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Abstract

In the field of instruments for measurements, process monitoring and control, ultrasonic flow meters

(USFMs) are one of the fastest-growing technologies [1]. USFMs have been developed for measuring

both flow rate and water cut in pipes, including XSENS Flow Solutions’ "XACT flow rate and fraction

meter for liquids" [2]. Such measurements, with their corresponding uncertainties, are of increasing

importance to the oil and gas industry. For correct water cut measurements provided by a USFM,

the instrument is dependent on high precision sound velocity measurements of the individual liquid

components that constitute the emulsion.

The main objective of this thesis is to develop a measurement cell based on the pulse-echo buffer

rod method for high-precision sound velocity measurements with a relative expanded uncertainty of

less than 1000 ppm = 0.1% (95% confidence level). Due to the measurement cell’s intended use in

industrial applications, a number of dimensional and environmental preferences were established in

advance by XSENS Flow Solutions [2]. These preferences had to be taken into account when designing

the measurement cell, and constrained the possibility of achieving the desired uncertainty in this

project.

Several uncertainty sources have been identified during the project. They are a consequence of 1) the

dimensional constraints, 2) coherent noise sources due to buffer rods 3) overall uncertainty contri-

butions. A detailed uncertainty budget has been carried out to account for all identified uncertainty

contributions, resulting in a relative expanded uncertainty of 2231 ppm at 45.7oC , primarily due to

uncertainty in the sample length.

The constructed measurement cell has been used for sound velocity measurements in distilled water,

saline water, and vegetable oil for a temperature span of T = 20oC to T = 45oC . Compared to theo-

retical models, accurate sound velocity measurements were acquired, resulting in deviations as low

as 7 ppm for saline water, and 20 ppm for distilled water. An adaptation of Khimunin’s diffraction

correction model has been introduced in the project for diffraction correction through several medi-

ums. The accurate experimental sound velocity measurements motivated a preliminary analysis of

the diffraction correction model through simulations in COMSOL with promising results.
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Chapter 1

Introduction

1.1 Background and motivation

Acoustic sensors and instruments are getting more advanced and prominent every year. Due to the

possibility of non-intrusive testing and monitoring, acoustic sensors play a crucial role in several

fields like medical and industrial research, amongst others. Flow measurements, non-destructive

testing, seismic surveys, medical ultrasound, and sonars are only some of the applications where

new developments are made every year.

In the field of instruments for measurements, process monitoring and control, ultrasonic flow meters

(USFMs) are one of the fastest-growing technologies [1]. Due to its non-intrusive and non-invasive

nature, as well as its fast response and high accuracy, it is one of the most common flow measurement

devices [3]. Ultrasonic flow meters based on transit-time, measure the difference between sound

waves sent upstream and downstream in a pipe, which is directly proportional to the sound velocity

of the medium in question [4]. This can, in turn, be used to measure the flow rate in pipes. USFMs

have further been developed for measuring the water cut in pipes, including XSENS Flow Solutions’

"XACT flow rate and fraction meter for liquids" [2]. Such measurements, with their corresponding

uncertainties, are of increasing importance to the oil and gas industry.

For suppliers and refineries, the quality of crude oil exchanged is evaluated according to the water

cut measurement, thus the fraction of water in crude oil [5]. It is further a critical part of production

control and management [5], and the instrument’s trustworthiness is hence paramount. For correct

water cut measurements provided by a USFM, the instrument is dependent on high precision sound

velocity measurements of the individual liquids components that constitute the emulsion.

For water, the temperature and pressure dependency can usually be determined using existing the-

oretical models, provided that the sound velocity at a specific temperature and salinity can be mea-

sured accurately. For crude oils, however, few such models exist, and the models are almost always

dependent on the exact composition of the oil in hand [6]. To ensure high accuracy of the water cut

measurements, high-precision sound velocity measurements as a function of temperature and pres-

sure are thus needed.
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In this work, the pulse-echo buffer rod method will be evaluated and tested as a candidate method

for measuring sound velocity in liquids at high precision. The design and measuring method was

described by Øyvind Nesse in his dissertation [7] and will be used as a basis throughout the project.

The resulting measurement cell will be used by XSENS Flow Solutions [2] as a sound velocity reference

base for their patented high precision USFMs.

1.2 Related work

Different ultrasonic systems are widely used in various fields of science and engineering to measure

the acoustic properties of liquids and gases. Numerous sources are found on measuring methods ap-

plied for measuring acoustic properties and the corresponding accuracy, advantages and limitations.

In 1998, a feasibility study was carried out at Christian Michelsen Research [8] prior to developing a

method for high-precision sound velocity measurements for natural gas under pressure, which in-

cluded an extensive review of available literature and available measurement methods. In 2007, Norli

[9] introduced an updated literature survey, including a synopsis of [8], to research the exciting sound

velocity measurement methods to propose a method for measuring the sound velocity in natural gas

under pressure. Although the discussions from the papers above are specified for gases, many of the

discussed methods are just as applicable for liquids. This topic is thus a subject of extensive research.

It is usually divided into two categories: resonator methods which is based on standing waves in cavi-

ties, and transient methods using transient sound fields to characterise the medium [8, 9]. Under the

category of transient methods, the use of a buffer-rod to obtain acoustic properties, as for this project,

is a widely discussed approach[10].

Depending on the acoustic property of interest, methods where a buffer-rod is utilised may differ

in terms of the shape and composition of the buffer and measurement cell, as well as the amount of

transducers used [10]. For amplitude measurements, in relation to the determination of the reflection

coefficient and attenuation of the medium in question, a synopsis of buffer-rod techniques can be

found in [10] and [11].

The pulse-echo buffer rod method, first introduced by Papadakis et al. [12], is a classic method due to

its robustness, simplicity, and low-cost [13]. A sound pulse generated by the transducer propagates

through a buffer rod, through the sample liquid and onto a reflector. Some of the sound energy is re-

flected as echos at the interfaces, and the transit time between the echos can be used to calculate the

sound velocity. The principle design is sketched in Fig. 1.1, from [7]. The presence of the buffer rod

eliminates any direct contact between the transducer and the liquid sample, thus protecting it from

any high pressures and corrosive liquids. It is also a simple and robust design and has no moving

parts, which is often preferred. Further, propagation delays in the buffer, coupling agent, and delays

due to electrical and mechanical conversions cancel out [8]. Although the design is simple and has

no moving parts, problems arise when applying buffer rods. Unwanted echoes due to twice traversed

buffer propagation, mode converted waves, and overall reflections from the edges may act as coher-

ent noise. They can overlap with the main echoes, significantly reducing the Signal-to-Noise ratio
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(SNR) and the accuracy of the sound velocity measurements. This is reported in several studies using

buffer-rods, both for sound velocity measurements [14, 15], and for amplitude measurements [13, 16].

In cases of small dimensions, the most dominating source of uncertainty is, however, often the prop-

agation path since it can be challenging to determine the path length with adequate precision. One

established method is to calibrate the propagation path with a known liquid sample [7, 10, 15, 17, 18].

Calibrating the path length was done by McClements and Farley in 1990[19], using the pulse-echo

buffer rod method with a Plexiglas buffer and a frequency of 2.1 MHz. They achieved a claimed accu-

racy of 0.5 m/s using different concentrations of NaCl at 20oC .

The pulse-echo buffer rod method was further used by Nesse [7] to study the phase velocity and at-

tenuation in several emulsions. Two measurement cells were created, one for low-frequency (250-

900 kHz) range and one for high-frequency (1.4-14 MHz) range measurements. The path length was

calibrated against a known liquid sample. Diffraction effects were assumed negligible, and a total

uncertainty of 1 m/s was reported.

Acquiring high-precision sound velocity measurements without calibrating the measurement cell is

considerably more difficult. In 2005, Benedetto et al. [20] created a sound velocity cell based on the

double-reflected pulse-echo method, thus a single transducer placed between two parallel reflectors,

operating at 5 MHz. By measuring the distance between the transducer and reflectors with a co-

ordinate measuring machine, an overall estimated uncertainty of 0.1% was obtained throughout a

temperature span of 0−120oC and for pressures up to 90 MPa.

Solberg [21] created a measurement cell based on the three-way pulse method. The method was

proposed by Lunde and Vestrheim [8], and utilises two transducers on either side of a measurement

chamber. The sound velocity is obtained by measuring the transit time between the direct propaga-

tion and the three times reflected propagation, using the transducers themselves as reflectors. Sol-

berg measured the path length with a caliper and obtained a relative expanded uncertainty of 0.16%

(95 % confidence level, k = 2) for tap water at room temperature, using a transducer operating at 500

kHz.

As the measurement cell is to work under the same conditions as the USFM, a frequency range of

200-500 kHz is preferred to account for dispersion effects in crude oils. Most of the reported sound

velocity cells operate far outside of this range [15, 17, 19, 22], and many possible design implemen-

tations are thus not applicable. For the candidate method, Nesse’s low-frequency measurement cell

has therefore been used as a tentative design for further development. The design is presented in Fig.

1.1.
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Figure 1.1: Schematic drawing of the measurement cell created in [7] based on the pulse-echo buffer rod
method; a) side view b) top view.

1.3 Objective

This project aims to create a measurement cell utilising the pulse-echo buffer rod method to measure

the sound velocity in single- and dual-phase liquids with a relative expanded uncertainty (95% con-

fidence level) below 1000ppm as a function of temperature and 1 atm. A documented and traceable

uncertainty budget will be carried out by considering and identifying possible uncertainty sources

which can affect the total uncertainty of the sound velocity in the liquid medium.

Due to the industrial application of the project, several criteria were set in advance. To account for

relevant dispersion effects and attenuation when measuring the sound velocity in castor oils, the

preferable operating frequency range was set to 200-500kHz. Further, the measurement cell had to

be small, light and easy to transport, and is is to measure single and dual-phase liquids under atmo-

spheric pressure conditions within a temperature span of 20-60oC . As liquids behave differently upon

heating, a sound velocity range of 1250 - 1580 m/s is selected to account for saline water and crude

oils at high temperatures. To act as a reference base, it is vital to control and calculate the measure-

ment uncertainty, where a relative expanded uncertainty below 1000ppm = 0.1 % at 95% confidence

level is preferred within relevant environmental parameters. Because coherent noise sources may

interfere due to the set criteria, two signal processing methods will be evaluated in terms of accu-
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racy; the zero-crossing method based on direct transit time measurements and the Fourier spectrum

method.

As a long-term goal, this research will lay a foundation for developing high-precision sound velocity

cells for measuring single- and dual-phase liquids under high temperature and pressure conditions

for industrial applications.

1.4 Thesis outline

This thesis consists of 8 chapters with including appendices. In Chapter 1, the motivation of the

project, previous work and objective is presented. In Chapter 2, the pulse-echo measurement method

will be introduces, and theory relevant for the sound velocity measurements will be presented. Chap-

ter 3 is divided into two parts, where the first part will describe the experimental setup and measure-

ment methods relevant for measuring the sound velocity. The second part contains considerations

done prior and the development process toward creating the measurement cell, and will present the

final result. Chapter 4 consists of simulations and numerical analysis, used for accurate determina-

tion of the sound velocity. In Chapter 5, all relevant uncertainty models for experimental and theo-

retical sound velocity measurements will be presented, together with a sensitivity analysis. Chapter

6 will present the experimental results and associated uncertainties when applicable. Chapter 7 is

an overall discussion, and Chapter 8 draws the conclusion and recommendations for further work.

Appendices include Matlab scripts, detailed calculations and uncertainty standards.
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Chapter 2

Theory

Chapter 2 provides the theoretical background of this work and contains five main sections with sub-

sections. In Section 2.1, a short description of the theoretical sound velocity in different liquid medi-

ums relevant to the project will be presented. Section 2.2 describes the principle of the pulse-echo

buffer rod method, and the equation to calculate the sound velocity will be derived in the time and

frequency domain. The correction terms needed in the sound velocity calculations are presented in

Section 2.3. Beam pattern and transducer radius will be presented in Section 2.4, and in Section 2.5,

a model for thermal expansion in the measurement cell will be described.

2.1 Sound velocity

Sound waves can travel through any gases, liquids or solids and will be affected by the medium’s

physical properties [23]. Some mediums can further be dispersive, where higher frequency waves

travel faster than lower frequency waves. A sound wave will thus not retain its initial shape when

propagating through a dispersive medium[24]. Three characteristic sound velocities may therefore

be defined. The phase velocity is the velocity of a mono frequency wave where all points have equal

phase [8]. The group velocity is the velocity at which an envelope of waves with slightly different

frequency propagates [25], and the signal onset can be used to find the signal velocity [8].

Suppose the sound velocity is to be calculated in a dispersive medium. In that case, the phase velocity

at the carrier frequency is generally desired, which is found by measuring the stationary part of the

signal [8]. If the media is independent of frequency, thus nondispersive, the signal, phase, and group

velocities are all equal [8].

Sound velocity in solids can further be separated into compressional and shear waves. In compres-

sional waves, particle displacement is parallel to the direction of the wavefront, while shear waves

have a particle displacement perpendicular to the wavefront [23]. Shear waves, in contrast to com-

pressional waves, can only exist in solids [23]. The relationship between shear and compressional

waves in solid material can be expressed through Poisson’s ratio, ν, given as [26]
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ν= 1

2
·
(

cc
cshear

)2 −2(
cc

cshear

)2 −1
, (2.1)

where cc and cshear are the compressional and shear sound velocities, respectively.

This project aims to calculate the compressional sound velocity in single and dual-phase liquids un-

der different temperature conditions. It is thus necessary to be able to verify the results and compare

the results with theoretical models. A short description of the sound velocity in water is thus pre-

sented in the following.

2.1.1 Sound velocity in water

The sound velocity in water is mainly dependent on temperature, salinity and pressure. During this

project, distilled water will be used as a reference medium. This being non-saline water and a non-

dispersive medium, the sound velocity will only be dependent on temperature and pressure. As a

result, a simplified expression provided by Kinsler et al. [23] for calculating sound velocity in distilled

water will be adapted in this project. The equation is given as

ctd = 1402.7+488
T

100
−482

( T

100

)2 +135
( T

100

)3 +
(
15.9+2.8 · T

100
+2.4

( T

100

)2) · PG

100
, (2.2)

where ctd is the theoretical sound velocity in distilled water (subscript td for theoretical, distilled).

The temperature T is given in oC and PG is the gauge pressure in bar [27],

PG = P −Patm = PM −ρw g h, (2.3)

where PM is the measured ambient pressure, ρw g h is the hydrostatic pressure, and Patm ≡ 1.01325

bar is the standard atmospheric pressure [27]. Eq. (2.2) has an uncertainty of 0.05% (500ppm) for

0 < T < 100oC and 0 < PG < 200 bar [23]. No confidence level is provided, and a confidence level of

95% is thus assumed. The density of distilled water, ρw

The density of pure water, ρw , as a function of temperature can be expressed by the Kell formulation

[28]. In this project, however, the density is set to constant ρw = 998kg /m3, corresponding to density

in water at 20oC [28]. The change in sound velocity due to a change in density is assumed negligible,

which is calculated to be a valid assumption in Section 6.1.3.

Generally, sound velocity in saline water increases with increased salinity [23]. Several theoretical

equations exist for calculating the sound velocity in saline water, where common ones are the ones

often referred to as the UNESCO equation [29] and the Del Grosso equation[30]. The equations, how-

ever, have different ranges of validity. Only the UNESCO equation will be adequate within the oper-

ating range for both salinity and temperature in this project. It has a temperature range of 0−40oC ,

a salinity range of 0-40 ppt (parts per thousand), and a 0 to 1000 bar pressure range [31]. Due to con-

cerns regarding the validity of the UNESCO equation with distilled water [32], the equation has not
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been used for the distilled water measurements.

The original UNESCO algorithm was formulated by Chen and Millero [29] but was later recalculated

by Wong and Zu [31] following the adoption of the International Temperature Scale of 1990[33]. Their

form of the UNESCO equation will be used in this project, given as

ct s(S,T,P ) =C w(T,P )+ A(T,P ) ·S +B(T,P ) ·S3/2 +D(T,P ) ·S2, (2.4)

where ct s is theoretical sound velocity in saline water (subscript ts for theoretical, saline), S is salinity

given in parts per thousand (ppt), T is temperature in oC , and P = PM +ρs g d is the measured pressure

added with the hydrostatic pressure in bar. Cw(T, P), A(T, P), B(T, P) and D(T, P) are different expres-

sions, together containing 42 different numerical values. The remainder of the equation is therefore

presented in Appendix B.

An uncertainty in the model itself has been hard to find, but following the article of Leroy et. al. [32],

it is set to be 0.15 m/s. The confidence level is not stated, and is thus assumed 68% as it is based on

experimental measurements.

The density of saline water, ρs is a function of temperature, salinity, and ρw [34]. In this project, the

density is set to constant ρs = 1013.2kg /m3, which in Section 6.1.3 is shown to be a valid assumption.

2.2 Pulse-echo buffer rod measurement method

2.2.1 Principle of the pulse-echo buffer rod method

The principle of the pulse-echo buffer rod method is shown in Fig. 2.1. A transducer, acting as both

a transmitter and a receiver, sends out an acoustic signal which propagates through a solid buffer. At

the buffer/sample interface, the signal is partially reflected and partially transmitted. The transducer

acquires the reflected part of the acoustic signal, now acting as a receiver, and yields the first echo.

The transmitted part of the signal propagates through the sample before it is reflected at the sam-

ple/reflector interface. It then propagates back to the transducer, yielding the second echo. The first

and second echo will in the following be named Signal A = S A and Signal B = SB respectively.



10 CHAPTER 2. THEORY

Figure 2.1: Illustration of the principle of the pulse-echo buffer rod method.

Figure 2.2: Schematic illustration of Signal A and B, used for transit time determination, together with identifi-
cation of different parts of the pulse. Illustration inspired by [8].
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2.2.2 Sound velocity in time domain

The sound velocity can be found by measuring the two-way transit time in the sample liquid. Fig.

2.3 shows the system setup of the measurement cell. This system setup will be used to derive an

equation for the sound velocity in the time domain. A similar approach was presented in Lunde and

Vestrheim’s feasibility study [8]. Their notations will be applied here, adjusted to the measurement

setup used in this project.

A set of idealized assumptions will be used to develop the model, such as negligible phase shifts upon

reflection at the buffer/liquid interface and liquid/reflector interface due to plane wave propagation

[8]. The noise due to electronic switching when switching between transmitter and receiver is also

assumed negligible.

It will be shown in the following that t j in the system model presented in Fig. 2.3 corresponds to the

total transit time, where subscript j = A, B denote the transit time for Signal A and Signal B (cf. Fig.2.1).

Figure 2.3: System model of the experimental setup. Illustration inspired by [8].

The signal generator and the transmitting electronics excites the transmitting transducer with a volt-

age pulse. This pulse is converted to particle velocity which propagates through the buffer where the

pulse is partially reflected and partially transmitted, shown in Fig. 2.1.

The reflected pulse at the buffer/sample interface, propagates back to the transducer where it is con-

verted to a voltage pulse by the transducer. The voltage pulse is sent through the receiving electronics

and is detected by the oscilloscope. The received pulse, shown as Signal A in Fig. 2.2, can then be used

to calculate the transit time of Signal A, tA , by measuring zero-crossing number i in a characteristic

part of the pulse. The characteristic part can either be the signal onset, the transient part or stationary

part, cf. Fig. 2.2. The measured transit time of zero-crossing number i for signal A, tA , can thus be

expressed as

tA = 2 · t bu f f er
pl ane + t cor r

A , (2.5)
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where t bu f f er
pl ane is the plane wave travel time through the buffer with length D, and

t cor r
A = t el ,T + t el ,R + t r em

A . (2.6)

In equation 2.6,

• t el ,T = travel time through transmitting cables, T/R-switch and transmitting transducer,

• t el ,R = travel time through receiving cables, T/R-switch and receiving transducer,

• t r em
A = travel time of tA due to remaining effects not included in t el ,T or t el ,R , further explained

in Section 2.3.

The transmitted pulse at the buffer/sample interface, propagates through the sample liquid and is

reflected at the reflector. It then propagates back to the transducer where it is converted to a voltage

pulse. The voltage pulse is then sent through the receiving electronics and is detected by the oscillo-

scope as signal B in Fig. 2.2. The measured transit time of zero-crossing number i for Signal B, tB , can

thus be expressed as

tB = 2 · t bu f f er
pl ane +2 · t sample

pl ane + t cor r
B , (2.7)

where t sample
pl ane is the plane wave travel time through the liquid sample with length L, and

t cor r
B = t el ,T + t el ,R + t r em

B . (2.8)

In Eq. (2.8), t r em
B is the travel time in tB due to remaining effects not included in t el ,T or t el ,R . These

effects will be explained in Section 2.3. Time delays due to the transmitting and receiving electronics

and transducer, t el ,T and t el ,R can be assumed to be the same for tA and tB [35].

The difference in arrival between Signal A and Signal B, defined ∆t , can be expressed as

∆t = tB − tA . (2.9)

Inserting Eqs. (2.5) and (2.7) into Eq. (2.9) yields

∆t = 2 · t sample
pl ane + t cor r

B − t cor r
A . (2.10)

By inserting for the correction factors, Eqs. (2.6) and (2.8), into Eq. (2.10), ∆t can be expressed as

∆t = 2 · t sample
pl ane + t r em

B − t r em
A . (2.11)

Since

t sample
pl ane = L

cs
, (2.12)

where L = L0 ·KT is the sample length as a function of temperature, with L0 equal to the sample length

at T0, and KT the thermal expansion of the sample area, the sound velocity in the liquid sample, cs ,



2.2. PULSE-ECHO BUFFER ROD MEASUREMENT METHOD 13

can be found using Eqs. (2.11) and (2.12) as

cs = 2L

∆t −∆t r em , (2.13)

where

∆t r em = t r em
B − t r em

A . (2.14)

The change in propagation length, L, due to thermal expansion will be treated in Section 2.5.

2.2.3 Sound velocity in frequency domain

A short burst may be favourable when one wants to avoid coherent noise contributions. Although

the sound velocity can be calculated with the time-domain model using a short burst by measuring

the signal onset or the transient part of the signal (cf. Fig. 2.2), the accuracy of the sound velocity

calculations with direct transit time measurements can be limited if the signal does not have a steady-

state region [36, 37].

Therefore, an alternative method will be presented based on finding the group velocity of the pulse

in the frequency domain. The model is based on the work in Sæther’s dissertation [14] and will be

adapted to the current project.

In this method, the propagation will be described with a plane wave propagation and a diffraction

term, thus a correction due to the assumption of plane wave propagation. It is thus assumed that

phase delays due to other sources than transmitting and receiving electronics, defined∆t r em in time-

domain calculations, only consist of diffraction correction. In Section 2.3, this is explained in detail

and shown to be a valid assumption.

The on-axis propagation is defined along the sound-axis of the transducer, thus the z-axis shown in

Fig. 2.4.

Figure 2.4: Direction of propagation in the system model, here shown for Signal B. Tx = Rx is the transducer,
acting as both the transmitter and receiver. Illustration inspired by [14].

From Fig. 2.1, a system model can be set up for both Signal A and Signal B in the frequency domain,

presented as a block diagram in Fig. 2.5. Each block represents the transfer function of a component

in the measurement setup shown in Fig. 2.3. Between each block is a node, and either a voltage V,

on-axis particle velocity v , or the on-axis sound pressure p is defined at each node[14]. The variables
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are labelled with a number after the order in the system they appear, together with either letter A or

B, corresponding to Signal A and Signal B, respectively. All variables are presented in the frequency

domain.

Figure 2.5: System model of the pulse-echo buffer rod method presented as a block diagram where a) Signal A
and b) Signal B. Illustration inspired by [14].

For Signal A, Fig. 2.5a), the voltage signal in on the signal generator, transmitting electronics and

transmitting transducer are denoted V0,A , V1,A and V2,A respectively, where the transmitting electron-

ics include T/R-switch and coaxial cables. The signal generator’s emf is assumed to be the same as

the input voltage signal[14].

The particle velocity at the transducer’s front surface, acting as a transmitter, is denoted v3,A , p4,A is

the on-axis sound pressure at the buffer/sample interface and p5,A is the free-field pressure at the

transducer’s front surface, acting as a receiver, in the absence of the transducer. V6,A and V7,A are

the pressure-wave induced input voltages on the receiving electronics and the oscilloscope, where

the receiving electronics are the cables and T/R-switch. RBB is the plane wave pressure reflection

coefficient at the buffer/sample interface, [23]

RBB = ρscs −ρbcb

ρscs +ρbcb
, (2.15)

where ρb is the density in the buffer, ρs is the sample’s density, and cb and cs are the compressional

sound velocities in the buffer and sample respectively.

Using Fig. 2.5, the transfer function for Signal A can be written

V7,A

V0,A
= V1,A

V0,A
· V2,A

V1,A
· v3,A

V2,A
· p4,A

v3,A
· p5,A

p4,A
· V6,A

p5,A
· V7,A

V6,A
. (2.16)

Diffraction correction for Signal A can be expressed as [38]

H diff
A =

〈
p5,A

〉
ppl

5,A

, (2.17)
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where
〈

p5,A
〉

is the average pressure over a "measurement area" equal to the transducer surface at

distance d = 2D, and ppl
5,A is plane wave pressure at the same distance1 ,

ppl
5,A = v3,A ·ρbcb ·e−i 2kb D ·RBB , (2.18)

assuming no unwanted reflections. In Eq. (2.18), D is the buffer length and kb = ω/cb is the buffer

wave number with cb equal to the buffer sound velocity, ω= 2π f , where f is the frequency. Eq. (2.16)

can thus be expressed as:

V7,A

V0,A
= V1,A

V0,A
· V2,A

V1,A
· v3,A

V2,A
·ρbcb ·e−i 2kb D ·RBB ·

〈
p5,A

〉
ppl

5,A

· V6,A〈
p5,A

〉 · V7,A

V6,A
. (2.19)

For Signal B, Fig. 2.5b), V0,B , V1,B and V2,B are the voltage signal on the signal generator, transmitting

electronics and transmitting transducer respectively. The signal generator’s emf is assumed to be the

same as the input voltage signal [14]. The transmitting electronics include the coaxial cables and the

T/R-switch. Further, v3,B is the particle velocity at the transducer’s front surface, acting as a trans-

mitter. The on-axis sound pressure at the buffer/sample interface, the sample/reflector interface and

the sample/buffer interface are denoted p4,B , p5,B and p6,B respectively. p7,B is the free-field pressure

at the transducer’s front surface, acting as a receiver, in the absence of the transducer. The pressure-

wave induced input voltage on the receiving electronics is denoted V8,B , and V9,B is the input voltage

on the oscilloscope. With normal incidence, the plane wave pressure transmission coefficients from

the buffer into the sample, TBS , and from the sample into the buffer, TSB , are given as [23]

TBS = 2ρscs

ρscs +ρbcb
, TSB = 2ρbcb

ρscs +ρbcb
. (2.20)

The plane wave pressure reflection coefficient at the reflector, RR , can further be expressed as

RR = ρr cr −ρscs

ρr cr +ρscs
, (2.21)

where ρr is the density, and cr is the compressional sound velocity of the reflector.

As for Signal A, the transfer function for Signal B can be written

V9,B

V0,B
= V1,B

V0,B
· V2,B

V1,B
· v3,B

V2,B
· p4,B

v3,B
· p5,B

p4,B
· p6,B

p5,B
· p7,B

p6,B
· V8,B

p7,B
· V9,B

V8,B
. (2.22)

The diffraction correction for signal B can be written as [23]

H diff
B =

〈
p7,B

〉
ppl

7,B

, (2.23)

where
〈

p7,B
〉

is the average pressure over a "measurement area" equal to the transducer surface at

1Section 2.3.1 will introduce diffraction correction and provide a more detailed explanation.
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distance d = 2D + 2L, and ppl
7,B is the plane wave propagation at the same distance,

ppl
7,B = v3,B ·ρbcb ·e−i 2kb D ·TBS ·TSB ·e−i 2ks L ·RR , (2.24)

assuming no unwanted reflection. Further, ks =ω/cs is the sample wave number, and L is the sample

length as a function of temperature, i.e. L = L0 ·KT . Eq. (2.22) can thus be expressed as

V9,B

V0,B
= V1,B

V0,B
· V2,B

V1,B
· v3,B

V2,B
·ρbcb ·e−i 2kb D ·TBS ·TSB ·e−i 2ks L ·RR ·

〈
p7,B

〉
ppl

7,B

· V8,B〈
p7,B

〉 · V9,B

V8,B
. (2.25)

By dividing Eq. (2.25) with Eq. (2.19), the following expression is obtained:

V9,B

V0,B

V7,A

V0,A

=
V1,B

V0,B
· V2,B

V1,B
· v3,B

V2,B
ρbcbe−i 2kb D TBSTSB e−i 2ks LRR · 〈p7,B〉

ppl
7,B

· V8,B

〈p7,B〉 ·
V9,B

V8,B

V1,A

V0,A
· V2,A

V1,A
· v3,A

V2,A
·ρbcb ·e−i 2kb D ·RBB · 〈p5,A〉

ppl
5,A

· V6,A

〈p5,A〉 ·
V7,A

V6,A

. (2.26)

One can further assume that V1,B

V0,B
= V1,A

V0,A
, V2,B

V1,B
= V2,A

V1,A
, v3,B

V2,B
= v3,A

V2,A
, V9,B

V8,B
= V7,A

V6,A
, V8,B

〈p7,B〉 =
V6,A

〈p5,A〉 and V0,A =V0,B .

Eq. (2.26) thus reduces to:

V9,B

V7,A
=

TBS ·TSB ·e−i 2ks L0 ·RR · 〈p7,B〉
ppl

7,B

RBB · 〈p5,A〉
ppl

5,A

= TBS ·TSB ·e−i 2ks L ·RR ·H di f f
B

RBB ·H di f f
A

. (2.27)

To find the speed of sound of the sample, one has to find the phase of Eq. 2.27

6
(

V9,B

V7,A

)
= 6

(
TBSTSB e−i 2ks LRR H di f f

B

RBB H di f f
A

)
(2.28)

Phase shifts upon reflection and transmission can be neglected due to plane wave propagation[8].

Eq. (2.28) thus reduces to

6
(
V9,B

)− 6
(
V7,A

)= 6
(
H di f f

B

)
− 6

(
H di f f

A

)
−2ksL. (2.29)

Applying Eq. (2.12), and knowing that ks =ω/cs , an expression for cs can be found through Eq. (2.29):

cs = 2L( 6 (V7,1)
ω − 6 (V9,2)

ω +
6

(
H di f f

B

)
ω −

6
(
H di f f

A

)
ω

) . (2.30)

In Section 3.4.3, Eq. (2.30) will be used to calculate the sound velocity using the Fourier spectrum

method.

To simplify Eq. (2.30), it is shown in [39] that one can define tA ≡ −6
(
V7,A

)
/ω, tB ≡ −6

(
V9,B

)
/ω,

t di f f
A ≡−6

(
H di f f

A

)
/ω and t di f f

B ≡−6
(
H di f f

B

)
/ω. Eq. (2.30) can thus be expressed in the time domain
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as

cs = 2L

tB − tA + t di f f
A − t di f f

B

. (2.31)

The change in length due to thermal expansion, L = L0 ·KT , will be treated in Section 2.5.

2.3 Non-ideal characteristics

When measuring the sound velocity in the time domain, a correction time, t cor r was introduced for

Signals A and B. As the difference between tA and tB is used, the transit time in the cables, electronics

and transducer can be neglected. The correction terms will thus consist of t r em
A and t r em

B for Signals

A and B respectively.

Several factors may contribute to a time delay in the measured transit times. Diffraction correction,

thus the deviation from the assumption of a plane wave model of propagation, and possible phase

shifts due to thermal and viscous boundary layers at the sample/buffer interface are possible correc-

tion terms that will be studied in the following. A short description will further be provided about

mode-converted waves, which will be treated as an uncertainty in this project. Additional factors

include, but are not limited to:

• Possible imperfect symmetry in the transducer itself or in the mounting of the transducer [40],

not accounted for.

• Possible coherent noise contributions from echos in the measurement cell other than mode-

converted waves, treated as an uncertainty in Section 6.8.2.

• Transit time delays due to thermal and viscous boundary layers at the buffer/sample interface

are assumed to be negligible [35].

• Temperature-related effects on the dimensions of the measurement cell, discussed in Section

2.5.

Other unknown contributions are not accounted for.

The correction term for Signal A, t r em
A , is in this project assumed to only be affected by diffraction

correction,

t r em
A = t di f f

A . (2.32)

For Signal B, the transit time will be affected by both diffraction correction and boundary layer cor-

rection upon reflection at the sample/buffer interface,

t r em
B = tR + t di f f

B , (2.33)

where tR is the time shift due to boundary layer correction, and t di f f
B is the diffraction correction in

Signal B. However, as will be evident in Section 2.3.2, the boundary layer corrections can be neglected.
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∆t r em in Eq. (2.14) thus reduces to

∆t r em =∆t di f f = t di f f
B − t di f f

A . (2.34)

In Eq. (2.34), ∆t di f f is the time domain diffraction correction.

2.3.1 Diffraction correction

Waves propagating from the transmitting transducer are often regarded as plane waves when they are

more spherical. The diffraction correction must be calculated to account for the deviation from the

general assumption of plane wave propagation.

This section introduces the theory related to diffraction correction in this project. In Section 4.1,

simulations will be conducted, which in turn is compared to the theory and assumptions presented

here.

Figure 2.6: Illustration of a plane piston transmitter (left) and a measurement area (right). They are coaxially
aligned with parallel faces, with a distance z = d between them. The transmitter is placed on z = 0 in a xy-plane
and propagates sound waves in the +z-direction towards the measurement area. Figure inspired by [41].

There are several methods to correct for the deviation from plane-wave propagation. In Fig. 2.6, a

sound source in an infinite fluid medium is coaxially aligned to a receiving circular measurement

area. The sound source is a plane, circular piston vibrating uniformly mounted in an infinite rigid

baffle, "the baffled piston model"[42]. The measurement area, thus the observation area as there

is no physical receiver present, has a radius a2 equal to the radius of the sound source, a1. Thus

a1 = a2 = a, illustrated in Fig. 2.6.

BPDC model - single fluid medium

For a single fluid medium, Khimunin expressed the deviation from plane-wave propagation for a

uniformly vibrating plane piston as [38]

H di f f = 〈p〉A

ppl ane
, (2.35)
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where ppl ane is the plane-wave pressure at distance z = d, and 〈p〉A is the average sound pressure over

the measurement area (in the absence of the receiver) at distance z = d, with area equal to the sound

source, A =πa2. Applying Williams baffled piston model, Eq. (2.35) becomes [42, 38, 43]

H di f f (d , f ) = 1− 4

π

∫ π/2

0
exp

[
−i kd

(√
1+4

( a

d

)2
cos2θ−1

)]
si n2θdθ, (2.36)

where θ is the integration variable, k =ω/c is the wave number and c is the sound velocity in the fluid

medium. Eq. (2.36) must be solved numerically, which is shown in Appendix A.

The diffraction correction is often written with the dimensionless quantity [44]

S ≡ d

a2/λ
= 2πd

ka2 . (2.37)

Eq. (2.37) can be solved for d and inserted into Eq. (2.36), yielding an expression for the diffraction

correction written with the dimensionless quantities S and ka [45],

H di f f (S,ka) = 1− 4

π

∫ π/2

0
exp

[
−i

(ka)2S

2π

(√
1+

( 4π

S ·ka

)2
cos2θ−1

)]
si n2θdθ. (2.38)

Khimunin’s diffraction correction is based on the baffled piston model and will henceforth go under

the name "baffled piston diffraction correction" (BPDC), following notations in [46].

Diffraction correction in the pulse-echo solid buffer method

In this project, there are two signals of interest, S A and SB , as explained in Section 2.2.1. Consequently

must the diffraction correction for the respective signals be calculated.

Signal A corresponds to the two-way propagation in the Plexiglas buffer. To calculate the diffraction

correction for Signal A, the buffer/sample interface is assumed to be a plane infinite perfectly reflect-

ing surface, an assumption further discussed in Section 4.1. The propagation distance used in the

diffraction correction model is thus only the two-way propagation length in the buffer, thus d = 2D.

The diffraction correction of Signal A, H di f f
A is thus found using the BPDC model (Eq. (2.38)), with

S = S A = 2π ·2D

kb a2
e f f

, (2.39)

where ae f f is the effective transducer radius (Section 2.4). The corresponding time shift has been

shown in [39] to be expressed as

t di f f
A =−

6 H di f f
A

ω
. (2.40)

Eq. (2.40) can be inserted into Eq. (2.34) to calculate ∆t di f f .

Signal B will transmit into the buffer, propagate through the buffer, through the sample liquid, before

it is reflected at the reflector. The BPDC model is restricted to a single fluid medium, and the model

has thus been adapted by the author in cooperation with [35], and will be named "baffled piston
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diffraction correction - multiple fluid" (BPDC-MF) model. To the authors knowledge, the model has

not been used before.

Fig. 2.7 illustrates the propagation of Signal B. The signal generated by the transmitter first propa-

gates through the buffer with length d = D. At the buffer/sample interface, the sound pulse has devi-

ated from plane wave propagation, corresponding to a deviation in phase of φB1, determined by the

distance D and the sound velocity cb .

The sound pulse is then transmitted into the sample liquid. As the sound pulse propagates through

the sample liquid, the deviation in phase will keep increasing from φB1, but at a rate determined by

the new sound velocity, cs . At the reflector interface, a plane infinite perfectly reflecting baffle is again

assumed, and the diffraction length in the sample liquid will correspond to twice the sample length,

d = 2L. After propagating twice the sample length, thus at the sample/buffer interface, the increased

deviation from plane wave is calculated, corresponding to a deviation in phase of φB2.

The sound pulse is then transmitted into the buffer, propagates through the buffer before it is detected

at the receiver again. Starting at φB2, the deviation in phase will increase at a rate again determined

by the sound velocity and propagation distance. At the receiver, the deviation in phase will be φB3,

corresponding to the total deviation in phase of Signal B.

Figure 2.7: Illustration of the BPDC-MF model for calculating the diffraction correction in Signal B.

For each sampled waveform, two diffraction corrections are calculated as a function of distance d

using Eq. (2.38) with f = 500 kHz and a = ae f f . The first diffraction correction, shown as the blue

curve in Fig. 2.8, is calculated using c = cb . The second calculation is performed using the sample’s

sound velocity, c = cs , and is shown as the red curve in Fig. 2.8. Both curves start at d = 0. These

two curves are used to calculate the total diffraction correction for signal B, following three steps.

The first step is to calculate φB1, found at distance d = D using the blue curve. In the red curve, the

corresponding distance is located where the deviation in phase is φB1, shown in Fig. 2.8. From this

distance, the sound wave propagates the length d = 2 ·L, which results in φB2. In the final step, the

phaseφB2 is located on the blue curve. The sound wave propagates the length d = D and the resulting
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phase, φB3 = 6 H di f f
B is calculated. When the deviation in phase due to diffraction for Signal B is

calculated, the corresponding time shift can be found using [39]

t di f f
B =−

6 H di f f
B

ω
, (2.41)

which, together with t di f f
A , can be used to calculate ∆t di f f using Eq. (2.34).

Figure 2.8: The total diffraction correction calculation in signal B using the BPDC-MF model. The blue curve
is the calculated deviation in phase with cb = 2711 m/s and the red curve is the calculated deviation in phase
with cs = 1480 m/s used as an example, both calculated as a function of distance. Further, D = 70.1 mm and L =
L0 = 25.18 mm.

2.3.2 Boundary layer correction

At the boundary between a fluid and a rigid surface, thin thermal and viscous boundary layers are

generated when sound waves are reflected [47]. Inside these boundary layers, the acoustic impedance

of the liquid is altered, causing a phase shift and a corresponding time shift [48].

In the candidate method (cf. Fig 2.1), such boundary layers will be generated at the sample/buffer

interface. To account for such effects, a complex pressure reflection coefficient, R̂ will be calculated,

following [9]. From Kinsler and Frey [23], the complex reflection coefficient is expressed as

R̂ = pr

pi
, (2.42)

where pi is the complex pressure amplitude of the incident wave and pr is the complex pressure
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amplitude of the reflected wave. Assuming plane wave at normal incidence, and a finite specific

impedance, the complex reflection coefficient becomes [48]

R̂ = ẑ −ρscs

ẑ +ρscs
, (2.43)

where z is the finite specific impedance of the surface, ρs is the density and cs is the sound velocity in

the medium of the incident wave. The complex specific impedance can further be expressed as [48]

ẑ = e iπ/4ρscs

√
ρsc2

s

ωµ

p
Pr

γ−1
. (2.44)

Here, µ is the shear viscosity of the medium and γ is the ratio of specific heats of the medium. Further,

Pr is the Prandtl number given as Pr =Cpµ/κ, where Cp and κ is the specific heat at constant pressure

and the thermal conductivity in the medium respectively.

By inserting Eq. (2.44) into Eq. (2.43), the increase in travel time due to thermal and viscous boundary

layer, tR , can be calculated using

tR = 6 R̂

ω
, (2.45)

where 6 R̂ is the phase of the complex reflection coefficient.

The tabulated values needed for calculating the complex specific impedance has been found in Tables

4.2 to 4.6 in Nesse’s dissertation [7] for several liquid samples at 21.9oC . Using the tabulated values

together with f = 500 kHz, the time shift due to thermal and viscous boundary layers can be calculated,

and the results are presented in Table 2.1.

Table 2.1: Tabulated sound velocity and density values for different liquid samples at 21.9oC [7], and resulting
calculated time shifts due to thermal and viscous boundary layers

Liquid sample
Sound velocity,

cs [m/s]

Density,

ρ[kg /m3]
Time shift, tR [ps]

Exxol D80 1314.4 796.0 36.256

Exxol D100 1342.9 812.0 34.094

Hexadecane 1359.6 772.2 34.346

Dodecane 1290.4 748.4 37.284

Distilled water 1488.0 997.8 1.4528

In Table 2.1, it is evident that time shifts due to thermal and viscous boundary layers increases with

decreasing density and sound velocity. Although the emulsions presented in Table 2.1 will not be used

in this project, it gives an adequate representation of the time shift in emulsions.

It will be shown in Section 4.1 that the diffraction correction, ∆t di f f , corresponds to approx. 2.7·10−8

- 3.1·10−9 for a sound velocity span of 1320-1480 m/s. From the calculated time shifts presented

in Table 2.1, it is thus evident that the time shifts due to thermal and viscous boundary layers can
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be neglected for all liquids sample presented. The incremental changes in the respective variables

with increasing temperatures are further assumed to be negligible within the temperature span of the

project.

2.3.3 Mode-converted waves

At the boundary between two media, where one of them is a rigid elastic solid, it is until now assumed

that all waves are at normal incidence. At normal incidence, the transmitted and reflected waves

will both be of the same type as the incident wave [49]. However, when the angle of incidence is

oblique, another type of wave will be generated. This phenomenon is referred to as mode conversion

and is the process of converting wave energy from shear to compressional, or vice versa [10]. Mode

conversions will occur upon reflection at the boundary between the Plexiglas buffer and the sample

liquid. A compressional wave will travel in one direction through the buffer, and a shear wave with

a lower sound speed in the opposite direction [23]. Due to sound velocity differences, the mode-

converted wave may act as a coherent noise source and is further assessed in Section 3.5.3. These

mode-conversions and the implication they may have on the signal of interest have been identified

and discussed by several authors[14, 16, 50].

2.4 Beam pattern and effective transducer radius

In the following, it is assumed that the transducer can be described with "the baffled piston model"

(cf. Section 2.3.1). This is an idealized assumption as the transducer in the project will be mounted in

a finite baffle, as well as vibrating non-uniformly.

When an acoustic wave propagates from a source, it creates a directive pattern according to Fig. 2.9.

This pattern shows that the beam is composed of a main lobe, where most of the energy is located,

and side lobes. The main lobe is the signal of interest and propagates normal to the transducer along

the sound-axis, thus in +z direction. The side lobes will propagate at an angle from the plane, limited

by the nodes at angles θn , where n defines node number n [23].

Figure 2.9: Illustration of the far-field beam pattern of a single transducer. Illustration is from [51] p. 25.
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The shape of the main lobe and side lobes in Fig. 2.9, will only be present if the wave propagates in

the far field [23]. It is therefore necessary to define a distance where the signal propagates from near

field to far field, given as the Rayleigh-distance, rR , [23]

d > rR ≡ A

λ
= πa2

λ
= πa2 f

c
, (2.46)

where A = πa2, λ= c/ f is the wavelength, and d is distance from the transmitter to the measurement

area, illustrated in Fig. 2.6.

Eq. (2.46) shows that the Rayleigh distance will increase with increasing frequency, and is inversely

proportional to the speed of sound in the medium. When far field is achieved, the directional factor (

"Bessel directivity") can be described as [23]

H(θ) =
∣∣∣2J1(kasi nθ)

kasi nθ

∣∣∣ (2.47)

where J1 is the first order Bessel function of the first kind. This can then be used to find out how the

beam radiation pattern will look like. The pressure nodes can be found at angles θm given by [23]

kasi nθm = j1m (2.48)

where j1m is the value of the argument of J1 that reduces the above Bessel function to zero, i.e.

J1( j1m) = 0 [23].

Each pressure node has an associated pressure lobe, where the angular locations are determined by

H(θ). The values for the pressure lobes and nodes can be found in Appendix A.5 in [23], where it is

found that H(θ) ≈ 0 for the first time when j11 = 3.83. The main lobe is thus contained within the

node given by [23]:

kasi nθ1 = j11 ⇐⇒ θ1 = si n−1
( j11

ka

)
= si n−1

(3.83

ka

)
. (2.49)

In this project, the "3 dB angle" or the "half power angle" will be used to specify the beam width, and

can be calculated using [23]

H 2(θ) = 0.5, (2.50)

or

θ3dB ≈ si n−1
(1.6163

ka

)
, (2.51)

where θ3dB is the the 3 dB angle. The beam width can then further be defined as 2 ·θ3dB . Through

simulations presented in Section 4.2, the side lobes will be studied in detail applying the theory above.

The baffled piston model, described in Section 2.3.1, assumes that the entire front face of the trans-

ducer moves uniformly [23]. A transducer’s center may move with a larger amplitude than its bound-

aries, which makes the surface move non-uniformly [45]. This deviation can be accounted for by

using the effective transducer radius. The effective transducer radius can be found by solving for a in

Eq. 2.51, thus
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ae f f =
c

ω
· 1.6163

si nθ3dB
. (2.52)

2.5 Thermal expansion

This section will present the thermal expansion of the sample area when it is subjected to increased

temperatures.

In general, a material, or an object will expand in all directions when exposed to increasing tempera-

tures, as seen in Fig. 2.10 a), where the orange dotted line shows the expanded boundaries. This also

applies to a hole inside a material or an object, as shown in Fig. 2.10 b). Because the object expands,

the hole inside of the object also expands.

Suppose an object has a length x0 at an initial temperature T0. The change in length of the object

upon a temperature increase ∆T can be found through [27]

∆x = x0α∆T. (2.53)

Here,∆T = T −T0, where T0 is the initial temperature and T is the measured temperature, andα is the

linear thermal expansion coefficient of the given material. ∆x = x − x0 is the final length subtracted

with the initial length. Solving for x yields

x = x0
(
1+α(T −T0)

)= x0
(
1+α∆T

)= x0 ·K , (2.54)

where K = 1+α∆T will serve as an abbreviation for the general increase in x0 with temperature.

Figure 2.10: Illustration of thermal expansion in a material: a) a solid piece of material will expand in all direc-
tions b) a whole inside an object will expand at the same rate as the material surrounding it.

However, the above equation will only hold for a single material or object. The materials that make

up the measurement cell in the project will expand at different rates according to their linear thermal

expansion coefficients when heated up. The cell is made out of Aluminium Alloy 6082 and Plexiglas

which has linear thermal expansion coefficients ofαa = 24·10−6/oC andαp = 70·10−6/oC respectively

[52, 53].
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The Plexiglas is attached to the aluminium using bolts, as shown in Fig. 2.11. In theory, when the

measurement cell is heated up, the aluminium will expand in all directions, increasing the length of

the sample area. However, the aluminium is attached with bolts to the Plexiglas buffer. The bolts will

consequently halter the expansion due to forces acting on both the Plexiglas and the aluminium.

Figure 2.11: Illustration of the expansion of the sample area due to thermal expansions in the materials sur-
rounding the bolts. Sketch is illustrated as seen from the top. Dimensions are not to scale.

The change in sample length due to buffer expansion will be equal to the expansion to the right of the

bolt, named distance db . Further, the expansion of the aluminium chassis, dL A , will be limited by the

bolt placement, where at temperature T0, the distance is given as

L A = L0 +db , (2.55)

where L0 is the sample length at T0. The change in the sample length due to the aluminium expansion

will consequently only be dependent on the expansion on the right side of the bolt, as shown in Fig.

2.11.

With an increase in temperature, ∆T , the new sample length, L, will be equal to the difference be-

tween the increase in L A , dL A , and the increase in db , dLb

L = dLa −dLb . (2.56)

Using Eq. 2.54, the linear thermal expansion of the aluminium chassis can be expressed as

dLa = L A + (L A)αa∆T, (2.57)
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and the expansion of the buffer can be expressed as

dLb = db +db ·αp∆T. (2.58)

Inserting Eqs. (2.56), (2.57) and (2.58) into Eq. (2.56), results in the expression for the new length as a

function of temperature

L = L0 +∆T ·
(
(L0 +db) ·αa −db ·αp

)
. (2.59)

Following Eq. (2.54), the above equation can be reduced to

L = L0 ·KT , (2.60)

where KT will be the general expansion of L0 with a temperature change ∆T, and can be expressed as

KT = 1+∆T ·
(
αa + db

L0

(
αa −αp

))
. (2.61)

The calculations above, however, only holds for the areas surrounding the bolts. It was decided to

strategically place the bolts so as to prevent or limit acoustic interference due to reflections from the

bolt surface, meaning that the middle of the Plexiglas buffer is not secured by bolts. Upon heating, the

Plexiglas buffer might experience stress forces around the acoustic axis, causing the middle to bulge

as shown in Fig. 2.12. Such an expansion will decrease the length of the sample area, causing an error

in the sound velocity measurements.

Figure 2.12: Simplified illustration of the possible thermal expansion of the sound axis in the Plexiglas buffer
due to a temperature increase. The expansion is exaggerated and the dimensions are not to scale.

For the candidate project, a sample length of L0 = 25.18mm is measured (ref. Section 6.2). Based

on Eq. (2.12) and a sound velocity of cs = 1481m/s, if the sample length is reduced by 0.01 mm, a

sound velocity change of 0.6 m/s can be calculated. The bulging of the Plexiglas buffer can thus be a

potential source of sound velocity error. However, this expansion is hard to quantify and even harder

to measure without high precision tools. It will thus only be treated in further discussions in Chapter
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7.

The diffraction correction model presented in Section 2.3.1 is dependent on the buffer length which

is secured by bolts on both sides ( Fig. 2.11). In this project, no equation has been created for the

thermal expansion of the buffer, and the uncertainty in this is assumed negligible, as it will be shown

in Section 6.8 that the uncertainty in diffraction correction only accounts for ≈ 1% of the total uncer-

tainty budget.

2.6 Fourier Transform

The Fourier transform can be used to analyze time-domain signal in the frequency domain, which

will be used in Section 3.4.3 in this project. Fourier synthesis further constructs time signals from a

frequency response by using the inverse Fourier transform [54].

The Fourier transform, X (ω) and the invers Fourier transform, x(t ) can be expressed as [25]

X (ω) =
∫ ∞

−∞
x(t )e−iωt d t ,

x(t ) = 1

2π

∫ ∞

−∞
X (ω)e iωt dω

(2.62)

In digital processing, the Fourier transform can be discretized in the time domain and frequency do-

main; t = n∆t and f = r∆ f . ∆t and∆ f are the intervals between two samples in the time or frequency

domain, and n and r are integers[54]. The discrete Fourier transform (DFT) and the inverse DTF are

defined as [55]

X [r ] =
N−1∑
n=0

x[n]e−
2πk

N n

x[n] = 1

N

N−1∑
n=0

X [r ]e
2πk

N n

(2.63)

The DFT is usually calculated using the fast Fourier transform (FFT) [54]. This is done in this project

using a pre-defined algorithm in Matlab [56].
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Chapter 3

Experimental setup and measurement

methods

This chapter describes the experimental setup and measurement method used in this project. The

chapter consists of five main sections with included subsections and can roughly be divided into three

parts. The first part, Sections 3.1, 3.2 and 3.3 concerns the measurements and experimental setups

needed to measure the sound velocity. The second part, Section 3.4, will discuss the signal processing

methods applied. A detailed description of the design of the measurement cell and considerations

made prior to construction will be included in Section 3.5.

3.1 Measurements of acoustic properties

Throughout the project, sound velocity measurements, noise measurements, and other acoustic prop-

erties will be measured. A block diagram of the setup used for these measurements is presented in

Fig. 3.1, and a picture is presented in Fig. 3.2.

A transducer is clamped onto the measurement cell and serves as both a transmitter and a receiver

using a T/R-switch (transmitting/receiving). The transducer is excited using a signal generator, and

the received signal is monitored through an oscilloscope. Inside the measurement cell is a temper-

ature probe connected to a computer using an adapter. Software for digital filtering, storage and

communication is developed by the author in Matlab, presented in Appendix D.2.

The measurement cell is immersed in a water bath for sound velocity measurements at increasing

temperatures. A heater is inside this water bath, which heats the water bath through a temperature

controller. The temperature controller monitors the temperature inside the water bath through a

temperature sensor. The author has identified neither the name nor brand of the temperature sen-

sor. However, since the sensor only measures the water bath temperature, its uncertainty and spec-

ifications will not affect the measured sound velocity. A pump further circulates the water, so the

temperature is evenly distributed.
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Figure 3.1: Measurement setup A. Block diagram of the measurement setup when measuring acoustic proper-
ties and noise sources

Figure 3.2: Picture of measurement setup A. (1) Signal generator. (2) T/R-switch. (3) Measurement cell, includ-
ing transducer and temperature probe (4) Oscilloscope (5) RTD sensor to USB adapter.
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The whole setup for these measurements is presented in Fig. 3.3, and a list of all components utilised

is presented in Table 3.1. In the following subsections, details of the different components will be

presented.

Figure 3.3: Measurement setup B. Illustration of the measurement setup utilised when measuring the sound
velocity in the liquid sample with increasing temperature.

Figure 3.4: Picture of measurement setup B. (1) Measurement setup A. (2) Temperature probe. (3) Heater. (4)
Tubes. Temperature controller, power supply and pump is not included.
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Table 3.1: List of components used when measuring various acoustic properties and noise.

Component Manufacturer Model Serial Number

Measurement setup A

Signal generator Keysight 33511B MY57300358

T/R Switch Electronic workshop/IFT, UiB - -

Transducer Panametrics V301-SU 179296

Measurement cell Workshop/IFT, UiB - -

Oscilloscope Tektronix DPO 3012 C024018

Barometer Paroscientific 740-30A-CE 67325

RTD sensor to

USB adapter
Dracal RTD_23 E16381

Temperature probe Jumo SteamTemp RTD 902830 00445084

Couplant Bluescan Utrasound gel 446-1 -

Distilled water
Department of

Chemistry, UiB
- -

Measurement setup B

Water pump FLOJET RLF122201D 13K24200

Power Supply Mascot Electronics Type 719 176381

Temperature

control unit
EMKO Eco Lite -

Temperature probe n/a n/a -

Heater SCHEGO
Teichheizer

600 Watt
-

Physical measurements

Digital caliper MarCal 16EWR -

3.1.1 Signal generator

In the experimental setup, Keysight 33511B, 20 MHz Function/Arbitrary Trueform Waveform Gener-

ator was utilised. The datasheet can be found in [57].

Using the waveform generator, a sinusoidal burst was generated with 2-10 periods, depending on the

purpose of the experiment. For the sine function, the frequency range is 1µHz to 20 MHz with 1 µHz

resolution. The accuracy of the frequency is ±(1 ppm of setting + 15 pHz) in one year, at temperature

23oC ±5oC . Throughout the project, a frequency of 500 kHz has been used. Assuming a calibration

within the last year (calibration data not available) and room temperature of around 22oC , the fre-

quency accuracy is within ±0.5 Hz.

Further, the amplitude range is 1mV to 10 V (into 50Ω) with a four-digit resolution. The accuracy is

±(1% of setting in Vpp )± (1mV ). To create a burst with the largest possible amplitude, the amplitude

was set to 10 V. No non-linearity’s were observed in the project due to the large voltage amplitude.
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Table 3.2 summarises the parameters of the signal generator set throughout the experiments.

Table 3.2: Settings for Keysight 33511B used in experiments

Function Frequency Amplitude Offset Burst Cycles Burst Period Phase Delay

Sine (Burst) 500 kHz 10 V 0 V 2-10 10 ms. 0o 0 s.

A BNC splitter was connected to the output of the waveform generator. Through coaxial cables, one

end was connected to the T/R switch, while the other end was directly connected to the oscilloscope

to study the reference signal. Further, a trigger signal was sent to the oscilloscope through the sync

output via a coaxial cable.

3.1.2 T/R Switch

The T/R-switch (Transmit/Receive) is a typical diode bridge based switch produced at the electronic

workshop at the Department of Physics and Technology (IFT).

A regular diode has a knee voltage, also known as a cut-in voltage, where the current increases rapidly

above this point. This minimum voltage is required for a diode to work [58, 59]. As can be seen in

Fig. 3.5, there are three diodes in series with the signal generator in the forward direction. For the

transmitting signal in the project, the voltage must thus be three times the knee voltage, which for

regular silicon diodes, as used in this switch, is 0.7 V [59]. The amplitude of the received signal is,

however, not within the overall minimum voltage amplitude criteria of the diodes. The diodes will act

as an open circuit, and the received signal will thus be picked up by the oscilloscope instead.

Figure 3.5: Electronic circuit diagram for the T/R-Switch applied in the project

The knee voltage, which make the diodes suitable for use as switches, also causes non-linear effects

at the received signal[58]. These effects are clearly visible in the project, and are eliminated through

filtering. This is shown in Section 3.4.4.

3.1.3 Transducer

Throughout the project, only one transducer would be needed, which would act as both the transmit-

ter and the receiver. To find a suitable transducer for the project, factors like center frequency, radius,

type of transducer and connector type had to be considered.
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After consulting with XSENS Flow Solutions[2], a frequency of 500 kHz was assumed to be sufficient

concerning possible dispersion effects in crude oils (ref. Section 7.1) as the operational frequency of

their flow meters are lower.

The experimental setup utilized in Fig. 3.3 required a watertight transducer. Generally, immersion

transducers, as opposed to standard contact transducers, are designed for liquid environments and

have watertight connectors [60].

With the above requirements, the choice fell on Panametrics Ultrasonic Immersion Transducer type

V301-SU, with the transducer dimensions shown in Fig. 3.6. The technical specifications by the man-

ufacturer are listed in Table 3.3, and the transducer properties are listed in Table 3.4. The transducer

can withstand water temperatures up to 50oC which sets the approximate boundary for maximum

temperature throughout the project [61].

It is in Section 6.5.1 shown that the measurement cell also can operate at frequencies below the oper-

ating frequency of f = 500 kHz, resulting in accurate measurements down to 375 kHz and a deviation

of ≈ 1.5 m/s at 275 kHz. Accurate measurements are also obtained at 600 kHz (Section 6.5.1).

Table 3.3: Transducer specifications [61]

Transducer Type
Frequency

[KHz]

Nominal element size
Unfocused transducer

part number

[mm] [inch] VIDEOSCAN

Large Case Diameter (LCD) 500 25.4 1.0 V301-SU

The nominal element diameter is 25.4 mm, shown in the left sketch in Fig. 3.6. The effective element

radius and directivity in water are found experimentally, where the experimental setup for measuring

the effective element radius is described in Section 3.3. As the effective radius is hard to measure in a

solid [14], the effective radius in water in applied throughout the project.

A test form (with correct serial number) for the specific transducer used in the project could not be

located. Solberg [21] used the same transducer model with a different serial number, and a test form

of that transducer is enclosed at the end of Solberg’s thesis. This will be used as a general indication

of the bandwidth and resonance frequency of the transducer in hand. A summary of the findings is

presented in Table 3.4.
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Figure 3.6: Transducer V301-SU dimensions [61].

With the chosen frequency f = 500 kHz, a = ae f f , and measured sound velocity in the Plexiglas buffer,

cb = 2711 m/s at room temperature (Section 6.3), the Rayleigh distance can be calculated using Eq.

(2.46), resulting in rR = 89.5 mm.

Table 3.4: Experimental transducer properties calculated from the results in section6.4.*From [21].

6 dB Bandwidth

Transducer

type
ae f f

Center

freq.*

Peak

freq.*
θ3dB Lower freq.* Upper freq.*

V301 12.43 mm 0.48 MHz 0.47 MHz 3.5oC 0.33 MHz 0.64 MHz

The transducer is connected to the T/R switch using a coaxial cable with a waterproof UHF connector

at one end and a BNC connector at the other end. The transducer is mounted on the Plexiglas buffer

using an installed attachment shown in Fig. 3.7b. To facilitate the transmission of sound energy from

the transducer into the buffer, a couplant of type Bluescan Ultrasonic gel is applied to the transducer

surface.

3.1.4 Measurement cell

The workshop at the Department for Physics and Technology at UiB constructed the measurement

cell used in this project based on the authors design, shown in Fig. 3.7. A transducer was clamped on

the measurement cell and a temperature probe was inserted into the sample area. In Section 3.5, the

dimensions and specifications are explained in detail.
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(a) Top view (b) Front view

Figure 3.7: Picture of the measurement cell used in the project with transducer and temperature probe. Di-
mensions and specifications are given in section 3.5.

3.1.5 Oscilloscope

A Tektronix DPO3012 Oscilloscope [62], was used to monitor and log the received signals. The oscil-

loscope was connected to the T/R switch as well as the output signal from the signal generator using

coaxial cables, and was further connected to the computer via USB. Through a Matlab-script (Ap-

pendix D.2), data points were sampled for further processing.

The oscilloscope has 2 analog channels, 100MHz bandwidth, 16 bits vertical resolution and a sample

rate of 2.5 GHz. It was externally triggered by the signal generator.

Figure 3.8: Picture of the Tektronic DPO3012 Oscilloscope with a typical waveform.

When extracting the data from the oscilloscope onto the computer, only the data displayed would be

extracted. It was thus essential to make sure that the oscilloscope screen showed the data of interest.

Therefore, the data of interest filled the display and was enlarged as much as possible without causing
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any saturation. The signal was then averaged 512 times using the built-in average function to reduce

incoherent noise. The resulting waveform can be seen in Fig. 3.8.

The range of the oscilloscope in the horizontal direction is 1 ns/div to 1000 s/div where the corre-

sponding time accuracy is ± 10 ppm for a 1 ms interval or larger. In the vertical direction, the range

is 1 mV/div to 10 V/div (1MΩ), and the corresponding accuracy is ±1.5% for larger than 5 mV/div. To

get the signal of interest into frame, the horizontal and vertical sensitivity was set to 20µs and 50.0 mV

respectively. This corresponded to a 500MHz sample rate, which was set automatically. Further, the

waveform was set to be split into 100k sampling points which were exported to MATLAB for further

processing.

3.1.6 Pressure measurements

To measure the barometric pressure, a freestanding barometer is used, shown in Fig. 3.9. The barom-

eter is a Paroscientific Model 740 barometer [63] with an accuracy of 0.015% of reading at room tem-

perature, and a resolution of 10−5 bar. The barometer is not incorporated into the measurement

circuit, and thereby the signal processing script. Consequently must the pressure be read manually

before, during, and after a measurement series. No significant changes in pressure has been observed

during a measurement series, and it is thus assumed that the uncertainty due to observational fluc-

tuations in analog pressure readings (ref. Table 6.4) accounts for the uncertainty due to not logging

the pressure continuously.

Figure 3.9: Picture of Paroscientific Model 740 barometer.

3.1.7 Temperature measurements

A temperature sensor with high precision is required to be sure that the temperature in the sample

liquid is known.

JUMO STEAMTemp Temperaturgiver RTD (902830), article number 00445084 [64] is chosen for this
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project. It is a 4 wire RTD, waterproof, has a diameter of 4mm and a length of 50mm. The diameter is

small enough to have room on all sides of the sensor, inflicting no extra heat from the metal chassis,

as the chassis is believed to get hotter faster than the sample liquid. A picture of the probe placement

is shown in Fig. 3.7, and illustrated in Fig. 3.30. It further has a temperature range of -70oC to +200oC

and an expanded uncertainty of 0.2oC at T = 22.94oC (95% confidence level, k = 2) [64], which is well

below the required in the sensitivity analysis of u(∆T ) = 0.35oC at 68% confidence level (Section 5.3).

A PT100 temperature sensor is further given by the characteristic equation [65]

R = R0(1+αT +βT 2), (3.1)

where R i s the resistance of the temperature sensor, R0 is the resistance at 0oC , T is temperature in oC ,

andα andβ are constants. For a regular platinum element,α= 3.9083·10−3/oC , β=−5.775·10−7/oC 2

and R0 = 100Ω [66].

When measuring the sound velocity with increasing temperatures, the measurement cell is placed in

a water bath, as illustrated in Fig. 3.3, where the temperature of the water bath is controlled using

an external temperature sensor. After calibrating the JUMO sensor, a discrepancy of ≈ 1.5oC is found

between the two sensors, which is accounted for throughout.

It should here be noted that due to the size of the water bath, spatial temperature variations were

observed in the sample area throughout the measurement series. To minimise the spatial variations

between set points, the sample area was stirred manually at even intervals. Changes in sound ve-

locity upon stirring were not observed, and the measurement cell was stabilised for ten minutes at

temperature set points to ensure no spacial temperature variations or flow present in the water.

Calibration of temperature sensor

To calibrate the temperature sensor, a dry-well calibrator is utilized. The temperature sensor is in-

serted into the dry-well and connected to a Fluke Super-DAQ temperature scanner through a tem-

perature sensor multiplexer, as shown in Fig. 3.10. Inserted into the dry-well is also a reference

PT100 element, JUMO 902150-30386. This reference temperature sensor element is calibrated per

DIN EN60751, which is a worldwide standard in calibration of platinum resistance thermometers

[65], with an uncertainty of 0.04oC at 20oC (95% confidence level) [67]. The measured temperature of

the reference PT100 will thus be the reference temperature inside the dry-well.

The temperature scanner is set on an automated test sequence, thus enabling a series of calibrations

without interference. In steps of 3oC , the temperature sensor is calibrated from 18-60oC . For each

calibration step, 100 measurements were collected from both the reference probe and the PT100 us-

ing the USB output of the temperature scanner.

The tolerance band and stability limit are set to 0.15oC and the soak-time to 6 minutes. This means

that the temperature scanner will not take any measurements before the reference PT100 is within

the stability limit for six consecutive minutes, achieving a stable temperature inside the dry-well. The
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tolerance band refers to the temperature the reference probe must be within to start scanning.

Figure 3.10: Block diagram of the measurement setup used when calibrating the JUMO STEAMTemp Temper-
aturgiver RTD.

Two series of measurements were done. In the first round, the coefficients α,β and R0 in Eq. (3.1) are

set to the standard coefficients for a regular platinum element. Using cftool in MATLAB, the measured

average temperature of the reference probe is plotted against the average values for the measured

temperature of the PT100, resulting in new variables, α and β, for the new characteristic equation.

These new variables are then used to run a new set of measurements. If the first series of measure-

ments is done correctly and the correct variables are found, the measured temperature of the PT100-

element should be almost identical to the reference probe. The calibration results are shown in Sec-

tion 6.1.1.

After calibration, the uncertainty in temperature measurements using the PT100 temperature probe

is calculated to U(T) = 0.324oC at 60oC (95% confidence level, k = 2), which includes a maximum

deviation from calibration of 0.04oC (100% confidence level, k =
p

3).

Solving for T in Eq. (3.1), results in an equation for the temperature as a function of resistance

T =
−αR0 +

√
α2R2

0 −4βR0(R0 −R)

2βR0
(3.2)

The temperature is measured for each measurement, and the corresponding resistance is calculated

by using Eq. (3.1) with the general coefficients for a platinum element. Eq. (3.2) is then applied

using the calculated resistance and the new coefficients to find the calibrated temperature. This is

implemented into the data logging script (Appendix D.2).
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3.1.8 Length measurements

When measuring the sound velocity, two dimensions of the measurement cell were of importance;

the length of the sample area, L0, and the length of the buffer, D.

Sample length, L0

Because the buffer and the reflector were attached to the chassis, the placement of the buffer and

reflector in relation to each other would make up the length of the sample area, L0. L0 was thus found

after finishing the measurement cell.

The measurement cell was placed at room temperature (22.94oC ) for 24 hours to ensure no material

expansion due to temperature gradients were present. The knife-edge faces of a MarCal 16EWR digi-

tal caliper [68] were used to measure the length of the sample area. By measuring the entire width of

the sample area, the variation in length could be found. Ten repeatability measurements were taken

at the approximate location of the sound axis, thus at the centre of the width. The results are pre-

sented in Section 6.5. However, as can be seen in Fig.3.11, the measured length of the sample area

was constricted to only the top due to the length of the knife edges. Therefore, assumptions had to

be made about how the length varied further down in the sample area based on the measurements of

the buffer and reflector.

Figure 3.11: A picture illustrating the limitation on measurements due to the knife-edge’s length using the
digital caliper MarCal 16EWR.

Measurements were taken at increasing temperature as to see if any changes could be measured,

but no changes within the resolution of the caliper could be found. Within the temperature span of

the project, the increase in sample length due to thermal expansion falls within the uncertainty of

the MarCal 16EWR digital caliper. The uncertainty is specified to be ±0.03mm by the manufacturer,
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following DIN 862 standard [68]. Coverage factor k = 2 is assumed.

A combined standard uncertainty in sample length of u(L0) = 0.0252mm (95% confidence level, k =

2) is calculated, presented in Table 6.8.

Buffer and reflector measurements

Before the buffer was attached to the aluminium chassis, the length of the buffer, D, was measured.

After setting the buffer to room temperature for 24 hours, the buffer’s length, width, and height were

measured using a MarCal 16EWR digital caliper. The buffer was rotated and measured at several

places to ensure that the entire Plexiglas buffer block was covered. At the approximate location of

the sound axis, ten repeatability measurements were taken of the length across the entire height of

the buffer. The results are presented in Section 6.5. The dimensions of the reflector, on the other

hand, could not be measured due to irregular surfaces. In cooperation with the Institute for Physics

and Technology’s workshop, the reflector surface was assumed to be plane with an uncertainty of

±0.02mm (95% confidence level).

3.2 Sound velocity measurements in Plexiglas buffer

To accurately correct for diffraction, the compressional sound velocity in the Plexiglas buffer must be

known. This section will present the method for measuring the Plexiglas buffer at room temperature

and as a function of temperature. The results are presented in Section 6.3.

To accurately measure the compressional sound velocity of the Plexiglas buffer, cb , the measurement

setup shown in Fig. 3.1 was used, and the transducer was further excited with a ten-period pulse at

500kHz with a 10V peak-to-peak output amplitude.

If no sample is present, the plane wave reflection coefficient can be approximated to R ≈ 1 as Zai r <<
Zbu f f er , where Zai r and Zbu f f er correspond to the impedance of air and buffer respectively. The

transit time between echos traversed in the Plexiglas buffer 2 and 4 times can then be used to measure

the sound velocity. Following Eq. (2.13) with ∆t r em = ∆t cor r (ref. Section 2.3.1), this can be found

through

cb = 2D

tRB + t cor r
B2 − t cor r

B1

, (3.3)

where D is the buffer length and tRB is the average transit time between the arrival of the first and sec-

ond reflection at the buffer/air interface, measured with the zero-crossing signal processing method

(ref. Section 3.4.2). Further, t cor r
B1 and t cor r

B2 are the correction factors due to diffraction, which can be

found by applying the BPDC model (Eq. (2.38)) for both pulses, where d = 2 ·D and d = 4 ·D for t cor r
B1

and t cor r
B2 respectively.

An 85x100x100 mm Plexiglas block was used to acquire the cb as a function of temperature. The same

type of Plexiglas was used as the buffer used in the project. The Plexiglas buffer in the project is

fixed with bolts to the metal chassis, limiting the thermal expansion of the buffer. By immersing only
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the buffer into the water bath, the buffer can expand without any applied stresses, and the thermal

expansion can thus be compensated for through Eq. (2.54) with thermal expansion coefficient αb =
70 ·10−6 [53]. The V301 transducer was clamped onto the block, and the setup was then placed into

the water bath setup, illustrated in Fig. 3.3. To avoid amplitude reduction due to sound transmission

into the water bath, a plastic bag filled with air was secured on the backside of the buffer, shown in Fig.

3.12. The bag will act as a vacuum and reflect most of the propagating wave back to the transducer

surface.

The signal generator was set to produce a ten-period pulse at 500 kHz with a 10 V peak-to-peak voltage

amplitude. A temperature interval of 22oC to 45oC was chosen, and in steps of approximately 3oC , the

waveforms were collected, and the average compressional sound velocity was found using Eq. (3.3).

To assume stable temperature conditions, the water bath was stabilized for 10 minutes between each

setpoint.

Figure 3.12: Picture of the measurement setup used to measure the sound velocity in the Plexiglas as a function
of temperature. A plastic bag filled with air is secured with tape on the back of the Plexiglas, and a transducer
is clamped onto the front. The setup is immersed into the water bath

An attempt was made to measure the shear sound velocity in the Plexiglas buffer. As can be seen in

Fig. 3.26, the amplitude is severely reduced compared to the signals of interest, which makes locating

the zero-crossing between the pulses difficult. The sound velocity measurements were thus not seen

as reliable, and the shear sound velocity was found by applying Eq. (2.1) with the experimental cb ,

and ν= 0.4 [23].
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3.3 Setup for measuring the effective transducer radius

The effective transducer radius, ae f f (Section 2.4), was measured using the experimental setup shown

as a block diagram in Fig. 3.13.

The V301-transducer was manually immersed into a water tank and aligned with a hydrophone through

motion controllers in the vertical and horizontal planes. The angle of the transducer was further man-

ually aligned through a rotation stage. The transducer and hydrophone were separated by a distance

≈ 64.5 mm, which assured far-field propagation, thus d > rR . A picture of the measurement setup is

shown in Fig. 3.14.

When the transducer and hydrophone were aligned, several measurements were performed. The sig-

nal generator was set to produce a 100-period sinusoidal burst with f = 500kHz and 10V peak-to-peak

output amplitude. In steps of 0.1o and 0.05o , the rotation stage was set to rotate from −7o to 7o , cor-

responding to an approximate width of the main lobe. For each step, the amplitude was found in the

stabilized part of the signal and averaged 125 times before the results were collected from the oscillo-

scope.

A beam pattern is found by plotting the recorded amplitude against the corresponding angle. By lo-

cating the θ3dB -angle, ae f f can be calculated using Eq. (2.52).

The alignment of the hydrophone and transducer, rotation of the transducer under the measurement

series, and the data collection and processing were all automated processes in Matlab using a series

of scripts. The original scripts can be found in Magne Aanes’ doctorate from 2014 [69] and have later

been modified by Mathias Saether in the Acoustics Group at the University of Bergen.

Figure 3.13: Block diagram of the measurement setup for finding the effective transducer radius.
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Figure 3.14: Picture illustrating the measurement setup, where the transducer and hydrophone are highlighted.

3.4 Signal processing

The sound velocity is commonly determined by calculating the transit time in a specific pulse feature.

This can be the first peak, the start of the signal (signal onset), or one or several zero-crossings in a

specific portion of the pulse [36].

However, several factors can change the shape of the propagating pulse, making it problematic to

determine the velocity accurately. There are several methods to calculate the sound velocity, and in

this project, two methods will be studied and later compared.

The first method does not have a defined name but will be named the Zero-crossing method (ZCM)

in this project. It is a widely used method [9, 14, 21] and is based on measuring the transit-time using

the same zero-crossings in two pulses of interest.

The second method studied here is the Fourier spectrum method (FSM) [14, 36, 50, 70, 71, 72]. Using

a Fourier Transform, the signals are transformed into the frequency domain, where the unwrapped

phase is used to calculate the speed of sound. One advantage of this method is the ability to use short

pulses. However, one must ensure that the pulses are long enough that the centre frequency is well-

defined [72].

This section will first present the sampling parameters used for signal processing. The theory of both

methods will then be discussed, along with implementing them. Lastly, a few remarks will be made

about the digital filters used in this project.
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3.4.1 Sampling parameters

As to give an overview of the parameters used for the signal output and data collection, a table sum-

marizing the variables is given here. These variables will be the same for both signal processing meth-

ods.

Table 3.5: Parameters used throughout the data collection.

Nr. of

bits

Horizontal

res.

Vertical

res.

Sampling

freq.

Output

voltage

Signal

Freq.

Burst

period

16 20 µs 50 mV 500 MHz 10 V 500 kHz 10.0 ms

The oscilloscope screen in Fig. 3.8, shows the horizontal and vertical resolution and the typical wave-

form used throughout the project, where the vertical resolution is set to maximum without reaching

saturation. The waveform was further set to be split into 100 k sampling points and exported to MAT-

LAB for further processing. Other parameters will be given when applicable.

3.4.2 Zero-crossing method

In the Zero-crossing method, the sound velocity is determined by measuring tB − tA by direct transit

time measurements of Signals A and B. Signals A and B are defined in Section 2.2.1, along with the

corresponding tA and tB . The transit time is calculated at a point where the sampled signal crosses

the zero voltage line, known here as a zero-crossing. This zero-crossing can either be in the transient

part, the steady-state (stationary) part of the signal onset, illustrated in Fig. 2.2. Using zero-crossing

number i, where i = 1,2,3..., for Signals A and B, the time between the arrival of the pulses can be

calculated. This is shown in Fig. 2.2, where zero-crossing number i is marked in red. The signal onset

is found at i = 1. This can be used to calculate the speed of sound as it is less prone to dispersion

effects [37], but the accuracy of this method is debated [36, 37]. At the start of the signal, the energy

is low, and any coherent acoustic interference (ref. Section 3.5.3) in this area could lead to inaccurate

measurements [14]. Further, the signal onset can be hard to locate [36].

In this project, the average sound velocity will be calculated using several zero-crossings in the steady-

state portion of the signal, thus the portion of the signal with a defined frequency and amplitude.

The resulting transit time will be more robust against noise sources by averaging over several zero-

crossings.

To calculate the transit time using the Zero-crossing method, the zero-crosses must be located. Since

the values are discrete, few to no point intersect at these zero-crosses. However, the signal-to-noise

ratio (SNR) is calculated to be 37dB (Section 3.4.5), thus an almost linear part of the sine-wave around

zero can be assumed. Linear interpolation as a method for calculating the zero-crosses is therefore

assumed to be sufficient.

Locating the zero-crossing at one point using linear interpolation is illustrated in Fig. 3.15. The slope
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of the straight line, m, from the points before and after the zero-crossing can be found by [73]

m = Vi+1 −Vi

ti+1 − ti
, (3.4)

where si = (ti ,Vi ) is the sampled time and voltage before the zero-crossing, and si+1 = (ti+1,Vi+1) is

the sampled time and voltage after the zero-crossing. In linear interpolation, the zero-cross can be

assumed to lay on a straight line between points si and si+1. Thus can the slope be defined as

m = Vi+1 −0

ti+1 − t0,i
, (3.5)

where the zero-crossing is defined in point szc = (t0,i ,0), thus at the zero voltage line at time t0,i . The

time of the zero-crossing can then be calculated:

t0,i = ti+1 − Vi+1

m
. (3.6)

Figure 3.15: Example of calculated zero-cross using linear interpolation

In Matlab, the zero-crosses are calculated by multiplying Vn with Vn+1. A zero-cross is located be-

tween the discrete points if the resulting number is negative.

Locating all zero-crosses in the received signal is necessary to separate the signal of interest from the

noise. This is done by summing all the discrete amplitude values between two zero-crosses. The

zero-crosses corresponding to pulses can be separated from zero-crosses corresponding to noise by

setting a voltage threshold value. It is crucial to find a threshold higher than the noise level but low

enough to detect the start of the signal.

When the start of the signal is located, the steady-state portion of the signal can be found by study-

ing the waveform and defining the zero-crossings of interest. Using the same zero-crosses for Signal A

and Signal B, tB −tA can be calculated and inserted into Eq. (2.13). This is done for each zero-crossing

throughout the steady-state portion of the signal before the average sound velocity is calculated. Al-

though averaging reduces the variation in sound velocity due to noise sources, the discrepancies will

still be an uncertainty assessed in Section 6.8.2.
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This work uses the zero-crossing method for liquid samples using a six-period pulse as the primary

signal processing method. It has further been used when measuring the sound velocity of the Plexi-

glas buffer. The signal processing method will further be compared to the Fourier Spectrum Method,

introduced in the next chapter, using both a two-period pulse and a six-period pulse. For the two-

period pulse, the average sound velocities using zero-crosses number 4 and 5, illustrated in Fig. 3.16a

have been found, as the accuracy of the signal onset has been debated [36, 37]. For the six-period

pulse, the average sound velocity is found using the whole steady-state part of the signal, illustrated

in Fig. 3.16b. In Section 6.5, these zero-crosses are shown to be an accurate representation of the

steady-state portion of the signal.

(a) (b)

Figure 3.16: Illustration of a two-period pulse (a) and a six-period pulse (b) with corresponding marked zero-
crosses, where the red zero-crosses are used for sound velocity measurements in this project.

The disadvantage with this method is the need for a signal with a steady-state to be able to assume

propagation of a continuous wave, an assumption needed in the theory described in Sections 2.3.1

and 2.4. To achieve a steady-state, a several-period pulse is needed. As will be evident in Sections

3.5.3 and 3.5.5, such a pulse can result in coherent interference from several sources, decreasing the

accuracy of the measurements.

3.4.3 Fourier Spectrum method

The Fourier spectrum method (FSM) [14, 50, 70, 72] will in this project be used as the second method

for calculating the sound velocity. It is based on using the unwrapped phase angle of the DFT (Eq.

(2.63)) of the signals and will be explained by showing an example using distilled water as a liquid

sample. The case of applying a two-period pulse and applying a six-period pulse will be discussed.

The approach is based on the method explained in Mathias Saether’s dissertation [14], and the theory

is presented in Section 2.2.3.
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The waveform used as an example is acquired with the experimental setup shown in Fig. 3.1 with a

500 kHz two-period 10 V peak-to-peak voltage amplitude. Further parameters used are listed in Table

3.5. Distilled water at T = 24.03oC is used as a sample, which results in ctd = 1494.0 m/s (ref. Eq. (2.2)).

In Fig. 3.17a, the original response used is shown after filtering and eliminating the output from the

signal generator (ref. Fig. (2.2)).

When measuring the sound velocity, the first step is identifying and isolating the pulses of interest.

The start of the signals will be defined by the start of the first peak, where the start is defined at the

zero-crossing using the zero-crossing method (cf. section above). The zero-crossing will further de-

fine the end of the signal at the end of the last peak in the last period. In Fig. 3.17a, the first and

last black mark shows the start and the end of the signals, where the voltage signals are the time do-

main signals, V7,A(t ) and V9,B (t ), corresponding to the pulses S A and SB respectively. The pulses are

extracted and zero-padded with 100 000 samples, where the result is shown in Fig. 3.17b. Abruptly

truncating the signal can lead to potential aliasing effects [14], but it is later shown that these potential

effects are negligible and will be treated as an uncertainty.

(a) (b)

Figure 3.17: a) Received response after filtering for a two-period 500 kHz signal. The marked zero-crosses
indicate the start and end of Signals A and B. Measurement is taken with the setup shown in Fig. 3.1 with
distilled water and a 2 period 500 kHz pulse. b) Isolated pulses based on the signal in Fig. a)

Each signal is then individually isolated for further processing and zero-padded with 100 000 samples

each. They are then circularly rotated to the beginning of the sample window to avoid the 2nπ phase

ambiguity [70], with time shifts t shi f t
A and t shi f t

B for signals A and B, respectively. The time-shifted

signals are then Fourier transformed using Eq. (2.63), where Fig. 3.18 a) and c) present the magnitude

of the DFT, and b) and d) the wrapped phase angle.

Using Matlab, the phase of the DFT is presented as the wrapped phase angle, which means that it

is presented between an interval of ±π. If the actual phase is outside this interval, the phase value is

increased or decreased with multiples of 2π to keep the value between±π or±180o [74]. In Fig. 3.18 b)

and d), which shows the wrapped phase of the DFT of the shifted pulses, sudden phase changes from

−π to +π can be observed. In an infinitely long measurement window, these phase changes would

be exactly 2π [14]. In this project, they are approximately 2π (±3.12) due to the frequency resolution
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when sampling a finite response.

The next step is to unwrap the phase, which is done through Matlab using the command unwrap

[56]. If there is a phase change greater than or equal to π, the command shifts the angle by adding

multiples of 2π until the phase difference is less than π. The unwrapped phase is shown in Fig. 3.18

c) and e). The frequencies below 250kHz and above 700 kHz were filtered out due to noise. The phase

spectrum between 250 kHz and 700 kHz is thus shown.

Figure 3.18: The unwrapping process of the two-period pulses in Fig. 3.17a. Figs. b) and e) shows the wrapped
phase, and Figs. c) and f) shows the unwrapped phase of V7,A( f ) and V9,B ( f ) respectively. Figs. a) and d) shows
the magnitude spectrum’s of signal A and B.

The phase angle of the shifted signals above, 6 V shi f t
7,A and 6 V shi f t

9,B are related to 6 V7,A and 6 V9,B by

[14]

6 V7,A =−ωt shi f t
A + 6 V shi f t

7,A

6 V9,B =−ωt shi f t
B + 6 V shi f t

9,B .
(3.7)

In Eq. (3.7), ωt shi f t
A and ωt shi f t

B are the corresponding phase shifts due to the time shifts t shi f t
A and

t shi f t
B respectively. 6 V shi f t

7,A and 6 V shi f t
9,B are found using the unwrapped phase from Fig. 3.18.

Using Eq. (3.7) together with Eq. (2.30), the sound velocity can be measured as a function of fre-

quency. For comparison with the zero-crossing method presented above, the sound velocity at f =

500 kHz will be extracted. The resulting sound velocity is presented in Fig. 3.22a.
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The results above provide an accurate method to determine the sound velocity in a two-period signal.

However, with a longer pulse length, the center frequency will be more defined and the bandwidth of

the signal will decrease. This is evident in Fig. 3.19 b) and e) upon comparing the magnitude spectra

with Fig. 3.18. In Fig. 3.19, the same experimental setup is applied as for the two period pulse (ref.

Fig. 3.17b, with a six-period pulse at f = 500 kHz, using distilled water at 24.05oC . The same signal

processing method is applied, where the phase of the DFT is presented in Fig. 3.19 b) and d), and the

wrapped phase angle in c) and e).

Figure 3.19: The isolated, zero-padded and circularly rotated signals A and B are shown in Fig. a) and d) with
a six-period 500 kHz pulse. The corresponding frequency spectras are shown in b) and e), and the wrapped
phase is presented in c) and f) for signal A and B respectively.

A consequence of the decrease in bandwidth, is that low frequency signal-to-noise (SNR) areas will

appear. In the low SNR areas, identified by the dips between peaks in Fig. 3.19 b) and e), the wrapped

phase does not reach ±π. When unwrapping the phase, these areas will result in discontinuities,

observed in Fig. 3.20. At the first dip, right after 300 kHz, the wrapped phase is 6=π, and a discontinuity

in the unwrapped phase can be seen at that point. The discontinuities will further provide inaccurate

sound velocity measurements, as can be observed in Fig. 3.21. These phase unwrapping problems

upon low SNR have been discussed by several other authors [75, 76, 77].
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Figure 3.20: The unwrapped phase of a) V7,A( f ), and b) V9,B ( f ) of Signals A and B in Fig. 3.19 respectively.

Figure 3.21: Sound velocity as a function of frequency using the wrapped (red) phase, and the unwrapped (blue)
phase for the six-period pulse shown in Fig. 3.19

Fig. 3.21 shows, however, that the sound velocity obtained using the wrapped phase is inaccurate

with almost 100 m/s, which is of such magnitude that the sound velocity can be discarded. This

definite error is an inherent benefit of the FSM in general [78], which makes it easy to determine

when accurate velocity measurements are acquired.

In Figs. 3.19 and 3.21, it can however be seen that the wrapped phase at f = 500 kHz is accurate due

to the large SNR. The wrapped phase has been seen to represent all measurements in the relevant

measurement series accurately. It has thus been decided to use the wrapped phase for sound velocity

measurements when applying the FSM with six periods, and a solution for accurately unwrapping

has not been further investigated.

To illustrate how the speed of sound changes from abruptly truncating the signal at the last zero-

cross to linearly trailing off the signal for the two-period and six-period pulse, the sound velocities

are calculated in both cases for both signals using the method described above. The results are shown

in Fig. 3.22, where both scenarios are displayed for both signals. The resulting sound velocities are
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shown in Fig 3.23.

(a) Two-period signal (b) Six-period signal

Figure 3.22: Signal 3.17a (a) and Signal 3.19 (b) isolated by linearly trailing the signal, and by truncating the
signal.

(a) Two-period signal
(b) Six-period signal

Figure 3.23: The calculated sound velocity using the Fourier Spectrum method for both scenarios shown in Fig.
3.22a at 24.03oC and 1 atm (a) and Fig. 3.22b at 24.05oC at 1 atm (b). The resulting sound velocities are not
corrected for diffraction

It can in Fig. 3.23b be noticed that the sound velocity as a function of frequency changes between the

two scenarios. However, at f = 500 kHz, thus at the frequency of interest when comparing the method

to the ZCM, the sound velocities are almost identical. For the truncated signal, a sound velocity of

cs = 1495.192 m/s is measured, while for the linearly trailed, cs = 1495.184 m/s. Using Eq. (2.12), this

will correspond to an uncertainty in transit time due to truncating the signal of

u(∆t )6per i od
tr unc = 2 ·25.18 ·10−3

1495.184
− 2 ·25.18 ·10−3

1495.192
= 1.802 ·10−10s, (3.8)

where the sample length is measured in Section 3.1.8. It should be noted that these values are not

corrected for diffraction. Corrected for diffraction (ref. Section 2.3.1), the sound velocities are mea-

sured to cs = 1493.802 m/s for the truncated, and cs = 1493.798 m/s for the linearly trailed, against a
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theoretical sound velocity at 24.05oC and 1 atm of ctd = 1494.07 m/s. This corresponds to a deviation

of ≈ 180 ppm for both scenarios, which is a promising result for later sound velocity measurements.

The same approach can be used for the two-period signal, Fig. 3.23a. A deviation can be seen between

the two scenarios as a function of frequency as for the six-period pulse. At 500 kHz the sound velocity

of the truncated signal (not corrected for diffraction) is cs = 1495.32 m/s, and the linearly trailed is

1495.28 m/s. Using the same method as above, this corresponds to u(∆t )2per i od
tr unc = 9.01 ·10−10 s. Cor-

rected for diffraction, the truncated sound velocity corresponds to cs = 1493.95 m/s, while the linearly

trailed gives cs = 1493.91 m/s. Using T = 24.04oC and 1 atm, ctd = 1494.0 m/s. This corresponds to a

deviation of 60 ppm, which is even more promising than for the six-period pulse.

The difference in sound velocity for both the two-period and six-period pulse is small enough to

conclude that truncating the signal is sufficient. The total transit time uncertainty due to truncating

the signal when using FSM is further assessed in Section 6.8.2.

A comparison between the zero-crossing method and the Fourier spectrum method is shown in Sec-

tion 6.5, and the resulting choice of signal processing method is discussed in Section 7.2.

3.4.4 Filtering

As will be evident in the experimental part of the project, a waveform at the oscilloscope contains

both the acoustic signal of interest and noise. Therefore, filtering out as much noise as possible is

essential to increase the Signal to Noise ratio (SNR).

Two coherent noise sources must be accounted for; the coherent noise with the same frequency as the

wanted signal and the coherent noise with frequencies above or below the wanted signal. Coherent

noise with the same frequency as the wanted signal is discussed in Section 3.5.3. The noise with

frequencies above or below the wanted signal can be filtered out using a causal FIR-filter, a filter

where each sample is a weighted sum of the present and past inputs [54]. A bandpass filter is chosen

in this project to remove both the upper and lower frequencies.

Initially, an analogue Krohn-Hite Model 3940 filter was implemented in the measurement circuit,

with 200 kHz and 800 kHz cut-off frequencies. When the analogue filter was incorporated into the

measurement circuit, the waveform became too "dynamic" where its amplitude and phase fluctu-

ated and thus lacked sufficient stability for accurate sampling. This was believed to be due to the

strong DC-component present from the T/R-switch. Changing the cut-off frequencies of the filter

was further tried without success. A digital filter was therefore chosen. As the waveform had to be

sampled quite often, a filter with a low computational cost was needed. Further, due to the Fourier

Spectrum method being dependent on the unwrapped phase of the signal, the filter could not cause

any phase distortions. Matlab has a pre-designed digital filter named bandpass which is a casual

minimum-order FIR-filter [56]. It further compensates for the phase delay introduced by the filter

itself [56]. With a centre frequency of 500kHz, the cut-off frequencies are 200kHz and 800kHz. The

default value of the stopband attenuation is 60dB [56], which has been tested to be computationally
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efficient for the project.

A large DC-component is present in the analogue signal due to the T/R-switch. The DC-component

results in a steep step response and a discontinuity where the derivative is undefined due to an infinite

amount of frequency components present. Although the bandpass filter filters out most unwanted

frequencies, fluctuations due to the DC-component will still be present after filtering, shown in Fig.

3.24a, and enlarged in Fig. 3.24b. The blue curve shows the original signal before filtering, named

Waveform A, and the yellow curve shows the signal after filtering, applying the bandpass filter, named

Waveform B. Due to the fluctuations still present in Waveform B, the waveform is cut right after the

discontinuity, shown as a black dotted line in Fig. 3.24a, and manipulated, assuring that the first

sample starts at the zero voltage line. The DC-component can then be removed by filtering the signal

through the bandpass filter. The result is shown as the red curve in Figs. 3.24a and 3.24b and is named

Waveform C.

(a) (b)

Figure 3.24: a) Waveform A shows an original measured signal from the measurement cell described in Section
3.5, using f = 500kHz, 10V peak-to-peak amplitude, and 10 periods. Waveform B is the processed signal after
applying band-pass filter. Waveform C is the filtered, processed signal after removing the discontinuity in the
original signal. Fig. b) shows an enlarged part of Fig. a).

From Fig. 3.24b, it is evident that if only the portion of the pulse after the discontinuity is cho-

sen (Waveform C), the signal is significantly improved in terms of fluctuations between the output

transducer-signal and the first pulse. This method is therefore implemented in the data collection

script when measuring the sound velocity. It should be noted that when measuring the sound veloc-

ity, the signal on the oscilloscope is enlarged (cf Fig.3.8) and the discontinuity is not visible. However,

the signal must still be cut as explained above before further processing.

Although the bandpass filter claims to compensate for the phase distortion, it is important to see how

much distortion there will be after filtering. The phase of waveform C in Fig. 3.24 is thus calculated

before and after filtering. The resulting change in phase due to the applied filters is shown in Fig. 3.25.
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Figure 3.25: Calculated phase distortion in waveform C as a function of frequency when applying the pre-
designed filter bandpass in Matlab.

There will be a slight distortion in phase due to the applied filter. Several other built-in Matlab filters

are studied to see if this phase distortion can be reduced or eliminated without success. An uncer-

tainty in transit time when calculating the Fourier Spectrum method due to phase distortions thus is

set to 0.01 rad, corresponding to u(∆t )ph = 3.18·10−9 s.

3.4.5 Noise

Different noise sources can affect the acoustic signals used to calculate the sound velocity in the liq-

uid, which may lead to a decrease in accuracy. It is thus crucial to identify the noise sources and

minimize their influence on the signals of interest.

Signal-to-Noise ratio (SNR)

Noise affects the signal, decreasing the accuracy of the calculated sound velocity when determining

the sound velocity from the received pulses. As can be seen in Section 6.8.2, the accuracy of the sound

velocity decreases with increasing noise. Therefore, the ratio of signal to noise should be kept as high

as possible.

The signal-to noise ratio, SNR, is defined as the power of signal to the power of noise, commonly

specified in decibels [4]

SN R = 10l og

(
WS

WN

)
= 20log

(V S
RMS

V N
RMS

)
[dB ], (3.9)

where WS and WN is the power of signal and noise respectively, V S
RMS is the root-mean-square (RMS)

voltage of the signal and V N
RMS is the RMS voltage of the noise.
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For a sampled signal, the RMS voltage of the noise in Eq. (3.9) may be expressed as [4]

V N
RMS =

√√√√ 1

N

N∑
n=1

V 2
n,N , (3.10)

and the same for the RMS of the signal.

Incoherent noise contributions

Incoherent noise, also known as random noise, is composed of both temporal and spatially random

noise, which could appear anywhere in the waveform [79].

The SNR due to incoherent noise is usually improved by applying a bandpass filter, as explained in

Section 3.4.4. However, this only eliminates noise outside a specific frequency range, and the inco-

herent noise could be anywhere on the frequency spectrum. The SNR is thus further improved by

averaging multiple signal traces.

To calculate the V N
RMS in the received signal, the unfiltered, original waveform, shown as the blue

response in Fig. 3.24a is utilized, where the signal has been averaged 512 times. There is a strong DC-

component present in the original waveform, which makes it hard to calculate the average voltage

amplitude. The data points prior to the received transducer signal are thus utilized to measure the

incoherent noise RMS value, V N
RMS , by applying Eq. (3.10). The signal will further contain the same

DC-component. Thus, to calculate the signal RMS value, it is assumed that the amplitude of the signal

in Waveform C in Fig. 3.24a is the same as the unfiltered signal amplitude. This is not necessarily true,

but it can give a rough estimate of V S
RMS . For Signals A and B, a resulting SNR of 37 dB and 39 dB is

calculated using Eq. (3.9). No significant changes in the SNR have been observed throughout the

measurement series.

Coherent noise contributions

Coherent noise is noise sources with the same frequency as the carrier frequency of the signal of in-

terest but with different amplitude and phase. The coherent noise source can thus not be eliminated

with filtering or averaging. The different coherent noise sources in the project must therefore be iden-

tified and analysed to improve the SNR, shown in Fig. 3.26. The coherent noise can arise from several

sources, e.g. reverberation, transducer echos, side lobe interference and acoustic cross-talk. By iden-

tifying the noise sources, adjustments can be made to reduce the effect the noise contributions have

on the pulses of interest, increasing the accuracy of the sound velocity measurements.

Two pulse trains are studied using the experimental setup presented in Fig. 3.1 with f = 500 kHz and

a 10 V output amplitude. One measurement is conducted in the absence of a liquid sample, enabling

the investigation of the buffer contributions. The result is shown as the red response in Fig. 3.26. The

blue response in Fig. 3.26 shows the response when distilled water is used as a liquid sample, thus

the response used to measure the sound velocity in the liquid. To inspect each noise contribution
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individually, a two-period burst is selected.

S1 is the reflection from the buffer/sample interface, while S3 is the reflection from the sample/re-

flector interface. Further, S2 is a mode-converted wave that has propagated once as a compressional

wave through the buffer and once as a shear wave, Scs (Section 3.5.3). In Section 3.5.5, S4 is identi-

fied as the reflector reverberation. Lastly, S5 and S6 correspond to the four times traversed pulse in

the buffer and sample, respectively, explained in Section 3.5.3. Side-wall reflections have not been

identified.

The pulses S1 and S3 are the signals of interest in this project. From Fig. 3.26, S1 is well isolated and

can easily be identified. Isolating S3 can, however, become complicated if a longer pulse is chosen

due to S4 and S5 being in proximity of the signal of interest. This is discussed in Section 3.5.6.

Figure 3.26: Measurements conducted using the experimental setup presented in Fig. 3.1, used for investiga-
tion of noise contributions. Red curve shows the response in the absence of a liquid sample. Blue curve shows
response using distilled water at 19.7oC as liquid sample.

3.5 Construction of the measurement cell

Multiple parameters need to be considered to construct the measurement cell used in this project. It

is desirable to have low uncertainty. Consequently, the acoustic noise sources must be identified, and

design implementation must be done based on these sources. The design must also account for an

increase in temperature and a change in sound velocity in the sample. This section will discuss the

design considerations and present the final result.
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3.5.1 XSENS’ preferences

XSENS Flow Solutions [2] set several preferences in advance. An operational frequency of f = 500 kHz

was desired to account for possible dispersion effects in crude oils. The measurement cell was also

intended to be small, lightweight, and easy to transport. All parts of the measurement cell, including

buffer, reflector, and sample area, would thus have to be constructed accordingly. In addition, the

sample area would have to be designed so that not much liquid would be required, with a limit of 0.5

litres. A measurement cell measuring precise sound velocity from 1250 m/s to 1580 m/s was preferred

to accommodate sound velocities in crude oils and saline water at higher temperatures. Nesse’s [7]

measurement cell (ref. Fig.1.1) was used as a starting point, with the goal of making it smaller and

lighter while obtaining as high a level of precision as possible.

The preferences above were thus all considered when constructing the measurement cell, together

with the objective to measure the sound velocity with a relative expanded uncertainty of less than

1000 ppm.

3.5.2 Material considerations

When choosing the material for both the measurement cell and the buffer, many factors had to be

considered. In this section, Table 3.6 will be used as a base for discussion.

Due to the principle behind the solid buffer method (Section 2.2.1), the solid buffer must have a dif-

ferent impedance than the liquid sample. However, if the material impedance is too high, most of

the sound energy will be reflected. This will, in turn, decrease the amplitude, and thereby the SNR, of

Signal B.

Table 3.6: Material properties of three common acoustic materials. Reflection coefficients are calculated
against water at 20oC . Thermal expansion coefficients, α, are found in [80]. The other values are from [23]
p. 526. Shear sound velocity is calculated using Eq. (2.1) with tabulated values.

Material

Compressional

sound velocity

[m/s]

Shear sound

velocity

[m/s]

Density

[kg/m2]

Compressional

Impedance

[MRayl]

Poisson’s

ratio

[-]

Youngs

Modulus

[GPa]

Reflection

coefficient

[-]

α

[/oC ]

Aluminium 6300 3173 2700 17.0 0.33 71 0.84 21-24·10−6

Plexiglas 2650 1082 1200 3.2 0.4 3.2 0.38 68-75·10−6

Stainless steel 6100 2490 7770 47.0 0.28 195 0.94 (16-17.3)·10−6

Thermal expansion and elasticity are two parameters of interest when constructing the chassis around

the buffer. Suppose two materials are clamped together with different linear thermal expansion co-

efficients. The difference may cause thermal shock to the materials when heated up, causing the

measurement cell to crack and leak. It is thus advantageous to ensure that the materials have similar

thermal expansion coefficients.

Suppose the materials differ in terms of thermal expansion. In that case, Young’s modulus indicates

how the materials will interact with each other, as it is a measure of elasticity in a material. A stiff

material has a high Young’s modulus[81]. If a material has a large thermal expansion coefficient and



3.5. CONSTRUCTION OF THE MEASUREMENT CELL 59

is clamped against material with a high Young’s modulus, the material may crack due to the increased

stress. Materials with a high Young’s Modulus are further less malleable and thus difficult to work with

when building the measurement cell.

The material properties listed in Table 3.6, together with the discussion above, support the use of

Plexiglas as a buffer with an aluminium chassis.

The aluminum provided by the Department of Physics and Technology’s workshop is Aluminium Al-

loy 6082 with a linear temperature expansion coefficient of α = 24 ·10−6m/(moC ) [52, 82], while the

Plexiglas used for the solid buffer has a linear temperature expansion coefficient of α= 70.0/oC [53].

The uncertainties inαA andαp are not given and are thus found by calculating the standard deviation

of several online tabulated coefficients. For Plexiglas, the thermal expansion coefficients found online

are αp = (68-75)·10−6 /oC [80], and αp = 70·10−6 /oC [53], resulting in a standard deviation of 2.35 ·
10−6/oC .

For Aluminium Alloy 6082, αA = 24 ·10−6/oC [52], αA = 24 ·10−6/oC [82], and αA = 23.4 ·10−6/oC [83],

resulting in a standard deviation of 0.35 ·10−6/oC .

3.5.3 Considerations due to acoustic noise

Before the dimensions and shape of the measurement cell were finalised, a thorough analysis of the

acoustic noise contribution was carried out.

In a solid-buffer measurement cell, the transducer will not only receive the signals of interest, S A and

SB , but will also be prone to noise due to reflections, echos and shear waves. This can reduce the ac-

curacy of the transit time measurements. These noise sources are coherent and can not be eliminated

through averaging or filtering, and can only be limited or removed by choice in material, dimensions

of the measurement cell and pulse length. This section will describe the different coherent noise

sources and how they can be reduced, thus reducing the transit time uncertainty.

Echo from the main lobe

The sound velocity, using the pulse-echo buffer rod method, is found using Signals A and B (Section

2.2.1), where Signal A, S A , is the twice traversed signal in the buffer and Signal B, SB , has an additional

propagation corresponding to twice the sample length. The sound velocity, however, may be suscep-

tible to interference effects stemming from the signal that has traversed the buffer four times, SRB ,

and the signal that has traversed the sample liquid four times, SRR , illustrated with the orange and

blue propagation paths respectively in Fig. 3.27.
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Figure 3.27: Illustration of the different sources to acoustic noise due to multiple travel times in the measure-
ment cell, together with the signals of interest.

The second reflection inside the sample area, SRR , will be neglected in the design of the measurement

cell as the arrival time of the signal is much later than both S A and SB . It, however, has to be accounted

for when choosing the pulse repetition frequency to make sure that no acoustic cross talk will occur.

The second reflection inside the buffer, SRB , is a possible concern. If the buffer sound velocity, cb =
2650 m/s (ref. Table 3.6) and the sample sound velocity is within a sound velocity span of 1250 - 1580

m/s, cb ≈ 2 · cs . As a result, SRB and S A may arrive at the transducer surface simultaneously. As a

result, SRB may be a source of coherent noise, which is hard to separate from the signal of interest.

The coherent noise source can be reduced or eliminated by choosing a buffer length, D, long enough

to delay SRB or by choosing a short sample length, L0. In this project, SRB is aimed to be placed after

signal B, thus [16]
4D

cb
> 2D

cb
+ 2L0

cs
+∆tbur st , (3.11)

where ∆tbur st is the signal duration. This equation will be applied when determining the measure-

ment cell dimensions.

Shear wave propagation

When measuring the sound velocity using the solid buffer method, mode-converted waves (ref. Sec-

tion 2.3.3) are unavoidable due to the need for a solid buffer. It is here assumed that the transducer

only produces compressional waves and thus will twice traversed shear wave propagation be ne-

glected.

The only way to reduce the mode-converted waves’ effect on the signal of interest is by the choice in

pulse length, suitable buffer material and proper measurement cell dimension. Because the buffer is

made of Plexiglas, the interference can only be limited by the buffer length, sample length and pulse

length.
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The mode-converted wave propagating as a compressional wave one way and shear wave the other

way will henceforth be named Scs . If the mode-converted signal is to arrive before signal B, then [16]

D

cshear
+ D

cb
+∆tbur st <

2D

cb
+ 2L0

cs
. (3.12)

Another option is to let Scs arrive after SB . This would, however, result in an unfeasible large mea-

surement cell and is thus eliminated as an option. Eq. (3.12) will be applied in the following section

to determine the dimensions of the measurement cell.

Side lobe interference

As shown in Fig. 2.9, the beam pattern of the transducer consists of a main lobe and several side

lobes. Suppose the transducer is modelled as a baffled piston, and one assumes far-field propaga-

tion. In that case, the side lobes will propagate at angles determined by nodes calculated from the

Bessel Directivity function, Eq. (2.47). Because the side lobes propagate at angles away from the main

lobe, they will follow different propagation paths inside the measurement cell, resulting in possible

coherent noise from reflections inside the measurement cell. The interference due to these reflec-

tions can be reduced by expanding the width of the buffer. However, these reflections depend on

the size of the measurement cell, the temperature inside the buffer, and the sample liquid’s sound

velocity.

To be able to see how the side lobes evolve with different acoustic parameters and measurement cell

dimensions, a simulation is created by the author, presented in Section 4.2. Based on the simulation

result, a numerical analysis can be done on the magnitude of the coherent noise due to side lobe

interference. This is carried out in Section 4.3.

3.5.4 Dimensional considerations

Based on XSENS’s preferences (Section 3.5.1), choice of transducer element radii and frequency (Sec-

tion 3.1.3), choice of material (Section 3.5.2) and the acoustic noise analysis (Section 3.5.3), the pulse

length and dimensions of the measurement cell could be determined. Although XSENS preferred a

small and manageable measurement cell, other factors mentioned had a great say if the measurement

cell was to measure the sound velocity with an accuracy of less than 1000ppm.

The minimum length of the sample area was largely based on the sensitivity analysis presented in

Section 5.3. If the measurement cell is to have a relative expanded uncertainty of less than 1000 ppm

at 95% confidence level, Table 5.8 permits a relative standard uncertainty in sample length of 630

ppm at 68% confidence level. With a sample length of 25.00 mm, an expanded uncertainty of U(L0)

= 0.0316 mm is allowed, while decreasing the sample length to say, 20 mm, reduces the allowed ex-

panded uncertainty to U(L0) = 0.0252 mm. A smaller sample length would also result in challenging

maintenance and cleaning due to physical constraints. The minimum sample length is thus set to 25

mm.



62 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHODS

The coherent noise contributions, SRB and Scs are both depend on the dimensions of the measure-

ment cell, the sound velocity of the sample, and the amount of periods. Therefore, to construct the

measurement cell, an analysis was done, inspired by the analysis of Bjørndal et al. [16]. From Ta-

ble 3.6, the compressional and the shear sound velocity in the buffer were set to cb = 2650 m/s and

cshear = 1082 m/s respectively at room temperature. Two dimensional criteria were further set by

solving for D in Eqs. (3.12) and (3.11). For the four times traversed signal, SRB , to not overlap with

signal B,

D > cb

2
·
(2L0

cs
+∆tbur st

)
. (3.13)

Further, the mode-converted shear wave, Scs , restricted the dimensions such that,

D <
2L0
cs

−∆tbur st

1
cshear

− 1
cb

. (3.14)

Two analysis were conducted, one for L0 = 25.0 mm, and one for L0 = 30.0 mm, presented in Figs.

3.28 and 3.29 respectively. For each sample length, two scenarios are studied. The first scenario being

cs = 1580 m/s, and the second when cs = 1250 m/s, thus accounting for the entire sample sound

velocity range of interest (ref. Section 3.5.1). For both scenarios, cb , cshear , and L0 are constant. By

accounting for all of the above considerations as a function of ∆tbur st , the allowed buffer length can

be found for each scenario. Further, by comparing the two analyses, the development of the coherent

noise contributions can be found as a function of sample length. For clearer illustration, Figs. 3.28

and 3.29 are shown as a function of number of periods, ∆tbur st · f , where f = 500 kHz.

Figure 3.28: Allowed buffer length as a function of nr. of periods for L = 25.0 mm, based on the coherent noise
sources where D > the red lines and D < blue lines. The range that fulfills all criteria (Eqs. (3.13) and (7.1)) for a
sound velocity span of 1250-1580 m/s is marked in grey.
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Figure 3.29: Allowed buffer length as a function of nr. of periods for L = 30.0 mm, based on the coherent noise
sources where D > red lines and D < blue lines. The range that fulfills all criteria (Eqs. (3.13) and (7.1)) for a
sound velocity span of 1250-1580 m/s is marked in grey.

From Figs. 3.28 and 3.29, the maximum allowed buffer length decreases as a function of sound veloc-

ity if the four times traversed buffer signal, SRB is accounted for. The maximum allowed buffer length

further increases as a function of sound velocity if the mode-converted signal, Scs , is taken into ac-

count. The area where both criteria are fulfilled (Eqs. (3.13) and (7.1)), marked in grey, is limited by a

less than one period pulse in both scenarios due to the coherent noise sources SRB (at 1250 m/s) and

Scs (at 1580 m/s), with a narrow allowed buffer length span. A one-period pulse is not feasible, and it

is thus evident that either the signal SRB or the signal Scs must be included as a permanent coherent

noise source.

According to Fig. 11 in [16], the mode-converted signal has a significantly lower amplitude than the

four times traversed signal. This was measured using a transducer in pulse-echo mode with f = 5

MHz, clamped on a Plexiglas buffer against air. Although the scenarios are not identical, it can be

assumed that the amplitude of Scs is lower than the amplitude of SRB , and thus will Scs be chosen as

a permanent coherent noise source.

If the criteria set by Eq. (7.1) is removed, thus the coherent noise source Scs , the coherent noise source

limiting the dimensions and nr. of periods is SRB at 1250 m/s. By comparing the figures, it is evident

that an increase in sample length decreases the allowed nr. of periods and increases the required

buffer length, both attributes not desired. A sample length of L = 25.0 mm is thus chosen.

By comparing Fig. 3.28 with Fig. 3.29, it can be seen that the allowed nr. of periods increases with

increasing buffer length (when Scs is neglected). It was, however, desirable to have a measurement

cell as small as possible (cf. Section 3.5.1). From Fig. 3.28, a 70 mm buffer would allow for a ten period
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pulse at 1580 m/s. At 1250 m/s, it would have to be decreased to six periods, but as can be seen in Fig.

3.33, a six-period pulse is sufficient to reach a steady-state.

From the above discussion, a sample length of L0 = 25.0 mm, and a buffer length of D = 70 mm is

chosen. The buffer is small enough for XSENS, while still large enough to utilize a number of peri-

ods corresponding to a steady-state for the entire sample sound velocity range. This buffer length

sets a lower limit of six periods at 1250 m/s but can be increased with increasing sound velocity to

ten periods at 1580 m/s. It can further be noted that if the Fourier spectrum method is used with a

two-period pulse and the dimensions above, the minimum sound velocity at which the four times

traversed buffer signal SRB will not interfere with the signal of interest SB , is > 1100 m/s.

Due to side lobe interference, a wide measurement cell is beneficial [7, 14]. Nesse [7] applied a 100

mm wide buffer, and through ray-tracing simulations explained further in Section 4.2, it is evident

that a decrease in buffer width of less than 100 mm would increase the coherent noise contributions

due to side lobe interference. The buffer width was thus chosen to be 100 mm. As part of the final

design, 5 mm are added to the height to accommodate a lid, resulting in a final buffer height of 105

mm. The final dimensions of the measurement cell is shown in Fig. 3.30.

(a) Top view (b) Front view

Figure 3.30: Dimensions and design of the constructed measurement cell.

3.5.5 Reflector design

At the sample/reflector interface, however, the incident sound wave is partially reflected and partially

transmitted, where the transmitted signal is reflected at the reflector’s end.

As discussed in Section 3.5.2, the reflector is made from aluminium, which has a compressional sound

velocity of 6300m/s, using the tabulated data in Table 3.6. A sound pulse propagating through alu-

minium will consequently travel four times faster than distilled water at room temperature. If the

travel time through the reflector is shorter than the acoustic signal, this might result in coherent noise
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contributions [7].As a result, the reflector had to be designed to eliminate or reduce this possible

source of coherent noise.

A typical reflector in the solid buffer method is angled at the end, that guides the signal towards the

side wall. [7]. If cuts are made at the back face of the reflector, the signal is more distorted, reducing

the chances of reflector reverberation. This design is hence chosen in this project.

Being restricted by the size of the measurement cell, the reflector dimensions must be calculated

based on the minimum travel time needed to avoid or limit coherent noise. Using trigonometric

rules and the sound velocity in aluminium, the dimensions of the reflector was calculated. The result

is presented in Fig. 3.30.

A suspected noise interference due to the reflector was observed when the experimental measure-

ments were carried out, indicated with an arrow in Fig. 3.32. The measurement cell was consequently

acoustically investigated by moving the transducer from the centre of the buffer to the edges, shown

in Fig. 3.31. By monitoring the unfolding of the noise signal as a function of transducer position,

the noise source could be identified. Due to the reflector being angled, a transducer placed on the

left side of the measurement cell (positions A/C) should, in theory, receive delayed noise due to the

increased propagation length in the reflector. The opposite then holds for the right side (positions

B/D).

Using the experimental setup shown in Fig. 3.1 and a short 500kHz burst, three pulse trains were

measured: response from the original transducer position, position A and position B. The result is

presented in Fig. 3.32 and shows a distinct change in the observed noise signal when the transducer

is moved, and it can thus be concluded that the signal is, in fact, noise due to reflector reverberation.

This noise signal was hence considered when choosing the appropriate number of periods in the

pulse, presented in the next section.

Figure 3.31: Illustration of transducer positions used in the reflector experiment.
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Figure 3.32: Resulting responses when the transducer is moved according to figure 3.31, enlarged around Signal
B. Blue curve shows the original response when the transducer is centered.

3.5.6 Pulse length considerations

From Section 3.5.4, a pulse length of six periods at 1250 m/s and up to ten periods at 1580 m/s has

been found to account for SRB and Scs with the dimensions set in the project.

However, from the reflector discussions above, the reflector reverberation is suspected of arriving

shortly after signal B. The arrival of the reflector reverberation, the mode-converted wave Scs , and the

four times traversed buffer signal SRB are thus all noise sources that will interfere with SB if the pulse

length is long enough.

Using the finalized measurement cell with the set dimensions shown in Fig. 3.30, two waveforms

were acquired using a two-period and a six-period pulse. If a short burst is utilized, shown as the

blue curve in Fig. 3.33, the coherent noise sources will not interfere with the signals of interest, S A

and SB . This is, however, not the case for the six-period signal shown as the red curve in Fig. 3.33.

It can be seen at the start of SB that the mode-converted shear wave interferes with SB . The end of

SB and the reverberation from the back of the reflector will further arrive at the transducer almost

simultaneously.
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Figure 3.33: Illustration of the arrival noise contribution in comparison the signals of interest, S A and SB , for a
two-period pulse (blue) and a six-period pulse(red)

Although a short burst seems like the natural choice from Fig. 3.33, a short burst will lack a steady-

state, and the assumption of continuous waves can not be used, which is an assumption behind the

theory presented in Sections 2.4 and 2.3.1.

In Section 6.5, three waveforms are acquired, with a pulse length of two, six and ten periods. The

corresponding sound velocities are measured as a function of calculated zero-crosses in the pulse. It

can from the results be seen that the zero-crossing method (Section 3.4.2) improves drastically when

a steady-state is archived. If the pulse is increased beyond six periods, however, an apparent change

in measured sound velocity can be found upon the arrival of the coherent noise sources. A six-period

signal is thus the upper limit of the project independent on sample sound velocity and will be used

throughout the project to be able to accurately compare the zero-crossings method with the Fourier

spectrum method.

This is long enough to reach a steady-state while still short enough to avoid or reduce the uncertainty

due to the largest coherent noise sources. The advantage of a 6-period pulse is also the ability to

average over consecutive transit-times. A noise source in one part of the pulse will have a smaller

effect on the average sound velocity than a noise source in the two-period pulse.



68 CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT METHODS

3.5.7 Temperature considerations

A temperature sensor would be needed to measure the sound velocity as a function of temperature.

By directly immersing the temperature sensor in the sample area, unwanted reflections would be

generated inside the cell, leading to possible errors in the sound velocity measurements. It was thus

determined to increase the width of the sample area while leaving the buffer at the original width,

which would result in a cavity where the sensor could be placed without disturbing the sound prop-

agation.

The sensor could also not be placed in direct contact with the metal, as it was suspected that this

would cause local heating of the sensor and thus inaccurate temperature measurements. The cavity

was made rectangular and the sensor was placed a few millimeters from each wall to ensure that

this would not happen in this project. The dimensions of the temperature sensor and thereby the

type of sensor thus had to be decided first, explained in Section 3.1.7. The resulting placement of the

temperature sensor is shown in Fig. 3.7.
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Chapter 4

Simulations and Numerical Analysis

This chapter presents two different types of simulations and a numerical analysis. Section 4.1 presents

a simulation performed in COMSOL to study the diffraction correction in the measurement cell used

in the project. Section 4.2 will present a ray-tracing simulation of the side lobe propagation. In Sec-

tion 4.3, a numerical analysis will be presented, used for assessing coherent noise sources.

4.1 Diffraction correction simulation

The Baffled piston diffraction correction (BPDC) model [38]( Section 2.3.1) only considers a single

fluid medium. In the candidate method, there are two signals of interest (cf. Fig. 2.1); Signal A is

a two-way propagation through a solid buffer, and Signal B consists of propagation through several

mediums. For signal A, the BPDC model can be used (under the assumption that the solid buffer

can be approximated as a liquid). For signal B, the BPDC model is not sufficient and thus has the

BPDC-MF (multiple fluid) model been introduced in Section 2.3.1, adapted from the BPDC model.

As will be evident later, accurate experimental sound velocity measurements are obtained compared

to theoretical models. The diffraction correction model presented in Section 2.3.1, and the accuracy

of the model, is thus of importance. Simulations enable more accurate sound propagations than

those obtained through experiments. By comparing the diffraction in the sound propagation from

simulations with the diffraction correction presented in this project, an indication of the accuracy

of the BPDC-MF model can be determined. It should be noted that the results presented here are

preliminary and should be investigated further. The simulations are all time-domain simulations

conducted in COMSOL and were performed by Mosland [84].

Simulations in the time domain are performed with finite element methods, with the time domain

being divided into steps named divisions per period, and the spatial domain is divided into small

steps by mapped meshing, which provides quadrilateral elements [84]. Accuracy depends on mesh

size and time step resolution, which must be sufficient for the solution to converge. However, in gen-

eral, increasing the time and spatial resolution increases the computational cost significantly. Several

studies have been done on the accuracy of the discretisation [14, 85, 86]. This is, however, not within
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the scope of this project, and a convergence test is not performed. Thus are the simulations with the

highest available elements per wavelength (EPW) and divisions per period (DPP) chosen to ensure

the highest accuracy possible, which will vary for each simulation [84].

In this section, two simulations will be presented. The first simulation will simulate propagation in

an elastic buffer, while the second simulation simulates a simplified model of the measurement cell

in the project using an elastic Plexiglas buffer, a liquid sample and a hard boundary at the end which

represents the reflector surface.

The sound source is modelled as a baffled piston by specifying a varying, uniform displacement of

an area on the elastic buffer equal to the piston radius, uz0. The receiver is sensitive to the average

displacement, 〈uz〉, over a measurement area the same size as the piston, where z is the direction of

propagation. In the simulation, this is done by letting the surface boundary oscillate freely. In Comsol

Multiphysics reference manual [87], this boundary condition is called "free" and will henceforth be

used.

For each simulation performed, the deviation in arrival time due to diffraction effects is of interest.

The resulting 〈uz〉 is thus compared with a plane wave propagation, uz,pl ane ,

uz,pl ane = uz0 ·e i (ωt−kz), (4.1)

where uz0 is the amplitude of uz0, ω = 2π f with f equal to the frequency of propagation, k = ω/cs ,

where c is the general sound velocity in the medium of propagation. This will result in a simulated

diffraction correction, H di f f
si m , equal to

H di f f
si m = 〈uz〉

uz,pl ane
. (4.2)

By comparing the simulated arrival time, tsi m , to tpl ane , the deviation in time due to diffraction ef-

fects can be calculated using the corresponding zero-crossings, named the plane-wave approach in

the following. In Fig. 4.1, an example is shown. The simulated signal is two-way propagation inside

the buffer, Signal A, and arrives at the transducer surface at time t A
si m , followed by the plane wave

propagation at time t A
pl ane = 2D/cb , where D is the length of the buffer and cb is the buffer sound ve-

locity. The zero-crosses for both pulses are located and used to calculate the deviation in time,t di f f
A,si m .

Using t di f f
A,si m =−6 H di f f

A,si m/ω, the corresponding deviation in phase can be calculated.

In this example, an eight-period pulse is applied to the simulation with f = 500kHz. As shown in

Fig. 4.1, the signal reaches a steady-state, meaning that an eight-period pulse is sufficient to assume

a continuous wave. Thus will the excitation pulse for all simulations be an eight-period 500 kHz

pulse where the two first and last periods are amplitude modulated, thus multiplied with 0.5 · (1−
cos(2πt (4/ f ))) [84].



4.1. DIFFRACTION CORRECTION SIMULATION 71

Figure 4.1: Red curve: simulated displacement at the receiver surface, 〈uz〉 in time domain for the twice tra-
versed propagation through an elastic Plexiglas buffer with D = 70.1 mm and cb = 2711 m/s with 150 division
per period and 10 elements per wavelength. Corresponding simulated plane wave propagation is shown as the

blue curve. The green curve shows the resulting deviation in phase between the curves, 6 H di f f
A , in degrees.

Simulation performed by Mosland [84]

When the deviation in phase is found, it is of interest to compare the results with the diffraction cor-

rection models. For Signal A, the BPDC model will be used (cf. discussion above), given by Eq. (2.35).

The same method as above will be applied to determine the simulated diffraction for Signal B, except

that the distance travelled will now correspond to the two-way propagation inside the buffer and

sample, with corresponding sound velocities. The resulting diffraction will be named H di f f
B ,si m , and

can be compared to the BPDC-MF model, Section 2.3.1. The BPDC-MF model is based on the BPDC

model, and the same assumptions will thus apply.

It can further be noted that the COMSOL simulations differ from the BPDC and BPDC-MF models.

The models are based on the assumption that the surface propagates perfectly within an infinite fluid

medium, and sound pressure is measured at a distance 2d, over a measurement area equal to the

receiver’s size without the receiver present, illustrated in Fig. 4.2b). For the simulations, the propa-

gation will correspond to the propagation of the measurement cell. It will thus propagate back to the

receiver (without the receiver present) upon reflection at a rigid boundary, illustrated in Fig. 4.2a).

The deviation from this assumption will be studied in simulation 1. Moreover, comparing diffrac-

tion in sound pressure with displacement is assumed to be valid and has not been investigated any

further. This will be further discussed later in the section.
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Figure 4.2: Comparison of the propagation path of a) COMSOL simulations b) BPDC/BPDC-MF model.

4.1.1 Simulation 1: Simulation using a solid buffer

When calculating the diffraction correction for the received signals in the measurement cell, it is as-

sumed that the surfaces are all plane infinitely reflecting surfaces. A simulation is created by [84] to

study the deviation from this assumption using an elastic Plexiglas buffer and a "sound hard bound-

ary (wall)" as a reflecting surface. Sound hard boundary is the name in the Comsol Multiphysics

reference manual [87] for a boundary at which the normal component of the displacement is zero,

uz = 0.

The sound source is modelled as a baffled piston (cf. discussion above), and the buffer is modelled as

an elastic buffer. As a mesh, the standard conditions in COMSOL for elastic solids are used, thus 2nd

order 8-node elements (Quadratic Serendipity) [84]. The boundary conditions of the buffer sides are

free/vacuum, and the model is 3D-axisymmetric.

Due to possible sidewall interference, two simulations are conducted, corresponding to the two dif-

ferent schematics in Fig. 4.3. For both simulations, DPP = 150 and EPW = 10. The material parameters

used are further given in Table 4.1.

Figure 4.3: Simulation 1 in COMSOL: Elastic buffer and baffled piston as a source. Red line corresponds to the
divide for a three-dimensional axisymmetric model. For both scenarios, the boundary conditions are the same,
f = 500 kHz, and the piston radius, a = ae f f = 12.442mm. a) Buffer width = 100mm. b) Buffer width = 200mm.
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Table 4.1: Parameters used throughout the simulations, given by Mosland [84].

Comp. sound

velocity, cb

Buffer density,

ρb

Poissons ratio,

ν

Shear sound

velocity cshear

Piston radius,

a

2710 m/s 1190 kg /m3 0.375 1210 m/s 12.44 mm

Using the plane-wave approach, the diffraction correction in the COMSOL simulations for both sce-

narios presented in Fig. 4.3 can be found. As this will only be propagation through a single medium,

the BPDC model will be used for comparison, Eq. (2.38), with the parameters presented in Table 4.1

and d = 2D = 140.2 mm. Fig. 4.4 presents the calculated diffraction correction using both the BPDC

model and the plane-wave approach.

Figure 4.4: Calculated diffraction correction using the BPDC model (black), and using the plane wave approach
for propagation through an elastic buffer with length 2D, with parameters presented in Table 4.1 and DPP = 150
and EPW = 10. Red curve corresponds to the 20 cm buffer width, while the blue curve corresponds to the 10 cm
buffer width. Simulations performed by [84].

From Fig. 4.4, it is evident that the simulation using a narrow buffer provides a result that deviates

more from the BPDC model than the wider buffer, where deviations of ≈ 5.7o and ≈ 3.21oC is found

between the BPDC model and the narrow and wide buffer respectively. The narrow buffer may thus be

influenced by shear waves and overall reflections from the side walls. Although some deviation might

be present due to the assumption of a plane perfectly reflecting surface, additional deviation could be

explained if the simulations have not converged. This can, however, not be proven unless more sim-

ulations are performed with higher EPW. Another explanation may be that time-domain simulations

are generally less accurate than frequency-domain simulations [88], or due to the approximation of

using the BPDC model on an elastic buffer.
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4.1.2 Simulation 2: Simulation of the measurement cell

The solid buffer method, described in Section 2.2.1, is simulated by [84] using a simplified three-

dimensional axisymmetric model with an elastic Plexiglas buffer, a liquid sample and a reflector

(sound hard boundary).

The buffer is modelled as an elastic buffer. As a mesh, the standard conditions in COMSOL for elastic

solids are used, thus 2nd order 8-node elements (Quadratic Serendipity). The boundary conditions

on the sides of the buffer are free/vacuum [84]. For the fluid sample, 2nd order 9-node elements

(Quadratic Lagrange) are applied as a mesh, where the sample is modelled as a fluid. The boundary

condition of the liquid sample is a sound hard boundary (cf. discussion above), which will act as a

reflector, while the boundary conditions on the sides are free/vacuum. At the solid-fluid interface,

the displacement must be continuous throughout the boundary [89].

The sound source is modelled as a baffled piston (cf. discussion above). Also here, two different

dimensions are used, and a sketch of the simulations can be seen in Fig. 4.5. The wider model, Fig.

4.5b), is more computational demanding [84]. A consequence of this is that the EPW and DPP must

be decreased.

Figure 4.5: Dimensions utilized when simulating the solid buffer method in COMSOL. For both scenarios, the
boundary conditions are the same, f= 500 kHz, and piston radius, a = 12.442mm. a) Buffer width = 100mm. b)
Buffer width = 200mm.

The buffer parameters given in Table 4.1 will be used on the elastic buffer. Further, the simulations

will be simulated in a liquid sound velocity span of cs = 1320m/s - 1480 m/s. This sound velocity span

will correspond to different crude oils at varying temperatures. The sample liquid density is thus set to

839.3 kg /m3 for all simulations, corresponding to the density of Diesel (assuming constant density)

[84].

A simulation is performed using 20 EPW and 300 DPP, and the simulation setup presented in Fig.

4.5a) is utilised to decrease the computational cost. For the simulations, the diffraction correction is
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calculated using the plane-wave approach for both Signal A and B, thus H di f f
a,si m and H di f f

B ,si m respec-

tively. This is then compared to the diffraction correction calculated with the BPDC model for Signal

A, H di f f
A with d = 2D, and the BPDC-MF model for Signal B, 6 H di f f

B where d = 2D + 2L0. The results

are presented in Fig. 4.6, together with the total diffraction correction for both methods, 6 H di f f and

6 H di f f
si m .

Figure 4.6: Difference in phase between the model used in the project and the COMSOL diffraction correction
at sample fluid 1320 m/s, using 20 EPW mesh and 300 DPP, a = 12.44 mm and f = 500 kHz. The solid blue

( 6 H di f f
A,si m) and red ( 6 H di f f

B ,si m) lines are calculated using the plane-wave approach. The solid black line is the total
phase of the diffraction correction. Dashed lines correspond to the calculated diffraction based on Khimunin’s
diffraction correction model. Simulation performed by PhD candidate Eivind Nag Mosland [84]

The deviations between the COMSOL results and the diffraction correction model (BPDC/BPDC-MF)

for Signals A and B are significant when inspecting them individually. A deviation between the BPDC

model and the COMSOL simulation of ≈ 2.24oC is found for Signal A, compared to ≈ 5.7oC for Sim-

ulation 1 with width = 100 mm (as in this case). This may indicate that Simulation 1 has not yet

converged. Further discrepancies can be due to the assumption of a perfectly reflecting surface for

the BPDC model or the approximation of using the BPDC model on an elastic buffer.

For Signal B, a deviation of 2.8oC between the simulation and the BPDC-MF model is found, where

the largest contributor is believed to be the BPDC-MF model itself. Further deviations may be ex-

plained by the arguments presented for Signal A, which will also apply to Signal B. For both Signals A

and B, some discrepancy is further believed to be sidewall interference, as it is evident in Simulation

1 that the width of the simulation causes a significant difference in the results.

Although the COMSOL simulations differ by more than 2o from the diffraction correction models for

individual signals, the combined diffraction corrections, 6 H di f f and 6 H di f f
si m , compare favourably
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with a deviation of only 0.5o . This is found using zero-crossing numbers 5 to 10.

Due to computational costs, only one simulation was performed using 20 EPW and 300 DPP. It was,

however, of interest to see how the diffraction changed with increasing sound velocity. To do so, the

simulation setup shown in Fig. 4.5b) was utilized to decrease the noise due to reflections, and the

resolutions were set to 14 EPW and 200 DPP. Three simulations were performed by [84] where the

sound velocity in the liquid sample, cs , was 1320, 1400 and 1480 m/s, all with sample liquid density

ρs = 839.3kg /m3.

For each COMSOL simulation, the plane-wave approach was used to find the diffraction correction

in Signals A and B, resulting in a total diffraction correction of 6 H di f f
si m . This was, in turn, compared

to the total diffraction correction, 6 H di f f , using the BPDC and the BPDC-MF model for the same

sample sound velocity span. The results are presented in Fig.4.7, together with the result in Fig. 4.6

(marked with a red circle).

Figure 4.7: The phase of the diffraction correction as a function of sound velocity; theoretical and simulated.
Blue curve: Simulated with DPP = 200, EPW = 15 and buffer width = 200 mm. Black curve shows the calculated
phase using the diffraction correction model based on Khimunin’s model. Result from Fig. 4.6 is shown for
comparison. Simulation performed by Mosland [84]

From Fig. 4.7, it can be seen that an increase in sound velocity causes an increase in diffraction cor-

rection, both for 6 H di f f and 6 H di f f
si m . As can be seen from the figure, the slope of the theoretical

diffraction is steeper than the simulation. Thus, the deviation between the theoretical and simulated

diffraction correction will increase, resulting in a maximum deviation of 1.07o at 1480 m/s.

At 1320 m/s, the highest resolution COMSOL simulation provides a result closer to 6 H di f f . The devi-

ation between the two simulations at 1320 m/s indicates that the signal has not yet converged using
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200 DPP and 15EPW. Therefore, the actual deviation between 6 H di f f and 6 H di f f
si m might be even

smaller than the results presented in Fig. 4.7.

Based on the discussions above, the total deviation between Khimunin’s diffraction model and the

diffraction correction in the current project is suspected to result from the assumption of a perfectly

reflecting surface, the buffer being a solid rather than a fluid, side-wall interference, the model itself,

simulations not having converged and other unknown sources. To avoid underestimating the uncer-

tainty in the project due to diffraction correction, an uncertainty corresponding to the maximum de-

viation between the two curves in Fig. 4.7 is chosen, thus 1.07o at 1480 m/s, corresponding to an un-

certainty of 5.956·10−9s, assuming 100% confidence level, k =
p

3, resulting in u(∆t di f f ) = 3.44·10−9s.

Here, it should be noted that comparing 6 H di f f with 6 H di f f
si m is assumed to be valid in this project.

Since these are only preliminary results, it has not been considered how (or if) this may affect the re-

sults. Given the uniqueness of the BPDC-MF model and the accurate sound velocity results presented

in Chapter 6, it has been of interest to map the discrepancy with an independent method as a starting

point for future work.

4.2 Simulation of side lobe propagations

A simulation program has been created through MATLAB using the theory in Section 2.4. It will sim-

ulate each side lobe’s propagation through a measurement cell of choice through ray-tracing, making

it possible to find out if, and to which degree, it will cause coherent noise at the transducer surface.

If the signal-to-noise ratio (SNR) of the side lobes is high enough, the side lobes might be a source to

coherent noise (Section 3.5.3). A numerical analysis will be presented in Section 4.3 which shows that

a SNR of 40 dB will correspond to a time shift in the signal of interest of 3.2·10−9 s (Table 4.2), which

can be significant if the measurement cell is dependent on high-accuracy transit time measurements.

It is thus of interest to see how the side lobes will propagate (during idealized conditions), which can

be used as a consideration when designing the measurement cell. Through the simulation, this can

be done by changing the frequency, radius of the transducer, size of the measurement cell and varying

speed of sound of the buffer and in the sample area.

For the simulation to be valid, a set of idealized assumptions must be made. The sound source in

the simulations will be modelled as a baffled piston (Section 2.3.1). Assuming continuous waves and

far-field propagation, the directive pattern can thus described by the directional factor (Bessel direc-

tivity), Eq. (2.47). The main lobe and side lobes are then contained within the nodes described by Eq.

(2.48).
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Figure 4.8: One-way directivity of transducer modelled with the directivity function, Eq. (2.47) where a =
12.43mm, c = cb = 2711 m/s, f = 500kHz. Dashed red line shows the θ3dB angle, calculated using Eq. (2.49).

In the following, a brief approach to the simulation is given through an example using this projects

constructed measurement cell, followed by the simulated results.

Fig. 4.8 shows the main lobe and side lobes calculated using the Bessel directivity function, Eq. (2.47),

with f = 500kHz, c = 2711 m/s (corresponding to cb measured in Section 6.3) and a = ae f f = 12.43mm

(Section 6.4). The figure shows that the main lobe and side lobes are contained within pressure nodes.

Using Eq. (2.48), the angles of these pressure nodes can be found, which in turn can be used to define

the angles that make up a specific side lobe.

In Fig. 4.9 an example of a propagation inside the measurement cell is shown, where θ is thought to

be an arbitrarily angle inside a side lobe of the projects’ measurement cell. The measurement cell is

drawn as a Cartesian coordinate system, starting at 0 in the bottom left corner.

From Fig. 4.9, it can be observed that the ray propagates through the buffer with length l1, where it

hits the right edge of the buffer after a distance l ′1, and propagates up to the sample area. Some of

the sound will be reflected at the buffer/sample interface, shown as the dashed line, and some of it

will transmit into the sample area before it is reflected at the reflector. The former one will be studied

here.
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Figure 4.9: Illustration of propagation inside a measurement cell, where angles and dimensions are used to
create the simulation.

If l ′1 < l1, as in Fig. 4.9, the ray will hit the side wall of the buffer at point:

l
′
1 = t anθ · w

2
. (4.3)

where w is the buffer width. Using geometric similarities and the law of specular reflection [23], one

can further find out where the ray hits the buffer/sample-interface:

w1 = t anθs · l
′′
1 = t anθs · (l1 − l

′
1), (4.4)

where θs = 90o − θ. The ray will now propagate from Plexiglas with impedance z1 = ρ1c1, into the

samplewith impedance z2 = ρ2c2.

Snell’s law of refraction states that [23],

si nθi

c1
= si nθt

c2
, (4.5)

where θi is the angle of incidence (θs for the above example) with sound velocity c1, and θt is the

angle of transmission with sound velocity c2. By rearranging Snell’s law, the angle of propagation into
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the sample area can be found

θt = si n−1
( si nθs

c1
· c2

)
. (4.6)

The resulting angle can then be used to find the location (with respect to the width) where the ray hits

the reflector from the buffer/sample-interface, w2.

w2 = t anθt · l2. (4.7)

Because of geometric similarities, this angle will be equal on the way back to the buffer/sample-

interface. Snells law is applied back into the buffer and the position where the ray hits back to trans-

ducer plane can be found:
w

2
−w3 = t anθs · l1, (4.8)

where w3 will correspond to the width the ray has propagated in total with respect to the center of the

transducer. After these lengths and widths are found, they are turned into coordinates in an xy-plane

and plotted for simulation purposes. The total propagation length is further found using trigonomet-

ric rules. This method is quite cumbersome for large amounts of angles and the script which finds

these parameters as well as calculating the propagation length is therefore made. The angles of the

side lobes differ, and the propagation will thus change accordingly. This is taken under consideration

in the simulation.

Figs. 4.10 and 4.11 shows examples of a simulated first and second side lobe inside a measurement

cell respectively, where the length of the buffer is l1 = 70.1mm and the width is w = 100mm. Further,

the sample length is l2 = 25.18mm, a = ae f f and the sound velocities are given as cb = c1 = 2711m/s

and cs = c2 = 1481m/s. These parameters are thus a scenario in the project using the created mea-

surement cell with distilled water as sample liquid at 20oC and 1 atm.

Figure 4.10: Simulation of first side lobe Figure 4.11: Simulation of second side lobe

From Fig. 4.10, it is evident that the noise from the first side lobe can be neglected. The transducer

placement is indicated with two blue stars, and if no acoustic noise reflects between these two stars,

noise due to the simulated side lobe can be disregarded. However, in Fig. 4.11, some side lobe in-

terference at specific angles in the second side lobe can be observed. Using the total distance of the
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reflected signals and dividing it by the velocity of the propagating medium, the total elapsed time of

the interfering propagation can be calculated. By including the length of the pulse train and compar-

ing the calculated time to the arrival of Signals A and B (Section 2.2.1), it can be discovered whether

the specific propagation inside the side lobe will interfere with the propagation from the main lobe.

For the measurement cell dimensions simulated in Figs. 4.10 and 4.11, simulations are done for a

sound velocity interval of 1250-1580 m/s. The results are not presented here, but shows that the first

side lobe can be disregarded for the entire sound velocity range, while the second side lobe must be

accounted for throughout as it will propagate back to the transducer within the time span of Signal B.

To assume a worst-case-scenario, the peak of the second side lobe, shown in Fig. 4.8 will be used

which carries the most sound energy. As there is a two-way directivity in the measurement cell,

20l og H 2(θ) is calculated [23], which results in 20log H 2(θ) = −47.6dB . To find out what impact it

may have on the transit time, a numerical analysis is presented in the next section.

4.3 Numerical analysis of coherent noise

To study how coherent noise will affect the sound velocity, a numerical analysis is carried out inspired

by the report "Uncertainty model for Multipath Ultrasonic Transit Time Gas Flow Meters", written by

Per Lunde, Kjell-Eivind Frøysa and Magne Vestrheim, pp. 165-167 [90]. The notations further follows

[39].

Consider the signal of interest, given by

Vs(t ) = AS si n(ωt ), (4.9)

and a noise signal propagating with the same frequency, delayed by the phase φ,

VN (t ) = AN si n(ωt +φ). (4.10)

It can be shown that the actual measured signal, VM (t ), will be a superposition of Vs(t ) and VN (t ),

expressed as [21]

VM (t ) = AM si n(ωt +φ), (4.11)

with amplitude

AM = AS

√
1+

( AN

AS

)
+2

( AN

AS

)
cosφ, (4.12)

and a phase

θ = t an−1
( (

AN /AS)si n(φ)

1+ (
AN /AS

)
cos(φ)

)
(4.13)

Two factors will affect the significance of the noise signal; the amplitude of the noise and the phase

difference between the signal of interest and the noise signal. Both variables will thus be investigated

through a numerical analysis, calculated with the script presented in D.4.
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The phase delay, φ, is varied from 0 to 180 degrees in 5000 steps. The amplitude AM , the phaseφ, and

the amplitude ratio (AM /AS) are calculated for each step. The maximum, minimum, and standard

uncertainty are found from the calculated variables. Through the standard uncertainty of the phase,

u(θ̂), the standard uncertainty of the time fluctuations can be found:

u(∆t )coh.noi se =
u(θ̂)

360 · f
. (4.14)

Several Signal-to-noise ratios (SNR), 20log(AN /AS) are investigated, and the results are presented in

Table 4.2

Table 4.2: Calculated standard deviation and max/min values for the amplitude ratio (C/A), phase difference,
and time shift for a frequency of f = 500 kHz.

SNR [dB]

10 20 30 40 50 60

Amplitude ratio,

C/A [dB]

Std. unc. 2.0 0.6 0.2 0.06 0.02 0.006

Max. dev 2.4 0.8 0.3 0.09 0.03 0.009

Min. dev -3.3 -0.9 -0.3 -0.09 -0.03 0.009

Phase, θ[o]
St.unc., u(θ̂) 13.0 4.1 1.3 0.40 0.13 0.04

Max. dev. & min. dev. ± 18.4 ± 5.7 ± 1.8 ± 0.57 0.18 0.06

Time [ns]
Std. unc., u(∆t ) 72.1 22.5 7.12 2.25 0.71 0.23

Max. dev & min. dev. ± 102.4 ± 31.9 ± 10.1 ± 3.18 ± 1.01 ± 0.32

The results in Table 4.2 are almost identical to those presented in Table 6.4 in [90], expect for the SNR

of 10 dB, which are though to be rounding error. In [90], the resulting table was used to study the

required SNR for transit time uncertainty. In this project, however, the table will be used to assess the

time shift due to coherent noise contributions through a known SNR.

For the side lobe interference presented above, a SNR of 47.6 dB is found. Using the analysis above,

this corresponds to a standard uncertainty of coherent noise due to side lobe interference of u(∆t )si del obe =
9.4 ·10−10s.
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Chapter 5

Uncertainty models and sensitivity

analysis

The project aims to reach a relative expanded uncertainty of the experimental sound velocity mea-

surements below 1000 ppm = 0.1%( 95% confidence level). This chapter will introduce the theoretical

models needed for uncertainty calculations and a sensitivity analysis conducted prior to constructing

the measurement cell. In Chapter 6, the measurement results will be presented, with the correspond-

ing calculated uncertainties. Based on all calculated uncertainties, the experimental uncertainty in

sound velocity will eventually be presented in Section 6.8.

This chapter is divided into four sections with subsections. Section 5.1 will provide a list of uncer-

tainty notations used throughout the project. Section 5.2 will present the uncertainty model in ex-

perimental sound velocity, where each uncertainty contribution will be presented with a model of its

own through subsections. Based on the uncertainty model, a sensitivity analysis will be presented

in Section 5.3. The last section, Section 5.4, will present two theoretical sound velocity models for

distilled and saline water, together with a model for the uncertainty in pressure.

The uncertainty models follows the International Bureau of Weights and Measures [91].

5.1 Uncertainty notations

Throughout the uncertainty analysis, several notations will be used. In Table 5.1, the notations are

listed with explanation, and are based on notations used by Lunde and Frøysa [40] which follows [91].

A further description of the uncertainty standards and equations are given in Appendix C.
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Table 5.1: Notations used throughout the uncertainty analysis, following the notations from [40].

Standard uncertainty (standard deviation) of

measurand x
u(x)

Combined standard uncertainty of measurand x,

where x is a function of several variables,

f (x) = f (x1, x2, ..., xi )

uc (x)

Coverage factor k

Relative standard uncertainty of measurand x Ex = u(x)
x

Expanded uncertainty of measurand x U (x) = k ·u(x)

Relative expanded uncertainty of measurand x k ·Ex

Sensitivity coefficient of variable xi
∂ f (x)
∂xi

5.2 Uncertainty model for the experimental sound velocity

In this section, a model for the uncertainty in the experimental sound velocity measurements will be

presented. This model will be applied in Section 6.8 when the relative expanded uncertainty is calcu-

lated, and will further be used for the preliminary sensitivity analysis presented in the next section.

Using Eq. (2.13), the combined standard uncertainty for the experimental sound velocity, cs , can be

studied, assuming uncorrelated parameters

u2
c (cs) =

( ∂cs

∂L0
·u(L0)

)2 +
( ∂cs

∂t cor r ·u(∆t cor r )
)2 +

( ∂cs

∂∆t
·u(∆t )

)2 +
( ∂cs

∂KT
·u(KT )

)2
, (5.1)

where uc (L0),uc (KT ),uc (∆t ) and uc (∆t cor r ) are the combined standard uncertainties of L0,KT ,∆t

and ∆t cor r respectively.

Eq. (2.13) is then differentiated with respect to the respective variables, which yields

u2
c (cs) =

( 2KT

∆t −∆t cor r ·uc (L0)
)2 +

( 2KT L0

(∆t −∆t cor r )2 ·uc (∆t cor r )
)2

(
− 2KT L0

(∆t −∆t cor r )2 ·uc (∆t )
)2 +

( 2 ·L0

∆t −∆t cor r ·uc (KT )
)2

.
(5.2)

Based on the discussion in Section 2.3, the diffraction correction is found to be the dominating factor

in ∆t cor r . It is therefore assumed that ∆t cor r ≈ ∆t di f f . ∆t di f f will further have an angle of < π/2,

resulting in a displacement in time of less than a quarter of a period. If a frequency of 500kHz is

assumed, ∆t cor r < 0.5µs and consequently ∆t cor r << ∆t . Based on the above arguments, Eq. (5.2)

can be reduced to

uc (cs)2 =
(2KT

∆t
·uc (L0)

)2 +
(
− 2KT L0

(∆t )2 ·uc (∆t )
)2 +

(2KT L0

(∆t )2 ·uc (∆t cor r )
)2 +

(2L0

∆t
·uc (KT )

)2
. (5.3)
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By applying Eq. (2.13), Eq. (5.3) can further be written as

u2
c (cs) = c2

s

L2
0

·uc (L0)2 + c2
s

K 2
T

·uc (KT )2 + c2
s

(∆t −∆t cor r )2 ·uc (∆t )2 + c2
s

(∆t −∆t cor r )2 ·uc (∆t cor r )2. (5.4)

Dividing all the terms on c2
s enables the possibility to isolate the speed of sound on one side. By defin-

ing Ec = uc (cs)/cs ,EL0 = uc (L0)/L0, EKT = uc (KT )/KT , E∆t = uc (∆t )/∆t and E∆t cor r = uc (∆t cor r )/∆t cor r ,

Eq. (5.4) can be expressed in terms of relative uncertainties, which yields

E 2
cs
= E 2

L0
+E 2

KT
+ (∆t )2

(∆t −∆t cor r )2 E 2
∆t +

∆t cor r 2

(∆t −∆t cor r )2 E 2
∆t cor r , (5.5)

Due to ∆t >>∆t cor r , the equation can be approximated to

Ec
2
s = E 2

L0
+E 2

KT
+E 2

∆t +
(∆t cor r )2

(∆t )2 E 2
∆t cor r , (5.6)

which in terms of relative expanded uncertainty can be expressed as

k ·Ecs = k ·
√

E 2
L0
+E 2

KT
+E 2

∆t +
(∆t cor r )2

(∆t )2 E 2
∆t cor r , (5.7)

where k = 2 for a 95% confidence level and ∆t cor r /(∆t ) = s∆t cor r is the relative sensitivity coefficient of

∆t cor r [40].

In the following, an uncertainty model will be presented for each uncertainty contribution in Eq. (5.2),

together with an uncertainty model for the uncertainty in temperature, uc (T ).

5.2.1 Combined standard uncertainty in temperature

The temperature will be measured throughout the measurement series using a JUMO STEAMTemp

Temperaturgiver RTD (902830), as both the sound velocity and the uncertainty in sound velocity is

dependent on the measured temperature.

Assuming all sensitivity coefficients are equal to 1, uncertainty in temperature can be modelled as

u2
c (T ) = u2

c (T )cal +u2(T )cal i bdev +u2(T )el ement +u2(T )dr i f t JS

+u2(T )ad apter +u2(T )var +u2(T )other ,
(5.8)

where

u2
c (T )cal = u2(T )Tr e f +u2(T )scanner +u2(T )dr i f tr e f . (5.9)

A description of all uncertainty contributors are presented in Table 5.2.
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Table 5.2: Description of the uncertainty contributions when measuring the temperature in the sample area
using JUMO STEAMTemp Temperaturgiver RTD (902830)

Uncertainty

contributor
Description

u(T )cal i bdev Deviation from the reference PT100 after calibration.

u(T )el ement Standard uncertainty of the JUMO STEAMTemp PT100 sensor.

u(T )dr i f t JS

Standard uncertainty due to thermal drift and

aging in JUMO STEAMTemp Pt100 sensor.

u(T )ad apter Standard uncertainty due to RTD-USB adapter.

u(T )var
Standard uncertainty due to observed temperature variation under stable

temperature conditions during 1 minute.

uc (T )cal
Combined standard uncertainty due to calibration of the

JUMO SteamTemp PT100 sensor.

u(T )dr i f tr e f Standard uncertainty due to thermal drift and ageing of the reference PT100 element.

u(T )scanner
Standard uncertainty due to the accuracy of Fluke Calibration 1586A SUPER-DAQ

Precision Temperature Scanner.

u(T )Tr e f Standard uncertainty in the reference PT100 element used for calibrations.

u(T )other
Standard uncertainty due mechanical vibrations of the RTD, radio frequency

interference and other unknown sources.

5.2.2 Combined standard uncertainty in thermal expansion

When subjected to heat, the sample length will expand according to Eq. (2.61) and can be compen-

sated for with a thermal expansion coefficient, KT . The combined standard uncertainty for KT can

be modelled as

u2
c (KT ) =

( ∂KT

∂∆T
uc (∆T )

)2 +
(∂KT

∂αa
u(αa)

)2 +
(∂KT

∂αp
u(αp )

)2+(∂KT

∂L0
uc (L0)

)2 +
(∂KT

∂dp
uc (dp )

)2
(5.10)

By differentiating Eq. (2.61) with respect to the respective variables, the uncertainty in KT yields

uc (KT )2 =
(
αa + db

L0
(αa −αp )

)2 ·uc (∆T )2 +
(
∆T

(
1+ db

L0

))2 ·u(αa)2+(
∆T

db

L0

)2 ·u(αp )2 +
(
∆T

db

L2
0

(αp −αa)
)2 ·uc (L0)2 +

(∆T

L0
· (αA −αp )

)2 ·u(dp )2,
(5.11)

Further, uc (∆T ) is given as

uc (∆T ) = ∂∆T

∂T0
·uc (T0)+ ∂∆T

∂T
uc (T ) (5.12)

The uncertainty contributions are listed in Table 5.3.
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Table 5.3: Description of the uncertainty contributors in thermal expansion.

Uncertainty

contributor
Description

u(T0) Standard uncertainty in reference temperature T0, ref. Eq. (5.8).

u(T ) Standard uncertainty in measured temperature T, ref. Eq. (5.8).

u(αa) Standard uncertainty in Aluminium Alloy 6082 thermal expansion coeff.

u(αp ) Standard uncertainty in Plexiglas thermal expansion coeff.

uc (L0) Combined standard uncertainty of the sample length,L0 measured at temperature T0.

uc (db)
Combined standard uncertainty of the distance measured from the bolts,

securing the Plexiglas buffer to the chassis, to the sample area L0.

5.2.3 Combined standard uncertainty in sample length

Assuming that all sensitivity coefficients are equal to 1, the combined uncertainty of sample length,

L0, at temperature T0 can be expressed as

u2
c (L0) = u2(L0)cal i per +u2(L0)r ep +u2(L0)st ab +u2

c (L0)ver t +u2(L0)other , (5.13)

where,

u2
c (L0)ver t = u2

c (D)+u2(R). (5.14)

Assuming all sensitivity coefficients are equal to 1, u2
c (D) can further be expressed as

u2
c (D) = u2(D)cal i per +u2(D)r ep +u2(D)st ab (5.15)

All uncertainty contributions are presented in Table 5.4.
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Table 5.4: Description of the uncertainty contributions in Eq. (5.13).

Unc. contribution Description

u(L0)cal i per = u(D)cal i per Standard uncertainty of the MarCal 16EWR digital caliper.

u(L0)r ep
Standard uncertainty due to the repeatability of the measured L0

in the propagation path

u(L0)st ab = u(D)st ab Standard uncertainty due to caliper stability and drift.

uc (L0)ver t
Combined standard uncertainty due to variations in the length L0 in

the vertical direction of the sample area.

u(L0)other Standard uncertainty due to other unknown sources.

u(R) Standard uncertainty of the reflector due to assumption of a plane surface.

uc (D) Combined standard uncertainty of the buffer length D.

u(D)r ep
Standard uncertainty due to the repeatability of the measured

buffer length D in the propagation path.

5.2.4 Combined standard uncertainty in transit time

In Section 3.4, two different signal processing methods for calculating the transit time are presented.

Each of these methods has a corresponding uncertainty, and the uncertainty in sound velocity due to

uncertainty in transit time, uc (∆T ), will thus vary depending on the signal processing method. Two

different models will thus be presented; one for Zero-crossing method (ZCM) and one for the Fourier

Spectrum method (FSM).

The combined standard uncertainty in transit time with the ZCM can be expressed as

u2
c (∆t )ZC M = u2(∆t )osc +u2

c (∆t )coh.noi se +u2(∆t )el +u2(∆t )r es

+u2(∆t )pump +u2(∆t )var +u2(∆t )RF I +u2(∆t )other ,
(5.16)

where

u2
c (∆t )coh.noi se = u2(∆t )si del obe +u2(∆t )mode.conv. +u2(∆t )tr av +u2(∆t )r e f l (5.17)

Further, the combined standard uncertainty in transit time with the FSM can be expressed as

u2
c (∆t )F SM = u2(∆t )osc +u2(∆t )tr unc +u2

c (∆t )coh.noi se +u2(∆t )el

+u2(∆t )pump +u2(∆t )r es +u2(∆t )RF I +u2(∆t )ph.di st +u2(∆t )other .
(5.18)

In both cases, all sensitivity coefficients are assumed to be 1. In Table 5.5, a description of all uncer-

tainty contributors are presented.
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Table 5.5: Description of the uncertainty contributors in transit time measurements. Uncertainty contributors
for both FSM and ZCM are included.

Uncertainty

contributor
Description

u(∆t )osc Standard uncertainty due to the time resolution of the oscilloscope.

uc (∆t )coh.noi se Combined standard uncertainty due to coherent noise.

u(∆t )si del obe Standard uncertainty in coherent noise due to side lobe interference.

u(∆t )mode.conv. Standard uncertainty in coherent noise due to mode-converted waved.

u(∆t )tr av Standard uncertainty in coherent noise due to four times traversed buffer signal.

u(∆t )r e f l Standard uncertainty in coherent noise due to reflector reverberation.

u(∆t )ph.di st . Standard uncertainty due to phase distortions in the applied filter.

u(∆t )el
Standard uncertainty due to fluctuations/instability in power supply, cables and

other electrical equipment.

u(∆t )r es Standard uncertainty due to sampling frequency, incoherent noise and bit resolution.

u(∆t )var
Standard uncertainty due to a spread in the measured time shifts for different

periods throughout the pulse.

u(∆t )RF I Standard uncertainty due to radio frequency interference.

u(∆t )tr unc
Standard uncertainty due to the deviation between truncating the signal onset

and end, and linearly trailing. Dependent on the number of periods in the signal.

u(∆t )pump Standard uncertainty due the pump noise.

u(∆t )other Standard uncertainty due to other unknown contributions.

To find u2(∆t )r es , further analysis is needed. This will be presented in the following.

Uncertainty in transit time measurements due to bit resolution and incoherent noise

The uncertainty in the voltage amplitude can affect the calculated transit time when using zero-

crosses. In this section, a model is presented which was described by Fosså [39] in his work. His

approach and notations will be implemented with a few alterations.

The model addresses the uncertainty contributions from the bit resolution of the oscilloscope u(V )bi t ,

sampling frequency fs and the incoherent noise u(V )i nc.noi se , which will all affect the voltage ampli-

tude. Although incoherent noise can be reduced by averaging the signal, some incoherent noise will

still be present. Further, the bit resolution of the oscilloscope display limits the measured voltage by

either rounding the value up or down. These uncertainties are therefore treated here.

In Section 3.4.2, linear interpolation is introduced. This will be used as a basis for the uncertainty

model.

If both sensitivity coefficients are assumed to be equal to 1, the uncertainty in the voltage amplitude

can be expressed as

u2
c (V ) = u2(V )bi t +u2(V )i nc , (5.19)
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where u2
c (V ) is the combined standard uncertainty for the voltage amplitude, and u2(V )bi t and u2(V )i nc

are the uncertainty contributions due to incoherent noise and bit resolution, respectively.

The RMS value of the incoherent noise is acquired using the approach in Section 3.4.5. Even though

the incoherent noise may vary for each sampled waveform, it will for simplicity be treated as though it

is constant throughout the project. The RMS value will be used to determine the standard uncertainty

in voltage amplitude due to incoherent noise [39],

u(V )i nc =V N
RMS , (5.20)

where V N
RMS is the RMS value of the incoherent noise, calculated using Eq. (3.10).

The maximum quantisation error and therefore the uncertainty in the voltage amplitude due to bit

resolution can be expressed as [4]

u(V )bi t =
∆Vq

2
, (5.21)

where ∆Vq is the quantization interval expressed as

∆Vq = VM AX −VM I N

2a −1
, (5.22)

where Vq is the range of the oscilloscope display and a is the number of bits used in the quantisation.

As explained in Section 3.4.2, a zero crossing is found by interpolating between two points. This is

illustrated in Fig. 5.1. The voltage amplitude before the zero crossing is defined here as Vi where

i = 1,2, ..,n is the sample number, and the voltage amplitude after the zero crossing is defined as Vi+1.

Similarly can the time of sample number i and number i + 1 be defined as ti and ti+1 respectively.

Figure 5.1: An illustration of how incoherent noise and bit resolution affect the calculation of zero-crosses
involving linear interpolation. Figure inspired by Fig. 4.13 in [39].
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To find out how the error in voltage amplitude affects the calculated zero-crossings, the maximum

deviation from the zero crossing can be calculated. This is shown as the red lines in Fig. 5.1. The slope

of the straight line for the maximum deviation from Vi , thus the line from coordinates (V max
i , ti )) to

(V max
i+1 , ti+1), can be found:

m+ = V max
i+1 −V max

i

ti+1 − ti
. (5.23)

From Fig. 5.1, V max
i+1 corresponds to Vi+1 +u(V ) and V max

i corresponds to Vi +u(V ). Inserting this

into Eq. (5.23) yield

m+ = (Vi+1 +u(V ))− (Vi +u(V )

ti+1 − ti )
= Vi+1 −Vi

ti+1 − ti
= m, (5.24)

where m is the slope between points (ti ,Vi ) and (ti+1,Vi+1). This can also be shown for the straight

line from (V mi n
i , ti ) to (V mi n

i+1 , ti+1), where V mi n
i =Vi −u(V ) and similarly for V mi n

i+1 .

Further, the uncertainty in time due to bit resolution and incoherent noise is illustrated in Fig. 5.1.

The maximum and minimum deviation in voltage amplitude, results in time deviations t−0 and t+0
respectively from the original zero crosssing using linear interpolation. The uncertainty can thus be

expressed as

∆t0 = t+0 − t−0 = t0 +e(to)− (t0 −e(t0)) = 2 ·u(t0), (5.25)

where u(t0) = t+0 − t0 = t0 − t−0 is the uncertainty from the original zero crossing. In Section 3.4.2, an

equation for the time of the zero crossing is found, Eq. (3.6). This can be implemented here

∆t0 = t+0 − t−0 =
(
ti −

V max
i

m

)
−

(
ti −

V mi n
i

m

)
= 1

m

(
V mi n

i −V max
i

)
. (5.26)

From Eqs. (5.26) and (5.25),
1

m

(
V mi n

i −V max
i

)
=∆t0 = 2 ·u(t0). (5.27)

Inserting V mi n
i = Vi −u(V ) and V max

i = Vi +u(V ) together with Eq. (5.24) into Eq. (5.27) and solving

for 2 ·e(t0) results in an equation for the error in the time of zero crossing,

±u(t0) =±
( (Vi −u(V ))− (Vi +u(V )

2
· ti+1 − ti

Vi+1 −Vi

)
=±u(V ) · ts

∆V
. (5.28)

From Fig.5.1, ∆V =Vi+1 −Vi , and sampling period, ts , can be expressed as

ts = ti+1 − ti = 1

fs
. (5.29)

Where fs is the sampling frequency. The oscilloscope extracts 10000 samples per waveform as men-

tioned in Section 3.1.5. ts , can thus be expressed as

ts =
t max

scope − t mi n
scope

10000
, (5.30)

where t max
scope − t mi n

scope is the time display range of the oscilloscope when gathering data. This can thus

vary depending on the time range of the signal of interest. The average error for the acquisition can
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then be used to find the uncertainty in t0:

u(∆t )r es ≈ u(t0) = 1

N

N∑
n=1

un(t0). (5.31)

where n = 1,2..,N corresponds to zero crossing number n. Thus is un(t0) calculated using Eq. (5.28)

for each zero crossing to find the uncertainty in transit time. The uncertainty in transit time due to

bit resolution is therefore found experimentally for each acquisition.

5.2.5 Combined standard uncertainty in correction term

In Section 2.3.2, it was shown that the uncertainty in the boundary layer correction, u(∆tR ), could be

neglected, and consequently will the time correction uncertainty only be dependent on the uncer-

tainty in the BPDC-MF diffraction correction model presented in Section 2.3.1.

Assuming all sensitivity coefficients are equal to 1, the uncertainty in the diffraction correction is a

combined uncertainty expressed as:

u2
c (∆t di f f ) = u2(∆t di f f )model +u2(∆t di f f )ae f f +u2(∆t di f f )cb+

u2
c (∆t di f f )L ++u2(∆u2(∆t di f f )D +u2(∆t di f f )other ,

(5.32)

The uncertainty in length, u(L), can be expressed as

u2
c (L) = (L0 ·uc (KT ))2 + (KT ·uc (L0))2, (5.33)

where uc (KT ) and uc (L0) can be calculated using Eqs. (5.11) and (5.13). The uncertainty contributions

are presented in Table 5.6, and a detailed description is presented below.

Table 5.6: Description of the uncertainty contributions in Eq. (5.32)

Uncertainty

contribution
Description

u(∆t di f f )model
Standard uncertainty due to the deviation between the BPDC model

and the BPDC-MF model

u(∆t di f f )ae f f

Standard uncertainty in ∆t cor r due to the measured uncertainty in

effective element radius, u(ae f f )

u(∆t di f f )cb

Standard uncertainty in ∆t cor r due to the uncertainty in buffer

compressional sound velocity, u(cb)

u(∆t di f f )L Standard uncertainty in ∆t cor r due to uc (L), ref. Eq. (5.33)

u(∆t di f f )D Standard uncertainty in ∆t cor r due to u(D)r epeat abi l i t y , ref. Table 5.4.

u(∆t di f f )other Standard uncertainty due to other unknown contributions

Sensitivity coefficients are not calculated for the diffraction correction model used in this project as

the resulting equations would be too complex for the scope of this thesis. Thus, to find out what



5.3. SENSITIVITY ANALYSIS 93

u(ae f f ), uc (L), u(cb), and u(D) correspond to in terms of uc (∆t di f f ), ∆t cor r is first calculated as a

function of ae f f , L, D, and cb at temperature T, thus ∆t di f f
(
ae f f ,cb(T ),D,L(T )

)
, where ae f f and D

are assumed constant with temperature. ∆t di f f is then calculated with variables corresponding to

the measured values added and subtracted with their corresponding uncertainties at 68% confidence

level, while the other variables are held constant. The uncertainty in ∆t di f f due to the respective

variables will correspond to the maximum deviation between ∆t di f f
(
ae f f ,cb ,D,L

)
and the calcu-

lated cases. Thus for u(cb),

u(∆t di f f )A
cb
= |∆t di f f (

ae f f ,cb ,D,L
)−∆t di f f (

ae f f ,cb +u(cb),D,L
)|, (5.34)

u(∆t di f f )B
cb
= |∆t di f f (

ae f f ,cb ,D,L
)−∆t di f f (

ae f f ,cb −u(cb),D,L
)|, (5.35)

where superscript A and B corresponds to the addition and subtraction of u(cb) respectively. The

maximum value of the two corresponding uncertainties in Eqs. (5.34) and (5.35), will be the resulting

uncertainty u(∆t di f f )cb . These calculations are then done for u(ae f f ), uc (L), and u(D).

5.3 Sensitivity analysis

To archive a relative expanded uncertainty of the measured sound velocity of less than 1000ppm =

0.1%, it is crucial to understand how different measurement variables will impact the total uncer-

tainty. This section will thus address how sensitive the total expanded uncertainty is to uncertainty

contributions from the different measurement variables. The results will provide an indication of the

largest uncertainty contributors, allowing them to be compensated for prior to creating the measure-

ment cell. Many of the assumptions made in this section are thus preliminary. The approach to the

sensitivity analysis is comparable to [21], and the calculations are based on the uncertainty model for

cs presented in Section 5.2, where Eq. (5.7) will be used for further analysis.

Distilled water will in this project be used as a reference medium, and will thus be used throughout

the sensitivity analysis. As will be evident later, the uncertainty increases with increasing temperature.

The maximum set temperature throughout the project will therefore be applied. In the sensitivity

analysis, the following assumptions are made:

• f = 500 kHz

• T = 60oC

• L0 = 25.0 mm, sample length at room temperature

• cs = 1551.1 m/s, sound velocity in distilled water at 60.0oC using Eq. (2.2)

• T0 = 24 oC , reference temperature

• αP = 71.5 ·10−6K −1, mean value of temperature coefficient for Plexiglas in [92]



94 CHAPTER 5. UNCERTAINTY MODELS AND SENSITIVITY ANALYSIS

In the preliminary sensitivity analysis, it is further assumed that the thermal expansion, KT , follows

Eq. (2.54). The sample length due to thermal expansion at 60.0oC will thus be L = 25.12 mm using the

listed αP . Further, ∆t = 2L/cs ≈ 32.4µs.

Differentiating Eq. (2.54), the uncertainty in KT can be expressed as

u(KT ) =
√

(∆T ·u(αT ))2 + (αT ·u(∆T ))2. (5.36)

By defining EKT = u(KT )
KT

, EαT = u(αT )
αT

and E∆T = u(∆T )
∆T , Eq. (5.36) can be expressed in terms of relative

uncertainty,

EKT =
√( ∆TαT

(1+αT∆T )
EαT

)2 +
( αT∆T

(1+αT∆T )
E∆T

)2
. (5.37)

which can be inserted into Eq. (5.7).

Initially, it is assumed that each term in Eq. (5.7) contributes equally to the total uncertainty. Each

term is therefore named U and can be expressed as

k ·Ec = k
√

4U 2, (5.38)

where k = 2. A total uncertainty of 2 ·Ec < 1000 ppm at 95% confidence level is desired. Thus can each

term in Eq. (5.38) at most contribute with 250 ppm at 68% confidence level. If s∆t cor r ·E∆t cor r = 250

ppm, E∆t cor r can contribute with 16195 ppm assuming ∆t cor r < 0.5µs and ∆t ≈ 32.4µs.

In Table 5.7, a preliminary uncertainty budget is calculated which shows what the individual standard

uncertainties must be if each term is to contribute equally in the case of c = 1551.1 m/s and T = 60oC .

Table 5.7: Preliminary uncertainty budget nr.1 for the sound velocity using the pulse-echo buffer rod method
when cs = 1551.1 m/s and T = 60.0oC , assuming each parameter contributes equally and Ec ≤ 1000 ppm = 0.1%
(95% confidence level).

Variable

Rel. standard

uncertainty

(68% c. l.)

Typical value

Standard

uncertainty

(68% c.l.)

Expanded

uncertainty

(95% c.l.)

L0 250 ppm 25.00mm 0.0063 mm 0.0126 mm

KT 250 ppm 1.0027 0.00025 0.0005

∆t 250 ppm 32.3µs 0.00810 µs 0.0162 µs

∆t cor r 16129 ppm 0.5 µs 0.00810 µs 0.0162µs

cs 500 ppm 1550 m/s 0.776 m/s 1.551 m/s

If EKT ≤ 250 ppm (ref. Table 5.7), and it is assumed that αT and ∆T contribute equally, Eq. (5.37)

puts ( αT∆T
1+αT∆T )2E 2

∆T = 125 ppm. If T = 60oC , then E∆T = 44952 ppm and consequently will u(∆T )

= 1.75oC . Such high temperature uncertainties will not be realistic throughout the project. A type A

PT100 temperature probe has an uncertainty of 0.27oC (95% confidence level) at 60oC [65]. If EKT = 50
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ppm, then u(∆T ) = 0.351oC (68% confidence level), which should be sufficient, considering a possible

increase in uncertainty due to calibration.

Further, a standard digital caliper at the Department for Physics and Technology’s workshop has an

accuracy of 0.03mm (assumed 95% confidence level)[68]. Thus must u(L0) be larger than 0.015 mm

at 68% confidence level, assuming that no high-accuracy measuring tools are provided.

In Table 5.8 in Fosså [39], the uncertainty in diffraction correction, u(∆t di f f ) accounts for 0.4% of the

total uncertainty with u(∆t di f f ) = 1.5 ·10−10 s. Based on these numbers, it is thus assumed that the

uncertainty in diffraction correction will be significantly lower than the preliminary standard uncer-

tainty presented in Table 5.7, and E∆t cor r is thus reduced from the tentative 250 ppm.

The pulse-echo buffer rod method is prone to several coherent noise contributions [93] which could

affect transit time calculations. Each of these noise sources may increase the uncertainty in transit

time. Quantifying these contributions has not been done in the sensitivity analysis, but following

Fosså [39], which found an uncertainty of u(∆t ) = 4.59 ·10−8 s, an uncertainty larger than the uncer-

tainty presented in Table 5.7 is chosen.

Based on the discussion above, a new sensitivity analysis is carried out, where the contribution of EKT

and E∆t cor r is decreased and the contribution of EL and E∆t is increased relative to Table 5.7. The result

is presented in Table 5.8, and will serve as a basis for the project when designing the measurement

cell.

Table 5.8: Preliminary uncertainty budget nr. 2 for the sound velocity using the pulse-echo buffer rod method
when cs = 1551.1 m/s and T = 60.0oC if Ec ≤ 1000 ppm = 0.1% (95% confidence level).

Variable

Rel. standard

uncertainty

(68% c.l.)

Typical value

Standard

uncertainty

(68% c.l.)

Expanded

uncertainty

(95% c.l.)

L0 630 ppm 25.00 mm 0.0158 mm 0.0316 mm

KT 50 ppm 1.0028 5.0 ·10−5 1.0 ·10−4

∆t 320 ppm 32.3µs 0.01 µs 0.021 µs

∆t cor r 1793 ppm 0.5 µs 0.645 ns 1.290 ns

cs 500 ppm 1551.1 m/s 0.776 m/s 1.551 m/s

The uncertainty in cs as a function of temperature can further be studied using Eq. (5.2) in a temper-

ature span of 20 to 60oC . Each uncertainty contribution in Table 5.8 is assumed constant through the

entire temperature span. The theoretical sound velocity is calculated as a function of temperature

using Eq. (2.2) with PM = 1.013 bar, which can be used to find the corresponding transit time (Eq.

(2.12)). KT is further found as a function of temperature following Eq. (2.54), and ∆t cor r and L0 are

constants. The resulting u(cs) as a function of temperature is presented in Fig. 5.2
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Figure 5.2: Uncertainty in cs as a function of temperature, using Eq. (2.2). The uncertainty in u(L0), u(∆t ),
u(KT ), and u(∆t cor r ) is set to constant.

From Fig. 5.2, it is evident that uc (cs) increases with increasing temperature. Consequently will the

uncertainty budgets in Chapter 6 be presented at maximum temperature throughout the project.

5.4 Uncertainty model for the theoretical sound velocities

5.4.1 Combined standard uncertainty in pressure

The theoretical sound velocity in distilled and saline water and the corresponding uncertainties will

be dependent on the uncertainty in pressure, uc (P ). A model for uc (P ) will thus be presented here.

The gauge pressure, PG , is given by Eq. (2.3). Differentiating Eq. (2.3) and setting u(P )atm = 0, uc (PG )

= uc (P ) can be modelled as

u2
c (P ) = u2

c (P )M + (
ρg

)2 ·u2
c (P )d + (

ρh
)2 ·u2(P )g r avi t y

+(
g h

)2 ·u2(P )densi t y +u2(P )other ,
(5.39)

where ρ is the density of the liquid, g is gravitational acceleration and h is the depth of the sound

axis in meters. Note that hydrostatic pressure is given in Pascal, and pressure in bar. Thus must the

sensitivity coefficients be converted to bar. Further,

u2
c (P )M = u2(P )i nst +u2(P )r eadi ng +u2(P )st abi l i t y , (5.40)

and

u2
c (P )d = u2(P )par al l el +u2(P )cal i per . (5.41)

All uncertainty contributions are described in Table 5.9.
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Table 5.9: Description of uncertainty contributors when measuring the pressure using Paroscientific Model 740

Uncertainty

contributor
Uncertainty description

u(P )i nst Standard uncertainty in Paroscientific Model 740 pressure sensor.

u(P )r eadi ng Standard uncertainty due to observational fluctuations in analogue readings.

u(P )st abi l i t y Standard uncertainty due to long term stability of pressure sensor.

u(P )densi t y
Standard uncertainty due to the deviation in sound velocity by assuming that the

density of pure water is constant with increasing temperature.

u(P )g r avi t y Standard uncertainty due to gravitational acceleration.

u(P )par al l el Standard uncertainty in propagation depth below water surface.

u(P )cal i per Standard uncertainty of the MarCal 16EWP digital caliper.

u(P )other Standard uncertainty due to other unknown contributions.

5.4.2 Combined standard uncertainty in theoretical sound velocity in distilled water

The measured sound velocity in distilled water is compared to the theoretical sound velocity, ctd ,

using Eq. (2.2). In this section, a model for the uncertainty of the theoretical sound velocity as a

function of temperature in distilled water is presented.

Although T and PG are correlated, they are here assumed to be uncorrelated as the increase in density

with temperature is assumed negligible. The combined uncertainty can then be calculated using

equation

uc (ct )2 =
(∂ct

∂T
uc (T )

)2 +
(∂ct

∂P
uc (P )

)2 +
(
u(cmodel

t )
)2

, (5.42)

where the sensitivity coefficients are given as,

∂ct

∂T
= 4.88−0.0964 ·T +4.05 ·10−4 ·T 2 + (0.028+4.8 ·10−4 ·T ) · PG

100
, (5.43)

∂ct

∂PG
= 1

100
· (15.9+0.028 ·T +2.4 ·10−4 ·T 2). (5.44)

5.4.3 Combined standard uncertainty in theoretical sound velocity in saline water

The measured sound velocity in saline water is compared with the UNESCO equation, Eq. (2.4), which

is dependent on salinity, temperature and pressure. If the uncertainties are assumed uncorrelated,

the combined uncertainty for theoretical saline water, ct s , can be found as

uc (ct s)2 =
(∂ct s

∂S
u(S)

)2 +
(∂ct s

∂T
uc (T )

)2 +
(∂ct s

∂P
uc (P )

)2
, (5.45)

where
∂c sal .

t
∂S ,

∂c sal .
t
∂T and

∂c sal .
t
∂P are given in Appendix B, as Eqs. (B.2), (B.3) and (B.4) respectively.
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Chapter 6

Experimental results

The experiments conducted throughout the project are presented in this chapter, together with the

corresponding uncertainty when applicable. The uncertainty calculations will be based on the un-

certainty models presented in Chapter 5, and the table set up for the uncertainty budgets is from

[40].

The chapter consists of eight sections with corresponding subsections. The calibration results of

the temperature sensor and calculated uncertainties concerning temperature and pressure measure-

ments will be presented in Section 6.1. The results of the measured dimensions, the uncertainties

in dimensions and uncertainty in thermal expansion of the sample length are presented in Section

6.2. Section 6.3 presents the results of the measured compressional and shear sound velocity. In Sec-

tion 6.4, the directivity measurements are presented, and the effective element radius and transducer

bandwidth is calculated. In Sections 6.5, 6.6, and 6.7 the experimental sound velocity measurements

for distilled water, saline water and Extra Virgin olive oil are presented, respectively, together with

the corresponding uncertainties. With the above-calculated uncertainties, the total uncertainty in

experimental sound velocity can be calculated, presented in Section 6.8.

6.1 Temperature and Pressure

Temperature and pressure measurements are conducted throughout the project. Before tempera-

ture measurements are conducted, the temperature sensor is calibrated. This section will present the

calculated uncertainties concerning temperature and pressure measurements and the calibration re-

sults.

6.1.1 Calibration of PT100

To calibrate the PT100 temperature sensor element used in this project, two sets of measurements are

attained as explained in Section 3.1.7.

In the first set of measurements, the coefficientsα, β and R0 in Eq. (3.1) are set toα= 3.9083·10−3/oC ,



6.1. TEMPERATURE AND PRESSURE 99

β = −5.775 · 10−7/oC 2 and R0 = 100Ω, corresponding to the standard coefficients for a regular plat-

inum element[66]. The measured temperature of the PT100 sensor in the dry-well as a function of

reference temperature in the dry-well is presented in black in Fig. 6.1, and the resulting deviation

between the curves is presented in blue in Fig. (6.2). At 60oC , the deviation between the two temper-

ature sensors is at its highest at 0.4oC .

Figure 6.1: Result of the measured temperature before calibration (black dotted) and after calibration (red) with
the PT100 temperature sensor. Plotted against the reference temperature in the dry-well, measured with the
reference probe

Figure 6.2: Deviation between the reference temperature, Tr e f and the measured temperature by the PT100
temperature probe, Tmeas , before (blue) and after calibration (red), as a function of Tr e f .



100 CHAPTER 6. EXPERIMENTAL RESULTS

The measured temperature with the original coefficients α, β and R0 is transformed to resistance

using Eq. (3.1), and the resulting plot is used to calculate the new coefficients by implementing Eq.

(3.1) in Matlab’s ready-made curve fitting tool, cftool [56].

The new coefficients are found to be α = 3.841 · 10−3oC−1, β = −2.095 · 10−7oC−2 and R0 = 100.1Ω.

These coefficients are implemented in the temperature scanner, and a new series of temperature

measurements is conducted for a temperature span of 15-60 oC . The resulting measured temper-

ature from the PT100 sensor is presented in red in Fig.6.1 as a function of reference temperature,

together with the reference temperature (in blue). The resulting deviation is presented in Fig. 6.2,

now calculated to be 0.04 at 60oC . The resulting coefficients are used throughout the project when

measuring the temperature by applying Eq. (3.2).

The uncertainty due to deviation in calibration is found using the maximum deviation from cali-

bration, corresponding to 0.04oC at 60oC with a confidence level of k =
p

3. This results in standard

uncertainty u(T )cal i bdev = 0.023oC .

6.1.2 Uncertainty in temperature measurements

In Section 5.2.1, a model for the combined standard uncertainty of the temperature measurements is

presented, uc (T ). This model consists of contributions from the temperature sensor itself, uncertain-

ties due to calibration, and uncertainty due to the RTD-USB adapter.

In Table 6.1 all uncertainties for the variables used in the uncertainty model are presented for T = T0

= 22.94oC , and for T = 45.7oC , corresponding to the highest recorded temperature throughout the

project. The description of each uncertainty contribution is presented in Table 5.2.

Using the tabulated values in Table 6.1 inserted into Eq. (5.9), the combined standard uncertainty in

calibration is found to be uc (T )cal = 0.034oC at T0 = 22.94oC , and uc (T )cal = 0.072oC at T = 45.7oC .

This can in turn be used to calculate the total standard uncertainty in temperature measurements,

uc (T ), using Eq. (5.8), and is presented as an uncertainty budget for T = 45.7oC in Table 6.2. The same

equation can be applied for T0 with uncertainty values presented in Table 6.1, resulting in uc (T0) =

0.143oC .
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Table 6.1: Standard uncertainty for the uncertainty contributions when measuring the temperature in the sam-
ple area using JUMO STEAMTemp Temperaturgiver RTD (902830), presented for T0 = 22.94oC and T = 45.7oC .
All values are presented with 68% confidence level, k = 1. Description of each variable is presented in Table5.2.
Note that tabulated uncertainties for u(T )Tr e f and u(T )el ement are assumed a 95% c.l., k = 2, and are here
divided by 2 for 68% c.l.

Uncertainty

contributor
Description

u(T )Tr e f
1/10 DIN Class B: 0.022oC at T = T0 = 22.94oC and 0.033oC at T = 45.7oC .

Found by interpolating values presented in [67], which follows IEC 60751 [65].

u(T )dr i f tr e f Set to 0.025oC following [94] for the entire temperature range.

u(T )scanner
Manufacturers specification: 0.005oC for 4-wire PRT/RTD [95] at T0 = 22.94oC .

Add 0.003oC Temp. Comp. per oC outside 18oC to 28oC at medium sample rate.

u(T )cal i bdev Found to be 0.023oC at most (ref. Section 6.1.1). Assumed for whole temperature range.

u(T )el ement
Class A RTD, 0.098oC at T = T0 = 22.94oC and 0.121oC at T = 45.7oC ,

Found by interpolating values presented in [67], which follows IEC 60751 [65].

u(T )dr i f t J M Set to ± 0.025oC following [94] for the entire temperature range.

u(T )ad apter
Specified by the manufacturer to be 0.06oC at 25oC [96].

Assumed valid throughout the temperature range.

u(T )var Observed to be ±0.002oC . Assumed for the entire temperature range.

u(T )other Neglected.

Table 6.2: Uncertainty budget for the temperature measurements using the using JUMO STEAMTemp Temper-
aturgiver RTD 902830 at 45.7oC .

Uncertainty

Contributor

Input uncertainty Combined uncertainty

Expanded

uncertainty

[oC ]

Conf.

level &

distr.

Cov.

fac.,

k

Standard

uncertainty

[oC ]

Sens.

Coeff.
Variance

Calibration 0.0720 68% (norm) 1 0.0720 1 5.18·10−3(oC )2

PT100 dev. from

calibration
0.0230 68% (norm) 1 0.0230 1 5.29·10−4(oC )2

PT100 uncertainty 0.241 95% (norm) 2 0.121 1 0.0146 (oC )2

Thermal drift 0.0250 68% (norm) 1 0.0250 1 6.25·10−4(oC )2

RTD to USB adapter 0.0600 68% (norm) 1 0.0600 1 3.60·10−3(oC )2

Stability 0.0100 68% (norm) 1 0.0100 1 1.00·10−4(oC )2

Other sources n/a n/a n/a n/a n/a N/A

Sum of variances, u2
c (T ) 0.0246 (oC )2

Combined standard uncertainty, uc (T ) 0.157 oC

Expanded uncertainty (95%, k = 2), U(T) 0.314 oC

Relative expanded uncertainty (95%, k = 2), U(T)/T 0.69%
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6.1.3 Uncertainty in pressure measurements

Pressure measurements are conducted using a Paroscientific Model 740. In the following, the calcu-

lated uncertainty in the measured pressure will be presented, which follows the model presented in

Section 5.4.1. The results will be used to calculate the uncertainty in theoretical sound velocity for

pure and saline water, Sections 6.5.3 and 6.6.3 respectively.

The standard uncertainty values for the uncertainty contributors in pressure measurements are pre-

sented in Table 6.3, where a description of each contributor is presented in Table 5.9.

The density of pure water, ρw , as a function of temperature can be expressed by the Kell formulation

[28], and the density of saline water, ρs is a function of temperature, salinity, and ρw [34]. By assuming

a constant density throughout the project, uncertainties of 0.5·10−4 m/s and 6 ·10−6 m/s for distilled

and saline water has been found by inserting ρw = 998kg /m3 and ρs = 1013.2kg /m3, corresponding

to densities at 20 oC , into Eqs. 2.2 and 2.4 respectively for T = 60oC . The dependency of the theoretical

sound velocities due to incremental changes in the density for distilled and saline water at increasing

temperatures are thus assumed negligible for the temperature range in this project.

The uncertainty in pressure due to the uncertainty in sound propagation depth, u2
c (P )d , is dependent

on the height measurements of the measurement cell. Inserting u(P )par al l el and u(P )cal i per from

Table 6.3 into Eq. (5.41) yields uc (P )d = 3.13 ·10−5 m.

Using the sound velocity measurements for distilled water, Table 6.14, as an example with PM =
1.0395 bar, and assuming ρw = 998kg /m3 and d = 55·10−3 m, the uncertainty in pressure can be

found, presented as an uncertainty budget in Table 6.4.

Table 6.3: Standard uncertainty for the uncertainty contributors when measuring the pressure using Parosci-
entific Model 740. All values are presented with 68% confidence level, and a description of each uncertainty
contributor is presented in Table6.4.

Uncertainty

contributor
Uncertainty description

u(P )i nstr Specified by manufacturer to be 0.015 % of reading [63].

u(P )r eadi ng Observed to be 6.5 ·10−5 bar.

u(P )st abi l i t y Not available.

u(P )densi t y Negligible (cf. discussion above).

u(P )g r avi t y Neglected.

u(P )par al l el 0.0313 mm. (Ref. Table6.5).

u(P )cal i per
Specified to be 0.03 mm following DIN 862 standard [68]

assuming 95% c.l., k = 2, thus 0.015 mm at 68% c.l.

u(P )other Not available.
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Table 6.4: Uncertainty budget for the measured pressure using Paroscientific Model 740 in distilled water with
PM = 1.0395 bar, ρw = 998kg /m3 and d = 55·10−3 m.

Uncertainty

contributor

Input uncertainty Combined uncertainty

Exp.

uncertainty

[bar]

Conf.

level &

distr.

Cov.

fac.,

k

Standard

uncertainty

[bar]

Sens.

coeff.
Variance

Instrument 1.56·10−4 68% (norm) 1 1.56·10−4 1 2.43·10−8bar 2

Observational

fluctuations
6.50·10−5 68% (norm) 1 6.50·10−5 1 4.23·10−9bar 2

Height 3.13 ·10−5 68%(norm) 1 3.13 ·10−5 0.0979 9.39·10−12bar 2

Density n/a n/a n/a n/a n/a n/a

Gravity n/a n/a n/a n/a n/a n/a

Sum of variances u2
c (P ) 2.85·10−8bar 2

Combined standard uncertainty (68% confidence level, k = 1) uc (P ) 1.69·10−4bar

Expanded uncertainty (95% confidence level, k = 2) U (P ) 3.38·10−4bar

Measured pressure P 1.0395 bar

Relative expanded uncertainty U(P)/P 0.033%

6.2 Measurement cell dimensions

This section presents the measured length of the sample area, together with the dimensions of the

Plexiglas buffer, and the associated uncertainties. The accuracy of the calculated thermal expansion,

KT , is directly related to uncertainties provided below and will thus be presented in Section 6.2.3.

6.2.1 Measured dimensions

All measurements are taken at temperature, T = 22.94oC , and will thus be used as reference temper-

ature for the thermal expansion, i.e. T0 = 22.94oC .

In Table 6.5, the entire surface of interest is measured. Table 6.6 presents repeatability measurements

of the length of the buffer and sample area, taken approximately at the sound axis.

The distances from the bolts to the sample area, used for thermal expansion in Section 2.5, are mea-

sured to be db1 = 0.7 mm and db2 = 0.11 mm on the left and right side on the measurement cell

respectively, with a standard uncertainty of ≈ 0.05 mm. The average distance will be used for thermal

expansion calculations, thus db = 0.9mm±0.214mm. The uncertainty is at 68% confidence level, and

includes the MarCal 16EWR digital caliper uncertainty of 0.03mm (95% confidence level).
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Table 6.5: Measurements of the sample length, L0, and the buffer length (D), width (W) and height (H) using a
MarCal 16EWR digital caliper. All measurement series were taken across the entire surface of interest.upar al l el

corresponds to the standard deviation of the measurements.

Measurement

number
L0 [mm] D [mm] W [mm] H [mm]

1 25.16 70.11 100.05 105.11

2 25.17 70.08 100.10 105.04

3 25.18 70.10 100.06 105.13

4 25.18 70.12 100.01 105.05

5 25.18 70.09 100.02 105.10

6 25.19 70.06 100.05 105.12

7 25.17 70.10 100.06 105.08

8 25.17 70.11 100.10 105.09

9 25.16 70.10 100.00 105.13

10 25.19 70.12 100.03 105.11

Average value 25.18 70.10 100.05 105.1

upar al l el 0.011 0.0185 0.0343 0.0313

Table 6.6: Measurements for the sample length, L, and the buffer length, D, using a MarCal 16EWR digital
caliper. Both measurement series were taken at the approximate location of the sound axis, thus the center of
the width. ur ep corresponds to the standard deviation of the measurements.

Measurement

number
L0 [mm] D [mm]

1 25.18 70.11

2 25.17 70.09

3 25.18 70.10

4 25.18 70.10

5 25.18 70.10

6 25.17 70.11

7 25.17 70.10

8 25.18 70.11

9 25.19 70.10

10 25.18 70.11

Average value 25.18 70.10

ur ep 0.0063 0.0068
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6.2.2 Uncertainty in measured dimensions

In Section 5.2.3, a model for the uncertainty in sample length is presented through Eq. (5.13). The

standard uncertainty of all uncertainty variables needed to calculate uc (L0) are summarized in Table

6.7, and the description of the variables can be found in Table 5.4. The reflector surface is assumed

to be plane within an uncertainty of 0.02mm at 95% confidence level (ref. Section 3.1.8.) Using the

standard uncertainties presented in Table 6.7, together with Eq. (5.15), uc (D) = 0.0165mm. This,

together with u(R), can in turn be used to find the standard uncertainty in sample length due to

non-parallelism in the vertical direction of the sample area by applying Eq. (5.14), which results in

uc (L0)ver t = 0.0193mm. With a calculated uc (L0)ver t , the total uncertainty in sample length can be

found, presented as an uncertainty budget in Table 6.8.

Table 6.7: Standard uncertainty of the uncertainty contributions used to calculate u(L0). All are found at T =
T0 = 22.94oC for a 68% confidence level, k = 1. Discription of the uncertainty contributors are found in Table5.4.

Uncertainty source Description

ucal i per
Specified to be 0.03 mm following DIN 862 standard [68]

assuming 95% c.l., k = 2, thus 0.015 mm at 68% c.l.

u(L0)r ep 0.0063 mm, ref. Table 6.6.

uc (L0)ver t 0.0193 mm (cf. discussion above)

u(R) Set to 0.01 mm

u(D)r ep 0.0068 mm, ref. Table 6.6.

ust ab n/a.

u(L0)other n/a.

Table 6.8: Uncertainty budget for the measured sample length, L0, calculated with Eq. (5.13) at T0 = 22.94oC .

Uncertainty

source

Input uncertainty Combined uncertainty

Expand.

unc.

Conf.

level &

distr.

Cov.

fact.,

k

Standard

unc.

Sens.

coeff.
Variance

Caliper uncertainty 0.0300 mm 95% (norm) 2 0.0150 mm 1 2.25·10−4mm2

Repeatability 6.30·10−3 mm 68% (norm) 1 6.30·10−3 mm 1 3.97·10−5mm2

Uneven surfaces 0.019 mm 68% (norm) 1 0.0193 mm 1 3.72·10−4mm2

Stability n/a n/a n/a n/a n/a n/a

Other sources n/a n/a n/a n/a n/a n/a

Sum of variances u2
c (L0) 6.37·10−4mm2

Combined standard uncertainty uc (L0) 0.0252mm

Expanded uncertainty (95% conf. level, k = 2) U(L0) 0.0505mm

Measured length L0 25.18mm

Relative expanded uncertainty (95% confidence level) EL =U (L0)/L0 0.200%
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6.2.3 Uncertainty in thermal expansion

To calculate the uncertainty in thermal expansion,KT , the model presented in Section 5.2.2 will be

applied with uncertainty contributors described in Table 5.3. A case of T = 45.7oC , corresponding to

the maximum recorded temperature throughout the project, will be studied as an example.

The sample length, L0, has been measured to L0 = 25.18mm (ref. Table 6.6) with uc (L) = 0.0252 mm

(ref. Table 6.8).

The length between bolts and sample area, dp , has been measured to dp = 0.9mm with corresponding

uncertainty uc (db) = 0.214 mm (ref. Section 6.2.1).

The uncertainty in temperature at 68% confidence level is calculated to 0.143oC for T = 22.94oC and

0.157oC for T = 45.7oC in Section 6.1.2, and the corresponding uncertainty in ∆T at 68% confidence

level is thus uc (∆T ) = 0.212oC following Eq. (5.12) with sensitivity coefficients equal to 1.

Additionally, αp = 70 · 10−6[53] and αa = 24·10−6[52], with corresponding uncertainties of u(αp ) =
2.35 ·10−6 and u(αa) = 0.35 ·10−6 (ref. Section 3.5.2).

The variables above with corresponding uncertainties can be used to calculate the uncertainty in KT ,

presented as an uncertainty budget in Table 6.9.

Table 6.9: Uncertainty budget for the thermal expansion in L0 at T = 45.8oC , where T0 = 22.94oC , L0 = 25.18
mm, dp = 0.9 mm, αp = 70 ·10−6[53], and αa = 24·10−6[52].

Uncertainty

Source

Input uncertainty Combined uncertainty

Expanded unc.

Conf.

level

& distr.

Cov.

factor,

k

Standard unc Sens.coeff Variance

Temperature, ∆T 0.212 oC 68% (norm) 1 0.212oC 2.23 ·10−5 2.24 ·10−11

Thermal ex. coeff. αa 3.50 ·10−7/(oC ) 68% (norm) 1 3.50 ·10−7/(oC ) 23.57 6.81·10−11

Thermal ex. coeff, αp 2.40 ·10−6/(oC ) 68% (norm) 1 2.4 ·10−6/(oC ) 0.812 3.80 ·10−12

Uncertainty in length, L0 2.52 ·10−5 m 68% (norm) 1 2.52 ·10−5 m 0.0015 1.43 ·10−15

Uncertainty in dp 2.14·10−4 m 68% (norm) 1 2.14 ·10−4 m -0.042 8.08 ·10−11

Sum of variances u2
c (KT ) 1.75 ·10−10

Combined standard uncertainty (68 % confidence level, k = 1) uc (KT ) 1.32 ·10−5

Expanded uncertainty (95% confidence level, k = 2) U (KT ) 2.65·10−5

Thermal expansion at T = 45.7oC KT 1.0005

Relative expanded uncertainty (95% confidence level, k = 2) U (KT )/KT 0.00265%
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6.3 Sound velocity in Plexiglas

Using the experimental setup explained in Section 3.2 at T0 = 22.8oC , a waveform is sampled, shown

in Fig. 6.3. By analyzing the steady-state portion of the two reflections from the buffer/air interface,

the transit time and thereby the sound velocity can be calculated using the zero-crossing method

(Section 3.4.2). 14 consecutive zero-crosses were chosen, located inside the red square in Fig. 6.3. The

average sound velocity was then calculated using Eq. (3.3), with the measured transit times and buffer

length, D = 70.1 mm. The resulting average compressional sound velocity corrected for diffraction in

Plexiglas is found to be cb = 2711.2m/s with a standard deviation of 0.232 m/s.

From the measured compressional sound velocity in the Plexiglas buffer, a new shear wave sound

velocity can be calculated using Eq. (2.1) with ν= 0.4 and cb = 2711 m/s, resulting in cshear = 1106.8

m/s at 22.8oC .

Figure 6.3: Resulting response using the measurement setup described in Section 3.2 with a f = 500kHz 10
period pulse. The calculated zero-crosses are shown with black marks, and the zero-crosses located inside the
red squared are used for calculating the compressional sound velocity in Plexiglas.

The compressional sound velocity in Plexiglas as a function of temperature is measured using the

experimental setup shown in Fig. 3.3 and the experimental method explained in Section 3.2.

To accurately account for thermal expansion, the Plexiglas used for the experiment is a Plexiglas block

measured to 85.11±0.1 mm at 22.10oC . In steps of 3oC , the waveform is recorded and the average

sound velocity is calculated using the transit time between the two reflections for 14 consecutive zero-

crosses, as shown in Fig. 6.3. To compensate for thermal expansion, the Plexiglas length as a function
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of temperature can be expressed with Eq. (2.54), using αb = 70 ·10−6 [53] and Lbu f f er
0 = 85.11 mm at

T0 = 22.1oC .

Lbu f f er
exp (T ) = Lbu f f er

0 · (1+αb(T −T0)) = 85.11 ·10−3 · (1+70.0 ·10−6(T −22.1)) (6.1)

In Table 6.10, the average sound velocity is presented for each temperature setpoint, together with

the calculated standard deviation of the variation in sound velocity for the respective zero-crossing

in each waveform, calculated using using Eq. (3.3). Both the sound velocity corrected for diffraction,

and the undiffracted sound velocity is presented, thus where t cor r
B2 = t cor r

B1 = 0.

Table 6.10: Undiffracted and diffracted average sound velocity in Plexiglas, cb , at temperature setpoints.

Temperature [oC ] Undiffracted cb [m/s] cb corrected for diffraction [m/s] Std dev. [m/s]

22.10 2728.5 2725.0 0.5

25.67 2727.6 2724.1 0.4

28.62 2726.1 2722.6 0.4

31.39 2723.4 2719.9 0.3

34.51 2719.7 2716.2 0.4

37.41 2709.4 2706.0 0.4

40.24 2703.9 2700.5 0.4

43.48 2694.92 2691.5 0.4

A 2nd degree polynomial can be applied on the data poins in Table 6.10, resulting in a general equa-

tion for the decrease in sound velocity as a function of temperature. This is shown as the black line in

Fig. 6.4, and can be expressed as

c85mm
b (T ) =−0.08415 ·T 2 +3.912 ·T +2680, (6.2)

where c85mm
b (T ) corresponds to the sound velocity for the 85 mm buffer as a function of temperature.



6.4. DIRECTIVITY MEASUREMENTS AND TRANSDUCER PROPERTIES 109

Figure 6.4: Blue curve: measured compressional sound velocity in Plexiglas as a function of temperature. Red
curve: Curve fitted sound velocity, calculated with a 2nd degree polynomial.

Discrepancies are found between the measured sound velocities at room temperature for the buffer

in the project (70 mm) and the 85 mm buffer. At 22.8oC , the 70 mm buffer has a sound velocity of

2711.2 m/s, compared to 2725.3 m/s for the 85 mm buffer. As a result, cb , measured with the 70 mm

buffer is set to have an uncertainty of 14.1 m/s, assuming 100% confidence level (k =
p

3), thus is

u(cb) = 8.14 m/s.

The equation for the sound velocity in 70 mm Plexiglas as a function of temperature can be written:

c70mm
b (T ) = c85mm

b (T )− (2725.3−2711.2) =−0.08415 ·T 2 +3.912 ·T +2666. (6.3)

6.4 Directivity measurements and transducer properties

To calculate the effective radius, ae f f , the theory described in Section 2.4 and the experimental setup

in Section 3.3 was used.

Further, using the measurement setup illustrated in Fig. 3.1, the sound velocity of the water used

in the tank was measured to 1478±2.8 m/s using the ZCM at T = 19.8oC . When the transducer and

hydrophone were aligned, several series of measurements were performed. The signal generator was

set to produce a 100 period sinusoidal burs with f = 500 kHz and 10 V amplitude. In steps of 0.1o , 0.5o

and 0.05o , the rotation stage was set to rotate from −7o to 7o . These measurements correspond to

M1, M2 and M3, respectively. The results can be seen in Fig. 6.5.
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Figure 6.5: Results of three directivity measurements of the main lobe in steps of 0.1o = M1, 0.5o = M2 and
0.05o = M3, together with the line that corresponds to an amplitude reduction of 3 dB. The rotation stage is set
to rotate from −7o to 7o , but for illustration proposes only −4o to 4o is shown.

There is little to no distortion in the amplitude signal in all three curves, but the curves do not line

up perfectly. Therefore, the effective transducer radius is calculated for all three measurements, and

the mean value will equal ae f f . This will consequently lead to uncertainty that will be included in

Section 6.8.1.

The point where the amplitude has reduced by 3 dB is marked with a line in Fig. 6.5. By locating the

intersection between the three curves and the line, θ3dB can be found. Eq. (2.52) can then be applied

to calculate the effective transducer radius, ae f f .

Table 6.11: List of calculated θ3dB and resulting ae f f calculated from the results in Fig.6.5.

θ3dB <0 [o] θ3dB >0 [o] Average |θ3dB |[o] ae f f [mm]

Measurement 1 -3.612 3.494 3.553 12.22

Measurement 2 -3.424 3.485 3.455 12.58

Measurement 3 -3.422 3.539 3.481 12.48

Mean± std.dev. 3.496±0.051 12.43±0.18

From Table 6.11, the calculated effective transducer radius will henceforth be ae f f = 12.43mm with

an uncertainty of u(ae f f ) = 0.18mm. More measurements would have been of interest to increase

the credibility of the calculated ae f f .

However, in this project, the transducer is clamped on Plexiglas and not in direct contact with water.
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Experimental data on the directivity in Plexiglas is not possible within the scope of this project. As a

result, the theoretical directivity plot in Fig. 4.8 will be used throughout the project.

6.5 Sound velocity in distilled water

In this section, the experimental sound velocity measurements will be presented with varying nr. of

periods and as a function of frequency and temperature. The uncertainty in theoretical sound velocity

will also be presented, whereas the uncertainty in experimental sound velocity is calculated in Section

6.8.

6.5.1 Sound velocity measurements in distilled water

As to see how the sound velocity differed with pulse length, three measurements were taken with

distilled water at room temperature using the measurement setup shown in Fig. 3.1 with f = 500 kHz.

The Fourier Spectrum method (FSM) and the Zero-crossing method (ZCM) are used to calculate the

resulting sound velocity, cs , after applying a ten-period, six-period, and two-period pulse.

For the two-period and six-period pulse, the ZCM sound velocity was measured with the zero-crossings

illustrated in Fig. 3.16, whereas zero-crossings 3 to 20 is used for the ten-period pulse, corresponding

to the steady-state portion of the signal in Fig. 6.8. Each zero-crossing is marked with a circle.

The isolated pulses used for the FSM for the two-period and six-period pulses are shown in Fig. 3.17b

and Fig. 3.19 respectively. Although not identical pulses, the same defined start and end will be used

throughout all FSM sound velocity measurements for two-period and six-period pulses. The zero-

padded pulses are shown in Fig. 6.8 for the ten-period pulse, and will be used to measure cs according

to Section 3.4.3.

The experimental sound velocities were then compared to the theoretical sound velocity, ctd , using

Eq. (2.2). The results are presented in Figs. 6.6, 6.7, and 6.9. For the FSM, the sound velocity is a

function of frequency, where cs at 500 kHz is extracted and plotted together with the ZCM-results,

and will thus be constant. The measured cs for each measurement is presented in Table 6.12.

Table 6.12: Experimental sound velocity corrected for diffraction, cs , in distilled water for 2, 6, and 10 period,
measured with ZCM and FSM. For ZCM, the average cs is presented (cf. discussion above). The results are
compared with theoretical sound velocity, ctd , at temperature T with PM = 1.0370 bar.

Nr. of

periods

Temp.

[oC ]

Theoretical

ctd [m/s]

FSM

Sound velocity

cs [m/s]

FSM

ctd /cs

[-]

ZCM

Sound velocity

cs [m/s]

ZCM

ctd /cs

[-]

2 24.47 1495.25 1495.49 0.99984 1495.57 0.99979

6 24.18 1494.43 1494.85 0.99972 1494.84 0.99973

10 24.40 1495.05 1494.91 1.0001 1495.11 0.99996
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Figure 6.6: Left axis: Measured burst for distilled water at 24.47oC using f = 500 kHz and a two-period pulse, with
calculated zero-crosses. Right axis: Undiffracted and diffracted sound velocity as a function of zero-crossings
for the ZCM, compared with the diffracted cs using FSM, and theoretical sound velocity, ctd , using Kinsler and
Frey [23].

Figure 6.7: Left axis: S A for distilled water at 24.18oC using f = 500 kHz and a six-period pulse, with calculated
zero-crosses. Right axis: Undiffracted and diffracted sound velocity as a function of zero-crossings for the ZCM,
compared with the diffracted cs using FSM, and theoretical sound velocity, ctd , using Kinsler and Frey [23].
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Figure 6.8: Zero-padded pulses for distilled water at 24.38oC using f = 500 kHz and a ten-period pulse. Every-
thing but the signals of interest is zero-padded, where the signals of interest will be used to measure cS with the
FSM according to Section 3.4.3. The resulting cs is presented in Fig.6.9

Figure 6.9: Left axis: S A for distilled water at 24.38oC using f = 500 kHz and a ten-period pulse, with calculated
zero-crosses. Right axis: Undiffracted and diffracted sound velocity as a function of zero-crossings for the ZCM,
compared with the diffracted cs using FSM, and theoretical sound velocity, ctd , using Kinsler and Frey [23].

Table 6.12 clearly shows that, when using a two-period pulse, the FSM presents a more accurate cs
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than ZCM, which is expected as the ZCM has not reached a steady-state.

The six-period pulse has reached a distinct steady-state and agrees to within 281 ppm for the FSM

and 271 for the ZCM. There is thus no substantial deviation between the signal processing methods

for a six-period pulse, which will be confirmed later.

For the ten-period pulse, it can be observed that the ZCM deviates towards the end of the pulse,

which is consistent with the arrival of coherent noise sources, shown in Fig. 3.33. From Table 6.12,

it can however, be seen that this provides a cs closest to the theoretical values. The presented results

are further discussed in Chapter 7

Due to dispersion effects (ref. Section 2.1), it is of interest to see how accurate the measurement cell

is at lower frequencies. Using the same experimental setup with a six-period signal, cs was measured

as a function of frequency for a frequency range 275-600 kHz, as lower frequencies would result in

invalid measurements due to amplitude reduction. cs was measured using the ZCM and the FSM for

each frequency set-point. For the ZCM, the average cs is found using the zero-crossings presented in

Fig. 3.16, and the FSM is applied according to Fig. 3.19.

The uncorrected sound velocities and the sound velocities corrected for diffraction are presented

in Fig. 6.10, together with the theoretical sound velocity for each measurement. The temperature

range of the experiments varied from T = 24.144oC to T = 24.095oC within the time frame of the

measurements, and PM = 1.0345 bar. The uncertainty was calculated using the uncertainty budget

presented later in Table 6.29 with updated values.

Figure 6.10: Experimental sound velocity in distilled water at room temperature as a function of frequency,
measured using the ZCM and FSM for a six-period pulse. The diffracted cs is shown in red, and undiffracted cs

is shown in blue. The theoretical sound velocity, compensated for temperature, is presented in black.
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Table 6.13: Experimental sound velocity corrected for diffraction, cs , in distilled water as a function of frequency
for a frequency range of 275-600 kHz, measured with ZCM and FSM. Compared with theoretical sound velocity,
ctd , with PM = 1.0345 bar and T = 24.144oC to T = 24.095oC .

Frequency

[kHz]

Theoretical

ctd

[m/s]

FSM

sound velocity

cs [m/s]

FSM

Rel. expanded.

unc. [ppm]

ZCM

sound velocity

cs [m/s]

ZCM

Rel. expanded.

unc. [ppm]

275 1494.34 1495.11 2215 1495.21 2256

300 1494.34 1495.81 2213 1495.61 2243

330 1494.27 1495.31 2214 1495.21 2241

375 1494.27 1494.21 2218 1494.31 2248

400 1494.20 1494.51 2218 1494.41 2229

425 1494.20 1494.31 2219 1494.41 2228

450 1494.20 1494.31 2218 1494.41 2222

500 1494.20 1494.33 2218 1494.35 2223

525 1494.20 1494.21 2217 1494.31 2220

550 1494.20 1494.41 2218 1494.31 2222

575 1494.20 1494.36 2219 1494.28 2224

600 1494.20 1494.21 2219 1494.21 2223

The presented results in Fig. 6.10 show that the sound velocity can be measured with accurate results

down to 375 kHz before it deviates, resulting in a maximum deviation at 300 kHz. The relative ex-

panded uncertainty for the ZCM has a slight increase with decreasing temperatures, which is found

to be due to an increase in the spread in measured time shift, u(∆t )var (Section 5.2.4), with decreasing

frequency with the ZCM. The results are further discussed in Chapter 7.

In a temperature range of 23.7-45.7oC , a measurement series was carried out in ≈ 3oC steps using

the measurement setup shown in Fig. 3.3. For each temperature set-point, the measurements were

stabilized for approx. ten minutes.

The sound velocities are measured continuously using ZCM and FSM with a six-period pulse. For the

ZCM, the average cs is found using the zero-crossings presented in Fig.3.16, and the FSM is applied

according to Fig.3.19. Table 6.14 presents the resulting sound velocity, together with the theoretical

sound velocity, ctd , using Eq. (2.2) with measured ambient air pressure, PM = 1.0401 bar. For each

sound velocity measurement, the corresponding uncertainty is calculated, where the uncertainty in

sound velocity within the temperature set-point is included. The uncertainty calculations follow the

uncertainty budget presented in Table 6.29.

A relationship between experimental sound velocity, cs , and theoretical sound velocity, ct can be ob-

tained by dividing the theoretical sound velocity by the experimental sound velocity. The original cS

and cs corrected for diffraction is presented in Fig. 6.11, together with an interval showing 1000 ppm

= 0.1% uncertainty from the theoretical sound velocity.
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Table 6.14: Mean sound velocity, cs , corrected for diffraction for a six-period pulse in distilled water for each
temperature set-point, measured with ZCM and FSM, together with mean ctd at mean temperature T where
PM = 1.0401 bar. U (cs ) includes std. dev. in cs fluctuations at each temperature set-point.

ZCM FSM

Temp.,

T [oC ]

Theo.

sound

velocity

ctd [m/s]

Sound

velocity

cs

[m/s]

Combined

expanded

unc.,

U (cs)

[m/s]

Rel.

expanded

unc.

U (cs)/cs

[ppm]

Sound

velocity

cs

[m/s]

Combined

expanded

unc,

U (cs)

[m/s]

Rel.

expanded

unc.

U (cs)/cs

[ppm]

23.66 1493.04 1493.19 3.32 2223 1493.25 3.31 2217

27.59 1503.55 1503.25 3.34 2222 1503.26 3.34 2222

30.31 1510.16 1509.83 3.36 2225 1509.79 3.35 2219

33.37 1516.96 1516.48 3.38 2229 1516.43 3.37 2222

36.07 1522.42 1522.00 3.39 2227 1521.98 3.39 2227

39.17 1528.09 1527.86 3.41 2232 1527.87 3.41 2232

42.26 1533.12 1532.81 3.42 2231 1532.86 3.42 2231

45.67 1537.98 1537.69 3.43 2231 1537.71 3.43 2231

Figure 6.11: Sound velocity in distilled water as a function of temperature, using ZCM and FSM with a 6 pe-
riod pulse, original and corrected for diffraction. The light blue shows the interval as within will result in an
uncertainty < 1000ppm of ctd . The values are all presented as relative values, thus ctd /cs [ppm], where ctd is
calculated using Eq. (2.2) with PM = 1.0401 bar.
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From Fig. 6.11, it is evident that for a six-period pulse, the difference between using ZCM and FSM is

incremental, which is consistent with previous measurements (cf. Fig. 6.7). At lower temperatures,

an increase in deviation is observed compared to the remaining temperature span. It can also be seen

that at ≈ 24oC , both signal processing methods approximates the deviation presented in Table 6.12.

The results are further discussed in Chapter 7.

In the second series, the transducer is excited with a two-period burst, as to see how the FSM and

ZCM works under no steady-state conditions. The sound velocity is measured continuously for a

temperature span of 21.2 - 45.7oC , and stabilized at approximately every third degree. cs with the

ZCM is found according to Fig. 3.16, and the FSM uses the analysis window presented in Fig. 3.17b.

The resulting experimental sound velocities corrected for diffraction are presented in Table 6.15 for

each temperature set-point, together with the corresponding uncertainties. The uncertainty calcula-

tions follow the uncertainty budget in Table 6.29, where the sound velocity fluctuations within each

temperature set-point is included. Sound velocity measurements as a function of temperature are

shown in Fig. 6.12, presented as relative to the theoretical sound velocity, ctd . The 1000ppm interval

is presented in light blue.

Figure 6.12: Sound velocity in distilled water as a function of temperature, using ZCM and FSM with a 2 period
pulse, original and corrected for diffraction. The light blue shows the interval as within will result in sound
velocity measurements less than 1000ppm of ctd . The values are all presented as relative values, thus ctd /cs ,
where ctd is calculated using Eq. (2.2).
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Table 6.15: Mean sound velocity, cs , corrected for diffraction for a two-period pulse in distilled water for each
temperature set-point, measured with ZCM and FSM, together with mean ctd at mean temperature T where
PM = 1.0401 bar. U (cs ) includes std. dev. in cs fluctuations at each temperature set-point.

ZCM FSM

Temp.,

T [oC ]

Theo.

sound

velocity

ctd [m/s]

Exp.

cs

[m/s]

Combined

expanded

unc.,

U (cs)

[m/s]

Rel.

expanded

unc.

U (cs)/cs

[ppm]

Exp.

cs

[m/s]

Combined

expanded

unc,

U (cs)

[m/s]

Rel.

expanded

unc.

U (cs)/cs

[ppm]

21.20 1485.85 1485.97 3.30 2221 1486.55 3.29 2213

25.16 1497.20 1496.33 3.33 2225 1497.24 3.32 2217

28.00 1504.59 1503.64 3.35 2228 1504.56 3.34 2220

31.05 1511.87 1510.76 3.37 2231 1511.63 3.36 2223

33.93 1518.13 1517.11 3.38 2228 1517.96 3.38 2227

37.10 1524.37 1523.27 3.40 2228 1524.22 3.39 2227

39.84 1529.23 1528.04 3.41 2232 1529.10 3.40 2224

42.82 1533.96 1532.82 3.42 2231 1533.82 3.42 2230

45.66 1537.97 1536.90 3.43 2232 1537.77 3.43 2231

In Fig. 6.12, it can be seen that when using a two-period pulse, the ZCM and the FSM deviates signifi-

cantly. Compared to ctd , it can be seen that the FSM provides accurate results, while the ZCM deviates

from cs for the entire temperature range. This is consistent with the results presented in Fig.6.6, and

will be discussed further in Chapter 7.

6.5.2 Uncertainty in experimental sound velocity in distilled water

The uncertainty in the experimental sound velocity, cs , follows the uncertainty model in Section 5.4.2.

It is a product of several uncertainty contributions that have either been calculated previously or is

yet to be found, and is thus presented as a result on its own in Section 6.8. The maximum temperature

throughout the project will be used as an example, corresponding to U (cs) = 3.43 m/s at 45.67oC for

the ZCM using a six-period pulse .

6.5.3 Uncertainty in theoretical sound velocity in distilled water

An uncertainty model for the uncertainty in ctd was presented in Section 5.4.2, derived from Eq. (2.2).

Throughout the measurement series presented in Table 6.14, the maximum temperature recorded is

T = 45.7oC , with PM = 1.0395 bar → PG = 0.08 bar, and will be used as an example. Inserting these

values into Eqs. 5.43 and 5.44 yields the sensitivity coefficients. The uncertainties in T and PM can

further be found in Tables 6.2 and 6.4 respectively.
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The uncertainty of the sound velocity model, uc (cmodel
td ), is given as 0.05% (500ppm) for 0 < T < 100oC

and 0 < P < 200bar [23], assuming a 95% confidence level. This corresponds to 0.769 m/s for ctd =

1537.7 m/s.

The resulting uncertainty budget for ctd at T = 45.7oC and PM = 1.0395 bar is presented in Table 6.16.

Table 6.16: Uncertainty budget for theoretical sound velocity in distilled water at 45.7oC and PM = 1.0395 bar

Uncertainty

source

Input uncertainty Combined uncertainty

Expanded

unc.

Conf.

level &

distr.

Cov.

factor,

k

Standard

unc.

Sens.

coeff.
Variance

Temperature, T 0.157 oC 68% (norm) 1 0.157 oC 1.320 0.0429m/s2

Gauge pressure, PG 1.69 ·10−4 bar 68% (norm) 1 1.69·10−4 bar 0.177 8.95 ·10−10(m/s)2

Model 0.769 m/s 95% (norm) 2 0.385 m/s 1 0.148 (m/s)2

Sum of variances u2
c (ctd ) 0.191 (m/s)2

Combined standard uncertainty uc (ctd ) 0.437 m/s

Expanded uncertainty (95% confidence level, k = 2) U(ctd ) 0.874 m/s

Theoretical sound velocity ctd 1537.7 m/s

Relative expanded uncertainty (95% confidence level, k = 2) k ·Ectd 568 ppm

Using the uncertainty in temperature at T0 = 22.94oC , uc (T0) = 0.143oC (Section 6.1.2), ctd = 1490.90

m/s at T0 (Eq. (2.2)), and uc (P ) = 1.69·10−4, a resulting uncertainty of uc (ctd ) = 0.579 m/s is calculated

through Eq. (5.42). This results in a relative expanded uncertainty of 777 ppm, which shows that the

uncertainty of the theoretical model will increase with decreasing temperatures.

6.6 Sound velocity in saline water

In the following, experimental sound velocity measurements for saline water using 20 ppt will be

presented, together with the resulting uncertainty in theoretical and experimental sound velocity.

6.6.1 Sound velocity measurements in saline water

Using saline water with S = 20 ppt, a measurement series was conducted with f = 500kHz and a six-

period pulse, where cS was measured using the average transit time with the ZCM according to Fig.

3.16.

The sound velocity was measured continuously and stabilized in steps of 3oC over a temperature

range of 22-40oC , limited by the range of the UNESCO equation. The results as a function of temper-

ature are presented in Fig. 6.13, and the sound velocity measurements at each set-point are found in

Table 6.18. For each measurement, the corresponding uncertainty is calculated, following the uncer-

tainty budget presented in Table 6.29.
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Before and after the measurement series, the conductivity was measured using a CMD210 conduc-

tivity meter with an accuracy of ±0.2% of reading ± 3 of the least significant digit[97]. This was to

compensate for a possible increase in salinity due to evaporation at higher temperatures. The results

are presented in Table6.17.

Table 6.17: Conductivity measurements before and after measuring the sound velocity as a function of temper-
ature, using CMD210 conductivity meter

Conductivity [mS/cm]

Before 32.04 ±0.04

After 32.12 ±0.04

It is from Table 6.17 evident that the increase in conductivity is minuscule, and falls within the uncer-

tainty of the instrument. An increase in salinity can thus be neglected.

Figure 6.13: Sound velocity in saline water, S = 20ppt, as a function of temperature, using ZCM with a six-period
pulse. The dark blue shows the original cs , and the red curve presents cs corrected for diffraction. The light
blue shows the interval as within will result in an uncertainty < 1000ppm of ctd . The values are all presented as
relative values, thus divided by the theoretical sound velocity, ct s , using Eq. (2.4).

Fig. 6.13 presents sound velocity results closer to the theoretical values than the distilled water six-

period signal. It can also be seen in Table 6.18 that the relative expanded uncertainty for saline water

is higher as a consequence of a shorter transit time, and thus a higher sensitivity coeff. in Eq. (5.2).
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The results will be further discussed in Chapter 7.

Table 6.18: Experimental sound velocity in saline water (20 ppt) for each temperature set-point, using the ZCM
with a six-period pulse. Compared to theoretical values with PM = 1.0310 bar. U (cs ) includes std.dev. in cs

fluctuations at each temperature set-point.

Temperature,

T [oC ]

Theoretical

ct s [m/s]

Sound velocity,

cs [m/s]

Combined exp.

uncertainty,

U (cs) [m/s]

Relative exp.

uncertanity

U (cs)/cs [ppm]

21.83 1510.18 1510.40 3.36 2225

26.16 1521.37 1521.29 3.39 2229

28.64 1527.20 1527.18 3.41 2233

31.40 1533.21 1533.22 3.42 2231

34.32 1539.02 1539.16 3.44 2236

37.39 1544.53 1544.74 3.45 2234

40.15 1549.00 1549.25 3.47 2241

6.6.2 Uncertainty in experimental sound velocity in saline water

In Section 6.8, the uncertainty in the experimental sound velocity will be calculated for distilled water,

using the uncertainty model presented in Section same method is used to calculate the experimental

sound velocity in saline water, where the combined expanded uncertainties for each set-point are

shown in Table 6.18. Each uncertainty includes an uncertainty in sound velocity fluctuations at each

temperature set-point.

6.6.3 Uncertainty in theoretical sound velocity in saline water

In Section 5.4.3, an uncertainty model for the uncertainty in ct s was presented, derived from the

UNESCO equation. This model will be implemented here.

In Table 6.18, a maximum uncertainty is found at T = 40.15oC with PM = 1.0310 bar, and will thus be

used here as an example. In Table 6.1 and Table 6.4, uc (T ) and uc (P ) has been calculated for the case

of T = 45.7oC and PM = 1.0395 bar. The same approach is applied here, with corrected values for T

and PM . The uncertainty in the salinity is given as the uncertainty of the scale when measuring the

liquid solution. The scale in use is model UWE NJW-3000 and has a resolution of 0.1g. A datasheet (or

website) of the scale has not been found, and the uncertainty is thus assumed to be the resolution,

±0.1g at 68% confidence level.

An uncertainty in the model itself is set to 0.15 m/s following [32]. The confidence level is not stated,

and is thus assumed 68%.
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Table 6.19: Uncertainty budget of the theoretical sound velocity in saline water using the UNESCO equation
2.4 where S = 20 ppt, T = 40.15oC and P = 1.0310 bar.

Input uncertainty Combined uncertainty

Uncertainty

source

Expanded

unc

Conf.

level

Cov.

factor,

k

Standard

unc.

Sens.

coeff.
Variance

Temperature, T 0.157oC 68% 1 0.157 oC 1.5436 0.0587 (m/s)2

Pressure, P 1.69 ·10−4 68% 1 1.69 ·10−4 0.1753 8.77 ·10−10(m/s)2

Salinity, S 0.1g 68% 1 0.1g 0.9733 9.47·10−3(m/s)2

Model 0.15 m/s 68% 1 0.15 m/s 1 0.0225(m/s)2

Sum of variances u2
c (ct s) 0.0912 (m/s)2

Combined standard uncertainty uc (ct s) 0.302 m/s

Expanded uncertainty (95% confidence level, k = 2) U (cts ) 0.604 m/s

Theoretical sound velocity ct s 1549.00 m/s

Relative expanded uncertainty k ·Ect s 390 ppm

Using the uncertainty in temperature at T0 = 22.94oC , uc (T0) = 0.143oC (Section 6.1.2), ct s = 1513.1

m/s at T0 (Eq. (2.4)), and constant uncertainty in salinity, pressure and the model, a resulting un-

certainty of uc (ct s) = 0.425 m/s is calculated through Eq. (5.45). This results in a relative expanded

uncertainty of 562 ppm, which shows that the uncertainty in the theoretical model will increase with

decreasing temperatures.

6.7 Sound velocity in Extra Virgin Olive Oil

It was of interest to see how the measurement cell behaved with decreasing temperatures. EVOO from

Eldorado was chosen due to the lack of time and the necessary equipment to ventilate when heating

crude oils (HSE regulations). By choosing a pure (100%) EVOO oil, measurements could be compared

to other sources, as the author found no definite theoretical model for sound velocity in olive oils.

Using the measurement setup described in Section 3.1 and a six-period pulse, the change in sound ve-

locity of EVOO was measured over a temperature range from 21 to 35 oC . The waveform was recorded

every 3 seconds, and the temperature was stabilized for ten minutes in intervals of 3oC . cs was mea-

sured using the average transit time with the ZCM according to Fig. 3.16. The sound velocity corrected

for diffraction, together with the uncorrected cs , is presented in Fig. 6.14. cs for each temperature set-

point is presented in Table6.20 together with the corresponding uncertainties, where the uncertainty

due to cs fluctuations at each temperature set point is included. Using cs corrected for diffraction, a

linear regression line has been calculated using predefined tools in MATLAB. The regression line is

shown in black in Fig. 6.14.

Two other sources have been used for comparison. Yan. et al. [98] measured the sound velocity in
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EVOO from 21oC to 36oC using a pulse-echo system with the transducer directly immersed into the

liquid with f = 5 MHz. A linear regression line of cs = −2.9292 ·T +1522.7 was found, with a claimed

uncertainty of 2 m/s at room temperature. McClements and Povey [99] applied a pulse-echo method

based on multiple reflections with f = 1.25 MHz and measured the sound velocity in olive oil (non-

specific) for a temperature span of 20-70oC with an uncertainty of 0.7 m/s. For the olive oil, a linear

regression line of cs =−3.28·T+1528.9 was found. The linear regression line for both sources has been

plotted as a function of temperature together with the experimental results of the project, presented

in Fig. 6.14.

Figure 6.14: Experimental sound velocity in EVOO as a function of temperature and Pmeas = 1.0310 bar. The
uncorrected cs (blue) and cs corrected for diffraction are shown, together with the stated regression lines of
[98] (green) and [99] (yellow). The calculated linear regression line for cs corrected for diffraction is presented
in black.

A linear regression line of cs(T ) =−3.323 ·T +1529 has been calculated with a root mean square value

of R2 = 0.9982. The experimental sound velocity decreases with decreasing temperature, which is

consistent with the linear regression lines of Yan. et al.[98] and McClements and Povey [99]. An

increasing discrepancy with increasing temperature can further be seen between the experimental

sound velocity and [98], while the linear regression line of [99] is consistent with the experimental

values. With decreasing sound velocity, the uncertainty in sound velocity decreases due to a decrease

in the sensitivity coefficients. The results are further discussed in Chapter 7.
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Table 6.20: Experimental sound velocity corrected for diffraction in EVOO for each temperature set-point, using
the ZCM with a 6-period pulse, together with the corresponding standard uncertainty (68% c.l.). uc (cs ) includes
std. dev.in cs fluctuations at each temperature set-point.

Temperature,

T [oC ]

Exp.

sound velocity

cs [m/s]

Standard

uncertainty

uc (cs) [m/s]

20.88 1460.36 1.63

23.86 1450.31 1.61

26.54 1441.04 1.60

29.26 1432.22 1.59

32.09 1422.73 1.58

34.80 1413.64 1.57

6.8 Uncertainty in the experimental sound velocity

The uncertainty in the experimental sound velocity, cs , will be presented as a result on its own here

and will follow the uncertainty model presented in Section 5.4.2.

For distilled water, thus the reference liquid in the project, a maximum uncertainty is found at T =
45.7oC , corresponding to cs = 1537.7 m/s using the ZCM with a six-period pulse (ref. Table 6.14), and

will thus be used here as an example.

The uncertainty in the experimental sound velocity is a product of several uncertainty contributions.

The uncertainties in KT and L0 has been found in Tables 6.9 and 6.8, while uncertainties in transit

time, uc (∆t ), and correction term, uc (∆t cor r ), will be calculated in the following.

Each contribution will be presented here for T = 45.7oC and cs = 1537.7 m/s, and in Section 6.8.3 the

total uncertainty in experimental sound velocity will be calculated using an uncertainty budget.

6.8.1 Uncertainty in correction term

The standard uncertainty in the correction term, u(∆t cor r ), will only be dependent on the uncer-

tainty in diffraction correction u(∆t di f f ), which can be calculated with the model presented in Sec-

tion 5.2.5.

In Section 4.1.2, the uncertainty in the diffraction correction model is found by taking the maximum

difference between simulated results and the diffraction correction model presented in the project,

assuming a confidence level of 100% (k =
p

3), resulting in u(∆t di f f )model = 3.4 ·10−9 s.

Uncertainties u2(∆t di f f )ae f f , u2(∆t di f f )cb , u2
c (∆t di f f )L , and u2(∆t di f f )D will be calculated using the

approach explained in Section 5.2.5. The maximum sound velocity and temperature throughout the

measurement series with distilled water will be applied, corresponding to T = 45.7oC , and cs = 1537.7

m/s for the ZCM (cf. Table 6.14). For simplicity, the variables and the corresponding uncertainties
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needed for the uncertainty calculations are summarized in Table 6.21 in which those affected by tem-

perature are compensated for.

Table 6.21: A summary of the numerical value and corresponding uncertainty for each variable needed in the
calculation of the uncertainty in diffraction correction at T = 45.7oC , together with the location of where the
respective uncertainties are calculated.

Variable Value Uncertainty
Conf. level

& distr.

Coverage

factor, k
Location

ae f f 12.43 mm 0.18 mm 68% (norm) 1 Table6.11

cb(T ) 2669 m/s 8.14 m/s 68% (norm) 1 Section 6.3

L0 25.18 mm 0.0252 mm 68% (norm) 1 Table6.8

KT (T ) 1.0005 1.32·10−5 68% (norm) 1 Table6.9

D 70.1 mm 0.0165 mm 68% (norm) 1 Section 6.2.2

The calculated uncertainties, u2(∆t di f f )ae f f , u2(∆t di f f )cb , u2
c (∆t di f f )L , and u2(∆t di f f )D , are pre-

sented in Table 6.22.

Table 6.22: Calculated uncertainty in ∆t di f f due to uncertainties in the diffraction correction variables for cs =
1537.7 m/s at T = 45.7oC . Subscript var stands for variable, and is thus dependent on the variable in question.

Variables to calculate ∆t di f f (∆t di f f )var [s] u
(
∆t di f f

)
var [s]

∆t di f f
(
ae f f ,cb ,D,L

)
3.263·10−8 -

ae f f
∆t di f f

(
ae f f +u(ae f f ),cb ,D,L

)
3.336·10−8 7.3 ·10−10

∆t di f f
(
ae f f −u(ae f f ),cb ,D,L

)
3.190·10−8 7.3 ·10−10

cb
∆t di f f

(
ae f f ,cb +u(cb),D,L

)
3.256·10−8 7.0 ·10−11

∆t di f f
(
ae f f ,cb −u(cb),D,L

)
3.316·10−8 5.3 ·10−11

D
∆t di f f

(
ae f f ,cb ,D +u(D),L

)
3.258·10−8 5.0 ·10−11

∆t di f f
(
ae f f ,cb ,D −u(D),L

)
3.268·10−8 5.0 ·10−11

L
∆t di f f

(
ae f f ,cb ,D,L+u(L)

)
3.720·10−8 0

∆t di f f
(
ae f f ,cb ,D,L−u(L)

)
3.720·10−8 0

The uncertainty in L is smaller than the amount of significant digits in Matlab and is thus negligible.

The total uncertainty budget for ∆t di f f with the calculated uncertainties in Table 6.22, is presented

in Table 6.23.
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Table 6.23: Uncertainty budget for ∆t di f f = ∆t cor r when cs = 1537.7 m/s and T = 45.7oC

Uncertainty

source

Input uncertainty Combined uncertainty

Expand.

unc.

Conf.

level &

distr.

Cov.

fact.,

k

Standard

unc.

Sensit.

coeff.
Variance

Model 6.0·10−9s 100% (rect.)
p

3 3.4·10−9s 1 1.2·10−17s2

ae f f 7.3·10−10s 68%(norm.) 1 7.3·10−10s 1 5.3·10−19s2

cb 7.0·10−11s 68% (norm) 1 7.0·10−11s 1 4.9·10−21s2

Buffer length, D 5.0·10−11 s 68% (norm) 1 5.0·10−11 s 1 2.5·10−21s2

Sample length, L n/a n/a n/a n/a n/a n/a

Sum of variances u2
c (∆t di f f ) 1.25·10−17s2

Combined standard uncertainty uc (∆t di f f ) 3.54·10−9 s

Expanded uncertainty (95% conf. level, k = 2) U(∆t di f f ) 7.08·10−9 s

Theoretical diffraction correction at cs = 1537.7 m/s ∆t di f f 3.26·10−8 s

Relative expanded uncertainty (95% confidence level) U (∆t di f f )/∆t di f f 21.7%

The above uncertainty budget is assumed for all measurements.

6.8.2 Uncertainty in transit time

In Section 5.2.4, two uncertainty models for the standard uncertainty in transit time, u(∆t ), are pre-

sented, depending on the signal processing method applied. In this section, the uncertainty in transit

time for both scenario’s will be calculated, where the cs = 1537.7 m/s at T = 45.7oC (cf. Table 6.14) will

be used as an example.

Uncertainty due to coherent noise

Uncertainty in transit time due to coherent noise, uc (∆t )coh.noi se , is given by Eq. (5.17) and consists

of uncertainty contributions due to reflector reverberation, side lobe interference, mode-converted

waves and the four times traversed buffer signal, which are all explained in detail in Section 3.5.

In Section 4.3, a numerical analysis calculating the uncertainty in transit time due to coherent noise

sources was presented. Using this numerical analysis, it was shown that u(∆t )si del obe = 9.4 ·10−10s.

A pulse train will be studied using the experimental setup presented in Fig. 3.1 with distilled water

at 22.1oC . This waveform will be used to calculate uc (∆t )coh.noi se due to reflector reverberation, side

lobe interference, and mode-converted waves. To inspect all noise contributions individually, the

transducer is excited with a two-period 500 kHz pulse with a 10 V signal output from the signal gener-

ator. The result is presented in Fig. 6.15, and has also been used to identify all coherent noise sources

in Fig. 3.26.



6.8. UNCERTAINTY IN THE EXPERIMENTAL SOUND VELOCITY 127

Figure 6.15: Measured pulse train using the experimental setup presented in Fig. 3.1 with f = 500 kHz and a
two-period pulse.

In Fig. 6.15, the coherent noise sources of interest are identified, together with the signals of interest,

S A and SB . Though these noise signals appear not to interfere with the signals of interest, they can do

so if the sample velocity or pulse length is changed.

The signal-to-noise ratio (SNR) is of interest, and thus must the peak voltage amplitude of the signal,

V S
P , and for the noise, V N

P , be found.

In Fig. 3.33 it is shown that the maximum voltage amplitude of the two-period pulse approximates

the steady-state voltage amplitude of the six-period pulse. V S
P for SB will therefore be calculated using

the local extremum in the pulse, resulting in V S
P = 0.0315 V.

For the three coherent noise sources, the start and end of each pulse is harder to define, and the

resulting V N
P will thus only be an approximation. For each noise source, V N

P is found by locating the

maximum amplitude inside each of the respective rectangles. The resulting V N
P , together with V S

P , can

then be used to calculate the SNR using 20log(V N
P /V S

P ). Then, using the numerical analysis in Section

4.3, where V S
P = AS , and V N

P = AN , the corresponding standard uncertainty of the time fluctuations

can be calculated. The results for all coherent noise sources are presented in Table 6.24.
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Table 6.24: Measured peak amplitude values of several coherent noise sources, together with calculated SNR
and the resulting transit time uncertainty using the numerical analysis presented in 4.3. Subscript var repre-
sents the contribution to uncertainty in coherent noise due to the individual noise contributions.

Mode-converted

signal

Reflector

reverberation

Four times traversed

buffer signal

V N
P [V] 6.38·10−4 1.51·10−3 5.9 ·10−4

SNR [dB] 32.3 24.8 32.9

u(∆t )var [s] 5.5·10−9 1.3·10−8 5.1·10−9

Using Eq. (5.17), the values presented in Table 6.24, together with the calculated u(∆t )si del obe , the

combined standard uncertainty due to coherent noise is

uc (∆t )coh.noi se =
√(

9.4 ·10−10
)2 + (

5.5 ·10−9
)2 + (

1.3 ·10−8
)2 + (

5.1 ·10−9
)2 = 1.5 ·10−8s (6.4)

Uncertainty due to pump noise

During stable temperature conditions, 10 waveforms are collected with the measurement setup shown

in Fig. 3.3, with and without the water pump turned on, using a six-period pulse at 500 kHz. The re-

sult is presented in Fig. 6.16, where the resulting waveform has been enlarged to properly inspect the

zero-crossings.

Figure 6.16: Measurement results showing the time shift of the zero-crossings due to noise from the water
pump. A 500kHz 6 period pulse is acquired during stable temperature conditions. 10 measurements are col-
lected when the water pump is turned on (marked in red) and similarly for when the pump is turned off (marked
in blue). The waveform is enlarged to illustrate the difference.

From Fig. 6.16, the calculated uncertainty in transit time due to pump noise can be found. First, the
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transit time for each zero-crossing is calculated for one waveform using the zero-crossing method.

From the vector of transit times, the mean transit time is calculated. This is then done for all wave-

forms with the water pump turned off, resulting in a vector of ten mean transit time values, (∆t n)o f f ,

where n = 1, 2, .., 10. The standard deviation, so f f , of (∆t n)o f f is then found.

The same calculations are then done for all ten waveforms with the water pump turned on, result-

ing in (∆t n)on , where n = 1, 2, .., 10. A corresponding standard deviation,son , is then calculated from

(∆t n)on , resulting in a total uncertainty in transit time due to pump noise:

u(∆t )pump =
√

s2
o f f + s2

on =
√

9.28 ·10−11 +1.50 ·10−10 = 1.56 ·10−10s. (6.5)

Calculated uncertainty in transit time u(∆t)

With the above calculations, the total uncertainty in transit time can be found. A summary of the

uncertainty values are presented in Table 6.25, where the description of each uncertainty contribution

is presented in Table 5.5.

From Section 3.4.5, V N
RMS is found to be V N

RMS = 1.498 · 10−4V., which can be used to calculate the

uncertainty in transit time due to bit resolution and incoherent noise, u(∆t )r es , for each acquisition

(ref. Section 5.2.4).

Table 6.25: Standard uncertainty of the uncertainty contributions needed to find u(∆t )ZC M and u(∆t )F SM ,
where all are found for a 68% confidence level, k = 1. Description of the contributions are presented in Table
5.5.

Uncertainty

contributor
Description

u(∆t )osc Specified by manufacturer to 121.2·10−12s [62].

uc (∆t )coh.noi se 1.5 ·10−8s (cf. calculations above)

u(∆t )ph.di st . 3.18 ·10−9s. (ref. Section 3.4.4).

u(∆t )el Not available.

u(∆t )r es Measured for each acquisition (ref. Section 5.2.4)

u(∆t )var Measured for each acquisition.

u(∆t )RF I Not available.

u(∆t )tr unc
9.0 ·10−10s for two-period pulse,

1.8·10−10 s for a six-period pulse. (Ref. Section 3.4.3)

u(∆t )pump 1.56 ·10−10s. (cf. calculations above)

u(∆t )other Not available

The total uncertainty due to a change in transit time is calculated for each sampled waveform. In

Table 6.26, the uncertainty in transit time for the sound velocity measurement for distilled water at

T = 45.7oC (ref. Table 6.14) will be presented for the ZCM, and Table 6.27 for the FSM.
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Table 6.26: Uncertainty budget for u(∆t )ZC M when cs = 1537.7 m/s, T = 45.7oC for a six-period pulse

Uncertainty

source

Input uncertainty Combined uncertainty

Expand.

unc.

Conf.

level &

distr.

Cov.

fact.,

k

Standard

unc.

Sensit.

coeff
Variance

Oscilloscope,

time resolution
1.21·10−10 s 68%(norm) 1 1.21·10−10 s 1 1.46·10−20s2

Coherent noise 1.5·10−8 s 68%(norm) 1 1.50·10−8 s 1 2.25·10−16s2

Sampling

resolution
4.25 ·10−10s 68% (norm) 1 4.25 ·10−10 s 1 1.81·10−19s2

Transit time

variation
3.50 ·10−9 s 68%(norm) 1 3.50 ·10−9 s 1 1.23 ·10−17s2

Pump noise 1.56·10−10 s 68%(norm) 1 1.56·10−10 s 1 2.43·10−20s2

Sum of variances u2
c (∆t )ZC M 2.38 ·10−16s2

Combined standard uncertainty (68% confidence level, k = 1) uc (∆t )ZC M 1.54·10−8

Expanded uncertainty (95% confidence level, k = 2) U (∆t )ZC M 3.08·10−8

Theoretical transit time at cs = 1537.69 m/s ∆t 3.27·10−5

Relative expanded uncertainty (95% confidence level, k = 2) U (∆t )ZC M /∆t 0.09%

Table 6.27: Uncertainty budget for u(∆t )F SM when cs = 1537.7 m/s, T = 45.7oC for a six-period pulse

Uncertainty

source

Input uncertainty Combined uncertainty

Expand.

unc.

Conf.

level &

distr.

Cov.

fact.,

k

Standard

unc.

Sensit.

coeff
Variance

Oscilloscope,

time resolution
1.21·10−10 s 68%(norm) 1 1.21·10−10 s 1 1.46·10−20s2

Coherent noise 1.5·10−8 s 68%(norm) 1 1.5·10−8 s 1 2.25·10−16s2

Sampling

resolution
4.25 ·10−10s 68% (norm) 1 4.25 ·10−10 s 1 1.81·10−19s2

Phase distortion 3.18 ·10−9 s 68%(norm) 1 3.18 ·10−9 s 1 1.01 ·10−17s2

Truncating 1.8 ·10−10 s 68%(norm) 1 1.8 ·10−10 s 1 3.24 ·10−20s2

Pump noise 1.56·10−10 s 68%(norm) 1 1.56·10−10 s 1 2.43·10−20s2

Sum of variances u2
c (∆t )F SM 2.35 ·10−16s2

Combined standard uncertainty (68% confidence level, k = 1) uc (∆t )F SM 1.53·10−8

Expanded uncertainty (95% confidence level, k = 2) U (∆t )F SM 3.07·10−8

Theoretical transit time at cs = 1537.7 m/s ∆t 3.27·10−5

Relative expanded uncertainty (95% confidence level, k = 2) U (∆t )F SM /∆t 0.09%
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6.8.3 Uncertainty budget for the experimental sound velocity

cs is a product of sample length L0, thermal expansion KT , transit time ∆t , and a time correction

∆t cor r . The experimental uncertainties in L0 and KT are found earlier in Section 6.2, and the uncer-

tainties in ∆t cor r and ∆t are found in Secs. 6.8.1 and 6.8.2 respectively. The standard deviation of

all cs measurements at each temperature set-point in the measurement series is further calculated

to account for sound velocity fluctuations within the set-point. This is only applicable during the

measurement series at increasing temperatures. A summary of the variables and corresponding un-

certainties is presented in Table 6.28, and the total uncertainty in cs is calculated in Table 6.29.

Table 6.28: Summary of values and corresponding combined std. uncertainty for each variable needed to cal-
culate the combined std. uncertainty in cs at T = 45.67 and cs = 1537.7 m/s for ZCM, following Eq. (5.2)

Variable Value
Combined std.

uncertainty

L0 25.18 mm 0.0252 mm

KT 1.0005 1.32 ·10−5

∆t 3.27·10−5 s 1.54 ·10−8 s

∆t cor r 3.26 ·10−8 s 3.54 ·10−9 s

Table 6.29: Uncertainty budget for the sound velocity measured in distilled water using ZCM with a 6 period
pulse at 45.67oC .

Uncertainty

source

Input uncertainty Combined uncertainty

Expand.

unc

Conf.

level &

distr.

Cov.

fact.,

k

Standard

unc.

Sens.

coeff.
Variance

Sample length,

L0

2.52·10−5 m 68% (norm) 1 2.52·10−5 m 6.12·104 2.38 (m/s)2

Transit time,

∆t
1.54·10−8 s 68% (norm) 1 1.54·10−8 s -4.71·107 0.526 (m/s2)

Time correction,

∆t cor r
3.54·10−9 s 68% (norm) 1 3.54 ·10−9 s 4.71·107 0.0278 (m/s)2

Thermal expansion,

KT

1.32·10−5 68% (norm) 1 1.32·10−5 1.54·103 4.13·10−4 (m/s)2

Fluctuations

in temp. set-point
0.0310 m/s 68% (norm) 1 0.0310 m/s 1 9.61·10−4 (m/s)2

Sum of variances u2
c (cs) 2.94 (m/s)2

Combined standard uncertainty (68% confidence level, k = 1) uc (cs) 1.71 m/s

Expanded uncertainty (95% confidence level, k = 2) U (cs) 3.43 m/s

Experimental sound velocity cs 1537.69 m/s

Relative expanded uncertainty (95% confidence level, k = 2) k ·Ecs 2231 ppm
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Chapter 7

Discussion

This project has aimed to create a measurement cell for high-precision sound velocity measurements

using the pulse-echo buffer rod method. The results show that, compared with theoretical models,

high precision is obtained, but the uncertainty of the measurements exceeds 1000 ppm, which was

the initial maximum uncertainty limit for this work.

7.1 Sound velocity measurements

For this project, sound velocity measurements have been conducted for saline water, distilled wa-

ter, and Extra Virgin Olive Oil as a function of temperature. It was desired to perform repeatability

measurements along with measurements using crude oil, but time constraints prevented this.

Sound velocity measurements corrected for diffraction were obtained using the ZCM and FSM with

a six-period pulse for temperatures between 23.6 and 45.7oC and 1 atm. The experimental sound

velocity measurements using the ZCM agreed to within 100 ppm at 23.66oC with the output of the

theoretical sound velocity using distilled water and 101 ppm for the FSM. For both the ZCM and the

FSM, the deviation reached its maximum at 33.4oC with an agreement of 316 ppm and 350 ppm, re-

spectively.

A second independent measurement series was conducted for a temperature range of 21.2-45.7oC

and 1 atm using a two-period pulse. The FSM’s experimental sound velocity agreed with the theoret-

ical sound velocity within 471 ppm at 21.2oC , the maximum deviation throughout the measurement

series for the signal processing method, and decreased to 27 ppm and 20 ppm at 25.2oC and 28.0oC

respectively. For the ZCM, a more significant discrepancy between the experimental and theoretical

sound velocity has been identified, reaching 744 ppm at 42.8oC . The increased deviation is expected

as the signal has not reached a steady state.

For both measurement series using distilled water, it should be noted that the uncertainty in the the-

oretical model is 777 ppm at 22.9oC to 568 ppm at 45.7oC . This will be discussed in detail later.

Sound velocity measurements were performed with saline water with S = 20 ppt using the ZCM with a

six-period pulse over a temperature range of 22-40oC . The results were compared with the UNESCO
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equation [31] and presented a better agreement with the theoretical sound velocity than the experi-

ments with distilled water, with a maximum deviation of 213 ppm, measured at 40oC . The relative ex-

panded uncertainty in the theoretical model has further been calculated to 390 ppm at 40.15oC , thus

lower than the uncertainty in the theoretical model for distilled water. The uncertainty further in-

creases with decreasing temperature, resulting in a relative expanded uncertainty of 562 ppm 22.9oC .

It was early suspected that the salinity in the water might change upon heating due to condensation.

This would increase the sound velocity during measurements, increasing the deviation from the the-

oretical ct s . Conductivity measurements were performed before and after the measurement series,

indicating a negligible increase in salinity as the increase in conductivity fell within the uncertainty

of the meter.

Except for the ZCM measurements for distilled water using a two-period pulse, all sound velocities

measured at room temperature were observed to be higher than the theoretical sound velocity be-

fore the deviation decreased. Initially, the unstable variations with temperature were believed to be

caused by bulging in the Plexiglas buffer not being compensated for (Fig. 2.12), or by uncertainty in

the model for thermal expansion of the measurement cell. While these reasons may lead to errors

throughout the series, the deviation does not increase with increasing temperature, and the varia-

tions are thus not explained by thermal expansion alone. At lower temperatures, the uncertainty in

the theoretical models are higher, which could contribute to the increased deviation between cs at

theoretical sound velocities at lower temperatures. Further, in the case of coherent noise sources, the

mode-converted shear wave will affect all measurement series and may cause a minor deviation. In

contrast, the four times traversed propagation will not affect any measurements made throughout the

experimental sound velocity range in the project. Therefore, the measurements with distilled water

and saline are unlikely to differ due to the coherent noise sources. More measurements in the lower

sound velocity range would be desirable to study the consistency between experimental results and

the theoretical analysis of coherent noise.

At 40oC , Kinsler and Frey’s theoretical model [23] results in relative expanded uncertainty of 567 ppm

(Section 5.4.2). In comparison, the UNESCO equation has a relative expanded uncertainty of 390 ppm

at the respective temperature and S = 20 ppt (Section 5.4.3), both calculated with a 95% confidence

level. Further, for distilled water (S = 0) at 40oC and 1 atm, a discrepancy of 0.43 m/s can be calculated

between the UNESCO equation and Kinsler and Frey’s equation, thus the two theoretical models used

in the project. The use of the UNESCO equation for distilled water is, however, debated [32].

Hence, uncertainties in the theoretical models and experimental sound velocity may be a reason for

the increased deviation with distilled water compared to saline water.

There are several theoretical models for both distilled and saline water [32, 100, 30]. The accuracy of

many of the exciting theoretical models is debated, as many models have been developed through

experimental testing and may thus suffer from the lack of accurate measurements [32, 100]. Further

investigation of the accuracy of the theoretical models is desirable to compare the experimental and

theoretical sound velocities with more confidence, but this falls outside the scope of the project.

The sound velocity in EVOO was measured as a function of temperature for a temperature range of
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21-35oC , and linear regression of cs = −3.232T +1529 was found. As opposed to distilled and saline

water, no general equation of state has been found for the temperature dependency of EVOO. How-

ever, it has been seen to exhibit similar acoustic behaviour to crude oils [101], where an increase in

temperature and a decrease in pressure causes a reduction in sound velocity [6, 102]. The results were

compared to previous measurements conducted on EVOO in Yan et al. [98] with an uncertainty of 2

m/s, and on (non-specified) olive oil in McClements and Povey [99] with a claimed uncertainty of

0.7 m/s. An increasing discrepancy was found between the experimental results and the measured

values in [98], resulting in a deviation of 6.83 m/s at 34.7oC . The deviation is beyond the uncertainty

of cs , and the uncertainty of 2 m/s reported in [98], combined. By comparing the uncorrected exper-

imental values of the project with [99], it can be seen that the linear regression line of McClements

and Povey closely resembles the experimental values of the project. The comparison of the experi-

mental values above with the tabulated values by the authors has some limitations. In neither Yan et

al. nor McClements and Povey is diffraction correction discussed, and this suggests that their sound

velocity values may not be corrected for diffraction. Further, McClements and Povey use a frequency

of 1.25MHz, while Yan et al. applies a frequency of 5MHz throughout the project. Dispersion effects

of EVOO have not been investigated and may thus be a source of discrepancy between the models

and experimental values. It is also worth noting that [99] do not specify the type of olive oil, and the

chemical composition may vary from the EVOO used here.

At room temperature, it has been shown that a six-period pulse agreed to within 207 ppm for the FSM

and 141 ppm for the ZCM in the frequency range of 375-600 kHz, and 515 and 582 ppm, respectively

at 275 kHz with the output from the theoretical sound velocity model of Kinsler and Frey [23]. This

is under the assumption of negligible dispersion effects in distilled water. By comparing the sound

velocity at 500 kHz with the remainder of the interval 375-600 kHz, only a slight increase in deviation

is observed. The results thus indicate a potential for using the measurement cell outside the project’s

chosen frequency, which can be of interest when measuring dispersive media. A thorough investiga-

tion of cs measurements at higher frequencies than 600 kHz has not been investigated in this project,

as the desired frequency range for XSENS Flow Solutions [2] is 200-500 kHz.

7.2 Pulse length and choice of signal processing method

A previous discussion (Section 3.5.6) argued why a six-period pulse was desirable, considering co-

herent noise sources and the need for steady-state to determine cs using the ZCM accurately. cs was

measured as a function of zero-crossings for the ZCM using two, six and ten periods. Measured cs

using a two-period pulse clearly shows an increase in deviation from the theoretical model compared

to six and ten periods. This is also evident in the temperature series, where the ZCM agrees to within

744 ppm at 42.8oC , thus confirming that a steady-state is needed for the accurate use of the ZCM.

For a ten-period pulse, cs measurements nearing the transient end of the pulse rapidly diverge from

the theoretical model. This is consistent with the arrival of reflector reverberation and the four times

traversed signal (Fig. 3.33), and demonstrates how coherent noise sources significantly can affect
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cs measurements. Despite this, the ten-period ZCM provides accurate cs measurements throughout

the project compared to the theoretical model, which indicates that noise sources may lead to false

accuracy when averaging consecutive zero-crossings.

When using a six-period pulse, the work agrees with the theoretical model to within 100 ppm at

23.66oC for distilled water and as high as 7 ppm for saline water at 31.4oC . This indicates good po-

tential for the ZCM when a steady state is achieved and coherent noise sources are minimized. It can

also be noted that when using the transient start of the signal in Figs. 6.6, 6.7, and 6.9 to measure

cs , the deviation between theoretical and experimental sound velocity increases, which is consistent

with discussions presented in [36] and [37].

FSM exhibits a slightly lower agreement with the theoretical model than the ZCM for a six-period

pulse at 23.66oC , where an agreement of 101 ppm against 100 ppm is found compared to Kinsler

and Frey [23]. For a six-period pulse in distilled water, however, the difference between cs using the

ZCM and the FSM, and the associated change in uncertainty, are incremental. Both models provide

accurate results in comparison with the theoretical model. In this project, more confidence is given

in the six-period ZCM for more extended measurement series as the phase unwrapping process of

the FSM has been challenging for pulses containing many periods (ref. Section 3.4.3). The ZCM is

thus used as the primary signal processing method in this project. The results, however, indicate that

either method may be used for longer pulses.

The FSM is advantageous when short bursts are needed in cases where separating the acoustic signals

from reflections and coherent noise sources is of interest. The work agreed with the theoretical model

as high as 20 ppm at 28.0oC in distilled water for a two-period pulse. The results provided in this

project thus indicate that the method has good potential for accurate cs measurements when short

bursts are needed.

7.3 Diffraction correction

No good diffraction correction for low-frequency propagation through several mediums has been

found by the author. Khimunin’s diffraction correction model is valid for all ka-values but is limited

to only one medium [43]. Rogers and Van Buren’s model [103] is only valid for ka » 1, and Papadakis

model [12] is only a function of S, and not ka, which is important at low frequencies. For this project,

ka = 14.4, and as a result, Khimunin’s model was adapted to work for several mediums, named the

BPDC-MF model, described in Section 2.3.1.

Sound velocity measurements were acquired with high precision compared to theoretical models,

and it was thus of interest to see how accurate the diffraction correction model was. Therefore, a

simplified simulation of the measurement cell was simulated through Comsol in Section 4.1. The

results yielded a discrepancy of 1o , and the simulated diffraction correction for Signal B is thus seen

to be reasonably well described by the BPDC-MF model within the sound velocity range 1320-1480

m/s. However, the results are suspected not yet to have converged, and indications are given to a
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higher agreement when the results are converged based on a single measurement with higher spatial

and temporal resolution. The real uncertainty in the model may therefore vary from the tabulated

one in the project, u(∆t )model = 3.5 ·10−9 s.

It is, however, shown in Section7.4.1, that the uncertainty in diffraction correction does not play a sig-

nificant role in the total relative expanded uncertainty of the sound velocity in this project. However,

if the pulse-echo solid buffer method is to be used as a method for high-precision sound velocity

measurements, the diffraction correction method must be verified with more confidence than the

results presented in this project.

7.4 Measurement cell and measurement setup

As part of the project, temperature measurements were needed. The liquid temperature was assessed

by inserting a sensor directly into the sample area but leaving sufficient space on either side. The pur-

pose was to reduce noise caused by reflections from the sensor while limiting temperature gradients

caused by the surrounding metal. Due to the size of the water bath, spatial temperature variations

were observed, as one side of the measurement cell was near the heater and thus heated more quickly.

If the sample area was stirred at even intervals, a reduction in the spatial variation between set-points

was observed but not eliminated. A reduction in temperature variations may have been possible

if the size of the water bath was increased or the heat was more evenly distributed. In the current

project, this was resolved by letting the water bath stabilize for several minutes at each temperature

set-point. However, a more stable water bath would provide more confidence in the measurements

taken between set-points.

Before conducting sound velocity measurements, air bubbles created upon heating were of concern.

It would significantly reduce the amplitude of the sound wave and scatter the sound in all directions.

The possibility of air bubbles and the temperature variations were reasons why a lid was not placed on

the measurement cell. However, no air bubbles were observed throughout the measurement series.

As the cell is designed with the intention of adding a lid, this can be done at a later stage.

The reflector was further shown to be a limiting factor to the number of pulses that could be used.

The Department for Physics and Technology workshop tried to change the reflector without taking

apart the measurement cell but did not succeed. The reflector should thus be made larger if longer

pulses are needed in future work. If f = 500 kHz and the sound velocity in aluminium is assumed to

be 6300 m/s (Table 3.6), the reflector should be increased by (6300 ·2 ·10−6) ·0.5 = 6.3 mm per extra

period needed.

The current project aimed to determine if a high-precision sound velocity cell could be created using

the pulse-echo buffer rod method, with size, sample volume, and frequency restrictions, and reach a

relative expanded uncertainty of less than 1000 ppm (95% confidence level). A sensitivity analysis was

performed prior to construction to see what the uncertainty contributions would have to be in order

to fulfil these criteria, presented in Section 5.3. During the development of the measurement cell,
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careful considerations were made in order to create a cell with as high precision as possible within

the scope of the project.

Due to mode-converted shear waves and four times propagation in the buffer rod, the method suffers

from coherent uncertainty contributions that are hard to reduce. Several studies have reported this

[14, 16, 15, 13], and it can only be prevented or reduced through the choice of buffer material, buffer

dimensions, or pulse length. In Section 3.5.4, an analysis is presented showing that, to achieve a small

measurement cell with the chosen materials, the mode-converted shear wave or the four times tra-

versed buffer signal must act as a permanent coherent noise source. In Bjørndal et al. [16], the mode-

converted shear wave has a significantly lower amplitude, and based on this, the mode-converted

shear wave has been chosen as a permanent coherent noise source, measured with an SNR of 33 dB

(Fig. 3.26).

The construction of the measurement cell further made it challenging to determine the sample length

with high precision. Initially, the chassis was intended to be carved out of an aluminium block in one

go. Due to the lack of necessary tools in the workshop, the measurement cell was created from several

individual parts. There is an associated degree of uncertainty in each part’s length, height, and width,

resulting in an overall more significant uncertainty of the cell’s dimensions. In combination with the

lack of high precision measuring tools to measure the sample length itself, the uncertainty in the

sample length increased beyond the sensitivity analysis presented in Section 5.3. Further, when the

temperature increases, the sample length is suspected to decrease due to a bulging in the Plexiglas,

explained in Section 2.5. This thermal expansion was not quantifiable within the scope of this project

and was too small to be measured with the measuring tools at hand.

7.4.1 Uncertainty discussion

The uncertainty budget presented in Table 6.29 will be used as a baseline for assessing the uncer-

tainty in cs . This corresponds to the uncertainty in sound velocity in distilled water at 45.7oC using

the ZCM with a six-period pulse, where a relative expanded uncertainty of 2231 ppm (95% confidence

level) was calculated. There were no significant differences in FSM uncertainty at the chosen temper-

atures (also 2231 ppm), with the only difference being the contributions to transit time uncertainty

in the total uncertainty budget. This discussion does not include uncertainty due to fluctuations in

temperature set-points, which is independent of the general uncertainty in cs .

In the resulting uncertainty budget, the most significant uncertainty contributor is the uncertainty

of the sample length, calculated to be 0.0252 mm at 68% confidence level. This corresponds to

81% = 1811 ppm of the total uncertainty in sound velocity (95% confidence level) and exceeds the

sample length uncertainty presented in the preliminary sensitivity analysis of u(L0) = 0.0151 mm at

68% confidence level. In cases of small distances, as in this project, it is often difficult to determine

the length of the propagation path with adequate precision. Therefore, the different uncertainty con-

tributions will be identified and assessed.

As is presented in Section 5.2.3, the length of the sample area is dependent on 1) the uncertainty of the



138 CHAPTER 7. DISCUSSION

buffer length and the parallelism between buffer and reflector due to the construction method, 2) the

caliper uncertainty, 3) and uncertainty due to repeatability in measurements. Therefore, reducing

one or more of these uncertainty contributions is the most effective method for reducing the total

relative expanded uncertainty.

This is illustrated in Fig. 7.1. The figure shows the change in the uncertainty budget in ppm when

the uncertainty in sample length, uc (L0), is changed, while the uncertainties uc (∆t ), uc (KT ), and

uc (∆t di f f ) are held constant.

By changing uc (L0), and thereby the relative uncertainty in length, EL = uc (L0)/L0, the correspond-

ing E r.e.
c can be calculated, where E r.e.

c = k ·Ec will serve as an abbreviation for the relative expanded

uncertainty (95% confidence level, k = 2) for simplicity. A change in EL will further cause a corre-

sponding change in the contribution of the other relative uncertainties, E∆t = u(∆t )/∆t , E∆t cor r =
u(∆t cor r )/∆t cor r and EKT = u(KT )/KT , to the total uncertainty budget. Since the contributions of

E∆t cor r and EKT are minuscule compared to the other two, they are plotted on the right axis.

Figure 7.1: Change in the uncertainty budget as a function of uncertainty in sample length for the measurement
cell constructed in the project. Blue solid curve is the total relative expanded uncertainty of the calculated
sound velocity, E r.e.

c = k ·Ec (k = 2, 95% confidence level). The blue dashed line is the ppm contribution to the
total E r.e

c due to uncertainty in the sample length, uc (L). Blue dashed line corresponds to the limit of 1000ppm
set in the project. Red lines correspond to the ppm contribution to E r.e

c due to uncertainty in ∆t , ∆t cor r and
KT when EL changes (68% confidence level). The uncertainties in ∆t and ∆t cor r are constant, calculated for a
scenario of 1547 m/s.

In this project, E r.e.
c = 2231 ppm for cs = 1547 m/s, with EL0 contributing with 1811 ppm of the total

2231 ppm, while E∆t = 490 ppm. If the uncertainty in length is decreased to, say, u(L0) = 0.01 mm,
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then E r.e.
c will decrease to ≈ 1250 ppm, while the contribution of E∆t will increase, accounting for 700

ppm of the total 1250 ppm. From Fig. 7.1, it is thus evident that a decrease in EL0 will rapidly decrease

E r.e.
c , which can be done by decreasing u(L0) (as shown in Fig. 7.1), or by increasing the sample length.

To lower E r.e.
c to below 1000ppm for the current measurement cell, decreasing the standard uncer-

tainty in sample length alone will, however, not be sufficient, and it is thus evident that the transit

time uncertainty must be decreased as well. In Section 6.8.2, the uncertainty budget for the tran-

sit time uncertainty shows that coherent noise sources is the largest contributor. However, the most

significant contribution to coherent noise is the reflector noise, which can easily be reduced or elim-

inated by increasing the reflector length. If coherent noise due to the reflector noise is eliminated,

u(∆t )coh.noi se = 7.59 ·10−9s, and E r.e.
c is reduced with almost 200 ppm in the current uncertainty bud-

get.

For the uncertainty budget presented in Table 6.29, only the uncertainty in thermal expansion is

within the uncertainty of the sensitivity analysis presented in Section 5.3. For the transit time un-

certainty, the sensitivity analysis presents an allowed uncertainty of 1 ·10−8 s (68% c. l.). The experi-

mental uncertainty budget in 6.29 shows that this is not achieved, as u(∆t )zc = 1.54 ·10−8 s. Further,

the experimental diffraction correction uncertainty is found to be u(∆t cor r ) = 3.54 · 10−9 s against

6.45·10−10 s in the sensitivity analysis. However, from Fig. 7.1, it is evident that u(∆t cor r ) and u(KT ) is

negligible for the current uncertainty budget. It should be noted that the sensitivity analysis is carried

out at 60oC , but as the uncertainty increases with increasing temperature, the comparison is valid for

lower temperatures.

It should be noted that the attained experimental uncertainty ought to be regarded as preliminary due

to the diffraction correction uncertainty, and uncertainties not accounted for throughout the project,

such as i) bulging in the Plexiglas buffer, ii) imperfect symmetry in the transducer or the mounting of

the transducer, and iii) other unknown sources not accounted for.

7.4.2 Future improvements

Many of the presented uncertainty contributions in the project are due to the size of the measurement

cell, restricted by preferences set by XSENS Flow Solutions. From previous discussions, it is evident

that a future measurement cell, which includes the buffer, sample and reflector, should be enlarged.

This will decrease the relative uncertainty in sample length and reduce or eliminate coherent noise

sources.

A preliminary design of a new measurement cell can be presented using the analysis in Section 3.5.4.

With no size limitations, as opposed to this project, the four times traversed buffer signal and the

mode-converted wave can be chosen to arrive after both signals of interest. The new equation for the

mode-converted shear wave, Eq.(7.1), will thus be

D >
2L0
cs

+∆tbur st

1
cshear

− 1
cb

, (7.1)
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while the equation for the four times traversed buffer signal, Eq. (3.13), remains the same. Inserting

the experimental cb , and the corresponding theoretical cshear , and choosing a 6 period pulse at 500

kHz corresponding to ∆tbur st = 1.2 · 10−5s, new buffer and sample lengths can be found. A sound

velocity range of cs = 1250 - 1580 m/s is chosen, and the result is shown in Fig. 7.2.

Figure 7.2: Minimum buffer length as a function of sample length (in grey) if the two coherent noise sources
are to be removed form the signal of interest. Calculated with cb = 2711m/s, cshear = 1106.8m/s, and ∆tbur st =
1.2 ·10−5 s for a sound velocity span of 1250-1580 m/s.

By applying the set parameters, Fig. 7.2 presents a large grey area that illustrates various combi-

nations of buffer and sample lengths that result in propagation that avoids the two coherent noise

sources. The mode-converted wave at low sound velocities will set the minimum sample and buffer

length criteria. Thus must the measurement cell be increased with decreasing sound velocity. How-

ever, creating a measurement cell that avoids both noise contributions should be achievable with no

size restrictions. Increasing the reflector size should further be possible to eliminate or reduce most

coherent noise sources. The combination of Figs. 7.1 and 7.2 can be used as a starting point for cre-

ating a measurement cell using the solid buffer method with a relative expanded uncertainty of less

than 1000 ppm.
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Chapter 8

Conclusions and further work

8.1 Conclusions

In this project, a measurement cell was developed based on the pulse-echo solid buffer method in

order to determine if the method can be utilized to construct a high precision sound velocity cell.

Several preferences were given in advance by XSENS Flow Solutions which limited the design possi-

bilities of the measurement cell.

A six-period pulse was found to be sufficient to avoid or limit coherent noise sources in the con-

structed measurement cell for a sound velocity range of 1250 m/s to 1580 m/s. This has been demon-

strated experimentally to be sufficient to reach a steady-state and has thus been applied when mea-

suring the sound velocity. Two different signal processing methods have been evaluated for exper-

imental measurements; direct transit time measurements (ZCM) and the Fourier spectrum method

(FSM). Both short bursts and six-period steady-state signals have been tested with these methods.

The experimental results show that, compared with theoretical models, high precision measurements

are obtained with both signal processing methods.

The present work demonstrated agreement within 100 ppm at 23.66oC with the output of the the-

oretical sound velocity using the ZCM for the chosen steady-state pulse. A maximum deviation of

316 ppm at 33.4oC was further reported throughout a temperature range of 23.6 and 45.7oC . The

FSM provides nearly identical results using the steady-state signal, while it demonstrates agreement

within 20 ppm between measured sound velocity and the theoretical model at 28oC using a short

burst. This indicates that the method has good potential for accurate sound velocity measurements

when short bursts are needed. It should here be noted that an uncertainty in the theoretical model for

distilled water of 568 ppm is calculated. More confidence is given in the ZCM using the steady-state

signal, as many assumptions and calculations throughout the thesis are based on continuous waves.

This has thus been chosen as the primary signal processing method in this work. Due to the difficulty

of phase unwrapping for longer pulses in this study, the FSM using a steady-state signal has not been

further investigated.

Sound velocity measurements are further performed with saline water using the ZCM with a steady-
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state pulse. The work demonstrated agreement within 7 ppm between the experimental sound ve-

locity and the theoretical model at 31.40oC and a maximum deviation of 161 ppm at 40oC , corre-

sponding to the maximum temperature in the measurement series. At 40oC , an uncertainty in the

theoretical model of 390 ppm is calculated. Saline water has better agreement with the theoretical

model than distilled water, which is believed to be a combination of uncertainty within the theoreti-

cal models themselves and the calculated uncertainty of the experimental sound velocity.

A measurement series is further performed using Extra Virgin Olive oil as a liquid sample using the

ZCM with a steady-state pulse. The experimental results demonstrated close agreement to the results

presented in McClements and Povey [99], while a deviation of up to 6.8 m/s was found between the

experimental results and the results presented in Yan et al.[98].

An adaptation of Khimunin’s diffraction correction model has been introduced in the project for

diffraction correction through multiple mediums, named the BPDC-MF model. Accurate sound ve-

locity measurements were acquired compared to theoretical models, which motivated a careful anal-

ysis of the model through simulations in COMSOL. The preliminary results presented a deviation be-

tween the simulations and the diffraction correction model used in the project of 1o , which indicates

that the BPDC-MF model can be applied with little error when using the solid buffer method. The

simulations are suspected to have yet to converge, and indications suggest even better agreement.

A traceable uncertainty budget is presented, which puts the total relative expanded uncertainty of

the measurement cell at 2231 ppm (95% confidence level) with a sound velocity of 1538 m/s, corre-

sponding to distilled water at 45.7oC . The uncertainty analysis shows that uncertainties in the sample

length contribute significantly to the overall uncertainty, accounting for 1811 ppm = 81 % of the total

uncertainty budget. As a result, the main improvement from the current design is either a decrease

in the sample length uncertainty or an increase in the sample length. Moreover, it was found that

the uncertainty in transit time due to identified reflector reverberation accounted for more than 200

ppm of the total uncertainty budget, which can be reduced by increasing the size of the reflector. Er-

rors known to affect the pulse-echo buffer rod method, such as the four-times traversed signal in the

buffer and the mode-converted shear waves, are less critical than anticipated in this project.

Removing the size limitations only applicable for this project can reduce several sources of uncer-

tainty, such as sample length uncertainty and uncertainty caused by coherent noise. With a few de-

sign alterations, it should be feasible to design a measurement cell using the pulse-echo buffer rod

method with a relative expanded uncertainty within 1000ppm. It is, however, found that the candi-

date method may not be suited as a high-precision cell when small measurement cells are needed

unless high-precision measuring tools are acquired.
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8.2 Further work

A measurement cell that can measure the sound velocity in pressurized fluids and over a range of

temperatures was initially desired. However, to measure the sound velocity in pressurized fluids, the

chassis would have to be reinforced by expanding the thickness of the walls. Valves and pressure

sensors would also have to be installed. This was not feasible within the project’s scope and can thus

be included in further work.

The measurements performed in this project for distilled and saline water present high accuracy com-

pared to theoretical models. Validation through repeatability measurements would thus be of inter-

est, together with a study of the accuracy of the theoretical models. Sound velocity measurements on

crude oils were planned but unfortunately not performed due to lack of time. This may be included

in further work. Additionally, by increasing the size of the water bath or by acquiring a more properly

temperature-regulated bath, measurements could be conducted with more confidence outside the

temperature set-points.

For the current measurement cell, the sample length uncertainty can be significantly reduced by ac-

quiring a high-precision measuring tool. The length as a function of temperature can further be

expressed with greater confidence if the change in sample length due to a possible bulging in the

Plexiglas buffer is found with increasing temperatures.

The work assumes that the COMSOL simulations can be directly compared to the diffraction correc-

tion models presented in this project. A possible deviation due to the assumption should be studied

in further work. The simulations are also suspected of not yet having converged, and more simula-

tions with higher resolution would be of interest.

Finally, by removing the size restrictions on the construction of the measurement cell, a sound veloc-

ity cell measuring sound velocity with a relative expanded uncertainty within 1000 ppm is believed

to be feasible. It would thus be of interest to create a new measurement cell to test if the proposed

method can be applied when a sound velocity cell of high precision is needed.
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Appendix A

Numerical diffraction correction

calculations

A.1 Numerical solution of Khimunin’s diffraction correction integral

As part of this project, Khimunin’s diffraction correction integral (BPDF model) is utilized to calcu-

late diffraction correction, shown in Sec. 2.3.1. To confirm that the calculations used in this project

are correct, the tabulated data of Khimunin is compared to the calculated data, using MatLab. This

section describes the approach and the resulting numerical values. The script used to calculate the

numerical values is found in Ap. D.5.

For a single fluid medium, Khimunin expressed the deviation from plane-wave propagation for a

uniformly vibrating plane piston as [38]

H di f f = 〈p〉A

ppl ane
, (A.1)

where ppl ane is the plane-wave pressure at distance z = d, and 〈p〉A is the average sound pressure over

the measurement area (in the absence of the receiver) at distance z = d, with area equal to the sound

source, A =πa2.

Based on Williams theory for a baffled piston [42], Khimunin formulated the equation [38]

H di f f (L, f ) = 1− 4

π

∫ π/2

0
e
−i kL

(p
1+4( a

L )2cos2θ−1

)
si n2θdθ. (A.2)

Here, the plane wave expression has been extracted, k =ω/c is the wave number, a is the radius of the

transducer and θ is an integration variable. Khimunin further expressed the modulus of ratio of the

average pressure to the pressure of the continuous plane wave [38]

|Hdi f f | =
〈p(L, f )〉A

pp (L, f )
=

√
A2 +B 2, (A.3)
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where A and B is stated as

A = 1−C
4

π
cos(kL)−D

4

π
si n(kL), (A.4)

B = D
4

π
cos(kL)−C

4

π
si n(kL). (A.5)

In equations A.4 and A.5, the constants C and D are expressed as

C =
∫ π/2

0
cos[k

√
L2 +4a2cos2θ]si n2θdθ, (A.6)

D =
∫ π/2

0
si n[k

√
L2 +4a2cos2θ]si n2θdθ, (A.7)

where L is the distance between transmitter and receiver.

Equations A.4 and A.5 were further used to calculate the deviation of phase of average pressure from

the phase of plane wave pressure [43]

6 Hdi f f =φ= t an−1
(B

A

)
(A.8)

To calculate the amplitude and phase, equations A.6 and A.7 must be solved numerically. To do so,

Simpsons integration method is utilized [73]

∫ b

a
f (x)d x ≈ ∆x

3
[y0 +4(y1 + y3 + y5 + ..)+2(y2 + y4 + y6 + ...)+ yn] (A.9)

The Simpsons method is thus based on a subdivision of the interval [a,b] into n subintervals. Each

subinterval is of equal length ∆x = (b −a)/n [73]. To calculate equations A.6 and A.7, ∆x = dθ =π/2n

must be determined. Using MatLab and comparing the results with [38], n = 1000 was found to be

sufficient for the diffraction integral to converge.

In order to compare the calculated values with those tabulated by Khimunin, some small modifica-

tions were needed. Khimunin used the rounded off ka-values to calculate the tabulated data (table 1

in [38, 43]). The exact values were therefore determined by the Fresnel parameter [44]

S = 2πz

ka2 (A.10)

Equation A.10 was solved for k, where z is found by the rounded off ka-values. Thus, if ka = 20, a =

10mm and S = 1, z is calculated to be 31.8mm ≈ 32mm using equation A.10. Then, by inserting the

rounded off z-value into k = 2πz/(Sa2), the exact wave number k = 2.01062 mm−1 is found and thus

is the exact ka-number given as ka = 20.106. Khimunin uses the rounded of ka-values = [10, 15, 20, 25,

30, 40, 60, 100, 200, 400, 1000] and S-values from 0.01 to 10. The amplitude and phase calculations

are therefore done for the same ka-numbers and S-values using MatLab. A synopsis of the calculated

amplitude and phase is presented in table A.1 and table A.3 respectively, and Khimunin’s tabulated

amplitude and phase data is presented in tables A.2 and A.4
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Khimunin reports an uncertainty using the Simpsons method of 1 · 10−4. The difference between

Khimunin’s tabulated data and the calculated data using MatLab is within the uncertainty with a few

exceptions. The excess difference is believed to be rounding errors.

In the project, equation A.2 is implemented. It was therefore necessary to see how the amplitude and

phase would vary using equation A.2 directly compared to the method described above. Equation A.2

is implemented in MatLab, where the integral is evaluated using the Simpsons integration method

with n = 1000. The amplitude and phase is calculated and compared to the calculated amplitude and

phase in table A.1 and A.3 respectively. The difference is, at most, found to be 1.3·10−4 and 9.223·10−4

rad for the amplitude and phase respectively. The difference due to the method used to calculate the

amplitude and phase of the diffraction correction is thus negligible.
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Table A.1: Synopsis of the calculated amplitude of the BPDF model, using equation A.3 and Simpsons integra-
tion method. The ka-values are rounded off, exact values are used in the calculations.

ka

S 10 15 20 25 30 40 60 100 200 400 1000

0.05 0.97128 0.95467 0.96250 0.95141 0.95153 0.95456 0.95142 0.95134 0.95120 0.95103 0.95077

0.1 0.96040 0.93075 0.93034 0.93261 0.93233 0.93008 0.93212 0.93072 0.93089 0.93116 0.93173

0.15 0.94731 0.92835 0.92272 0.92293 0.92111 0.91845 0.91869 0.91663 0.91746 0.91630 0.91596

0.2 0.92906 0.91902 0.91032 0.90184 0.90750 0.90699 0.90393 0.90399 0.90552 0.90549 0.90525

0.25 0.90741 0.89689 0.88980 0.90020 0.89142 0.89370 0.89616 0.89341 0.89557 0.89513 0.89493

0.3 0.88616 0.87862 0.89044 0.88365 0.88993 0.88223 0.88629 0.88232 0.88437 0.88504 0.88521

0.35 0.86897 0.87441 0.88457 0.87514 0.87333 0.88052 0.87322 0.87493 0.87700 0.87745 0.87756

0.4 0.85799 0.87744 0.86573 0.87598 0.86939 0.86431 0.87051 0.87149 0.87047 0.87009 0.86998

0.45 0.85333 0.87617 0.85517 0.86058 0.86687 0.86406 0.85778 0.85677 0.85725 0.85746 0.85752

0.5 0.85344 0.86601 0.85719 0.84786 0.85019 0.85691 0.85913 0.85792 0.85690 0.85661 0.85652

0.55 0.85601 0.85016 0.85861 0.84894 0.84310 0.84172 0.84480 0.84725 0.84830 0.84856 0.84863

0.6 0.85872 0.83494 0.85084 0.85085 0.84643 0.84023 0.83660 0.83564 0.83550 0.83549 0.83548

0.65 0.85981 0.82511 0.83639 0.84345 0.84476 0.84298 0.83975 0.83764 0.83670 0.83647 0.83640

0.7 0.85821 0.82191 0.82251 0.82936 0.83356 0.83677 0.83774 0.83765 0.83747 0.83742 0.83740

0.75 0.85358 0.82357 0.81447 0.81641 0.81939 0.82329 0.82623 0.82764 0.82819 0.82832 0.82836

0.8 0.84610 0.82707 0.81305 0.80974 0.80966 0.81101 0.81283 0.81400 0.81454 0.81467 0.81471

0.85 0.83631 0.82964 0.81576 0.80950 0.80689 0.80525 0.80481 0.80486 0.80494 0.80497 0.80498

0.9 0.82495 0.82951 0.81920 0.81269 0.80909 0.80577 0.80370 0.80279 0.80244 0.80235 0.80233

0.95 0.81282 0.82602 0.82071 0.81580 0.81260 0.80917 0.80666 0.80538 0.80485 0.80471 0.80468

1 0.80069 0.81934 0.81894 0.81642 0.81438 0.81188 0.80985 0.80874 0.80825 0.80813 0.80810

1.1 0.77888 0.79951 0.80560 0.80728 0.80775 0.80785 0.80768 0.80751 0.80741 0.80739 0.80738

1.2 0.76296 0.77736 0.78472 0.78809 0.78983 0.79145 0.79251 0.79302 0.79323 0.79328 0.79330

1.3 0.75398 0.75896 0.76412 0.76702 0.76871 0.77044 0.77170 0.77235 0.77263 0.77270 0.77271

1.4 0.75123 0.74729 0.74898 0.75038 0.75131 0.75235 0.75316 0.75360 0.75379 0.75383 0.75385

1.5 0.75306 0.74251 0.74097 0.74077 0.74081 0.74095 0.74112 0.74123 0.74128 0.74129 0.74130

1.6 0.75761 0.74315 0.73932 0.73787 0.73719 0.73658 0.73620 0.73602 0.73594 0.73593 0.73592

1.7 0.76329 0.74720 0.74209 0.73989 0.73875 0.73766 0.73691 0.73653 0.73637 0.73633 0.73632

1.8 0.76888 0.75280 0.74723 0.74470 0.74335 0.74202 0.74109 0.74061 0.74041 0.74036 0.74035

1.9 0.77356 0.75853 0.75305 0.75050 0.74912 0.74774 0.74676 0.74625 0.74604 0.74599 0.74597

2 0.77688 0.76344 0.75839 0.75600 0.75469 0.75338 0.75244 0.75196 0.75175 0.75170 0.75169

2.1 0.77860 0.76698 0.76252 0.76039 0.75921 0.75803 0.75718 0.75675 0.75656 0.75652 0.75650

2.2 0.77868 0.76888 0.76507 0.76324 0.76223 0.76120 0.76047 0.76009 0.75993 0.75989 0.75987

2.3 0.77716 0.76910 0.76593 0.76439 0.76354 0.76268 0.76206 0.76174 0.76161 0.76157 0.76156

2.4 0.77419 0.76769 0.76511 0.76385 0.76315 0.76245 0.76194 0.76168 0.76157 0.76154 0.76153

2.5 0.76989 0.76478 0.76272 0.76172 0.76116 0.76060 0.76019 0.75998 0.75989 0.75987 0.75986

2.6 0.76446 0.76054 0.75894 0.75816 0.75772 0.75728 0.75696 0.75679 0.75672 0.75670 0.75670

2.7 0.75803 0.75513 0.75393 0.75334 0.75300 0.75267 0.75242 0.75230 0.75224 0.75223 0.75223

2.8 0.75079 0.74874 0.74787 0.74744 0.74719 0.74695 0.74677 0.74667 0.74663 0.74663 0.74662

2.9 0.74285 0.74152 0.74093 0.74063 0.74047 0.74029 0.74017 0.74010 0.74007 0.74007 0.74007

3 0.73437 0.73363 0.73327 0.73308 0.73298 0.73287 0.73279 0.73274 0.73273 0.73272 0.73272

3.5 0.68719 0.68811 0.68840 0.68853 0.68859 0.68866 0.68870 0.68873 0.68874 0.68874 0.68874

4 0.63812 0.63952 0.64001 0.64023 0.64035 0.64047 0.64055 0.64059 0.64061 0.64062 0.64062

4.5 0.59147 0.59291 0.59341 0.59364 0.59377 0.59389 0.59398 0.59403 0.59405 0.59405 0.59405

5 0.54882 0.55013 0.55059 0.55080 0.55091 0.55103 0.55111 0.55115 0.55117 0.55118 0.55118

5.5 0.51047 0.51161 0.51201 0.51220 0.51230 0.51240 0.51247 0.51251 0.51252 0.51253 0.51253

6 0.47622 0.47720 0.47754 0.47770 0.47779 0.47787 0.47794 0.47797 0.47798 0.47798 0.47798

6.5 0.44568 0.44651 0.44681 0.44694 0.44702 0.44709 0.44714 0.44717 0.44718 0.44718 0.44718

7 0.41842 0.41913 0.41938 0.41949 0.41955 0.41962 0.41966 0.41968 0.41969 0.41970 0.41970

7.5 0.39402 0.39462 0.39483 0.39493 0.39499 0.39504 0.39508 0.39510 0.39511 0.39511 0.39511

8 0.37211 0.37262 0.37280 0.37289 0.37293 0.37298 0.37301 0.37303 0.37303 0.37304 0.37304

8.5 0.35235 0.35280 0.35295 0.35303 0.35306 0.35310 0.35313 0.35315 0.35315 0.35315 0.35315

9 0.33448 0.33487 0.33500 0.33506 0.33510 0.33513 0.33516 0.33517 0.33517 0.33517 0.33517

9.5 0.31826 0.31859 0.31870 0.31876 0.31879 0.31882 0.31884 0.31885 0.31885 0.31886 0.31886

10 0.30347 0.30376 0.30386 0.30390 0.30393 0.30396 0.30397 0.30398 0.30399 0.30399 0.30399
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Table A.2: Synopsis of table 1 in [38], the tabulated amplitude values versus the dimensionless distance S. Ka-
values are rounded off.

ka

S 10 15 20 25 30 40 60 100 200 400 1000

0.05 0.9713 0.9547 0.9625 0.9514 0.9517 0.9546 0.9514 0.9514 0.9512 0.9511 0.9509

0.1 0.9605 0.9308 0.9304 0.9327 0.9324 0.9301 0.9323 0.9308 0.9308 0.9312 0.9318

0.15 0.9473 0.9284 0.9228 0.9229 0.9216 0.9185 0.9188 0.9164 0.9175 0.9165 0.9161

0.2 0.9292 0.9191 0.9104 0.9010 0.9075 0.9068 0.9040 0.9040 0.9056 0.9055 0.9053

0.25 0.9075 0.8969 0.8899 0.9003 0.8914 0.8937 0.8962 0.8937 0.8956 0.8952 0.8950

0.3 0.8862 0.8787 0.8905 0.8837 0.8900 0.8823 0.8863 0.8824 0.8844 0.8851 0.8853

0.35 0.8690 0.8744 0.8846 0.8752 0.8732 0.8809 0.8735 0.8750 0.8770 0.8775 0.8776

0.4 0.8581 0.8774 0.8657 0.8760 0.8685 0.8644 0.8705 0.8713 0.8705 0.8701 0.8701

0.45 0.8534 0.8762 0.8552 0.8606 0.8669 0.8642 0.8578 0.8568 0.8573 0.8577 0.8577

0.5 0.8533 0.8660 0.8572 0.8480 0.8502 0.8569 0.8592 0.8580 0.8569 0.8566 0.8566

0.55 0.8560 0.8501 0.8586 0.8490 0.8431 0.8417 0.8449 0.8473 0.8483 0.8486 0.8487

0.6 0.8587 0.8350 0.8509 0.8509 0.8465 0.8403 0.8367 0.8357 0.8352 0.8355 0.8356

0.65 0.8598 0.8252 0.8367 0.8435 0.8447 0.8430 0.8398 0.8367 0.8367 0.8365 0.8364

0.7 0.8582 0.8219 0.8225 0.8294 0.8336 0.8368 0.8377 0.8376 0.8374 0.8374 0.8375

0.75 0.8536 0.8236 0.8146 0.8166 0.8194 0.8233 0.8262 0.8277 0.8282 0.8283 0.8284

0.8 0.8461 0.8271 0.8131 0.8098 0.8097 0.8111 0.8128 0.8140 0.8146 0.8147 0.8147

0.85 0.8363 0.8297 0.8158 0.8096 0.8069 0.8052 0.8048 0.8049 0.8048 0.8050 0.8050

0.9 0.8250 0.8296 0.8192 0.8127 0.8092 0.8058 0.8038 0.8028 0.8024 0.8024 0.8024

0.95 0.8129 0.8262 0.8207 0.8158 0.8127 0.8092 0.8068 0.8054 0.8049 0.8046 0.8048

1 0.8007 0.8194 0.8190 0.8165 0.8144 0.8119 0.8097 0.8088 0.8083 0.8082 0.8082

1.1 0.7789 0.7996 0.8056 0.8074 0.8077 0.8079 0.8077 0.8076 0.8074 0.8074 0.8074

1.2 0.7632 0.7774 0.7847 0.7882 0.7899 0.7915 0.7927 0.7930 0.7933 0.7933 0.7933

1.3 0.7541 0.7591 0.7642 0.7671 0.7690 0.7706 0.7717 0.7724 0.7727 0.7727 0.7727

1.4 0.7513 0.7474 0.7490 0.7503 0.7514 0.7525 0.7532 0.7536 0.7538 0.7538 0.7538

1.5 0.7531 0.7425 0.7409 0.7408 0.7409 0.7410 0.7412 0.7413 0.7413 0.7413 0.7413

1.6 0.7577 0.7432 0.7393 0.7379 0.7373 0.7366 0.7362 0.7361 0.7358 0.7360 0.7360

1.7 0.7633 0.7473 0.7421 0.7399 0.7388 0.7377 0.7369 0.7366 0.7364 0.7364 0.7364

1.8 0.7689 0.7529 0.7473 0.7448 0.7428 0.7421 0.7411 0.7407 0.7405 0.7404 0.7404

1.9 0.7736 0.7586 0.7531 0.7505 0.7491 0.7478 0.7468 0.7463 0.7461 0.7460 0.7461

2 0.7769 0.7635 0.7584 0.7560 0.7547 0.7534 0.7525 0.7520 0.7518 0.7517 0.7517

2.1 0.7786 0.7670 0.7626 0.7604 0.7592 0.7581 0.7573 0.7568 0.7566 0.7565 0.7565

2.2 0.7787 0.7689 0.7652 0.7633 0.7622 0.7613 0.7605 0.7601 0.7599 0.7599 0.7599

2.3 0.7772 0.7691 0.7660 0.7647 0.7636 0.7627 0.7621 0.7618 0.7616 0.7617 0.7616

2.4 0.7740 0.7677 0.7652 0.7639 0.7630 0.7625 0.7620 0.7618 0.7616 0.7616 0.7615

2.5 0.7699 0.7648 0.7628 0.7617 0.7612 0.7606 0.7602 0.7600 0.7599 0.7599 0.7599

2.6 0.7645 0.7605 0.7590 0.7582 0.7577 0.7573 0.7570 0.7568 0.7567 0.7568 0.7567

2.7 0.7580 0.7551 0.7540 0.7533 0.7530 0.7527 0.7525 0.7523 0.7523 0.7522 0.7522

2.8 0.7508 0.7488 0.7479 0.7474 0.7472 0.7470 0.7468 0.7467 0.7464 0.7466 0.7466

2.9 0.7429 0.7415 0.7409 0.7407 0.7405 0.7403 0.7406 0.7398 0.7401 0.7397 0.7401

3 0.7341 0.7336 0.7333 0.7331 0.7330 0.7329 0.7328 0.7328 0.7327 0.7327 0.7327

3.5 0.6972 0.6881 0.6884 0.6883 0.6886 0.6887 0.6886 0.6887 0.6887 0.6888 0.6888

4 0.6380 0.6394 0.6399 0.6406 0.6404 0.6403 0.6406 0.6406 0.6406 0.6406 0.6406

4.5 0.5915 0.5929 0.5934 0.5936 0.5937 0.5939 0.5938 0.5941 0.5941 0.5941 0.5941

5 0.5488 0.5501 0.5504 0.5507 0.5508 0.5511 0.5511 0.5512 0.5512 0.5512 0.5512

5.5 0.5105 0.5117 0.5120 0.5121 0.5122 0.5124 0.5125 0.5125 0.5125 0.5125 0.5125

6 0.4762 0.4772 0.4775 0.4776 0.4778 0.4779 0.4780 0.4780 0.4780 0.4780 0.4780

6.5 0.4456 0.4466 0.4468 0.4469 0.4470 0.4471 0.4472 0.4472 0.4472 0.4472 0.4472

7 0.4184 0.4191 0.4194 0.4195 0.4196 0.4196 0.4196 0.4197 0.4198 0.4198 0.4197

7.5 0.3940 0.3947 0.3949 0.3949 0.3950 0.3950 0.3950 0.3951 0.3951 0.3951 0.3951

8 0.3722 0.3726 0.3728 0.3729 0.3729 0.3729 0.3730 0.3731 0.3731 0.3731 0.3731

8.5 0.3523 0.3529 0.3530 0.3530 0.3531 0.3531 0.3531 0.3532 0.3532 0.3532 0.3532

9 0.3345 0.3348 0.3350 0.3351 0.3351 0.3351 0.3351 0.3352 0.3352 0.3352 0.3352

9.5 0.3183 0.3186 0.3188 0.3188 0.3188 0.3188 0.3188 0.3189 0.3189 0.3189 0.3189

10 0.3035 0.3037 0.3038 0.3039 0.3039 0.3039 0.3040 0.3040 0.3040 0.3040 0.3040
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Table A.3: Synopsis of the calculated phase (in radians) of the BPDF model using equation A.8 and Simpsons
integration method. The ka-values are rounded off, exact values are used in the calculations.

ka

S 10.053 15.079 20.106 25.133 30.159 40.212 60.319 100.53 201.06 402.12 1005.3

0.05 0.0603 0.0727 0.0574 0.0535 0.0586 0.0537 0.0522 0.0538 0.0531 0.0531 0.0529

0.1 0.0839 0.0780 0.0846 0.0838 0.0819 0.0771 0.0753 0.0766 0.0764 0.0768 0.0762

0.15 0.1116 0.0925 0.0919 0.0943 0.0991 0.0932 0.0956 0.0963 0.0953 0.0942 0.0947

0.2 0.1373 0.1212 0.1209 0.1150 0.1084 0.1093 0.1095 0.1097 0.1118 0.1105 0.1102

0.25 0.1567 0.1417 0.1272 0.1242 0.1291 0.1228 0.1244 0.1277 0.1254 0.1245 0.1243

0.3 0.1677 0.1451 0.1341 0.1463 0.1380 0.1420 0.1366 0.1398 0.1414 0.1413 0.1412

0.35 0.1712 0.1451 0.1589 0.1466 0.1566 0.1512 0.1502 0.1547 0.1544 0.1540 0.1539

0.4 0.1707 0.1559 0.1732 0.1650 0.1580 0.1658 0.1672 0.1627 0.1609 0.1606 0.1605

0.45 0.1701 0.1770 0.1725 0.1839 0.1793 0.1703 0.1714 0.1751 0.1767 0.1771 0.1772

0.5 0.1726 0.1991 0.1770 0.1849 0.1921 0.1921 0.1862 0.1828 0.1817 0.1815 0.1814

0.55 0.1799 0.2141 0.1946 0.1877 0.1910 0.1982 0.2021 0.2025 0.2022 0.2021 0.2020

0.6 0.1920 0.2198 0.2160 0.2041 0.1991 0.1985 0.2016 0.2041 0.2052 0.2055 0.2056

0.65 0.2080 0.2192 0.2306 0.2249 0.2189 0.2125 0.2093 0.2084 0.2083 0.2083 0.2082

0.7 0.2264 0.2179 0.2354 0.2386 0.2370 0.2329 0.2287 0.2264 0.2254 0.2251 0.2251

0.75 0.2455 0.2204 0.2343 0.2424 0.2454 0.2464 0.2456 0.2446 0.2441 0.2440 0.2440

0.8 0.2640 0.2286 0.2336 0.2410 0.2455 0.2497 0.2521 0.2530 0.2533 0.2534 0.2534

0.85 0.2809 0.2421 0.2379 0.2411 0.2443 0.2483 0.2514 0.2531 0.2537 0.2539 0.2539

0.9 0.2952 0.2589 0.2482 0.2468 0.2474 0.2491 0.2510 0.2521 0.2526 0.2528 0.2528

0.95 0.3066 0.2771 0.2632 0.2584 0.2567 0.2558 0.2558 0.2560 0.2561 0.2562 0.2562

1 0.3151 0.2947 0.2807 0.2743 0.2712 0.2685 0.2669 0.2663 0.2660 0.2660 0.2659

1.1 0.3238 0.3230 0.3145 0.3090 0.3058 0.3024 0.2999 0.2986 0.2981 0.2980 0.2979

1.2 0.3247 0.3390 0.3381 0.3361 0.3346 0.3328 0.3313 0.3305 0.3301 0.3301 0.3300

1.3 0.3225 0.3441 0.3489 0.3502 0.3506 0.3508 0.3507 0.3507 0.3506 0.3506 0.3506

1.4 0.3211 0.3429 0.3505 0.3537 0.3553 0.3568 0.3578 0.3582 0.3584 0.3585 0.3585

1.5 0.3233 0.3409 0.3484 0.3520 0.3540 0.3559 0.3573 0.3580 0.3583 0.3584 0.3584

1.6 0.3303 0.3416 0.3475 0.3506 0.3523 0.3540 0.3553 0.3560 0.3563 0.3563 0.3564

1.7 0.3422 0.3471 0.3507 0.3527 0.3539 0.3552 0.3561 0.3566 0.3568 0.3568 0.3569

1.8 0.3584 0.3578 0.3591 0.3600 0.3606 0.3613 0.3618 0.3620 0.3622 0.3622 0.3622

1.9 0.3780 0.3731 0.3725 0.3725 0.3725 0.3726 0.3728 0.3728 0.3729 0.3729 0.3729

2 0.4002 0.3921 0.3901 0.3893 0.3890 0.3887 0.3885 0.3884 0.3883 0.3883 0.3883

2.1 0.4242 0.4140 0.4109 0.4096 0.4090 0.4083 0.4079 0.4077 0.4076 0.4076 0.4076

2.2 0.4494 0.4378 0.4341 0.4324 0.4315 0.4307 0.4301 0.4298 0.4297 0.4296 0.4296

2.3 0.4752 0.4628 0.4587 0.4568 0.4558 0.4548 0.4541 0.4537 0.4536 0.4536 0.4536

2.4 0.5011 0.4885 0.4841 0.4821 0.4811 0.4800 0.4792 0.4789 0.4787 0.4787 0.4786

2.5 0.5270 0.5144 0.5099 0.5079 0.5068 0.5057 0.5049 0.5045 0.5044 0.5043 0.5043

2.6 0.5526 0.5401 0.5357 0.5337 0.5326 0.5315 0.5307 0.5303 0.5302 0.5301 0.5301

2.7 0.5776 0.5656 0.5613 0.5593 0.5582 0.5571 0.5563 0.5559 0.5558 0.5557 0.5557

2.8 0.6021 0.5905 0.5863 0.5844 0.5833 0.5823 0.5816 0.5812 0.5810 0.5810 0.5810

2.9 0.6259 0.6148 0.6108 0.6089 0.6079 0.6069 0.6062 0.6058 0.6057 0.6056 0.6056

3 0.6490 0.6384 0.6346 0.6328 0.6318 0.6309 0.6302 0.6298 0.6297 0.6296 0.6296

3.5 0.7529 0.7449 0.7420 0.7407 0.7400 0.7392 0.7387 0.7385 0.7383 0.7383 0.7383

4 0.8391 0.8332 0.8310 0.8300 0.8295 0.8290 0.8286 0.8284 0.8283 0.8283 0.8283

4.5 0.9106 0.9061 0.9045 0.9037 0.9033 0.9029 0.9026 0.9025 0.9024 0.9024 0.9024

5 0.9702 0.9668 0.9655 0.9650 0.9647 0.9644 0.9641 0.9640 0.9640 0.9640 0.9640

5.5 1.0205 1.0178 1.0169 1.0164 1.0162 1.0159 1.0158 1.0157 1.0156 1.0156 1.0156

6 1.0633 1.0612 1.0604 1.0601 1.0599 1.0597 1.0596 1.0595 1.0595 1.0595 1.0595

6.5 1.1001 1.0985 1.0979 1.0976 1.0974 1.0973 1.0972 1.0971 1.0971 1.0971 1.0971

7 1.1322 1.1308 1.1303 1.1301 1.1300 1.1298 1.1298 1.1297 1.1297 1.1297 1.1297

7.5 1.1602 1.1591 1.1587 1.1585 1.1584 1.1583 1.1582 1.1582 1.1582 1.1582 1.1581

8 1.1849 1.1840 1.1836 1.1835 1.1834 1.1833 1.1833 1.1832 1.1832 1.1832 1.1832

8.5 1.2069 1.2061 1.2058 1.2057 1.2056 1.2056 1.2055 1.2055 1.2055 1.2055 1.2055

9 1.2265 1.2259 1.2256 1.2255 1.2255 1.2254 1.2254 1.2253 1.2253 1.2253 1.2253

9.5 1.2442 1.2436 1.2434 1.2433 1.2433 1.2432 1.2432 1.2432 1.2432 1.2431 1.2431

10 1.2601 1.2596 1.2595 1.2594 1.2593 1.2593 1.2593 1.2593 1.2592 1.2592 1.2592
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Table A.4: Synopsis of table 1 in [43], the tabulated diffraction phase shifts (in radians) versus the dimensionless
distance S. Ka-values are rounded off.

ka

S 10.053 15.079 20.106 25.133 30.159 40.212 60.319 100.53 201.06 402.12 1005.3

0.05 0.0604 0.0727 0.0575 0.0535 0.0584 0.0537 0.0523 0.0538 0.0532 0.053 0.053

0.1 0.0839 0.078 0.0846 0.0836 0.0819 0.0771 0.0753 0.0765 0.0762 0.0767 0.0762

0.15 0.1116 0.0925 0.0919 0.0943 0.0991 0.0931 0.0956 0.0962 0.0953 0.0941 0.0947

0.2 0.1373 0.1212 0.1209 0.1154 0.1084 0.1094 0.1094 0.1097 0.1119 0.1105 0.1101

0.25 0.1566 0.1416 0.1271 0.1243 0.1291 0.1228 0.1243 0.1275 0.1254 0.1245 0.1243

0.3 0.1677 0.1451 0.1341 0.1463 0.138 0.1421 0.1366 0.1398 0.1415 0.1413 0.1412

0.35 0.1713 0.1451 0.1589 0.1466 0.1572 0.1505 0.1505 0.1547 0.1543 0.154 0.1535

0.4 0.1707 0.1559 0.1732 0.165 0.1581 0.1657 0.1673 0.1625 0.1608 0.1606 0.1605

0.45 0.1701 0.177 0.1725 0.1839 0.1793 0.1703 0.1714 0.1751 0.1767 0.1769 0.1772

0.5 0.1727 0.1991 0.177 0.1848 0.192 0.1921 0.1862 0.1828 0.1817 0.1815 0.1814

0.55 0.18 0.2141 0.1946 0.1877 0.1909 0.1981 0.2022 0.2024 0.202 0.2021 0.202

0.6 0.1921 0.2197 0.216 0.2041 0.1991 0.1985 0.2016 0.2041 0.2056 0.2055 0.2056

0.65 0.208 0.2193 0.2308 0.2251 0.2186 0.2126 0.2093 0.2084 0.2083 0.2082 0.2082

0.7 0.2264 0.218 0.2354 0.2386 0.237 0.2329 0.2287 0.2264 0.2254 0.2252 0.2251

0.75 0.2454 0.2204 0.2343 0.2423 0.2453 0.2464 0.2455 0.2446 0.2441 0.2439 0.2439

0.8 0.2264 0.2286 0.2336 0.2411 0.2455 0.2497 0.2521 0.2535 0.2533 0.2535 0.2534

0.85 0.2808 0.2421 0.2379 0.2411 0.2443 0.2483 0.2514 0.2531 0.2539 0.2539 0.2539

0.9 0.2954 0.2589 0.2482 0.2468 0.2474 0.2491 0.251 0.2521 0.2528 0.2528 0.2528

0.95 0.3066 0.277 0.2632 0.2584 0.2567 0.2558 0.2555 0.256 0.2561 0.2562 0.2563

1 0.3149 0.2946 0.2806 0.2743 0.2712 0.2685 0.2668 0.2663 0.266 0.266 0.2659

1.1 0.3237 0.3229 0.3144 0.309 0.3061 0.3024 0.2999 0.2986 0.2981 0.2979 0.2979

1.2 0.3248 0.3389 0.3381 0.336 0.3345 0.3327 0.3314 0.3305 0.3301 0.3301 0.33

1.3 0.3222 0.344 0.3489 0.3502 0.3505 0.3508 0.3508 0.3507 0.3505 0.3506 0.3505

1.4 0.3211 0.3429 0.3505 0.3536 0.3554 0.3565 0.3578 0.3582 0.3584 0.3584 0.3586

1.5 0.3233 0.3409 0.3484 0.352 0.3539 0.3559 0.3573 0.3579 0.3583 0.3584 0.3584

1.6 0.3302 0.3418 0.3475 0.3505 0.3522 0.354 0.3553 0.356 0.3562 0.3564 0.3565

1.7 0.3421 0.3471 0.3507 0.3527 0.3539 0.3551 0.356 0.3566 0.3568 0.3569 0.3568

1.8 0.3583 0.3577 0.3591 0.36 0.3611 0.3613 0.3617 0.362 0.3623 0.3622 0.3622

1.9 0.3779 0.373 0.3725 0.3724 0.3725 0.3726 0.3727 0.3728 0.3728 0.3728 0.3729

2 0.4002 0.3925 0.3901 0.3893 0.389 0.3886 0.3884 0.3884 0.3884 0.3884 0.3884

2.1 0.4242 0.4139 0.411 0.4096 0.4089 0.4084 0.4089 0.4077 0.4076 0.4075 0.4076

2.2 0.4494 0.4378 0.4341 0.4324 0.4315 0.4307 0.4302 0.4298 0.4297 0.4296 0.4297

2.3 0.4751 0.4628 0.4587 0.4569 0.4558 0.4548 0.4541 0.4538 0.4536 0.4536 0.4536

2.4 0.5016 0.4884 0.4842 0.4821 0.4812 0.48 0.4792 0.4788 0.4787 0.4786 0.4786

2.5 0.527 0.5143 0.5099 0.5079 0.5098 0.5056 0.5049 0.5045 0.5044 0.5043 0.5043

2.6 0.5525 0.5401 0.5357 0.5338 0.5326 0.5315 0.5307 0.5304 0.5301 0.5301 0.53

2.7 0.5776 0.5655 0.5612 0.5592 0.5582 0.5571 0.5564 0.5559 0.5558 0.5557 0.5557

2.8 0.6021 0.5905 0.5863 0.5843 0.5833 0.5823 0.5815 0.5812 0.5814 0.581 0.5809

2.9 0.6259 0.6148 0.6108 0.609 0.6079 0.6069 0.6053 0.6057 0.6056 0.6055 0.6056

3 0.6488 0.6383 0.6346 0.6328 0.6318 0.6309 0.6302 0.6298 0.6297 0.6296 0.6296

3.5 0.7529 0.7449 0.742 0.7404 0.7399 0.7392 0.7384 0.7384 0.7383 0.7383 0.7383

4 0.8394 0.8328 0.8309 0.8299 0.8295 0.8291 0.8286 0.8283 0.8283 0.8283 0.8283

4.5 0.9105 0.9061 0.9043 0.9036 0.9033 0.9027 0.9028 0.9025 0.9024 0.9024 0.9024

5 0.9702 0.9668 0.9658 0.9649 0.9644 0.9641 0.964 0.964 0.964 0.964 0.964

5.5 1.0204 1.0178 1.0169 1.0165 1.0164 1.0159 1.0156 1.0157 1.0156 1.0156 1.0156

6 1.0631 1.0612 1.0604 1.0602 1.0601 1.0597 1.0599 1.0595 1.0595 1.0595 1.0595

6.5 1.1 1.0983 1.0979 1.0977 1.0974 1.0975 1.0972 1.0971 1.0971 1.0971 1.0971

7 1.132 1.1308 1.1301 1.1303 1.1299 1.1301 1.1298 1.1298 1.1297 1.1297 1.1299

7.5 1.1602 1.1589 1.1587 1.1587 1.1584 1.1583 1.1583 1.1583 1.1583 1.1583 1.1583

8 1.185 1.184 1.1835 1.1834 1.1832 1.1833 1.1834 1.1834 1.1834 1.1834 1.1843

8.5 1.2068 1.206 1.2059 1.2055 1.2057 1.2054 1.2056 1.2055 1.2055 1.2055 1.2055

9 1.2266 1.2258 1.2255 1.2254 1.2255 1.2254 1.2254 1.2254 1.2254 1.2254 1.2254

9.5 1.2443 1.2435 1.2434 1.2432 1.2433 1.2431 1.243 1.2432 1.2432 1.2432 1.2432

10 1.2602 1.2596 1.2595 1.2593 1.2594 1.2594 1.2593 1.2593 1.2593 1.2592 1.2592
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The UNESCO equation

The UNESCO equation is given by [31]

c(S,T,P ) =C w(T,P )+ A(T,P ) ·S +B(T,P ) ·S3/2 +D(T,P ) ·S2 (B.1)

Where the coefficients are given by

C w(T,P ) =
(
C00 +C01 ·T +C02 ·T 2 +C03 ·T 3 +C04 ·T 4 + c05 ·T 5

)
+

(
C10 +C11 ·T +C12 ·T 2 +C13 ·T 3 +C14 ·T 4

)
·P

+
(
C20 +C21 ·T +C22 ·T 2 +C23 ·T 3 +C24 ·T 4

)
·P 2 +

(
C30 +C31 ·T +C32 ·T 2

)
·P 3

A(T,P ) =
(

A00 + A01 ·T + A02 ·T 2 + A03 ·T 3 + A04 ·T 4
)
+

(
A10 + A11 ·T + A12 ·T 2 + A13 ·T 3 + A14 ·T 4

)
·P

+
(

A20 + A21 ·T + A22 ·T 2 + A23 ·T 3
)
·P 2 +

(
A30 + A31 ·T + A32 ·T 2

)
·P 3

B(T,P ) = B00 +B01 ·T +
(
B10 +B11 ·T

)
·P

D(T,P ) = D00 +D10 ·P

The numerical values are given in table B.1.
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Table B.1: Numerical values for the UNESCO equation

Coefficients Numerical values Coefficients Numerical values

C00 1402.388 A02 7.166 ·10−5

C01 5.03830 A03 2.008 ·10−6

C02 -5.81090·10−2 A04 −3.21 ·10−8

C03 3.3432·10−4 A10 9.4742 ·10−5

C04 -1.47797·10−6 A11 -1.2583·10−5

C05 3.1419·10−9 A12 -6.4928·10−8

C10 0.153563 A13 1.0515·10−8

C11 6.8999 ·10−4 A14 -2.0142·10−10

C12 -8.1829·10−6 A20 -3.9064·10−7

C13 1.3632·10−7 A21 9.1061·10−9

C14 -6.1260·10−10 A22 -1.6009·10−10

C20 3.1260·10−5 A23 7.994·10−12

C21 -1.7111·10−6 A30 1.100·10−10

C22 2.5986·10−8 A31 6.651·10−12

C23 -2.5353·10−10 A32 -3.391·10−13

C24 1.0415·10−12 B00 -1.922·10−2

C30 -9.7729·10−9 B01 -4.42·10−5

C31 3.8513·10−10 B10 7.3637·10−5

C32 -2.3654·10−12 B11 1.7950·10−7

A00 1.389 D00 1.727·10−3

A01 -1.262·10−2 D10 -7.9836·10−6

B.1 Partial derivative of the UNESCO equation

To calculate the uncertainty in the UNESCO equation, equation B.1 must be differentiated with re-

spect to salinity (S), temperature (T) and pressure (P). The equations are presented below, where the

tabulated values are found in table B.1.

Salinity

The sound velocity differentiated with respect to salinity is given as

∂c

∂S
= A(T,P )+ 3

2
·B(T,P ) ·S1/2 +2 ·D(T,P ) ·S, (B.2)

where the equations for A(T,P), B(T,P) and D(T,P) are given above.
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Temperature

The sound velocity differentiated with respect to temperature is given as

∂c

∂T
= ∂CW

T
+ ∂A

∂T
·S + ∂B

∂T
·S3/2 + ∂D

∂T
. (B.3)

Where

∂C w

∂T
=

(
C01 +2 ·C02 ·T +3 ·C03 ·T 2 +4 ·C04 ·T 3 +5 · c05 ·T 4

)
+

(
C11 +2 ·C12 ·T +3 ·C13 ·T 2 +4 ·C14 ·T 3

)
·P

+
(
C21 +2 ·C22 ·T +3 ·C23 ·T 2 +4 ·C24 ·T 3

)
·P 2 +

(
C31 +2 ·C32 ·T

)
·P 3.

∂A

∂T
=

(
A01 ·T +2 · A02 ·T +3 · A03 ·T 2 +4 · A04 ·T 3

)
+

(
A11 +2 · A12 ·T +3 · A13 ·T 2 +4 · A14 ·T 3

)
·P

+
(

A21 +2 · A22 ·T +3 · A23 ·T 2
)
·P 2 +

(
A31 +2 · A32 ·T

)
·P 3.

∂B

∂T
= B01 +B11 ·T ·P,

∂D

∂T
= 0.

Pressure

The sound velocity differentiated with respect to pressure is given as

∂c

∂P
= ∂CW

∂P
+ ∂A

∂P
·S + ∂B

∂P
·S3/2 + ∂D

∂P
. (B.4)

where

∂C

∂P
=

(
C10 +C11 ·T +C12 ·T 2 +C13 ·T 3 +C14 ·T 4

)
2 ·

(
C20 +C21 ·T +C22 ·T 2 +C23 ·T 3 +C24 ·T 4

)
·P +3 ·

(
C30 +C31 ·T +C32 ·T 2

)
·P 2.

∂A

∂P
=

(
A10 + A11 ·T + A12 ·T 2 + A13 ·T 3 + A14 ·T 4

)
+2 ·

(
A20 + A21 ·T + A22 ·T 2 + A23 ·T 3

)
·P +3 ·

(
A30 + A31 ·T + A32 ·T 2

)
·P 2.

∂B

∂P
=

(
B10 +B11 ·T

)
.

∂D

∂P
= D10.
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Appendix C

Uncertainty standards

Uncertainty and uncertainty calculations are a large part of this project. As to clarify the notations

used and equations applied, a short description will be given here. The uncertainty calculations fol-

lows the International Bureau of Weights and Measures [91].

C.1 Distributions

Various probability distributions are used in statistics to provide the probabilities for all the possible

outcomes of a random variable. The most common once are the normal and the rectangular distri-

butions.

C.1.1 Normal distribution

The normal distribution, also known as the Gaussian distribution, governs the behaviour of random

variables associated with random measurement errors [73]. It is the most common distribution, and

follows the central limit theorem which states that the mean of a samples distribution will approx-

imate a normal distribution with enough independent random variables [91]. An illustration of a

normal distribution is shown in figure C.1.
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Figure C.1: Illustration of a normal distribution.

Coverage factor, k, defines the level of confidence for a parameter measured in a normal distribution.

As can be seen in figure C.1, a coverage factor of k = 1 corresponds to a confidence level of approxi-

mately 68% and values within ± 1 standard deviation, s, of the mean value x. k = 2 and k = 3 further

corresponds to approximately 95% and 99% confidence levels and values within ± 2 and ± 3 standard

deviations respectively [91].

C.1.2 Rectangular distribution

With a rectangular uncertainty distribution for variable x, any observation xn will fall between values

-a < x < +a with a confidence level of 100 %, corresponding to a coverage factor k =
p

3 [73]. A variable

a with rectangular uncertainty distribution is converted to standard uncertainty through [91]

u(x) = ap
3

. (C.1)

C.2 Type A evaluation of uncertainty

Type A uncertainty evaluation is the process of assessing uncertainty through the statistical analysis

of a series of observations [91]. The collected data from a series of measurements is thus evaluated

using statistical methods.
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The arithmetic mean or average, x for n independent observations is defined as [91]

x = 1

n

n∑
k=1

xk . (C.2)

The mean thus provides a statistical center of distribution. How each individual observation, xk ,

differs from the mean value is often of interest. The variance of the n experimental observations is

given by

s2 = 1

n −1

n∑
j=1

(
x j −x

)2. (C.3)

From equation C.3, the experimental standard deviation can be found, which characterizes the dis-

persion about the mean, or how accurately the mean represents the sample data

s =
√

s2 =
√√√√ 1

n −1

n∑
j=1

(
x j −x

)2. (C.4)

The experimental standard deviation is henceforth used as standard uncertainty, u(x) = s, following

Lunde and Frøysa [40]. To obtain the expanded uncertainty, U (x), the standard uncertainty must be

multiplied with a coverage factor

U (x) = k ·u(x), (C.5)

where k = 2 for a 95% confidence level.

C.3 Type B evaluation of uncertainty

Type B evaluation of uncertainty consists of evaluating uncertainty by means other than statistical

analysis of observation sequences. These uncertainties are thus based on manufacturer’s specifica-

tions, previously measured data and other available information. A probability density function is

still assumed, thus must the available data lie within a specific confidence level.

In this project, the manufacturers specification is commonly used to assess type B uncertainties. The

confidence level of the uncertainties are often not provided and must therefore be assumed. Unless

otherwise specified, a confidence level of k = 1 is assumed to overestimate the uncertainty rather than

underestimate it.
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MATLAB-functions

D.1 Sensitivity Analysis

Sensi t i vi t y anal y si s_r el ati ve.m

1 %Sensitivity analysis, relative uncertainty
2 %Hannah D. S. Benus, May 2021
3
4 f = 500000; %frequency
5 L_0 = 20e−3; %Width of sample
6 c_w = 1480; %Speed of sound in water
7 alpha_T = 71.5e−6;
8 T = 21;
9 T_0 = 24;

10 t_corr = (1/f)/4; %Due to diffraction correction etc
11 %%−−−−−−−−−−−%%
12 Delta_T = T − T_0;
13 K_T = 1 + (T−T_0)*alpha_T;
14 Delta_t = 2*(L_0)/c_w; %Difference between signal from buffer/sample interface and ...

signal from reflector
15
16 %%−−−−−−−−−−−−%%
17 ppmL_0 = 32.5; %How much L_0 should contribute to total uncertainty
18 u_L0 = (ppmL_0/1000000)*L_0;
19 u_L0_mm = u_L0/10e−4;
20 u_L0_expanded = u_L0_mm*2;
21
22 %%−−−−−−−−−−−−−%%
23 ppmE_KT = 12.5; %How much K_T should contribute to total uncertainty
24 ppm_DeltaT = ppmE_KT/(alpha_T*abs(T−T_0));
25 u_DeltaT = (ppm_DeltaT/1000000)*abs(T−T_0)
26 u_KT = (ppmE_KT/1000000)*K_T;
27 u_KT_expanded = u_KT*2;
28
29 %% −−−−−−−−−− %%
30 ppmDelta_t = 32.5; %How much ∆_t should contribute to total uncertainty
31 u_Delta_t = (ppmDelta_t/1000000)*Delta_t;
32 u_Delta_t_microseconds = u_Delta_t/10e−6;
33 u_Delta_t_expandend = u_Delta_t_microseconds*2;%Shown in microseconds
34
35 %%% −−−−−−−−−%%
36 ppm = 25; %How much the correction term should contribute to total uncertainty
37 ppmt_corr = ppm/(t_corr/Delta_t);
38 u_t_corr = (ppmt_corr/1000000)*t_corr;
39 u_t_corr_microseconds = u_t_corr/10e−7;
40 u_t_corr_expanded = 2*u_t_corr_microseconds; %Shown in microseconds

D.2 Signal processing scripts

Sound velocity measurements, data collection and storage, diffraction corrections, and uncertainty

calculations are all run through the main script presented below.
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M ai n_scr i pt .m

1 clear all
2 %%%%% Running osccilloscope, saving data and plotting waveform live %%%%%
3 %%% Script for Master thesis
4 %%% Created by: Hannah D. S. Benus
5 %%% Last edited: 05.03.2022
6 %%% Information:
7 %%% Main script for data collection. It connectects to the oscilloscope,
8 %%% and then, through a timer, collects data every −period− seconds.
9 %%% For each execution, new data is collected and the temperature is measured.

10 %%% A signal processing scrip calculates the sound velocity from the waveforms ...
collected using

11 %%% transit time (FSM and ZCM). The original waveforms are saved in a .txt document,
12 %%% and the calculated sound velocities, temperature, uncertainty,
13 %%% theoretical sound velocity etc. is saved in another .txt document.
14 %%% The waveform is shown live to see the evolution of the sampled waveform
15 %%% throughout the measurement series.
16 %%% The program can be canceled at any time without loss of data.
17 %%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%%%
18 %See if oscilloscope is communicating with MATLAB
19 if exist("id_scope")
20 disp("Oscilloscope is running")
21 else
22 disp("Connecting to oscilloscope")
23 [id_scope] = InitScope(); %Connecting to oscilloscope
24 disp("Oscilloscope is running")
25 end
26
27 ch = 2; %Oscilloscope channel
28
29 SOS = ['SOS_distilled_6p',datestr(now,'dd_mm_HH_MM_SS'),'.txt']; %Create filename for ...

SOS−info
30 fileID_SOS = fopen(SOS,'at');
31 WF = ['Waveform_distilled_6p',datestr(now,'dd_mm_HH_MM_SS'),'.txt']; %Create filename ...

for waveform
32
33 period = 3; %Seconds between runs
34
35 t_obj = timer; %Timer is created, as well as parameters for timer
36 set(t_obj, 'StartDelay', period);
37 set(t_obj, 'Period', period);
38 set(t_obj, 'TasksToExecute',5000); %600 = 40 mminutes, 2500 = approx two hours
39 set(t_obj, 'ExecutionMode', 'fixedRate');
40
41 %Appends function StartDataCollection
42 t_obj.StartFcn = {@StartDataCollection,id_scope,ch,WF,fileID_SOS};
43 %Appends function RunDatacollection, runs "count" times
44 t_obj.TimerFcn = {@RunDatacollection,id_scope,ch,WF,fileID_SOS};
45 %Appends function StopDatacollection, runs last time to close the .txt
46 t_obj.StopFcn = {@StopDatacollection,id_scope,ch,WF,fileID_SOS};
47 start(t_obj); %Timer is started
48 pause(period);
49 stop(t_obj);
50 delete(t_obj); %Timer is deleted after finished
51
52 %Plotting the resulting variation in SOS and temperature when the program
53 %is finished
54 PlotSOS(SOS)
55
56 %Is run after timer is initiated:
57 function[c_zerocrosses,c_zc_corrected]= StartDataCollection(¬, ¬, id_scope,ch, ...

WF,fileID_SOS) %
58 [x,wf] = DPORead(id_scope,ch); %Collecting data from oscilloscope, wf = waveform [V]
59
60 %Communicating with temperature sensor, "usbtenkiget −h" for information:
61 [¬,temp] = system(['usbtenkiget −s E16381 −i 0 −x 3']);
62 findtemp = regexp(temp,"\d+.\d*","Match");%locating the numbers in the output
63 T_original = str2double(findtemp{1});%The first number is the temperature
64
65 %Calculating SOS using sampled waveform from oscilloscope and temperature from ...

sensor :
66 [c_Frey, c_FSM, c_FSM_corrected ,c_zerocrosses, c_zc_corrected,y,Signallength, ...

uncertainty_sos, u_sos_theoretical, std_zc] = Signalprocessing(x,wf,T_original);
67
68 %Plotting live waveform
69 hLine = plot(y);
70 StripChart("initialize",gca) %Initializing liveplot
71 err = 0 ; %If errors occur, err = 1 in .txt file
72
73 %Opening file and write SOS to file
74 fprintf(fileID_SOS,'%s %s %s %s %s %s %s %s %s %s %s %s %s ...

\n',"Date","Time","Signal_length","c_zc","c_zc_corrected", ...
"c_FSM","c_FSM_corrected","c_Frey","Temp", "Totalerror", "Theoreticalerror", ...
"Std zc", "Error");

75 fprintf(fileID_SOS,'%s %s %d %d %d %d %d %d %d %d %d %d ...
%d\n',datestr(now,'dd_mm_yyyy'),...

76 datestr(now,'HH_MM_SS'),Signallength, c_zerocrosses,c_zc_corrected, c_FSM, ...
c_FSM_corrected,c_Frey,T_original, uncertainty_sos, u_sos_theoretical, std_zc,err);

77
78 %Write waveform to file
79 writematrix(y,WF);
80
81 %Output Command window
82 info = sprintf("Time = %s SOS_t = %s SOS_zc = %s SOS_FSM = %s Temp = ...

%s",datestr(now,'HH_MM_SS'),c_Frey, c_zc_corrected,c_FSM_corrected, T_original);
83 disp(info);
84 end
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85
86 function [c_zerocrosses,c_zc_corrected] = RunDatacollection(¬, ¬, id_scope,ch,WF, ...

fileID_SOS)
87 [x,wf] = DPORead(id_scope,ch);
88
89 %Communicating with temperature sensor:
90 [¬,temp] = system(['usbtenkiget −s E16381 −i 0 −x 3']);
91 findtemp = regexp(temp,"\d+.\d*","Match");
92 T_original = str2double(findtemp{1});
93
94 [c_Frey, c_FSM, c_FSM_corrected ,c_zerocrosses, c_zc_corrected,y,Signallength, ...

uncertainty_sos, u_sos_theoretical,std_zc] = Signalprocessing(x,wf, T_original);
95
96 %Updating live waveform
97 hLine = plot(y);
98 StripChart('Update',hLine,y)
99 err = 0;% No error in writing waveform, used to track waveform to temperature

100 try
101 writematrix(y,WF,"WriteMode","Append");
102 catch
103 disp('Error: Could not write waveform');
104 err = 1; %Error is logged in the SOS.txt document
105 end
106
107 %Writing SOS to .txt
108 fprintf(fileID_SOS,'%s %s %d %d %d %d %d %d %d %d %d %d ...

%d\n',datestr(now,'dd_mm_yyyy'),...
109 datestr(now,'HH_MM_SS'),Signallength, c_zerocrosses,c_zc_corrected, c_FSM, ...

c_FSM_corrected,c_Frey,T_original, uncertainty_sos, u_sos_theoretical, std_zc, ...
err);

110
111 %Output command window
112 info = sprintf("Time = %s SOS_t = %s SOS_zc = %s SOS_FSM = %s Temp = ...

%s",datestr(now,'HH_MM_SS'),c_Frey, c_zc_corrected,c_FSM_corrected, T_original);
113 disp(info);
114
115 pause(1)
116 end
117 %Run the last time of the timer to close everything:
118 function [c_zerocrosses,c_zc_corrected]=StopDatacollection(¬, ¬, id_scope,ch,WF, ...

fileID_SOS)
119 [x,wf] = DPORead(id_scope,ch);
120 [¬,temp] = system(['usbtenkiget −s E16381 −i 0 −x 3']); %Communicating with Dracal
121 findtemp = regexp(temp,"\d+.\d*","Match"); %Finding temperature output
122 T_original = str2double(findtemp{1});
123 [c_Frey, c_FSM, c_FSM_corrected ,c_zerocrosses, c_zc_corrected,y,Signallength, ...

uncertainty_sos, u_sos_theoretical,std_zc] = Signalprocessing(x,wf, T_original);
124
125 %Plotting waveform
126 hLine = plot(y);
127 StripChart('Update',hLine,y)
128 err = 0;
129 fprintf(fileID_SOS,'%s %s %d %d %d %d %d %d %d %d %d %d ...

%d\n',datestr(now,'dd_mm_yyyy'),...
130 datestr(now,'HH_MM_SS'),Signallength, c_zerocrosses,c_zc_corrected, c_FSM, ...

c_FSM_corrected,c_Frey,T_original, uncertainty_sos, u_sos_theoretical, std_zc,err);
131
132
133 writematrix(y,WF,"WriteMode","Append");
134 fclose(fileID_SOS);
135 info = sprintf("Time = %s SOS = %s Temp = ...

%s",datestr(now,'HH_MM_SS'),c_zc_corrected, T_original);
136 disp(info);
137 end
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DPOr ead .m

1 %% DPORead.m
2 % Created by Magne Vestrheim, edited by Mathias Saether
3 % Adjusted 2021−11−04 by Audun Oppedal Pedersen:
4 % − Byte order and word length controlled by InitScope (16−bit)
5 % − Cleaned up old code (still found in GitLab)
6 % − Using visadev in InitScope instead of the deprecated visa statement:
7 % => Update from the deprecated binblockread function to readbinblock
8 % => Update from fprintf and freadf to write and read
9 % − Corrected an error in the calculation of wf. Now including YOF.

10
11 % Use the DPO3000 Series Programmer Guide when editing the script.
12
13 function [x,wf,tidsskala] = DPORead(id_scope,ch,samples)
14
15 noB = 2; % Number of bytes per word (8−bit if 1, 16−bit if 2, ...)
16 % set(id_scope,'InputBufferSize',noB*samples); % Buffer size in the computer
17
18 % fopen(id_scope);
19 % fprintf(id_scope,['DAT:SOU CH' num2str(ch)]); % Velge kanal. ch=1 betyr CH1
20 write(id_scope,['DAT:SOU CH' num2str(ch)]); % Velge kanal. ch=1 betyr CH1
21
22 % Record length per visible time interval, affecting the sample rate
23 rec_len = str2double(writeread(id_scope,'HOR:RECO?'));
24 if nargin() == 3
25 if samples > rec_len
26 warning('The record length is set too low. Adjusting and waiting 10 s...')
27 write(id_scope,['HOR:RECO ' num2str(samples)]); % New record length
28 pause(10);
29 elseif samples < rec_len
30 warning('Retrieving less than the record length (full view).')
31 end
32 else
33 samples = rec_len;
34 end
35
36 % Set what samples to retrieve
37 write(id_scope,'DAT:START 1');
38 write(id_scope,['DAT:STOP ' num2str(samples)]);
39
40 % Read the data
41 write(id_scope,'CURV?');
42 % dd = query(id_scope,'CURV?');
43 % pause(.2);
44 % ff = query(id_scope,'BUSY?');
45 if noB == 2
46 ydata = readbinblock(id_scope,'int16');
47 elseif noB == 1
48 ydata = readbinblock(id_scope,'int8');
49 else
50 error('Unsupported word length');
51 end
52 flush(id_scope); % Flush the termination character from the scope
53
54 %% Scaling of the data
55 % Horizontal scaling
56 tidsskala = str2double(writeread(id_scope,'HOR:SCA?'));
57 % Horizontal offset
58 xze = str2double(writeread(id_scope,'WFMO:XZE?'));
59 % Horizontal increment
60 xin = str2double(writeread(id_scope,'WFMO:XIN?'));
61 % Vertical multiplying factor
62 ymu = str2double(writeread(id_scope,'WFMO:YMU?'));
63 % Vertical offset
64 yze = str2double(writeread(id_scope,'WFMO:YZE?'));
65 % Digital vertical offset
66 yof = str2double(writeread(id_scope,'WFMO:YOF?'));
67
68 % Time vector
69 x = (0:(length(ydata)−1))*xin + xze;
70 % Voltage/current vector
71 wf = (ydata−yof)*ymu + yze;

Si g nal pr ocessi ng .m

1 %Signal processing of waveform to calculate the sound velocity using FSM
2 %and ZCM. The calculates sound velocity values are compensated for
3 %diffraction.
4 % Includes temperature calibration, theoretical sound velocity calculation,
5 % uncertainty calculation, and the variables are compensated for temperature
6 % Hannah D. S. Benus, 2021/2022
7
8 function [c_Frey, c_FSM, c_FSM_corrected ,c_zerocrosses, c_zc_corrected,y,Signallength, ...

uncertainty_sos, u_sos_theoretical, std_zc] = Signalprocessing(x,wf, T_original)
9

10 %% −−−−−−−− Variables to change −−−−−−−−− %%%
11 pumpon = 1; %1 = Yes, 0 = No (for uncertainty)
12 Oscillocope_amplitude_span = −0.01 − (−0.09); %[V] Zoom of oscilloscope screen, manually
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13 P_meas = 1.02077; %[bar], pressure measured in lab before start of experiment
14 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %%%
15
16 fs = (length(x)−1)/(x(end−1)−x(1)); %Sampling frequency
17 Upper_freq = 8e5;%For filtering
18 Lower_freq = 2.5e5;%For filtering
19 freq =500000; %Sent frequency
20 Bufferlength = 70.1e−3; %At reference temperature 22.94 degrees
21 a = 12.427e−3; %Effective radius of transducer [m]
22
23 treshold = 0.5; %Treshold for chosing the value of the sum for which the pulse starts
24 ZC_interest = 3; %Chosing which zerocross in the pulse is of interest, 0 is start of pulse
25 steady_state = 3; %Chosing, when signal is longer than 3 wavelengths, when steady−state ...

starts
26 stop_steady_state = 2; %Chosing which zerocross will be the last in steady−state, ...

subtract last zero−cross with nr
27
28 f_min = 250000;% Hz, minimum frequency of interest when calculating FFT
29 f_max = 700000; %Hz, maximum frequency of interest when calculating FFT
30 %
31 %% −−−−−− Correction of sample length due to thermal expansion −−−−− %
32 L_0 = 25.18e−3; %mm, length of sample area at 21.94 degrees, reference temperature
33 T_0 = 22.94; %Reference temperature
34 Samplelength = L_0 + (Temperature−T_0)*(26.08e−3*24e−6 − 0.9e−3*70e−6); %Thermal expansion
35
36
37 %% −−−−−−−−−−−−−−− Temperature calibration −−−−−−−−−−−−−−−−−−−−−−−−− %%
38
39 alpha_original = 0.003908299841; %original coefficient [^oC]
40 beta_original = −5.7749974e−7; %original coefficient [^oC]
41 R = 100*(1 + alpha_original*T_original + beta_original*T_original^2);
42
43 alpha = 3.841e−3; %New coeeficient [^oC]
44 beta = −2.095e−7; %New coeeficient [^oC]
45 R_0 = 100.1; %New coefficient [Ohm]
46
47 T = (−alpha*R_0 + sqrt(alpha^2*R_0^2 − 4*beta*R_0*(R_0 − R)))/(2*beta*R_0);
48
49 %% Sound velocity in Plexiglas as a function of temperature %%
50
51 c_b_70 = 2711.2; %70mm buffer sos at 22.8oC
52 c_b_85 = 2725.3; %85mm buffer sos at 22.8oC
53 c_b = −0.08415*T^2 + 3.912*T + 2680 − (c_b_85 − c_b_70); %Sound velocity in 70mm buffer ...

as a function of temperature
54
55 %% −−−−−− Pressure calculations −−−−−−−−−−−−−−−−−−−−−−−−−− %%
56 rho = 997.05; %Density of pure water at 1atm and 25C
57 rho = 913; %Density of raffined olive oil
58 g = 9.81; %Gravity acceleration [m/s^2]
59 h = 55e−3; %Distance below water, sound axis [m]
60 P_atm = 1.01325; %Atmospheric pressure [bar]
61 conv_bar = 10e−5; %Pascal to bar conversion
62 hydrostatic_P = rho*g*h*conv_bar; %[bar] Hydrostatic pressure
63 P_tot = P_meas + hydrostatic_P; %Total pressure [bar]
64 P_gauge = P_tot − P_atm; %Gauge pressure [bar]
65
66
67
68
69 %% −−−−Signal manipulation and calculating variables used for uncertainty calculations ...

later −−− %%
70 wf = wf(12000:66000);%Eliminating the transducer signal and the DC−component
71 wf = wf − wf(1); %Moving the amplitude signal up to start at 0
72 y = bandpass(wf,[Lower_freq,Upper_freq],fs); %Filtering out the low and high frequencies
73
74
75 bits = 16; %Vertical resolution
76
77 ∆V_q = Oscillocope_amplitude_span/(2^bits − 1); %After eliminating transducer signal ...

and filtering
78 u_bit = ∆V_q/2; %Uncertainty due to bit resolution
79 t_s = (x(end) − x(1))/10000; %Sampling period
80
81 x = x(12000:66000);%Eliminating the transducer signal and the DC−component
82
83
84
85 %%−−−−−−−−−−−− Finding zero−crosses −−−−−−−−−−−−−−−−−−−−−−−−−%%
86 findzerocrosses = @(v) find(v(:).*circshift(v(:), [−1 0]) ≤ 0);
87 zerocrosses = findzerocrosses(y); %Vector that contains the indices corresponding to ...

zero−crossings
88
89 for zc = 1:numel(zerocrosses) %Looping through the length of vector zxidx
90 idex = zerocrosses(zc)−1:zerocrosses(zc) + 1; %Makes a vector of the index ...

corresponding to a "zero cross", the index before and the index after
91 if idex > 0 & idex < length(y)
92 xrng = x(idex); %Finds the corresponding values in time
93 yrng = y(idex); %Finds the corresponding values in amplitude
94
95 ∆V = yrng(end)−yrng(1); %Calculating the span from zc to nearest point
96 error(zc) = sqrt((t_s*u_bit/∆V)^2 + (2.118e−4)^2); %Calculating the error for ...

each zc due to resolution [V]
97
98 ZC(zc) = interp1( yrng(:), xrng(:), 0, 'linear', 'extrap' ); %Linear ...

interpolation around point 0, extrapolation outside the range
99

100 end
101 end
102
103 %Explanation zero−crossing
104 %zci = Circshift circullary shifts the values of the data in the vector one to
105 %the left (in this case). Thus it takes one value in the vector v and
106 %multiplies it with the value to the left. If both of these values are
107 %negative, the resulting value will be positive and thereby not ≤ 0. If
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108 %one value is negative and one value positive, the result will be negative
109 %and one therefore has a zero−crossing.
110
111 %%−−−−−−−−−−−−−−−−−−−− Zero−crossing−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %%
112
113 %Uses the indexes found corresponding to zero−crosses (before
114 %interpolation) to calculate the sum between two zero−crosses. This can be
115 %used to determine when the pulse starts.
116
117 for i = 1:length(zerocrosses) − 1
118 len = zerocrosses(i):zerocrosses(i+1);
119 parts = y(len);
120 s(i) = sum(abs(parts)); %Summing the area between two zero−crossings
121 if s(i) > treshold %Separating the zerocrosses corresponding to noise to ...

zerocrosses corresponding to pulse by treshold value
122 pulse_zerocrosses(i) = x(zerocrosses(i));
123 count(i) = 1;
124 end
125 end
126
127 sA = 0 ;
128 for A = 1:length(count) − 1 %Finding start of Signal A
129 sA = sA + 1;
130 if count(A) == 1
131 break
132 end
133 end
134 Signal_A_time = ZC(sA + ZC_interest);
135
136 end_A = 0;
137 for t = 1:length(count)−1
138 end_A = end_A + 1;
139 if count(t) ==1 && count(t+1) == 0 %Located the end of signal A, next 1 in count ...

will be start of signal B
140 end_A = end_A + 1; %Include the last pulse
141 break
142 end
143 end
144 %end_A = end_A + 1;% To include signal beyond treshold if needed
145
146 count(1:end_A) = 0; %First pulse is eliminated so second pulse can be found
147
148 sB = 0 ;
149 for B = 1:length(count) − 1 %Finding start for Signal B
150 sB = sB + 1;
151 if count(B) == 1
152 break
153 end
154 end
155 Signal_B_time = ZC(sB + ZC_interest);
156
157 end_B = 0;
158 for t = 1:length(count)−1
159 end_B = end_B + 1;
160 if count(t) ==1 && count(t+1) == 0 %Located the end of signal B
161 end_B = end_B + 1; %Include the last pulse
162 break
163 end
164 end
165 %end_B = end_B + 1 % To include signal beyond treshold if needed
166
167 %% −−−−−−−−−− Fourier spectrum method −−−−−−−−−−−−−−−−−− %%
168
169 %Creating x−axis of interest
170 N1=2^nextpow2(length(x));% returns the first P such that 2.^P ≥ abs(N)
171 freq_whole = fs*(0:N1/2−1)/N1; %One−sided spectrum
172
173 f_1M = find(freq_whole ≤ f_max);%Maximum signal of interest
174 f_100k = find(freq_whole ≥ f_min); %Minimum signal of interest
175 f = freq_whole(f_100k(1):f_1M(end));
176
177 Signal = zeros(size(x)); %For plotting
178
179 %%%%% Signal A %%%%%
180 SignalA = zeros(size(x));
181
182 i_A = find(x ≥ ZC(sA)& x ≤ ZC(end_A)); % Finding all the indexes for Signal A
183 Signal(i_A) = y(i_A);
184 SignalA(i_A) = y(i_A);
185 RA = circshift(SignalA,−i_A(1)); %Move pulse to start of signal, start defined by start ...

of x−vector
186 t_shiftA = x(i_A(1)) − x(1);
187
188 fourier_A = fft(RA, N1);
189 fourier_A = fourier_A(f_100k(1):f_1M(end));
190
191 mag_A = abs(fourier_A);
192 phase_A_shifted = angle(fourier_A);%Retrieving the wrapped phase
193 %pa = phase_A_shifted − 2*pi.*f.*t_shiftA; %Comparing wrapped vs unwrapped phase
194
195 pAs_unwrapped = unwrap(phase_A_shifted); %Unwrapping the phase
196 phase_A = pAs_unwrapped − 2*pi.*f.*t_shiftA; %Correcting for shift
197
198 %%%%% Signal B %%%%%
199 SignalB = zeros(size(x));
200
201 i_B = find(x ≥ ZC(sB)& x ≤ ZC(end_B));
202 SignalB(i_B) = −y(i_B); %Negative to flip the signal, 90 degree difference
203 Signal(i_B) = −y(i_B);
204 RB = circshift(SignalB,−i_B(1)); %Move pulse to start of signal, source [72] in Mathias PhD
205 t_shiftB= x(i_B(1)) − x(1);
206
207 fourier_B = fft(RB, N1);
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208 fourier_B = fourier_B(f_100k(1):f_1M(end));
209
210 mag_B = abs(fourier_B);
211 phase_B_shifted = angle(fourier_B); %Retrieving the wrapped phase
212 %pb = phase_B_shifted− 2*pi.*f.*t_shiftB; %To compare wrapped and unwrapped phase
213 pBs_unwrapped = unwrap(phase_B_shifted); %Unwrapping the phase
214
215 phase_B = pBs_unwrapped − 2*pi.*f.*t_shiftB; %Correcting for shift
216
217 %% −−−−−−−Speed of sound calculations −−−−−−−−−−−−−−− %%
218
219 %Calculating speed of sound using FFT
220 c_shift = (2*Samplelength)./(pb./(2*pi.*f) − pa./(2*pi.*f));
221 c_FSM = interp1(f,c_shift,500000); %Finding the speed of sound at 500000kHz using ...

linear interpolation
222
223 %Calculating the speed of sound using zero_crossing
224 ca = sA + steady_state;
225 cb = sB + steady_state;
226
227 if end_A − sA < 10 %Short pulse, 10 approximates to a pulselength of 4 periods
228
229 %Corresponding to the middle of the pulse
230 Signal_A_time1 = ZC(sA+6);
231 Signal_A_time2 = ZC(sA+7);
232
233 %Corresponding to the middle of the pulse
234 Signal_B_time1 = ZC(sB+6);
235 Signal_B_time2 = ZC(sB+7);
236
237 Signal_A_time = (Signal_A_time1 + Signal_A_time2)/2;
238 Signal_B_time = (Signal_B_time1 + Signal_B_time2)/2;
239 c_zerocrosses = 2*Samplelength/(Signal_B_time−Signal_A_time);
240 Signallength = 2;
241
242 std_zc = 0;
243 else %Long pulse, calculating the mean
244 while ca ≤ (end_A − stop_steady_state)
245 Signal_A_time = ZC(ca);
246 Signal_B_time = ZC(cb);
247 c_zerocross_vector(ca) = 2*Samplelength/(Signal_B_time−Signal_A_time);
248 ca = ca + 1;
249 cb = cb + 1;
250 Signallength = 6;
251 end
252 positions = find(c_zerocross_vector > 0);
253 c_zerocrosses = mean(c_zerocross_vector(positions));
254 std_zc = std(c_zerocross_vector(positions));
255 end
256
257
258 %Calculating the theoretical speed of sound using the equation found in "Fundementals ...

of Acoustics, 4th ed." from Kinsler et. al.
259 c_Frey = 1402.7 + 488 * (T/100) − 482 * (T/100)^2 + 135 * (T/100)^3 + ...
260 (15.9 + 2.8 * (T/100) + 2.4 * (T/100)^2) * (P_gauge/100);
261
262 %% −−−−−−−−−−−−−−−−−− Diffraction correction −−−−−−−−−−−−−−−−−− %%
263 n = 1000;
264 theta = (0:(pi/2)/n:(pi/2)); %[radians]
265
266 %Diffraction correction for signal A
267 for zc = 1:length(theta)
268 H_diff_zerocross_A(zc) = exp(−1i*((2*pi*freq)/c_b)*2*Bufferlength*...
269 ((sqrt(1+4*(a/(2*Bufferlength))^2*(cos(theta(zc)))^2))−1))*(sin(theta(zc)))^2; ...

%Echo A
270 end
271 H_diff_A_zerocross = 1 − 4/pi*((2*sum(H_diff_zerocross_A((3:2:end−2))) + ...

4*sum(H_diff_zerocross_A(2:2:end)) + H_diff_zerocross_A(1) + ...
H_diff_zerocross_A(length(theta)))*theta(2)/3);

272 phase_diff_A = angle(H_diff_A_zerocross);
273
274 %Diffraction correction for signal B − Fourier
275 [H_diff_B_FSM] = Diffraction_signalB(a,c_b,L_0,c_FSM);
276 phase_diff_B = H_diff_B_FSM;
277
278 %c_phase_corrected = (2*Samplelength)./(phase_A./(2*pi.*f) − phase_B./(2*pi.*f) − ...

phase_diff_d./(2*pi.*f) + phase_diff_D./(2*pi.*f));
279
280 phase_BB = −interp1(f,phase_B,500000);
281 phase_AA = −interp1(f,phase_A,500000);
282
283 c_FSM_corrected = (2*Samplelength)./(phase_BB./(2*pi.*freq) − phase_AA./(2*pi.*freq) + ...

phase_diff_B./(2*pi.*freq) − phase_diff_A./(2*pi.*freq));
284
285 %H_diff_B_zerocross = 1 − 4/pi*(2*sum(H_diff_zerocross_B((3:2:end−2))) + ...

4*sum(H_diff_zerocross_B(2:2:end)) + H_diff_zerocross_B(1) + ...
H_diff_zerocross_B(length(theta))*theta(2)/3);

286
287 %Diffraction Zerocrossing method
288 t_A_zerocross = angle(H_diff_A_zerocross)/(2*pi*freq);
289 [H_diff_B_zerocross] = Diffraction_signalB(a,c_b,L_0,c_zerocrosses); %Script ...

calculating the diffraction correction in signal A
290 t_B_zerocross = H_diff_B_zerocross/(2*pi*freq);
291 c_zc_corrected = 2*Samplelength/(Signal_B_time − Signal_A_time + t_B_zerocross − ...

t_A_zerocross);
292 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %%
293
294 totalerror = sum(error)/length(error); %Error due to bit resolution [v]
295 %totalerror = (2.118e−4)^2;
296 [uncertainty_sos, u_sos_theoretical] = ...

Uncertainty_calculations(totalerror,Signal_B_time,Signal_A_time,...
297 t_B_zerocross,t_A_zerocross,L_0, T, P_gauge, c_Frey, pumpon, Samplelength, P_meas);
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Di f f r acti on_si g nalB.m

1 function [diff_signalB] = Diffraction_signalB(a,c_b,L_0,c_zerocrosses)
2 %Calculating the diffraction correction for Signal B using the method
3 %Described in section 2.3. Based on Khimunin's diffraction correction
4 %method
5
6 Buffer = 70.1e−3;
7 Bufferlength = linspace(0,70.07e−3, 1000); %Through buffer
8 Samplelength = linspace(0,500e−3, 1000); %Through Sample twice
9 Bufferlength_back = linspace(0,500e−3, 1000); %Through Buffer back

10 n = 1000;
11 theta = (0:(pi/2)/n:(pi/2)); %[radians]
12 freq = 500000;
13 for r = 1:length(Bufferlength)
14 for i = 1:length(theta)
15 %Diffraction one way buffer:
16 H_diff1(i) = exp(−1i*((2*pi*freq)/c_b)*Bufferlength(r)*...
17 ((sqrt(1+4*(a/(Bufferlength(r)))^2*(cos(theta(i)))^2))−1))*...
18 (sin(theta(i)))^2;
19 %Diffraction two way sample:
20 H_diff2(i) = exp(−1i*((2*pi*freq)/c_zerocrosses)*Samplelength(r)*...
21 ((sqrt(1+4*(a/(Samplelength(r)))^2*(cos(theta(i)))^2))−1))*...
22 (sin(theta(i)))^2;
23 %Diffraction one way buffer back:
24 H_diff3(i) = exp(−1i*((2*pi*freq)/c_b)*Bufferlength_back(r)*...
25 ((sqrt(1+4*(a/(Bufferlength_back(r)))^2*(cos(theta(i)))^2))−1))*...
26 (sin(theta(i)))^2;
27
28
29 end
30 H_diff_1_sum(r) = 1 − 4/pi*((2*sum(H_diff1((3:2:end−2))) + 4*sum(H_diff1(2:2:end)) ...

+ H_diff1(1) + H_diff1(length(theta)))*theta(2)/3);
31 H_diff_2_sum(r) = 1 − 4/pi*((2*sum(H_diff2((3:2:end−2))) + 4*sum(H_diff2(2:2:end)) ...

+ H_diff2(1) + H_diff2(length(theta)))*theta(2)/3);
32 H_diff_3_sum(r) = 1 − 4/pi*((2*sum(H_diff3((3:2:end−2))) + 4*sum(H_diff3(2:2:end)) ...

+ H_diff3(1) + H_diff3(length(theta)))*theta(2)/3);
33
34 end
35
36 %One way buffer:
37 DiffA = angle(H_diff_1_sum);
38
39 %Two−way sample:
40 B = angle(H_diff_2_sum);
41 y_start = find(B ≥ DiffA(end)); %index
42 x_start = Samplelength(y_start(1));
43 x_end = x_start + 2*L_0;
44 x_end_index = find(Samplelength ≥ x_end);
45 x_sampletot = Samplelength(y_start(1):x_end_index(1)); %Distance for sample
46 x_sample = linspace(Bufferlength(end), Bufferlength(end) + 2*L_0, length(x_sampletot));
47 DiffB = B(y_start(1):x_end_index(1)); %Diffraction correction for sample
48
49 %Back one way buffer
50 C = angle(H_diff_3_sum);
51 y_start_C = find(C ≥ DiffB(end));
52 x_start_C = Bufferlength_back(y_start_C(1));
53 x_end_C = x_start_C + Buffer;
54 x_end_C_index = find(Bufferlength_back ≥ x_end_C);
55 x_buffertot = Bufferlength_back(y_start_C(1):x_end_C_index(1));
56 x_buffer = linspace(Bufferlength(end) + 2*L_0, 2*Bufferlength(end) + 2*L_0, ...

length(x_buffertot));
57 DiffC = C(y_start_C(1):x_end_C_index(1));
58
59 diff_signalB = DiffC(end);
60 end

Uncer t ai nt y_calcul ati ons.m

1 function [uncertainty_sos, u_sos_theoretical] = ...
Uncertainty_calculations(totalerror,standd,...

2 Signal_B_time,Signal_A_time,t_B_zerocross,t_A_zerocross,L_0, T, P_G, c_Frey, pumpon, ...
Samplelength,P)

3 %UNCERTAINTY_CALCULATIONS
4 %This function calculates the uncertainty in the calculated sound
5 %velocity based on the uncertainty analysis in Chapter 5.
6
7 %% Uncertainty in length measurements
8
9 u_caliper = 0.03e−3; %Uncertainty in caliper, specified by manufacturer, k = 2

10 u_L_repeatibility = 0.0063e−3; %Uncertainty due to repetability in measurements, k = 1
11 u_uneven = 0.019e−3; %Uncertainty due to uneven surfaces k = 1
12 u_L_67confidence = sqrt((u_caliper/2)^2 + u_L_repeatibility^2 + u_uneven^2); %Total ...

uncertainty in length measurements
13
14 %% Uncertainty in transit time measurements
15 u_osc = 121.2e−12; %Time resolution of oscilloscope, k = 1
16 u_coh = 1.5e−8; %Uncertainty due to coherent noise, k = sqrt(3)
17 u_variations = standd;%std. of zerocrosses, k = 1
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18 u_pump = 1.56e−10; %Uncertainty due to pump noise, k = 1
19 u_trunc = 9.01e−10; %Uncertainty due to truncating the signal (FSM), manually changed ...

between two and six period, k = 1
20 u_ph_dist = totalerror; %Uncertainty due to phase distortions (FSM), k = 1
21
22 if pumpon == 1
23 u_tt_67 = sqrt(u_osc^2 + (u_coh/sqrt(3))^2 + totalerror^2 + u_variations^2 + ...

u_pump^2); %Total uncertainty in transit time measurements, 67% confidence
24 u_tt_FSM = sqrt(u_trunc^2 + u_osc^2 + u_ph_dist + (u_coh/sqrt(3))^2 + totalerror^2 ...

+ u_variations^2 + u_pump^2); %Total uncertainty in transit time measurements, ...
67% confidence

25
26 else
27 u_tt_67 = sqrt(u_osc^2 + (u_coh/sqrt(3))^2 + totalerror^2 + u_variations^2 ); ...

%Total uncertainty in transit time measurements
28 u_tt_FSM = sqrt(u_trunc^2 + u_osc^2 + u_ph_dist + (u_coh/sqrt(3))^2 + totalerror^2 ...

+ u_variations^2); %Total uncertainty in transit time measurements, 67% confidence
29 end
30
31 %% Uncertainty in time correction
32 u_tcorr = 3.538e−9;%Not dependent on waveform
33
34 %% Uncertainty in K_T − thermal expansion (including sensitivity coefficients, already ...

calculated)
35 u_∆T = 0.212; %[^oC] Uncertainty in T − T_0
36 u_alu = 3.5e−7; %[m/m^oC]Uncertainty in the thermal expansion coefficient of aluminium
37 u_plexi = 2.4e−6; %[m/m^oC]Uncertainty in thermal expansion coefficient of Plexiglas
38 u_db = 2.14e−4; % [m] Uncertainty due to measured distance from bolt to sample area
39 u_K_T = sqrt((u_∆T*2.23e−5)^2 + (u_alu*38.39)^2 + (4.5e−6*1.325)^2 + ...
40 (u_L_67confidence*6.09e−5)^2 + (u_db*(−0.068))^2);
41
42 %% Uncertainty in calculated sound velocity
43 K_T = Samplelength/L_0;
44 Delta_t = Signal_B_time − Signal_A_time;
45 Delta_t_corr = t_B_zerocross− t_A_zerocross ;
46 k = 2; %95% confidence level
47
48 %Uncertainty in ZCM
49 uncertainty = (((2*K_T)/(Delta_t − Delta_t_corr)*u_L_67confidence)^2 +...
50 ((−2*K_T*L_0/(Delta_t − Delta_t_corr)^2)*u_tt_67)^2 ...
51 + (((2*K_T*L_0)/(Delta_t − Delta_t_corr)^2)*u_tcorr)^2...
52 + ((2*L_0/(Delta_t − Delta_t_corr))*u_K_T)^2);
53 uncertainty_sos = k*sqrt(uncertainty);
54
55 %Uncertainty in FSM
56 uncertainty_FSM = k*(((2*K_T)/(Delta_t − Delta_t_corr)*u_L_67confidence)^2 +...
57 ((−2*K_T*L_0/(Delta_t − Delta_t_corr)^2)*u_tt_FSM)^2 ...
58 + (((2*K_T*L_0)/(Delta_t − Delta_t_corr)^2)*u_tcorr)^2 + ...
59 ((2*L_0/(Delta_t − Delta_t_corr))*u_K_T)^2);
60 uncertainty_FSM_sos = k*sqrt(uncertainty);
61
62 %% Uncertainty in theoretical sos − distilled water
63 dc_dt = 4.88 − 0.0964*T + (4.05e−4)*T^2 + (0.028 + (4.8e−4)*T)*P_G/100; %Sensitivity coeff
64 dc_dp = 1/100*(15.9 + 0.028*T + (2.4e−4)*T^2); %Sensitivity coeff
65 u_T = 0.156; %[^oC] 67% confidence level
66
67 u_p_meas = P*0.00015; %0.015% of reading
68 u_reading = 6.5e−5; %bar, fluctuations due to analog readings
69 u_density = 4.3e−5; %bar, deviation from assumed constant density
70 u_height = 4.21e−5; %bar, uncertianty due to height of sound axis
71 u_P = sqrt(u_p_meas^2 + u_reading^2 + u_density^2 + u_height^2); %[bar], 67% confidence ...

level
72 u_model = 0.5*(c_Frey*0.05/100); %Uncertainty of model, 67% confidence level
73
74 u_sos_theoretical = sqrt((dc_dt*u_T)^2 + (dc_dp*u_P)^2 + u_model^2);
75 u_sos_theoretical = u_sos_theoretical*2;% 95% confidence level, k = 2
76
77 end

D.3 Simulation

The below script simulates the propagation of the side lobes inside a measurement cell with two

layers. It is based on ray-tracing and assumes plane waves.

beamdi r ecti vi t y.m

1 clear all
2 clear figure
3 %%%%%% A matlab program for plotting propagation in measurement cell %%%%%
4 %%% Hannah Benus, 25.04.2021 %%%
5
6 %%% Dimensions of box %%%
7 Bufferlength = 85e−3;
8 Bufferwidth = 100e−3;
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9 Samplelength = 25e−3;
10 Totallength = Bufferlength + Samplelength ;
11 Transducer_position = Bufferwidth/2;
12 transducer_diameter= 25e−3;
13 trans_r = transducer_diameter/2; % radius of transducer [mm]
14 %trans_r = 15.875e−3;
15 c_buffer = 2716.1468; %m/s
16 c_sample = 1481; %m/s
17
18 f = 500000; %[Hz]
19 Rayleigh = pi*trans_r^2*f/c_buffer;
20
21 %%%%%% calculate the angles of the lobes %%%%%%%%%
22 theta_one = asind(5.15/(2*pi*f*trans_r/c_buffer)); %MAX sidelobe 1
23 theta_two = asind(8.42/(2*pi*f*trans_r/c_buffer)); %MAX sidelobe 2
24 theta_three = asind(11.62/(2*pi*f*trans_r/c_buffer)); %MAX sidelobe 3
25 theta_four = asind(14.7/(2*pi*f*trans_r/c_buffer));
26
27 node_1 = asind(3.8316/(2*pi*f*trans_r/c_buffer));
28 node_2 = asind(7.0156/(2*pi*f*trans_r/c_buffer));
29 node_3 = asind(10.17/(2*pi*f*trans_r/c_buffer));
30 node_4 = asind(13.32/(2*pi*f*trans_r/c_buffer));
31
32 sidelobe1 = [node_1:1.5:node_2];
33 sidelobe2 = [node_2:1.5:node_3];
34 main_lobe = [0:2.5:node_1];
35 %angle_2 = [node_3:2.5:node_4]; %Change this to either sidelobes or only max
36 angle_2 = sidelobe1;
37
38
39 %%% Colors for plot %%%
40 b = [0 0.4470 0.7410];
41 o = [0.8500 0.3250 0.0980];
42 y = [0.9290 0.6940 0.1250];
43 p = [0.4940 0.1840 0.5560];
44 g = [0.4660 0.6740 0.1880];
45 lb = [0.3010 0.7450 0.9330];
46 r = [0.6350 0.0780 0.1840];
47 grey = [0.75 0.75 0.75];
48 vector_colors = {b,o,y,p,g,lb,r,b,o,y,p,g,lb,r,b,o,y,p,g,lb,r,b,o,y,p,g,lb,r};
49 %%%%%%%%%%%%%%%%%%%%%%%%%
50
51 angle_1 = 90 − angle_2;
52
53 %create plot
54 figure, plot((Bufferwidth/2+(trans_r)),0,"b*")
55 hold on
56 xlabel("Width of box [m]")
57 ylabel("Length of box [m]")
58 title("Transducer radius [m]:",trans_r)
59 plot((Bufferwidth/2−(trans_r)),0,"b*")
60 yline(Bufferlength)
61 xline(Bufferwidth)
62 yline(Totallength)
63 xline(0)
64
65 %%%%%%% Calculating time for main lobe %%%%%%%%
66 t_mainbuffer = 2*Bufferlength/c_buffer;
67 t_mainsample = 2*Samplelength/c_sample;
68 t_main = t_mainbuffer + t_mainsample;
69
70
71 %%%%% The plotting %%%%%%%%%
72 for i = 1:length(angle_2)
73
74
75 t2(i) = 0;
76 t3(i) = 0;
77 t_b(i) = 0;
78 t_b1(i) = 0;
79 t_s(i)= 0;
80 t_s1(i)= 0;
81 t_s2(i) = 0;
82 t_buffer_down(i) = 0;
83 t_buffer_down_1(i) = 0;
84 t_buffer_down_2(i) = 0;
85 t_up_buffer(i)= 0;
86 t_up_buffer_1(i)= 0;
87
88 length_tr_1(i) = tand(angle_1(i))*Transducer_position;
89 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
90 if length_tr_1(i) < Bufferlength %&& length_tr_1(i) > Bufferlength/2 % Reflects ...

side wall in buffer from transducer above half−way point
91 s_up_buffer(i) = Transducer_position/cosd(angle_1(i));
92 t_up_buffer(i) = s_up_buffer(i)/c_buffer; %Time to first reflection
93 length_r1(i) = length_tr_1(i); %Plot from transducer position to y = length_r1
94 plot([Transducer_position,0],[0,length_r1(i)],"color",vector_colors{i})
95 plot([Transducer_position, Bufferwidth], [0,length_r1(i)],"color",vector_colors{i})
96 length_r2(i) = Bufferlength − length_r1(i);
97
98 %Reflection with buffer/sample
99 width_r1(i) = tand(angle_2(i))*length_r2(i); %plot where y = buffer/samle and x ...

= width
100 plot([0,width_r1(i)],[length_r1(i),Bufferlength],"color",vector_colors{i})
101 plot([Bufferwidth,Bufferwidth−width_r1(i)],[length_r1(i),Bufferlength],...
102 "color",vector_colors{i})
103 s_up_buffer_1(i) = sqrt(length_r2(i)^2 + width_r1(i)^2);
104 t_up_buffer_1(i) = s_up_buffer_1(i)/c_buffer;
105
106 length_r3(i) = tand(angle_1(i))*(Bufferwidth−width_r1(i));
107
108 %Propagation up into sample %%%%%%%%%%%%%%%%%%%%%
109 %Snells law
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110 snells_angle(i) = asind(sind(angle_2(i))*c_sample/c_buffer);
111 angle_3(i) = 90−snells_angle(i);
112
113 length_sample_1(i) = tand(angle_3(i))*(Bufferwidth−width_r1(i));
114
115 if length_sample_1(i) > Samplelength %Reflection right into Reflector
116 length_above_buffer(i) = length_sample_1(i) − Samplelength;
117 width_sample_1(i) = length_above_buffer(i)/tand(angle_3(i));
118 s_s(i) = sqrt(Samplelength^2 + (Bufferwidth−width_r1(i) −width_sample_1(i)));
119 t_s(i) = s_s(i)/c_sample;
120
121 plot([width_r1(i), Bufferwidth−width_sample_1(i)],[Bufferlength, ...

Totallength],"color",vector_colors{i})
122 plot([Bufferwidth−width_r1(i),width_sample_1(i)],[Bufferlength, ...

Totallength],"color",vector_colors{i})
123
124 length_s1(i) = tand(angle_3(i))*width_sample_1(i);
125
126 if length_s1(i) > Samplelength %Straight down again
127 width_sample_2(i) = (length_s1(i) − Samplelength)/tand(angle_3(i));
128 plot([Bufferwidth−width_sample_1(i), Bufferwidth − ...

width_sample_2(i)],[Totallength,Bufferlength],...
129 "color",vector_colors{i})
130 plot([width_sample_1(i), width_sample_2(i)],[Totallength,Bufferlength],...
131 "color",vector_colors{i})
132 s_s1(i) = s_s(i); %Length up = length down
133 t_s1(i) = t_s(i);
134
135 %Plot in buffer again:
136 bufferlength_1(i) = tand(angle_1(i))*width_sample_2(i);
137
138 if bufferlength_1(i) > Bufferlength %Straight down to transducer
139 bufferwidth_1(i) = (bufferlength_1(i) − Bufferlength)/tand(angle_1(i));
140 s_b(i) = sqrt(Bufferlength^2 + ...

(width_sample_2(i)−bufferwidth_1(i))^2 );
141 t_b(i) = s_b(i)/c_buffer;
142
143 plot([Bufferwidth − width_sample_2(i), ...

Bufferwidth−bufferwidth_1(i)],[Bufferlength, ...
0],"color",vector_colors{i})

144 plot([width_sample_2(i), bufferwidth_1(i)],[Bufferlength, ...
0],"color",vector_colors{i})

145
146
147 else %Reflection in sidewall
148 s_b(i) = sqrt(bufferlength_1(i)^2 + width_sample_2(i)^2);
149 t_b(i) = s_b(i)/c_buffer;
150 plot([Bufferwidth − width_sample_2(i), Bufferwidth],[Bufferlength, ...

Bufferlength − bufferlength_1(i)],"color",vector_colors{i})
151 plot([width_sample_2(i), 0],[Bufferlength, ...

Bufferlength−bufferlength_1(i)],"color",vector_colors{i})
152
153 bufferwidth_1(i) = tand(angle_1(i))*(Bufferlength−bufferlength_1(i));
154 if bufferwidth_1 > Bufferwidth %Reflection into next sidewall
155 bufferlength_2(i) = ...

(bufferwidth_1(i)−Bufferwidth)*tand(angle_2(i));
156 s_b1(i) = sqrt(Bufferlength^2 + (bufferlength_1(i) − ...

bufferlength_2(i))^2);
157 t_b1(i) = s_b1(i)/c_buffer;
158
159 plot([Bufferwidth,0],[ bufferlength_1(i), ...

bufferlength_2(i)],"color",vector_colors{i})
160 plot([0,Bufferwidth],[ bufferlength_1(i), ...

bufferlength_2(i)],"color",vector_colors{i})
161
162 bufferwidth_2(i) = tand(angle_2(i))*bufferlength_2(i);
163
164 s_b2(i) = sqrt(bufferwidth_2(i)^2 + bufferlength_2(i)^2);
165 t_b2(i) = s_b2(i)/c_buffer;
166
167 plot([0, bufferwidth_2(i)],[bufferlength_2(i),0],...
168 "color",vector_colors{i})
169 plot([Bufferwidth, ...

Bufferwidth−bufferwidth_2(i)],[bufferlength_2(i),0],...
170 "color",vector_colors{i})
171
172
173 else %Straigth down
174 s_b1(i) = sqrt((Bufferlength−bufferlength_1(i))^2 + ...

bufferwidth_1(i)^2);
175 t_b1(i) = s_b1(i)/c_buffer;
176
177 plot([Bufferwidth, Bufferwidth−bufferwidth_1(i)],...
178 [Bufferlength−bufferlength_1(i), 0],"color",vector_colors{i})
179 plot([0, bufferwidth_1(i)],[Bufferlength − bufferlength_1(i), ...

0],"color",vector_colors{i})
180 end
181
182 end
183
184
185 else %Reflection into right sidewall
186 s_s1(i) = sqrt(width_sample_1(i)^2 + length_s1(i)^2);
187 t_s1(i) = s_s1(i)/c_sample;
188 plot([Bufferwidth−width_sample_1(i),Bufferwidth], ...

[Totallength,Totallength−length_s1(i)],"color",vector_colors{i})
189 plot([width_sample_1(i), 0], ...

[Totallength,Totallength−length_s1(i)],"color",vector_colors{i})
190
191 width_sample_2(i) = tand(snells_angle(i))*(Samplelength−length_s1(i));
192 plot([Bufferwidth, ...

Bufferwidth−width_sample_2(i)],[Totallength−length_s1(i),...
193 Bufferlength],"color",vector_colors{i})
194 plot([0,width_sample_2(i)],[Totallength−length_s1(i),...
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195 Bufferlength],"color",vector_colors{i})
196
197 s_s2(i) = sqrt(width_sample_2(i)^2 + (Samplelength−length_s1(i))^2);
198 t_s2(i) = s_s2(i)/c_sample;
199
200 %into buffer again
201 bufferlength_1(i) = tand(angle_1(i))*(Bufferwidth−width_sample_2(i));
202
203 if bufferlength_1(i) < Bufferlength %Reflection in sidewall
204 s_b(i) = sqrt((Bufferwidth−width_sample_2(i))^2 + bufferlength_1(i)^2);
205 t_b(i)= s_b(i)/c_buffer;
206
207 plot([Bufferwidth−width_sample_2(i), 0],[Bufferlength,Bufferlength ...

− bufferlength_1(i)],"color",vector_colors{i})
208 plot([width_sample_2(i), Bufferwidth],[Bufferlength,Bufferlength − ...

bufferlength_1(i)],"color",vector_colors{i})
209
210 bufferwidth_1(i) = tand(angle_2(i))*(Bufferlength−bufferlength_1(i));
211 s_b1(i)= sqrt(bufferwidth_1(i)^2 + (Bufferlength−bufferlength_1(i))^2);
212 t_b1(i) = s_b1(i)/c_buffer;
213
214 plot([0,bufferwidth_1(i)],[Bufferlength − ...

bufferlength_1(i),0],"color",vector_colors{i})
215 plot([Bufferwidth,Bufferwidth−bufferwidth_1(i)],[Bufferlength − ...

bufferlength_1(i),0],"color",vector_colors{i})
216
217
218 else %Straight down
219 bufferwidth_1(i) = tand(angle_2(i))*Bufferlength;
220 s_b(i) = sqrt(Bufferlength^2 + bufferwidth_1(i)^2);
221 t_b(i) = s_b(i)/c_buffer;
222 plot([Bufferwidth−width_sample_2(i),...
223 (Bufferwidth−bufferwidth_1(i)−width_sample_2(i))],...
224 [Bufferlength,0],"color",vector_colors{i})
225 plot([width_sample_2(i),bufferwidth_1(i)+ ...

width_sample_2(i)],[Bufferlength,0],"color",vector_colors{i})
226
227 end
228
229 end
230
231 else %Reflection into right sidewall inside sample
232 s_s(i) = sqrt(length_sample_1(i)^2 + (Bufferwidth− width_r1(i))^2);
233 t_s(i) = s_s(i)/c_sample;
234 plot([width_r1(i), Bufferwidth],[Bufferlength,Bufferlength + ...

length_sample_1(i)], "color",vector_colors{i})
235 plot([Bufferwidth−width_r1(i), 0],[Bufferlength,Bufferlength + ...

length_sample_1(i)],"color",vector_colors{i})
236
237 width_r2(i) = tand(snells_angle(i))*(Samplelength−length_sample_1(i));
238 s_s1(i) = sqrt(width_r2(i)^2 + (Samplelength−length_sample_1(i))^2);
239 t_s1(i) = s_s1(i)/c_sample;
240 plot([Bufferwidth, Bufferwidth − width_r2(i)],[Bufferlength + ...

length_sample_1(i), Totallength] ,"color",vector_colors{i})
241 plot([0, width_r2(i)],[Bufferlength + length_sample_1(i), ...

Totallength],"color",vector_colors{i})
242
243 length_sample_2(i) = tand(angle_3(i))*(Bufferwidth− width_r2(i));
244
245 if length_sample_2 > Samplelength %Straight down to buffer−sample−interface
246 length_into_buffer(i) = length_sample_2(i) − Samplelength;
247 width_sample_3(i) = length_into_buffer(i)/tand(angle_3(i));
248
249 plot([Bufferwidth − width_r2(i), width_sample_3(i)], [Totallength, ...

Bufferlength],"color",vector_colors{i})
250 plot([width_r2(i), Bufferwidth −width_sample_3(i)],[Totallength, ...

Bufferlength],"color",vector_colors{i})
251 s_s2(i) = sqrt(Samplelength^2 + (Bufferwidth − ...

width_sample_3(i)−width_r2(i))^2);
252 t_s2(i) = s_s2(i)/c_sample;
253
254 length_buffer(i) = tand(angle_1(i))*width_sample_3(i);
255
256 %%Into buffer again
257 if length_buffer(i) > Bufferlength %Staight down to transducer again
258 bufferwidth_1(i) = (length_buffer(i)−Bufferlength)/tand(angle_1(i));
259 s_b(i) = sqrt(Bufferlength^2 + (width_sample_3(i) − ...

bufferwidth_1(i))^2);
260 t_b(i) = s_b(i)/c_buffer;
261
262 plot([width_sample_3(i), bufferwidth_1(i)],[Bufferlength, ...

0],"color",vector_colors{i})
263 plot([Bufferwidth−width_sample_3(i), ...

Bufferwidth−bufferwidth_1(i)],[Bufferlength, ...
0],"color",vector_colors{i})

264 else
265 s_b(i) = sqrt(length_buffer(i)^2 + width_sample_3(i)^2 );
266 t_b(i) = s_b(i)/c_buffer;
267
268 plot([width_sample_3(i),0], [Bufferlength, ...

Bufferlength−length_buffer(i)],"color",vector_colors{i})
269 plot([Bufferwidth−width_sample_3(i),Bufferwidth], [Bufferlength, ...

Bufferlength−length_buffer(i)],"color",vector_colors{i})
270
271 bufferwidth_1(i)= tand(angle_1(i))*(Bufferlength−length_buffer(i));
272 s_b1(i) = sqrt(bufferwidth_1(i)^2 + (Bufferlength−length_buffer(i))^2);
273 t_b1(i) = s_b1(i)/c_buffer;
274
275 plot([0,bufferwidth_1(i)],[Bufferlength−length_buffer(i),0],...
276 "color",vector_colors{i})
277 plot([Bufferwidth,bufferwidth−bufferwidth_1(i)],...
278 [Bufferlength−length_buffer(i),0],...
279 "color",vector_colors{i})
280
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281 end
282
283 else %Reflection into left sidewall inside sample
284 s_s2(i)= sqrt(length_sample_2(i)^2 + (Bufferwidth−width_r2(i))^2);
285 t_s2(i) = s_s2(i)/c_sample;
286 plot([Bufferwidth − width_r2(i), 0],[Totallength, ...

Totallength−length_sample_2(i)],"color",vector_colors{i})
287 plot([width_r2(i), Bufferwidth],[Totallength, ...

Totallength−length_sample_2(i)],"color",vector_colors{i})
288
289 width_sample_3(i) = ...

tand(snells_angle(i))*(Samplelength−length_sample_2(i));
290
291 s_s3(i) = sqrt(width_sample_3(i)^2 + (Samplelength−length_sample_2(i))^2);
292 t_s3(i) = s_s3(i)/c_sample;
293
294 plot([0, width_sample_3(i)],[ Totallength−length_sample_2(i), ...

Bufferlength],"color",vector_colors{i})
295 plot([Bufferwidth, Bufferwidth−width_sample_3(i)],[ ...

Totallength−length_sample_2(i), Bufferlength],"color",vector_colors{i})
296
297 %%%%% Propagation into buffer again
298
299 length_buffer(i) = tand(angle_1(i))*(Bufferwidth−width_sample_3(i));
300
301 if length_buffer(i) > Bufferlength %Propagation right back to ...

transducer, 4A12
302 bufferwidth_1(i) = tand(angle_2(i))*Bufferlength;
303
304 s_b(i) = sqrt(bufferwidth_1(i)^2 + Bufferlength^2);
305 t_b(i) = s_b(i)/c_buffer;
306
307 plot([width_sample_3(i), width_sample_3(i)+ bufferwidth_1(i)], ...

[Bufferlength,0],"color",vector_colors{i})
308 plot([Bufferwidth−width_sample_3(i), ...

Bufferwidth−(width_sample_3(i)+ bufferwidth_1(i))], ...
[Bufferlength,0],"color",vector_colors{i})

309
310 else %reflecton in side walls
311 s_b(i) = sqrt((Bufferwidth−width_sample_3(i))^2 + ...

(length_buffer(i))^2);
312 t_b(i) = s_b(i)/c_buffer;
313
314 plot([width_sample_3(i), Bufferwidth],[Bufferlength, ...

Bufferlength−length_buffer(i)],"color",vector_colors{i})
315 plot([Bufferwidth−width_sample_3(i), 0],[Bufferlength, ...

Bufferlength−length_buffer(i)],"color",vector_colors{i} )
316
317 bufferwidth_1(i) = tand(angle_2(i))*(Bufferlength−length_buffer(i));
318 s_b1(i) = sqrt(bufferwidth_1(i)^2 ...

+(Bufferlength−length_buffer(i))^2 );
319 t_b1(i) = s_b1(i)/c_buffer;
320
321 plot([ Bufferwidth, Bufferwidth− ...

bufferwidth_1(i)],[Bufferlength−length_buffer(i),0],...
322 "color",vector_colors{i})
323 plot([ 0, bufferwidth_1(i)],[Bufferlength−length_buffer(i),0],...
324 "color",vector_colors{i})
325
326
327 end
328
329 end
330 end
331 %%%%%%% inside buffer %%%%%%%%%%%%%
332 if length_r3(i) < Bufferlength %Reflects into the sidewall
333
334 length_r4(i) = length_r3(i); %Plot: x = Bufferwidth, y = length_r4
335 plot([width_r1(i),Bufferwidth],[Bufferlength, ...

Bufferlength−length_r4(i)],"color",vector_colors{i})
336 plot([Bufferwidth−width_r1(i),0],[Bufferlength, ...

Bufferlength−length_r4(i)],"color",vector_colors{i})
337 width_r2(i) = tand(angle_1(i))*(Bufferlength − length_r4(i));
338 s_buffer_down(i) = length_r4(i)/sind(angle_2(i));
339 t_buffer_down(i) = s_buffer_down(i)/c_buffer;
340 %%%%%%%%%%%%%%
341 if width_r2 > Bufferwidth %Reflects into sidewall on other side
342 length_r5(i) = (width_r2(i) − Bufferwidth(i))/tand(angle_2(i)); %Plot y ...

= length_r5, x = 0
343 plot([Bufferwidth, 0],[Bufferlength−length_r4(i),length_r5(i)],...
344 "color",vector_colors{i})
345 plot([0, Bufferwidth],[Bufferlength− ...

length_r4(i),length_r5(i)],"color",vector_colors{i})
346 s_buffer_down_1(i) = Bufferwidth/sind(angle_2(i));
347 t_buffer_down_1(i) = s_buffer_down_1(i)/c_buffer;
348
349 %Reflects to transducer
350 width_r3(i) = tand(angle_1(i))*length_r5(i);
351 s_buffer_down_2(i) = sqrt(length_r5(i)^2 + width_r3(i)^2);
352 t_buffer_down_2(i) = s_buffer_down_2(i)/c_buffer;
353
354 else
355 width_r3(i) = Bufferwidth − width_r2(i); %Back at transducer, y = 0, x ...

= width_r3
356 plot([Bufferwidth, width_r3(i)],[Bufferlength−length_r4(i),0],...
357 "color",vector_colors{i})
358 plot([0, Bufferwidth−width_r3(i)],[Bufferlength−length_r4(i),0],...
359 "color",vector_colors{i})
360 s_buffer_down_3(i) = width_r3(i)/sind(angle_2(i));
361 t_buffer_down_3(i) = s_buffer_down_3(i)/c_buffer;
362 end
363 %%%%%%%%%%%%%
364 else
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365 length_r4(i) = length_r3(i)− Bufferlength;
366 width_r3(i) = length_r4(i)/tand(angle_1(i));
367 width_r4(i) = Bufferwidth − width_r3(i); %Plot y = 0, x = width_r4
368 plot([width_r1(i),width_r4(i)],[Bufferlength,0],"color",vector_colors{i})
369 plot([Bufferwidth−width_r1(i),Bufferwidth−width_r4(i)],...
370 [Bufferlength,0],"color",vector_colors{i})
371 s_buffer_down_2(i)= Bufferlength/sind(angle_1(i));
372 t_buffer_down_2(i) = s_buffer_down_2(i)/c_buffer;
373
374
375 end
376 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
377 elseif length_tr_1(i) < Bufferlength && length_tr_1(i) < Bufferlength/2 %Reflects ...

side wall in buffer under halv the length of buffer
378 %Not implemented as this has not been the applicable to the project
379
380 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
381 else %Straight up into buffer/sample
382 width_a1(i) = (length_tr_1(i) − Bufferlength)/tand(angle_1(i)) ;
383 plot([Transducer_position, width_a1(i)], [0,Bufferlength],"color",vector_colors{i})
384 plot([Transducer_position, ...

Bufferwidth−width_a1(i)],[0,Bufferlength],"color",vector_colors{i})
385 s_up_buffer(i)= Bufferlength/sind(angle_1(i));
386 t_up_buffer(i) = s_up_buffer(i)/c_buffer;
387 length_a2(i) = tand(angle_1(i))*width_a1(i);
388
389 %Propagation into sample%%%
390 snells_angle(i) = asind(sind(angle_2(i))*c_sample/c_buffer);
391 angle_3(i) = 90−snells_angle(i);
392
393 length_sample_1(i) = tand(angle_3(i))*width_a1(i);
394
395 if length_sample_1(i) > Samplelength %Straight into reflector
396 length_above_sample(i) = length_sample_1(i) − Samplelength;
397 width_sample_1(i) = length_above_sample(i)/tand(angle_3(i));
398 s_s(i)= sqrt(Samplelength^2 + (width_a1(i)−width_sample_1(i))^2);
399 t_s(i)= s_s(i)/c_sample;
400
401 plot([width_a1(i), width_sample_1(i)], [Bufferlength, ...

Totallength],"color",vector_colors{i})
402 plot([Bufferwidth−width_a1(i), Bufferwidth−width_sample_1(i)], ...

[Bufferlength, Totallength],"color",vector_colors{i})
403
404 length_sample_2(i) = tand(angle_3(i))*width_sample_1(i);
405
406 if length_sample_2(i) > Samplelength %Straight down again
407 s_s1(i) = s_s(i);
408 t_s1(i) = t_s(i);
409
410 widthdiff(i) = width_sample_1(i) − (width_a1(i)−width_sample_1(i));
411 plot([width_sample_1(i),widthdiff(i)],[Totallength, ...

Bufferlength],"color",vector_colors{i})
412 plot([Bufferwidth−width_sample_1(i),Bufferwidth−widthdiff(i)],...
413 [Totallength, Bufferlength],"color",vector_colors{i})
414
415 widthdiff(i) = width_sample_1(i) − (width_a1(i)−width_sample_1(i));
416 bufferlength_1(i) = tand(angle_1(i))*widthdiff(i);
417
418 %%%Propagation back into buffer
419
420 if bufferlength_1(i) > Bufferlength %Propagation straight down to ...

transducer
421 bufferwidth_1(i) = tand(angle_2(i))*Bufferlength;
422 s_b(i) = sqrt(bufferwidth_1(i)^2 + Bufferlength^2);
423 t_b(i) = s_b(i)/c_buffer;
424
425 plot([widthdiff(i), (widthdiff(i) − ...

bufferwidth_1(i))],[Bufferlength,0],"color",vector_colors{i})
426 plot([Bufferwidth−widthdiff(i), ...

Bufferwidth−(widthdiff(i)−bufferwidth_1(i))],...
427 [Bufferlength,0],"color",vector_colors{i})
428
429 else %Propagation into side wall
430 s_b(i) = sqrt(widthdiff(i)^2 + bufferlength_1(i)^2);
431 t_b(i) = s_b(i)/c_buffer;
432
433 plot([widthdiff(i),0],...
434 [Bufferlength,Bufferlength−bufferlength_1(i)],"color",...
435 vector_colors{i})
436 plot([Bufferwidth−widthdiff(i),Bufferwidth],...
437 [Bufferlength,Bufferlength−bufferlength_1(i)],"color",...
438 vector_colors{i})
439
440 bufferwidth_1(i) = tand(angle_2(i))*(Bufferlength−bufferlength_1(i));
441 s_b1(i) = sqrt(bufferwidth_1(i) + (Bufferlength−bufferlength_1(i))^2);
442 t_b1(i) = s_b1(i)/c_buffer;
443
444 plot([0,bufferwidth_1(i)], [(Bufferlength−bufferlength_1(i)), ...

0],"color",vector_colors{i})
445 plot([Bufferwidth,Bufferwidth−bufferwidth_1(i)], ...

[(Bufferlength−bufferlength_1(i)), 0],"color",vector_colors{i})
446
447 end
448
449 else %Reflection in sidewall
450 s_s1(i) = sqrt(width_sample_1(i)^2 + length_sample_2(i)^2);
451 t_s1(i) = s_s1(i)/c_sample;
452 plot([width_sample_1(i), 0], [Totallength, ...

Totallength−length_sample_2(i)],"color",vector_colors{i})
453 plot([Bufferwidth−width_sample_1(i), Bufferwidth], [Totallength, ...

Totallength−length_sample_2(i)],"color",vector_colors{i})
454
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455 width_sample_2(i) = tand(snells_angle(i))*(Samplelength − ...
length_sample_2(i) );

456 s_s2(i) = sqrt(width_sample_2(i)^2 + (Samplelength − length_sample_2(i) ...
)^2);

457 t_s2(i) = s_s2(i)/c_sample;
458
459 plot([0, width_sample_2(i)], [Totallength−length_sample_2(i), ...

Bufferlength],"color",vector_colors{i})
460 plot([Bufferwidth, Bufferwidth−width_sample_2(i)], ...

[Totallength−length_sample_2(i), ...
Bufferlength],"color",vector_colors{i})

461
462 %%%% Propagation back into buffer
463 bufferlength_1(i) = tand(angle_1(i))*(Bufferwidth−width_sample_2(i));
464
465 if bufferlength_1(i) > Bufferlength %Propagation straight down
466
467 bufferwidth_1(i) = tand(angle_2(i))*Bufferlength;
468 s_b(i) = sqrt(bufferwidth_1(i)^2 + Bufferlength^2);
469 t_b(i) = s_b(i)/c_buffer;
470
471 plot([width_sample_2(i), ...

width_sample_2(i)+bufferwidth_1(i)],[Bufferlength,0],...
472 "color",vector_colors{i})
473 plot([Bufferwidth−width_sample_2(i),Bufferwidth− ...

width_sample_2(i)−bufferwidth_1(i)],[Bufferlength,0],...
474 "color",vector_colors{i})
475
476 else
477 s_b(i) = sqrt(bufferlength_1(i)^2 + (Bufferlength−width_sample(i))^2);
478 t_b(i) = s_b(i)/c_buffer;
479
480 plot([width_sample_2(i),Bufferwidth],...
481 [Bufferlength,Bufferlength−bufferlength_1(i)],...
482 "color",vector_colors{i})
483 plot([Bufferwidth−width_sample_2(i),0],...
484 [Bufferlength,Bufferlength−bufferlength_1(i)],...
485 "color",vector_colors{i})
486
487 bufferwidth_2(i) = tand(angle_2(i))*(Bufferlength−bufferlength_1);
488 s_b1(i) = sqrt(bufferwidth_2(i)^2 + (Bufferlength−bufferlength_1)^2);
489 t_b1(i) = s_b1(i)/c_buffer;
490
491 plot([Bufferwidth, Bufferwidth−bufferwidth_2(i)],...
492 [Bufferlength−bufferlength_1(i),0],"color",vector_colors{i})
493 plot([0, bufferwidth_2(i)],...
494 [Bufferlength−bufferlength_1(i),0],"color",vector_colors{i})
495 end
496 end
497
498 else
499 s_s(i) = sqrt(length_sample_1(i)^2 + width_a1(i)^2);
500 t_s(i) = s_s(i)/c_sample;
501
502 plot([width_a1(i), 0], [Bufferlength, Bufferlength + length_sample_1(i)], ...

"color",vector_colors{i})
503 plot([Bufferwidth−width_a1(i), Bufferwidth], [Bufferlength, Bufferlength + ...

length_sample_1(i)], "color",vector_colors{i})
504
505 width_s1(i) = tand(snells_angle(i)*(Samplelength − length_sample_1(i)));
506 s_s1(i) = sqrt(width_s1(i)^2 + (Samplelength−length_sample_1(i))^2)
507 t_s1(i) = s_s1(i)/c_sample;
508
509 plot([0,width_s1(i)],[Bufferlength + length_sample_1(i),Totallength], ...

"color", vector_colors{i})
510 plot([Bufferwidth,Bufferwidth− width_s1(i)],[Bufferlength + ...

length_sample_1(i),Totallength], "color", vector_colors{i})
511
512 width_s2(i) = tand(snells_angle(i))*Samplelength;
513 s_s2(i) = sqrt(width_s2(i)^2 + Samplelength^2)
514 t_s2(i) = s_s2(i)/c_sample;
515
516 plot([width_s1(i), width_s1(i) + width_s2(i)],[Totallength, Bufferlength], ...

"color",vector_colors{i})
517 plot([Bufferwidth−width_s1(i),Bufferwidth − ( width_s1(i) + ...

width_s2(i))],[Totallength, Bufferlength], "color",vector_colors{i})
518
519 %%%% Back into buffer
520
521 width_a2(i) = tand(angle_2(i))*Bufferlength;
522 s_b(i) = sqrt(width_a2(i)^2 + Bufferlength^2);
523 t_b(i) = s_b(i)/c_buffer;
524
525 plot([width_s1(i) + width_s2(i), width_s1(i) + width_s2(i) + width_a2(i)], ...

[Bufferlength, 0], "color",vector_colors{i})
526 plot([Bufferwidth−(width_s1(i) + width_s2(i)), Bufferwidth−(width_s1(i) + ...

width_s2(i) + width_a2(i))], [Bufferlength, 0], "color",vector_colors{i})
527
528 end
529
530 %%%%%%%
531 if length_a2(i) < Bufferlength %Reflection into sidewall to the left
532 s_buffer_down(i) = sqrt(length_a2(i)^2 + width_a1(i)^2);
533 t_buffer_down(i) = s_buffer_down(i)/c_buffer;
534 length_a3(i) = Bufferlength − length_a2(i);
535 plot([width_a1(i),0],[Bufferlength, length_a3(i)],"color",vector_colors{i})
536 plot([Bufferwidth−width_a1(i),Bufferwidth],[Bufferlength, ...

length_a3(i)],"color",vector_colors{i})
537 length_a4(i) = Bufferlength−length_a2(i);
538 width_a2(i) = tand(angle_2(i))*length_a4(i);
539 %%%
540 if width_a2(i) > Bufferwidth %Reflection in sidewall to the right
541 length_a5(i) = (width_a2(i) − Bufferwidth)/tand(angle_2(i));



180 APPENDIX D. MATLAB-FUNCTIONS

542 plot([0,Bufferwidth], [length_a3(i),length_a5(i)],"color",vector_colors{i})
543 plot([Bufferwidth,0], [length_a3(i),length_a5(i)],"color",vector_colors{i})
544 s_buffer_down_1(i) = sqrt(Bufferwidth^2 + (length_a3(i)− length_a5(i)^2));
545 t_buffer_down_1(i) = s_buffer_down_1(i)/c_buffer;
546
547 width_a3(i) = tand(angle_2(i))*length_a5(i);
548 width_a4(i) = Bufferwidth − width_a3(i);
549 plot([Bufferwidth,width_a4(i)],[length_a5(i),0],...
550 "color",vector_colors{i})
551 plot([0,Bufferwidth−width_a4(i)],[length_a5(i),0],...
552 "color",vector_colors{i})
553 s_buffer_down_2(i) = sqrt(width_a3(i)^2 + length_a5(i)^2);
554 t_buffer_down_2(i) = s_buffer_down_2(i)/c_buffer;
555
556
557 else %Reflection straigth down to transducer
558 width_a3(i) = width_a2(i); %Plotting y = 0, x = width_a3
559 plot([0,width_a3(i)],[length_a3(i),0],...
560 "color",vector_colors{i})
561 plot([Bufferwidth,Bufferwidth−width_a3(i)],[length_a3(i),0],...
562 "color",vector_colors{i})
563 s_buffer_down_1(i)= width_a3(i)/sind(angle_2(i));
564 t_buffer_down_1(i) = s_buffer_down_1(i)/c_buffer;
565
566 end
567 %%%
568
569 else %Reflection straight down again
570 s_buffer_down(i) = s_up_buffer(i);
571 t_buffer_down(i)= t_up_buffer(i);
572 width_a2(i) = width_a1(i) − sqrt(s_buffer_down(i)^2−Bufferlength^2); %Plot ...

y = 0, x = width_a2
573 plot([width_a1(i),width_a2(i)],[Bufferlength, 0],"color",vector_colors{i})
574 plot([Bufferwidth−width_a1(i),Bufferwidth−width_a2(i)],...
575 [Bufferlength, 0],"color",vector_colors{i})
576 end
577 %%%%%%%
578 end
579
580
581 %%%% Calculating time
582 %Two−way signal
583 total_time_large(i) = t_up_buffer(i)+ t_up_buffer_1(i) + t2(i) + t3(i) + t_b(i) + ...

t_b1(i) + t_s(i) + t_s1(i) + t_s2(i);
584 t_diff(i) = total_time_large(i) − t_main;
585
586 %One−way signal
587 total_time_small(i) = t_up_buffer(i)+ t_up_buffer_1(i) + ...

t_buffer_down(i)+t_buffer_down_1(i) + t_buffer_down_2(i);
588 t_diff_small(i) = total_time_small(i) − t_mainbuffer;
589
590 end

D.4 Numerical analysis of noise

numer i cal _anal y si s_noi se.m

1 %Numerical analysis, coherent noise
2 clear all
3 omega = 2*pi*500000;
4 t = 4e−4:1e−7:6e−4;
5 vector = linspace(0,180,5000); %Phase difference from 0 to 180 degrees
6 phi = vector*2*pi/180;
7
8 %A = 3.1622766; %10dB
9 %A = 10; %20 dB

10 %A = 31.62277; %30dB
11 A = 100; %40dB
12 %A = 125.892541;%42dB
13 %A = 316.2277; %50dB
14 %A = 1000; %60dB
15 %A_vector = [3.1622766,10,31.62277,100, 316.2277, 1000];
16
17 B = 1;
18 SignalB =A*sin(omega.*t);
19
20 for i = 1:length(phi)
21 Buffer(:,i)= B.*sin(omega.*t + phi(i));
22 C(i) = A.*sqrt(1 + (B/A)^2 + 2*(B/A).*cos(phi(i)));
23 angle(i) = atan(((B/A).*sin(phi(i)))/(1 + (B/A).*cos(phi(i))));%Radians
24 time(i) = angle(i)/omega;
25 angledegrees(i) = angle(i)*180/(pi); %Degrees
26 ratio(i) =20*log10(C(i)/A);
27 end
28
29 standard_angle = std(angledegrees)
30 standard_ratio = std(ratio)
31 standard_noise = standard_angle/(360*500000)
32
33 figure, plot(vector, angleplot)
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34 title("Angle")
35 figure,plot(vector,ratio)
36 title("SNR")
37 figure, plot(vector, time)
38 title("time")

D.5 Diffraction correction

Di f f r acti on_cor r ecti on_K hi muni n.m

1 %Numerical analysis of the diffraction correction
2 %Using Khimunins diffraction correction method
3 %The integration is carried out using the Simpsons integration method
4
5 ka = [10,15,20,25,30,40,60,100,200,400,1000];
6 n = 100000;
7 theta = (0:pi/n:pi/2);
8
9 S1 = (0.05:0.05:1);

10 S2 = (1.1:0.1:3);
11 S3 = (3.5:0.5:10);
12
13 S = [S1,S2,S3];
14
15 a = 10; %radius [mm], following Khimunin
16 k = [1.0053,1.5079,2.0106,2.5133, 3.0159, 4.0212, 6.0319, 10.053,20.106,40.212, ...

100.53]; %The exact wave number values
17 for j = 1:length(S)
18 for m = 1:length(k)
19 %Calculating z by using the equation S = z*lambda/a^2 = z*2pi/ka^2
20 z(j,m) = (S(j)*k(m)*a^2/(2*pi));
21 for n = 1:length(theta)
22
23 C(j,m,n)= cos(k(m)*sqrt((z(j,m))^2 + ...

4*a^2*(cos(theta(n))^2)))*(sin(theta(n)))^2;
24 D(j,m,n)= sin(k(m)*sqrt((z(j,m))^2 + ...

4*a^2*(cos(theta(n))^2)))*(sin(theta(n)))^2;
25
26 h_diff(j,m,n) = exp(−1i*k(m)*z(j,m)*((sqrt(1+4*(a/z(j,m))^2*...
27 (cos(theta(n)))^2))−1))*(sin(theta(n)))^2;
28
29
30
31 end
32 C_integral_sum(j,m) = ((C(j,m,1))+ 2*sum(C(j,m,(3:2:end−2)))+ ...

4*sum(C(j,m,(2:2:end)))...
33 + C(j,m,length(theta)))*theta(2)/3; %Simpsons integration
34 D_integral_sum(j,m) = ((D(j,m,1))+ 2*sum(D(j,m,(3:2:end−2)))+ ...

4*sum(D(j,m,(2:2:end)))+...
35 D(j,m,length(theta)))*theta(2)/3; %Simpsons integration
36
37 A(j,m) = 1− C_integral_sum(j,m)*(4/pi)*cos(k(m)*z(j,m))−...
38 D_integral_sum(j,m)*(4/pi)*sin(k(m)*z(j,m));
39 B(j,m) = D_integral_sum(j,m)*(4/pi)*cos(k(m)*z(j,m))−...
40 C_integral_sum(j,m)*(4/pi)*sin(k(m)*z(j,m));
41
42 Diff_abs(j,m) = sqrt((A(j,m))^2 + (B(j,m))^2);
43 phase(j,m) = atan(B(j,m)/A(j,m));
44
45 H_diff(j,m) = 1 − 4/pi*((2*sum(h_diff(j,m,(3:2:end−2))) + ...

4*sum(h_diff(j,m,2:2:end)) ...
46 + h_diff(j,m,1) + h_diff(j,m,length(theta)))*theta(2)/3);
47
48 end
49
50
51 end
52 Dne2 = abs(H_diff);
53 Difference = abs(Dne2 − Diff_abs);
54
55 angle1 = angle(H_diff);
56 Difference_angle = abs(angle1−phase);
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