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Abstract
We propose a new model for forming and revising beliefs about unknown probabili-
ties. To go beyond what is known with certainty and represent the agent’s beliefs about
probability, we consider a plausibility map, associating to each possible distribution a
plausibility ranking. Beliefs are defined as in Belief Revision Theory, in terms of truth
in themost plausible worlds (ormore generally, truth in all theworlds that are plausible
enough). We consider two forms of conditioning or belief update, corresponding to
the acquisition of two types of information: (1) learning observable evidence obtained
by repeated sampling from the unknown distribution; and (2) learning higher-order
information about the distribution. The first changes only the plausibility map (via a
‘plausibilistic’ version of Bayes’ Rule), but leaves the given set of possible distribu-
tions essentially unchanged; the second rules out some distributions, thus shrinking
the set of possibilities, without changing their plausibility ordering.. We look at sta-
bility of beliefs under either of these types of learning, defining two related notions
(safe belief and statistical knowledge), as well as a measure of the verisimilitude of
a given plausibility model. We prove a number of convergence results, showing how
our agent’s beliefs track the true probability after repeated sampling, and how she
eventually gains in a sense (statistical) knowledge of that true probability. Finally, we
sketch the contours of a dynamic doxastic logic for statistical learning.
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1 Introduction

The goal of this paper is to propose a new model for learning a probabilistic distribu-
tion, in situations that are commonly characterized as those of “radical uncertainty”
(Walley 1996) or “Knightian uncertainty” (Cerreia-Vioglio et al. 2013). The most
widespread model for these situations uses imprecise probabilities, i.e. sets of prob-
ability distributions. As an example, consider an urn full of marbles, coloured red,
green, and blue, but with an unknown distribution. What is then the probability of
drawing a red marble? In such cases, when the agent’s information is not enough to
determine the true distribution, she is typically left with a large (possibly infinite) set
of possible probability assignments. If she never goes beyond what she knows, then
her only ‘rational’ answer should be “I don’t know”: she is in a state of ambiguity,
and she should simply consider possible all distributions that are consistent with her
background knowledge and observed evidence. This type of over-cautious rationality,
resembling the famous paradox of “Buridan’s ass”, is not of much help in dealing with
practical decision problems.

Ourmodel allows the agent to go beyondwhat she knowswith certainty, by forming
rational qualitative beliefs about the unknown distribution, beliefs based on the inher-
ent plausibility of each possible distribution. For this, we assume the agent is endowed
with an initial plausibility map, assigning real numbers to the possible distributions.
The plausibility map encodes the agent’s background beliefs and a priori assumptions
about the world. For instance, an agent who assumes the Principle of Indifference
(Williamson 2013; Hájek 2019) will use Shannon entropy as her plausibility func-
tion, thus initially believing that the distribution is the most non-informative one (in
the given set of possibilities). On the other hand, an agent assuming a Normality or
‘Averageness’ Principle, will use closeness to the Center of Mass or the barycenter
(Paris 1994) as her plausibility measure, thus starting with a belief in the most typical
distribution, i.e. the one that is themost representative for the given set of distributions.
Finally, an agent who assumes some form of Ockham’s Razor will use as plausibil-
ity some measure of simplicity (Kelly 2008), thus her prior belief will focus on the
simplest distribution(s).

Our agent forms beliefs by using the standard definition of qualitative belief inLogic
and Belief Revision Theory, in terms of plausibility maximization (Board 2004; Baltag
and Smets 2008b): she believes the most plausible distribution(s). More precisely, we
equate “belief” with “truth in all the worlds that are plausible enough”: P is believed
iff there exists some distribution μ s.t. P is true in all distributions that are at least
as plausible as μ. In particular, “belief” coincides with truth in all the most plausible
worlds, whenever such most plausible worlds/distributions exist. As a consequence,
all the usual KD45 axioms of doxastic logic will be valid in our framework.

Note that, although our plausibility map assigns real values to probability distribu-
tions, this account is essentially different from the ones using so-called “second-order
probabilities” (i.e. probability distributions defined on the given set of probability
distributions) (Gaifman and Snir 1982; Gaifman 2016). Plausibility values are only
relevant in so far as they induce a qualitative order on distributions. In contrast to
probability, plausibility is not cumulative (in the sense that the low-plausibility alter-
natives do not add up to form more plausible sets of alternatives), and as a result only
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higher-ranking distributions ‘beat’ lower-ranking ones; in case that some distributions
have the highest plausibility, they are the only ones of any relevance for beliefs.

Our model is not just a way to “rationally” select a Bayesian prior, but it also comes
with a rational method for revising beliefs in the face of new evidence. In fact, it
can deal with two types of new information: first-order evidence gathered by repeated
sampling from the (unknown) distribution; and higher-order information about the
distribution itself, coming in the form of a set of possible distributions (often defined
by a set of linear inequality constraints on that distribution). To see the difference
between the two types of new evidence, take for instance the example of a coin. As it
is well-known, any finite sequence of Heads and Tails is consistent with all possible
non-extremal biases of the coin. As such, any number of finite repeated samples will
not shrink the set of possible biases, though they may increase the plausibility of
some biases. Thus this type of information changes only the plausibility map but
leaves the given set of distributions essentially unchanged (except for the elimination
of some extremal distributions, that assigned probability 0 to the observed sample).
The second type of information, on the other hand, shrinks the set of measures, while
keeping their relative plausibility ranking. For instance, learning that the coin has a
bias towards Tail (e.g. by weighing the coin, or receiving a communication in this
sense from the coin’s manufacturer) eliminates all distributions that assign a higher
probability to Heads. It is important to notice, however, that even with higher-order
information, it is hardly ever the case that the distribution under consideration is fully
specified. In our coin example, a known bias towards Tails will still leave an infinite
set of possible biases consistent. Even a good measurement by weighting will leave
open a whole interval of possible biases. In this sense, a combination of observations
and higher-order information will not in general allow the agent to come to know the
correct distribution, in the standard (‘infallible’) sense in which the term knowledge is
used in doxastic and epistemic logics. Instead, it may eventually allow her to come to
believe the true probability (at least, with a high degree of accuracy). This belief may
even stabilize, to such a degree that it approaches the ‘softer’, defeasible notion of
‘knowledge’, which is the main focus in Epistemology (Lehrer 1990; Stalnaker 1996;
Rott 2004) and (inductive) Learning Theory (Gold 1967; Baltag et al. 2019a). This
convergence in belief and the resulting acquisition of statistical knowledge is what we
aim to capture in this paper.

Our mechanism for belief revision with sampling evidence is non-Bayesian (and
also different from AGM belief revision), though it incorporates a “plausibilistic”
version of Bayes’ Rule. Instead of updating her prior belief according to this rule (and
disregarding all other possible distributions), the agent keeps all possibilities in store
and revises instead, her plausibility ranking, using a non-probabilistic analogue of
Bayes’ Rule. After that, her new belief will be formed in a similar way to her initial
belief: by maximizing her (new) plausibility. The outcome is different from simply
performing a Bayesian update on the ‘prior’: qualitative jumps are possible, leading
to abandoning “wrong” conjectures in a non-monotonic way. This results in a faster
convergence-in-belief to the true probability in less restrictive conditions than the
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usual Savage-style convergence through repeated Bayesian updating (Edwards et al.
1963; Savage 1954).1

The second type of evidence (higher-order information about the distribution)
induces a more familiar kind of update: the distributions that do not satisfy the new
information (typically given in the form of linear inequalities) are simply eliminated,
then beliefs are formed as before by focusing on the most plausible remaining dis-
tributions. This form of revision is known as AGM conditioning in Belief Revision
Theory (Alchourrón et al. 1985), and as update or “public announcement” in Logic
(Baltag and Renne 2016; van Ditmarsch et al. 2007), and satisfies all the standard
AGM axioms.2

The fact that in our setting there are two types of updates should not be so surprising.
It is related to the fact that our static framework consists of two different semantic
ingredients, capturing two types of information: the plausibility map (encoding the
agent’s beliefs and conditional beliefs, defeasible forms of knowledge, etc), and the
set of possible distributions (encoding the agent’s infallible knowledge, her ‘hard
information’ about the correct distribution). Correspondingly, the first type of update
directly affects the agent’s beliefs (by changing the plausibility in the view of the
sampling results), and only indirectly her knowledge (since e.g. she knows her new
beliefs). Dually, the second type of update directly affects the agent’s knowledge (by
reducing the set of possibilities), and only indirectly her beliefs (by restricting the
plausibility map to the new set).

By allowing two forms of learning, one having a Bayesian-statistical flavor and the
other having a logical-AGMflavor (Alchourrón et al. 1985; Darwiche and Pearl 1997),
our framework combines logical and statistical reasoning in a unified setting. In this
sense, it fits within the recent trend towards a unification of logic and probability, see
e.g. Leitgeb (2017). In particular, the fact that conditioning on sampling evidence is
non-AGM is in fact essential for the successful learning of the true probability from
repeated sampling: since every sample is logically consistent with every non-extremal
distribution, an AGM learner (obeying the principle of RationalMonotonicity3) would
typically never change her initial beliefs about the true distribution after any number of

1 In contrast to Savage’s theorem, our update ensures convergence even in the case that the initial set of
possible distributions is infinite (indeed, even in the case we start with the uncountable set of all distribu-
tions). Moreover, in the finite case (where Savage’s result does apply), our update is guaranteed to converge
in finitely many steps, while Savage’s theorem only ensures convergence in the limit.
2 We should note that there have been several proposals in the literature for AGM-compatible processes
of iterated belief revision to remedy the inadequacy of AGM postulates to correctly capture the process of
belief change from repeated observations, see for example Booth and Meyer (2006), Darwiche and Pearl
(1997), Konieczny and Perez (2000) and Nayak (1994). In fact, the propositional conditionalization in
our paper, like its older qualitative versions in Game Theory (Board 2004) and Dynamic Epistemic Logic
(Baltag and Smets 2008c; Baltag and Renne 2016; van Ditmarsch et al. 2007), is an instance of the iterated
revision operation of Darwiche and Pearl (1997): indeed, both the prior information state before revision and
the revised information state are plausibility models (i.e. what (Darwiche and Pearl 1997) calls “epistemic
states”), rather than theories or belief bases (i.e. propositions or sets of propositions). Still, we follow the
usage in the epistemological (Kelly 2014; Kelly et al. 1995, 1998) and dynamic-epistemic logic literature
(Baltag et al. 2016; Baltag and Renne 2016; van Ditmarsch et al. 2007) in calling this operation AGM
conditioning.
3 Rational Monotonicity says that, if the prior beliefs are consistent with the incoming evidence, then
they continue to be believed after revising with the evidence. Rational Monotonicity is not actually one
of the AGM postulates, but it is specific to logical presentations of this framework in terms of conditional
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samples! The same applies to all the generalizations of AGM conditioning that retain
Rational Monotonicity, e.g. the ones proposed by Darwiche and Pearl (1997), or by
Konieczny and Perez (2000).

A preliminary version of this paper was presented at TARK 2019, and an abstract
appeared in the online proceedings (Baltag et al. 2019). Our current article is the
extended, journal version of that work, though with many major changes: improve-
ments of the basic setting, the formalization and study of new epistemic notions (e.g.
safe belief of a distribution, statistical knowledge, distance-from-the-truth), and a
number of new convergence results. The plan of the paper is as follows. We start by
reviewing in Sect. 2 some basic notions, results, and examples on probability dis-
tributions. In Sect. 3, we define our main setting (probabilistic plausibility models),
consider a number of standard examples, define in this setting the notions of belief
and (infallible) knowledge, and study their logical properties. In Sect. 4, we move
to conditional beliefs, defining our two forms of conditionalization, and use them to
explore belief dynamics (as captured by our two types of model updates). In Sect. 5,
we look at notions of doxastic stability, defining a weaker form of stability (“safe
belief”), followed by a stronger form (“statistical knowledge”), and investigating their
properties and their connection to a notion of verisimilitude (or “distance from the
truth”). In Sect. 6, we present and prove our main results on doxastic convergence to
the true probability. Finally, in Sect. 7 we briefly sketch the contours of a dynamic
doxastic logic for statistical learning, and in Sect. 8 we end with some concluding
remarks and a brief comparison with other approaches to the same problem.

2 Preliminaries and notation

Throughout this paper, we fix a finite set O = {o1, . . . , on} of possible observations,
or ‘(elementary) outcomes’.4 Let

MO :=
{

μ ∈ [0, 1]O |
∑
o∈O

μ(o) = 1

}

be the set of probabilitymass functions onO , whichwe identifywith the corresponding
probability functions on P(O). The sets of distributions P ∈ P(MO) will be called
propositions. Let

Ω = O∞ := {ω| ω : N\{0} → O}

be the set of infinite sequences from O , which we shall refer to as observation streams.
Each such stream ω = (ω1, . . . , ωn, . . .) represents a possible history of future sam-
pling from an unknown distribution. For any ω ∈ Ω and i ∈ N\{0}, we write ωi for
the i-th component of ω, and ω≤i for its initial segment of length i , i.e. the sequence

beliefs (Board 2004; Baltag and Smets 2008b), and it is equivalent to a combination of AGM axioms of
Inclusion/Subexpansion and Vacuity/Superexpansion.
4 Intuitively, these are the possible outcomes of sampling or of some other possible type of experimentation.
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ω≤i := (ω1, . . . , ωi ) consisting of the first i components of ω. Similarly, we put
ω>i := (ωi+1, . . . , ωn, . . .) for the infinite “tail” of ω that follows the i-th observa-
tion. In particular, ω≤0 := λ = () is the empty sequence, and ω>0 = ω. We denote
by

O∗ = {(ω1, . . . , ωi )| i ≥ 0, ω1, . . . , ωi ∈ O}

the set of all finite sequences of observations. For each o ∈ O we define the sets o j to
be the basic cylinders

o j = {ω ∈ Ω | ω j = o} ⊆ Ω.

These cylinders correspond to individual observations of evidence sampled from the
unknown distributions. LetA ⊆ P(Ω) be the σ -algebra of subsets of Ω generated by
the cylinders (algebra obtained by closing the family of basic cylinders under com-
plementation and countable unions). Every probability distribution μ ∈ MO induces
a unique multinomial probability distribution over (Ω,A), also denoted by μ, and
obtained by first setting

μ(o j ) = μ(o)

then extending this to all of A using independence, additivity and continuity. Let
E ⊆ A be the family of sets obtained by closing the family of basic cylinders only
under complementation and finite unions. The sets e ∈ E are called observable events
(or just ‘events’, for short).5 It is easy to see that every event e ∈ E can be written as
a finite disjoint union of finite intersections of basic cylinders. In particular, for each
finite sequence of observations ω≤i = (ω1, . . . , ωi ) ∈ O∗, we denote by [ω≤i ] =
[ω1, . . . , ωi ] the corresponding event of observing this sequence by sampling, i.e. the
event given by

[ω≤i ] = [ω1, . . . , ωi ] := {ω′ ∈ Ω : | ω′
j = ω j for all j ≤ i} =

i⋂
j=1

ω
j
j

Example 1 Let O = {H , T } be the possible outcomes of a coin toss. Then Ω will be
streams of Heads and Tails representing infinite tosses of the coin, e.g. HTTHHH....
And H j (res. T j ) will be the set of streams of observations in which the j-th toss
of the coin will land Heads up (res. Tails up). The set MO will be the set of possible
biases of the coin.

Example 2 Let O = {R, B,G} be the possible outcomes for a draw from an urn filled
with marbles, coloured Red (R), Blue (B) and Green (G). Then MO will be the set of
all possible distributions of coloured marbles in the urn, Ω will be the set of infinite
streams of R, B and G (representing infinite draws from the urn), and R j (res. B j or

5 In the literature, the term ‘event’ is also used for all the members of the σ -algebra A, but this family
includes unobservable events, such as a coin falling Heads up infinitely many times.
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G j ) will be the set of streams of draws in which the j-th draw is a Red (res. Blue or
Green) marble.

Standard topology on MO Notice that a probability function μ ∈ MO , defined
over the set O = {o1, . . . , on}, can be identified with an n-dimensional vector
(μ(o1), . . . , μ(on)), corresponding to the probabilities assigned to each oi respec-
tively. Let DO := {x ∈ [0, 1]n | ∑

xi = 1}, then every μ ∈ MO can be identified
with the point ¯ ∈ DO ⊂ [0, 1]n . Thus probability functions in MO live in the vector
space [0, 1]n . In the other direction every x ∈ DO defines a probability function x on
O by setting x(oi ) = xi . This gives a one to one correspondence between MO and
DO . There are various metric distances that can be defined on the space of probability
measures over a (finite) set O , many of which are known to induce the same topol-
ogy. Here we will consider the standard topology of [0, 1]n , induced by the Euclidean
metric: for x, y ∈ [0, 1]n , put d(x, y) :=

√∑n
i=1(xi − yi )2; a basis for the standard

topology is given by the family of all open balls Bε(x) centred at some point x ∈ R
n

with radius ε > 0; where

Bε(x) = {y ∈ R
n | d(x, y) < ε}.

We will make use of the following well-known facts:

Proposition 1 For any finite set O, the set MO of probability mass functions on O is
compact in the standard topology.

Proof Notice that the set {x ∈ [0, 1]n | ∑n
i=1 xi = 1} is compact in R

n . ��
Proposition 2 Let X, Y be compact topological spaces, Z ⊆ X and f : X → Y

(1) Every closed subset of X is compact.
(2) If f is continuous, then f (X) is compact.
(3) If Z is compact then it is closed and bounded.

Proof See Hunter (2012), Theorem 1.40 and Proposition 1.41. ��
Lemma 1 For each event e ∈ E , the function Fe : MO → [0, 1], defined as Fe(μ) :=
μ(e), is continuous.

Proof This can be verified, using the above-mentioned fact that every event is a finite
disjoint union of finite intersections of basic cylinders. The proof is by induction on
the structure of this representation. The conclusion is immediate when e = o j is a
basic cylinder: given any ε > 0, we can take δ := ε, and then, for all μ, ν ∈ MO

with d(μ, ν) < δ, we have |Fe(μ) − Fe(ν)| = |μ(e) − ν(e)| = |μ(o) − ν(o)| ≤√∑n
i=1(μ(oi ) − ν(oi ))2 = d(μ, ν) < δ = ε. This can be extended to finite intersec-

tions of basic cylinders, by noting that if e = ⋂m
k=1 ω

jk
k is such a finite intersectionwith

all jk distinct,6 then by independence we have Fe = ∏m
k=1 Fω

jk
k
, and then using the

6 If jk = jq and ωk 
= ωq for some j 
= q, then the intersection is empty; while if jk = jq and ωk = ωq

(for j 
= q), then we have ω
jk
k = ω

jq
q , so one of the two terms is redundant and can be eliminated from the

representation.
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fact that a finite product of continuous functions is continuous. Finally, we can extend
to disjoint unions of finite intersections of basic cylinders, noting that if e = ⋃m

i=1 ei
is a disjoint union of events (with ei ∩ e j = ∅ for i 
= j), then by additivity we have
Fe = ∑m

i=1 Fei , and then using the fact that a finite sum of continuous functions is
continuous. ��

Proposition 3 Every continuous function f : X→ R on a compact topological space
X is bounded, and it attains its supremum (i.e., it has a maximum value).

Proof See Hunter (2012), Theorem 7.35. ��

Theorem 1 (Hein-Cantor) Let M, N be two metric spaces and f : M → N be
continuous. If M is compact then f is uniformly continuous.

Proof See Rudin (1953). ��

Before presenting our framework, we need one more technical lemma that will
prove useful in the proof of our convergence Theorem 1.

Lemma 1 For 0 < p1, . . . , pn ≤ 1 with
∑

pi = 1, the function f (x) = Πn
i=1x

pi
i has

x = p as its unique maximizer on MO.

Proof First we notice that f (x) ≥ 0 on MO = {z ∈ [0, 1]n | ∑
zi = 1} and by

Propositions 1 and 3 f has a maximum value on MO . But note that f (z) = 0 for any
point z ∈ MO having some zero coordinate zi = 0 (for any i ≤ n). Hence, f reaches
its maximum on D = (0, 1]n ∪ MO = {z ∈ (0, 1]n | ∑

zi = 1}.
To prove the lemma, we will show that log( f (x)) has x = p as its unique max-

imizer on D. The conclusion will then follow from noticing that f (x) ≥ 0 and the
monotonicity of log function on R

+. To maximise log( f (x)) subject to condition∑
i xi = 1, we use Lagrange multiplier methods: let

G(x) = log( f (x)) − λ

(
n∑

i=1

xi − 1

)
=

n∑
i=1

pi log(xi ) − λ

(
n∑

i=1

xi − 1

)
.

Setting partial derivatives of G equal to zero we get,

∂G(x)
∂xi

= pi
xi

− λ = 0

which gives pi = λxi . Inserting this in the condition
∑

i pi = 1 we get λ
∑

i xi = 1
and using

∑
i xi = 1 we get λ = 1 and thus xi = pi . Since f has a maximum on

this domain and the Lagrange multiplier method gives a necessary condition for the
maximum, any point x that maximises f should satisfy the condition xi = pi and thus
p is the unique maximiser for f . ��

123



Synthese (2021) 199:9041–9087 9049

3 Probabilistic plausibility models

In this section, we introduce and exemplify our basic framework for dealing with
radical uncertainty.

Definition 1 (Plausibility measures) A plausibility ‘measure’ (on K ) is a continu-
ous function pla : K → [0,∞), whose domain is some closed set of distributions
K = K ⊆ MO . Given a plausibility measure on K , we can extend it to a map7 on
propositions (sets of distributions) P ⊆ MO , by putting

pla(P) := sup{pla(μ) | μ ∈ P ∩ K }

Similarly, we can extend it to distribution-event pairs (μ, e) ∈ K × E , by putting:

pla(μ, e) := pla(μ) · μ(e),

and further extend this to proposition-event pairs (P, e) ∈ P(MO) × E , by putting

pla(P, e) := sup{pla(μ, e)) | μ ∈ P} = sup{pla(μ) · μ(e) | μ ∈ P ∩ K }

These last two maps give us a way of assessing the joint plausibility of having true
distribution μ (or true proposition P) and observing event e.

It seems apt at this point to emphasize again that events e ∈ E ⊆ A in our setting
are intended to capture observable events in multinomial experiments. The successive
observations ωi in a finite sampling sequence ω≤i = (ω1, . . . , ωi ) are thus regarded
as outcomes of i independent and identically distributed trials as in Examples 1 and
2 . In the same manner, μ(e) encodes the probability assigned to e by the unique
multinomial probability distribution induced by each μ ∈ MO on (Ω,A) (which by
a slight abuse of notation we also denote by μ).

Definition 2 [Plausibility models] A (probabilistic) plausibility model is a structure
M = (M, pla) where M 
= ∅ is a non-empty subset of MO , called the set of ‘possible
distributions’, and pla : M → [0, 1] is a plausibility measure on the closure M ,
called probabilistic plausibility ranking map (or just plausibility map, for short), and
required to satisfy two additional conditions: (1) possible distributions have positive
plausibility rank, i.e. pla(μ) > 0 for all μ ∈ M ; (2) pla(M) = 1, or equivalently the
maximum plausibility value on M is 1.8

7 Using systematic ambiguity, we also denote this map by pla.
8 The equivalence between these conditions is easily seen if we note that, by the continuity of plausibility
measures, we have pla(M) = sup{pla(μ) | μ ∈ M} = max{pla(μ) | μ ∈ M} = pla(M). Note that
pla(M) = 1 implies that there exist possible distributions (in M) with plausibility arbitrarily close (or
equal) to 1.
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The plausibility map induces a total preorder9 ≤M on the possible distributions in
M , called the plausibility ranking order, and given by putting for all μ, ν ∈ M :

μ ≤M ν iff pla(μ) ≤ pla(ν).

For every real number δ ∈ [0, 1], we put Mδ := {μ ∈ M | pla(μ) ≥ δ} for the set
of all distributions in M that have plausibility rank at least δ. A (probabilistic) Grove
sphere is a non-empty set of the form Mδ 
= ∅.10 It is easy to see that the family of
all Grove spheres S := {Mδ | δ ∈ [0, 1], Mδ 
= ∅} is nested (i.e. totally ordered by
inclusion: in fact, for δ ≥ ε we have Mδ ⊇ Mε), and exhaustive (i.e. M = ⋃S).

The plausibility map pla attains its supremum (1) on M if and only if there exists
a smallest Grove sphere, given by the set

Max(M) := M1 = {ν ∈ M | pla(ν) = 1} = {ν ∈ M | ν ≥M ν′ for all ν′ ∈ M}

of all maximizers of the function pla on M .
The plausibility pla(e) of an event e in the model M = (M, pla) is defined as the

joint plausibility pla(M, e):

pla(e) := pla(M, e) = sup{pla(μ) · μ(e) | μ ∈ M}

A plausibility model M = (M, pla) is said to be closed if the set M of possible
distributions is closed (in the standard topology on MO ). The model is said to be
convex if the set M is convex (i.e. α · μ + (1 − α) · ν ∈ M for all μ, ν ∈ M and all
α ∈ [0, 1]).

The difference between plausibility measures and (the special case of) plausibil-
ity ranking maps is a plausibilistic analogue of the difference between measures in
Measure Theory and (the special case of) probability functions. Although conditions
(1) and (2) in the definition of plausibility maps may appear very restrictive at first
sight, they do not in fact restrict the generality of our plausibility ranking order: the
next example shows that any plausibility measure can be used to define plausibility
ranking maps.
Generic example: plausibility-generating measures Let pla : K → [0,∞] be any
plausibilitymeasurewithdom(pla) = K = K ⊆ MO . Thenpla induces a plausibility
modelM = (M, plaM ) on each non-empty subset M ⊆ {μ ∈ K | pla(μ) 
= 0}, with
the plausibility map plaM given by renormalizing pla to M, i.e. putting

plaM (μ) := pla(μ)

pla(M)
= pla(μ)

sup{pla(ν) | ν ∈ M} = pla(μ)

max{pla(ν) | ν ∈ M}
9 A total preorder on M is a relation ≤⊆ M × M , which is reflexive (μ ≤ μ holds for every μ ∈ M),
transitive (μ ≤ ν ≤ ρ implies μ ≤ ρ) and connected (either μ ≤ ν or ν ≤ μ, or both) hold, for every pair
μ, ν ∈ M .
10 Note that we have Mδ 
= ∅ for every δ < 1, so these are always Grove spheres; δ = 1 is the only value
of δ for which Mδ may fail to be a sphere.
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for allμ ∈ M . In this case, we say that the plausibility ranking map plaM is generated
by the plausibility measure pla. Note that the plausibility ranking order ≤M induced
by plaM on M coincides with the order induced by the generating measure pla, i.e.
we have:

μ ≤M μ′ iff pla(μ) ≤ pla(μ′).

A plausibility-generating measure pla is said to be fully positivewhenever its domain
dom(pla) = MO is the full set of all distributions, and its codomain is (0,∞) (i.e.
pla(μ) > 0 for all μ ∈ MO ). This is a special case of great importance: fully positive
measures generate plausibility models on every non-empty set of distributions M ⊆
MO .
Interpretation In a plausibility model, the current set of possibilities M encodes an
agent’s current epistemic state, her “hard information”orhigher-level knowledge about
a given probabilistic distribution μ: all she knows for sure is that μ ∈ M . The agent
may have come to this prior knowledge due to some previously received information
(either in the form of observations obtained by sampling or in the form of higher-level
information about the mechanism underlying the unknown distribution). On the other
hand, pla represents the agent’s “soft information”, her current beliefs (and conditional
beliefs etc) about the unknown distribution, typically acquired by sampling. Unlike
in probabilistic inference processes (Paris 1994)(but like in most concrete examples
of such processes), this doesn’t give only one (unconditional) belief, but a whole
ranking of the distributions, in the form of a continuous function (which will give
rise to a series of conditional beliefs): she considers the higher-ranked distributions
to be more plausible than the lower-ranked ones. But, in contrast to knowledge, such
soft information is not enough to exclude the less plausible distributions: the agent
‘believes’ that they are not the real distribution; but she doesn’t know it for certain. The
agent believes every proposition satisfiedby all the “top” (most plausible) distributions:
the ones having plausibility rank 1; or, if such top distributions don’t exist, the agent
will believe every proposition satisfied by all distributions that are “plausible enough”:
i.e. all above any given plausibility rank 1 − ε (for any ε > 0).

The above-defined extensions of the plausibility map have epistemic/doxastic sig-
nificance: pla(μ, e) can be thought of as a way of assessing of joint plausibility of
having true distribution μ and observing event e. Note the analogy with the formula
for the joint probability of two events.11 Similarly, pla(P) gives us a way to assess
the plausibility of a ‘proposition’: essentially, a set of distributions P ⊆ M is only
as plausible as the most plausible element of P (if such an element exists); or more
generally P is at least as plausible as all its elements, but no more than (i.e. pla(P)

is the supremum of all plausibility ranks in P). Note now the analogy with, but also
the difference from, probability: the role usually played by addition is played here
by the supremum. With this notation, condition (2) on plausibility models (M, pla)
can be restated simply as pla(M) = 1. Finally, pla(P, e) combines the formulas for
pla(μ, e) and for pla(P) in the natural way, giving the joint plausibility of having the

11 This analogy can be made more precise if we identify the plausibility of an event e given a distribution
μ with the probability assigned by μ to e, i.e. put pla(e|μ) := μ(e). Then the joint plausibility formula
reads pla(μ, e) = pla(μ) · pla(e|μ).
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true distribution in P and observing event e. In particular, pla(e) := pla(M, e) is a
natural definition for the plausibility of the event e.
Differences between plausibility and probability Note the key differences between
plausibility models and probabilistic models. First, unlike in the probabilistic case,
maximal plausibility pla(μ) = 1 does not mean certainty or full belief, but only
consistency with all the agent’s beliefs: the distributions μ with pla(μ) = 1 are “dox-
astically possible”, i.e. they satisfy every proposition believed by the agent. Second,
the plausibility map does not obey Kolmogorov’s additivity axiom: the plausibility
pla(P) of a set is not the sum of plausibility ranks of its elements, but rather their
supremum. This, together with the above normalization requirement (2), suggests that
the plausibilistic analogue of addition of probabilities is the operation of maximization
(or more generally, taking the supremum).
Models for experimental-based information Closed models characterize the situa-
tions in which all prior knowledge about the distribution is based only on experimental
evidence about the mechanism underlying this distribution: e.g. measurements of the
side weights or asymmetries of a coin or dice; opening each of a number of urns (from
which an unknown one will be chosen for later sampling) and counting (or approxi-
mately estimating) the marbles of a given color in the urn, etc. In such contexts, it is
indeed natural to assume that M is closed: if a distribution is a limit of possible dis-
tributions in M , then it is indistinguishable from M by any such experimental means,
and hence it cannot be excluded from M .

In the case that the experimental evidence is based only onmeasurements, it is natu-
ral to assume more, namely that M is both closed and convex: measurements typically
produce interval estimates [a, b] for the probability μ(o) of each outcome. Indeed,
such intervalmodels are the onesmost usedwhen dealingwith imprecise probabilities.
More generally, the information obtained in this way may come in the form of linear
constraints of the form

∑n
i=1 aiμ(oi ) ≥ c (with a1, . . . , an, c ∈ Q). Any finite set of

such constraints gives a closed and convex set M of possible distributions.
One might wonder why do we permit distributions M\M to have positive plausi-

bility ranks, or even why do we take the whole closure M (instead ofM) as the domain
of the plausibility map. Given that the agent knows for sure that the true distribution
lies withinM, the distributions in M\M are incompatible with the agent’s hard infor-
mation, so they are known to be ‘impossible’ in the view of this information. It would
seem natural to require that pla ≡ 0 on M\M , or else just restrict the domain of pla
toM. This can indeed be done if M is closed. But in general, the technical condition of
continuity poses constraints on the plausibility ranks of distributions in the closure M ,
which may force some μ ∈ M\M to have non-zero plausibility ranks. Even from a
purely conceptual perspective, distributions in M\M are in a sense “almost possible”,
since they are not distinguishable from the ones in M by any experimental means.
Their epistemic impossibility is only due to higher-order, non-experimental informa-
tion, and so it makes sense to take them into account. Moreover, it may be that such
ideal limit-distributions may have a high inherent plausibility (despite being ruled out
by the current information). In some cases, they may be inherently more plausible
than the possible distributions. In such cases, these distributions would be in principle
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believed on purely a priori grounds, though they are disbelieved (in fact known to be
impossible) when the higher-level information is taken into account.12

The above intuitions about knowledge and belief can be made formal as follows:

Definition 3 [Knowledge and belief ] We say that a proposition P ⊆ MO is known in
the model M = (M, pla), and write M |� K (P), if all possible distributions are in
P; i.e. if M ⊆ P .

We say that P ⊆ MO is believed in the model M = (M, pla), and write M |�
B(P), if all “plausible enough” distributions in M are in P; i.e. iff there exists some
μ ∈ M such that {ν ∈ M | ν ≥M μ} ⊆ P . An equivalent definition can be given in
terms of Grove spheres: B(P) holds in M iff P includes some Grove sphere; i.e. iff
there exists δ ≤ 1 such that ∅ 
= Mδ ⊆ P; or, yet another equivalence: there exists
ε ≥ 0 such that ∅ 
= M1−ε ⊆ P .

Connections to belief revision theory Grove sphere models (in non-probabilistic
form, consisting of possibleworlds instead of distributions) form the standard semantic
framework in Belief Revision Theory (Grove 1988). Plausibility models (again, in
their non-probabilistic version) are well-known equivalent relational descriptions of
sphere models, that are preferred in Dynamic Epistemic Logic (Baltag and Smets
2008a, b; Baltag et al. 2019a; van Benthem 2007, 2011), as well as in the “dynamic
interactive epistemology” approach developed by game-theorists (Board 2004). These
are in fact adaptations to doxastic modeling of the older setting of Lewis spheres, with
its equivalent description in terms of a comparative similarity relation (Lewis 2000).
In these models, the elements of M are taken to be possible worlds, or possible ‘states’
of the world, and the structure is purely qualitative, given either in terms of a nested,
exhaustive family of spheres, or in terms of a total preorder on worlds. Sometimes
an additional converse well-foundedness condition, or a weaker ‘Limit Condition’, is
imposed to ensure the existence of maximal elements Max(M) 
= ∅ (or equivalently,
the existence of a smallest sphere). As seen below, this simplifies the definition of
(conditional) belief, as the doxastic analogue of Lewis conditionals. But as noted by
Lewis (2000), such additional assumptions are not really needed, since a satisfactory
notion of conditional (or conditional belief) can still be defined in non-converse-
wellfounded models. Hence, we make no such additional assumptions here.

Our models are just a special case of plausibility models, adapted to a probabilistic
setting: the possible worlds come as probability distributions, while the plausibility
preorder and the Grove spheres are quantitatively defined from a plausibility ranking
map. But the mechanism for forming beliefs B(P) and conditional beliefs B(P|Q)

12 Take a coin, for which there is no reason to suspect an in-built bias. Initially, before receiving any other
information, the set of possible distributions was [0, 1] (if we represent each distribution by the probability
it assigns to Heads), and the most plausible distribution was the fair one μeq (assigning probability 0.5 to
Heads). But in the meantime, one piece of new higher-order information was received, namely that the coin
is not perfectly fair (due to some small manufacture accidents). Now, μeq is excluded as impossible, so the
set of possibilities is M = [0, 1]\{0.5}, but nevertheless, there is still no reason to suspect any systematic
bias. So, the distributions that are closer to μeq have higher plausibility, and their plausibility decreases as
we move further away from it. The only way to extend this plausibility in a continuous way to the closure
M = [0, 1] is to continue to assign maximal plausibility to μeq . This merely technical constraint makes
also conceptual sense, if we think counterfactually: if the received information happened to be wrong, then
we’d revert to considering μeq as the most plausible distribution. A priori, this impossible distribution is
still inherently the more plausible.
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in our probabilistic plausibility models will be exactly the same as in the general
(non-converse-wellfounded, non-probabilistic) plausibility models.
Connections to inference processesOur probabilistic plausibility models can also be
seen as a generalization and refinement of Paris’ inference processes (Paris 1994; Paris
andRad 2008; Paris andVencovska 1997). Roughly speaking, an inference process is a
map Bel assigning to each set M ⊆ MO of distributions some “believed” distribution
Bel(M) ∈ M . The definition in Paris (1994) actually restricts the domain of Bel to
a subclass of P(MO) (namely the ones definable by a set of linear inequalities),13

but our more general setting extends this to all sets of distributions. A good look at
Paris’ examples of interesting inference processes shows that all of them define the
salient distributionBel(M) bymaximizing (orminimizing) over M a certain continuous
quantity (entropy, distance from centre of mass, distance from barycentre, etc). Our
approach makes explicit this method of generating inference processes, in the form of
the plausibility map, and recognizes it as just a special case of the standard method
of belief formation in Logic and Belief Revision Theory. Generalizing to arbitrary
sets of distributions also forces us to give up on the insistence for only one most
preferred distribution,14 or even a set ofmost preferred distributions. Following Lewis’
approach (Lewis 2000) (as later adapted to non-converse-wellfounded plausibility
models), one can still define beliefs as we did above, in terms of propositions that
hold on all distributions that are plausible enough. Indeed, this seems the most natural
generalization of maximization-based inference processes to arbitrary sets.

In closedmodels (andmore generally inmodels in which plausibilitymap attains its
maximumvalue 1) the definition of belief can be simplified, yielding themaximization-
based notion of belief that is standard in both inference processes and Belief Revision
Theory (in terms of maximizing plausibility rank). In such cases, belief amounts to
truth in all the ‘most plausible’ distributions (the ones with plausibility rank 1):

Proposition 4 IfM = (M, pla) is a closed model, then there exists some μ ∈ M with
pla(μ) = 1; i.e. we have Max(M) 
= ∅.15 Moreover, whenever M = (M, pla) is
any model with Max(M) 
= ∅ (and hence in particular, whenever M is closed) and
P ⊆ MO is any proposition, we have that: P is believed iff all distributions inM with
plausibility 1 satisfy P; i.e.

B(P) holds inM iff Max(M) ⊆ P.

Proof For the first part, let M ⊆ MO be closed. Since pla is a continuous function,
we can use Propositions 1, 2(1) and 3 , to conclude that pla attains its supremum on
M, hence M1 = Max(M) 
= ∅.
13 In fact, there are other differences: Paris’ approach is syntactic, so the linear inequalities involve proba-
bilities of sentences in a given language.
14 The existence of maximizers in Paris (1994) is ensured by the fact that the sets defined by linear
inequalities are closed, while the quantity to be maximized is continuous. The uniqueness of the maximizer
is ensured there by the fact that these sets are convex, while the relevant quantity is concave (or convex, in
the case of minimization).
15 Recall that Max(M) = M1 = {ν ∈ M | pla(μ) = 1} = {ν ∈ M | ν ≥M ν′ for all ν′ ∈
M}, if non-empty, is the smallest Grove sphere.
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For the second part, assume only that Max(M) 
= ∅. To prove the left-to-right
direction in the displayed equivalence, suppose that B(P) holds; then by definition,
there exists δ ≤ 1 such that ∅ 
= Mδ ⊆ P . But δ ≥ 1 implies M1 ⊆ Mδ , hence by
transitivity of inclusion we conclude that Max(M) = M1 ⊆ P , as desired.

For the converse, suppose that we haveMax(M) = M1 ⊆ P . SinceMax(M) 
= ∅,
take any μ ∈ Max(M) = M1. Then we have {ν ∈ M | pla(ν) ≥ pla(μ) = 1} = M1

(since pla cannot take values larger than 1), hence {ν ∈ M | pla(ν) ≥ pla(μ)} ⊆ P ,
i.e. B(P) holds inM. ��

Some canonical plausibility maps and plausibility-generating functions
Here are some specific examples:

1. Entropy-based plausibility maps: The most direct implementation of the Principle
of Indifference is to take as our generating plausibilitymeasure the Shannon entropy
Ent : MO → [0,∞), given by putting

Ent(μ) := −
∑

o∈O, μ(o) 
=0

μ(o) log(μ(o))

It is convenient to assume that the logarithms are taken in base n (where recall that
n = |O| is the number of outcomes in O). This measure generates a plausibility
model M = (M, EntM ) on every non-empty set M ⊆ MO of distributions with
positive entropy. The generated probabilistic plausibility map EntM is obtained
by renormalizing entropy wrt M, as described in the generic example above: for
μ ∈ M , put EntM (μ) := Ent(μ)

Ent(M)
, where Ent(M) := sup{Ent(ν) | ν ∈ M}. So the

most plausible distribution will be the one with highest Shannon entropy, i.e. the
most uninformative one.16 More generally, less informative distributions will be
more plausible than more informative ones. Note also that, when using logarithms
in base n = |O|, we have Ent(MO) = Ent(μeq) = ∑

1≤i≤n − 1
n logn

1
n = 1

(where μeq is the distribution that gives equal probability 1
n to every outcome),

hence EntMO = Ent .
One of the “defects” of entropy Ent as a plausibility-generating measure is that it
may take value zero, so it is not fully positive. This means there exist non-empty
sets of distributionsM, for which (M, Ent) is technically speaking not a plausibility
model (since Ent(μ) = 0 for someμ ∈ M): indeed, the set MO of all distributions
is such a counterexample! But recall that only the plausibility (pre-)order ≤M is
of relevance when forming beliefs. So we can take instead any positive continuous
function that induces the same order. One simple way to do this is to add to entropy
some fixed positive number, say 1. In this way we obtain a fully positive version of
entropy measure Ent+ : MO → (0,∞), given by putting

Ent+(μ) := 1 + Ent(μ) = 1 −
∑

o∈O, μ(o) 
=0

μ(o) log(μ(o)).

16 Thismechanism for prior belief-formationmatches the so-called entropic inference process (Paris 1994).
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Using Ent+ as our plausibility-generating measure, we generate a plausibility
model (M, Ent+M ) on every non-empty set M ⊆ MO , whose plausibility map
is once again obtained by renormalizing Ent+ to M. Moreover, Ent+M agrees
with EntM on the ranking order between any two distributions, so it induces the
same plausibility ranking order as the one given by entropy. As a consequence, for
every plausibility model (M, EntM ), all beliefs and conditional beliefs (as well as
knowledge) are the same as in the model (M, Ent+M ).
Philosophically speaking, taking either Ent or Ent+ as one’s plausibility measure
amounts intuitively to the adoption of the Principle of Indifference at the level of
the possible outcomes.

2. Cautious plausibility: The most ‘cautious’ choice of plausibility is assigning equal
plausibility to all possible distributions, e.g. taking

C(μ) := 1 for all μ ∈ MO .

Obviously, this is a fully positive plausibility measure, so it induces a plausibility
model on every non-empty setM ⊂ MO (with the generated plausibilitymap given
by the restriction of C to M).
Cautious plausibility can be thought of as yet another application of the Principle of
Indifference at a higher level (that of all possible distributions): since a priori there
is no reason to prefer a distribution to another, the prior plausibility assigns equal
rank to all of them. With this cautious choice, the prior beliefs do not go beyond
what is known: the agent only believes what she knows. (But as we’ll see, this is
no longer the case after more information is received, e.g. via sampling evidence
from the unknown distribution.)

3. Typicality-based plausibility maps: The so-called Limiting Centre of Mass of a set
of distributions M ⊆ MO (also called Centre of Mass Infinity) is the output of a
probabilistic inference process (Paris 1994), that involves maximizing the quan-
tity

∑
o∈O(M) log(μ(o)), where we fixed a set M ⊆ MO and used the notation

O(M) = {o ∈ O | ∃μ ∈ M with μ(o) > 0}. Whenever it exists and is unique (as
e.g. in the case of closed and convex sets M), the maximizer of this function over
a set of distributions M ⊆ MO gives a form of ‘averaging’ overM. So, in general,
distributions for which this quantity has a higher value are closer to the average of
M.
Unfortunately, the function

∑
o∈O(M) log(μ(o)) takes no positive values, since

its range is [−∞, 0). But once again, only the induced ranking order is of rele-
vance when forming beliefs, so we can apply any continuous transformation from
[−∞, 0) to [0, 1) (e.g. x �→ 2x ), to obtain a plausibility measure

CM∞(μ) := 2
∑

o∈O(M) log(μ(o)) =
∏

o∈O(M)

μ(o),

where here we assumed that the logarithm is taken in binary base. Assume now
that M ⊆ MO is a non-empty set with the property that for every outcome o ∈ O ,
we have either μ(o) = 0 for all μ ∈ M or else μ(o) > 0 for all μ ∈ M . Then the
measure CM∞ generates a probabilistic plausibility map on M, obtainable once
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again by renormalization to M.
If we instead apply first a slightly different transformation (x �→ 1 + 2x ), we can
go further and convert CM∞ into a fully positive plausibility measure CM+∞. This
helps avoid any restrictions on M: as long as M 
= ∅, CM∞ generates a proba-
bilistic plausibility map CM+M∞ on M, that induces the same preorder ≤M as the
original function

∑
o∈O(M) log(μ(o)). Hence, (M,CM+M∞ ) is a plausibility model

for every non-emptyM, and its ranking order, beliefs, conditional beliefs etc, agree
with the one of (M,CMM∞), whenever the second is a plausibility model.
Taking CMM∞ or CM+M∞ as one’s plausibility ranking amounts intuitively to the
adoption of a Principle of ‘Averageness’ or Typicality. Indeed, the probability dis-
tributions inM that have a higher CM+M∞ -plausibility will be those that are “more
typical”, more ‘normal’ or representative forM; while the most plausible ones are
the “most typical”.
Another typicality-based plausibility map is related to the barycentre inference
process (Paris 1994): this involves minimizing the function

μ �→ sup{d(μ, ν) | ν ∈ M}

If it exists and is unique, the minimizer of this function over M is called the
barycentre of the set M , and it gives another notion of averageness or representa-
tiveness. It chooses the distribution μ that minimizes the worst error that could be
made (when one wrongly takes μ to be the true probability). To convert this into a
maximization problem, we can apply the transformation 2−x , obtaining the (fully
positive) barycentric plausibility measure BM : M → (0, 1], for any non-empty
set M ⊆ MO and arbitrary distribution μ ∈ M :

BM (μ) := 2−sup{d(μ,ν) | ν∈M}.

Using again renormalization, this generates a probabilistic plausibility map on M ,
that will assign higher plausibility to distributions that are closer to M’s barycenter.

4. Evidence-based plausibility: Given an observed event e ∈ E , we may prefer dis-
tributions that maximize the probability of e. This corresponds to taking as our
plausibility measure the function Fe from Lemma 1, given by Fe(μ) = μ(e). This
gives higher ranking to distributions that assign higher probability to the event
e. When renormalized to any non-empty set M ⊆ MO with the property that
μ(e) > 0 for all μ ∈ M , it induces a plausibility model (M, FM

e ), given by
FM
e (μ) := μ(e)

sup{ν(e) | ν∈M} .
5. Centered plausibility: Given a salient distribution μ (that is considered as the most

plausible), one may adopt a plausibility map given by a “normal” curve centered at
μ. This means that distributions that are closer to μ are considered more plausible
than the ones that are farther: pla(ν) ≥ pla(ν′) iff d(ν, μ) ≤ d(ν′, μ). One
example of a fully positive plausibility measure that induces this ranking order is
Cμ : MO → (0, 1], given by putting Cμ(ν) := 2−d(ν,μ).
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6. Plausibility based on second-order probability: Let M ⊆ MO be a discrete17 set
of distributions, and let P : M → [0, 1] be any second-order probability mass
function (cf. Gaifman and Snir 1982; Gaifman 2016), that is required to satisfy
P(μ) > 0 for all μ ∈ M and

∑
μ∈M P(μ) = 1. Then this function can be

extended to a continuous function P : M → [0, 1], by putting P(μ) := 0 for all
limit points μ ∈ M\M . The fact that this extension is continuous follows from
the assumption that

∑
μ∈M P(μ) = 1, which implies that limn→∞P(μn) = 0 for

any infinite sequence of distinct points μn ∈ M . By taking this extended func-
tion P as our plausibility measure, we generate a plausibility model (M, PM ),
by renormalizing as above: PM (μ) := P(μ)

sup{P(μ) | μ∈M} = P(μ)
maxM (P)

. (Note that,
in order for

∑
μ∈M P(μ) to have a finite value, P must attain a maximum value

maxM (P) := max{P(μ) | μ ∈ M} on M.)
However, note that the beliefs based on the plausibility ranking PM will not
necessarily match the Lockean beliefs based on the second-order probability
P. Only the distributions μ ∈ Max(M), having PM (μ) = 1, or equivalently
P(μ) = maxM (P), are relevant for the agent’s plausibilistic beliefs: she will
believe that the true distribution is one of the ones inMax(M). This will hold even
in the case that

∑
μ∈Max(M) P(μ) < 1

2 ; while an agent using P as her second-order
probability will have in this case precisely the opposite belief : she believes that the
true distribution is in M\Max(M), since this is more likely to be the case. This
points yet again to the fundamental difference between the interpretation of a func-
tion as a plausibility map versus its meaning as a probability function. Plausibility
ranks do not obey the Kolmogorov additivity axiom, but instead higher plausibility
ranks simply dominate lower ones.

Example 1 (continued). In the Coin example, we initially have no information about
the coin, the set of possible coin biases will be the set MO of all probability mass
functions on O = {H , T }. Suppose that we have background information that the
extremal distributions (μ0 with μ0(H) = 0, and μ1 with μ1(H) = 1) are impossible.
Then the set of possibilities is given by M := MO\{μ0, μ1}. We can choose the
entropy Ent as our plausibility map, as this can be justified here in terms of symmetry:
the faces of a coin (or a dice) are symmetric, so there is no reason to prefer one
outcome over another. Then (M, Ent+) is a plausibility model, where the highest
plausibility will be given to the distribution with the highest entropy: the fair-coin
distribution μeq , assigning μeq(H) = μ(T ) = 1

2 (since for every ν 
= μeq we
have Ent(ν) < Ent(μeq)). So entropic plausibility starts with an initial belief in the
fairness of the coin (and more generally it assigns a higher ranking to a distribution
that corresponds to a more well-balanced coin). Note that entropic plausibility induces
the same ranking order on this model as the centered plausibility Cμeq (centered at
the fair-coin distribution μeq ).

If, however, we cannot exclude any distribution (not even the extremal ones), then
the set of possibilities is the whole MO , and Ent will no longer give us a plausibility
model. Still, we can choose instead the positive version of entropic plausibility Ent+,
whichmakes (MO , Ent+) into a plausibilitymodel, whilemaintaining the same initial

17 A set is discrete if it consists only of isolated points. Discrete subsets ofMO are either finite or countable.
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belief in the coin’s fairness (and the same preference for more well-balanced coins).
Note again that Ent+ still induces the same ranking order on thismodel as the centered
plausibility Cμeq .

Example 2 (continued). In the Urn example, we initially have no other information
besides the three colors, so the set of possibilities is the set MO of all distributions
over O = {R, B,G}. Since there is no reason to prefer any one distribution over any
other (and no considerations of symmetry are relevant, since we cannot see inside the
urn to somehow assess whether there is a rough balance between the quantities of
marbles of different colors), the most natural prior ranking seems to be in this case
the cautious plausibility C: each possible distribution is assigned an equal plausibility
of 1. In the plausibility model (MO ,C), the agent has no other rational beliefs at this
stage, beyond what she knows.18

Proposition 5 Let M = (M, pla) be any model, then Knowledge and belief satisfy
the following properties:

1. Knowledge is truthful: if K(P) holds, then P holds at all possible distributions (i.e.
M ⊆ P);

2. Tautologies are known: K (MO) holds;
3. Knowledge implies belief: if K(P) holds then B(P) holds.
4. Belief is consistent: B(∅) never holds;
5. Knowledge and belief are closed under entailment: if P ⊆ Q, then K(P) implies

K(Q), and similarly B(P) implies B(Q);
6. Knowledge and belief are (finitely) conjunctive: if K (Pi ) holds for all 1 ≤ i ≤

n, then K (
⋂n

i=1 Pi ) holds; similarly, if B(Pi ) holds for all 1 ≤ i ≤ n, then
B(

⋂n
i=1 Pi ) holds;

7. Any finite number of beliefs are mutually consistent: if B(Pi ) holds for all 1 ≤ i ≤
n, then

⋂n
i=1 Pi 
= ∅.

Proof Properties 1,2,3,4 follow immediately from the definitions of knowledge and
belief. Property 5 for knowledge follows directly from property 1. For property 5 for
belief:B(P) gives the existence of some δ > 0 with ∅ 
= Mδ ⊆ P , which together with
P ⊆ Q gives us ∅ 
= Mδ ⊆ Q, hence B(Q) holds. Property 6 for knowledge follows
from property 1, via the sequence of implications: if K (Pi ) holds for all 1 ≤ i ≤ n,
then M ⊆ Pi for all 1 ≤ i ≤ n, so M ⊆ ⋂n

i=1 Pi , hence K (
⋂n

i=1 Pi ) holds. Property
6 for belief: suppose that B(Pi ) holds for all 1 ≤ i ≤ n; so, for every 1 ≤ i ≤ n, there
exists some δi > 0 s.t. ∅ 
= Mδi ⊆ Pi . Take δ = min{δi | 1 ≤ i ≤ n}. Then we have
δ > 0, Mδ 
= ∅, and Mδ ⊆ ⋂n

i=1 M
δi ⊆ ⋂n

i=1 Pi , hence B(
⋂n

i=1 Pi ) holds. Property
7 follows immediately from properties 6 and 4. ��

Finally, one should note that belief in closed models (or more generally, any model
having most plausible distributions) is better behaved, having stronger consistency
and conjunctivity properties, than in arbitrary models:

18 Similarly to Example 1, we can also consider here the case in which we are given the background
information that all three possible colors actually occur, so that the extremal distributions are impossible,
i.e. we have μ(R), μ(B), μ(G) 
= 0.
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Proposition 6 Let M = (M, pla) be any model with Max(M) 
= ∅. Then we have
the following:

– beliefs are closed under arbitrary conjunctions: if {Pi | i ∈ I } is a family of propo-
sitions such that B(Pi ) holds for all i ∈ I , then B(

⋂
i∈I Pi ) also holds;

– beliefs are globally consistent:
⋂{P ⊆ MO | B(P) holds inM} 
= ∅.

In particular, these properties hold in closed models.

Proof For the first item, suppose that B(Pi ) holds for all i ∈ I . Then by the second part
of Proposition 4, we have Max(M) ⊆ Pi for all i , and hence Max(M) ⊆ ⋂

i∈I Pi ,
hence B(∩i∈I Pi ) (again by Proposition 4).

For the second item,weapply thefirst item to the family {P⊆MO | B(P) holds inM}
to infer that we have B({P ⊆ MO | B(P) holds inM}), then apply Proposition 5.3 to
obtain the desired conclusion. ��

The following example shows that the above properties do not necessarily hold in
arbitrary probabilistic plausibility models!
Counterexample: Suppose that, in the Coin Example, our agent learns from the
manufacturer only one piece of information: the coin is not completely fair, due to very
small, accidental imperfections (rather than any intentional bias). What is a rational
agent, who forms entropy-based beliefs, supposed to believe? Smaller imperfections
seem to bemore plausible than larger ones: hence, any bias closer to 1

2 ismore plausible
than one that is farther. On the other hand, the agent knows for sure that the coin is
not fair. Our agent has acquired omega-inconsistent beliefs, which nevertheless seem
rational, given her information.

To formalize this counterexample, take O = {H , T } as in the Coin Example, and
take the model (M, Ent+) with M = MO\{μeq}, where μeq(H) = μ(T ) = 1

2 is the
fair-coin distribution and Ent+ is the positive version of entropic plausibility. Recall
that Ent+ yields on the same ranking order on MO as the centered plausibility Cμeq :
distributions that are closer toμeq are more plausible than the ones that are farther. For
each n ≥ 2, take Pn := {μ ∈ M | μ(H) ∈ ( 12 − 1

n , 1
2 + 1

n )}. Then B(Pn) holds for all
n ≥ 2 (since every distribution close enough to μeq is in Pn), but

⋂
n≥2 Pn = ∅ (since

μeq /∈ M), hence beliefs are globally inconsistent; moreover, B(
⋂

n≥2 Pn) does not
hold (since B(∅) is false, by Proposition 5.3), hence beliefs are not necessarily closed
under countable conjunctions.

This counterexample shows that plausibility-based beliefs in non-closed models
may be subject to a kind of Infinite Lottery Paradox: though believing, for each n ≥ 2,
that the coin’s bias is in ( 12 − 1

n , 1
2 + 1

n )\{ 12 }, our agent does not believe that the bias is
in (empty) intersection of all these sets. So beliefs in non-closed models may exhibit a
type of ‘omega-inconsistency’: though each belief is consistent, and any finitely many
beliefs are mutually consistent, the family of all beliefs may still be inconsistent, when
taken as a whole!

We think this is a small price to pay for being able to form beliefs when given
arbitrary information M ⊆ MO . Situations such as in the above counterexample can
occur in practice, whenever partial information is obtained, say by communication.
Still, readers who consider global doxastic consistency to be an inherent feature of
rationality are welcome to restrict our framework to models in which the plausibility
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map attains a maximum value. Full infinitary conjunctivity and global consistency of
beliefs can be regained in this way, without any other loss, except for generality.

4 Conditioning and belief dynamics

One of the main motivations for developing the setting that we investigate here is to
capture the process of learning a distribution as a form of iterated belief revision, that
results from receiving new information. But, as already explained, the two components
of our probabilistic plausibility models M = (M, pla) capture two different types
of information about the unknown distribution μ: the set M represents the agent’s
hard higher-level information about μ (her ‘knowledge’, given by the proposition
M ⊆ MO ); while the plausibility map pla : MO → [0, 1] represents the agent’s soft
information about μ (typically obtained by sampling or other observational events),
her “beliefs” given by the ranking order. Each of these two forms of information
is subject to its own type of revision, captured by its own form of conditioning or
update: (1) conditioning on a new proposition Q ⊆ MO , resulting in an eliminative
update with the hard informationQ, by which some distributions are eliminated, while
the plausibility ranking stays the same; (2) conditioning on a new observational event
e ∈ E (resulting in an upgrade of the plausibilitymap, bywhich distributions assigning
a higher probability to e get a boost ranking, while the setM typically stays the same
(except possibly for the elimination of those extreme distributions that assigned zero
probability to e).

Definition 4 [Two forms of conditioning and updating] Given a plausibility model
M = (M, pla), a proposition P ⊆ MO is said to be compatible with M if the
intersectionM∩P 
= ∅ is non-empty. Similarly, an event e ∈ E is said to be compatible
with M if there exist distributions μ ∈ M with μ(e) 
= 0, i.e. the set Me := {μ ∈
M | μ(e) 
= 0} is non-empty.

Let PropM be the family of all propositions compatible withM, and let EM be the
family of all events compatible withM. We can define two binary operations pla(.|.) :
M×PropM → [0, 1] (conditioning on a proposition) and pla(.|.) : M×EM → [0, 1]
(conditioning on an event), by putting

pla(μ|P) := pla(μ)

pla(M ∩ P)
= pla(μ)

sup{pla(ν) | ν ∈ M ∩ P} ,

pla(μ|e) := pla(μ, e)

pla(e)
= pla(μ, e)

pla(M, e)
= pla(μ) · μ(e)

sup{pla(ν) · ν(e) | ν ∈ M} .

The two types of conditioning give rise to two forms of dynamic operations onmodels,
corresponding to two distinct varieties of learning: updating the plausibility model
M = (M, pla) with a compatible proposition P ∈ PropM yields the P-updated
model MP = (MP , plaP ), given by MP := M ∩ P and plaP (μ) := pla(μ | P) for
μ ∈ M ∩ P; while updating the same model with a compatible event e ∈ EM yields
the e-updated model Me = (Me, plae), given by Me := {μ ∈ M : μ(e) 
= 0} and
plae(μ) := pla(μ | e) for μ ∈ Me.
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The first type of conditioning can be recognized as a plausibilistic analogue of
the Kolmogorov definition of conditional probability, that fits well with propositional
learning. Note that the P-conditional plausibility order ≤P in the model MP , given
by

μ ≤P μ′ iff plaP (μ) ≤ plaP (μ′) iff pla(μ) ≤ pla(μ′) iff μ ≤ μ′,

is the same as the initial plausibility order≤, except that it is restricted to M∩ P (since
the renormalizing denominator pla(M ∩ P) in the definition of plaP doesn’t make
a difference for the order). Indeed, the propositional update (generated by receiving
new “hard” higher-order information P) shrinks the space of possible distributions M
by eliminating certain possibilities, while leaving the plausibility map “essentially the
same” (modulo the renormalizing factor). This shows that our propositional update
falls well within the scope of traditional Belief Revision Theory, representing a special
case of AGM conditioning.

On the other hand, the second type of conditioning can be seen as a plausibilistic
analogue of Bayes’ conditioning formula (where in both cases, the operation sup of
taking supremum plays the role usually played by addition

∑
), and thus captures a

notion of learning through sampling. The event conditioning rule weights the plau-
sibility of each distribution with how well it predicts the observed sampling event e.
Note that e-conditional plausibility order ≤e in the model Me is given by

μ ≤e μ′ iff plae(μ) ≤ plae(μ
′) iff pla(μ) · μ(e) ≤ pla(μ′) · μ′(e).

Indeed, the event update is generated by receiving “soft” information (obtained by
sampling), and it naturally resembles soft doxastic ‘upgrades’ (rather than updates)
from Dynamic Epistemic Logic (Baltag and Renne 2016; van Benthem 2011; Baltag
and Smets 2008b): it leaves the set of possibilities M “essentially the same” (since it
does not necessarily eliminate any distribution, except for the extremal ones, assigning
probability 0 to e, if there any inM), but rather only changes the plausibility over them.
Distributions that better fit the sampling evidence are only ‘promoted’ in plausibility,
while the others are demoted (but not eliminating, except for the extremal ones).

The next result confirms that our updates are well-defined operations on plausibility
models:

Proposition 7 Let M = (M, pla) be a plausibility model, P ∈ PropM be a compat-
ible proposition, and e ∈ EM be a compatible event. Then MP = (MP , plaP ) and
Me = (Me, plae), as defined above, are plausibility models.

Proof For propositional updates, the compatibility ofPwithM implies that the domain
of the P-updated model is non-empty: MP = M∩ P 
= ∅. Similarly, the compatibility
of the event e with M implies that Me 
= ∅. It is easy to check that the function
plaP : M ∩ P → [0,∞), given by plaP (μ) = pla(μ)

pla(M∩P)
, takes indeed values in

[0, 1] (since 0 < pla(μ) ≤ max{pla(ν) | ν ∈ M ∩ P} = sup{pla(ν) | ν ∈ M∩P} =
pla(M ∩ P) for μ ∈ M ∩ P); moreover, plaP (μ) > 0 for all μ ∈ MP = M ∩ P
(since the denumerator pla(μ) > 0 for all μ ∈ M); and finally sup{plaP (ν) |ν ∈
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M ∩ P} = sup{ pla(ν)
pla(M∩P)

| ν ∈ M ∩ P} = sup{pla(ν) | ν∈M∩P}
pla(M∩P)

= 1 (again using the
fact that sup{pla(ν) | ν ∈ M ∩ P} = pla(M ∩ P)).

Similarly, the definition of Me ensures that the function plae(μ) = pla(μ | e) =
pla(μ)·μ(e)

sup{pla(ν)·ν(e) | ν∈Me} takes only positive values on Me, and that its supremum is 1 on
Me. To show that plae is continuous, we put together the definition of conditional plau-
sibility, the fact that plae = pla·Fe

k (where Fe is the function introduced in Lemma 1
and k = sup{pla(ν) · ν(e) | ν ∈ Me} is a non-zero constant), the continuity of pla
(by definition) and of Fe (by Lemma 1), and use the closure of continuous functions
under products and division by non-zero constants. ��

This fact allows us to iterate and even interleave the two forms of updating. For
simplicity, we only do it for events and propositions that fit the true distribution (since
this automatically ensures their mutual compatibility):

Definition 5 (Iterated updating) Given a plausibility model M = (M, pla), and let
μ ∈ M be the ‘true’ distribution, we can define the iterated updateMσ , for every finite
sequence σ = (σ1, . . . , σn) ∈ (Prop∪E)∗ consisting of true propositions (σi ∈ Prop
with μ ∈ σi ) or truly observable events (σi ∈ E with μ(σi ) 
= 0). The definition is by
recursion on the length of the σ , by putting:

Mλ := M, for the empty sequence λ = (),

Mσ,e := (Mσ )e, for observable e ∈ E (with μ(e) 
= 0),

Mσ,P := (Mσ )P , for truthful P ∈ Prop (with μ ∈ P).

The next three results ensure that updating satisfies some standard rationality con-
straints: Proposition 8 guarantees that the result of repeated conditionalisation is
independent of the order of application; Proposition 9 says that the result of con-
ditioning is independent of whether it is done successively (conditioning on each
independent observation, one after the other) or in one global step (conditioning on
thewhole sequence of independent observations, as one big single event); while Propo-
sition 10 shows that, when conditioning with a sequence of observations, the result
is independent of the temporal order of the observations. These last three facts are
important as they ensure that the agent’s posterior beliefs depend only on the evidence
that is observed (and the prior plausibility model), not on the temporal or logical order
in which this evidence is observed or processed.

Proposition 8 The order of applying (iterated) conditionalization is irrelevant: if
σ, σ ′ ∈ (Prop ∪ E)∗ are sequences of equal length m of propositions and/or events,
s.t. σ ′ is obtained by permuting the components of σ (i.e. there exists some bijection
g : {1, . . . ,m} → {1, . . . ,m} s.t. σ ′

i = σg(i) for all i ), then we have

Mσ = Mσ ′

Proof It is enough to show that we can commute the order of any two basic updates,
since then the desired conclusion follows by induction. So we only need to check
that we have MP,e = Me,P , MP,Q = MQ,P and Me,e′ = Me′,e. This is an easy but
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tedious verification, so we only sketch here the last case: for the underlying set we have
Me,e′ = (Me)e′ = {ν ∈ Me | ν(e′) 
= 0} = {ν ∈ M | ν(e) 
= 0, ν(e′) 
= 0}, which
immediately gives us Me,e′ = Me′,e; for the plausibility map, we have plae,e′(μ) =

plae(μ)·μ(e′)
sup{plae(ν)·ν(e′) | ν∈Me,e′ } = pla(μ)·μ(e)·μ(e′)

sup{pla(ν)·ν(e)·ν(e′) | ν∈Me,e′ } , which again immediately give

us plae,e′ = plae′,e. ��
The next proposition shows that conditioning successively on a number of inde-

pendent observations is the same as conditioning on the single event consisting of the
whole sequence of observations:

Proposition 9 If M = (M, pla) is a plausibility model and events e, e′ ∈ E are
independent wrt all distributions μ with μ ∈ M, then we have:

(Me)e′ = Me∩e′

As a consequence, for any event of the form [ω1, . . . , ωm] = ⋂m
k=1 ωi

i , we have:

Mω1
1,ω

2
2,...,ω

m
m

= M[ω1,...,ωm ]

(where recall that, for any outcome o = ωi ∈ O, the event ω
j
i = o j := {ω̃ ∈

Ω | ω̃ j = o = ωi } is the one of observing outcome o = ωi at the j-th sampling from
the unknown distribution, while [ω1, . . . , ωm] = ⋂m

i=1 ωi
i is the event associated to

the observational sequence ω1, . . . , ωm).

Proof By independence we have μ(e ∩ e′) = μ(e) · μ(e′), so we get
(Me)e′ = {μ ∈ M | μ(e) 
= 0, μ(e′) 
= 0} = {μ ∈ M | μ(e) · μ(e′) 
= 0} =
{μ ∈ M | μ(e∩ e′) 
= 0} = Me∩e′ . Similarly, as seen in the proof of Proposition 8, we
have plae,e′(μ) = pla(μ)·μ(e)·μ(e′)

sup{pla(ν)·ν(e)·ν(e′) | ν∈Me,e′ } . Using the independence assumption,

we obtain plae,e′(μ) = plae∩e′ (μ)

sup{plae∩e′ (ν) | ν∈Me,e′ } = plae∩e′(μ).

The second claim of our Proposition follows by an easy induction from the first
(given that, by the definition ofμ, each eventω j

j is independent on the event
⋂ j−1

k=1 ωk
k ).��

While Proposition 8 states that the logical order of applying conditionalization (with
both events and propositions) is irrelevant, the next result shows that the temporal order
in which the outcomes are observed is also irrelevant:

Proposition 10 For m ≥ 1, let g be a permutation of the first m positive integers
(i.e. a bijection g : {1, 2, . . . ,m} → {1, 2, . . . ,m}). For any two events of the form
[ω1, . . . , ωm] = ⋂m

k=1 ωi
i and [ωg(1), . . . , , ωg(m)] = ⋂m

i=1 ωi
g(i), we have

M[ω1,...,ωm ] = M[ωg(1),...,ωg(m)].

Proof Using the notations Fe from Lemma 1, and applying the multiplicative rule
for independent events (as well as the associativity and commutativity of multiplica-
tion), we obtain: F[ω1,...,ωm ](μ) = μ(

⋂m
i=1 ωi

i ) = ∏m
i=1 μ(ωi

i ) = ∏m
i=1 μ(ωi ) =
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∏m
i=1 μ(ωg(i)) = ∏m

i=1 μ(ωi
g(i)) = μ(

⋂m
i=1 ωi

g(i)) = F[ωg(1),...,ωg(m)](μ), for all
μ ∈ MO . Using this, we get that M[ω1,...,ωm ] = {μ ∈ M | F[ω1,...,ωm ](μ) 
=
0} = {μ ∈ M | F[ωg(1),...,ωg(m)](μ) 
= 0} = M[ωg(1),...,ωg(m)]. Similarly (using
also the definition of conditional plausibility), we conclude that pla[ω1,...,ωm ](μ) =

pla(μ)·F[ω1,...,ωm ](μ)

sup{pla(ν)·F[ω1,...,ωm ](ν) | ν∈M} = pla(μ)·F[ωg(1),...,ωg(m)](μ)

sup{pla(ν)·F[ωg(1),...,ωg(m)](ν) | ν∈M}=pla[ωg(1),...,ωg(m)](μ).

��
Example 1 (continued) Take the plausibility model (M,Ent) as before where M :=
MO\{μ0, μ1} is the set of all non-extremal biases of the coin and EntM : M = MO is
the entropic plausibility. Since in this case O = {Heads, Tails} has n = 2 outcomes,
our entropy calculations will use logarithms in binary base. We have Ent(M) =
Ent(MO) = Ent(μeq), where μeq is the fair distribution, so EntM = Ent . Let
e := [H , H , H ] = H1 ∩ H2 ∩ H3 ∈ E be the event that “the first three tosses
of the coin have landed on Heads”. After observing e, no distribution is eliminated
(since the only distribution incompatible with the evidence is μ0 with μ(H) = 0,
which has already been excluded from the start), so Me = M = MO\{μ0, μ1}.
The new plausibility function is given by plae(μ) = pla(μ,e)

pla(M,e) , where pla(μ, e) =
Ent(μ) · μ(e). Thus the most plausible probability function will no longer be μeq

and ones with a bias towards Heads will become more plausible. Let μ1, μ2 and μ3
be such that μ1(Heads) = 0.75, but μ2(Heads) = 0.8 and μ3(Heads) = 0.9
then it is easy to check that plae(μ1) < plae(μ2) > plae(μ3).19 So the maximizer
has μ(Heads) ∈ (0.8, 0.9). This is natural: the initial belief in fairness is no longer
realistic; the agent now believes there is a bias towards Heads.

If however, we cannot initially exclude the extremal distributions, then Ent is not
a good plausibility map, and we have to once again take its positive version to form
the initial plausibility model (MO , Ent+). The same event e = [H , H , H ] will now
change the model differently: it will now eliminate μ0, yielding Me = MO\{μ0}
as the new set of possibilities, while new plausibility map is given by plae(μ) :=
(1+ Ent(μ)) · μ(e). This changes the initial belief in fairness, and distributions with
a higher bias towards Heads become more plausible (though the maximizer will be
slightly different than in theprevious situation).Also, note that the newplausibilitymap
still inherits from the entropic plausibility the aversion towards extremal distributions:
e.g. the distribution μ1 with μ1(Heads) = 1, though it can no longer be excluded
(since μ1 ∈ Me now) and though it, in fact, matches exactly the observed frequency
of Heads, will still not be believed (and in fact will never become the most plausible,
after no finite sequence of observations, nomatter howmany times the coin falls Heads
up).

Example 2 (continued) Take the plausibility model (MO ,C) as before where MO is
the set of all possible distributions over the set O = {R,G, B}, and C is the cautious
plausibility. Recall that C(μ) = 1 for all μ ∈ MO and hence all distributions are
maximizers of plaC , so initially there are no special beliefs about the distribution.

19 To see this notice that: pla(μ1, e) = Ent(μ1) × μ1(e) = (− 0.75 × log2 0.75 − 0.25 × log2 0.25) ×
(0.75)3 = 0.220767,while pla(μ2, e) = Ent(μ2)×μ2(e) = (− 0.8×log2 0.8−0.2×log2 0.2)×(0.8)3 =
0.369612, and finally pla(μ3, e) = Ent(μ3) × μ3(e) = (−0.9× log2 0.9− 0.10× log2 0.1) × (0.9)3 =
0.3418977.
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The agent starts sampling marbles, noting their colour, and replacing them in the urn.
Let e := [R, R, R] = R1 ∩ R2 ∩ R3 be the event that “the first three sampled marbles
are all Red”. After observing e, all distributions μ with μ(R) = 0 are eliminated,
so that the new set of possibilities is Me = {μ ∈ MO : μ(R) 
= 0}), and the new
plausibility map is given by plae(μ) = μ(e) = μ(R)3. The maximizer of this
function is μR , given by μR(R) = 1 and μR(G) = μR(B) = 0. So the agent now
believes that there are only Red marbles in the urn: this is natural since based on her
current evidence there is no reason to assume there are any Green or Blue marbles
inside. If however, the next sampled marble comes up Green, then we have the event
f := e ∩ G4 = [R, R, R,G] = R1 ∩ R2 ∩ R3 ∩ G4. After observing this, all
distributions with μ(G) = 0 are also eliminated, so the new set of possibilities is
M f = {μ ∈ MO : μ(R) · μ(G) 
= 0}. Note that the previously believed distribution
μR has been eliminated now: not it is no longer believed, it is known now to be
impossible! Furthermore, the new plausibility map is given by pla f (μ) = μ( f ) =
μ(R)3 ·μ(G). The unique maximizer of this function is the distribution μ2R1G , given
by μ2R1G(R) = 2

3 , μ2R1G(G) = 1
3 and μ2R1G(B) = 0. So the agent now believes

that there are twice as many Red marbles than Green marbles (and no Blue marbles)
in the urn. Again, this is natural, since twice as many Red marbles were observed
than Green (and no Blue). One can in fact show that, when the prior is given by the
cautious plausibility, themost plausible distribution after any sequence of observations
will always be the one matching the observed frequencies.

The above notion of conditional plausibility gives us immediately a theory of belief
revision, which can be formalized in terms of a notion of conditional belief. Note
that this is conditionalisation on an observable event, corresponding to learning from
observations (i.e. from sampling from the unknown distribution). On the other hand,
the standardAGMsetting inBeliefRevisionTheory andLogic (Alchourrón et al. 1985;
Board 2004; Baltag and Smets 2008b; van Benthem 2011) involves revising with a
proposition (i.e. set of distributions), rather than an event. This corresponds to learning
high-level information about the unknown distribution, which allows to further shrink
the range of possibilities to some subset of the prior set of possible distributions. We
thus obtain two forms of conditional beliefs: a Bayesian-type conditioning on events,
encoding ‘statistical’ learning; and an AGM-type of conditioning on propositions,
encoding ‘logical’ belief revision.

Definition 6 [Two forms of conditional belief ] Let M = (M, pla) be a plausibility
model, and P ⊆ M be a proposition. For an event e ∈ E , we say that P is believed
conditional on e inM, and writeM |� B(P|e), iff all e-plausible enough distributions
in M are in P; i.e. for some μ ∈ M , {ν ∈ M | plae(ν) ≥ plae(μ)} ⊆ P . For a
proposition Q ⊆ M , we say that P is believed conditional on Q in M, and write
M |� B(P|Q), if and only if all plausible enough distributions in Q are in P; i.e. for
some μ ∈ Q, {ν ∈ Q | pla(ν) ≥ pla(μ)} ⊆ P .

It should be clear that B(P) is equivalent to B(P|Ω) and to B(P|M), where the
set Ω of all observation streams represents the tautological event (corresponding to
“no observation”) and the set M of all worlds represents the tautological proposition
(corresponding to “no further higher-order information”).
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It should be equally clear that conditional beliefs track the updated beliefs: for every
P ⊆ MO , B(P|Q) holds in M iff B(P) holds in MQ ; and similarly, B(P|e) holds in
M iff B(P) holds in Me.20 This allows us to generalize conditional beliefs to iterated
conditioning:

Definition 7 [General conditional belief ] LetM = (M, pla) be a plausibility model,
and P ⊆ M be a proposition. For any finite sequence σ = (σ1, . . . , σn) ∈ (Prop∪E)∗
of propositions/and or events, we say that P is believed conditional on σ in M, and
writeM |� B(P|σ), iff P is believed inMσ .

Conditional belief is consistent whenever the evidence is (i.e. if e 
= ∅, then B(P|e)
implies P 
= ∅, and similarly for B(P|Q)). As we’ll see, beliefs conditional on events
allow us to inductively learn from repeated sampling, and to ultimately converge to the
true distribution. As such, they behave in a way that is somewhat similar to the usual
Bayesian conditioning, used in statistical learning. In contrast, beliefs conditional on
propositions will behave as a ‘logical’ form of belief update, satisfying all the standard
axioms of Conditional Doxastic Logic (Board 2004; Baltag and Smets 2008b)(which
are in fact just an equivalent formulation of the so-called AGMpostulates (Alchourrón
et al. 1985) from Belief Revision Theory).

As for simple belief, the definition of belief conditional on events can be simplified
in closed models. In this case, conditional belief B(P|e) amounts to truth in all the
most e-plausible distributions:

Proposition 11 If F = (M, pla) is a closed model and e ∈ E is compatible with
M, then there exists some μ ∈ Me with highest e-revised plausibility in M (i.e. s.t.
plae(μ) ≥ plae(μ′) for all ν′ ∈ Me). In other words, we have

Maxe(Me) 
= ∅,

where for any proposition P ⊆ MO,we put Maxe(P) := {ν ∈ P | ν ≥e ν′ for all ν′ ∈
P} = {ν ∈ P | plae(ν) ≥ plae(ν′) for all ν′ ∈ P}.

Moreover, for any proposition P ⊆ MO, we have that P is believed conditional on
e iff all most e-plausible distributions in M are in P:

B(P|e) holds in F iff Maxe(Me) ⊆ P.

Proof By Proposition 7, plae is a plausibility function, hence it is continuous. Recall
thatM is closed and hence (by Propositions 1, 2(1) and 3) plae has a maximum value
on M. Let μ ∈ M be a distribution in which this maximum value is attained, i.e. we
have plae(μ) ≥ plae(μ′) for all μ′ ∈ M (and thus also for all μ′ ∈ Me ⊆ M).
Since e is compatible with M, there exists some ν ∈ M s.t. ν(e) > 0, and hence
plae(μ) ≥ plae(ν) = pla(ν) · ν(e) > 0. So we have 0 < plae(μ) = pla(μ) · μ(e),
which implies that μ(e) 
= 0, i.e. μ ∈ Me. This, together with the fact that plae(μ) ≥
plae(μ′) for all μ′ ∈ Me, gives us that μ ∈ Maxe(Me) 
= ∅.
20 These facts hold semantically, for propositions represented as sets P ⊆ MO . As we’ll see later, there is
a difference between update and conditioning at the syntactic level. For qualitative AGM updates, this fact
is well-known in Dynamic Epistemic Logic.
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The rest of the proof goes exactly as in the proof of Proposition 4, by replacing
unconditional belief B(P), plausibility pla and Max(M) by their conditional versions
B(P|e), plae and Maxe(Me). ��

5 Safe belief, statistical knowledge, and verisimilitude

Until now, we only used the notion of knowledge K that is most common among
logicians, economists and computer scientists: absolutely certain, infallible, irrevoca-
ble, and fully introspective knowledge. This matches what philosophers call “(hard)
evidence” or “(hard) information”. But the notion of knowledge favoured by epis-
temologists is softer: fallible, less-than-absolutely-certain, revisable, and possibly
non-introspective (or at least not always negatively introspective). It is the kind of
knowledge that we typically encounter in daily life or in empirical sciences, where
absolute certainty may be hard to achieve. This is known sometimes as defeasible
knowledge, and it is also related to the notion of inductive knowledge in Philosophy of
Science. Here, we are interested in developing such a soft notion of knowledge that can
apply to statistical learning: after repeatedly updating our beliefs by sampling from an
unknown distribution, when do our beliefs become focused enough and stable enough
to qualify as soft ‘knowledge’ of the true distribution (at least to some good enough
approximation)?

Various formalizations have been proposed for this notion. Here, we will borrow
ideas from the so-called Defeasibility Theory of Knowledge (Lehrer 1990): the main
principle is that ‘knowledge’ is a form of robust belief, namely belief that is resilient
under conditioning with truthful information. These ideas go back to Plato’sMeno and
weremore recently championed in various forms byKlein, Lehrer, Pappas and Swayn,
Rott and others. Before going on to formalize and then criticize the defeasibility theory,
Stalnaker (1996) summarizes it as follows: “An agent knows that φ if and only if φ

is true, she believes that φ, and she continues to believe φ if any true information
is received”. Rott (2004) develops a version called stability theory, and states it as:
“A belief K is a piece of knowledge of the subject S iff K is not given up by S on
the basis of any true information that S might receive”. Baltag and Smets (2008b)
restated Stalnaker’s formalization, under the name of safe belief, and developed it in
the framework of dynamic epistemic logic. Here, we adapt this concept to our setting,
and later strengthen it to a notion of statistical knowledge.

Definition 8 [Safe Belief ] Let M = (M, pla) be a plausibility model, in which we
also specify the ‘true’ distribution μ. We say that a proposition P ⊆ M is safely
believed (or is a “safe belief”) at μ in M, and write μ |�M Sb(P), if P is believed in
M conditional on every true proposition Q; i.e. B(P|Q) holds for all Q ∈ Prop with
μ ∈ Q.

This is simply the same notion as the one defined by Baltag and Smets (2008b)
in general plausibility models, but stated here in the special case of our probabilistic
plausibility models. As such, it satisfies the following general characterization, given
in Baltag and Smets (2008b):
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Proposition 12 The following are equivalent:

– P is safely believed at μ inM;
– all distributions in M that are at least as plausible as μ satisfy P; i.e., we have that

{ν ∈ M | pla(ν) ≥ pla(μ)} ⊆ P.

It is easy to see that, if P is a safe belief, then P is a true belief. As such, the notion
of safe belief gives a good formal approximation of the defeasibility conception of
knowledge.
Distance from the truth and verisimilitude We can think of a plausibility model
M = (M, pla) as an epistemic/doxastic approximation of some unknown probabil-
ity distribution μ ∈ M . The natural question that arises is: how ‘truthlike’ is our
model M, how good an approximation is it? To assess this, we connect with notions
fromVerisimilitude Theory, cf Popper (1976), Tichy (1974), Miller (1974), Niiniluoto
(1987, 1998), Kuipers (1987) and others. In particular, we adapt to our setting ideas
coming from the metric approach to truthlikeness Niiniluoto (1987). We are looking
for a notion of distance of a model M from a distribution μ ∈ M , which measures
how far the agent’s beliefs are from the truth. In the case of closed models, the beliefs
are given by the set Max(M), so the natural notion of distance would be given in this
case by the quantity

δμ(M) := sup{d(μ, ν) | ν ∈ Max(M)},

which measures the “worst possible error” one could make when taking as the true
distribution to be any of the ones compatible with the agent’s beliefs. However, when
M is not closed, we might have Max(M) = ∅, which would render the above notion
of distance-from-the-truthmeaningless, or at least useless (in casewe adopt the natural
convention that sup∅ = ∞). But one can weaken the above definition to include in
the relevant set of possibilities (whose distances from the truth are assessed) all the
“plausible enough” distributions, and in particular all the ones that are at least as
plausible as the true distribution. In this way, we arrive at the following definition of
distance-from-the-truth:

dμ(M) := sup{d(μ, ν) | ν ∈ M, pla(ν) ≥ pla(μ)} = sup{d(μ, ν) | ν ∈ M, ν ≥M μ}.

This measures the worst possible error one could make when taking as the true distri-
bution any of the ones that are currently thought to be at least plausible as the “truly
true” distribution μ. It is easy to see that we have that the distance-from-the-truth
matches the radius of the smallest open ball around the true distribution that is safely
believed:

dμ(M) = in f {ε > 0 | μ |�M Sb(Bε(μ))} = min{ε ≥ 0 | μ |�M Sb(Bε(μ))}.

So dμ(M) ≥ ε tell us that the agent has a safe belief of the approximate value of the
true distribution within an ε-margin of error. It is also easy to see that we have

0 ≤ δμ(M) ≤ dμ(M) whenever Max(M) 
= ∅,
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and also that we have

dμ(M)=0 iff δμ(M)=0 iff Max(M) = {μ} iff M |� B({μ}) iff μ |�M Sb({μ}).

So 0-distance (according to either definition) indicates that the agent’s (safe) beliefs
fully match the true distribution.

When we have dμ(M) < dμ(M′) for the true distribution μ, we say thatM is more
truthlike thanM′. This verisimilitude order suffices for our purposes. Butwe could also
convert it into an actual measure of truthlikeness, by defining the verisimilitude vμ(M)

of a modelM wrt a distribution μ, say by putting vμ(M) := 2−dμ(M). The maximum
verisimilitude vμ(M) = 1 is achieved when dμ(M) = 0, i.e. when μ |�M Sb({μ}).
Safe belief is not safe from conditioning on events While of inherent interest, the
notion of safe belief does not fully capture the intended meaning of defeasible knowl-
edge in a probabilistic framework. Although safe belief is resilient under conditioning
with any true ‘proposition’, in our setting propositions are not the only kind of new
information; and indeed, safe beliefs are not necessarily stable under conditioning on
events. Indeed, even if we restrict to truly observable events (whose true probability
μ 
= 0), one can show that no non-trivial belief is stable under every such event!

This means we have to moderate our safety requirements when dealing with events.
Note that, for inductive learning, absolute safety (under all observable sampling events)
is irrelevant: what is important is that our correct beliefs are resilient throughout the
(actual) future sampling history. This resembles the notion of identification in the
limit in Formal Learning Theory (Gold 1967), as well as the concepts of inductive
knowledge developed in e.g. Kelly (2014) and Baltag et al. (2019b). In our setting,
this gives rise to the concept of statistical knowledge:

Definition 9 [Statistical Knowledge] Let M = (M, pla) be a plausibility model, let
μ be some distribution (representing the ‘true’ probability), and let ω ∈ Ω be an
infinite observation stream (representing the ‘true’ future sampling history from the
unknown distributionμ).We say that a proposition P ⊆ M is statistically known (or is
“statistical knowledge”) at μ wrt ω inM, and write μ,ω |�M Sk(P), if P is believed
inM conditional on every ‘true’ proposition Q and every (event corresponding to an)
initial segment of the ‘true’ sampling history ω; i.e. if we have B(P|Q, [ω≥n]), for all
Q ∈ Prop with μ ∈ Q, and all n ≥ 0.

It is obvious that, if P is statistically known, then it is safely believed. But statistical
knowledge is much more resilient: it essentially captures a strong form of inductive
knowledge. Using Proposition 12, we immediately obtain the following characteriza-
tion:

Proposition 13 The following are equivalent:

– P is statistically known at μ wrt ω inM;
– after every initial segment [ω≤n] of the true sampling history ω, every distribution
in M that is at least as plausible as μ satisfies P; i.e. we have:

∀ν ∈ M ∀n ≥ 0
(
pla[ω≤n ](ν) ≥ pla[ω≤n ](μ) ⇒ ν ∈ P

)
.
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In the next section, we show that this notion is actually realistically achievable, and
in fact unavoidable: repeated sampling will almost surely eventually lead to statistical
knowledge of the true distribution with any desired accuracy.

6 Tracking the truth

Definition 10 Forμ ∈ M , we define the setΩμ ofμ-normal observations as the set of
infinite sequences from O for which (1) the limiting frequencies of each oi correspond
to μ(oi ) and (2) no outcome with probability 0 is ever observed:

Ωμ :=
{
ω ∈ Ω | ∀o ∈ O lim

n→∞
|{i ≤ n |ωi = o}|

n
= μ(o)}\{ω ∈ Ω | ∃i ∈ N μ(ωi ) = 0

}

Proposition 14 For every probability function μ, μ(Ωμ) = 1. Hence, if μ is the true
probability distribution over O, then almost all observable infinite sequence from O
will be μ-normal.

Proof Let Δ = {ω ∈ Ω | ∃i ∈ N μ(ωi ) = 0}. Using the law of large numbers it is
enough to show that μ(Δ) = 0. To see this let μ(o) = 0 then

μ({ω ∈ Ω | ∃i ∈ N ωi = o}) = μ

(⋃
i∈N

{ω ∈ Ω | ωi = o}
)

≤
∑
i∈N

μ(oi ) = 0.

The result then follows from finiteness of O . ��
We are now in the position to look into the learnability of the correct probability

distribution via plausibility-revision induced by repeated sampling. We first prove a
preliminary result on convergence.

Lemma 2 Let M = (M, pla) be a plausibility model, and μ ∈ M. Then, when
repeatedly sampling from an unknown distribution μ, we have that for every ε > 0,
the plausibility of having a distribution ε-farther from μ will become in the limit
vanishingly smaller than the plausibility pla(μ) of the true distribution μ.

More precisely: for every μ-normal sequence ω ∈ Ωμ and every positive real
ε > 0, we have

lim
n→∞

pla[ω≤n ](M\Bε(μ))

pla[ω≤n ](μ)
= 0

(where recall that Bε(μ) = {ν ∈ MO |d(μ, ν) < ε}).
Proof We first need to make some preliminary notations and observations. If O =
{o1, . . . , on} is the set of outcomes, and μ is the fixed distribution in the statement
of our Lemma, then we put pi := μ(oi ), for all 1 ≤ i ≤ n. More generally, for all
distributions ν ∈ M , all μ-normal sequences ω ∈ Ωμ and all 1 ≤ i ≤ n, we put:
νi := ν(oi ), mi,ω := |{k ≤ m | ωk = oi }| for the number of occurrences of oi in the
sequence ω≤m = (ω1, . . . , ωn), and αi,m,ω := mi,ω

m for the relative frequency of oi in
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ω≤m . Since ω ∈ Ωμ) we have (by the definition of Ωμ) that: limm→∞ αi,m,ω = pi
for all 1 ≤ i ≤ n; and also that mi,ω = αi,m,ω = 0 holds whenever pi = μ(oi ) = 0
(because of the normality of the sequence ω).

Let us put A := {1 ≤ i ≤ n |pi 
= 0}. Since limm→∞ αi,m,ω = pi > 0 for i ∈ A,
there must exist some N1,ω such that 0 <

pi
2 ≤ αi,m,ω ≤ 2 · pi for all m ≥ N1,ω and

all i ∈ A. Since 0 ≤ pi , νi ≤ 1, this gives us that

(∗) ν
m·2·pi
i ≤ ν

m·αi,m,ω

i ≤ ν
m· pi2
i for all ν ∈ M, all i ∈ A and all m ≥ N1,ω,

and in particular pm·2·pi
i ≤ p

m·αi,m,ω

i ≤ p
m· pi2
i for all such ν, i,m.

Using independence, we have

(∗∗) pla[ω≤m ](ν) = pla(ν) · ν([ω≤m]) = pla(ν) · Πn
i=1ν

mi,ω
i

= pla(ν) · Πi∈Aν
m·αi,m,ω

i

(where we used the fact that, for every i /∈ A we have pi = 0, so by normality of the
sequence we also have mi,ω = αi,m,ω = 0, and thus ν

mi,ω
i = 1, hence these factors

can be skipped from the product). In particular, for ν := μ (so νi = pi ), we get that

(∗ ∗ ∗) pla[ω≤m ](μ) = pla(μ) · μ([ω≤m]) = pla(μ) · Πi∈A p
m·αi,m,ω

i > 0

(since pi 
= 0 for i ∈ A, and also pla(μ) 
= 0 because μ ∈ M).
Using these abbreviations and facts, we can now prove our lemma. Fix ω ∈ Ωμ

and ε > 0. To prove the desired conclusion, let now ν ∈ M\Bε(μ), and let N be any
arbitrarily chosen natural number. Using the above unfoldings (**) and (***) of the
definitions of pla(M\Bε(μ)) and pla[ω≤n ](μ), we see that it is enough to show that,
for any such arbitrarily chosen N , we have

N · pla(ν) · Πi∈Aν
m·αi,m,ω

i < pla(μ) · Πi∈A p
m·αi,m,ω

i (1)

for all large enough m.
We prove this by cases. In the first case, assume that pla(ν) = 0, then the left hand

side of (1) is 0 and the inequality holds. In the second case, assume that pla(ν) > 0. Let
Δ = {ν ∈ M | νi = 0 for some i ∈ A}, and similarly for any δ > 0, put Δδ = {ν ∈
M | νI < δ for some i ∈ A}, and so Δδ = {ν ∈ M | νI ≤ δ for some i ∈ A} is its
closure. Choose some δ > 0 small enough such that we have Πi∈Aν

pi
2
i < Πi∈A p

2·pi
i

for all ν ∈ Δδ (-this is possible, since Πi∈Aν
pi
2
i = 0 < Πi∈A p

2·pi
i for all ν ∈ Δ, so

the continuity of Πi∈Aν
pi
2
i gives us the existence of δ). Hence, we have
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0 ≤ Πi∈Aν
pi
2
i

Πi∈A p
2·pi
i

< 1 for all ν ∈ Δδ

(where we used again the fact that pi > 0 for i ∈ A). The set Δδ is closed, hence the

continuous function
Πi∈Aν

pi
2

i

Πi∈A p
2·pi
i

has a maximum value Q on Δδ . Note that Q < 1 (-this

follows from the inequality above), so there exists some N2 > N1,ω (where N1,ω is
the number satisfying the inequality (*) in the preliminary facts above) s.t. we have
Qm <

pla(μ)
N for allm > N2. Recalling also that by definition pla(ν) ≤ 1, we obtain,

for all ν ∈ Δδ:

N · pla(ν) · Πi∈Aν
m·αi,m,ω

i ≤ N · 1 · Πi∈Aν
m· pi2
i ≤ N · (Q · Πi∈A p

2·pi
i )m

= N · Qm · Πi∈A p
m·2·pi
i < N · pla(μ)

N
· Πi∈A p

m·αi,m,ω

i = pla(μ) · Πi∈A p
m·αi,m,ω

i

(where we used the above facts as well as the inequality (*)). So we proved that the
inequality (1) holds for all ν ∈ Δδ . It thus remains only to prove it for all ν ∈ M ′ :=
M\(Bε(μ)∪Δδ). For this, note that M ′ := M\(Bε(μ)∪Δδ) is closed and that νi 
= 0
over this set for all i ∈ A, while for all i /∈ A we have αi,m,ω = 0. Hence using the
assumption that pla(ν) 
= 0, (1) is equivalent over this set with:

(
pla(μ)

pla(ν)

)
·
(

Πn
i=1 p

m·αi,m,ω

i

Πn
i=1ν

m·αi,m,ω

i

)
> N (2)

Applying logarithm (and using its monotonicity, and its other properties), this in turn
is equivalent to

log(pla(μ)) − log(pla(ν)) +
n∑

i=1

m · αi,m,ω · (log pi − log νi ) > logN (3)

So we see that it is enough to show that, for all large m and for ν ∈ M ′, we have

m >
logN + log(pla(ν)) − log(pla(μ))∑n

i=1 αi,m,ω · (log pi − log νi )
(4)

Recall that αi,m,ω ≥ pi
2 for all m > N2 > N1 and all 1 ≤ i ≤ n. Thus, to prove (4), it

is enough to show that, for large m and for all ν ∈ M ′, we have

m >
f (ν)

g(ν)
, (5)

where we introduced the auxiliary continuous functions f , g : M ′ → R, defined
by putting f (ν) = 2 · (logN + log(pla(ν)) − log(pla(μ))) and g(ν) = ∑n

i=1 pi ·
(log pi − log νi ) for all ν ∈ MO .
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To show (5), note first that

g(ν) =
n∑

i=1

pi · (log pi − log νi ) = log

(
Πn

i=1 p
pi
i

Πn
i=1ν

pi
i

)
> log1 = 0

(where at the end we used the fact, proved in Lemma 1, that the measure μ, with
values μ(oi ) = pi , is the unique maximizer of the function Πn

i=1ν
pi
i on MO ). Since g

is continuous andM ′ is closed, g is bounded and attains its infimum B = minM ′(g) on
M ′. But since g is non-zero on M ′, this minimum cannot be zero: B = minM ′(g) 
=
0. Similarly, since f is continuous and M ′ is closed, g is bounded and attains its
supremum C = maxM ′( f ) < ∞ (which thus has to be finite). Take now some
N3 ≥ max(N2,

C
B ). For all m > N3, we have

m >
C

B
≥ f (ν)

g(ν)

for all ν ∈ M ′, as desired. ��
We can now establish our first convergence result.

Theorem 2 [Convergence in plausibility] LetM = (M, pla) be a plausibility model.
If μ ∈ M is the ‘true’ distribution, then we have the following:

1. when repeatedly sampling from the unknown distributionμ, we have that for every
ε > 0, the plausibility pla(M\Bε(μ)) of having a distribution ε-farther from μ

will also almost surely converge to 0 (as sample size converges to infinity):

μ({ω ∈ Ω | lim
n→∞ pla[ω≤n ](M\Bε(μ)) = 0}) = 1;

in particular, in the same conditions of repeated sampling, every other distribution
ν ∈ M\{μ}will almost surely converge to 0 (as sample size converges to infinity):

μ({ω ∈ Ω | lim
n→∞ pla[ω≤n ](ν) = 0}) = 1;

2. in contrast, in the same conditions, we have that for every ε > 0, the plausibility
pla(Bε(μ)) of having a distribution ε-close toμwill also almost surely eventually
settle on 1 (after finitely many rounds of sampling):

μ({ω ∈ Ω | ∃N∀n ≥ Npla[ω≤n ](Bε(μ)) = 1}) = 1;

as an obvious consequence, in the same conditions, we have for every ε > 0,
the plausibility pla(Bε(μ)) of having a distribution ε-close to μ will also almost
surely converge to 1:

μ
({

ω ∈ Ω | lim
n→∞ pla[ω≤n ](Bε(μ)) = 1

})
= 1;
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Proof Fix μ ∈ M . It is obviously enough to show the following two claims, for all
μ − normal sequences ω ∈ Ωμ and all ε > 0:

lim
n→∞ pla[ω≤n ](M\Bε(μ)) = 0 for all ε > 0;

∃N∀n ≥ N pla[ω≤n ](Bε(μ)) = 1.

To prove the first claim, we use the fact that every plausibility ranking function
satisfies 0 ≤ pla ≤ 1 to derive

0 ≤ pla[ω≤n ](M\Bε(μ)) ≤ pla[ω≤n ](M\Bε(μ))

pla[ω≤n ](μ)
· pla[ω≤n ](μ)

≤ pla[ω≤n ](M\Bε(μ))

pla[ω≤n ](μ)
· 1 = pla[ω≤n ](M\Bε(μ))

pla[ω≤n ](μ)
,

then obtain the desired conclusion by taking limits and applying Lemma 2.
For the second claim: for any ε > 0, apply the first claim to conclude that ∃N∀n ≥

N pla[ω≤n ](M\Bε(μ)) ≤ 1
2 . From this we get that

1 = pla[ω≤n ](M) = max(pla[ω≤n ](M ∩ Bε(μ)}, pla[ω≤n ](M\Bε(μ)})
≤ max(pla[ω≤n ](M ∩ Bε(μ)}, 1

2
),

hence pla[ω≤n ](M ∩ Bε(μ)} = 1, and so also pla[ω≤n ]Bε(μ) = 1. ��
Corollary 1 [Convergence in belief] LetM = (M, pla) be a plausibility model. Then
the agent’s beliefs after repeated sampling will almost surely eventually settle arbi-
trarily close to the true distribution.

More precisely: for every μ ∈ M and every ε > 0, we have

μ({ω ∈ Ω | ∃N ∀n ≥ N B(Bε(μ)) holds inM[ω≤n ]}) = 1,

or equivalently

μ({ω ∈ Ω | ∃N ∀n ≥ N B(Bε(μ) | [ω≤n]) holds inM}) = 1.

Proof FromTheorem 2, we know that withμ-probability 1, we have limn→∞ pla[ω≤n ]
(M\Bε(μ)) = 0, hence almost certainly there is some N1 such that pla[ω≤n ](M\Bε(μ))

< 1 for all n ≥ N1. Similarly, we know from Theorem 2 that, with μ-probability
1, there is some N2 such that pla[ω≤n ](Bε(μ)) = 1 for all n ≥ N2. By taking
N := max{N1, N − 2}, we obtain that (with μ-probability 1): for all n ≥ N and
all ν ∈ M with maximal plausibility pla[ω≤n ](ν) = pla[ω≤n ](ν)(M) = 1, we have
ν ∈ Bε(μ), as desired. ��

We now show that we can strengthen this result to:
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Proposition 15 [Convergence in safe belief] Let M = (M, pla) be a plausibility
model. Then the agent’s safe beliefs after repeated sampling will almost surely even-
tually settle arbitrarily close to the true distribution.

More precisely: for every μ ∈ M and every ε > 0, we have

μ({ω ∈ Ω | ∃N ∀n ≥ N Sb(Bε(μ)) holds at μ inM[ω≤n ]}) = 1.

Proof Let ω ∈ Ωμ. By Lemma 2, we have limn→∞
pla[ω≤n ](M\Bε(μ))

pla[ω≤n ](μ)
= 0. So

there exists some N , s.t.
pla[ω≤n ](M\Bε(μ))

pla[ω≤n ](μ)
< 1 for all n ≥ N . Hence, we have

pla[ω≤n ](M\Bε(μ)) < pla[ω≤n ](μ) for all n ≥ N . Thus, for all n ≥ N and all
ν ∈ M , if pla[ω≤n ](nu) ≥[ω≤n ] (μ), then ν /∈ M\Bε(μ)), i.e. ν ∈ Bε(μ)). By Propo-
sition 12, this means that Sb(P) holds in μ in M[ω≤n ] for all n ≥ 1. The desired
conclusion follows again from the fact that μ(Ωμ) = 1. ��

An obvious consequence is the following:

Corollary 2 [Approximate statistical learning] Let M = (M, pla) be a plausibility
model. Then after repeated sampling from an unknown distribution, the agent will
almost surely eventually acquire approximate statistical knowledge of the true distri-
bution with any desired accuracy ε > 0.

More precisely: for every μ ∈ M and every ε > 0, we have

μ({ω ∈ Ω | ∃N Sk(Bε(μ)) holds at μ wrt ω≥N inM[ω≤N ]}) = 1.

The proof is immediate, given Proposition 15. All these convergence results are
inexact: they concern only approximations of the true distribution. However, the fact
that every non-zero degree of accuracy is eventually achieved (and maintained forever
after) shows that the verisimilitude of our models keeps increasing, or equivalently the
distance-from-the-truth keeps decreasing (approaching 0 in the limit). In this sense,
we have convergence in the limit to the exact true distribution:

Corollary 3 [Convergence in verisimilitude] Let M = (M, pla) be a plausibility
model. If μ ∈ M is the true distribution, then the distance-from-the-truth will almost
surely converge to 0 after repeated sampling:

μ({ω ∈ Ω | limn→∞dμ(M[ω≤n ]) = 0}) = 1.

Proof It is clear that we have to show that

μ({ω ∈ Ω | ∀ε > 0∃N∀n ≥ N dμ(M[ω≤n ]) < ε}) = 1.

But note that, by the definition of distance-to-the-truth, we have the following equiv-
alence:

dμ(M[ω≤n ]) < ε iff Sb(Bε(μ)) holds at μ inM[ω≤n ].
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The desired conclusion follows immediately, given Proposition 15. ��
A general feature of all the above forms of truth-tracking is that the convergence to

the exact true distribution (rather than to an approximation) happens only in the limit
(rather than being reached at some finite stage). However, one can do better than this
when the agent’s prior knowledge is consistent with only a discrete (or in particular,
a finite) set of distributions:

Proposition 16 [Finite convergence to exact truth] LetM = (M, pla) be a plausibility
model, based on a discrete set M ⊆ MO.21 Then we have the following:

– when repeatedly sampling from an unknown distributionμ, the plausibility pla(μ)

of the true distribution will almost surely eventually settle on 1 (after finitely
many rounds of sampling); while in contrast, the plausibility pla(ν) of any other
distribution will almost surely settle below any given threshold δ > 0 (after finitely
may such rounds):

μ({ω ∈ Ω | ∃N∀n ≥ N pla[ω≤n ](μ) = 1}) = 1, and

μ({ω ∈ Ω | ∃N∀n ≥ N pla[ω≤n ](ν) < δ}) = 1, for all ν 
= μ and all δ > 0;

– similarly, the agent’s beliefs will almost surely eventually settle on the exact true
probability μ, after finitely many rounds sampling:

μ({ω ∈ Ω | ∃N∀n ≥ N B({μ}) holds inM[ω≤n ]}) = 1;

– the same statement as in the previous part applies to safe beliefs:

μ({ω ∈ Ω | ∃N∀n ≥ N Sb({μ}) holds at μ inM[ω≤n ]}) = 1;

– after finitely many rounds of sampling from the unknown distribution, the agent
will almost surely eventually acquire exact statistical knowledge of the true distri-
bution:

μ({ω ∈ Ω | ∃N∀ n ≥ NSk({μ}) holds at μ wrt ω≥N in M[ω≤n ]}) = 1.

– finally, the distance-to-the-truth of the plausibility model will almost surely even-
tually settle to 0, after finitely many rounds of sampling:

μ({ω ∈ Ω | ∃N∀n ≥ N dμ(M[ω≥n ]) = 0}) = 1.

Proof Apply each of the previous results to some ε > 0 small enough so that Bε(μ)∩
M = {μ}. ��
21 As usual in topology, a set M ⊆ MO of distributions is discrete (wrt the standard topology) if every
distribution μ ∈ M in the set is an isolated point, i.e. it has a neighborhood Bε(μ), with ε > 0 and
M ∩Bε(μ) = {μ}. Every finite set M ⊆ MO is discrete. An example of an infinite discrete set is obtained
by taking in the Coin Example the set M of all distributions assigning to Heads a probability of the form
1
n , for any natural number n > 0.
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It is important to note the differences between our convergence results and the
Savage-style convergence results in the Bayesian literature (Edwards et al. 1963; Sav-
age 1954; Doob 1971; Gaifman and Snir 1982; Earman 1992), that were mentioned in
the Introduction. Savage’s theorem assumes a certain restriction on the true hypoth-
esis (namely, that its prior probability is non-zero), which makes it applicable only to
a finite (or countable) set of hypotheses22 (since otherwise the prior probability can-
not be assumed to be non-zero for every hypothesis). Our general results (concerning
truth-tracking in the limit) do not need this assumption and indeed, they even apply to
the whole (uncountable) set MO of all distributions.

On the other hand, in the case of a finite (or more generally, discrete) set of hypothe-
ses/distributions, our plausibilistic learning is even better-behaved than the standard
Bayesian learning: we obtain convergence in this case in finitely many steps (while
Savage’s still converges only in the limit). This faster convergence is explained by the
qualitative nature of our belief-formation (as standard in logic, only the most plausible
hypotheses matter for beliefs), instead of the quantitative-cumulative of probabilistic
credences. The combination of this qualitative-logical way of forming beliefs with the
statistical-Bayesian way of updating them (as encoded in our rule for conditioning on
events) ensures that the true distribution will eventually reach the highest plausibility
(among a finite set of distributions), thus giving us finite convergence to the exact
truth.

7 Towards a logic of statistical learning

In this section we propose a logical setting that can capture the dynamics of statistical
learning described in this paper. Our logical language is designed to accommodate
both types of information, i.e. finite observations and higher-order information. As
already mentioned, there is a fundamental distinction between these two types of
information. The observations are interpreted in a σ -algebra E ⊆ P(Ω), and are not
themselves formulas in our formal logical language, as they do not correspond to
properties of probability distributions. The formulas will instead be statements about
the probabilities of observations, given in terms of linear inequalities and logical
combinations thereof, as well as the statements concerning the dynamics arising from
finite observations.

Given the set of outcomes O = {o1, . . . , on}, the set of formulas φ of our language
is inductively defined by

φ ::=
m∑
i=1

ai P(ωi ) ≥ c | φ ∧ φ | ¬φ | Kφ | Sb(φ) | B(φ | ω≤n) | [o]φ | [φ]φ

where o, ωi ∈ O , ai ’s and c in Q and ω≤n = (ω1, . . . , ωn) ∈ On is a stream of
observations of length n.

Let M = (M, pla) be a probabilistic plausibility model. The semantics is given
by inductively defining a satisfaction relationM, μ � φ between distributions μ ∈ M

22 This would correspond in our setting to a finite or countable set M .
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and formulas φ. At each pair (M, μ), the symbol P will be interpreted as a probability
mass function, namely μ itself. In this definition, we use the notation ‖φ‖M := {μ ∈
M |M, μ � φ}, and skip the subscript M when the model is understood:

M, μ �
n∑

i=1
ai P(ωi ) ≥ c ⇐⇒

n∑
i=1

aiμ(ωi ) ≥ c

M, μ � φ ∧ ψ ⇐⇒ M, μ � φ and M, μ � ψ

M, μ � ¬φ ⇐⇒ M, μ � φ

M, μ � Kφ ⇐⇒ M, ν � φ for all ν ∈ M
M, μ � Sbφ ⇐⇒ M, μ � φ for all ν ∈ M s.t. pla(ν) ≥ pla(μ)

M, μ � B(φ | ω≤n) ⇐⇒ B(‖φ‖ | [ω≤n]) holds in M
M, μ � [o]φ ⇐⇒ (

μ(o) > 0 �⇒ M[o1], μ � φ
)

M, μ � [θ ]φ ⇐⇒ (
M, μ � θ �⇒ M‖θ‖, μ � φ

)
The atomic formulas

∑m
i=1 ai P(ωi ) ≥ c describe linear inequalities satisfied by the

true probability, using numerical constants ranging over rationals. The propositional
connectives ¬,∧ are standard. Letters K and B stand for knowledge and (conditional)
belief operators, and Sb stands for safe belief. The dynamic modalities [o]ψ (standing
for “after observing o, ψ holds”) and [φ]ψ (standing for “after learning φ, ψ holds”)
capture the updates induced by the two forms of learning.

The reason we did not include simple belief Bφ or propositionally-conditional
beliefs B(φ | φ) is that these operators are definable as abbreviations in the above
syntax. For plain belief, it should be obvious that it can be obtained as a special case
of conditioning on a sampling sequence ω≤0 of length 0, i.e. we can put

B(φ) := B(φ | λ),

where λ = () = ω0 is the empty sequence of observations. Less trivially, conditional
beliefs of the form B(φ | θ) can be defined in terms of knowledge and safe belief, by
putting:

B(φ | θ) := K̃ θ → K̃ (θ ∧ Sb(θ → φ)),

where K̃ψ := ¬K¬ψ is the Diamond-dual modality for K (denoting “epistemic
possibility”). With these abbreviations, one can easily check that the resulting notion
satisfies the expected semantic clause for conditional belief:23

M, μ � B(φ | θ) iff B(‖φ‖ | ‖θ‖) holds in M.

We say that a formula φ is valid in model M, and write M � φ, if and only if
M, μ � φ for all μ ∈ M . As usual, φ is simply valid if it is valid in every model M.

Proposition 17 Let o ∈ O and formulas φ,ψ, θ, ξ . Then the following formulas are
valid:

23 We mention this fact here without proof, since it is just a special case of a more general observation
made in Baltag and Smets (2008b): the above abbreviation matches the semantics of conditional beliefs in
any (qualitative) plausibility model based on total preorders ≤.

123



9080 Synthese (2021) 199:9041–9087

1. P(o) ≥ 0
2.

∑
o∈O P(o) = 1

3. K (φ → θ) → (Kφ → K θ)

4. Kφ → φ

5. Kφ → KKφ

6. ¬Kφ → K¬Kφ

7. Kφ → Sbφ
8. Sbφ → φ

9. Sbφ → SbSbφ
10. (K (φ ∨ Sbψ) ∧ K (ψ ∨ Sbφ)) → (Kφ ∨ Kψ)

11. B(φ → θ | ψ) → (B(φ | ψ) → B(θ | ψ))

12. Kφ → B(φ | ψ)

13. B(φ | φ)

14. B(φ | ψ) → K (B(φ | ψ) | ψ)

15. ¬B(φ | ψ) → K (¬B(φ | ψ) | ψ)

16. B(θ | φ) → (B(ξ | φ ∧ θ) ↔ B(ξ | φ))

17. ¬B(¬θ | φ) → (B(ξ | φ ∧ θ) ↔ B(θ → ξ | φ))

18. If φ ↔ θ is valid inM then so is B(ξ | φ) ↔ B(ξ | θ).

Proof Note that the plausibility function induces a complete preorder on the set of
worlds. The validity of the above formulas over such models follows directly from the
results in Board (2004) andBaltag and Smets (2008b), and it is in fact a straightforward
application of general results in Correspondence Theory for modal frames. ��

Finally, we give some validities regarding the interaction of the dynamic modalities
with knowledge modality and (conditional) belief.

Proposition 18 Let o, ω1, . . . , ωn ∈ O and formulas φ, θ, ξ . Then the following for-
mulas are valid:

1. [φ]q ↔ (φ → q) for atomic q
2. [o]q ↔ (P(o) > 0 → q) for atomic q
3. [φ]¬θ ↔ (φ → ¬[φ]θ)

4. [o]¬θ ↔ (P(o) > 0 → ¬[o]θ)

5. [φ](θ ∧ ξ) ↔ ([φ]θ ∧ [φ]ξ)

6. [o](θ ∧ ξ) ↔ ([o]θ ∧ [o]ξ)

7. [φ]K θ ↔ (φ → K [φ]θ)

8. [o]Kφ ↔ (P(o) > 0 → K [o]φ)

9. [φ]B(θ | ξ) ↔ (φ → B([φ]θ | φ ∧ [φ]ξ))

10. [o]B(φ |ω1, . . . , ωn) ↔ (P(o) > 0 → B([o]φ | o, ω1, . . . , ωn))

Open question. Is the above logic recursively axiomatizable? Is it decidable?
Further extension. To define statistical knowledge, we need to extend the above
semantics, by making explicit the actual (future) sampling history. This means that we
define the satisfaction relation on triples M, μ, ω � φ, where M and μ are as above,
while ω ∈ Ωμ is the infinite string of future observations. The semantical clauses for
all the above operators stay essentially the same (i.e. the sequence ω plays no role, so
it is just carried through). But we can now introduce new operators, which refer to the
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future sampling history. We could directly introduce statistical knowledge Skφ, but it
seems more natural to add instead temporal operators �φ (“from now and forever in
the future, φ holds”) and its dual ♦ϕ (“φ holds now or at some future moment”), with
the obvious semantics:

M, μ, ω � �φ ⇐⇒ M[ω≤n ], μ, ω>n � φ for all n ≥ 0
M, μ, ω � ♦φ ⇐⇒ M[ω≤n ], μ, ω>n � φ for some n ≥ 0

(In fact, ♦φ is redundant: it is the Diamond-dual of �, so can be taken to be just an
abbreviation for ¬�¬φ.)

For non-epistemic24 formulas P , we can identify statistical knowledge Sk(P) with
the formula �Sb(P). As a result, our result in Corollary 2, on eventual convergence
(in finitely many steps) to approximate statistical knowledge of the true distribution,
is captured in this logic by the validity

(
∧
i

P(oi ) = pi ) → ♦�Sb
∧
i

(pi − ε < P(oi ) < pi + ε),

for every ε > 0.

8 Conclusion and comparison with other work

We studied forming beliefs about unknown probabilities in situations that are com-
monly described as those of radical uncertainty. The most widespread approach to
model such situations of ‘radical uncertainty’ is in terms of imprecise probabilities,
i.e. representing the agent’s knowledge as a set of probabilitymeasures. There is exten-
sive literature on the study of imprecise probabilities (Bradley and Drechsler 2014;
Chandler 2014; Hajek and Smithson 2012; Levi 1985; Walley 2000; Denoeux 2000;
Romeijn and Roy 2014) and on different approaches for decision making based on
them Bradley and Steele (2014), Huntley et al. (2014), Troffaesin (2007), Elkin and
Wheeler (2018), Mayo-Wilson and Wheeler (2016), Seidenfeld (2004), Seidenfeld
et al. (2010), Williams and Robert (2014) or to collapse the state of radical uncertainty
by settling on some specific probability assignment as the most rational among all
that is consistent with the agent’s information. The latter giving rise to the area of
investigation known as the Objective Bayesian account (Paris and Rad 2010; Paris
and Vencovska 1997; Paris 2014; Rad 2017; Williamson 2008, 2010).

A similar line of inquiry has been extensively pursued in the Economics literature,
as well as in Decision Theory, where the situation we are investigating in this paper is
referred to asKnightian uncertainty or ‘ambiguity’. This is the case when the decision-
maker has too little information to arrive at a unique prior. There have been different
approaches in this literature tomodel these scenarios. These include, among others, the
use of Choquet integration, by for instance Huber and Strassen (1973), or Schmeidler
(1989, 1986), the maxmin expected utility by Gilboa and Schmeidler (1989) and
the smooth ambiguity model by Klibanoff et al. (2005) which employs second-order

24 These are formulas that do not contain any of the epistemic operators K , Sb or B(φ | ω≤n).
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probabilities or Al-Najjar’s work (Al-Najjar 2009) where he models rational agents
who use frequentist models for interpreting the evidence and investigates learning in
the long run. Cerreia-Vioglio et al. (2013) studies this problem in a formal setting
similar to the one used here and axiomatizes different decision rules such as the
maxmin model of Gilboa-Schmeidler and the smooth ambiguity model of Klibanoff
et al, and gives an overview of some of the different approaches in that literature.

These approaches employ different mechanisms for ranking probability distribu-
tions compared to what we propose in this paper. Among these, it is particularly worth
pointing out the difference between our setting and those ranking probability distri-
butions by their (second-order) probabilities. In contrast, in our setting, it is only the
worlds with the highest plausibility that play a role in specifying the set of beliefs. In
particular, unlike the probabilities, the plausibilities are not cumulative in the sense that
the distributions with low plausibility do not add up to form more plausible events as
those with low probability would have had. This is a fundamental difference between
our account and the account given in terms of second-order probabilities.

Another approach to deal with these scenarios in the Bayesian literature is based on
the series of convergence results, that are collectively referred to as “washing out of the
prior”. The idea, which traces back to Savage, see Edwards et al. (1963) and Savage
(1954), is that as long as one repeatedly updates a prior probability for an event through
conditionalisation on new evidence, then in the limit one would surely converge to the
true probability, independent of the initial choice of the prior.25 Bayesians use these
results to argue that an agent’s choice of a probability distribution in scenarios such
as our urn example is unimportant as long as she repeatedly updates that choice (via
conditionalisation) by acquiring further evidence, for example by repeated sampling
from the urn. However, it is clear that the efficiency of the agent’s choice for the
probability distribution, put in the context of a decision problem, depends strongly on
how closely the chosen distribution tracks the actual one. This choice is most relevant
when the agents are facing a one-off decision problem, where their approximation of
the true probability distribution at a given point ultimately determines their actions at
that point.

Our approach, based on forming rational qualitative beliefs about probability (based
on the agent’s assessment of each distribution plausibility), does not seem prone to
these objections. The agent does “the best she can” at each moment, given her evi-
dence, her higher-order information, and her background assumptions (captured by
her plausibility map). Thus, she can solve one-off decision problems to the best of her
ability. And, by updating her plausibility with new evidence, her beliefs are still guar-
anteed to converge to the true distribution (if given enough evidence) in essentially all
conditions (including in the cases that evade Savage-type theorems).

25 To bemore precise, if one startswith a prior probability for an event A, and keeps updating this probability
by conditionalising on new evidence, then almost surely, the conditional probability of A converges to the
indicative function of A (i.e. to 1 if A is true, and to 0 otherwise). This form is called Levy’s 0–1 law.
Savage’s results use IID trials and objective probabilities and have been criticised regarding its applicability
to scientific inference. There are, however, a number of more powerful convergence results avoiding these
assumptions, for example, based on Doob’s martingale convergence theorem (Doob 1971). There are also
several generalisations of these results, e.g. Gaifman and Snir (1982).
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As we already mentioned, our approach is based on a probabilistic adaptation
of the standard qualitative theory of plausibility models (Board 2004; Baltag and
Smets 2008b), that underlies modern presentations of standard Belief Revision The-
ory (Alchourrón et al. 1985; Grove 1988) within Dynamic Epistemic Logic (Baltag
andMoss 2004; Baltag et al. 1998; vanDitmarsch et al. 2007; Baltag and Smets 2008b;
Baltag and Renne 2016; van Benthem 2011). As such, it has some connections with
Wolfgang Spohn’s quantitative theory of plausibility ranking (Spohn 2016), but it dif-
fers from it in essential ways: like Spohn’s ranking theory,26 we use maximization to
form beliefs (where standard probabilistic theory uses addition);27 but, when updating
plausibility with independent sampling evidence, we follow the probabilistic usage of
taking products (in Bayes’s rule), while Spohn’s ranking theory uses addition for this
purpose. On the other hand, our framework does satisfy the conditions of Halpern’s
abstract theory of algebraic conditional plausibility spaces (Halpern 2003), which is
meant as a generalization of a large number of theories of uncertainty (Bayesian prob-
abilities, Dempster-Shafer belief functions, possibility measures, relative likelihoods,
AGM conditioning, Popper measures, Spohn’s ranking theory). The theory postulates
the existence of two operations: one, the analogue of probabilistic addition, is used for
computing the plausibility of a proposition P , and decidewhether it is to be believed or
not; while the other, the analogue of probabilistic multiplication, is used for updating
plausibilities (via an abstract analogue of Bayes’ rule) and for computing the plausibil-
ity of joint independent observations. To work well, the two operations need to satisfy
certain conditions, tying them together. Our particular combination, of maximization
and multiplication, though as far as we know was never encountered in the literature,
satisfies Halpern’s conditions, and so it is in a sense a “natural” theory. But beyond
that, we think that this particular combination is the key to fast learning from sam-
pling, as well as to reconciling probability with logic: on the one hand, multiplication
is needed for the update, to deal rationally with successive independent observations
(cf. Proposition 9, which would fail without the use of multiplication in our plau-
sibilistic analogue of Bayes’ rule); and on the other hand, the use of maximization
in the formation of beliefs allows convergence in finitely many steps (in contrast to
mere convergence in the limit via probabilistic updating a la Savage), and at the same
timemakes beliefs about probability fit the general patterns and conditions of Doxastic
Logic and Belief Revision Theory. Indeed, it does seem that the particular combination
provided by our probabilistic plausibility theory succeeds in adopting the best features
of both worlds (doxastic logic with its belief revision, and statistical reasoning with
its Bayesian updates), while at the same time fitting within the general conditions of
a natural theory of uncertainty (as formalized by Halpern’s abstract requirements).

Our approach connects well with mainstream epistemology and formal learning
theory, by making essential use of the formal concept of “safe belief”, studied in
Baltag and Smets (2008b) as an approximation of the philosophical notion of defea-
sible knowledge (Lehrer 1990; Rott 2004), and related also to the issue of stability or
‘resilience’ of probabilistic belief (Skyrms 2011), an issue underlying recent attempts

26 Spohn (2016) uses minimization, but this is only because his setting takes an implausibility order as
basic.
27 Witness our normalization condition sup{pla(μ) | μ ∈ M} = 1.
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at unifying logical and probabilistic reasoning, cf. the so-called stability theory of
belief (Leitgeb 2017). Our concept of statistical knowledge improves on the notion
of safe belief, by adding a form of stability under future sampling, that connects
well with the learning-theoretic concept of identifiability in the limit (Gold 1967),
as well as with various formal notions of inductive knowledge, introduced in Baltag
et al. (2019a, b) and Kelly (2014) as epistemic correlatives of empirical induction.
As already mentioned, the correlative notion of distance-from-the-truth fits well with
the main tenets of Verisimilitude Theory, originating in the work of Popper (1976)
and his critics (Tichy 1974; Miller 1974), and developed to maturity in the wor1k
of Niiniluoto (1987), Niiniluoto (1998), Kuipers (1987) and others. In particular, our
setting fits within the metric approach to truthlikeness (Niiniluoto 1987), resulting in
the verisimilitude version of our convergence results: tracking the truth is then natu-
rally understood as progressive increase in our models’ truthlikeness (or equivalently,
progressive decrease of the models’ distance-from-the-truth).

Our paper ends by sketching the contours of a dynamic doxastic logic for statistical
learning, that validates a number of standard axioms, and can express the core of
our convergence results. Nevertheless, this leads us to an outstanding open problem:
finding a complete axiomatization of this logic and investigating its complexity. This
seems a daunting task at the time of our writing. Given the power of this formalism
and its significance for the investigation of statistical learning, we think this to be an
important and potentially fertile challenge.
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