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Abstract

Deep learning has been extensively employed for simplifying the process of generating text.
Autocomplete is a ubiquitous tool on most mobile phones today, and the most widely used
text processors all utilize autocomplete. Another medium where autocomplete might be
helpful is sketching, which is great for quickly communicating ideas and not bound to any
skill level. In this thesis, we seek to improve the free-hand sketching experience.

After discussing ways to enhance this domain, we create and experiment with a set of
models based on a seminal paper in the deep learning sketch domain. Finally, we present
a drawing application that utilizes the models we presented to create an autocompletion
drawing experience.
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Chapter 1

Introduction

In this chapter, we give an overview of the motivation for the project, followed by a review
of the thesis structure. Finally, we discuss some ways that an artificial intelligence system
could improve or speed up a drawing experience.

1.1 Motivation and Overview

Deep learning is a family of machine learning that employs neural networks. Like other
machine learning models, neural networks are concerned with learning a task from a set of
examples, which contrasts with how regular computer programs and algorithms work, where
a human gives the instructions as code. Systems that can perform tasks that traditionally
require humans to perform are called Artificial Intelligence (AI) systems. Deep learning has
shown to be very effective and flexible in many domains. Consequently, modern AI systems
are usually enabled through deep learning and neural networks.

Deep learning has, for example, been extensively applied to create tools that improve
the experience of working with text. Word completion on phones has become ubiquitous.
Language models such as GPT [30][31][3] can both create realistic text by themselves and be
able to complete incomplete sentences. Translation models convert text from one language
to another [32][45].
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Free-hand sketching, which is in this thesis is also referred to as ”sketching” or ”drawing,”
is a great tool both for expressing oneself artistically and for communicating ideas to other
humans. These attributes make it, in some ways, similar to text. However unlike writing,
sketching does not require knowing any language nor requires any practice to get started.
Compared to writing, much less work has been done on augmenting this domain with deep
learning.

Prior to 2017, most of the research on the topic was focused on making models that
could classify sketches, e.g., recognize a drawing of a cat as a cat. In 2015, Yang and
Hospedales [43] introduced the first model to beat humans on sketch classification. In 2017,
Ha and Eck [17] with Google introduced a seminal paper where they released the largest
sketching dataset to date and trained a generative model on the dataset. The model was
capable of generating novel sketches in addition to completing unfinished sketches, which
showcased the capabilities of deep learning in the domain. Several subsequent papers made
improvements upon this architecture.

Inspired by these works, we seek to explore the possibilities of using deep learning to
create an artificial drawing assistant that can interactively help a user draw. In the fol-
lowing section, we discuss broadly how such an assistant could work before deciding on the
functionality we will work towards in this thesis.

1.2 Ways to improve the sketching experience

There are several ways an artificial drawing assistant system could aid a user when sketching.
One way is to transform a finished sketch into one that is more visually appealing. For
example, a circle drawn by a user will probably be somewhat irregular. A system could
recognize that the user intended to draw a circle and replace it with a perfectly round one
(see fig. 1.1).

Creating such a system introduces a few challenges. Firstly, recognizing what the user
intended to draw is not a clear-cut challenge, which might make it a suitable task for deep
learning. Secondly, a human artist must create the desired replacements for each object to
support, which can be costly and time-consuming. It can also be problematic if the need
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Figure 1.1: Transforming an imperfect oval into a perfect one

Figure 1.2: Cats drawn with and without a body

arises to extend the number of supported objects at a later time, e.g., the original artist
could be unavailable.

Finally, one would have to decide how fine-grained the replacement should be. Should the
system have a separates replacements for a face drawn with and without a neck, or should
it ignore the neck and replace the whole drawing with a ”perfect” face? This question arises
when objects are more complex than simple geometric shapes with precise target forms,
which is not uncommon when dealing with sketches. Sketch drawings are highly subjective
and very abstract; how an object or idea is represented in a sketch can vary from person to
person [41]. For example, some people might choose to draw a cat with both the head and
the body, while others may choose to omit the body (see Fig. 1.2).

Another way to aid the user could be to predict the next stroke the user would draw. In
such an example, the user could draw only half of the circle, and the system would be able to
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Figure 1.3: Top: a model completes the square with red color. Bottom: a model completes
a window by filling in the frames; a small black stroke beginning the vertical frame ”hints”
to the model a window is being drawn. In both cases, the model must use the prior sequence
to deduce the target object.

fill in the next stroke to complete the circle. When drawing a window, the user could draw
the start of the frames, and the frames would be completed by the system (see Fig. 1.3).

To achieve this with deep learning, we would want a model that can predict the next
position of the pen given the sequence that is already drawn. Such a model can learn
from pre-existing drawings, meaning it requires less human intervention to make the system.
However, learning from humans also means learning all the human flaws and properties
present in the drawings, like irregular strokes and varying degrees of drawing quality.

With this method, we are improving the drawing speed rather than the quality of the
drawings. While there are several way to improve the sketching experience, it is specifically
this type of ”assistance” we will be focusing on in this thesis.

1.2.1 Structure of the thesis

In chapter 2, we give a broad introduction to the different topics that are relevant to creating
an artificial drawing assistant. Then, in chapter 3, we show how it is possible to draw on a
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computer. Moreover, we discuss two common ways of representing sketches on a computer,
including the advantages and challenges of each representation. In chapter 4, we review the
field of using deep learning for sketch processing. We introduce several tasks within the
domain as well as relevant research. The SketchRNN model is introduced, and we round out
the chapter by discussing the difference between the goals of this thesis and previous work.

In chapter 5, we introduce a base ”decoder-only” model that we use to achieve our goal
of creating an artificial drawing assistant system. The details of the QuickDraw dataset are
outlined, and we show how the model can be trained and used. An extension of the base
model, as well as an ”encoder-decoder” architecture is introduced in an effort to improve
performance. In chapter 6, we train the model on different categories of drawings in the
QuickDraw dataset. Several versions of the model are tested, and the performance of each
version is tested both quantitatively and qualitatively. In chapter 7, we finally build a
drawing application that employs the model for drawing assistance capabilities.
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Chapter 2

Preliminaries

In this section, we will give an overview of the elementary elements important to this thesis.
First, we explain how images and drawings can be represented on a computer, and we
introduce the RDP algorithm. Second, we explain what machine learning is and introduce
the concept of a model. Then we delve deeper into the topic by introducing neural networks,
a family of models that is the main drive behind many modern systems. Next, we explain
two variations of neural networks used in this thesis. Finally, we briefly explain Gaussian
Mixture Models.

2.1 Computer Graphics

In a raster image, the image is described as a grid of discrete pixels where each pixel represents
the color and brightness of the image at the pixel’s position [6] (see fig. 2.1). With grayscale
images, it suffices to keep a single value for each pixel (representing the ”whiteness”), while
colored images require one value for each primary color, red, green and blue (RGB). The
number of values associated with each pixel is called the number of channels, e.g., an RGB
image is said to have three channels.

A raster image can be saved on a computer as a 3-dimensional array where the first two
dimensions represent the pixel’s position, and the third dimension represents the channels.
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(point 1) (point 2)

(curve)

Figure 2.1: Left: example raster image with 8 by 8 resolution; the blue lines represents the
border between the pixels. Right: the same object in a vector image consisting of two points
and a curve. The curve is defined by two endpoints and a set of parameters controlling the
curvature (not shown).

For example, a colored raster image with a resolution (i.e., grid size) of 256×256 can be rep-
resented as an array of shape (256,256,3). Raster images are generally good at representing
objects with high fidelity and texture, like real-life photographs.

A vector image, on the other hand, is a way of describing objects with geometric
shapes [6]. Instead of saving the pixel value of each position, the computer saves the parame-
ters of geometric objects. Depending on the object to represent, a vector representation may
present some advantages. For example, a uniformly colored rectangle can be represented
with only seven values; four parameters for the corner positions and three parameters for
the color. A raster representation may need significantly more parameters depending on the
resolution; a 256 × 256 image requires 256 × 256 × 3 = 196608 values. Another advantage
is that vectorized objects do not lose their fidelity if resized. Vector images can also readily
be converted to raster images, which is not easy the other way around. In fact, any time a
vector image is displayed on a physical display (composed of pixels), it has to be converted
to some form of a raster image.
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Figure 2.2: The RDP algorithm on a four-point stroke, resulting in one point being removed.
At the first step, both endpoints are automatically marked to be kept. The second point
from the left has the largest perpendicular distance to the red area, so it will be marked as
kept. At the second step, we have split the challenge recursively into the left and right side
of the previous chosen point. There is nothing to do on the left side, but on the right side
the middle point is within the red area, and so will be discarded. Finally, since no more
points can be discarded, the procedure ends.



2.1.1 Ramer-Douglas-Peucker

Ramer-Douglas-Peucker (RDP) [10] is an algorithm that simplifies lines. When given a curve
consisting of line segments, the algorithm aims to find a similar curve with fewer segments.

The algorithm works by recursively dividing the line. On each divided segment, the
first and last points are marked to be kept, then it finds the point p on the segment with
the largest perpendicular distance to a straight line going through the start and endpoint.
Suppose the perpendicular distance of p is larger than ε. In that case the point is marked
to be kept, and the process is recursively applied to the line segments from the start point
to p, and from p to the end point. If, however, the distance is smaller than ε, then p is
discarded. When no more points can be discarded, the procedure ends. See figure 2.2 for a
simple example of the algorithm applied to a four-point line.

2.2 Machine Learning

A machine learning model is an algorithm that can learn from data [15]. To learn from data
involves using experience E to improve the performance measure P on a task T . To make
the idea more concrete, consider predicting the amount of ice cream sold on a beach based
on the temperature outside. The task T is to predict ice cream sales. From the experience
E, one might sense that low temperatures lead to low sales, and high temperatures lead to
high sales. A computer can likewise use this experience to create a model which predicts the
number of sales given the temperature. To analyze the performance, the model is tested on
some performance measure P , for example the average error between the actual value and
the value from the model. A lower average error corresponds to a higher performance P ,
corresponding to a better model.

The task T can be quite abstract, like making drawings; however it is often easier to
define the task indirectly through the performance measure, which we want to optimize over
a set of examples [15]. An example encapsulates a part of the experience E, and it consists
of a set of sample observations or features from the event we wish to model. If we observe
m features from the event, then an example x is typically represented as an m-dimensional
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vector. Usually, the experience E is represented as a dataset X, e.g., if we have n examples
from our experience, then X = {x1, x2, ..., xn}.

Many tasks boil down to solving regression or classification tasks [15]. In the case of
regression, the algorithm is tasked to produce a function that inputs a vector of m observa-
tions and outputs a real-valued output (or a vector of real-valued numbers). The ice cream
example above is a regression task with an m = 1 dimensional vector consisting of the
observed temperature, and the output is the predicted amount of ice cream sales. In the
case of classification, the model must output a predicted category, or express a probability
distribution over the existing categories.

Machine Learning algorithms are broadly divided into supervised algorithms and unsu-
pervised algorithms. In supervised learning, we wish to predict some value y given a set
of input features x. Usually, both x and y are contained in the same dataset X where y

is a subset of the m available features (and x contains the features not in y). Formally we
assume that there is some underlying function f such that

y = f(x) + ε

Where ε is an error term representing all the information about y that is not captured in x

(including random noise). That is, f encodes the proper relation between x and y [20]. To
approximate this relation, we want the learning algorithm to produce a model f̂ such that
f̂ is similar to f . In addition to being a regression task, the ice cream example is also an
example of a supervised task where the temperature is x, and the number of ice creams sold
is y.

In unsupervised learning, there is no specific supervision signal y. If we assume that the
underlying process from which the actual data originates forms a probability distribution p(x)

over the sampling process, then unsupervised learning can be described as either learning
the distribution itself, or some of its properties [15]. By learning a sampleable approximation
p̂(x) of the true probability distribution p(x), we can generate novel samples that appear as
if they came from the true distribution. For example, by learning a probability distribution
over a dataset of drawings, we get a model that can be sampled for novel drawings.

There is generally no hard line between a supervised and unsupervised task; in fact
many unsupervised tasks can be solved by reformulating them in a supervised manner. For
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example, the chain rule of probability states that if we have an example x ∈ Rm, then
p(x) =

∏m
i=1 p(xi|x1, ..., xi−1), which means that we can model p(x) by splitting the task into

modelling n conditional distributions, i.e. n supervised learning tasks [15].

In addition to supervised and unsupervised learning, there is also Reinforcement Learning
(RL), where the model or the agent essentially needs to gather the experience ”on its own” by
interacting with an environment [36]. In chapter 4, we will see some efforts to take advantage
of this machine learning paradigm.

2.3 Artificial Neural Networks

This section introduces the model family of Artificial Neural Networks (ANNs) and relevant
models within this family.

2.3.1 Introduction - Feedforward Neural Networks

The quintessential architecture of an ANN is the Feedforward Neural Network. A feedforward
network defines a mapping ŷ = f̂(x,Θ) where Θ is a set of learnable parameters, which means
that they can be adjusted or learned in a way that makes f̂ approximate a (true) relation
f . Such a mapping is often written as f̂(x) where the parameters Θ are implicit.

Following the example from Goodfellow et al. [15], a network might consist of 3 layers:
f̂(x) = f̂ (3)(f̂ (2)(f̂ (1)(x))) where the first layer f̂ (1) is called the input layer, and the last layer
f̂ (3) is called the output layer. During training, examples show how the network should map
inputs x to output y. The examples only specify what the final layer should do, i.e. produce
predictions ŷ that are close to y. The desired output of the other layers (f̂ (1) and f̂ (2)) is
unspecified in the training data, so the learning algorithm is free to decide how to use these
layers in order to increase the performance of the last layer.

In general, layers that are only used internally are called hidden layers [15]. Hidden
layers transform the input x into a new set of features called a latent space representation.
Optimally, this representation makes it easy for the last layer to map the representation to

12



f̂ (1)

f̂ (2) f̂ (3)

x

a(1)
a(2)

a(3) = ŷ

Figure 2.3: Figure of a 3-layer neural net with a 3-element input x and 4-element output
y. The round nodes, called ”neurons”, are the individual values of each layer. The lines
between the nodes represent the functions. All together, the structure of the model resembles
a network of nodes, hence the name ”neural network”.

the correct output. We can think of the latent space representation as describing x in a way
that is relevant for predicting y

In a simple case, each hidden layer in a network is an extension of a linear layer. A
linear layer g with n-dimensional input x and m-dimensional output z is defined as an affine
transformation:

z = g(x) = Wx+ b

where W ∈ Rm×n and b ∈ Rm. A major shortcoming of linear models is that they cannot
model non-linear relationships. We can extend the linear model to a non-linear mapping
by applying a non-linear activation function. If z is the input to an activation function σ,
then a = σ(z) are the activations of z. Note that an activation function is usually applied
element-wise to the values in the input.

With this knowledge, the example above can be expanded to reflect how a simple feed-
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forward neural network operates:

a(1) = f̂ (1)(x) = σ(1)(W (1)x+ b(1))

a(2) = f̂ (2)(a(1)) = σ(2)(W (2)a(1) + b(2))

a(3) = f̂ (3)(a(2)) = σ(3)(W (3)a(2) + b(3))

The predicted value ŷ is then equal to the activations a(3) of the last layer. The parameters
Θ of the network consists of the weights and biases (W and b) of each layer. Figure 2.3 is
an example of a neural network using this structure. This neural network is called a fully
connected network, since each value in a layer is computed using all values in the previous
layer.

2.3.2 Training neural networks

To train neural networks, we define an minimization target called a differentiable loss func-
tion. Based on a true input x and output y from the training data and the parameters of
the network Θ, the loss function L(x, y,Θ) defines an error between the true and predicted
value [15]. The loss function should be designed such that minimizing it results in better
performance on the actual task T . Since the loss function is made differentiable, the gradi-
ents of the loss with respect to the parameters of the final layer can be calculated. Moreover,
the backpropagation algorithm can calculate the gradients of the loss with respect to prior
hidden layers [15].

For example, in a fully connected feedforward network, the output of one layer only
directly affects the output of the following layer. Hence the gradient of the loss w.r.t. the
current layer is a function of the following layer gradient and the gradient of the following
layer w.r.t. the current layer. Informally, the gradients are said to ”flow” from the final layer
backwards into the previous layer, which further flow into the layer preceding the previous
layer, and so on.

In traditional Batch Gradient Descent, the gradient used to optimize the network is cal-
culated as the mean over the gradients of all examples in the dataset. For large datasets,
this method is too computationally expensive; instead, a better method is to calculate the
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gradient only over a small sample of m examples at each training step. This method of op-
timization is called Stochastic Gradient Descent (SDG) [15]. When the number of examples
in the sample is not one, it is also called Mini-batch Gradient Descent, where each sample
set is called a mini-batch.

When the gradients g of a mini-batch have been calculated, the loss can be reduced by
making a small optimization step in the opposite direction, i.e. Θ← Θ− ηg where η called
the learning rate. In practice, a more intricate algorithm to calculate the gradient step is
used, such as the ADAM [23] optimizer.

To analyze the performance of a trained machine learning model, it is essential to test
it on unseen data [20]. It is common to partition the data into three independent parts:
the training set, the validation set, and the test set. The training set contains the examples
used for the learning algorithm, while the test set is used to test the model after training.
The validation set is similar to the test set; however, it is used during training to estimate
the performance on the test set. This performance estimate is useful for performing model
selection and hyperparameter tuning.

2.3.3 Activation functions

In the context of deep learning, activation functions are non-linear functions that enable a
neural network to model non-linear relations between the input x and the output y.

Three of the most common activation functions are the logistic function (σ), the hyper-
bolic tangent (tanh), and the Rectified Linear Unit (ReLU) (see fig. 2.4). These functions
are defined in the following manner:

σ(x) =
1

1 + e−x
, tanh(x) = e2x − 1

e2x + 1
, ReLU(x) = max(0, x)

The hyperbolic tangent and the logistic function are in a class of functions called sigmoid
functions. This class suffers from the problem of saturating gradients. Suppose the result
of an affine transformation causes a neuron in the network to have very high or low values.
In that case the derivatives of the activation function become extremely small (see fig. 2.4).
When training with gradient descent, the small derivatives makes the gradient propagation
through the network diminish, which causes slow convergence times [37].
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Figure 2.5: A recurrent neural network. Left: ”Actual” architecture, note that the hidden
state at the previous time step serves as input to the current time step. Right: ”Unrolled”
over the three first time-steps.

The ReLU function avoids this issue when the input is positive, in which case the deriva-
tive is always 1; the function is also highly computationally cheap. Hence, in newer feed-
forward networks, the sigmoid and logistic functions have mostly been replaced by the ReLU
function. However, we will see in the following section that they are still applied in recurrent
neural network architectures.

The softmax activation function can be employed in classification tasks to ensure the
output expresses a probability distribution over the categories. The softmax function ensures
that all output values are between zero and one and that the sum over the elements equals
one. If there are M elements in the input x, then the output of the softmax at index i is
defined as

softmaxi(x) =
exi∑M
j=1 e

xj
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2.3.4 Recurrent neural networks

Recurrent Neural Networks (RNNs) are a family of neural network architectures for pro-
cessing sequential data [15]. They differ from feedforward neural networks in that output
information is fed back into the model. A consequence of this architecture is that RNNs are
capable of processing inputs of a variable length.

RNNs keep a hidden state h (i.e., a memory) which at each time step is updated as
a function of the current input and the hidden state at the previous time step. Identical
weights are used to process every point in the sequence regardless of the time step, enabling
the model to more easily recognize patterns and information regardless of where they occur
(assuming that similar patterns occur throughout the sequence).

For example, a typical RNN architecture (essentially an Elman network [12]) can be
defined in the following manner:

z(t)x = Wxx
(t)

z
(t)
h = Whh

(t−1)

z(t) = z(t)x + z
(t)
h + b

h(t) = tanh(z(t))

At time t, the current input x(t) and the previous hidden state h(t−1) are turned into the
intermediate values z

(t)
x and z

(t)
h respectively, which are then used to form the new hidden

state h(t). A tanh non-linearity is common in RNNs; one reason for this is discussed in the
following subparagraph.

There are several ways to use recurrent neural networks depending on the use case. One
way is to use the final hidden state as a summary of a sequence, e.g., to classify sequences.
Another use case is to employ it as an autoregressive model by making a prediction at each
step. Autoregressive models are capable of using their own previous predicted values as
the basis for a further prediction. For example, the hidden state at time t can be further
processed (e.g., with an affine transformation) into a prediction of the following input at
time t+ 1:

x̂(t+1) = ŷ(t) = Wyh
(t) + by
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Problems with RNNs While recurrent networks are great at modeling sequential
data, the architecture presents some challenges. Since the hidden state is the only value
passed on through time, an RNN needs to keep all the information of prior parts inside this
state; updates of the hidden state may cause information from earlier parts of the sequence
to be overwritten by newer information.

A related problem is exploding and vanishing gradients [5]. The network weights are equal
at all time steps, so passing a long sequence through the network is comparable to repeatedly
applying the same affine transformation to the hidden state. If this transformation tends
to increase the magnitude of the hidden state, the repeated applications can quickly cause
the magnitude of the hidden state (and the gradients) to ”explode.” A hyperbolic tangent as
non-linearity strongly mitigates this problem because it ensures the elements in the hidden
state are always between −1 and 1. Moreover, it is possible to “clip” the gradients, i.e.,
enforce that the magnitude of the gradients is not larger than some value.

On the other hand, suppose the affine transformation mainly reduces the size of the
hidden state. Then the signal will decrease as we go further back, so changes to the later
inputs will comparatively have much more effect on the current hidden state than earlier
inputs. In other words, the gradients ”vanish” when they flow back in time. Moreover,
the use of a tanh function only accentuates this effect because of its saturating gradients
property [5].

LSTM Long Short-TermMemory (LSTM) [19] is a specialized recurrent neural network
architecture that can mitigate the adverse effects mentioned above. It is defined in the
following manner:

ft = σ(Wf,xx
(t) +Wf,hh

(t−1) + bf )

it = σ(Wi,xx
(t) +Wi,hh

(t−1) + bi)

c̃t = tanh(Wc̃,xx
(t) +Wc̃,hh

(t−1) + bc̃)

ct = ft � ct−1 + it � c̃

ot = σ(Wo,xx
(t) +Wo,hh

(t−1) + bo)

ht = ot � tanh(ct)

Where (�) denotes element-wise multiplication. The idea behind the architecture is to
manage a cell state c, that can efficiently keep relevant old information. The updates to this
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cell state are controlled through a set of operations which ensure the gradients can easily
flow backward in time.

At a basic level, the architecture works by building a candidate vector c̃, with elements
between -1 and 1. The cell state is updated by adding c̃ to c, hence for each element e in the
cell state c, the model is restricted to incrementing or decrementing e by 1, or something
in-between.

The architecture also employs several gates (ft, it, and ot) containing values between zero
and one. A gate can be viewed as a weighting over the information of some vector a. At the
limit (where the gate values are either 0 or 1) the element-wise multiplication of a gate with
some vector a express a ”choice” over the elements of a.

Using these gates, the network can ensure that only necessary information is passed to
each component. The forget gate ft ”removes” the information in the cell state the model
no longer finds useful. The input gate it weights the importance of elements in c̃, protecting
the cell state from irrelevant modifications. The output gate ot ”extracts” the parts of the
cell state which are relevant for the hidden state, and by extension relevant for the predicted
value each time step.

2.3.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) is a specialized class of neural networks that has
been successfully applied to model both visual and temporal data [15]. The name convo-
lution indicates that the networks work by employing a mathematical operation called a
convolution, analogous to sliding a weighted filter over the inputs and computing the sum of
the values under the filter. We will only consider the discrete case, where the filter moves
with a discrete step size instead of a continuous movement.

In the one-dimensional case, if we have an input x and a kernel of size M with weights w,
then the convolution result K(t) at position (e.g., time) t is defined in the following manner:

K(t) =
M−1∑
m=0

x(t−m)wm
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Figure 2.6: Convolutional operations with one kernel. Left: a 1D convolution over an input
with two channels. Right: a 2D convolution over an input with two channels

In the two-dimensional case, we operate over two dimensions of the input (e.g., an image);
the operation is defined as:

K(i, j) =
M−1∑
m=0

N−1∑
n=0

xi−m,j−nwm,n

The convolutional operation essentially matches the local area under the kernel with the
pattern defined by the weights of the kernel. If the structure of the weights are similar to
the structure of the local area, then the operation will result in a large-magnitude output.

Sometimes the input contains several channels, in which case the number of channels
in the weights needs to match the number of channels in the input. For example, colored
images have three channels, which means that xi,j ∈ R3, so wm,n ∈ R3 as well. In general,
if Cin is the number of input channels, then wm ∈ RCin (1D case) or wm,n ∈ RCin (2D case).
Note that number of channels in a one-dimensional input is the number of values at each
position (e.g., time-step).

Usually, several kernels are used in the same layer to increase the number of patterns
to can match against. The result of each kernel is placed in an individual channel in the
output, i.e., with Cout kernels, the number of channels in the output will be Cout.

A typical operation to use after a convolution is the maxpool operation. Like a con-
volution, the operation slides a kernel over the input. On each position, it calculates the
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maximum value under the kernel, discarding the other values. A common way to use the
maxpool operation on images is to use a 2 × 2 kernel with a stride of 2, i.e., moving it by
two positions at each step. This operation has the effect of halving the image size while
preserving the features that matched the kernels the most.

There are several reasons that convolutional networks can lead to improved performance
compared to fully connected networks [15]. Like RNNs, they take advantage of parameter
sharing. The kernel weights stay constant over the input, which means the operation will
match the same patterns at all positions. Fully connected networks, on the other hand, might
learn the exact position of the patterns, so moving them around can confound the networks.
Kernels are usually much smaller than the inputs, making the operation computationally
quick and requiring low memory. Changing the size of the kernel allows us to decide on how
local the computations should be. To model photo images, for example, the trend has been
to use small 3× 3 kernels [35], which are excellent at picking up on texture patterns.

2.4 Gaussian Mixture Models

Sometimes we wish to be able to sample a prediction from a model as opposed to getting
a directly estimated value. Networks can be designed to estimate the parameters of an
underlying probability distribution p(y|x) rather than the prediction ŷ itself. For example,
we can estimate parameters of a normal distribution and then use this distribution to sample
a prediction:

µ, σ = f̂(x), p̂(y|x) = N (y|µ, σ)

ŷ ∼ N (µ, σ)

There might be causes when the real conditional p(y|x) has several peaks in y-space, i.e.,
given x, one can expect there to be several distinct possibilities for the true value y. A single
normal distribution is unfit for this task because it is unimodal, i.e., it has only one peak.

One way to overcome this challenge is to combine several normal distributions into a single
mixture distribution. These distributions are called Gaussian Mixture Models (GMMs) [15].
A GMM is defined as a weighted sum over M distinct normal distributions called the model’s
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components. Mathematically this can be expressed as:

pGMM(y|Π, µ, σ) =
M∑

m=1

ΠmN (y|µm, σm)

Where Π ∈ Rm is a categorical distribution over the components, i.e.
∑

m Πm = 1
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Chapter 3

Representing a sketch on a computer

This chapter will look at how we can enable sketching on a computer. Two natural ways
that sketch drawing can be represented in this medium are presented before discussing the
advantages and disadvantages of each method.

3.1 Creating and representing a sketch in a computer
setting

An intuitive way of drawing on a computer involves treating the cursor as a pen; holding
down the left-mouse button represents the pen being ”pressed” or ”touching the canvas”.
Unlike drawing on real paper, where the pen-ink or pencil material is continuously applied
to the canvas, a computer needs to operate discretely. For example, to record the movement
of a cursor controlled by a mouse, the computer samples the mouse’s position at short
intervals of time.

When using the method described above, we need to specify how the computer should
handle each mouse event, i.e., how we should save the event and visualize the effect for the
user. A raster-image way to handle the event is to fill in the pixels around an area of the
pen position, directly writing to the canvas grid shown on the monitor, which is somewhat
analogous to how a real pencil physically writes to a paper. However, the discreteness of
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Figure 3.1: Drawing of cat in vector and raster format. The vector drawing consists of a set
of straight line segments that are defined by a set of anchor points shown as the black dots
on the drawing.

computers may lead to visual side-effects in this approach. For example, an inadequate
sampling rate will lead to ”gaps” between the points as if the pen was lifted between each
point; however the problem can be mitigated by interpolating between the lines.

A vectorized approach is to save the pen positions in a list, visualizing each stroke by
drawing straight lines between any two consecutive points. In many ways, this approach is
more flexible for drawings; the stroke width and color can be changed dynamically before
visualizing, and each point can easily be removed or manipulated. Moreover, the drawing can
be scaled to any size without losing fidelity, which is useful when working with applications
of differing canvas sizes.

Vector drawings are sequences of strokes, each containing a sequence of pen positions.
How should the end of one stroke and the beginning of another be encoded? In the Quick-
Draw [17] dataset, each pen position sample contains a binary value encoding whether the
stroke ended, i.e., the value is 1 if the stroke ended and 0 otherwise. In the next chapter, we
will showcase other directions that have been made to encode the relation between strokes
and pen positions.
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3.2 Representing a sketch for deep learning

Sketches mostly lack the details of the objects they represent, they have a sequential nature,
and the background of a sketch is often empty or sparse [41]. These unique properties need
to be taken into considerations when used in machine learning.

Representing sketches as raster images makes it possible to employ traditional raster
image nets like CNNs to create interpretations that preserves the spatial information in the
sketch. Humans perceive sketches by looking at them, so it makes sense that the spatial rep-
resentation is important. However, using rasterized representation introduces side effects,
like making the stroke width of the sketch and the size of the canvas affect the representa-
tion [41]. The sparseness and lack of texture of sketches are also challenges tied to a visual
representation.

When representing drawings as a vector images, a helpful transformation is to reinterpret
the drawing as differences in pen-movement between each pen-point and the next. This
transformation makes objects have equal representation regardless of their position in the
image, and thus makes movement patterns in each drawing position invariant.

From this perspective, sequential representations can be viewed as a set of instructions.
For example, imagine asking what object is obtained by moving the pen 5 units to the
right, 5 up, 5 left, and 5 down. One can reason about the instructions to deduce that the
object is a perfect square; however, a visual representation would be much preferred. While
humans perceive drawing visually, they draw sequentially. Imaging sketching a rough circle.
Most people would not stop after each point to analyze the state of the circle, nor would
they fill out arbitrary sides of the circle; instead, they already know how to move the hand
sequentially to create the circle in one single movement.

Consider the task of predicting the next point in a drawing represented as a sequence
(i.e., autoregressively drawing). In a raster representation, the order of the sequence and
the current pen position is not naturally encoded in the image. It would have to be given
supplementary information or manually encoded onto the image. Moreover, passing the
image through a convolutional network at each step is potentially computationally expensive,
and since most sketches are sparse, a large part of the computation is wasted on processing
empty patches. With a sequential representation, the drawing can be encoded as a list of
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pen-points ordered by the time they were sampled. The last pen position is then already
encoded as the last point of the list. Moreover, a sequential network only processes the signal
in the sketch, so no computation is wasted.

Sequential networks also have drawbacks. RNNs need to summarize the drawing in their
hidden state, making it hard to preserve the information of the early parts of the draw-
ing. This problem can be somewhat mitigated with LSTMs; however, even these networks
struggle if the sequence is long enough [5]. Perhaps the biggest drawback to a sequential
representation is losing spatial accuracy and precision (since spatial errors will accumulate).
Without this information, the model might not capture the importance of the placement of
the strokes. For example, windows should be contained within the walls of houses; however,
a sequential model might not learn this relation sufficiently well.
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Chapter 4

Background to sketch processing with
deep learning

We will now produce an overview of the deep-learning sketch domain. Xu [41] published an
excellent survey of the state of the field, which outlines the different tasks that have been
of focus. First, we will look at datasets and several different tasks before moving on to the
main topic of sketch generation.

In sketch generation, the SketchRNN model is introduced, followed by several efforts
made to improve its elements. Then we review a sequence of other exciting directions,
including papers employing reinforcement learning. Finally, we discuss the difference between
previous work and the focus of this thesis.

4.1 Datasets

The TU-Berlin [11] dataset was released in 2012, and it is one of the first important datasets
used in the field. It consists of 20,000 drawings distributed over 250 categories, and the
drawings in the dataset are generally of high quality. In addition to releasing the dataset, the
researchers explored several aspects of human drawings. One of the findings was that humans
could recognize the correct object in 73.1% of the drawings, while a pre-deep-learning model
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Figure 4.1: Left: cat from the TU-Berlin dataset; right: cat from the QuickDraw dataset.

could only successfully classify 56%. Many of the earlier deep-learning sketch-recognition
models were based on this dataset.

In 2017 google released the QuickDraw [17] dataset , an ever-growing set of more than 50
million sketches across 345 categories. They achieved this by “gamifying” the data collection.
A website was created where a user would be tasked to draw a given object in 20 seconds or
less, and to encourage the user, an AI would continuously attempt to classify the drawing.

The dataset was a great addition to the field due to several reasons [41]. Firstly the size
of the dataset enables training models of much higher capacity, whereas previous models
had to be strongly regularized to work. Secondly, the objects in the dataset more accurately
reflect how most real sketches look, i.e., very rough and highly abstract, which contrasts with
the TU Berlin dataset of comparably much higher-quality drawings. Thirdly the dataset is
very diverse as it has been collected from people of different cultures across the world.

4.2 Sketch recognition

Sketch recognition is the task of labeling drawings with their respective classes. As the
name suggests, we want the computer to recognize the class of objects a drawing belongs
to, refer to fig. 4.2 for an example. Deep learning research targeting this task is one of the
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Cat Car

Figure 4.2: Sketch recognition

earliest in the field, and a significant variation of models and sketch representations have
been conceived to optimize the task.

Yang and Hospedales [43] proposed ”sketch-a-net”, the first model to beat humans in
the sketch recognition task. Their model was a Convolutional Neural Network that included
several specific implementation details for modeling sketch data. They most notably used
a large (15× 15) kernel size for the first layer to better capture local stroke-structure. The
model was trained and evaluated on the TU Berlin dataset, where it achieved a 74.9%
accuracy, surpassing the 73.1% accuracy of humans. He et al. [18] split the drawing into
60%, 80%, and 100% completion, then passed the parts into a visual and sequential branch
in parallel. Each branch would be fused in a later stage and processed by an MLP for a final
classification. The trained model achieved a 79.6% accuracy on TU Berlin. Sarvadevabhatla
et al. [34] treated a sketch as a series of accumulated strokes and developed a model consisting
of both a CNN and an RNN to create useful representations of the sketch’s temporal and
spacial parts. The trained model achieved an 85.1% accuracy on a 160 category subset of
TU Berlin. In addition, the architecture enabled the model to make on-the-fly predictions,
i.e., predictions after each new stroke.

4.2.1 Sketch retrieval and hashing

Taking advantage of the groundbreaking size of the QuickDraw dataset, Xu et al. [42] pro-
posed SketchMate, a deep hashing framework for sketch retrieval. Sketch retrieval is the
task of querying a database for similar images to the query sketch (see fig. 4.3). Such a task
requires a way to quantify the similarity between two sketches. Sketch hashing transforms
a query sketch into a fixed-length sequence of bits called a hash; the goal is that sketches
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Query drawing Similar drawings in a database

Figure 4.3: Sketch retrieval: retrieving 3 sketches that are similar to the one on the left

of similar semantics have similar hashes. Xu et al. devised a method of learning a neural
mapping from sketches to hashes. A model consisting of a visual and sequential branch
would process each sketch into a hash, and a specialized loss function was devised to ensure
the closeness of similar drawings.

Building upon the idea of deep sketch hashing, Choi et al. [7] proposed SketchHelper,
an application that provides real-time stroke guidance. The incomplete drawing is passed
to the model when the user finishes a stroke, transforming it into a binary hash to retrieve
the closest matching subsequent strokes. These matches are then proposed as gray shadows
on the drawing, aiding the user by giving non-intrusive continuation suggestions which can
be traced over. SketchHelper showcased how sketch recognition can be applied to create an
artificial drawing assistant system.
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Figure 4.4: Sketch reconstruction. h is the latent space representation (encoding) of the
sketch used by a decoder to create a reconstruction.

4.3 Sketch generation

Within the category of sketch generation, there are several possible sub-tasks. The goal
functionality we set out to achieve in this thesis we will refer to as Generation Conditioned
on Prior Sequence (GCPS), i.e. a model is conditioned on the unfinished drawing and tasked
to predict the continuation (see fig. 4.6).

Sketch reconstruction is an unsupervised task that involves taking a reference sketch,
encoding it in a latent space with an encoder, and recreating it with a decoder. Models with
this capability are called autoencoders [15]. A subfamily of autoencoders called variational
autoencoders enables us to sample a latent space rather than using the encoder, effectively
creating ”novel” sketches not present in the original dataset. Such functionality is called
unconditional sketch generation. Variational autoencoders are essentially trained for sketch
reconstruction, while the actual objective can be unconditional generation.

4.3.1 SketchRNN and improvements

In addition to releasing the QuickDraw dataset, Ha and Eck proposed SketchRNN [17],
a variational autoencoder network. The model is a sequence-to-sequence network with a
recurrent encoder that encodes a sketch into the parameters for a normal distribution. The
distribution is sampled and passed to a specialized recurrent decoder network that attempts
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Figure 4.5: Unconditional sketch generation, a random seed is sampled from some distribu-
tion to form a latent space representation that a decoder can transform into a drawing.

h

Figure 4.6: Generation Conditioned on Prior Sequence (GCPS). A random seed is combined
with the encoded incomplete sequence (in blue) to create the prediction in red.



to recreate the reference image. The outputs of the decoder are parameters for a Gaussian
Mixture Model, which is sampled for the final output coordinates. The model can generate
sketches either unconditionally (i.e., without an input drawing) by directly sampling from
the latent space of the encoder; or conditioned on a prior sequence by running the unfinished
sketch through the decoder and letting the decoder generate a continuation. SkethRNN
inspired a wave of works using sequential neural networks as the primary method for modeling
sketch generation.

A recurring theme in the following research has been improving or swapping out com-
ponents in SketchRNN. V et al. [39] introduced SkeGAN, the first Generative Adversarial
Network (GAN) [14] to be used for the task of sketch generation in vector format. It con-
sisted of an LSTM generator and discriminator, and it produced novel sketches ”almost at
par” with the real QuickDraw drawings. Moreover, the authors claimed that employing a
discriminator loss mitigated a ”scribble effect” evident in SketchRNN, i.e., a state where the
model would create incoherent scribbles.

Cao et al. [4] proposed AI-Sketcher, a model architecture that seeks to deal with the
”problems” in SketchRNN, referred to as a lack of quality in the reconstructed images and
an inability to handle multiple classes efficiently. A convolutional branch was employed to
capture spatial information, and an attention branch was added to help the model focus on
parts of the image. Both branches would then be concatenated with the standard output of
a SketchRNN encoder to form the input to a SketchRNN decoder.

Ribeiro et al. [33] introduced the first transformer [40] made for sketch encoding, essen-
tially replacing the recurrent networks in the original SketchRNN with self-attention com-
ponents. Lin et al. [25] continued the work using transformers and introduced an extension
to the BERT [9] architecture.

Efforts have also been made to improve the representation of sketches. In addition to
introducing transformers for sketches, Ribeiro et al. [33] explored other ways to represent
the sketch before passing it through the model. In one experiment, they created a dictionary
of codewords where similar movements, i.e., changes from one point to another, are mapped
to the same entry in the dictionary. In another experiment, they assigned each point to a
codeword based on its absolute position, grouping nearby points to the same token. They
found that the dictionary representation outperformed the other methods, including the
original SketchRNN representation.
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Further exploring sketch representation, Das et al. [8] learned a Bézier embedding of the
strokes. Each stroke is condensed into a fixed or variable-sized set of control points, which
can reduce the input length and prevent the model from using capacity on low-level details.
To model strokes defined by a varying amount of control points, the model can sequentially
input each control point. Moreover, forcing all strokes to contain the same amount of control
points enables representing each stroke as a data point, drastically reducing the input length.

Similar to the work of Das et al., Aksan et al. [1] trained an encoder to transform
each stroke into a fixed-size representation. Then, a relational model would predict the
next stroke based on previous strokes without modeling their sequential relations. The
authors hypothesized that the order the strokes were created is not essential information;
the sequential nature is only crucial in the context of individual strokes. The model excelled
at modeling complex drawings such as flow charts.

4.4 Other interesting directions

Jaques et al. [21] proposed an interesting method of improving the quality of generated
sketches. A camera would record human facial reactions to sketches generated from a
SketchRNN-like model to assign a quality measurement to the sketch. With this infor-
mation, a GAN component tweaked the model to favor generating sketches expected to
result in positive feedbacks from humans.

Muhammad et al. [27] presented a system where a model is trained to learn which strokes
in a drawing can be removed without a large reduction in recognizability. Such a model is
then usable for (1) modeling the saliency of a stroke and understanding the decision of a
recognition model, (2) for synthesizing sketches with variable levels of abstraction, and finally
(3) for training fine-grained sketch-based image retrieval. Removing unneeded strokes in a
sketch may be similar to how humans mentally sketch; a human has a more detailed mental
model of the object-to-draw, but they figure out what details can be ignored without losing
the most salient parts.

Reinforcement learning has also been employed for sketch generation. Ganin et al. [13]
proposed SPIRAL, a system capable of recreating images by giving instructions to a painting
environment. To achieve this functionality, an agent was trained to generate high-level code
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for a graphics engine. This method enables the model to focus on the high-level qualities
of the image, while the graphics library deals with the low-level details of each command.
Mellor et al. [26] improved the model by calculating the loss at each prediction rather than
after each completed drawing. Zhou et al. [44] changed the output of the SPIRAL model.
The original agent created predictions as control points for Bézier curves, while the agent
proposed by Zhou et al. predicted the next pen position.

4.5 Difference between previous work and the work of
this thesis

Most of the sketch generation models in the field are concerned with the task of sketch
reconstruction rather than GCPS (Generation Conditioned on Prior Sequence), a notable
exception being the work of Aksan et al. [1]. While some papers mention GCPS as a valuable
side-effect, we find it interesting that few known papers keep this as the primary focus.

Sketch reconstruction may pose some similar challenges as GCPS, which may cause an
overlap in functionality. For example, the SketchRNN model is mainly described as an
Autoencoder, even though GCPS can be achieved by excluding the encoder (this is also
tested in the paper). The decoder of the model is built in a way that is not dependent on
the encoder to function. Instead, the encoder acts as a guide that conditions the decoder to
make the appropriate drawing. Like much of the research done, we use some elements of the
SketchRNN model as a basis for our work.

However, it is not the case that all the research mentioned can be applied to GCPS.
AI-Sketcher is only an improvement to the encoder-part of SketchRNN; Jaques et al. [21]
focus only on improving unconditional sketch generation, and the SPIRAL models can only
reconstruct drawings. While Ribeiro et al. [33] make no attempt at performing GCPS,
transformers should also apply to such a task.
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Chapter 5

Methodology

In this chapter, we introduce the models we will train for the task of GCPS. First, we
introduce the dataset we train the models with and what preprocessing is applied to the
drawings. Then, we introduce a baseline, encoder-only model. Based on the mechanics of
this model, we introduce an appropriate way to train the model that enables it to achieve
the task at hand. After this, an extension of the encoder-only model is presented by adding
a 1D convolutional layer to model sequentially local variations in the drawing. Finally, an
encoder-decoder architecture is presented to capture spatial relations in drawings.

5.1 The Data

The data used to train the models stem from the QuickDraw [43] dataset. We choose to rep-
resent the data in the same way as was done in the SketchRNN paper. If a drawing consists of
T pen samples, then S = (S(1), S(2), ..., S(T )) denotes the list of ordered data points that make
up the drawing. Each data point is a 5-element vector: S(t) = (∆x(t),∆y(t), p

(t)
1 , p

(t)
2 , p

(t)
3 ).

∆x and ∆y denotes the difference in x and y coordinates between the last and the current
pen position. p1, p2, and p3 denote the ”pen-state” of the sample. The first value, p1, in-
dicates that the virtual pen was still ”down” after the sample, visually meaning that a line
should be drawn between the current and next point. Conversely, p2 indicates that the pen
was ”lifted” after the current point and that no line should be drawn. Finally, p3 indicates
whether the drawing is finished, i.e., only the last element S(T ) has p3 = 1. Note that one
and only one of p1, p2, or p3 can be 1 at any time, while the other values are 0.
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5.1.1 Preprocessing

We use the preprocessed ”Simplified Drawing files” from the official repositories [16] of the
QuickDraw dataset and further scale the sequence with the same method as the SketchRNN
paper. In summary, the data has been preprocessed in the following manner:

• Each drawing is shifted such that the minimum values of each axis is 0, and uniformly
scaled to have a maximum value of 255.

• The RDP algorithm is applied to each sketch with ε = 2.0 (see subsection 2.1.1)
• A single standard deviation σ∆x,y is calculated over all pen movements ∆x,∆y in the

dataset, and the data is normalized by the value, i.e. ∆x← ∆x
σ∆x,y

, ∆y ← ∆y
σ∆x,y

, where
(←) means the variables are reassigned as the newly computed values.

Note that the first two points are applied before the drawings are transformed to represent
the difference in pen coordinates (∆x and ∆y).

Applying RDP ensures that each point encodes a notable change in the pen’s position,
ensuring that all points carry significant information. A consequence of applying RDP, is that
the temporal information implicit in the distance between each point is removed. However,
it is advantageous to RNNs that the lengths of sequences are reduced. Normalizing the data
ensures that the relative distances generally have a reasonable magnitude (i.e., close to 1),
which can greatly reduce convergence time [24].

5.2 The decoder-only model

The first model we introduce consists of an RNN R and a fully connected layer F (see fig.
5.1). This model mimics the decoder in the SketchRNN [17] model and will be referred to
as the decoder-only model.

At a time step t, the model receives the current data-point S(t), which, together with
the last hidden state h(t−1), is processed into a new hidden state h(t). The fully connected
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Figure 5.1: Base encoder-only model unrolled over 4 steps. The recurrent unit R transforms
the previous hidden state and the current input into a new hidden state h(t). The fully
connected layer F then transforms h(t) into a set of parameters used to sample the next
pen-point. The dotted lines show that the output can be used as next input.



layer further transforms the hidden state into a set of parameters for a Bivariate Gaussian
Mixture Model, as well as parameters for the pen-state, mathematically:

h(t) = R(S(t), h(t−1))

θ̃(t) = {θ̃(t)GMM, θ̃(t)p } = F (h(t))

where θ̃GMM = (µx, µy, σ̃x, σ̃y, ρ̃, Π̃) are the parameters for the Gaussian Mixture, and θ̃p =

(p̃1, p̃2, p̃3) are the parameters for the categorical distribution over the pen-state. Note that
with M mixture components, since each components requires six parameters and there are
three parameters for the pen-state, the total size of the output for each data-point is 6M+3.

The model’s outputs need to be further transformed to work as probability distribution
parameters. A standard deviation only makes sense if its positive and nonzero, and a cor-
relation must be between -1 and 1. The final pen parameters p̂1, p̂2, p̂3 and the component
parameters Πmust behave like the parameters of categorical distributions, i.e. p̂1+p̂2+p̂3 = 1

and
∑M

i=1Πi = 1. To achieve this we can use the exponential function, the tanh function,
and the softmax function in the following manner:

σx = eσ̃x σy = eσ̃y ρ = tanh(ρ̃) Πi =
eΠ̃i∑M
k=1 e

Π̃k

p̂i =
ep̃i∑3
j=1 e

p̃j

From this we get the final parameters θGMM = (µx, µy, σx, σy, ρ,Π) and θp = (p̂1, p̂2, p̂3), and
we can now sample the next point. The index k ∈ {1, 2, 3} is sampled from the categorical
distribution with parameters θ

(t)
p , and determines which part of the pen-state should be 1,

while the other elements are implicitly 0. Note that a caret over St, i.e., Ŝt, represents that
the point is a prediction rather than a true point from the dataset.

(∆x,∆y) ∼ GMM(θ
(t)
GMM)

k ∼ Categorical(θ(t)p ) pk = 1

Ŝ(t+1) = (∆x,∆y, p1, p2, p3)

Now Ŝ(t+1) can be fed back into the model to create Ŝ(t+2) (and so on), which showcases
that the model can work autoregressively. The initial data-point S(0) denotes the ”Start of
Sequence” (SOS) and is set to (0,0,1,0,0), which enables sampling from the model without
any prior sequence. Since p3 = 1 indicates that the drawing has finished, we may stop the
process when such a value is sampled.
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Following the SketchRNN [17] paper, we adjust the randomness of the sample by intro-
ducing a temperature parameter τ ∈ R+ that changes the sample parameters in the following
manner:

σx ← σx

√
τ , σy ← σy

√
τ , Π̃← Π̃

τ
, p̃← p̃

τ

Note that the standard deviation is adjusted after the exponential function, while the cate-
gorical values are adjusted before the softmax.

When τ < 1, the standard deviations shrink, causing the mixture components to become
”sharper.” Similarly, dividing Π̃ and p̃ by a small τ has the effect of accentuating the dif-
ferences between the classes, effectively pushing the probability of the most likely class up.
When τ > 1, the exact opposite happens, making the sampling broader. Note that by using
a temperature different than 1, we are essentially sampling from a different distribution than
the one learned during training.

5.2.1 Training the model

We can use the maximum likelihood principle to train the model [15]. In other words, we
want to maximize the probability the model gives a human drawing. More formally, given a
sequence S from the dataset, we want to maximize:

pmodel(S) =
T∏
i=t

pmodel(S
(t)|S(t−1), S(t−2), ..., S(1))

Fixing t, since the model is an RNN, the estimated probability of S(t) is a function of
S(t) itself, the previous input S(t−1) and the hidden state h(t−2) after feeding the model
(S(1), S(2), ..., S(t−2)). Mathematically:

pmodel(S
(t)|S(t−1), S(t−2), ..., S(1)) = pmodel(S

(t)|S(t−1), h(t−2))

The probability assigned to the true point is then the product of the estimated pen-movement
probability P

(t)
S and the estimated pen-state probability P

(t)
P . We have:

{θ(t−1)
GMM, θ(t−1)

p } = model(S(t−1), h(t−2))

P
(t)
S = pmodel,S(S

(t)) = GMM(∆x,∆y|θ(t−1)
GMM)

P
(t)
P = pmodel,P (S

(t)) = Categorical(k|θ(t−1)
p )
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Where (∆x,∆y) is the coordinate change at time t, and k is the index of the true pen-state
(at time t). Thus for the whole sequence, we want to maximize:

pmodel(S) =
T∏
t=1

P
(t)
S × P

(t)
P

We would like to convert this target into a loss function such that gradient descent can be
applied. Note that maximizing this probability is the same as maximizing the log-probability.
By the rules of logarithms, we have:

log(pmodel(S)) = log(
T∏
t=1

P
(t)
S × P

(t)
P )

=
T∑
t=1

(logP (t)
S + logP (t)

P )

=
T∑
t=1

logP (t)
S +

T∑
t=1

logP (t)
P

Thus maximizing the likelihood given to the sequence by the model is the same as individually
maximizing the sum of log pen-state probability and log pen-movement probability. We want
to reformulate the target as a loss function we can minimize. To do this we can negate the
equations; denote LS as the loss for the pen-movement and LP as the loss for the pen-state,
then

LS = −
T∑
t=1

logP (t)
S

LP = −
T∑
t=1

logP (t)
P

L = LS + LP

Since both equations are differentiable, they can be used as the optimization target for
gradient descent. If a mini-batch has size n, then the cost function J with respect to the
parameters of the model Θ is defined as the mean loss over the drawings in the mini-batch:

J(Θ) =
1

n

n∑
i=1

Li =
1

n

n∑
i=1

(
−

Ti∑
t=1

log pmodel,S(S
(t)
i |Θ)−

Ti∑
t=1

log pmodel,P(S
(t)
i |Θ)

)
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Figure 5.2: Left: Example of how a GMM with M=3 might estimate the next point given
the prior sequence in blue. Each color is the estimation of one individual component. Right:
how the sequence might continue given the choice of component during sampling.

To improve the model we make an optimization step using the gradient of the cost function
with respect to the parameters, g = ∇ΘJ(Θ). This thesis uses the ADAM [23] algorithm
with β1 = 0.9 and β2 = 0.999 to make the optimization step.

5.2.2 Why use a Gaussian Mixture Model

We will now briefly motivate why GMMs are common in sketch modelling applications. Say
the task is to draw a square, and one begins the sequence with a straight line to the right.
From an outside perspective, there are several possible ways this sequence could continue.
Perhaps one chooses to continue straight up then left and down, or one chooses to go down
then left and up to create another equally valid square, or perhaps one chooses to lift the
pen and create the parallel lines first (see fig 5.2).

This example showcases that the continuation of a drawing is not necessarily determinis-
tic. Humans perceive drawing visually; a sketch appears identical regardless of the order in
which it was drawn. Hence the stroke order of a sketch is either a result of drawing style or
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Figure 5.3: The red line minimizes the MSE loss between the two black sequences, a single-
output model might converge to this line if trained on only these two sequences, while a
GMM can represent both at the same time.

simply a coincidence. Further, since many classes of objects might start identically or con-
tain similar strokes, the continuation at a given point is heavily dependent on the unknown
underlying class of objects being drawn.

Efforts can be made to reduce the amount of unknown information. The underlying
class being drawn could, in theory, be given by the user. Drawing style could also be learned
by training the model on individual users’ drawings. However there will always be some
uncertainty in the data.

Mixture models can naturally encode this uncertainty (see fig. 5.2). Single-output mod-
els, on the other hand, are deterministic; they will always output the same next point given
a prior sequence. Moreover, to reduce the geometric loss common in these models, the model
may learn a mean stroke over the possibilities, which is probably not desired (see fig. 5.3).

5.2.3 Extending the model

We propose extending the model by modeling the local variations of the data before passing
the values to the recurrent unit. By doing this, the recurrent component might avoid ”wast-
ing” capacity on modeling local relations, enabling it to focus on the long-term structure of
the drawing.
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Figure 5.4: Extended model with kernel/window size M = 3. The intermediate values o(t)
are computed using the M latest points in the drawing, which as represented as connected
lines between the input points and the intermediate values. The thick dotted lines connected
to o(1) and o(2) represent identical Start-of-Sequence input points.



To model such a local relation, a 1D convolution is applied over the input sequence. At
each time step t, we compute an intermediate value o(t) by using a convolutional operation:

o(t) = K(t) =
M−1∑
m=0

S(t−m)wm, wm ∈ R5

The recurrent unit is now input the intermediate values rather than the points directly, i.e.,
h(t) = R(o(t), h(t−1)). If we use Cout kernels, then o(t) ∈ RCout , and as such the recurrent unit
needs an input size of Cout.

Since the first position of a kernel with size M requires the values of S1, S2, ..., SM the
first possible next point to predict is SM+1, i.e., the model cannot predict the M earliest
points in the drawing. We can remove this problem by padding the sequence with M start-
of-sequence (SOS) points where each SOS denotes the vector (0, 0, 1, 0, 0). For example, the
first three points are sampled autoregressively from the model in the following manner:

Ŝ(1) ∼ model(SOS(1), SOS(2), ..., SOS(M−1), SOS(M))

Ŝ(2) ∼ model(SOS(2), SOS(3), ..., SOS(M), Ŝ(1))

Ŝ(3) ∼ model(SOS(3), SOS(4), ..., Ŝ(1), Ŝ(2))

5.3 The encoder-decoder model

Until this point, we have only utilized the sequential nature of drawings; the spatial nature
might still be a valuable unexploited aspect. To make use of such information, we propose
an encoder-decoder architecture similar to the work of Cao et al. [4]. In this architecture,
the encoder is tasked to process the current state of a drawing, while the decoder creates
the suitable prediction.

By splitting the model into an encoder and decoder, we open up the possibility of using
different architectures for each component. This thesis keeps the decoder as a recurrent model
while using a CNN as the encoder. The choice is motivated by the discussion in chapter
3. Humans perceive sketches visually, while the drawing process is inherently sequential.
Note that other encoder architectures are tested in the experiments to see whether this idea
translates to deep learning.
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Drawing (in vector format)

64× 64 image

CNN

Decoder

Figure 5.5: Encoder-Decoder architecture with a CNN encoder and RNN decoder, the draw-
ing is transformed to a raster image before being passed through the CNN. The encoded
image is transformed into the first hidden state of the decoder as well as being transformed
into constant information that is fed to the decoder at each step. Other than the additional
constant information from the encoder, the decoder works in the same fashion as described
in section 5.2.

5.3.1 The architecture

The encoder is a CNN architecture consisting of 4 convolutional layers. Each consists of a
convolutional operation (3×3 kernel sizes by default) followed by a 2×2 MaxPool operation
with stride 2 and a ReLU non-linearity. Motivated by Yang and Hospedales [43], we use large
7 × 7 kernel sizes in the first-layer input to better capture the local structure in sketches.
The first layer uses 32 kernels, which is doubled each following layer until the final number
of output channels is 256. The output of the convolutional layers is then flattened and
transformed with a linear layer into a 512 size latent space encoding of the image.

When an incomplete drawing is passed to the model, it is initially in vector format and
needs to be transformed into a raster image to make it compatible with CNNs. This image
is created by drawing the strokes onto a 64 × 64 image using a stroke size of 1. Moreover,
we center the drawing on the image and ensure that the length of the drawing’s longest axis
covers 90% of the image. See figure 5.5 for a visualization of the process.
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The encoded image is further concatenated with information not captured by the convo-
lutional layer. This information consists of the absolute position of the pen, the pen state
(lifted or down), and the smallest and largest absolute positions of points in the drawing.
From these values, we create three parts using independent linear layers:

(1) The initial hidden state of the decoder. A tanh non-linearity is used to preserve the
range of values expected by LSTMs.

(2) The initial cell state of the decoder.
(3) 512 values to be concatenated with each input point S(i). This method is inspired

by how SketchRNN [17] passes information to the decoder. These values are constant
information from the encoded drawing that the recurrent unit cannot overwrite. Note
that as a result of this, the decoder now needs to process inputs of size 5 + 512.

After initialization, the encoder is now ready to predict the continuation of the drawing. A
Start-of-Sequence vector consisting of 512 + 5 zeros is given as the first input to start the
sampling process; following this, the decoder can work autoregressively.

5.3.2 Training the model

Since the decoder is a variant of the decoder-only model introduced in the previous section,
training it follows the same procedure. Both the encoder and decoder are fully differen-
tiable, so calculating the gradients of each component is straightforward with a modern deep
learning library.

During the training process, a cutoff value must be chosen to decide how much of a
drawing passed to the encoder. This cutoff value does not have to be constant throughout
training; since a user probably would ask for prediction at random stages of a drawing, it
may be more reasonable to sample this cutoff for each training step.

The encoded information from an incomplete drawing may become less and less valuable
to the decoder as the prediction continues until the end. For example, suppose the half-
complete body of a cat is given as input. Encoding this information useful for completing
the body. However, when the decoder continues to create the head and facial features of
the cat, then this information is essentially irrelevant. Such an information drop may cause
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the decoder to ignore the values from the encoder when training the model. To prevent this
effect, a decoder-length hyperparameter is introduced that decides how many points ahead
in time (from the cutoff) the decoder is tasked to predict.

For example, consider a drawing consisting of 40 points, the cutoff is set to 20, and the
decoder length is 10. In this case during training, the 20 first points of the drawing are passed
to the encoder, and the decoder is tasked to predict the 10 following points (i.e. points 21
to 31).
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Chapter 6

Experiments

In this chapter, we train the models presented in chapter 5. After training, we evaluate
the models quantitatively by showing the loss metrics. Recall that the goal of the thesis is
to make an artificial drawing assistant that can predict the continuations of an incomplete
drawing. To rest such functionality, we visualize samples from the models at different stages
of sketch completion.

6.1 Decoder-only model and 1D convolution extension

This section will experiment with the decoder-only model we introduced in the previous
chapter, including models extended with a 1D convolution of different kernel sizes. Six
categories from the QuickDraw dataset are selected for testing: Cat, Bicycle, Face, House,
Car, and Airplane. First, we train the models on datasets consisting of one of these classes
at a time; then, we increase the difficulty by making datasets consisting of three classes.
Additionally, we review the results of using a pre-trained model and briefly discuss the
results from omitting the recurrent unit.
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6.1.1 Training setup and hyperparameters

Each dataset is split into a training, validation, and test set consisting of 60%, 20%, and
20% of the drawings. The model is fed the training set through mini-batches of size 100 (i.e.,
100 drawings), and we train the model with 5000 min-batches batches for each experiment.
Every 100 batches, we sample 500 drawings from the validation set to estimate the model’s
performance.

To qualitatively test the models on a drawing, we split it into five different stages of
completion: 20%, 40%, 60%, and 80%. The models are then conditioned on each part and
sampled with varying temperatures (0.2, 0.4, 0.6, 0.8, and 1.0). The models are sampled
until the drawing is deemed complete (by the models) or until a maximum of 200 points.
Sampling until completion might not be realistic behavior in an actual application, which is
discussed in the following chapter. However, if the predictions are close to what a human
would draw, then sampling until the end should result in a finished drawing (as if a human
drew it).

From this perspective, a good model is then a model that ”behaves” like a human when
drawing. Moreover, behaviour that in unnatural and mechanic is viewed as negative, while
human flaws learned by the model cannot be considered incorrect. Since we only sample the
models, we cannot concretely say which model makes the best completions as some models
might get more ”lucky” than the others, i.e., some samples might look better than others by
pure chance.

Following SketchRNN [17], we use M = 20 components in the GMM. We use a learning
rate of η = 10−3, and we reduce the value by multiplying it with (1 − 10−4) for each mini-
batch down to a minimum of 10−5. The decoder has a hidden state and cell state size of
nh = 512. Gradients are clipped at 1.0, i.e., we prevent the norm of the gradient values
from becoming larger than 1.0. Sequences of length less than 10 and more than 200 are
removed as a simple way of dealing with outliers. When we use the model consisting of both
a 1D convolution and an LSTM, the convolution layer contains 128 kernels; however if the
convolution is used without the LSTM, it contains 512 kernels to match the output size of
the LSTM.

Three kernel sizes are used to test the models extended with a one one-dimensional
convolution: 5, 10, and 20. A size of 20 is only used on the convolutional-only model. For
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Figure 6.1: Samples of cats, bicycles, faces, houses, cars, and airplanes from the QuickDraw
dataset

reference, note that the average stroke length in drawings of cats is 6.8, meaning that a
kernel size of 20 covers around 3 average strokes.

6.1.2 Training on a singleton classes

Figure 6.2 shows the validation loss throughout the training process for three models. An
LSTM-only model, shown as RNN, and two models extended with a 1D convolution with a
kernel size of 5 and 10, shown as RNN+CNN(kernel size). Figure 6.3 shows the average loss
over the test set for the same models.

Observe that the loss of the extended models stays lower than the LSTM-only model
during training. The same trend can be seen in the final test loss, where the extended
models reduced the loss by a noticeable amount. The difference in loss between the two

52



0.0

0.1

0.2

0.3

0.4

0.5

ca
t
lo
ss

0.0

0.1

0.2

0.3

0.4

0.5

bi
cy
cl
e
lo
ss

0.0

0.1

0.2

0.3

0.4

0.5

fa
ce

lo
ss

0 20 40

×100 training steps

0.0

0.1

0.2

0.3

0.4

0.5

ho
us
e
lo
ss

0 20 40

×100 training steps

0.0

0.1

0.2

0.3

0.4

0.5
ca
r
lo
ss

0 20 40

×100 training steps

0.0

0.1

0.2

0.3

0.4

0.5

ai
rp
la
ne

lo
ss

Validation loss on singleton classes RNN
RNN+CNN(5)
RNN+CNN(10)

Figure 6.2: Validation loss of encoder-only model over the course of training on singleton
classes.

kernel sizes is relatively insignificant. This finding might suggest that directly modeling the
structure of the five latest points is helpful to the model. In comparison, information in the
five points preceding these points is just as easily summarized in the hidden state.

Examples of cat sketches generated with different models are shown in 6.4. The bottom-
right predictions stem from a ”pre-trained” model, discussed in the following section. All
models seem to give predictions of similar quality. At lower temperatures (especially 0.2),
the models often seem to get stuck in a state of repetition, especially when drawing eyes and
noses. This state is referred to as the ”scribble state” by V et al. [39]. A temperature of 0.4 or
0.6 seems to give the best samples, as the higher temperature models tend to produce slightly
more ”choppy” and incomplete samples. At the later stages of completion, the models seem
reluctant to add missing facial features to the drawing. This reluctance might result from the
high variability of drawing granularity in the dataset. For example, most cats are probably
drawn with ears; however, not all cats contain finer details like whiskers.
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Figure 6.3: Test loss of encoder-only model on singleton classes, the star symbol (∗) indicates
the model was pre-trained.
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Figure 6.4: Sample completions of a cat with differing encoder-only models, the numbers
above each column indicate the temperature used. The blue strokes are the ”true” incomplete
drawings from a human at different stages, while the red strokes are the predictions of the
model.



6.1.3 Pretraining on other classes

We pre-trained models on all 339 classes not selected in the previous section before fine-tuning
the model on every single class. Note that the pre-trained model was not alone capable of
making good predictions, and the results of training this model are not shown. The result
of the fine-tuned models are shown in figures 6.5, 6.2, and 6.4. The models converged faster
than the others and reached a lower validation loss. This result was also primarily reflected
in the test loss. Interestingly, the pre-trained models containing a convolutional layer were
noticeably better than the LSTM-only pre-trained model, suggesting that the added capacity
was practical. However, sampling these model did not lead to significantly better results.

One reason for the fast convergence speeds may be that the pre-trained model has learned
general drawing patterns common between all classes. However, it could also be that some
classes used to train the pre-trained model are sufficiently similar to the test classes. Even
so, the fast convergence speeds suggest this method could be effective at quickly fine-tuning
the model to fit a person’s individual drawing style.

6.1.4 1D convolution only

We also attempted to remove the LSTM part of the model and only used the convolutional
layer. In this model, the 1D convolutional layer is directly connected to the final linear layer,
which transforms 512 feature maps from the convolution into the final parameters. This
experiment may show whether the model can perform well using only highly local data.

We tested kernel sizes of 5,10, and 20, getting similar results. All configurations caused
unstable training; the models had to be heavily regularized with a weight decay of 10−3 to
prevent exploding weights. In general, the loss of these models was much higher than their
LSTM counterparts, and sampling from the models gave incoherent predictions. As a result
of the poor performance, we mainly omit the results from these models; however, refer to
figure 6.5 to compare validation loss on cats.
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Figure 6.5: Encoder-only model performance on cats with (blue) only the LSTM, (orange)
LSTM plus a CNN with a kernel size of 10, (green) only the CNN with a kernel size of 10,
and finally (red) a pre-trained model with LSTM plus a CNN kernel size of 10.
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Figure 6.6: Validation loss of encoder-only model over the course of training on triplet classes.

6.1.5 Training on three classes at a time

We choose to train the model on three classes simultaneously by combining the classes chosen
in the previous section. Figures 6.6 and 6.7 show the validation loss and test loss respectively.
Training on several classes should be more difficult for the model as it now needs to account
for inter-class variation. Even so, the model seems to converge to a loss comparable to that
of using single classes. Again the models extended with a 1D convolution perform noticeably
better than the LSTM-only model (w.r.t. loss).

Figure 6.8 shows three different models applied to a drawing of a car, an airplane, and
a cat. Other than the earliest part of airplanes, which are sometimes mistaken for cars,
the models rarely mistake what class is being completed. The classes are probably ”well
separated,” i.e., the differences between how one draws each class are significant. Sampling
with lower temperatures overall leads to better results. However, we can see several instances
where this reduced temperature seems to cause the models to get stuck in the ”scribble state”.
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Figure 6.7: Test loss of encoder-only model on triplet classes.
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Figure 6.8: Encoder-only completions on cars, airplanes, and cats. The left column uses an
LSTM-only model, the middle columns uses an LSTM model plus a CNN layer with a kernel
size of 5, and the right column uses the same as the middle, only with a kernel size of 10.
The blue strokes are the ”true” incomplete drawings from a human at different stages, while
the red strokes are the predictions of the model.



Sometimes this state is achieved when drawing the wheels of the car. However, it is most
frequent in the airplane and especially present with the LSTM-only model. One thing to
notice is that the models are not good at placing the windows of cars and airplanes inside
the object. This error may result from a lack of spatial representations; however, it may also
result from the dataset’s quality.

6.2 Encoder-Decoder architecture

This section will experiment with the encoder-decoder architecture explained in the previous
chapter. We use the same categories of drawing that we introduced in the previous sections.
The experiments are set up in a similar fashion, where we train the models on singleton
classes before extending the experiments to triplets of classes.

6.2.1 Training setup and hyperparameters

We test 4 different encoder architectures. The first architecture uses an LSTM as encoder,
the second uses a CNN, and the third uses both an LSTM and a CNN simultaneously by
concatenating the output from both components. The final fourth model is a baseline model
that is only given some information about the current state of the drawing, i.e., the absolute
coordinates of the pen, the pen state (down or up), and finally, the largest and smallest
corners of the drawing.

The pen position might be an essential piece of information, and one may use this to
guess what is drawn from the typical positional structure in a class. For example, if the class
is cats and the pen is situated on the top-left of the drawing, then a model might complete
a left ear. The baseline essentially indicates how much the decoder can learn with close to
no information from the encoder. This information shows whether a more complex encoder
is helpful in the model.

The model is fed the training set through mini-batches of size 100, and we train the model
with 10000 training steps for each experiment. Every 100 batches, we sample 100 drawings
from the validation set to estimate the model performance. Similar to the previous section,
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the decoder uses M = 20 components in the GMM, the hidden state size is hn = 512, and
gradients are clipped at 1.0 for all recurrent units. We use a global learning rate of 5 · 10−4,
and at training steps 3000 and 6000 we reduce the learning rate by half.

Specific to this architecture, we need to set the cutoff value that decides what amount
of a drawing should be processed by the encoder. To give the encoder a reasonable amount
of information each step, we sample the cutoff uniformly from the first third of the drawing
up to, but not including, the final point. In the limit, the encoder may be given the whole
drawing except the last point; however, the average percentage of completion given to the
encoder will be 66%. Even though the encoder may not receive less than a third of a drawing,
it will still be given a wide variety of inputs due to the high variation of drawing lengths.
For example, 30% of one cat might be 40 points while 30% of another might only be 5.

We set the cutoff to precisely 50% in the validation data to reduce ”noise” when visu-
alizing. The same procedure is done for the test loss to ensure each model is tested on the
same data. Finally, the decoder length is set to 10, i.e., the decoder is tasked to predict the
ten following points after the cutoff.

To test this model, we still sample the model until the end. When sampling the sequence
further than 10 points, the original prior sequence is concatenated with the predictions to
form a new input to the encoder, which is used to predict 10 points further, and so on. As
before, if the model can make good (human-like) predictions at each cycle, then sampling
several cycles should, in theory, lead to a coherent completed drawing. The cycle continues
until an end of drawing value is sampled, or the maximum length is reached. Because of
the decoder length, the decoder is much less likely to see an end-of-drawing sample during
training. As a result, the model is less likely to predict an ending during sampling, so we set
the maximum samples to 60 (rather than 200) to better visualize the predictions.

6.2.2 Single classes

Figures 6.9 and 6.10 show each model’s validation and test loss metrics. Training these
models causes quite large fluctuations in the validation loss; hence to make it easier to see
the trend, we calculate the exponential moving average of the loss over the training steps
with α = 0.95.
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Figure 6.9: Validation loss of encoder-decoder model over the course of training on singleton
classes. The displayed values are smoothed using an exponentially weighted average with
α = 0.95.
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Figure 6.11: Sample completions of a cat with differing encoder-decoder models, the numbers
above each column indicate the temperature used. The blue strokes are the ”true” incomplete
drawings from a human at different stages, while the red strokes are the predictions of the
model.



The loss was generally much higher than with the encoder-only models. Theoretically,
the loss should be pretty comparable if the performance is similar. The loss of the encoder-
only model is the mean log-likelihood given to each point in the whole drawing, while the
loss of the encoder-decoder is the mean log-likelihood given to the ten next points after the
cutoff.

The loss of the baseline model generally stays higher than the rest of the models. However,
the difference is insignificant, suggesting that the encoder is not as valuable as expected. The
recurrent-only and dual-component models achieve approximately the same loss, while the
convolution-only model performs slightly worse.

Figure 6.11 show the completions of a cat with each model. All models seem to make
similar predictions. Compared to the encoder-only models, the samples are of lower quality,
i.e., less human-like.

6.2.3 Triplet classes

Figures 6.12 and 6.13 show each model’s validation and test loss metrics. Again, the baseline
value is somewhat higher than the rest. The convolution-only encoder seems to perform
closer to the recurrent models in the validation set; however, the test loss shows that the
recurrent-unit models are still better. Both models containing a recurrent unit are quite close
in performance, while the CNN+RNN model performed slightly better across all categories
of test data.

Figure 6.11 show completions of a car, an airplane, and a cat with the baseline, recurrent,
and convolutional model. The quality of the samples is lower than that of the encoder-only
model, and even the non-baseline models seem to mistake some drawings of airplanes and
cars for being cats. Even so, the baseline model is worse than the other models. This result
is expected as the pen position cannot carry information about which class is being drawn.
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Figure 6.12: Validation loss of encoder-decoder model over the course of training on triplet
classes. The displayed values are smoothed using an exponentially weighted average with
α = 0.95.
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Figure 6.13: Test loss of encoder-decoder model on triplet classes.
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Figure 6.14: Encoder-decoder completions on cars, airplanes, and cats. Left column uses a
baseline encoder, middle columns uses an LSTM encoder, and the right column uses a CNN
encoder. The blue strokes are the ”true” incomplete drawings from a human at different
stages, while the red strokes are the predictions of the model.



6.3 Discussion and further work

While the visualizations probably give a good idea of what models perform best in a drawing
assistant system, it would be even better to test each model interactively with a group of
people.

Using a one-dimensional convolution reduced the loss of the encoder-only model by a no-
ticeably amount, especially when fine-tuning a pre-trained model. However, when inspecting
the samples we found no concrete improvement in quality with this method. The encoder-
decoder models performed worse than the encoder-only models, and in general, the sample
quality was relatively low with these models.

The fact that a purely sequential encoder performed about the same as the convolutional
encoder suggests that the problem lies in the architecture or the training process instead of
the spatial representation. Moreover, when both the encoder and the decoder are LSTMs,
one would expect the model to have the same capabilities as the encoder-only model; however,
this was not the case.

The cutoff value causes high variation in the samples given to the model; even with a fixed
percentage cutoff, the variation in drawing lengths causes high variation. A constant cutoff
could have been chosen; however this may make the encoder overfit on this configuration,
making predictions only work at a certain point. Moreover, the usage of an encoder length
attempts to make the decoder make use of the information from the encoder. However, the
latest points after the cutoff are probably primarily dependent on the latest points right
before the cutoff, which may make most of the information from the encoder of little use.

A different way to enable spatial representations is to use a purely convolutional model to
predict the next point directly at each time step. Such a method could further be combined
with the encoder-only model to enable both representations simultaneously. However, as
discussed in chapter 3, predicting each time step with a convolutional model may potentially
be computationally expensive.

It would be interesting to train the models on more than one or three classes, enabling
them to be useful for a larger amount of drawings. Training the model on all classes was
essentially attempted with the pre-trained models. However, since incomplete drawings can
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look the same in several classes, such models would struggle to predict what class is being
drawn, causing incoherent predictions most of the time. One way to fix this problem could
be to condition the models on the class being drawn. This method would require telling the
model of the class to draw. A user could do this manually; however, it may be cumbersome.
Another method could be to use a separate sketch recognition system that informs the
prediction model of the target class.

Efforts could also be made to increase the quality of samples. While a temperature was
employed in this thesis, it could also be possible to use heuristics such as beam search [28] to
create predictions the model deems probable. It would also be helpful to develop methods
that reduce the occurrences of the ”scribble effect” in the models.

Improvements could also be made to the data used to train the model. While it is
essential to match the quality of the end-user, many drawings in the QuickDraw dataset
are of lower quality as they had to be made in 20 seconds or less. Some drawings are
not of the appropriate class, and some are incoherent ”scribbles.” A simple way to filter
out ”bad” drawings could be to choose only drawings with sequence lengths close to the
mean of the class. A hand-crafted approach could be to analyze the properties of ”good”
(i.e., detailed) drawings in each class and primarily select drawings with these properties
for training. Finally, it would be interesting to see how well a model could specialize to
the drawings of each individual, e.g., the user’s drawing style, and classes of drawings not
present in the dataset.
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Chapter 7

The Application

Finally, to achieve the goal we set out in the introduction, we create a drawing application
capable of using the models trained in the previous section.

7.1 Sampling the model

There are several ways sampling could be integrated into the application. A model can the-
oretically create arbitrary long predictions (until an end-of-drawing point is sampled). If the
model is not restrained, it could create unreasonably large sequences that clutter the screen.
The frequency of the end-of-drawing state is low compared to the pen-lifted and pen-down
states, which may cause the model to ignore it. There are methods to mitigate this problem
if it is crucial to the task. In SketchRNN, for example, the task of reconstruction demands
that the decoder ends the reconstruction at an appropriate time, so special efforts were made
to encourage appropriate stopping. GCPS, on the other hand, avoids this challenge as it is
the user’s choice to end the drawing, as opposed to the model. However, an end-of-drawing
token can still be viewed as helpful to encode that the model is unaccustomed to predicting
beyond a certain point; hence the quality of further predictions may fall.

Even if the model gives appropriate end-of-drawing points, it does not mean the appli-
cation should sample the model to the end. It is more reasonable to sample only a tiny
continuation to make the interplay between the model and the user more natural. That way,
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Figure 7.1: Real screenshots from drawing a cat using the application. The black strokes
are from the user. The blue stroke is a prediction of the immediately following stroke, while
the gray strokes are predicted strokes following the blue prediction. In the leftmost column,
the user accepts only the blue stroke, while in the following column the user accepts all 20
predictions from the model

the human and the model go back and forth, where the human constantly updates the ”true”
drawing, and the model uses this new information to create more relevant predictions. We
can do this by restraining the sampling of the model. Two natural ways to restrain sampling
are to employ a max sampling rate or to sample only the first stroke of the prediction.

7.2 Functionality

The application’s default behavior is to sample 20 or fewer points from the model, regard-
less of how many individual strokes it creates in this length. The user is then given two
possibilities: accept the first stroke in the prediction, or accept all its strokes.

A prediction is automatically sampled from the model after the user lifts the pen; this
is a natural time to show predictions as the user might have lifted the pen to ponder the
continuation. This behavior can optionally be turned off, in which case the user must
manually request a prediction. The automatic prediction assumes that the pen was not
lifted, which initially seems unintuitive. However, this functionality lets a user lift the pen
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in the middle of a stroke to let the model complete the same stroke. Further, if the user did
finish the stroke, the model can still predict that the following point should be a pen-lift.

The suggestions are visualized on the canvas as strokes of a different color than the user’s.
More specifically, the strokes from the user are colored black; the first stroke in a prediction
is colored blue, while the following strokes are all colored gray (see fig. 7.1). A suggestion
can be finalized and added to the user’s drawing when desired, changing the color of the
prediction to the same as the user.

Functionality to save drawings was added as an interesting further direction of train-
ing the model on drawings from a specific user. This functionality could make the model
specialized on each user’s drawing style.

7.3 Implementation

The application is written in the Julia [2] programming language using a GTK [38] back-
end. The canvas is a GtkCanvas with a grid size of 600 × 600, and the models, written in
PyTorch [29], are loaded in Julia using the PyCall [22] library.

When a user draws, the pen position and pen state samples are continuously saved to a
list of 3-element vectors, i.e., each sample is saved as (x, y, pen-lifted). Unless the pen is
lifted, a line is drawn on the canvas between the previous and current sample position.

If a prediction is requested, the list of points is copied and preprocessed to match the
QuickDraw training drawings. First, the coordinates are divided by the canvas height/width
(i.e., 600) and multiplied by 255, then the RDP algorithm is applied with ε = 2.0. Next, the
coordinates are transformed into the representing the differences between each point and the
next. Then, the differences are scaled to have a standard deviation of 1.0, while the original
standard deviation is saved for rescaling the prediction. Finally, the pen state is represented
as a 3-element state i.e., (p1, p2, p3) as expected by the models,.

The sequence is then transformed to a PyTorch tensor and fed to the model using PyCall,
which returns a 20-element prediction. This prediction is then ”unscaled” (i.e., scaled back
to the size of the user’s drawing), shifted to the pen position, and drawn on the canvas with
a blue/gray color. See figure 7.2 for a visualization of the application when prompted to
predict a stroke.
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Figure 7.2: Figure of the application when a user requests a prediction. Internally, the
drawing is saved as a list of points. This list is preprocessed and scaled before being passed
to the PyTorch model. The output of the model is then scaled back to the canvas size and
drawn on the canvas as a blue stroke.



Chapter 8

Conclusion

In this thesis, we introduced the concept of an artificial drawing assistant system, and we
discussed two ways that such a system could work. Consequently, we decided to create a
system capable of predicting the continuation of drawings at different stages of completion.
To achieve such a system, we introduced the field of deep learning, which is capable of
learning a wide variety of tasks through observing a dataset of examples.

We discussed the methods and challenges of representing a sketch on a computer and
expanded the challenges to form a deep learning perspective. More specifically, we discussed
two common ways to represent sketches: a list of points or a raster image. The spatial
raster-image approach we theorized to be closer to how humans perceive sketches, while
the sequential list-of-points representation we theorized to be closer to how humans draw
sketches.

Before introducing our own set of models, we gave a thorough overview of the previous
work in the sketch deep learning field. We introduced the seminal SketchRNN model, which
paved the way for several models concerned with the task of sketch reconstruction. We
extracted the encoder component from this model, which laid the groundwork for the models
presented in this thesis. Then, we proposed a simple extension to this model by preprocessing
the input with a 1D convolution layer. Motivated by how humans perceive and draw sketches,
we proposed a novel encoder-decoder model which attempts to encode incomplete drawings
with a CNN network before letting a recurrent decoder create predictions.
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We chose six categories of drawings from the QuickDraw dataset in our experiments.
First, we tried to model one class at a time before extending the challenge to modeling three
classes. By sampling the models at different stages of completion of drawings, we visually
estimated each model’s capabilities in a drawing assistant system.

The 1D convolutional model loss was generally lower than the basic encoder-only model,
and a pre-trained model resulted in an even lower loss. While the loss varied noticeably from
model to model, we found no significant difference when sampling the models. Moreover,
most samples were quite reasonable completions, especially with sampling temperatures of
0.4 and 0.6. However, a low temperature would sometimes lead to the model getting stuck
in a scribble state.

In the encoder-decoder model, we tested several different encoder architectures: CNN,
LSTM, CNN and LSTM, and finally, a baseline encoder. We found that the models contain-
ing a recurrent encoder component would perform best both on the loss and when sampling.
Moreover, the baseline encoder was surprisingly close in performance to the other archi-
tectures. In general, the models’ predictions were lower in quality than the encoder-only
model.

Finally, we reached our goal by building a drawing application with an artificial drawing
assistant system taking advantage of the models we trained in the experiments.
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