/water
image)
Goceri 2015 multi-layer Spectral— whole kidney seg- — - -
[137] perceptron Pre- mentation
saturation
Inver-
sion
Re-
covery
Liu 2015 [138]  Ist-order shape DCE- 50 whole kidney seg- — 0.9140.03 - MATLAB
and Sth-order MRI mentation (Ist  order), and C++/
Appearance Priors 0.9940.02 125+ 10 sec/
(5th order) dataset (79
images)
Liu2015([18] graph cut with T2-w 13 Iceball Segmentation — 0.92+0.03 - C++ with a
adapted shape priors for renal tumor MRI- MATLAB
Guided Cryoablation interface,
freely-
available
graph cut
library
(http://cbia.fi.muni.cz/
cut-projects/graph-
library.html /
20s
Shehata 2015 Level sets DWI 65 kidney segmentation — 095+001 95+£22% -
[68], [70], [92],
[124]
Turco 2015 [21], Manual seed, T2-w 30 Polycystic ~ kidney — - Left: 5.1 + <2 min.
[121] region growing, volume estimation 4.0%, Right:
morphologic 4.0+ 4.7%
operations, curvature
motion
Woodart 2015 Thresholding, DCE 493, Volume: kidney, cor- — = - Image
[34] manual correction, for tex, medulla, perc. of preparation:
voxel classification course fat, perc. of fibrosis 15 min.
based on time-course templates
templates
Yang 2015 [13], Maximally  Stable DCE 16 kidney, cortex, — 0.86-0.98 -
[60] Temporal  Volume, medulla
PCA, k-means
clustering
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TABLE 2. (Continued.) Summary of applications of automated and semi-automated image processing-based methods to kidney MRI segmentation.

Lit. ref. Methods MRI  #img. Aim Lin. reg. DSC VE SW/CT

Feng 2016 [132] fuzzy k-means dynamiet0 images renal tumor - 0.74-0.97 - MATLAB
(FKM), k- image of 3 scripts
harmonic means acqui- patients
(KHM),reaction- sition
diffusion  level-set with
evolution (RD-LSE) True-

,VR-TPDS FISP

Kim 2016 [17]  spatial prior prob- T2-w 60 total kidney volume — 0.886 +0.08 885.46 + manual
ability map, prop- in ADPKD 569.7 ml reference
agated shape con- segmentation:
straint, level sets Analyze 12.0

Kline 2016 [24] Planimetry, stereol- T2-w 40 Polycystic ~ kidney — - 1.41+4.78% MRlIcron:
ogy, user-control ac- volume 45-90  min.
tive contour Analyze:

30-60 min.
MIROS: <5
min.

Kline 2016 [87] semi-automatic T2-w 40 change detection in — - level of Python,
segmentation as in longitudinal studies accuracy: Advanced
[24] on first time of ADPKD 0.99 + Normaliza-
point, two-way 0.79%; tion Toolkit
image registration intraobserver
of time  points, variability:
refinement via 0.77 +
geodesic active 0.46%;
contours interobserver

variability:
1.34 + 0.70%

Rusinek 2016 Manual contouring, T1-w, 40 Healthy and diabetes Strongly lin- — Userl: 6.8 £ C++,

[19] "blanketing", fat kidney volume esti- ear, R?> = 5.2%, User2: 1.5 min. per
non-uniformity sup- mation 0.98 4.7 + 4.4% image,
correction, unimodal pressed User3: 4.8 & 3D Slicer
thresholding, 3D 3.4% RSS
morphology, active
contours

Sandmair 2016 Manual T2-w 24 Healthy kidney vol- 0.98, - - Photoshop,

[22] segmentation, ume estimation p< 2.2e — 16 Mango,
unimodal Python
thresholding

Khalifa 2017 extension of [79],

[123] [122] to 3D

Kline 2017 [11] 11 individual trained T1-w/ 2000 total kidney volume - 0.97 £0.01 0.68 £2.2% Python,
and  parameterised T2-w Keras,
deep learning Theano
segmentation
networks, majority
voting

Lundervold CNN, transfer learn- DCE- whole - 0.8-0.9 - 5s

2017 [62] ing from brain seg- MRI  kidney
mentation segmen-

tation,
compart-
ments

Mushrif 2017 K-means T2*-w 1 Medulla, cortex, — Medulla - -

[35] clustering  (KMC), blood vessels, pelvis KMC:0.947,
intuitionistic IFS: 0.956
fuzzy sets (IFS) Cortex
representation, KMC:0.923,
rough sets, IFS: 0.958
multilevel
thresholding
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TABLE 2. (Continued.) Summary of applications of automated and semi-automated image processing-based methods to kidney MRI segmentation.

Lit. ref. Methods MRI  #img. Aim Lin. reg. DSC VE SW/CT
Suess 2017 thresholding, T2-w 20 whole kidney - - semi Osirix
[130], [131] connected automatic plugin/ semi
component analysis method: 0.3 automatic:
(semiautomatic ml, ellipsoid 220+ 53 s,
method); ellipsoid formular: ellipsoid:
formula 85.0 ml 41 £ 11 s,
manual: 408
+105s
Barstugan 2018 K-means clustering T1-w/ 113 adrenal tumor - 0.50-0.82 - —/107.9 s
[86] to segment the T2-w images
abdominal  region,
active contour
segmented the fat
layer, adaptive
thresholding, and
image erosion for
liver segmentation,
region growing
used to segment the
adrenal tumor
Bevilacqua 2018 Cascading  CNNs, T1-w/ 57  scans whole kidney — 0.97 £ 0.01 0.68 £2.2% Python,
[88], [135] bounding box T2-w from 4 (ADPKD) Keras,
detection followed patients, Theano
by segmentation follow-up:
526 scans
from 18
subjects
Haghighi 2018 CNNs for locailsa- DCE- total 30 - - 12.9+£2.4ml  3s
[84] tion and segmenta- MRI  kidney (healthy),
tion volume 19.5£3.2ml
(renal
disease)
Lv 2018 [75] modified U-net, DWI  kidney 10 NRMS - Python, Keras
Pyramidal lucas- segmen- of DWi
kanade registration tation  to model after
improve registration:
the  reg- 0.25+ 0.06
istration (cortex),
accuracy 0.22 £+ 0.05
(medulla)
Yoruk 2018 [38] Time-resolved graph DCE 26 Whole organ, cor- — Whole: - OpenCYV,
cuts for whole kid- tex, medulla, collect- 0.93 + Python,
ney, random forrests ing system 0.012%, C++/ 45sper
for its parts Cortex: subject
0.86 +
0.006%
Huang 2019 image enhancement DCE- 14 fully automatic — 0.92 - -
[139] and adaptive MRI renal segmentation
thresholding, and without using
labels of  seed manually labeled
regions are assigned data

on a pixel-by-pixel
basis; random
walker model to
segment renal
compartments by
using time—intensity
signals and previous
seed regions for
training
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TABLE 2. (Continued.) Summary of applications of automated and semi-automated image processing-based methods to kidney MRI segmentation.

Lit. ref. Methods MRI  #img. Aim Lin. reg. DSC VE SW/CT

O’Reilly 2019 Decision tree T1-w/ 13 Total polycystic kid- — - 21.7% Python,

[46] classifier T2-w ney volume OpenCV,
(kidney/non- Scikit-Image,
kidney), contrast R Studio
enhancement, k-
means clustering,
active contour

Schnurr 2019 U-Net,  additional T1-w sample mining — random - Python, Ten-

[140] skip connections, schemes and there 0.88540.046/ sorFlow 2.0
batch normalization influence on CNN 0.877£0.053

kidney segmentation pE 3Std
0.879£0.053/
0.863£0.076
label
0.835£0.115/
0.836£0.130
Simms 2019 hybrid level set T2-w 65 esdtimation of TKV — - 3.45+3.96% MATLAB
[112] method in ADPKD 2016b (Math-
Works), < 6
min
O’Reilly 2020 3D FCN based on T2-w 135 scans whole kidney — 0.787 + 187.5 ml / Keras,
[134] 3D U-Net and V-Net from 55 (ADPKD) 0.060 36.71 % Tensorflow,
subjects Scikit-Learn,
OpenCV,
Python

was trained on 10 000 renal voxels taken from manually
selected ground truth images and used for voxel classification
to obtain cortex, medulla and the collecting system clusters.
Each voxel was represented by 7 scalar features — signal
intensity at 6 moments of time from the bolus arrival and the
depth of voxel in the renal tissue.

C. APPLICATIONS USING MODEL-BASED APPROACHES

In Kim ez al. [17], kidney segmentation is reached by exploit-
ing prior knowledge of spatial location of kidneys modeled
as a spatial prior probability map (SPPM) and a propagated
shape constraint (PSC). These were incorporated into a level
set framework.

The ground-truth reference in [24] was constructed
with the use of two planimetry segmentations and
stereology-based [23] algorithm. The minimal interaction
rapid organ segmentation algorithm MIROS was devel-
oped and applied to segmentation of 40 T2-w MR images.
They were corrected for uniform intensity and co-registered
prior to further processing. The MIROS interactive package
requires the user to supply approximate boundaries of the
kidney regions of interest in some slices. A mathematical-
morphology modified geodesic active contour (GAC) is then
used to approximate the original partial-differential equation
to refine the contours. The narrow bands at the kidney
region border, as found by GAC, is used for watershed edge
detection on the Sobel-filtered image. This completes the
semiautomatic MIROS procedure which typically requires
less than 5 min of user interaction.
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To detect changes in kidney volume over time e.g. to mon-
itor the effect of a drug therapy, Kline et al. [87] used a
two-way image registration in a longitudinal study. An initial
semi-automatically segmentation as described before [24] is
registered onto the follow-up data set. Then, geodesic active
contours are used to refine the segmentation.

To evaluate renal graft rejection Khalifa er al. [79], [122]
proposed an automated pipeline to analyse 2D DCE-MRI
scans comprising kidney segmentation. Thereby, kidney seg-
mentation is used to a) support contour based image regis-
tration of the dynamic scans to reduce motion in the signal
intensity time curves and b) to derive the renal cortex and to
extract the signal intensity time curves for pharmacodynamic
modelling, i.e. to classify the functioning of the graft. To seg-
ment the kidney a joint Markov—Gibbs random field (MGRF)
model is employed comprising a conventional level-set-based
deformable model. The evolution of the contour by the level
set is controlled by a stochastic speed function that accounts
for three image features, namely first-order pixel-wise image
intensities estimated using a linear combinations of discrete
Gaussians (LCDG) intensity estimation model, a second-
order pair-wise Potts—Markov—Gibbs random field (MGRF)
spatial interaction model, and a weighted probabilistic shape
prior. Their system has then been extended to evaluate also 3D
DCE-MRI [123] and to incorporate also clinical information
in the classification step [92].

Simms et al. [112] presented a tool for semiautomatic
segmentation similar to the MIROS tool. In their study,
the data was initially reprocessed removing image artefacts
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such as intensity variations and motion and applying a level
set segmentation which is initialized on the mid slice of the
volume.

Shehata et al. proposed a level set approach [68] and evalu-
ate its use in assessment of renal graft rejection from diffusion
weighted imaging [70], [92], [124]. The employed segmen-
tation strategy is similar to that reported by Khalifa et al. for
DCE-MRI [123]. Here, the different b-values where treated
as time domain compared to the DCE-MRI approach. A high
performance of the approach was confirmed by the high DSC
(0.9540.01), low 95-percentile modified Hausdorff distance
(3.9£0.76) mm, and low percentage kidney volume differ-
ence (9.5+2.2)% relative to a manual segmentation by an MR
expert on 65 DWI image data sets. In the study of Hollis ef al.
the kidney segmentations are used to statistically evaluate if
the ADC which is calculated based on the segmentations, is a
discriminator in graft rejection detection.

An approach utilizing renal image segmentation in renal
tumor therapy, namely in MR guided cryo ablation was
presented by Liu et al. [18]. The aim of the study was to
segment the ice ball, i.e. the cryo ablated volume from time
resolved T2W images to allow to monitor the ablation process
during the intervention. For image segmentation a graph cut
algorithm using a shape prior of the ice ball was used. The
algorithm was tested retrospectively on data from 13 abla-
tions of renal tumors. Image segmentation accuracy assessed
by the Dice coefficient was 0.92 £ 0.03. The computation
time per time point was 20 s matching the cryo ablation
procedure of 3- 5 minutes intervals.

To segment the kidney from DCE-MRI Chiusano et al pro-
posed a dictionary learning approach [125]. Thereby, the sig-
nal time intensity curve of the whole data set is used to
derive characteristic signal curves reflecting the kidney tissue
forming the dictionary. Clustering similar to [126] is then
used to discriminate between kidney and background. The
technique was evaluated in a pediatric population with not
specified renal dysfunction. In total 26 data sets were used
and the segmentation accuracy (Dice) was 0.83 £ 0.09 for
both kidneys.

D. APPLICATIONS USING IMAGE- AND MIODEL-BASED
TECHNIQUES

Some literature reviewed combine image- and model-based
techniques to segment the kidney which do not match the
two above subsections. Therefore, they are discussed in the
following.

In [16], the kidney boundary was detected using the Ana-
lyze image editing software, and the cysts were marked and
counted by two radiologists. The image was thresholded to
estimate the area of the cysts in slices, and their volume by
summing up the products of the areas and slice thickness.
In the automatic approach, the image was first thresholded
with ITK software, and voxels brighter that the background
were grouped together using the k-means clustering algo-
rithm, to form cysts candidate regions. The subsequent con-
nected component analysis produced labels for individual
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clusters. Then fast-marching level-set algorithm was applied
to each cyst region, augmented by edges potential obtained
from the initial segmentation via multiple filters. The out-
come of shape-detection level-set processing was eroded in
an iterative routine to identify the seed points for all cysts.
After that, the morphological watershed algorithm produced
the final segmentation. Another segmentation approach of the
same group of authors [127] was presented in 2014 using
an iterative thresholding method, first proposed by [128],
in which the operator selects step by step thresholds to opti-
mize the segmentation of the object, here the renal cyst.
As post processing step, a flood fill operation was per-
formed to close holes in the segmented images. The approach
was evaluated on 240 patients data sets from the CRISP
study [98].

Hanson and Lundervold [36] presented an extensive study
on kidney DCE-MRI segmentation combining k-NN classifi-
cation of pixels as belonging to non-overlapping foreground
and background and Mumford-Shah piecewise constant
image segmentation, regularized with both local (boundary
size) and non-local (similarity in feature space) image infor-
mation. Voxel intensity time courses (20 to 45 time frames)
were included as multidimensional image features. The cor-
responding Mumford-Shah energy function in its discrete
form was minimized using a modified graph-cuts algorithm.
Flexibility and robustness of the proposed method applied
to kidney DCE-MRI of 3 subjects is illustrated qualitatively
in [36], showing the importance of non-local regularization
and the superiority of Mahalanobis over Euclidean distance
as a metric of feature separation.

O’Reilly e al. [46] used a decision tree classification and
snake algorithm for TKV segmentation in polycystic kidney
disease. In this two step appraoch first a decision tree was
trained to roughly detect the kidneys while in a second step
an active contour algorithm was used to segment the kidney
outline.

Will et al. [32] aimed at automatic volumetry of the
entire kidney and its internal parts — cortex, medulla and
pelvis — from non-contrast-enhanced (low contrast) T1-w
and T2-w MR images. The breath-hold acquired MRIs were
co-registered with a rigid registration algorithm. Manual seg-
mentation was performed for use as a ground-truth reference.
The automated algorithms started with thresholding T2-w
images, followed by some refinement using prior knowledge
about the kidney shape and location. In the second step, both
T1-w and T2-w images were again thresholded to distinguish
between the internal structures (cortex, medulla and pelvis).
The threshold values were determined and tested experimen-
tally in several subjects and then held constant for all the data
set. The time of segmentation was less than 5 s per subject.
The accuracy of whole kidney segmentation is better than
the accuracy of its partitioning into the three components
(Table 2). The algorithm of Will ef al. was further used in
a study of quantifying renal and renal sinus fat volumes
from DIXON MR scans [129]. Here, a total of 400 patients
from cross sectional population study were included. Renal
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and sinus and fat value was correlated to diabetes and pre-
diabetes. Renal volumes estimated from the segmentation
were 280.3+64.7 ml for the normoglycemic individuals,
303.7+67.4 ml for prediabetes and 320.6£77.7ml for dia-
betes, respectively.

Two automatic kidney segmentation techniques — Otsu
thresholding and fast Chan-Vese level-set algorithm — are
compared in [33] in terms of accuracy and speed. Then con-
nected component analysis is performed followed by shape
analysis of candidate binary regions with the use of compact-
ness coefficient and Procrustes algorithm. It was found that
the two algorithms feature similar performance while Otsu’s
thresholding is much faster than the level-set solution.

Forty non-contrast T1-weighted fat-suppressed MR
images were used in [19] to evaluate the performance of their
semi-automated ‘“‘blanket” method for renal segmentation.
The user is required to draw approximate contours of the
kidney region on every tenth slice, to separate the organ
from adjacent abdominal ones. Then the contour is filled with
morphological operations, and the masks interpolated in the Z
direction. Non-uniformity correction is performed within the
bounding box of the kidney region. The program then finds a
small seed volume for the kidney. Two values of intensity
threshold are found based on the seed region intensities.
A series of binary morphological operations are applied after
range thresholding, to remove regions representing blood
vessels and the collecting system. For comparison, the robust
statistical segmenter (RSS) package available in 3D Slicer,
based of variational framework is run to drive evolution of
a closed surface through minimization of two-term energy
functional. Those terms comprise information about similar-
ity of statistical features of the region to the seed, and the
area of the surface. As a matter of fact, the RSS method
failed in 45% of cases. The authors conclude that the blanket
method offers high speed, high accuracy, has the potential
for clinical implementation, and is competitive with the 3D
Slicer RSS method.

Thresholding combined with connected component analy-
sis referred to as semiautomatic approach was compared to
the ellipsoid formula by Suess et al. [130]. The semi auto-
matic approach, tested on non contrast enhanced T2w MRI
in 20 healthy volunteers, reached a high accuracy compared
to the manual estimated ground truth. The ellipsoid formula
had a higher deviation from the reference volumes estimated
but segmentation could be obtained in roughly one fifth of the
computation time (41 &£ 11 s). The approach was then applied
to renal arterial spin labeling (ASL) to estimate renal cortical
and medullary perfusion [131].

Feng et al. [132] compared five different segmenta-
tion algorithms to be employed in tracking the kidneys
in Magnetic Resonance Image-Guided Radiotherapy of
renal tumors. The global thresholding method was cho-
sen as a representative thresholding method. For unsu-
pervised learning method, the fuzzy k-means (FKM) and
k-harmonic means (KHM) were chosen. For partial dif-
ferential equation-based deformable models, we selected a
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modified reaction-diffusion level-set evolution (RD-LSE)
method. For the atlas-based method, the ViewRay treatment
planning and delivery system (VR-TPDS) was used. To com-
pare all the gray-scale images within the same level, all the
images tested were linearly transformed to have 256 gray
levels. For the final contouring of the objective organ, nec-
essary morphological image processing steps were used for
postprocessing. For initialisation of the clustering a test run
was performed to identify the cluster group (FKM and KHM),
the thresholding, and the appropriate level set (RD-LSE). The
mean target registration error (TRE) values of thresholding
and RD-LSE for tracking the kidney were 1.76 mm and
1.75 mm. The mean TRE values of FKM and KHM are very
similar: 0.92 vs. 0.96 mm for kidney. The VR-TPDS method
had TRE values of 0.69 mm for the kidney.

The work of Barstugan ef al. aims at segmenting adrenal
tumors from MR image [86]. The authors combine various
techniques like K-means clustering, active contours, adap-
tive thresholding, image erosion, and region growing to seg-
ment the liver, the kidney and eventually the adrenal tumor
from the abdominal T1w and T2w scans. In total, 113 MRI
scans from a not detailed number of patients is used in this
work. The authors evaluated their technique using a bunch
of metrics like sensitivity, specificity, accuracy, precision,
Dice coefficient, Jaccard index and the structural similarity
index (SSIM) to also differentiate subtypes of adrenal tumors.
Segmentations could be computed in about two minutes at
a Dice of 0.05 - 0.82 depending of the type of adrenal
tumor.

In Yang et al, the whole kidney and the renal compartments
(cortex, medulla) are segmented from 26 DCE-MRI datasets
[13], [60]. A three step approach is performed segment-
ing the whole kidney via Maximally Stable Temporal Vol-
ume (MSTV) which is based on thresholding the time series
and calculating spatial-temporal correlations of the kidney
and PCA-kmeans clustering for compartment segmentation.

E. APPLICATIONS USING DEEP LEARNING BASED
SEGMENTATION

Deep learning based image segmentation approaches applied
to the kidney emerge. O’Reilley et al. implemented a 3D
fully-convolutional network (FCN) to estimate TKV. The
network was adapted from [133] and trained on 155 datasets
of about 50 patients [134]. In the work of Bevilacqua et al.
two approaches are combined [88]. First, a CNN is employed
that detects automatically a ROI spanning each of the kidneys
(R-CNN). Then, a classification CNN is used to perform a
semantic segmentation, here, a classifying voxels into kidney
and non kidney. In this initial work only a relatively small
training set of 57 images from 4 patients were used for
training and testing the method while in the follow up paper
a larger cohort was used [135].

Kline et al. proposed an “Artificial Multi-observer Net-
work™ comprising 11 individual trained and parameterized
deep learning segmentation networks [11]. The developed
convolutional neural network (CNN) architecture is based on
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semantic segmentation approach. They search for a range of
networks that were shallower and deeper (in terms of layers),
thinner and wider (in terms of number and size of kernel),
as well as different activation functions (ReLLU, tanh). Based
on the best performing network, eleven separate networks
were trained in order to create the artificial multi-observer
deep neural network for fully automated segmentation of
polycystic kidneys (see Fig. 2). For training, about 2000 data
sets derived from the TEMPO study [141] were used and
labels were generated using a semi-automated segmentation
procedure as outlined before [24].

Deep learning relies on a reasonable large number of
samples to allow for a robust training of the networks.
In medical imaging often such amount of data is miss-
ing, therefore, to use domain adaptation or transfer learning
might be a solution to overcome such limitations. In renal
segmentation, Lundervold et al. [62] used segmentation
results from automated brain hippocampus labeling to obtain
fast semi-supervised segmentation of the kidneys from 4D
DCE-MRI (Fig. 10).

Haghighi et al. used a 3D U-NET to automatically seg-
ments kidneys from 4D DCE-MRI [84]. In their implementa-
tion a focus was to build a memory efficient framework to
allow for using a 3D U-NET and also a large data tensor.
Therefore, the segmentation task was divided in first a local-
isation step (i.e. finding the kidney in the MR images) and
then actual segmentation task. The network was trained on
24 subjects while 6 subjects were used for testing including
healthy subjects and subjects with renal diseases. Error in vol-
ume estimated to a ground truth reference was 12.9£2.4 ml
for healthy subjects and 19.543.2 ml for subjects with renal
disease, respectively.

Furthermore, there are also approaches optimizing exist-
ing architectures and the training of the neural networks.
A genetic algorithm for optimizing the CNN architecture,
modeling the number of encoders, the structure of each
encoder and the final fully-connected layers is proposed by
Brunetti et al. [91]. Their algorithm is designed for detecting
images containing the kidney and subsequently segment them
classifying each pixel. All images containing the kidney were
split into left and right side and used as input dataset for
the segmentation procedure. These two-step classification
strategy allows obtaining the final segmentation of images
representing kidneys affected by ADPKD.

Schnurr et al. investigated different sample mining
schemes and there influence on CNN kidney segmentation
in Tlw MRI [140]. These comprise a) a random sampling,
i.e. patches are randomly selected from each slice; b) “u+
3Std”, i.e. patch centers are constrained to the average label
position =+ three times the standard deviation and eventually
c) label based, i.e. patch centers are constrained to label posi-
tions. A U-Net architecture with additional residual connec-
tions and batch normalization were employed. The networks
were trained using the weighted cross entropy loss and 3-fold
cross validation using the Visceral Anatomy 3 challenge and
the Visceral Silver Corpus data set [142].
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VIil. DISCUSSION

In the recent years, efforts to position [1] and standardize
renal imaging [143] to enable researchers to create evidence
of its clinical value have been done. However, most of this
important recent work focus on imaging techniques [4], [5],
[8], [144] and the standardised acquisition of morphological
and functional data and its reporting [145]-[148]. A cru-
cial point in this is the analysis of the data obtained by
imaging.

Thereby, kidney image segmentation is an important step
when estimating renal function as reflected by the recent
literature reviewed here. Most studies in this review employ
kidney segmentation in ADPKD to estimate the TKV which
already qualified as a biomarker by the FDA, recently. How-
ever, other parameters like MIR-based GFR, heamodynamic
parameters like blood flow or perfusion, diffusion or oxy-
genation are yet not established as renal biomarkers and
further research and especially large scale studies are needed.
Renal image segmentation can hereby play an important role
as it enables a robust, reader independent and automated way
to derive not only kidney volume but also segmentation of the
kidney compartments which are essential also to extract and
map the renal biomarkers obtained from the multiparametric
imaging data (see Table 2).

While manual delineation is nowadays mainly used as ref-
erence method for the evaluation of new kidney segmentation
approaches, semi- and automatic approaches are still devel-
oped to improve segmentation accuracy. These approaches
could be divided into image-based and model-based tech-
niques (see section III). Regarding the recent literature
presented here, however, the majority of approaches use a
combination of algorithms from the above mentioned cate-
gories. This is probably due to the fact that the renal image
data (cf. Fig. 1) is difficult to process (low SNR, different
amount of cyst or tumor load, adjacent organs like liver
and spleen, motion) and a single technique cannot alone
sufficiently segment the kidneys. Also, there is a variety of
imaging contrast employed in renal imaging that warrants a
robust segmentation approach. The values of DSC reported in
the reviewed papers range between 0.5 and 0.98 depending
on the specific application. VE mean value and standard
deviation are typically a few percent each.

With the rise of deep learning in medical imaging and
subsequent promising results, also these techniques emerge
in the field of renal image segmentation. The benefit of
deep learning approaches is that they learn their given task,
i.e. here, segmenting the kidneys. An explicit modeling of
the segmentation task like in the image- and model-based
approaches is not needed. Considering results presented in
the literature it is clear that applications of the deep learning
methods for fully automated MRI kidney segmentation are
encouraging, but there is a room for further improvement.
According to results provided by the authors, we cannot
conclude that current deep learning solutions outperform tra-
ditional image processing kidney segmentation algorithms.
There are several issues that need to be addressed in order
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to improve the network performance, such as: the lack of the
sufficiently large MRI kidney datasets; generalization ability
of the network response in case the source of data (data
acquisition device) changes; training with imbalanced data.
There are also ideas of combining both deep learning and
image processing techniques [88].

Moreover, in general there is still a lack of a comparison of
methods with respect to segmentation performance. Already
in their review in 2013, Zollner et al. pointed out that such
comparisons are highly valuable [2]. This is key aspect if such
methods should be employed e.g. to automatically estimate
a biomarker like TKYV, or if included in larger renal data
analysis pipelines to estimate their contribution to the overall
performance of such systems [149]. Most methods are eval-
uated on own curated data that makes a comparison across
publications difficult. The performance of the algorithms
clearly depends on the data and several groups differentiate
results according to patient health status [13], [60], [65]. Even
the way how results are reported is very fragmented as seen
in Table 2. For instance, not all studies report a DSC nor a VE.
Thus, the results provided by the authors in the papers cannot
be directly compared, even within the same segmentation
task.

In CT imaging abdominal organs segmentation challenges
[142] have been proposed which might be a resource for
allowing such comparisons across methods based on the same
curated data set and a fixed evaluation strategy. The CHAOS
challenge [40] also provided MRIs however, the aim was a
general organ segmentation. To the best of the authors knowl-
edge, a dedicated challenge for renal image segmentation yet
is not proposed. The only challenge on renal image data is
the KiTS2019 challenge [150] on renal tumor segmentation,
however, from CT images. For renal imaging such a challenge
might be warranted to allow for method comparisons.

Furthermore, in brain imaging a set of well recognized
open source image processing packages (SPM, Freesurfer,
FSL) have emerged which are widely used in that field. Such
an evolution of renal image segmentation methods would be
warranted to set up a complete and automated renal image
data analysis pipeline. Such system can provide the necessary
infrastructure to drive renal image biomarker discovery and
clinical value of renal imaging. A set of tools and algorithm
reported in this work (see section VI) have been published
open source and might be the seed of the aforementioned
evolution towards commonly recognized tools and processing
pipelines.

In this review, we focused on approaches applied to MR
image datasets. However, renal image segmentation is also
successfully performed on CT image data including deep
learning approaches [56], [57], [67] which might be explored
for/ or transferred to renal MRI.

IX. CONCLUSION

In conclusion, renal image segmentation is a valuable tool to
further automate the analysis of renal MRI and thus might
foster reader independent data analysis in e.g. multi-center
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studies. Thereby, it might be possible establishing renal imag-
ing biomarkers more easily. Most recent works combine
image based and model based approaches to allow a robust
segmentation undermining the non-trivial analysis of renal
MRI data. Probably deep learning based approaches might
be a solution to further boost results and generalization. Apart
from the segmentation techniques, a broader comparison and
evaluation of methods as demonstrated is needed. There-
fore, curated publically available datasets are important and
warranted.

REFERENCES

[1] N. M. Selby et al., ‘““Magnetic resonance imaging biomarkers for chronic
kidney disease: A position paper from the European cooperation in sci-
ence and technology action PARENCHIMA,” Nephrol. Dial. Transplan-
tation, vol. 33, no. 2, pp. 4-14, Sep. 2018.

[2] E G. Zollner, E. Svarstad, A. Z. Munthe-Kaas, L.R. Schad,
A. Lundervold, and J. and Roervik, “Assessment of kidney volumes from
MRI: Acquisition and segmentation techniques,” Amer. J. Roentgenol.,
vol. 199, pp. 1060-1069, Nov. 2012.

[3] H. R. Torres, S. Queirds, P. Morais, B. Oliveira, J. C. Fonseca, and
J. L. Vilaga, “Kidney segmentation in ultrasound, magnetic resonance
and computed tomography images: A systematic review,” Comput. Meth-
ods Programs Biomed., vol. 157, pp. 49-67, Apr. 2018.

[4] A. Caroli, M. Schneider, I. Friedli, A. Ljimani, S. De Seigneux, P. Boor,
L. Gullapudi, I. Kazmi, I. A. Mendichovszky, M. Notohamiprodjo,
N. M. Selby, H. C. Thoeny, N. Grenier, and J.-P. Vallée, “Diffusion-
weighted magnetic resonance imaging to assess diffuse renal pathology:
A systematic review and statement paper,” Nephrol. Dial. Transplanta-
tion, vol. 33, no. 2, pp. ii29-ii40, Sep. 2018.

[5] A. Odudu, F. Nery, A. A. Harteveld, R. G. Evans, D. Pendse,
C. E. Buchanan, S. T. Francis, and M. A. Fernindez-Seara, ‘‘Arterial
spin labelling MRI to measure renal perfusion: A systematic review
and statement paper,” Nephrol. Dial. Transplantation, vol. 33, no. 2,
pp. ii15-ii21, Sep. 2018.

[6] R. A. Jones, J. R. Votaw, K. Salman, P. Sharma, C. Lurie, B. Kalb, and
D. R. Martin, “Magnetic resonance imaging evaluation of renal structure
and function related to disease: Technical review of image acquisition,
postprocessing, and mathematical modeling steps,” J. Magn. Reson.
Imag., vol. 33, pp. 1270-1283, Jun. 2011.

[7]1 F. G. Zollner, T. Gaa, F. Zimmer, M. M. Ong, P. Riffel, D. Hausmann,
S. O. Schoenberg, and M. Weis, “Quantitative perfusion imaging in mag-
netic resonance imaging,” Der Radiol., vol. 56, pp. 113—123, Feb. 2016.

[8] M. Pruijm, I. A. Mendichovszky, P. Liss, P. Van der Niepen, S. C. Textor,
L. O. Lerman, C. T. P. Krediet, A. Caroli, M. Burnier, and P. V. Prasad,
“Renal blood oxygenation level-dependent magnetic resonance imaging
to measure renal tissue oxygenation: A statement paper and systematic
review,” Nephrol. Dial. Transplant, vol. 33, pp. 1i22-i28, Sep. 2018.

[9]1 A.C. M. Ong, O. Devuyst, B. Knebelmann, and G. Walz, “Autosomal
dominant polycystic kidney disease: The changing face of clinical man-
agement,” Lancet, vol. 385, pp. 1993-2002, May 2015.

[10] Center for Drug Evaluation and Research. (2016). Qualification of
Biomarker Total Kidney Volume in, Studies for Treatment of Autosomal
Dominant Polycystic Kidney Disease Draft Guidance for Industry.
[Online]. Available: https://www.fda.gov/regulatory-information/search-
fda-guidance-documents/qualification-biomarker-total-kidney-volume-
studies-treatment-autosomal-dominant-polycystic-kidney

[11] T. L. Kline, P. Korfiatis, M. E. Edwards, J. D. Blais, F. S. Czerwiec,
P. C. Harris, B. F. King, V. E. Torres, and B. J. Erickson, ‘‘Performance
of an artificial multi-observer deep neural network for fully automated
segmentation of polycystic kidneys,” J. Digit. Imag., vol. 30, no. 4,
pp. 442-448, Aug. 2017.

[12] O. Gloger, K. Tonnies, B. Mensel, and H. Volzke, “Fully automatized
renal parenchyma volumetry using a support vector machine based recog-
nition system for subject-specific probability map generation in native
MR volume data,” Phys. Med. Biol., vol. 60, no. 22, pp. 8675-8693,
Nov. 2015.

[13] X. Yang, H. Le Minh, K.-T. Cheng, K. H. Sung, and W. Liu, “Renal
compartment segmentation in DCE-MRI images,” Med. Image Anal.,
vol. 32, pp. 269-280, Aug. 2016.

VOLUME 9, 2021



F. G. Z6lIner et al.: Kidney Segmentation in Renal MRI - Current Status and Prospects

IEEE Access

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]
[30]

[31]

[32]

N. Wake, J. S. Wysock, M. A. Bjurlin, H. Chandarana, and W. C. Huang,
“Pin the tumor on the kidney’: An evaluation of how surgeons trans-
late CT and MRI data to 3D models,” Urology, vol. 131, pp. 255-261,
Sep. 2019.

T. L. Kline, M. E. Edwards, 1. Garg, M. V. Irazabal, P. Korfiatis,
P. C. Harris, B. F. King, V. E. Torres, S. K. Venkatesh, and B. J. Erickson,
“Quantitative MRI of kidneys in renal disease,” Abdominal Radiol.,
vol. 43, pp. 629-638, Mar. 2018.

K. Bae, B. Park, H. Sun, J. Wang, C. Tao, A. B. Chapman, V. E. Torres,
J.J. Grantham, M. Mrug, W. M. Bennett, M. F. Flessner, D. P. Landsittel,
and K. T. Bae, “Segmentation of individual renal cysts from mr images
in patients with autosomal dominant polycystic kidney disease,” Clin.
J. Amer. Soc. Nephrol., vol. 8, pp. 1089-1097, Jul. 2013.

Y. Kim, Y. Ge, C. Tao, J. Zhu, A. B. Chapman, V. E. Torres,
A.S.L.Yu, M. Mrug, W. M. Bennett, M. F. Flessner, D. P. Landsittel,
and K. T. Bae, “Automated segmentation of kidneys from MR images
in patients with autosomal dominant polycystic kidney disease,” Clin.
J. Amer. Soc. Nephrol., vol. 11, no. 4, pp. 576-584, Apr. 2016.

X. Liu, K. Tuncali, W. M. Wells, and G. P. Zientara, ‘““‘Automatic iceball
segmentation with adapted shape priors for MRI-guided cryoablation,”

J. Magn. Reson. Imag., vol. 41, no. 2, pp. 517-524, Feb. 2015.

H. Rusinek, J. C. Lim, N. Wake, J.-M. Seah, E. Botterill, S. Farquharson,
A. Mikheev, and R. P. Lim, “A semi-automated ‘blanket’ method for renal
segmentation from non-contrast T1-weighted MR images,” Magn. Reson.
Mater. Phys., vol. 29, pp. 197-206, Apr. 2016.

F. G. Z5lIner, A. Serifovié-Trbali, G. Kabelitz, M. Kociiski, A. Materka,
and P. Rogelj, “Image registration in dynamic renal MRI—Current status
and prospects,” Magn. Reson. Mater. Phys., Biol. Med., vol. 33, no. 1,
pp. 33-48, Feb. 2020.

D. Turco, S. Severi, R. Mignani, R. Magistroni, and C. Corsi, ‘“Geometry-
independent assessment of renal volume in polycystic kidney disease
from magnetic resonance imaging,” in Proc. 37th Annu. Int. Conf. Eng.
Med. Biol. Soc. (EMBC), Aug. 2015, pp. 3081-3084.

M. Sandmair, M. Hammon, H. Seuss, R. Theis, M. Uder, and R. Janka,
“Semiautomatic segmentation of the kidney in magnetic resonance
images using unimodal thresholding,” BMC Res. Notes, vol. 9, no. 1,
p- 489, Nov. 2016.

J. D. Warner, M. V. Irazabal, G. Krishnamurthi, B. F. King, V. E. Torres,
and B. J. Erickson, “Supervised segmentation of polycystic kidneys:
A new application for stereology data,” J. Digit. Imag., vol. 27, no. 4,
pp. 514-519, Aug. 2014.

T. L. Kline, M. E. Edwards, P. Korfiatis, Z. Akkus, V. E. Torres, and
B. J. Erickson, “Semiautomated segmentation of polycystic kidneys
in T2-weighted MR images,” Amer. J. Roentgenol., vol. 207, no. 3,
pp. 605-613, Sep. 2016.

K. T. Bae, P. K. Commean, B. S. Brunsden, D. A. Baumgarten,
J.F. King, L. H. Wetzel, P. J. Kenney, A. B. Chapman, V. E. Torres,
J. J. Grantham, L. M. Guay-Woodford, C. Tao, J. P. Miller, C. M. Meyers,
and W. M. Bennett, “Segmentation and volumetric measurement of renal
cysts and parenchyma from MR images of polycystic kidneys using
multi-spectral analysis method,” in Medical Imaging: Image Processing,
J. M. Reinhardt and J. P. W. Pluim, Eds. Bellingham, WA, USA: SPIE,
2008, Art. no. 691449.

M. Zhang, T. Wu, S. C. Beeman, L. Cullen-McEwen, J. F. Bertram,
J. R. Charlton, E. Baldelomar, and K. M. Bennett, “Efficient small blob
detection based on local convexity, intensity and shape information,”
IEEE Trans. Med. Imag., vol. 35, no. 4, pp. 1127-1137, Apr. 2016.

R. C. Gonzalez and R. E. Woods, Digital Image Processing. New York,
NY, USA: Pearson, 2018.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing
Using MATLAB. Upper Saddle River NJ, USA: Prentice-Hall, 2004.

E. Davies, Computer and Machine Vision: Theory, Algorithms, Practical-
ities. Waltham, MA, USA: Elsevier, 2012.

P. Soille, Morphological Image Analysis: Principles and Applications.
Berlin, Germany: Springer, 2004.

C. Rother, V. Kolmogorov, and A. Blake, ““GrabCut’ interactive fore-
ground extraction using iterated graph cuts,” ACM Trans. Graph., vol. 23,
no. 3, pp. 309-314, Aug. 2004.

S. Will, P. Martirosian, C. Wirslin, and F. Schick, “Automated segmenta-
tion and volumetric analysis of renal cortex, medulla, and pelvis based on
non-contrast-enhanced T1-and T2-weighted MR images,” Magn. Reson.
Mater. Phys., Biol. Med., vol. 27, no. 5, pp. 445-454, Oct. 2014.

VOLUME 9, 2021

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

W. A. Abdulahi and J. R. Tapamo, “Fast Chan-Vese without edges and
connected component analysis for kidney segmentation in MRI images,”
in Proc. AFRICON, Sep. 2015, pp. 1-5.

T. Woodard, S. Sigurdsson, J. D. Gotal, A. A. Torjesen, L. A. Inker,
T. Aspelund, G. Eiriksdottir, V. Gudnason, T. B. Harris, L. J. Launer,
A. S. Levey, and G. F. Mitchell, “Segmental kidney vol. measured, by
dynamic contrast-enhanced magnetic resonance imaging and their asso-
ciation with CKD in older people,” Am. J. Kidney Dis., vol. 65, pp. 41-48,
Jan. 2015.

S. Mushrif, A. Morales, C. Sica, Q. X. Yang, S. Eskin, and L. Sinowa,
“A novel intuitionistic fuzzy set approach for segmentation of kidney
MR images,” in Proc. IEEE Signal Process. Med. Biol. Symp. (SPMB),
Dec. 2016, pp. 1-6.

E. A. Hanson and A. Lundervold, “‘Local/non-local regularized image
segmentation using graph-cuts: Application to dynamic and multispectral
MRL> Int. J. Comput. Assist. Radiol. Surg., vol. 8, no. 6, pp. 1073-1084,
Nov. 2013.

A. K. Rudra, A. S. Chowdhury, A. Elnakib, F. Khalifa, A. Soli-
man, G.Beache, and A. El-Baz, “Kidney segmentation using graph
cuts and pixel connectivity,” Pattern Recognit. Lett., vol. 34, no. 13,
pp. 1470-1475, Oct. 2013.

U. Yoruk, B. A. Hargreaves, and S. S. Vasanawala, ‘“‘Automatic renal
segmentation for mr urography using 3d-grabcut and random forests,”
Magn. Reson. Med., vol. 79, pp. 1696-1707, Mar. 2018.

N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62—66, Jan. 1979.
A. E. Kavur et al., “CHAOS challenge-combined (CT-MR) healthy
abdominal organ segmentation,” Med. Image Anal., vol. 69, Apr. 2021,
Art. no. 101950.

P. A. Yushkevich and G. Gerig, “ITK-SNAP: An intractive medical image
segmentation tool to meet the need for expert-guided segmentation of
complex medical images,” IEEE Pulse, vol. 8, no. 4, pp. 54-57, Jul. 2017.
P. L. Rosin, ““Unimodal thresholding,” Pattern Recognit., vol. 34, no. 11,
pp. 2083-2096, Nov. 2001.

S. Arora, J. Acharya, A. Verma, and P. K. Panigrahi, “Multilevel thresh-
olding for image segmentation through a fast statistical recursive algo-
rithm,” Pattern Recognit. Lett., vol. 29, no. 2, pp. 119-125, Jan. 2008.
A. Ben Ishak, “A two-dimensional multilevel thresholding method
for image segmentation,” Appl. Soft Comput., vol. 52, pp.306-322,
Mar. 2017.

0. Gloger, K. Tonnies, R. Laqua, and H. Volzke, “‘Fully automated renal
tissue volumetry in MR volume data using prior-shape-based segmen-
tation in subject-specific probability maps,” IEEE Trans. Biomed. Eng.,
vol. 62, no. 10, pp. 2338-2351, Oct. 2015.

J. A. O’Reilly, S. Tanpradit, T. Puttasakul, M. Sangworasil, T. Matsuura,
P. Wibulpolprasert, and K. Chousangsuntorn, ‘“Automatic segmentation
of polycystic kidneys from magnetic resonance images using decision tree
classification and snake algorithm,” in Proc. 12th Biomed. Eng. Int. Conf.
(BMEiCON), Nov. 2019, pp. 1-5.

A. S. Lundervold and A. Lundervold, “An overview of deep learning
in medical imaging focusing on MRL,” Zeitschrift Medizinische Physik,
vol. 29, no. 2, pp. 102-127, May 2019.

J. Bernal, K. Kushibar, D. S. Asfaw, S. Valverde, A. Oliver, R. Mart{, and
X. Lladé, “Deep convolutional neural networks for brain image analysis
on magnetic resonance imaging: A review,” Artif. Intell. Med., vol. 95,
pp. 64-81, Apr. 2019.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and
C. L Sanchez, “A survey on deep learning in medical image analysis,”
Med. Image Anal., vol. 42, pp. 60-88, Dec. 2017.

T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin,
B. T. Do, G. Way, E. Ferrero, P. Agapow, M. Zietz, N. M. Hoffmanm,
and W. Xie, “Opportunities and obstacles for deep learning in biol-
ogy and medicine,” J. Royal Soc. Interface, vol. 15, no. 141, 2018,
Art. no. 20170387.

F. Piccialli, V. D. Somma, F. Giampaolo, S. Cuomo, and G. Fortino,
“A survey on deep learning in medicine: Why, how and when?”” Inf.
Fusion, vol. 66, pp. 111-137, Feb. 2021.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436-444, May 2015.

X. Zhao and X. M. Zhao,
resonance images: A brief review,”
10.1016/j.ymeth.2020.09.007.

“Deep learning of brain magnetic
Methods, Sep. 2020, doi:

71601


http://dx.doi.org/10.1016/j.ymeth.2020.09.007

IEEE Access

F. G. Z6lIner et al.: Kidney Segmentation in Renal MRI - Current Status and Prospects

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

71602

I. Ulku and E. Akagunduz, “A survey on deep learning-based architec-
tures for semantic segmentation on 2D images,” 2021, arXiv:1912.10230.
[Online]. Available: https://arxiv.org/abs/1912.10230

E. Goceri, “Challenges and recent solutions for image segmentation in
the era of deep learning,” in Proc. 9th Int. Conf. Image Process. Theory,
Tools Appl. (IPTA), Nov. 2019, pp. 1-6.

K. Sharma, C. Rupprecht, A. Caroli, M. C. Aparicio, A. Remuzzi,
M. Baust, and N. Navab, “Automatic segmentation of kidneys using deep
learning for total kidney volume quantification in autosomal dominant
polycystic kidney disease,” Sci. Rep., vol. 7, May 2017, Art. no. 2049.
V. Couteaux, S. Si-Mohamed, R. Renard-Penna, O. Nempont, T. Lefevre,
A. Popoft, G. Pizaine, N. Villain, I. Bloch, J. Behr, M.-F. Bellin, C. Roy,
O. Rouviere, S. Montagne, N. Lassau, and L. Boussel, “Kidney cortex
segmentation in 2D CT with U-Nets ensemble aggregation,” Diagnostic
Interventional Imag., vol. 100, no. 4, pp. 211-217, Apr. 2019.

F. Turk, M. Luy, and N. Barisci, “Comparison of Unet3D models for
kidney tumor segmentation,” Preprints, 2020, Art. no. 2020010314, doi:
10.20944/preprints202001.0314.v1.

K. C. Homepage. (Oct. 2020). Kits19 Challenge Homepage. [Online].
Available: https://kits19.grand-challenge.org

X. Yang, H. Le Minh, T. Cheng, K. H. Sung, and W. Liu, “Automatic
segmentation of renal compartments in DCE-MRI images,” in Medi-
cal Image Computing and Computer-Assisted Intervention, N. Navab,
J. Hornegger, W. M. Wells, and A. Frangi, eds. Cham, Switzerland:
Springer, 2015, pp. 3-11.

W. Mcculloch and W. Pitts, “A logical calculus of ideas immanent in
nervous activity,” Bull. Math. Biophys., vol. 5, pp. 127-147, Dec. 1943.
A. S. Lundervold, J. Rorvik, and A. Lundervold, ‘‘Fast semi-supervised
segmentation of the kidneys in DCE-MRI using convolutional neural
networks and transfer learning,” in Proc. 2nd Int. Sci. Symp., Berlin,
Germany, 2017, pp. 79-81.

G. Villa, S. Ringgaard, I. Hermann, R. Noble, P. Brambilla, D. S. Khatir,
F. G. Zollner, S. T. Francis, N. M. Selby, A. Remuzzi, and A. Caroli,
“Phase-contrast magnetic resonance imaging to assess renal perfusion:
A systematic review and statement paper,” Magn. Reson. Mater. Phys.,
Biol. Med., vol. 33, no. 1, pp. 3-21, Feb. 2020.

F. Liang, P. Qian, K.-H. Su, A. Baydoun, A. Leisser, S. Van Hedent,
J.-W. Kuo, K. Zhao, P. Parikh, Y. Lu, B. J. Traughber, and R. F. Muzic,
“Abdominal, multi-organ, auto-contouring method for online adaptive
magnetic resonance guided radiotherapy: An intelligent, multi-level
fusion approach,” Artif. Intell. Med., vol. 90, pp. 34—41, Aug. 2018.

K. Heryan, A. Skalski, J. Jakubowski, T. Drewniak, and J. Gajda, “Auto-
matic extraction of the pelvicalyceal system for preoperative planning
of minimally invasive procedures,” Metrol. Meas. Syst., vol. 24, no. 1,
pp. 3-18, Mar. 2017.

Y. Fu, T. R. Mazur, X. Wu, S. Liu, X. Chang, Y. Lu, H. H. Li, H. Kim,
M. C. Roach, L. Henke, and D. Yang, “A novel MRI segmentation
method using CNN-based correction network for MRI-guided adaptive
radiotherapy,” Med. Phys., vol. 45, no. 11, pp. 5129-5137, Nov. 2018.
D. Xiang, U. Bagci, C. Jin, F. Shi, W. Zhu, J. Yao, M. Sonka, and
X. Chen, “CorteXpert: A model-based method for automatic renal cortex
segmentation,” Med. Image Anal., vol. 42, pp. 257-273, Dec. 2017.

M. Shehata, F. Khalifa, A. Soliman, R. Alrefai, M. A. El-Ghar,
A. C. Dwyer, R. Ouseph, and A. El-Baz, ““A novel framework for auto-
matic segmentation of kidney from DW-MRI,” in Proc. IEEE 12th Int.
Symp. Biomed. Imag. (ISBI), Apr. 2015, pp. 951-954.

M. Shehata, F. Khalifa, A. Soliman, M. Ghazal, F. Taher, M. A. El-Ghar,
A. C. Dwyer, G. Gimel’farb, R. S. Keynton, and A. El-Baz, “Computer-
aided diagnostic system for early detection of acute renal transplant
rejection using diffusion-weighted MRI,” IEEE Trans. Biomed. Eng.,
vol. 66, no. 2, pp. 539-552, Feb. 2019.

M. Shehata, M. Ghazal, G. Beache, M. A. EI-Ghar, A. Dwyer, H. Hajj-
diab, A. Khalil, and A. EI-Baz, “Role of integrating diffusion mr image-
markers with clinical-biomarkers for early assessment of renal trans-
plants,” in Proc. 25th IEEE Int. Conf. Image Process. (ICIP), Oct. 2018,
pp. 146-150.

M. Shehata, A. Mahmoud, A. Soliman, F. Khalifa, M. Ghazal,
M. A. El-Ghar, M. El-Melegy, and A. El-Baz, “3D kidney segmentation
from abdominal diffusion MRI using an appearance-guided deformable
boundary,” PLoS ONE, vol. 13, Oct. 2018, Art. no. e0200082.

E. Gibson, W. Li, C. Sudre, L. Fidon, D. I. Shakir, G. Wang, Z. Eaton-
Rosen, R. Gray, T. Doel, Y. Hu, T. Whyntie, P. Nachev, M. Modat,
D. C. Barratt, S. Ourselin, M. J. Cardoso, and T. Vercauteren, ““NiftyNet:
A deep-learning platform for medical imaging,” Comput. Methods Pro-
grams Biomed., vol. 158, pp. 113-122, May 2018.

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

M. Shehata, F. Khalifa, A. Soliman, R. Alrefai, M. A. El-Ghar,
A. C. Dwyer, R. Ouseph, and A. El-Baz, ““A level set-based framework
for 3D kidney segmentation from diffusion MR images,” in Proc. IEEE
Int. Conf. Image Process. (ICIP), Sep. 2015, pp. 4441-4445.

M. Shehata, F. Khalifa, E. Hollis, A. Soliman, E. Hosseini-Asl,
M. A. El-Ghar, M. El-Baz, A. C. Dwyer, A. El-Baz, and R. Keynton,
“A new non-invasive approach for early classification of renal rejection
types using diffusion-weighted MRI,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2016, pp. 136-140.

J. Lv, W. Huang, J. Zhang, and X. Wang, “Performance of U-net based
pyramidal lucas-kanade registration on free-breathing multi-b-value dif-
fusion MRI of the kidney,” Brit. J. Radiol., Mar. 2018, Art. no. 20170813.
L. Gui, C. Li, and X. Yang, “Medical image segmentation based on level
set and isoperimetric constraint,” Phys. Medica, vol. 42, pp. 162-173,
Oct. 2017.

I. Aganj, M. G. Harisinghani, R. Weissleder, and B. Fischl, “Unsuper-
vised medical image segmentation based on the local center of mass,”
Sci. Rep., vol. 8, no. 1, Aug. 2018, Art. no. 13012.

R. Chav, T. Cresson, G. Chartrand, C. Kauffmann, G. Soulez, and
J. A. de Guise, “Kidney segmentation from a single prior shape in
MRL,” in Proc. IEEE 11th Int. Symp. Biomed. Imag. (ISBI), Apr. 2014,
pp. 818-821.

F. Khalifa, G. M. Beache, M. A. El-Ghar, T. El-Diasty, G. Gimel farb,
M. Kong, and A. El-Baz, “Dynamic contrast-enhanced MRI-based early
detection of acute renal transplant rejection,” IEEE Trans. Med. Imag.,
vol. 32, no. 10, pp. 1910-1927, Oct. 2013.

Y. Xu, F. Gao, T. Wu, K. M. Bennett, J. R. Charlton, and S. Sarkar, “U-net
with optimal thresholding for small blob detection in medical images,”
in Proc. IEEE 15th Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2019,
pp. 1761-1767.

F. Liu, C.-A. Cuenod, I. Thomassin-Naggara, S. Chemouny, and
Y. Rozenholc, “Hierarchical segmentation using equivalence test
(HiSET): Application to DCE image sequences,” Med. Image Anal.,
vol. 51, pp. 125-143, Jan. 2019.

C. E. Cardenas, J. Yang, B. M. Anderson, L. E. Court, and K. B. Brock,
“Advances in auto-segmentation,” Semin. Radiat. Oncol., vol. 29,
pp. 185-197, Jul. 2019.

P. Jackson, N. Hardcastle, N. Dawe, T. Kron, M. S. Hofman, and
R. J. Hicks, “Deep learning renal segmentation for fully automated radia-
tion dose estimation in unsealed source therapy,” Frontiers Oncol., vol. 8,
pp- 1-7, Jun. 2018.

M. Haghighi, S. K. Warfield, and S. Kurugol, “Automatic renal segmen-
tation in DCE-MRI using convolutional neural networks,” in Proc. IEEE
15th Int. Symp. Biomed. Imag. (ISBI), Apr. 2018, pp. 1534-1537.

M. F. Bobo, S. Bao, Y. Huo, Y. Yao, J. Virostko, A. J. Plassard, I. Lyu,
A. Assad, R. G. Abramson, M. A. Hilmes, and B. A. Landman, ‘““Fully
convolutional neural networks improve abdominal organ segmentation,”
Proc. SPIE Int. Soc. Opt. Eng., vol. 10574, Mar. 2018, Art. no. 105742V.
M. Barstudan, R. Ceylan, S. Asoglu, H. Cebeci, and M. Koplay, “Adrenal
tumor segmentation method for MR images,” Comput. Methods Pro-
grams Biomed., vol. 164, pp. 87-100, Oct. 2018.

T. L. Kline, P. Korfiatis, M. E. Edwards, J. D. Warner, M. V. Irazabal,
B. F. King, V. E. Torres, and B. J. Erickson, “Automatic total kidney
vol. measurement, on follow-up magnetic resonance images to facilitate
monitoring of autosomal dominant polycystic kidney disease progres-
sion,” Nephrol. Dial. Transplantion, vol. 31, pp. 241-248, Feb. 2016.

V. Bevilacqua, A. Brunetti, G. D. Cascarano, F. Palmieri, A. Guerriero,
and M. Moschetta, “A deep learning approach for the automatic detec-
tion and segmentation in autosomal dominant polycystic kidney disease
based on magnetic resonance images,” in Intelligent Computing Theo-
ries and Application (Lecture Notes in Computer Science), vol. 10955,
D. S. Huang, K. H. Jo, and X. L. Zhang, Eds. Cham, Switzerland:
Springer, 2018, doi: 10.1007/978-3-319-95933-7_73.

N. Ibtehaz and M. S. Rahman, “MultiResUNet: Rethinking the U-Net
architecture for multimodal biomedical image segmentation,” Neural
Netw., vol. 121, pp. 74-87, Jan. 2020.

T. L. Kline, “Segmenting new image acquisitions without labels,”
in Proc. IEEE 16th Int. Symp. Biomed. Imag. (ISBI), Apr. 2019,
pp. 330-333.

A. Brunetti, G. D. Cascarano, I. De Feudis, M. Moschetta, L. Gesu-
aldo, and V. Bevilacqua, “Detection and segmentation of kidneys from
magnetic resonance images in patients with autosomal dominant poly-
cystic kidney disease,” in Intelligent Computing Theories and Applica-
tion D.-S. Huang, K.-H. Jo, and Z.-K. Huang, Eds. Cham, Switzerland:
Springer, 2019, pp. 639-650.

VOLUME 9, 2021


http://dx.doi.org/10.20944/preprints202001.0314.v1
http://dx.doi.org/10.1007/978-3-319-95933-7_73

F. G. Z6lIner et al.: Kidney Segmentation in Renal MRI - Current Status and Prospects

IEEE Access

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101

[102

[103
[104

[105
[106

[107]

[108]

[109

[110

[111]

[112]

[113]

[114]

M. Shehata, M. Ghazal, F. Khalifa, M. A. El-Ghar, A. Khalil, A. C. Dwyer,
A. El-giziri, M. El-Melegy, and A. El-Baz, “A novel CAD system for
detecting acute rejection of renal allografts based on integrating imaging-
markers and laboratory biomarkers,” in Proc. IEEE Int. Conf. Imag. Syst.
Techn. (IST), Oct. 2018, pp. 1-6.

A. A. Taha and A. Hanbury, “Metrics for evaluating 3D medical image
segmentation: Analysis, selection, and tool,” BMC Med. Imag., vol. 15,
no. 1, pp. 1-28, Dec. 2015.

D. S. Marcus, A. F. Fotenos, J. G. Csernansky, J. C. Morris, and
R. L. Buckner, “Open access series of imaging studies (OASIS): Lon-
gitudinal MRI data in nondemented and demented older adults,” J. Cogn.
Neurosci., vol. 22, no. 12, pp. 2677-2684, 2010.

I. Fellhauver, F. G. Zollner, J. Schroder, C. Degen, L. Kong, M. Essig,
P. A. Thomann, and L. R. Schad, “Comparison of automated brain
segmentation using a brain phantom and patients with early Alzheimer’s
dementia or mild cognitive impairment,” Psychiatry Res., Neuroimag.,
vol. 233, no. 3, pp. 299-305, Sep. 2015.

P. Cooley, C. Scheper, Q. Ying, C. Turner, S. Cantor, and H. Ray, “The
NIDDK central repository using legacy data & samples to address new
questions,” Diabetes, vol. 56, p. 290, Oct. 2007.

C. F. Turner et al, “The NIDDK central repository at 8 years-
ambition, revision, use and impact,” Database, vol. 2011, Sep. 2011,
Art. no. bar043.

J. J. Grantham, L. T. Cook, L. H. Wetzel, M. A. Cadnapaphornchai,
and K. T. Bae, “Evidence of extraordinary growth in the progressive
enlargement of renal cysts,” Clin. J. Amer. Soc. Nephrol., vol. 5, no. 5,
pp. 889-896, May 2010.

T. Langner, A. Ostling, L. Maldonis, A. Karlsson, D. Olmo, D. Lindgren,
A. Wallin, L. Lundin, R. Strand, H. Ahlstrom, and J. Kullberg, “Kidney
segmentation in neck-to-knee body MRI of 40,000 UK Biobank partici-
pants,” Sci. Rep., vol. 10, Dec. 2020, Art. no. 20963.

S. Shirly and K. Ramesh, “Review on 2D and 3D MRI image segmenta-
tion techniques,” Current Med. Imag. Formerly Current Med. Imag. Rev.,
vol. 15, no. 2, pp. 150-160, Jan. 2019.

A. Virzi, C. O. Muller, J.-B. Marret, E. Mille, L. Berteloot, D. Grévent,
N. Boddaert, P. Gori, S. Sarnacki, and I. Bloch, “Comprehensive review
of 3D segmentation software tools for MRI usable for pelvic surgery
planning,” J. Digit. Imag., vol. 33, no. 1, pp. 99-110, Feb. 2020.
GitHub. (Oct. 2020). The Insight Toolkit. [Online]. Available:
https://itk.org

GitHub. (Oct. 2020). Simpleitk. [Online]. Available: https://simpleitk.org
GitHub. (Oct. 2020). The Visualization Toolkit. [Online]. Available:
https://vtk.org

GitHub. (Oct. 2020). Scipy. [Online]. Available: https://scipy.org
GitHub. (Oct. 2020). Scikit-Image. [Online]. Available: https:/scikit-
image.org

GitHub. (Oct. 2020). Renal-Segmentation.
https://github.com/umityoruk/renal-segmentation
GitHub. (Oct. 2020). Kidney-Compartment-Segmentation-From-MRR-
Images. [Online]. Available: https://github.com/xinyang-hust/kidney-
compartment-segmentation-from-MRR-images

GitHub. (Oct. 2020). Medical Image Segmentation With Convolutional
Neural Networks. [Online]. Available: https://github.com/frankkramer-
lab/MIScnn

GitHub. (Oct. 2020). Kits19 Participation With misCNN. [Online]. Avail-
able: https://github.com/muellerdo/kits19.MIScnn

K. A. Philbrick, A. D. Weston, Z. Akkus, T. L. Kline, P. Korfiatis,
T. Sakinis, P. Kostandy, A. Boonrod, A. Zeinoddini, N. Takahashi, and
B. J. Erickson, “RIL-contour: A medical imaging dataset annotation tool
for and with deep learning,” J. Digit. Imag., vol. 32, no. 4, pp. 571-581,
Aug. 2019.

R. J. Simms, T. Doshi, P. Metherall, D. Ryan, P. Wright, N. Gruel,
M. D. A. van Gastel, R. T. Gansevoort, W. Tindale, and A. C. M. Ong,
“A rapid high-performance semi-automated tool to measure total kidney
volume from MRI in autosomal dominant polycystic kidney disease,”
Eur. Radiol., vol. 29, no. 8, pp. 4188-4197, Aug. 2019.

B. Shi, P. Akbari, M. Pourafkari, I.-A. Iliuta, E. Guiard, C. F. Quist,
X. Song, D. Hillier, K. Khalili, and Y. Pei, ‘“Prognostic performance of
kidney volume measurement for polycystic kidney disease: A compara-
tive study of ellipsoid vs. Manual segmentation,” Sci. Rep., vol. 9, no. 1,
Dec. 2019, Art. no. 10996.

S. Lai, D. Mastroluca, C. Letizia, L. Petramala, A. M. Perrotta,
A.DiGaeta, L. Ferrigno, M. Ciccariello, A. R. D’Angelo, and
V. Panebianco, “Magnetic resonance imaging 3T and total fibrotic vol-
ume in autosomal dominant polycystic kidney disease,” Internal Med.
J., vol. 48, no. 12, pp. 1505-1513, Dec. 2018.

[Online].  Available:

VOLUME 9, 2021

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

D. Turco, M. Busutti, R. Mignani, R. Magistroni, and C. Corsi, “Com-
parison of total kidney volume quantification methods in autosomal
dominant polycystic disease for a comprehensive disease assessment,”
Amer. J. Nephrol., vol. 45, no. 5, pp. 373-379, 2017.

E. Banach-Ambroziak, M. Jankowska, M. Grzywidska, J. Piedkowska,
and E. Szurowska, ‘“MRI-derived markers for predicting a decline in renal
function in patients with autosomal dominant polycystic kidney disease,”
Polish J. Radiol., vol. 84, pp. 289-294, Oct. 2019.

R. Magistroni, C. Corsi, T. Marti, and R. Torra, “A review of the imaging
techniques for measuring kidney and cyst volume in establishing autoso-
mal dominant polycystic kidney disease progression,” Amer. J. Nephrol.,
vol. 48, no. 1, pp. 67-78, 2018.

F. Siedek, S. Haneder, J. Dorner, J. N. Morelli, S.-H. Chon, D. Maintz, and
C. Houbois, “Estimation of split renal function using different volumetric
methods: Inter-and intraindividual comparison between MRI and CT,”
Abdominal Radiol., vol. 44, no. 4, pp. 1481-1492, Apr. 2019.

D. K. Dwivedi, Y. Chatzinoff, Y. Zhang, Q. Yuan, M. Fulkerson,
R. Chopra, J. Brugarolas, J. A. Cadeddu, P. Kapur, and I. Pedrosa,
“Development of a patient-specific tumor mold using magnetic resonance
imaging and 3-dimensional printing technology for targeted tissue pro-
curement and radiomics analysis of renal masses,” Urology, vol. 112,
pp. 209-214, Feb. 2018.

N. Wake, H. Chandarana, W. C. Huang, S. S. Taneja, and
A. B. Rosenkrantz, ‘“‘Application of anatomically accurate, patient-
specific 3D printed models from MRI data in urological oncology,” Clin.
Radiol., vol. 71, no. 6, pp. 610-614, Jun. 2016.

D. Turco, S. Severi, R. Mignani, V. Aiello, R. Magistroni, and C. Corsi,
“Reliability of total renal volume computation, in polycystic kidney
disease from magnetic resonance imaging,” Acad. Radiol., vol. 22,
pp. 1376-1384, Nov. 2015.

F. Khalifa, M. Abou El-Ghar, B. Abdollahi, H. B. Frieboes, T. El-Diasty,
and A. El-Baz, “A comprehensive non-invasive framework for automated
evaluation of acute renal transplant rejection using DCE-MRI,” NMR
Biomed., vol. 26, pp. 1460-1470, Nov. 2013.

F. Khalifa, M. Shehata, A. Soliman, M. Abou El-Ghar, T. El-Diasty,
A. C. Dwyer, M. El-Melegy, G. Gimel’farb, R. Keynton, and A. El-Baz,
“A generalized MRI-based CAD system for functional assessment
of renal transplant,” in Proc. IEEE 14th Int. Symp. Biomed. Imag.,
Apr. 2017, pp. 758-761.

E. Hollis, M. Shehata, M. Abou El-Ghar, M. Ghazal, T. El-Diasty,
M. Merchant, A. E. Switala, and A. El-Baz, ““Statistical analysis of ADCs
and clinical biomarkers in detecting acute renal transplant rejection,” Brit.
J. Radiol., vol. 90, no. 1080, Dec. 2017, Art. no. 20170125.

G. Chiusano, A. Stagliand, C. Basso, and A. Verri, “Unsupervised tis-
sue segmentation from dynamic contrast-enhanced magnetic resonance
imaging,” Artif. Intell. Med., vol. 61, no. 1, pp. 53-61, May 2014.

F. G. Zollner, R. Sance, P. Rogelj, M. J. Ledesma-Carbayo, J. Rgrvik,
A. Santos, and A. Lundervold, “Assessment of 3D DCE-MRI of the
kidneys using non-rigid image registration and segmentation of voxel
time courses,” Comput. Med. Imag. Graph., vol. 33, no. 3, pp. 171-181,
Apr. 2009.

K. T. Bae, H. Sun, J. G. Lee, K. Bae, J. Wang, C. Tao, A. B. Chapman,
V. E. Torres, J. J. Grantham, M. Mrug, W. M. Bennett, M. F. Flessner, and
D. P. Landsittel, ““Novel methodology to evaluate renal cysts in polycystic
kidney disease,” Amer. J. Nephrol., vol. 39, no. 3, pp. 210-217, 2014.

T. W. Ridler and S. Calvard, “Picture thresholding using an iterative
selection method,” IEEE Trans. Syst., Man, Cybern., vol. SMC-8, no. 8,
pp. 630-632, Oct. 1978.

M. Notohamiprodjo, M. Goepfert, S. Will, R. Lorbeer, F. Schick,
W. Rathmann, P. Martirosian, A. Peters, K. Miiller-Peltzer, A. Helck,
S. Rospleszcz, and F. Bamberg, “Renal and renal sinus fat vol. as,
quantified by magnetic resonance imaging in subjects with prediabetes,
diabetes, and normal glucose tolerance,” PLoS ONE, vol. 15, Oct. 2020,
Art. no. e0216635.

H. Seuss, R. Janka, M. Prammer, A. Cavallaro, R. Hammon, R. Theis,
M. Sandmair, K. Amann, T. Biuerle, M. Uder, and M. Hammon, “Devel-
opment and evaluation of a semi-automated segmentation tool and a
modified ellipsoid formula for volumetric analysis of the kidney in
non-contrast T2-weighted MR images,” J. Digit. Imag., vol. 30, no. 2,
pp. 244-254, Apr. 2017.

M. Hammon, R. Janka, C. Siegl, H. Seuss, R. Grosso, P. Martirosian,
R. E. Schmieder, M. Uder, and I. Kistner, “Reproducibility of kidney
perfusion measurements with arterial spin labeling at 1.5 tesla MRI
combined with semiautomatic segmentation for differential cortical and
medullary assessment,” Medicine, vol. 95, no. 11, p. e3083, 2016.

71603



IEEE Access

F. G. Z6lIner et al.: Kidney Segmentation in Renal MRI - Current Status and Prospects

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

71604

Y. Feng, I. Kawrakow, J. Olsen, P. J. Parikh, C. Noel, O. Wooten, D. Du,
S. Mutic, and Y. Hu, “A comparative study of automatic image segmen-
tation algorithms for target tracking in MR-IGRT,” J. Appl. Clin. Med.
Phys., vol. 17, no. 2, pp. 441-460, Mar. 2016.

0. Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
“3D U-Net: Learning dense volumetric segmentation from sparse annota-
tion,” in Medical Image Computing and Computer-Assisted Intervention,
S. Ourselin, L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells, Eds.
Cham, Switzerland: Springer, 2016, pp. 424-432.

J. A. O’Reilly, S. Tanpradit, T. Puttasakul, M. Sangworasil, T. Matsuura,
K. Chousangsuntorn, and P. Wibulpolprasert, “Automatic segmentation
of polycystic kidneys from magnetic resonance images using a three-
dimensional fully-convolutional network,” in Proc. RSU Int. Rese. Conf.,
2020, pp. 43-50.

V. Bevilacqua, A. Brunetti, G. D. Cascarano, A. Guerriero, F. Pesce,
M. Moschetta, and L. Gesualdo, “A comparison between two semantic
deep learning frameworks for the autosomal dominant polycystic kidney
disease segmentation based on magnetic resonance images,” BMC Med.
Informat. Decis. Making, vol. 19, no. S9, pp. 1-12, Dec. 2019.

E. Hodneland, E. A. Hanson, A. Lundervold, J. Modersitzki, E. Eikefjord,
and A. Z. Munthe-Kaas, “Segmentation-driven image registration-
application to 4D DCE-MRI recordings of the moving kidneys,” IEEE
Trans. Image Process., vol. 23, no. 5, pp. 2392-2404, May 2014.

N. Goceri and E. Goceri, “A neural network based kidney segmentation
from MR images,” in Proc. IEEE 14th Int. Conf. Mach. Learn. Appl.
(ICMLA), Dec. 2015, pp. 1195-1198.

N. Liu, A. Soliman, G. Gimel’farb, and A. El-Baz, “Segmenting kid-
ney DCE-MRI using 1*-order shape and 5"-order appearance priors,”
in Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2015 (Lecture Notes in Computer Science), vol. 9349, N. Navab,
J. Hornegger, W. Wells, and A. Frangi, Eds. Cham, Switzerland: Springer,
2015, doi: 10.1007/978-3-319-24553-9_10.

W. Huang, H. Li, R. Wang, X. Zhang, X. Wang, and J. Zhang, “A self-
supervised strategy for fully automatic segmentation of renal dynamic
contrast-enhanced magnetic resonance images,” Med. Phys., vol. 46,
no. 10, pp. 4417-4430, Oct. 2019.

A.-K. Schnurr, C. Drees, L. R. Schad, and F. G. Zgellner, “Comparing
sample mining schemes for cnn kidney segmentation in t1w mri,” in Proc.
3rd Int. Conf. Funct. Renal Imag., Nottingham, U.K., Oct. 2019, pp. 1-5.
V. E. Torres, E. Meijer, K. T. Bae, A. B. Chapman, O. Devuyst,
R. T. Gansevoort, J. J. Grantham, E. Higashihara, R. D. Perrone,
H. B. Krasa, J. J. Ouyang, and F. S. Czerwiec, “Rationale and design of
the TEMPO (Tolvaptan efficacy and safety in management of autosomal
dominant polycystic kidney disease and its Outcomes) 3-4 study,” Amer.
J. Kidney Diseases, vol. 57, no. 5, pp. 692-699, May 2011.

O. Jimenez-del-Toro et al., “Cloud-based evaluation of anatomical
structure segmentation and landmark detection algorithms: VISCERAL
anatomy benchmarks,” IEEE Trans. Med. Imag., vol. 35, no. 11,
pp. 2459-2475, Nov. 2016.

I. Mendichovszky et al., ““Technical recommendations for clinical transla-
tion of renal MRI: A consensus project of the cooperation in science and
technology action PARENCHIMA,” Magn. Reson. Mater. Phys., Biol.
Med., vol. 33, no. 1, pp. 131-140, Feb. 2020.

M. Wolf, A. de Boer, K. Sharma, P. Boor, T. Leiner, G. Sunder-Plassmann,
E. Moser, A. Caroli, and N. P. Jerome, ‘“Magnetic resonance imaging
T1-and T2-mapping to assess renal structure and function: A systematic
review and statement paper,” Nephrol. Dial. Transplantation, vol. 33,
no. 2, pp. ii41-ii50, Sep. 2018.

H. Ahn, “Consensus-based technical recommendations for clinical trans-
lation of renal phase contrast MRL,”” J. Magn. Reson. Imag., pp. 163176,
Dec. 2020.

F. Nery et al., “Consensus-based technical recommendations for clinical
translation of renal ASL MRI,”” Magma, vol. 33, pp. 141-161, Feb. 2020.
O. Bane et al., “Consensus-based technical recommendations for clin-
ical translation of renal BOLD MRI,” Magma, vol. 33, pp. 199-215,
Feb. 2020.

H. Ahn, “Consensus-based technical recommendations for clinical trans-
lation of renal phase contrast MRI,” J. Magn. Reson. Imag., vol. 42,
pp. 60-68, Oct. 2017.

E. Hanson, E. Eikefjord, J. Rgrvik, E. Andersen, A. Lundervold, and
E. Hodneland, “Workflow sensitivity of post-processing methods in renal
DCE-MRI,” Magn. Reson. Imag., vol. 42, pp. 60-68, Oct. 2017.

N. Heller et al., “The state of the art in kidney and kidney tumor segmen-
tation in contrast-enhanced ct imaging: Results of the kits19 challenge,”
Med. Image Anal., vol. 67, Jan. 2021, Art. no. 101821.

FRANK G. ZOLLNER (Senior Member, IEEE)
was born in Bielefeld, Germany, in 1976.
He received the Diploma and Ph.D. degrees (Dr.-
Ing.) in computer science from the University of
Bielefeld, Germany, in 2001 and 2004, respec-
tively, the Ph.D. degree from the Bioinformatics
Graduate Program (Graduiertenkolleg Bioinfor-
matik), in 2004, and the Venia Legendi degree
in medical physics from Heidelberg University,
- Germany, in 2014.
He joined the Applied Computer Science Group, in 2001. From 2004 to
2006, he worked as a Postdoctoral Researcher with the Applied Com-
puter Science Group. From 2006 to 2007, he was a Researcher with the
Section of Radiology, Institute for Surgical Sciences, Haukeland University
Hospital, and the Neuroinformatics and Image Analysis Group, Section for
Physiology, Department of Biomedicine, University of Bergen, Norway.
He joined the Chair of Computer Assisted Clinical Medicine, Medical
Faculty Mannheim, Heidelberg University, in 2008. Since 2014, he has
been the Vice Chair of the Chair of Computer Assisted Clinical Medicine.
He became an Adjunct Professor of medical physics with Heidelberg
University, in 2017. He was appointed as the Head of the Preclinical MRI
Corefacility, Medical Faculty Mannheim, Heidelberg University, in 2021.
His research interests include pattern recognition, image processing, and
imaging techniques. He is interested in applying computational methods
from pattern recognition, image analysis to the fields of molecular imaging
and medical image analysis.

Dr. Zollner is a member of the IEEE EMB Society and the International
Society for Magnetic Resonance in Medicine (ISMRM).

MAREK KOCINSKI was born in t.6d7z, Poland,
in 1977. He received the M.Sc. degree in electron-
ics and telecomunications and the Ph.D. degree
in computer science from the Lodz Univeristy of
Technology (TUL), Poland, in 2003 and 2009,
respectively.
Since 2009, he has been an Assistant Profes-
2 , sor with the Institute of Electronics, TUL. He is
,\ " currently employed as a Postdoctoral Researcher
= with the Mohn Medical Imaging and Visualization
Centre (MMIV), Department of Radiology, Haukeland University Hospital,
Bergen, Norway, and the Department of Biomedicine, University of Bergen,
Norway. His research interests include biomedical image processing, 3D
visualization, 2D/3D texture analysis, quantitative analysis and modeling of
DCE MRI images, and computer modeling. He is interested in application
of machine learning and deep learning in medical image analysis.

LAURA HANSEN was born in Datteln, Germany,
in 1996. She has been studying medicine,
since 2015, and passed the Second State
Examination Test in medicine from the Med-
ical Faculty Mannheim, Heidelberg University,
Baden-Wiirttemberg, Germany, in 2020.

From 2018 to 2020, she worked as a Sur-
gical Assistant with the Department of Ortho-
pedic and Trauma Surgery, University Medical

f Center Mannheim, Mannheim Medical Faculty,
Heidelberg University. Her current research interest includes volume deter-
mination of kidneys with autosomal dominant polycystic kidney dis-
ease (ADPKD) using Al techniques on the basis of MRI images.

VOLUME 9, 2021


http://dx.doi.org/10.1007/978-3-319-24553-9_10

F. G. Z6lIner et al.: Kidney Segmentation in Renal MRI - Current Status and Prospects

IEEE Access

ALENA-KATHRIN GOLLA was born in
Hamburg, Germany, in 1991. She received the B.S.
and M.S. degrees in computational visualistics
from Otto von Guericke University Magdeburg,
Germany, in 2017.

She joined the Chair of Computer Assisted
Clinical Medicine, Medical Faculty Mannheim,
Heidelberg University, Germany, as a Research
Assistant, in 2017. Her research interests include
image processing and deep learning. Her work is
focused on med1cal image segmentation, convolutional neural networks, and
learning from limited data.

AMIRA SERIFOVIC TRBALIC was born in Tuzla,
Bosnia and Herzegovina, in 1978. She received
the Diploma, M.Sc., and Ph.D. degrees from the
Faculty of Electrical Engineering, University of
Tuzla, Bosnia and Herzegovina, in 2002, 2006,
and 2011, respectively.

She is currently appointed as an Associate Pro-
fessor with the Faculty of Electrical Engineering,
University of Tuzla. Her research interests include
image processing and analysis, pattern recogni-
tion, and intelligent systems. She is interested in medical image processing
and analysis.

ARVID LUNDERVOLD (Life Member, IEEE)
received the B.Sc. degree in mathematics and the
M.D. degree from the University of Oslo, Nor-
way, in 1982, and the Ph.D. degree in multispec-
tral MR image analysis from the University of
Bergen, Norway. He is currently a Professor of
medical information technology and physiology
with the Department of Biomedicine, University
of Bergen, and the Head of the Neuroinformat-
ics and Image Analysis Laboratory, Neural Net-
works and Microcircuits Research Group. He is also the Co-Leader of the
Mohn Medical Imaging and Visualization Centre, Machine Learning Group,
Department of Radiology, Haukeland University Hospital, Bergen, and an
Adjunct Professor II of computational radiography with the Department of
Health and Functioning, Western Norway University of Applied Sciences.
His research interests include computational medicine, image processing,
pattern recognition and machine learning, functional MR imaging, image
registration, quantification and visualization, and mathematical modeling.
He is a member of the IEEE Computer Society, the Norwegian Medical
Association, and the American Mathematical Society.

VOLUME 9, 2021

ANDRZEJ MATERKA (Life Senior Member,
IEEE) was born in Egczyca, Poland, in 1949.
He received the M.Sc. degree in radio engineer-
ing from the Warsaw University of Technology,
in 1972, the Ph.D. (Dr.Eng.) degree from the Tech-
nical University of £6dZ (TUL), Poland, in 1979,
and the D.Sc. (Habilitation) degree in electron-
ics from the Technical University of Wroctaw,
in 1986.

From 1972 to 1974, he was an Engineer with the
Radio and TV Broadcasting Stations, £.6dZ. Since 1974, he has been with the
Institute of Electronics, TUL, being its Director, from 1995 to 2015. From
1980 to 1982, he was a Monbusho Scholar with the Research Institute of
Electronics, Shizuoka University, Hamamatsu, Japan. From 1992 to 1994,
he was a Senior Lecturer with the Department of Electrical and Computer
Systems Engineering, Monash University, Melbourne (Caulfield), VIC, Aus-
tralia. For two terms, from 2002 to 2008, he was the Dean of the Faculty of
Electrical and Electronic Engineering, TUL, where he is currently a Pro-
fessor. He supervised 21 Ph.D. candidates. He published over 250 scientific
articles and six books/monographs. His research interests include microwave
circuit design, medical electronics, digital signal and image analysis, pattern
recognition, artificial neural networks, secure database information systems
design, electronic smart cards applications, human—computer interaction
including brain—computer interfaces and aids for the visually impaired,
as well as geometric modeling of blood vessel trees based on 3D images.

Prof. Materka was the Chairman of Software and Statistics international
working group in COST B11 European Program Quantitative Texture Anal-
ysis on Magnetic Resonance Images from 1998 to 2003, and the Deputy
Chairman of COST B21 Physiological Modelling of MR Image Formation
action from 2004 to 2008. In result, a popular software package MaZda for
quantitative medical image texture analysis has been developed under his
guidance. He was a Co-Founder of the European Campus Card Association,
where he served as the Vice-President, from 2004 to 2006, and the President,
from 2009 to 2011. From 2017 to 2020, he was elected a member of the
Polish State Committee for Scientific Titles and Degrees. He received the
title of Professor of technical sciences (electronics, computer engineering)
from the President of Poland, in 1996.

PETER ROGEL)J was born in Ljubljana, Slovenia,
in 1975. He received the Ph.D. degree in electri-
cal engineering from the University of Ljubljana,
Slovenia, in 2003. He worked in the industry as
a software developer, project manager, and product
manager in companies in the fields of telecommu-
nications and software engineering. He was also
involved in research projects related to processing
and analyzing medical image data. In 2010, he
employed at the University of Primorska, Faculty
of Mathematlcs Natural Sciences and Information Technologies (UP FAM-
NIT), as an Assistant Professor. From 2015 to 2020, he was a coordinator
of the B.S. study Programme Bioinformatics at UP FAMNIT. His research
interests include image and signal processing and analysis, computer vision,
and intelligent systems. His current research activities remain in the fields of
medical image processing and EEG data analysis. In 2012, he won first prize
at a Business Plan Competition for an open information system for medical
collaboration.

71605



