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Abstract
We investigate the potential occurrence of change points—commonly referred to 
as “momentum shifts”—in the dynamics of football matches. For that purpose, we 
model minute-by-minute in-game statistics of Bundesliga matches using hidden 
Markov models (HMMs). To allow for within-state dependence of the variables, we 
formulate multivariate state-dependent distributions using copulas. For the Bundes-
liga data considered, we find that the fitted HMMs comprise states which can be 
interpreted as a team showing different levels of control over a match. Our model-
ling framework enables inference related to causes of momentum shifts and team 
tactics, which is of much interest to managers, bookmakers, and sports fans.

1  Introduction

Vocabulary such as “momentum”, “momentum shift”, or related terms is commonly 
used to refer to change points in the dynamics of a sports match. Usage of such 
terms is typically associated with situations during a match where an event—such as 
a shot hitting the woodwork in an association football match—seems to change the 
dynamics of the match, e.g. in a sense that a team which prior to the event had been 
pinned back in its own half suddenly seems to dominate the match. A prominent 
example is the 2005 Champions League final between Milan and Liverpool, where 
Liverpool was trailing by three goals after the first half, but fought back after half 
time and eventually won by penalty shootout.

Despite the widespread belief in momentum shifts in sports, it is not always clear 
to what extent perceived shifts in the momentum are genuine. From the literature on 
the “hot hand”— i.e. research on serial correlation in human performances—it is 
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well known that most people do not have a good intuition of randomness and in par-
ticular tend to overinterpret streaks of success and failure (see, for example, Thaler 
and Sunstein 2009, pp. 30–34, and Kahneman 2011, pp. 114–118). It is thus to be 
expected that many perceived momentum shifts are in fact cognitive illusions in the 
sense that the observed shift in a competition’s dynamics is driven by chance only.

Momentum shifts have been investigated in qualitative psychological studies, e.g. 
by interviewing athletes, who reported momentum shifts during matches (see, for 
example, Richardson et al. 1988; Jones and Harwood 2008). Fuelled by the rapidly 
growing amount of freely available sports data, quantitative studies have investi-
gated the drivers of ball possession in football (Lago-Peñas and Dellal 2010), the 
detection of main playing styles and tactics (Diquigiovanni and Scarpa 2018; Gon-
çalves et al. 2017) and the effects of momentum on risk-taking (Lehman and Hahn 
2013). In some of the existing studies, e.g. in Lehman and Hahn (2013), momentum 
is not investigated in a purely data-driven way, but rather pre-defined as winning 
several matches in a row.

In this contribution, we analyse potential momentum shifts within football 
matches. Specifically, we investigate the potential occurrence of momentum shifts 
by analysing minute-by-minute bivariate summary statistics from the German 
Bundesliga using hidden Markov models (HMMs). The corresponding data are 
described in Sect. 2. Within the HMMs, we consider copulas to allow for within-
state dependence of the variables considered. The corresponding methodology is 
presented in Sect. 3. Our results, which are presented in Sect. 4, suggest states which 
can be tied to different levels of control in a match. In addition, we investigate the 
causes of momentum shifts, e.g. the current score of the match. This type of insight 
could be of great interest to managers, bookmakers, and sports fans.

2 � Data

We analyse minute-by-minute in-game statistics of Bundesliga matches, taken from 
www.​whosc​ored.​com, to investigate to what extent momentum shifts in a football 
match are genuine, and what kind of events lead to a shift. Since the quality and tac-
tics differ between the teams, we do not pool data from multiple teams, but consider 
data from a single team. Throughout this paper, we consider data from Borussia 
Dortmund. In the Supplementary Material, we present the same analysis for Han-
nover 96.

As proxy measures for the current momentum within a football match, we con-
sider the number of shots on goal and the number of ball touches, with both vari-
ables sampled on a minute-by-minute basis. For match m, m = 1,… , 34 , this results 
in a bivariate time series {�mt}t=1,2,…,Tm

 , with �mt = (ymt1, ymt2) the pair of variables 
observed at time t (out of Tm minutes played) during the match.

Due to injury times being added to the regular match length of 90 min, the lengths 
of the time series considered range from 91 to 100 min. The final data set then com-
prises 3214 bivariate observations from 34 matches of the season 2017/18. In addi-
tion, since the underlying dynamics of a match, from Borussia Dortmund’s perspec-
tive, potentially depend on characteristics of the opponent (such as the strength of 

http://www.whoscored.com
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the squad) as well as events in the match (such as goals), the following four covari-
ates are considered:

•	 the market value of the opposing team (taken from www.​trans​ferma​rkt.​com);
•	 the goal difference in the current score;
•	 a dummy variable indicating whether the match is played at home or away;
•	 the current minute of the match.

The first covariate considered is a (crude) proxy for the quality of teams. Specifi-
cally, a team’s market value is given by the sum of all players’ market values at the 
beginning of the season and thus does not vary between matches or within matches, 
e.g. if players are substituted. The difference in the current score is calculated from 
Borussia Dortmund’s point of view, i.e. positive values refer to a lead of Dortmund, 
whereas negative values represent that Dortmund is trailing. The dummy indicat-
ing whether the match is played at home is included since several studies provided 
evidence for a home field advantage, because of (e.g.) crowd effects and psycho-
logical advantage when playing at home (see, for example, Pollard 2008). Finally, 
to account for the potential state of exhaustion of players, the minute of the match is 
also included. The variables considered are summarised in Table 1.

One example bivariate time series from the data set corresponding to the in-
game statistics observed for Borussia Dortmund in the match against FC Schalke 04 
played in November 2017 is shown in Fig. 1. In the media, this match was said to 
have a momentum shift, since Borussia Dortmund was in a 4:0 lead at half time, but 
Schalke 04 scored four goals in the second half so that the match resulted in a draw.

3 � Modelling momentum

Figure 1 underlines that there are periods in the match where Borussia Dortmund’s 
number of ball touches and the number of shots on goal are fairly low (e.g. around 
minute 75–90), as well as periods with relatively many ball touches and shots on 
goal (e.g. around minute 15–30). HMMs hence constitute a natural modelling 
approach for the minute-by-minute bivariate time series data, as they accommodate 
the idea of a match progressing through different phases, with potentially chang-
ing momentum. The states can be interpreted as the underlying momentum, i.e. as 
potentially different levels of control of the team considered. In the simplest model 

Table 1   Descriptive statistics of 
the variables analysed, “shots” 
and “ball touches”, as well as 
the covariates “market value” 
and “score difference”

Mean St. Dev. Min. Max.

shots 0.150 0.412 0 3
ball touches 6.101 5.036 0 28
market value (in 106 Euro) 142.6 127.1 48.80 610.3
score difference 0.253 1.500 −6 5

http://www.transfermarkt.com
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formulation with two states, the states could, for example, be interpreted as either 
the team considered or the opponent having a high level of control (i.e. dominat-
ing the match). In this section, the basic HMM model formulation will be intro-
duced (Sect.  3.1) and extended to allow for within-state dependence using copu-
las (Sect.  3.2). The latter is desirable since the potential within-state dependence 
may lead to a more meaningful interpretation of the states regarding the underlying 
momentum. Finally, for the model formulation presented in Sect. 3.2, covariates will 
be included (Sect. 3.3).

3.1 � A baseline model

HMMs involve two components: an unobserved Markov chain with N pos-
sible states and an observed state-dependent process, whose observations are 
assumed to be generated by one of N distributions as selected by the Markov 
chain. For the data considered in this paper, the observations and the state pro-
cess are denoted by �mt and {smt}t=1,2,…,Tm

 , respectively. Switches between the 
states are modelled by the transition probability matrix (t.p.m.) � = (�ij) , where 
�ij = Pr(smt = j|sm,t−1 = i), i, j = 1,… ,N . Figure  2 shows the model structure 
as directed graph. For the model formulation of an HMM to be completed, the 
number of states N and the class(es) of state-dependent distribution(s) have to 
be selected (see Zucchini et al. 2016, pp. 29–31). While choosing state-depend-
ent distribution(s) is straightforward for univariate time series, it is generally 
not straightforward to define a multivariate distribution to allow for within-state 
dependence of the variables considered. This would be straightforward if the 
marginals are assumed to be normally distributed, as in that case a multivariate 
normal state-dependent distribution can be used (see, for example, Phillips et al. 
2015). However, as this assumption would here clearly be inadequate given that 
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Fig. 1   Bivariate time series of the number of shots on goal (top) and the ball touches (bottom) of Borus-
sia Dortmund for one example match from the data set (Borussia Dortmund vs. FC Schalke 04)
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we consider count data, for the vector of observations �mt in the baseline model 
formulation, we assume that the joint probability is obtained by the product of the 
marginal distributions,

with K = 2 here. This assumption, also known as contemporaneous conditional 
independence, is often used in practice (see, for example, Wall and Li 2009; DeR-
uiter et al. 2017; Punzo et al. 2018; van Beest et al. 2019). Taking the product of the 
marginal distributions is straightforward and allows a flexible choice of the margin-
als f (ymtk | smt) , k = 1,… ,K . In Eq. (1), each of these denotes a probability mass 
function (p.m.f.) since we deal with discrete data, but in principle f could also denote 
a density without any further changes in the baseline model formulation. The K = 2 
variables modelled here will still be unconditionally dependent when assuming con-
temporaneous conditional independence, as the underlying Markov chain induces 
both serial dependence and cross-dependence between them. The contemporaneous 
conditional independence assumption will not be made in the next subsection.

Since both the number of shots on goal and the number of ball touches are count 
data, the Poisson distribution would be a standard choice for either of the two vari-
ables. Here, to account for possible over- and underdispersion in the data, a Con-
way–Maxwell–Poisson (CMP) distribution is assumed both for the number of shots 
on goal and the number of ball touches, with p.m.f.

with Z(�, �) =
∑∞

k=0
�k∕(k!)� , 𝜆 > 0 and � ≥ 0 (Conway and Maxwell 1961). The 

CMP distribution contains some well-known discrete distributions:

•	 for � = 1 , Z(�, �) = e� , and the CMP distribution simply reduces to the ordinary 
Poisson(�);

(1)f (�mt|smt) =
K∏
k=1

f (ymtk | smt),

Pr(X = x) =
1

Z(�, �)

�x

(x!)�
,

sm,t−1... sm,t sm,t+1 ...

ym,t−1 ym,t ym,t+1

Fig. 2   Dependence structure of the HMM considered: each pair of observations �
mt

 is assumed to be 
generated by one of N (bivariate) distributions according to the state process s

mt
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•	 for � → ∞ , Z(�, �) → 1 + � , and the CMP distribution approaches the Bernoulli 
with parameter �(1 + �)−1;

•	 for � = 0 and 0 < 𝜆 < 1 , Z(�, �) is a geometric sum 

 and, accordingly, the CMP distribution reduces to the geometric distribution 
px = �x(1 − �);

•	 for � = 0 and � ≥ 1 , Z(�, �) does not converge, leading to an undefined distribu-
tion.

In general, the normalising constant Z(�, �) does not reduce to such a simple closed-
form expression. Asymptotic results are, however, available (Gillispie and Green 
2015).

To formulate the likelihood for the baseline model, the i− th diagonal element 
of the N × N diagonal matrix �(�mt) consists of the joint probability of the obser-
vations ymt1 and ymt2 given state i, i.e. f (ymt1 | smt = i) ⋅ f (ymt2 | smt = i) . Since the 
Conway–Maxwell–Poisson distribution contains an infinite sum in the normalising 
constant, the evaluation of the p.m.f. is not straightforward. Here, the R package 
COMPoissonReg was used for this purpose (Sellers et al. 2018). Since stationar-
ity cannot reasonably be assumed in our setting, we estimate the initial distribution 
� =

(
Pr(sm1 = 1),… , Pr(sm1 = N)

)
 , regarding the parameters of � as N − 1 addi-

tional parameters to be estimated. The initial distribution is assumed to be constant 
across matches. With these quantities defined, the likelihood for a single match m is 
given by:

with column vector � = (1,… , 1)� ∈ ℝ
N (see Zucchini et  al. 2016,  p. 37). Calcu-

lation of this matrix product expression amounts to the application of the forward 
algorithm, which is a powerful recursive technique for efficiently calculating the 
likelihood of an HMM at computational cost O(TN2) only (see Zucchini et  al. 
2016, p. 38). To obtain the likelihood for the full data set, we assume independence 
between the individual matches. The likelihood is thus given by the product of like-
lihoods for the individual matches:

The model formulation presented here could be extended to account for momentum 
carry-over effects across matches, but this is not investigated in the present work 
since there is usually a time difference of 5–7 days between matches. The model 
parameters are estimated by numerical maximum likelihood using the function 
nlm() in R (R Core Team 2017). To avoid local maxima, we selected starting 
values for the numerical maximisation by drawing random numbers from uniform 

Z(�, �) =

∞∑
j=0

�j =
1

1 − �
,

L = ��(�m1)��(�m2)…��(�mTm)�,

(2)L =

34∏
m=1

��(�m1)Γ�(�m2)…Γ�(�mTm )�.
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distributions 50 times and choosing the model with the best likelihood. An explora-
tory analysis guided the choice of what constitutes reasonable ranges for the param-
eter values for the state-dependent distributions. For a model with N = 2 states, it 
took less than a minute to numerically maximise the likelihood on a standard desk-
top computer. In the Supplementary Material of this article, we provide data and 
code for all models presented.

3.2 � Modelling within‑state dependence using copulas

In the baseline model formulation, we assume contemporaneous conditional inde-
pendence, i.e. that there is no within-state dependence between the two variables 
considered. However, when modelling momentum in football, it is of interest to 
explicitly model any within-state dependence to draw a comprehensive picture of 
the dynamics of a match. For example, high ball possession can be linked to both 
an attacking phase with lots of shots on goal, but also much less goal-oriented 
tactics, where the main aim is simply to control the match by keeping posses-
sion of the ball, without much pressure on goal. The between-variable correlation 
would likely be very different in those two scenarios. By estimating the within-
state dependence between the two variables, we are better able to distinguish 
between such fairly subtle differences in a team’s style of play.

To modify the contemporaneous conditional independence assumption, a 
multivariate distribution needs to be assumed to specify the dependence struc-
ture between the variables considered within states. Here, we allow for within-
state dependence of our variables �mt by formulating a bivariate distribution as 
state-dependent distribution using a copula. A copula is a multivariate probability 
distribution with uniform margins. As introduced by Sklar (1959), the idea of a 
copula is to split a multivariate distribution into its univariate margins and the 
dependence structure, where the latter depends on the copula considered. Within 
the class of HMMs, copulas have previously been used by Härdle et  al. (2015) 
to model within-state dependence in financial data, and by Brunel and Pieczyn-
ski (2005) and Lanchantin et  al. (2011) for image analysis. For our modelling 
approach, we again consider the Conway–Maxwell–Poisson both for the number 
of shots on goal and the number of ball touches as marginal distribution. With 
F1(ymt1|smt) and F2(ymt2|smt) denoting the (state-dependent) cumulative distribu-
tion function of the marginals, the bivariate state-dependent distribution is given 
by

where C(., .) is a bivariate copula. When deriving the corresponding p.m.f., differ-
ences are needed rather than derivatives, since the marginals are discrete (see, for 
example, Nikoloulopoulos 2013). Thus, the bivariate p.m.f. of �mt given state smt is 
given by

F(�mt | smt) = C
(
F1(ymt1 | smt),F2(ymt2 | smt)

)
,
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The copula C(.,  .) needs to be selected from the large number of possible copula 
functions available in the literature. Here, we focus on copulas that can model posi-
tive and negative dependence. Archimedean copulas (see, for example, Nelsen 2006, 
pp. 116–118, for an overview) are convenient for this modelling purpose. We con-
sider three different families of copulas, comparing their fit to the data in Sect. 4: 
first, the Frank copula, which is for two marginals u1 and u2 defined by

second, the Clayton copula,

and third, the Ali-Mikhail-Haq (AMH) copula,

where for each copula considered the dependence parameter is denoted by � . As 
� → 0 , each of the three copulas above approaches the independence copula. For 
the Frank copula, as � → ∞ , the copula converges to the co-monotonicity copula 
corresponding to perfect positive dependence, while for � → −∞ , it converges to 
the counter-monotonicity copula corresponding to perfect negative dependence. 
For the Clayton copula, as � → −1 ( � → ∞ ), the copula converges to the counter-
monotonicity (co-monotonicity) copula with perfect dependence. The AMH copula 
converges to neither the co-monotonicity nor the counter-monotonicity copula (see 
Nelsen 2006, pp. 116–118).

With the copulas defined as above, the diagonal matrix �(�mt) in the HMM 
likelihood (see Eq.  2) changes slightly. The i-th diagonal entry is now equal to 
f (�mt|smt = i) as defined in Eq. (3) instead of the product of the marginals. The 
corresponding likelihood is then again numerically maximised using the function 
nlm() in R. For that purpose, we again carefully selected several starting values, as 
it was done for the baseline model introduced above.

3.3 � A model including covariates

In the previous subsections, the transition probabilities �ij were assumed to be con-
stant over time. To account for possible events which may lead to state-switching, 
and hence to possible momentum shifts, we modify this assumption by explicitly 

(3)

f (�mt | smt) =C
(
F1(ymt1 | smt),F2(ymt2 | smt)

)

− C
(
F1(ymt1 − 1 | smt),F2(ymt2 | smt)

)

− C
(
F1(ymt1 | smt),F2(ymt2 − 1 | smt)

)

+ C
(
F1(ymt1 − 1 | smt),F2(ymt2 − 1 | smt)

)
.

C(u1, u2) = −
1

�
log

(
1 +

(exp(−�u1) − 1)(exp(−�u2) − 1)

exp(−�) − 1

)
, � ∈ ℝ ⧵ {0},

C(u1, u2) =
(
max{u−�

1
+ u−�

2
− 1;0}

)−1∕�

, � ∈ [−1;∞) ⧵ {0},

C(u1, u2) =
u1u2

1 − �(1 − u1)(1 − u2)
, � ∈ [−1, 1),



1 3

A copula-based multivariate hidden Markov model for modelling…

allowing the transition probabilities �ij to depend on covariates at time t. This is done 
by linking � (t)

ij
 to covariates x(t)

1
,… , x(t)

p
 using the multinomial logit link:

with

Since the transition probabilities depend on covariates, the t.p.m. �t is not constant 
across time anymore, i.e. the Markov chain is non-homogeneous. However, the 
structure of the HMM likelihood as stated in Eq. (2) is unaffected, i.e. the likeli-
hood can still be maximised numerically, again with several sets of starting values to 
avoid local maxima.

4 � Results

In this section, the different models presented in Sect.   3 are fitted to data on the 
matches of Borussia Dortmund in the 2017/18 Bundesliga season. To further illus-
trate the methodology, in particular for lower-ranked teams, in the Supplementary 
Material we provide the results also for Hannover 96.

4.1 � Baseline model

For the baseline model, we make the contemporaneous conditional independence 
assumption, cf. Eq. (1), initially focusing on the case of N = 2 states. The corre-
sponding parameter estimates associated with the number of shots on goal are 
𝝀̂shots = (0.125, 0.149) , 𝝂shots = (0.206, 0.001) , while for the number of ball touches, 
they are 𝝀̂touches = (0.971, 2.381) , 𝝂touches = (0.102, 0.390) . It is not straightforward 
here to compute the means of the fitted distributions due to the infinite sum in the 
normalising constant. MacDonald and Bhamani (2018) discuss several approaches 
and calculate the mean by 1

Z(�,�)

∑d

k=0
k�k∕(k!)� using a very large d (say d = 100 ). 

Following this approach, the means of the number of shots on goal are 0.138 and 
0.175 for states 1 and 2. For the ball touches, the means are 4.080 (state 1) and 
10.104 (state 2). Thus, state 2 can be interpreted as the team considered, Borussia 
Dortmund, being more dominant, i.e. having a higher level of control over the 
match, than when being in state 1. The t.p.m. is estimated as

and the initial distribution as 𝜹̂ = (0.258, 0.742) . According to the t.p.m. of the fitted 
model, there is some persistence in both states. Although this is the simplest model 

�
(t)

ij
=

exp(�
(t)

ij
)

∑N

k=1
exp(�

(t)

ik
)
,

�
(t)

ij
=

�
�
(ij)

0
+
∑p

l=1
�
(ij)

l
x
(t)

l
if i ≠ j;

0 otherwise.

�̂ =

(
0.867 0.133

0.280 0.720

)
,
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formulation considered here, the fitted model comprises interpretable states which 
refer to different levels of control over the match. The model can thus be regarded 
as a simple baseline model for capturing momentum shifts. We will now gradually 
increase its complexity to more fully capture the in-game dynamics.

4.2 � Copula‑based HMM with N = 2

To capture possible within-state dependence of the variables, a multivariate dis-
tribution needs to be considered. For Poisson marginals, the bivariate Poisson as 
proposed by Karlis and Ntzoufras (2003) would be a possible candidate. How-
ever, as discussed in Sect.  3.1, this approach would have two limitations, namely 
the inability to capture overdispersion (or underdispersion) in the observations, and 
the restriction to positive between-variable correlation. Instead, we use more flex-
ible CMP distributions for the marginals, stitching them together using a copula as 
described in Sect. 3.2.

First, we investigate the consequences of relaxing the contemporaneous con-
ditional independence assumption. To this end, Fig.  3 displays the estimated 
state-dependent distributions of two-state copula-based HMM formulations, 
using the Frank, Clayton, and AMH copula. While visually there is no clear dif-
ference between the different copula functions considered, the application of the 
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Fig. 3   Fitted state-dependent distributions for the two-state HMM for Borussia Dortmund. From left to 
right: Frank-, Clayton-, and AMH-copula
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Clayton copula led to the highest likelihood of the fitted model. Compared to 
the baseline model, the copula-based model shows a clear improvement in the 
fit ( ΔAIC = 48;ΔBIC = 35 ). The fitted state-dependent distributions can again 
be interpreted as Borussia Dortmund exhibiting different levels of control, with 
state 1 corresponding to situations where the game is balanced, whereas state 2 
refers to a high level of control. As for the baseline model, there is a fairly high 
persistence in the states, with the diagonal elements of the t.p.m. estimated as 
𝛾̂11 = 0.852 and 𝛾̂22 = 0.706.

4.3 � Choosing the number of states

For the choice of the number of states, it is anything but clear how many states a 
given team may exhibit in a football match. To choose an appropriate number of 
states, and also a copula, we first consult the AIC and the BIC for the copula-based 
HMMs using different numbers of states and the three copulas considered above. 
The corresponding results are displayed in Table 2. Starting with the choice of the 
copula, the Clayton copula is preferred by both AIC and BIC. Hence, from now on, 
we use the Clayton copula. However, we note that when considering different mar-
ginal distributions, the fit of the copula also depends on the fit of the marginal dis-
tributions, which generally renders the choice of the copula a challenging task (see 
Mikosch 2006). For the number of states, the choice is not as conclusive: according 
to the AIC, the five-state model is preferred, whereas the BIC selects three states. 
As it is well known that the AIC tends to select too many states in a HMM (see 
Pohle et al. 2017), a choice of N = 3 seems more appropriate based on these formal 
criteria. To make an informed choice based also on interpretability of the resulting 
model states, in Fig. 4 we further inspect the fitted models with three and four states, 
by means of their estimated state-dependent distributions. Figure 4 illustrates that 
the general patterns of the state-dependent distributions from the three-state model 
are also included in the four-state model, whereas the state-dependent distribution of 
state 2 in the four-state model seems to refer to an underlying level of control which 
is not included in the three-state model. However, at closer inspection of the distri-
butional shapes in the four-state model, there is a substantial overlap between the 
state-dependent distributions of state 2 and state 3. Hence, given that the BIC points 
to the three-state model, and since we do not see meaningful additional information 
in a potential fourth state, from now on we focus exclusively on three-state models.

Table 2   AIC and BIC for 
copula-based HMMs with 
different numbers of states. 
Values in bold indicate the 
number of states preferred by 
AIC and BIC, respectively

Frank Clayton AMH

AIC BIC AIC BIC AIC BIC

2 states 20,954 21,033 20,941 21,020 20,943 21,022
3 states 20,865 21,005 20,839 20,979 20,861 21,001
4 states 20,836 21,049 20,817 21,030 20,831 21,043
5 states 20,814 21,112 20,801 21,098 20,834 21,132
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4.4 � Copula‑based HMM with N = 3

For the Clayton-copula HMM with three states, Table  3 displays the estimated 
parameters of the marginal distributions as well as the dependence parameter of 
the copula. Deriving the corresponding means for the marginal distributions as 
described above yields means for the number of shots of 0.226, 0.132, and 0.147 
for states 1, 2, and 3. For the number of ball touches, the corresponding means 
are 2.032 (state 1), 4.583 (state 2), and 9.732 (state 3). Based on the means and 
the corresponding distributional shapes (see top row in Fig. 4), the different states 
can be interpreted as Borussia Dortmund showing different levels of control over 
the match: low control in state 1, a fairly balanced match in state 2, and high 
control with lots of ball possession in state 3. State 1, with its relatively high 
mean number of shots on goal despite the fewer ball touches, likely includes sev-
eral different styles of play with a low level of control, e.g. a defensive style of 
play, counter-attacks, and situations like (counter-)pressing. In state 3, the esti-
mated negative dependence between the number of shots and ball touches may 
result from two different styles of high-control play: either Borussia Dortmund is 

Table 3   Parameter estimates for the state-dependent distributions of the Clayton-copula HMM with three 
states

Variable State 1 State 2 State 3

Shots on goal 𝜆̂ = 0.212, 𝜈̂ = 0.631 𝜆̂ = 0.117, 𝜈̂ ≈ 0 𝜆̂ = 0.128, 𝜈̂ = 0.002

Ball touches 𝜆̂ = 0.670, 𝜈̂ ≈ 0 𝜆̂ = 1.093, 𝜈̂ = 0.149 𝜆̂ = 2.145, 𝜈̂ = 0.352

Dependence 𝜃̂ = 1.721 𝜃̂ = 0.510 𝜃̂ = −0.048
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Fig. 4   State-dependent distributions for the three-state (top row) and four-state (bottom row) Clayton-
copula HMM
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controlling and passing the ball without much pressure on goal, or they go effec-
tively straight for goal, without much passing. In addition, the t.p.m. is estimated 
as

Here, with 𝛾̂22 = 0.988 and 𝛾̂33 = 0.805 , there is very high persistence in state 2 (bal-
anced state) and moderately high persistence in state 3 (high-control state). Staying 
in state 1 (low control and quick counter-attacks) is relatively unlikely ( ̂𝛾11 = 0.471 ), 
and switching to the high-control state when being in state 1 is most likely. Up next 
we will present the results for the model including covariates in the state process. 

4.5 � A model including covariates

The models presented so far already provide interesting insights into the dynamics 
of football matches, since the state-dependent distributions can be tied to different 
levels of control of the team considered. To gain further insights, we incorporate 
covariates to investigate potential drivers of momentum shifts. According to the 
AIC, the model including all covariates considered is preferred over the model with-
out covariates ( ΔAIC = 51 ); we do not conduct variable selection as we regard this 
step of the analysis as explanatory (rather than an attempt to find the best model).

For ease of interpretation, we visualise the estimated transition probabilities as 
functions of covariates and present the theoretical stationary distributions of the 
Markov state process when fixing the covariate values at certain levels. The theo-
retical stationary distributions indicate how state occupancy, i.e. how much time is 
spent in a state, varies across different values of the covariate considered (Patterson 
et al. 2009). To illustrate these two approaches, we present (i) the transition prob-
abilities as functions of the covariate minute and (ii) the stationary distributions with 
respect to the score difference. In Table 5 in the Supplementary Material, the esti-
mated �(ij)

0
,… , �

(ij)
p  and their 95% CIs are displayed.

For (i), as displayed in Fig. 5, the values of the score difference and the market 
value of the opponent are set to 0 and 200, corresponding to situations where the 
score is even and the opponent’s strength is about average. In addition, we focus on 
home matches only, since the corresponding dummy variable in the linear predictor 
does not affect the overall pattern regarding the direction of the effect. The confi-
dence intervals (indicated by the dashed lines) are obtained based on Monte Carlo 
simulation from the approximate multivariate normal distribution of the estimator. 
According to the estimated effects, switching from state 1 (low control and quick 
counter-attacks) and state 2 (balanced state) to state 3 (high-control state) becomes 
more likely at the end of matches. In addition, staying in state 3 also becomes more 
likely at the end of matches.

The stationary distributions for the score difference are shown in Table 4. The 
values of the minute and the market value of the opponent are fixed at 80 and 
200, corresponding to situations in the final stage of a match with the opponent’s 

�̂ =

⎛
⎜⎜⎝

0.471 0.054 0.475

0.006 0.988 0.006

0.195 ≈ 0 0.805

⎞
⎟⎟⎠
.
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strength being about average. The stationary distributions indicate that there is a 
high probability for Borussia Dortmund to be in state 3 (high-control state) either 
if they have a clear lead or if they are trailing. In contrast, if they hold only a slen-
der lead, then the probability of being in state 1 (low control and quick counter-
attacks) is highest.

To further investigate typical patterns of momentum shifts according to the state 
process {smt} , we calculate the most likely trajectory of the states for match m. Spe-
cifically, for a given match m, we seek

i.e. the most likely state sequence, given the observations. Maximising this prob-
ability is equivalent to finding the optimal of NTm possible state sequences. This 
can be achieved at computational cost O(TmN

2) using the Viterbi algorithm (see 
Zucchini et al. 2016, pp. 88–92). Figure 6 displays the decoded sequences for the 
match Borussia Dortmund against Schalke 04 which is already shown in Fig. 1. We 
see that Borussia Dortmund started the match in the high-control state with occa-
sional switches to the low control state with quick counter-attacks. According to 
the decoded state sequence, Borussia Dortmund was in the high-control state for 
most of the first half, and scored three of their four goals while in that state. After 
the half-time break, Borussia Dortmund was primarily in the low-control state with 
quick counter-attacks for about 15 min and subsequently alternated between this and 

(s∗
m1
,… , s∗

mTm
) = argmax

sm1,…,smTm

Pr(sm1,… , smTm |�m1,… , �mTm),
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Fig. 5   Transition probabilities as functions of the covariate minute. The dashed lines indicate confidence 
intervals (based on Monte Carlo simulation). The values of the score difference and the market value of 
the opponent are set to 0 and 200. Table 5 in the Supplementary Material displays the coefficients of the 
multinomial logistic regression underlying this Fig. 
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the balanced state. In the entire second half, Borussia Dortmund only once was in 
the high-control state.

At this point, it is worth emphasising that our fitted HMM cannot be expected to 
fully represent all structure and dynamics related to momentum shifts. First, when 
applied in an unsupervised setting as was done here, an HMM’s model states will 
generally only be proxies for genuine states (Leos-Barajas et  al. 2017). Second, 
while discrete states are conceptually appealing and mathematically convenient, it is 
not necessarily clear that different levels of control and hence momentum shifts are 
adequately represented by only finitely many states (cf. Ötting et al. 2020). Thus, the 
actual sequence of control levels may of course differ from the decoded sequence as 
shown in Fig. 6, and not every inferred state switch refers to a genuine switch in the 
actual momentum. However, as Borussia Dortmund was occupying the high-control 
state for most of the first half, but only once in the second half, the decoded state 
sequence is in agreement with the momentum shift around halftime as suggested by 
the media.

5 � Discussion

There is wide interest in the dynamics of football matches, and specifically in poten-
tial momentum shifts, in particular by fans and the media. From a managerial per-
spective, it is important to understand the causes of such shifts, and hence also how 
to potentially exert an influence on the match outcome. With data sets on in-game 
summary statistics becoming freely available, we now have the opportunity to sta-
tistically investigate the corresponding processes. To that end, here we provide a 
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modelling framework—copula-based multivariate HMMs—which naturally accom-
modates potential changes in the dynamics of a match by relating the observed in-
game match statistics to latent states. A key strength of the proposed approach is that 
we not only partition a given match into different phases but also allow for the inves-
tigation into drivers of how a match unfolds dynamically over time. Such in-game 
modelling could also be useful for bookmakers to obtain more precise estimations 
of betting odds. For instance, when modelling the time until the next goal during a 
football match, bookmakers could take into account the latent dynamics of a match 
as modelled here.

In our exploratory case study, we tested the feasibility of our approach by ana-
lysing minute-by-minute data on matches of one particular team, namely Borus-
sia Dortmund. The three underlying states of the fitted model correspond to match 
phases where Borussia Dortmund exhibits a low level of control with quick coun-
ter-attacks, to phases where the match is balanced, and to those with high level of 
control. In addition, the estimated effects of the covariates shed some light on what 
kind of events may lead to switches between those states. Specifically, we found 
that Borussia Dortmund has the highest probability of being in the high-control state 
when having a clear lead or when trailing.

Although the states of the fitted models are tied to different levels of control, it 
remains unclear to what extent these can be attributed to shifts in the underlying 
momentum. Inference into the existence of potential momentum shifts is generally 
challenging given the absence of any formal definition of what constitutes momen-
tum in sports. Without a clear definition, especially the relation between tactical 
changes and momentum shifts remains unclear—depending on the definition, it may 
be necessary to clearly differentiate between these, or alternatively tactical changes 
may at least need to be taken into account when investigating momentum shifts. 
In our case study, some of the reported effects may clearly arise from tactical con-
siderations rather than momentum shifts. For example, for one-goal leads, switch-
ing to the low control and quick counter-attacks state may of course be a tactical 
consideration rather than a shift in the underlying momentum. The data considered 
here do not allow us to disentangle these two possible causes, rendering it impos-
sible to arrive at a definitive conclusion whether the switches between the states are 
momentum shifts or tactical considerations. However, with the states and effects of 
the covariates considered (cf. Figure 5 and Table 4) being easy to interpret, they still 
provide interesting insights to dynamics of football matches.

Table 4   Stationary distributions when fixing the score difference at certain levels

Probabilities were calculated for each value of the score difference, with the market value of the oppo-
nent and the minute of the match fixed at 200 and 80, corresponding to situations in the final stage of a 
match against an opposing team of average quality

– 6 – 5 – 4 – 3 – 2 – 1 0 1 2 3 4 5

state 1 0.073 0.100 0.134 0.175 0.222 0.280 0.523 0.732 0.705 0.642 0.560 0.475
state 2 0.391 0.364 0.334 0.301 0.267 0.234 0.206 0.175 0.147 0.122 0.098 0.076
state 3 0.535 0.535 0.532 0.524 0.511 0.486 0.271 0.094 0.148 0.236 0.342 0.450
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A clear limitation of the approach as presented here is that we focus on the in-
game dynamics of only one of the two teams involved in a match, when in fact it 
is clear that the dynamics of a match result from the combination of both teams’ 
actions. One way to achieve this would be to consider or even construct variables 
for the state-dependent process which reflect the actions of both teams, e.g. both 
teams’ ball touches, or one team’s proportion of ball touches in any given minute. 
It then seems conceptually appealing to jointly model both teams’ underlying latent 
state corresponding to their exertion of control over the match, which could be 
achieved using a bivariate Markov chain, resulting in N2 combinations of states (see, 
for example, Sherlock et al. 2013; Pohle et al. 2020). In these model formulations, 
both teams’ underlying state variables are allowed to interact. To further improve the 
realism of these models, it would be beneficial to also include tracking data, e.g. by 
considering the distances run per minute as covariate information.

The modelling framework used in the present contribution, i.e. copula-based 
HMMs for modelling football minute-by-minute data, can easily be transferred to 
other sports for further investigations and possible characteristics of momentum 
shifts. These sports include, e.g. basketball, where the variables to be modelled 
comprise, for example, the number of points/shots, the number of rebounds, and the 
number of blocks/steals. More generally, sports with two individuals or teams com-
peting against each other and multiple variables measured on a fine-grained scale 
are best suitable for analysing momentum shifts using the modelling framework pro-
vided here.
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