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Abstract

Irony is a complex phenomenon of human communication and due to its con-
textual nature has been notoriously difficult for machine learning algorithms to
detect. With an established practical definition of irony based in the environ-
ment of Facebook comment sections. Used together with a Norwegian language
pre-trained BERT model converted to a long version that supports longer text
inputs, and a Norwegian Facebook comment dataset with contextual article and
reply comment text included. It was found that the long BERT model trained on
the context included inputs dataset outperformed the short BERT models trained
on datasets of the same and more comments, but without the contextual infor-
mation encoded.
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Chapter 1

Introduction

Online comment sections such as those on the website Facebook are a great
place for people to express and process their thoughts and opinions with friends,
strangers, and various kinds of institutions. However, it is also a prime environ-
ment for harassment. This kind of behaviour tends to devolve serious conversa-
tions about important topics, causes mental harm and in some cases pose legal
issues for the institutions that host those comments. For instance, the Norwegian
news and entertainment company TV2, have closed their comment sections due
to these issues.

In response to the difficulty of moderating online human communication, the
field of automated moderation in which machine learning based natural language
processing is used to prevent or moderate the comments, has grown significantly.
However, human language and social behaviour is deeply complex and difficult to
accurately moderate without stifling free speech. One such aspect of human com-
munication which is difficult to precisely detect is irony. And as ironic statements
are part of free speech it is necessary to not censor them, by miscategorising them
as illegal or unwanted language, such as harassment.

1.1 Motivation

On the 1st of July 2020, the Norwegian government’s ministry of culture and
equality enacted a law titled Act relating to the editorial independence and lia-
bility of editor-controlled journalistic media, abbreviated as the Media Liability
Act. Section 3d of the act, which concerns definitions, specifies that statements
made by users not affiliated with the media editor is considered user generated:
”d. user-generated content: a statement published by a media user outside the ed-
itor’s management and control” [12]. Furthermore, when it comes to the liability
of hosting illegal user-generated content, in which comments that contain an ille-
gal degree of discriminatory or hateful content would fall under. The act details
that the editor must allow reporting it and must remove it with opportunity for
appeal: ”The editor must facilitate the reporting of illegal user-generated content.
If user-generated content is removed or access to the content is barred because it
is considered illegal, the editor must, to the extent possible, notify the author of
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the content and inform him/her of opportunities to appeal” [12].

However, the act adds that they are only held liable and penalised if they act
with gross negligence, meaning they do not remove the illegal user-generated con-
tent without undue delay: ”The editor, or any person acting on behalf of the
editor, may only be penalised for illegal user generated content in the medium
if he or she has acted with intent. To be held liable for compensation, he or
she must have acted with gross negligence. The editor, or any person acting on
behalf of the editor, cannot be held liable pursuant to the first subsection if he
or she without undue delay, once the conditions for liability were present, imple-
ments the necessary measures to remove or bar access to the illegal statement” [12].

If an institution such as TV2 desired to create or re-open a comment section
on their website, they would have to comply with these stipulations. However,
moderation companies can be expensive. Especially in regard to moderation of
Norwegian language content, which is far more niche than English language con-
tent. And seeing as a company like TV2 can host the comments on their articles
on external sites which carry the burden of moderation instead, such as the web-
site Facebook, or integrate the Facebook comment section into their own site,
there is little economic incentive to create their own. However, by outsourcing
the comments and responsibility for moderation, the control over freedom of ex-
pression in the sense of what is considered illegal content is surrendered to an
external institution whose values may not align with TV2’s values or Norwegian
policy.

One way to not rely on external actors, while reducing expenses, manual labour
and complying with the law, is to remove all reported comments. However, this
would likely cause comments that do not contain illegal content to be removed as
well, reducing the amount of legal user-generated content and by extension free-
dom of expression. The Norwegian government’s official website Government.no
states the following about their laws and attitude towards freedom of expression:
”Freedom of expression is not only a prerequisite for democracy, it is also vital
for the realisation of other fundamental human rights, such as freedom of assem-
bly and freedom of religion or belief. Promoting freedom of speech is therefore an
important part of Norway’s foreign policy and human rights priorities” [13]. How-
ever, comments that contain illegal content still have to be removed, as it further
elaborates by specifying: ”This does not mean that all manifestations of freedom
of expression are allowed. It is in contravention of Norwegian law and Norway’s
international human rights obligations to publicly make discriminatory or hateful
statements” [13].

If an automatic system would be used to moderate a non-external comment
section in compliance with Norwegian law, it would have to be 100 percent accu-
rate as any reported illegal content comments that it does not remove would make
for instance TV2 liable for penalization. As no NLP model operating on the com-
plexity of a comment section has achieved 100 percent accuracy in classification,
the system would require manual input in the form of a human in the loop, to
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verify decisions and prevent legal liability. However, the higher accuracy the clas-
sification system performs with, the less manual labour would be required to verify
it. Machine learning algorithms that can assist a manual moderator by classifying
the comments in advance, only pending his final verification, would maximize ef-
ficiency to incentivize self-governance, while simultaneously maximizing freedom
of expression.

1.2 Problem Statement
State of the art language phenomenon detection technology, such as those which
detect irony, use standard transformer type machine learning natural language
processing algorithms [16]. These algorithms encode the relations between words
in a way that allows it to represent the correlations between those words bet-
ter than any other existing models. However, statements in comments made as
a reply to its respective post or another comment, can be interpreted as ironic
or harassing depending on the content of the post or comment they are replying
to. And the standard algorithms have input length limitations that prevent them
from including contextual elements such as the post’s text, article and previous
comments.

Because of this, a standard transformer type algorithm such as BERT, trained
on a labeled dataset of ironic comments encode the word combination, word or-
der, special characters, grammar and capitalization, which can be referred to as
linguistic patterns in the ironic comments, but not the context in which the com-
ments were made or how the context affects a comment’s ironic qualities. And
as irony is a highly contextual language phenomenon, its ability to predict irony
in complex scenarios with a lot of contextual information, such a Facebook com-
ment section, suffers. And as a human must be kept in the loop for a moderation
system, the worse the automated detection system performs, the more work and
people are needed.

1.3 Objectives
The hypothesis is that by using longer versions of the transformer NLP meth-
ods, both the contextual language patterns and the linguistic patterns can be
understood by the trained model, leading to more accurate detection of irony in
complex environments such as a TV2 Nyheter Facebook post’s comment section
[19].

Research Question 1: To what degree better or worse than a model with-
out, does including a comment’s contextual text information in an NLP model’s
dataset improve its for sequence classification accuracy in predicting a comment’s
irony value?

Research Question 2: To what degree does fine-tuning on comments from
topics different from the validation dataset affect prediction accuracy of the vali-
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dation dataset?

1.4 Contribution
Due to TV2 privacy concerns and article 5.1 of the European Union’s General
Data Protection Act regarding the use of personal data, despite not containing
names, the data allows for finding the comments’ authors using the article and
comment text. Therefore the dataset contains too much personal information to
publicly release. However, the produced models, non-fine-tuned converted long
model and encoding technique can [? ].

List of contributions produced by this master thesis:

• C1 A long non-pre-trained version of the Norwegian language transformer
model norBERT 2, called 1024-LongNorBERT 2.

• C2 A TV2 Facebook corona politics comments irony fine-tuned 1024-
LongNorBERT 2 model.

• C3 A TV2 Facebook corona politics comments irony fine-tuned norBERT 2
model.

• C4 A TV2 Facebook multi-topic comments irony fine-tuned norBERT 2
model.

• C5 A technique of article, comment and reply context encoding for text
classification datasets.

1.5 Thesis outline
Chapters:

• Chapter 2 Background

– Definitions, elaborates on which definition of irony is used, why that
definition is specifically chosen and how it fits the Facebook comment
section environment.

– Machine Learning Models, describes the state of the art models
used in irony detection, how they work, and why specific models have
to be used for detecting irony in the Norwegian language, as well as
how to bypass text length limitations to include context data.

• Chapter 3 Methodology

– Irony Construct, explains how the definition is applied to the Face-
book comment section environment.
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– Comment Linguistics, illustrates some potential problems that might
lower model performance, concerning the form of the language used in
the Norwegian comments.

– Facebook Post Constructs, lists constructs for the various parts of a
Facebook post and why only specific constructs are used for the model.

– Data Topic Distribution, shows the topics for the text in the dataset
and explains which parts of the dataset were used for different purposes.

– Context Encoding, presents a technique for encoding context that
can be used for fine-tuning of text classification.

– Threats to Validity, argues for several factors that likely cause inac-
curacies in the trained models.

• Chapter 4 Methods

– Converting Model to Long, details the process of converting a 512
token limite BERT model to a 1024 token limit long BERT model.

– Dataset and Labelling, introduces the format, reasoning, and filter-
ing process for pre-processing and labelling the datasets.

– Implementation, clarifies how the models were trained and with which
training parameters.

– Evaluation, discloses how the models were evaluated by listing the
metrics used on their predictions.

• Chapter 5 Results and Discussion

– Results and Analysis, shows and comments on the graphed results
of the evaluation metrics.

– Discussions, argues about the models’ compared performance and the
likely reasons behind their specific performances.

• Chapter 6 Conclusions and Future Work

– Conclusions, a summary of the insights deduced from the results of
the models’ performance.

– Future Work, a listing of greater dataset scales and various other pre-
existing technologies that can be combined with the thesis’s method-
ologies and methods, to likely produce greater results.
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Chapter 2

Background

2.1 Definitions

2.1.1 Irony
In order to detect irony, a definition of irony is required to precisely define what
language qualifies as ironic. In her book titled Irony Claire Colebrook states: ”De-
spite its unwieldy complexity, irony has a frequent and common definition: saying
what is contrary to what is meant..., a definition that is usually attributed to the
first-century Roman orator Quintilian who was already looking back to Socrates
and Ancient Greek literature. But this definition is so simple that it covers ev-
erything from simple figures of speech to entire historical epochs. Irony can mean
as little as saying, ’Another day in paradise’, when the weather is appalling. It
can also refer to the huge problems of postmodernity; our very historical context is
ironic because today nothing really means what it says. We live in a world of quo-
tation, pastiche, simulation and cynicism: a general and all-encompassing irony.
Irony, then, by the very simplicity of its definition becomes curiously indefinable”
[3]. As Cloebrook states, irony can be considered undefinable, however a piece
of sentiment detection technology intended to detect irony, only needs to operate
within the practical context of its environment. Hence, in the event the irony in
a comment is subtle, requires inaccessible knowledge or contextual understanding
that the general public does not have, then most people exposed to the comment
would interpret it literally, and whether the author intended it ironically or not
makes no practical difference. This in turn entails that what classifies as ironic
under the labelling process of the dataset is exposed to the subjective bias of what
the labeler thinks the general public interprets as ironic.

The paper Irony, The Many Types: Irony vs. Satire and Paradox, Linguistic
Irony vs. Situational Irony, Stable vs. Observable Irony, Dramatic Irony, Tragic
Irony, Dark Irony, and Visual Irony, describes the many forms irony can take.
However, all of these types of irony are exclusive to specific situations, most of the
being literary tools for storytelling, as they describe how an audience or reader
perceives irony in a specific situation, and not the phenomena of communication
between people in a natural social environment, such as a Facebook comment
section [14]. According to the paper Explaining Irony, the traditional type of
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irony is called verbal irony. It defines verbal irony as: ”In classical rhetoric,
verbal irony is analysed as a trope: an utterance with a figurative meaning that
departs from its literal meaning in one of several standard ways... irony... it is
the contrary or contradictory of the literal meaning” [22].

Figure 2.1: Examples of verbal irony from [22]

In the state of the art irony and sarcasm detect paper A transformer-based
approach to irony and sarcasm detection, irony and sarcasm is also categorised
as figurative under the term figurative language or FL for short: ”The main FL
expression forms are sarcasm, irony and metaphor.” And that: ”The linguistic
phenomenon of figurative language (FL) refers to the contradiction between the
literal and the nonliteral meaning of an utterance” [16]. It further elaborates by
explaining a computational approach to defining irony: ”Indeed, this is the case of
pragmatic FL phenomena like irony and sarcasm that main intention of in most
of the cases, are characterized by an oppositeness to the literal language context.
It is crucial to distinguish between the literal meaning of an expression considered
as a whole from its constituents’ words and phrases. As literal meaning is assumed
to be invariant in all context at least in its classical conceptualization..., it is ex-
actly this separation of an expression from its context that permits and opens the
road to computational approaches in detecting and characterizing FL utterance.
We may identify three common FL expression forms, namely irony, sarcasm and
metaphor. In this paper, figurative expressions, and especially ironic or sarcas-
tic ones, are considered as a way of indirect denial. From this point of view, the
interpretation and ultimately identification of the indirect meaning involved in a
passage does not entail the cancellation of the indirectly rejected message and its
replacement with the intentionally implied message... On the contrary, ironic/sar-
castic expressions presuppose the processing of both the indirectly rejected and the
implied message so that the difference between them can be identified” [16].

The paper Muting the Meaning A Social Function of Irony, clarifies the distinc-
tion between irony and sarcasm: “Ironic insults, where the positive literal meaning
is subverted by the negative intended meaning, will be perceived to be more posi-
tive than direct insults, where the literal meaning is negative” [? ]. Additionally,
in the Marriam Webster dictionary definitions in figures 2.2 and 2.3, sarcasm is
defined as negative ironic utterances or language. Because of this relation, sar-
casm can be defined to be a subcategory of the larger category of irony. This is
because all sarcastic utterances are ironic, but not all ironic utterances are nega-
tive and therefore not all ironic utterances are sarcastic [10] [11].
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Figure 2.2: Definition of irony from [10]

Figure 2.3: Definition of irony from [11]



10 Background

With all these explanations and definitions in mind, the definition of irony
the comments are analyzed and label with is: An utterance whose total semantic
expression clarifies a significant difference in the its indirectly rejected literal ex-
pression and implied expression, which is often in some form of opposition with
its literal expression.

2.2 Machine Learning Models
The detection of language phenomenon such as irony and or sarcasm is typically
classified under the larger category of sentiment analysis, and has been done by
training or fine-tuning various kinds of machine learning NLP models on irony la-
belled datasets. The paper Comparative Study of Machine Learning Models and
BERT on SQuAD, compares the accuracy of the top performing model architec-
tures. We can see from figure 2.4 that the BERT model architecture outperforms
the other architectures by at least 7% or more [15]. The BERT model’s superior
performance, is further supported by the state of the art irony and sarcasm de-
tector RCNN-RoBERTa being based on the BERT model architecture.

Figure 2.4: Inference diagram from [15]

The model architecture that was the state of the art before BERT, was Long
Short-Term Memory models or LSTM for short. However, as the original BERT
paper shows in figures 2.5 and 2.6, that the BERT models outperforms the LSTM
models. This is because unlike BERT, LSTM networks pass words through its
network sequentially and generate words sequentially, making it not capture the
whole context of how words in a text relate to one another [6]. This even ap-
plies to bidirectional LSTM networks as they encode the relations between words
right and left separately before concatenating them [18]. BERT models on the
other hand are faster and more word context preserving, as they can learn the re-
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lations between words in both directions simultaneously and for multiple words
simultaneously [5].

Figure 2.5: F1 scores for listed models on various tasks [5]

Figure 2.6: Accuracy for pre-training on various datasets [5]

2.2.1 Transformer Models
Bidirectional Encoder Representations from Transformers or BERT for short, is
a technique of NLP model pre-training developed by Google in 2018 [5]. It is al-
ready used by Google’s search engine for language queries and has become the
baseline model for state of the art NLP [17]. It is based on the transformer deep
learning model also originally developed by Google in 2017 [20]. As seen in fig-
ure 2.7, the transformer architecture consists of an encoder and decoder. The
encoder takes every word in for instance a sentence and generates vector embed-
dings for each word simultaneously. The decoder takes vector embeddings and
generates words based on their values. In essence, the decoder learns the context
of the text it is provided, such as grammar. While the decoder learns how vector
embeddings relate to one another, such as how words in one language relate to
words in another [20]. The BERT architecture is a structure consisting of multi-
ple transformer encoders. This structure allows the transformers to be used for
more tasks, which includes sentiment analysis. This is done by giving BERT a
general understanding of a language, by pre-training it on a large corpus of text
using masked language modelling or MLM, and next sentence prediction or NSP
as training tasks. The pre-trained model can then by fine-tuned to do a specific
task with a smaller labelled dataset that creates an input layer for the specific
task [5].
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Figure 2.7: The transformer model architecture from [20]
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In the state of the art irony detection paper A transformer-based approach to
irony and sarcasm detection, the proposed method is a RCNN-RoBERTa model
with both RoBERTa layers and BiLSTM layers [16]. RoBERTa is short for A Ro-
bustly Optimized BERT Pretraining Approach [? ]. As shown in figure 2.8, it
outperforms all previous methods on the SemEval-2018 task. And as listed in the
paper, it also outperforms the other models on the Reddit SARC 2.0 politics and
Riloff sarcastic dataset [16]. However, even though RoBERTa is the state of the
art in irony detection, it is not pre-trained on the Norwegian language and can
therefore not be used to fine-tune for irony prediction in Norwegian comments.

Figure 2.8: RCNN-RoBERTa compared to other models on irony detection SemVal task 2018
[16]

2.2.2 Norwegian Transformer Models
In order to fine-tune a model to detect irony in Norwegian comments, a trans-
former model with an understanding of the Norwegian language is required. As
a part of the NorLM initiative to create large Norwegian language models, the
SANT project, NLPL (the Nordic Language Processing Laboratory) and EOSC-
Nordic (European Open Science Cloud) have created a series of Norwegian pre-
trained NLP models. Among them is a Norwegian pre-trained BERT model called
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norBERT 2. It was trained on over 15 billion Norwegian words, which is equiv-
alent to about 1 billion Norwegian sentences in both Bokmål and Nynorsk. As
shown in figure 2.9, the model NB-BERT-Base outperforms norBERT 2 in almost
all tasks except binary sentiment analysis, which irony detection falls under [? ].

Figure 2.9: The Norwegian language trained models [? ]

2.2.3 Longformer
The problem with using a base BERT model such as norBERT 2, is its 512 token
limit. A token is an encoded part of a sentence or larger text. Tokenizing text
generates inputs ids for the corresponding words to a vocabulary the tokenizer
has generated during its pre-training, an attention mask which indicates which
parts of the input have words and lastly the input ids can be converted to their
representative tokens to see how the tokenizer seperates words and characters into
tokens [5].

The problem with the 512 token limit, is that it prevents contextual data, such
as an article from being used, as they consistently exceed 512 tokens. Methods
for compressing the text could be utilized, but would be counter intuitive to the
usage of norBERT 2 as the correlation between Norwegian words in sentences
are pre-trained, not compressed representations of text. However, there is a type
of BERT model that supports token lengths larger than 512. These models are
called longformer models or long models [2],

Attention or self-attention is a mechanism of the transformer architecture that
relates positions of a token sequence. Meaning attention is what dictates which
parts of a text the model spends most of its attention, because it thinks its impor-
tant [20]. The traditional transformer models, such as BERT have a self-attention
that scales quadratically with the lengths of its input sequences. This means that
size and training time becomes exponentially larger and longer the longer the
input sequence is. Longformer solves this problem by using an attention mecha-
nism called sliding window attention with global attention, causing self-attention
to scale linearly with sequence length. Windowed and global attention are ways
restricting attention access to lower computation time and memory size, while
still allowing representations to be built across whole inputs [2].
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Figure 2.10: The different types of attention mechanisms from [2]
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Chapter 3

Methodology

In order to test the hypothesis, an irony recognizer artefact needs to be created
and evaluated using the principles of design science. Before the artefact can
be instantiated, constructs of irony, social interaction and the Facebook social
ecosystem are needed to form a model in which the artefact can be instantiated
from. Such a model specifies the requirements of the artefact using a construct
of what comment properties constitute irony and a construct of the Facebook
data structure that serves as the context to distinguishing the irony from non-
irony. Using the resulting model, the artefact can then be instantiated though
and implementation process [21].

Figure 3.1: The design science process [21]

3.1 Irony Construct
In the paper The Anatomy of a Design Theory Shirley Gregor and David Jones
describe a construct as: ”Constructs provide representations of ’entities of in-
terest’. These entities may correspond to phenomena in the real world (e.g., a
software fault) or components of the artefact (e.g., a relational table). In some
cases, constructs can be decomposed into sub-constructs. Such constructs might be
part of another design theory” [21]. The communication phenomena of irony fits
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this description.

Because in some cases, only some parts of a comment are be ironic, such as
one of multiple sentences, unless the total interpretation of the comment’s mean-
ing is ironic, the comment is not considered ironic. This is because if certain parts
of a statement are harassing, and no another part of the same comment trans-
forms the meaning of the harassing part into a meaning that is not harassing, for
instance via irony, then whether or not it contains irony does not alter the com-
ment’s harassing qualities. Hence the total semantic meaning of comment must
be ironic for the comment to be considered ironic. Using the established definition
of irony from 2.1.1, the construct of irony in the context of Facebook comments is
an interpretation of the sentiment of the whole comment that is significantly dif-
ferent from the literal interpretation of the words written or the inverse in some
capacity of the literal interpretation of the words written, to a degree where an
average TV2 Nyheter Facebook reader would detect.

Separate from the definition of what irony is, is how it is recognized. Senti-
ment analysis text classification models that detect irony, but do not have context
encoded, such as RCNN-RoBERTa, only have the information of the provided
statements and their training data [16]. Therefore they can only recognize irony
from the structure of a statement, and its pre-trained knowledge of the structure
of ironic and non-ironic statements. Recognizing irony by a statement’s structure
requires comparing which words and characters, in what order, with a trained un-
derstanding how often those specific words and characters are in that order, in
ironic and non-ironic statements. I will be referring to this method of irony recog-
nition as linguistic irony recognition.

The other method of recognizing irony is using the statement’s context. By
comparing the text of preceding and or succeeding texts, the relation between
the content of contextual text and a statement’s ironic value can be understood
by a model during training. This allows statements that are almost impossible
to detect as ironic without their context, such a single words, or statements that
only express a positive or negative attitude towards something in its context, to
be accurately classified. Additionally, the training of contextual recognition will
also include the linguistic recognition of irony, as all the data of the statement’s
text is still in the input, but also the relation between linguistic irony and the
statement’s context.

Irony Recognition Examples
Comment Example from Dataset Recognition Method
Du verden, går det virkelig an å spise utan alkohol??? Linguistic
Fantastisk Contextual

Table 3.1: Table showing examples of how different comment texts can be recognized as ironic
with different methods
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3.2 Comment Linguistics
The language used in the dataset’s comments is Norwegian with a few occasional
exceptions in the form of English, Icelandic, Swedish and Danish. These were fil-
tered out as their contribution to the accuracy of the classifier would likely only be
negative. However, comments that contain a few English words, but are mainly
Norwegian are kept as technical terms, slang and other references are often in En-
glish. Especially in posts that concern international topics.

The Norwegian language used in these TV2 Facebook comments is often di-
alect in written form with no conventions for how words within the same dialect
are spelled. As norBERT 2 is trained on Bokmål and Nynorsk, it likely has little
or no exposure to written dialects and its pre-training likely has little effect if any
on classification of these words. Additionally some written dialect words might
be confused for other words, worsening its effect.

Another facet of the language is that the grammar in these comments is quite
divergent from the general grammatical rules of the Norwegian language. Out of
the 2000+ comments labelled, very few did not contain any grammatical mistakes
or typographical irregularities. This would make the classifier worse at detecting
irony if other ways of writing similar statements are used instead of the ones it
was trained on. It would also weaken any of norBERT 2 Norwegian language
pattern understanding as it was mainly trained on Norwegian literature and wiki
data, which likely has a high degree of grammatical rule compliance.

3.3 Facebook Post Constructs
There is a lot of data in one Facebook post and not necessarily all of it is relevant
in its correlation with irony. One Facebook post contains data such as reac-
tions, likes, shares, the post text, the post article if there is one, the comments,
sub-comments of other comments, likes on comments, reactions on comments,
timestamps for the actions, and lastly which people did the corresponding actions.

For an implementation of this artefact, only the text of the comment will be
analysed to determine whether a comment should be labelled non-harassment
ironic or not. This mean excluding all the other aforementioned Facebook post
properties as well as GIFs, videos, images and any other non-text data that can
be included in a comment. There are machine learning models and techniques
that allow for multi-modal machine learning, which allows the combination of dif-
ferent data types when training a model, such as text, numbers, audio and images
[9]. However, as norBERT 2 has no pre-training for images or reaction numbers,
it would mean effectively training the TV2 image irony detection aspects of the
hypothetical fine-tuned multi-modal norBERT from scratch. Additionally, GIFs
and videos are sequences of images, and require extensive memory and training
time. There may also arise complications between the longformer structure and
multi-modal structure, though it appears possible as it is used in Multi-Scale Vi-
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sion Longformer [? ].

Facebook commands and other text-based functions included in Facebook, for
example the function of using @ to link and notify another person also have to be
removed. This is because this data often contains names or either is suspected to
have little correlation with irony. While names could potentially correlate with
irony, even in small dataset, as the TV2 posts have a lot of reoccurring users.
However, article 5.1.c of the European Union’s General Data Protection Act re-
garding the use of personal data, states: ”adequate, relevant and limited to what
is necessary in relation to the purposes for which they are processed (‘data min-
imisation’)” [? ]. As names are personal data and have potential for misuses and
at best would only have a marginal if any positive effect on the performance of
the trained models, they are omitted.

Links to external information such as Wikipedia or other news articles also rarely
occur. These and all other links are removed as the comment that includes use
them as information to supplement or extend the meaning they express in their
comment. However, these articles can be very long such as Wikipedia articles
with thousands of words, to short news articles with only a few hundred. These
articles do not consistently fit in either the 512 token limit or 1024 token limit
model and are therefore removed. As the comment with them is often predicated
upon them, the entire comment is removed if it contains a link.

The remaining data used from the Facebook posts, the linked article text if there
is one, the comments and the sub-comments, as in comments that reply to other
comments. The text in the comments will be labelled ironic or not using the
construct of irony detailed in 2.1.1. In the case of TV2, the post text is almost
always very similar to the article title it links to, or semantically superfluous, and
therefore not included due to token length constraints.



3.4 Data Topic Distribution 21

Figure 3.2: A model of the relevant constructs included in a Facebook post model.

3.4 Data Topic Distribution

In order to test the difference in performance between a model trained on com-
ments from posts of varying topics and a model trained on comments from posts
of the same or very similar topics, two datasets for the fine-tuning of the nor-
BERT 2 model were created. One dataset based around comments from posts
about corona politics and one dataset encompassing all of the comments from the
posts in the dataset, referred to as the all topic dataset. Due to the large size
disparity, the corona politics dataset was supplemented with additional manually
written off TV2 Nyheter Facebook post comments about corona politics. As the
labelling process for creating a long supported version of a dataset is very time
consuming, only the corona politics dataset was copied and converted into a long
version.



22 Methodology

Figure 3.3: The distribution of topics and the amount of comments per topic in the TV2
dataset.

3.5 Context Encoding
Unlike the 512 token limit norBERT 2 model which only contains the comments
not exceeding 512 tokens and exclusively learns linguistic irony, the LongNor-
BERT 2 model which contains the article and reply comments, needs to encode
these in its dataset inputs in order to learn their correlation. However, there does
not appear to be a public precedent for how to encode comment context in dataset
inputs for sequence text classification.

Comment Context Encoding
Article Text Comment Text Reply Comment Text Irony

Label
Article text about
corona politics from
post

Comment to post/arti-
cle text

0.0

Article text about
corona politics from
post

Comment to post/arti-
cle text

Comment replying to com-
ment text

1.0

Table 3.2: Table showing how article text, comment text and reply text are encoded in the
dataset

There is currently no public longformer model trained exclusively on Norwe-
gian language content. However, the multilingual BERT model roBERTa, which
is trained on a long list of languages. And there is a version of roBERTa con-
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verted to a long version. However, the pre-training part of this conversion process
was exclusively done on English text using the wiki103 corpus. Additionally, the
model’s size exceeded the thesis’s available GTX 980 GPU’s memory, even when
using two of them. However, one of the creators of the longformer Iz Beltagy
wrote a python script on his github page that can convert a 512 token limit trans-
former model into a higher token limit version of the model[8]. Using this script
norBERT 2 was converted froma token limit of 512 into a custom long version
named LongNorBERT2 with a token limit of 1024. norBERT 2’s tokenizer was
also converted to a long version.

While the new model and tokenizer allows processing of tokenized texts larger
than 512 tokens, it is not pre-trained on a large corpus of longer Norwegian text
inputs. According to figure 3.4, no MLM pre-training has a notable, but not
catastrophic effect on performance. This step was skipped due to access to large
Norwegian long text input corpus being limited, only two GTX 980 GPUs are
available for training, and time constraints. As also seen in figure 3.4, the token
limit can be extended higher than 1024 tokens, and the standard limit for long-
former models is 4096 tokens, however it increases model size and only 5 of long
context encoded inputs in the dataset exceeded 1024 tokens.

Figure 3.4: Performance metrics of differently trained longformer models and RoBERTa

3.6 Threats to Validity
Most models trained to perform sentiment analysis, such as those created for
kaggle competitions are usually trained on datasets that contain at least tens of
thousands of inputs and often as high as multiple hundred thousands of inputs.
Comparatively the dataset used for this model is quite small with only 1000 in-
puts. This disparity already indicated problems during the training of the corona
politics 512 token limit model, as validation loss fluctuated wildly, and quickly
began increasing after only one or two epochs, as the model becomes overfitted.
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This indicates noise in the dataset, and as the data and model complexity is equal
or lower than the long version, which did not have the same issues, it is likely due
to the dataset’s small size. The all topic 512 token limit model, did not have this
issue and its dataset is more than twice as large.

Even though the long and all topic models did not show signs of overfit-
ting, they still have comparatively small datasets and whether the results and
behaviours exhibited by these models remain consistent when trained on a larger
dataset, across multiple domains and or topics, is also uncertain.
Additionally, the pre-train MLM step skipped, as mentioned in 3.5, and the lan-
guage problems described in 3.2 also have a low, but inconclusive effect on the
models’ results.

Because the aforementioned problems could have a indeterminable low or high
impact on the models’ performances, the models’ accuracy could be random luck
and therefore jeopardize the validity of their results and entailing conclusions.
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Methods

4.1 Converting Model to Long
The first step to training a norBERT 2 model for detecting irony with context
included inputs, is to convert the original norBERT 2 into a long version that
supports longer token lengths. While there are other models that support longer
token input lengths, such as the BigBird model [23], the conversion of the 512
tokens limit to longer input lengths process has publicly only been done with
longformer. In order to make the norBERT 2 model support token input lengths
longer than 512, we have to change its self-attention from its default BertSelfAt-
tention to a long version of self-attention that extends LongformerSelfAttention,
but with a few modifications. The code used is a modified version of the updated
convert_model_to_long.py by Adam Wawrzynski [1], updated from the original
script from the github of one of the authors of the longformer paper Iz Beltagy
[8][2]. The python class for the modified self-attention class:

[breaklines]
class norBERTLongSelfAttention(LongformerSelfAttention):

def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,

):

hidden_states = hidden_states.transpose(0, 1)

# project hidden states
query_vectors = self.query(hidden_states)
key_vectors = self.key(hidden_states)
value_vectors = self.value(hidden_states)
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## Lines below has been changed

attention_mask = attention_mask.squeeze(dim=2).squeeze(dim=1)

# is index masked or global attention
is_index_masked = attention_mask < 0
is_index_global_attn = attention_mask > 0
is_global_attn = any(is_index_global_attn.flatten())

## End of modification

seq_len, batch_size, embed_dim = hidden_states.size()
assert (

embed_dim == self.embed_dim
), f"hidden_states should have embed_dim = {self.embed_dim},

but has {embed_dim}"

# normalize query
query_vectors /= math.sqrt(self.head_dim)

query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads,
self.head_dim).transpose(0, 1)

key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads,
self.head_dim).transpose(0, 1)

attn_scores = self._sliding_chunks_query_key_matmul(
query_vectors, key_vectors, self.one_sided_attn_window_size

)

# values to pad for attention probs

## Lines below has been changed

remove_from_windowed_attention_mask = (attention_mask != 0).unsqueeze(dim=-
1).unsqueeze(dim=-1)

## End of modification

# cast to fp32/fp16 then replace 1's with -inf
float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill(

remove_from_windowed_attention_mask, -10000.0
)
# diagonal mask with zeros everywhere and -inf inplace of padding
diagonal_mask = self._sliding_chunks_query_key_matmul(

float_mask.new_ones(size=float_mask.size()), float_mask,
self.one_sided_attn_window_size
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)

# pad local attention probs
attn_scores += diagonal_mask

assert list(attn_scores.size()) == [
batch_size,
seq_len,
self.num_heads,
self.one_sided_attn_window_size * 2 + 1,

], f"local_attn_probs should be of size ({batch_size}, {seq_len},
{self.num_heads}, {self.one_sided_attn_window_size * 2 + 1}), but is
of size {attn_scores.size()}"

# compute local attention probs from global attention keys and
contact over window dim

if is_global_attn:
# compute global attn indices required through out forward

fn
(

max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,

) = self._get_global_attn_indices(is_index_global_attn)
# calculate global attn probs from global key

global_key_attn_scores = self._concat_with_global_key_attn_probs(
query_vectors=query_vectors,
key_vectors=key_vectors,
max_num_global_attn_indices=max_num_global_attn_indices,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,

)
# concat to local_attn_probs
# (batch_size, seq_len, num_heads, extra attention count

+ 2*window+1)
attn_scores = torch.cat((global_key_attn_scores, attn_scores),

dim=-1)

# free memory
del global_key_attn_scores

attn_probs = F.softmax(attn_scores, dim=-1, dtype=torch.float32)
# use fp32 for numerical stability
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# softmax sometimes inserts NaN if all positions are masked,
replace them with 0

attn_probs = torch.masked_fill(attn_probs, is_index_masked[:,
:, None, None], 0.0)

attn_probs = attn_probs.type_as(attn_scores)

# free memory
del attn_scores

# apply dropout
attn_probs = F.dropout(attn_probs, p=self.dropout, training=self.training)

value_vectors = value_vectors.view(seq_len, batch_size, self.num_heads,
self.head_dim).transpose(0, 1)

# compute local attention output with global attention value
and add

if is_global_attn:
# compute sum of global and local attn
attn_output = self._compute_attn_output_with_global_indices(

value_vectors=value_vectors,
attn_probs=attn_probs,
max_num_global_attn_indices=max_num_global_attn_indices,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,

)
else:

# compute local attn only
attn_output = self._sliding_chunks_matmul_attn_probs_value(

attn_probs, value_vectors, self.one_sided_attn_window_size
)

assert attn_output.size() == (batch_size, seq_len, self.num_heads,
self.head_dim), "Unexpected size"

attn_output = attn_output.transpose(0, 1).reshape(seq_len, batch_size,
embed_dim).contiguous()

# compute value for global attention and overwrite to attention
output

# TODO: remove the redundant computation
if is_global_attn:

global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden(
hidden_states=hidden_states,
max_num_global_attn_indices=max_num_global_attn_indices,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
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is_index_masked=is_index_masked,
)

# get only non zero global attn output
nonzero_global_attn_output = global_attn_output[

is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1]
]

# overwrite values with global attention
attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view(

len(is_local_index_global_attn_nonzero[0]), -1
)
# The attention weights for tokens with global attention

are
# just filler values, they were never used to compute the

output.
# Fill with 0 now, the correct values are in 'global_attn_probs'.
attn_probs[is_index_global_attn_nonzero] = 0

outputs = (attn_output.transpose(0, 1),)

if output_attentions:
outputs += (attn_probs,)

return outputs + (global_attn_probs,) if (is_global_attn and
output_attentions) else outputs
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Using two custom classes that modify the default BertForSequenceClassifica-
tion and BertModel, the classes can replace their default self-attention class with
the new norBERTLongSelfAttention class.

[breaklines]
class norBERTLongForSequenceClassification(BertForSequenceClassification):

def __init__(self, config):
super().__init__(config)
self.bert.encoder.layer = nn.ModuleList([norBERTLongSelfAttention(config,

layer_id=index) for index in range(config.num_hidden_layers)])

class norBERTLongModel(BertModel):
def __init__(self, config):

super().__init__(config)
self.encoder.layer = nn.ModuleList([norBERTLongSelfAttention(config,

layer_id=index) for index in range(config.num_hidden_layers)])

The last part of the process is a function that loads the new long self-attention
model and its respective tokenizer, before altering the model’s embeddings to their
new max positions, which in the case of LongNorBERT2 is 1024, before saving
the new altered model and its tokenizer. The attention window of the model is
not modified and remains at 512.

[breaklines]
def create_long_model(

initialization_model,
initialization_tokenizer,
save_model_to,
attention_window,
max_pos
):
model = BertForSequenceClassification.from_pretrained(initialization_model,

num_labels=1)
tokenizer = BertTokenizerFast.from_pretrained(initialization_tokenizer,

model_max_length=max_pos)
config = model.config

# extend position embeddings
tokenizer.model_max_length = max_pos
tokenizer.init_kwargs['model_max_length'] = max_pos
current_max_pos, embed_size = model.bert.embeddings.position_embeddings.weight.shape
config.max_position_embeddings = max_pos
assert max_pos > current_max_pos

# allocate a larger position embedding matrix
new_pos_embed = model.bert.embeddings.position_embeddings.weight.new_empty(max_pos,

embed_size)
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# copy position embeddings over and over to initialize the new position
embeddings

k = 0
step = current_max_pos
while k < max_pos - 1:

new_pos_embed[k:(k + step)] = model.bert.embeddings.position_embeddings.weight
k += step

model.bert.embeddings.position_embeddings.weight.data = new_pos_embed
model.bert.embeddings.position_ids.data = torch.tensor([i for i in

range(max_pos)]).reshape(1, max_pos) # v4.0.0+

# replace the `modeling_bert.BertSelfAttention` object with `norBERTLongSelfAttention`
config.attention_window = [attention_window] * config.num_hidden_layers
for i, layer in enumerate(model.bert.encoder.layer):

longformer_self_attn = norBERTLongSelfAttention(config, layer_id=i)
longformer_self_attn.query = copy.deepcopy(layer.attention.self.query)
longformer_self_attn.key = copy.deepcopy(layer.attention.self.key)
longformer_self_attn.value = copy.deepcopy(layer.attention.self.value)

longformer_self_attn.query_global = copy.deepcopy(layer.attention.self.query)
longformer_self_attn.key_global = copy.deepcopy(layer.attention.self.key)
longformer_self_attn.value_global = copy.deepcopy(layer.attention.self.value)

layer.attention.self = longformer_self_attn

4.2 Dataset and Labelling

The dataset provided by TV2 consists of 1000 comments from the TV2 Nyheter
Facebook page spread across 23 different Facebook posts, all from around the
9th of January 2022. However, as they were gathered around the 9th of January,
most of the posts received more comments after having being gathered into the
dataset. These additional comments were manually written into the dataset in
order to have a holistic collection of the complete comment ecosystem for each
post.

4.2.1 Long and short dataset
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Datasets
Dataset Name Comment

Amount
Irony Per-
centage

Long TV2 Corona Politics 826 9.01%
Short TV2 Corona Politics 816 9.01
Short TV2 All Topic 2064 5.78
Validation TV2 Corona Politics 290 6.79

Table 4.1: The datasets’ basic metrics

For the short dataset, each comment is individually separated, while in the long
dataset, the article, comment and reply are included as separate columns. In
order to process the data into a usable format and clean some data entries, all
special characters such as commas, punctuation marks and dashes before the first
word are removed. Additionally all newlines are converted to spaces. Names
were manually removed, and in the cases where the statement no longer made
grammatical sense without them, the name was replaced by a fitting pronoun.
Comments that only included names were removed entirely. All additional spaces
at the end of statements were also removed as they are not visible to a human
reader, but add inconsistency to the dataset. The long dataset contains more
entries than its short counterpart due to their being some comments that alone
exceed the 512 token limit, but where the article, comment and potential reply
together tokenized did not exceed 1024 tokens. Five entries were removed from
the long dataset due to them exceeding the 1024 token limit.

Short Dataset
Comment Text Irony Label
Hun skriver på dialekten sin! Og det er vel lov?? 0.0
bedre å stole på youtube 1.0
Sånn var det ikke med den forrige regjeringen. 0.0

Table 4.2: Example of a few short dataset inputs
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Long Dataset
Article Text Comment Text Reply Comment Text Irony

Label
Raymond Johansen: –
Må se om smittetal-
lene...

Av og til tar Raymond
liksom litt av. Hvordan
skal...

0.0

Raymond Johansen: –
Må se om smittetal-
lene...

Av og til tar Raymond
liksom litt av. Hvordan
skal...

les nå hva han faktisk skriver. 0.0

Finansminister Trygve
Slagsvold Vedum (Sp)
vil...

Du verden, går det
virkelig an å spise utan
alkohol???

1.0

Finansminister Trygve
Slagsvold Vedum (Sp)
vil...

Du verden, går det
virkelig an å spise utan
alkohol???

Yup fungerer på samme måte
som med alkohol du åpner
kjæften stapper innpå lukker
munnen tygger og svelger

1.0

Table 4.3: Example of a few long dataset inputs

The inputs for the datasets are converted into tokens in the form of input ids
and attention masks. The models are then trained with these tokens as the input.

input ids: [102, 614, 146, 204, 1563, 161, 154, 1822, 106, 10998, 755,
21017, 320, 682, 149, 426, 21985, 50073, 50065, 659, 1822, 106, 10998,
3036, 737 103]\newline

attention mask: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1]

[[CLS], Dette, er, et, eksempel, på, en, tok, ##en, ##ifi, ##sert,
setning, ved, bruk, av, nor, ##BER, ##T, ##2, sin, tok, ##en, ##ifi,
##serer, ., [SEP]]

Figure 4.1: Example of the input ids, attention mask and converted tokens generated by using
norBERT 2’s tokenizer, which was used for the short models, on the Norwegian example phrase:
”Dette er et eksempel på en tokenifisert setning ved bruk av norBERT2 sin tokenifiserer.”

The hashtag character means that the token will be considered as part of the
token before it. Special tokens, such as [CLS] and [SEP] are tokens that signify
the beginning, separation and end of texts. In order to encode the context texts
into inputs, [SEP] tokens are used between the article text, comment text and
reply text if there is one, to signify that the texts are to be treated as separate
texts.
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input ids: [102, 13083, 4092, 4213, 737, 103, 614, 146, 204, 1563, 161,
154, 1822, 106, 10998, 755, 21017, 320, 682, 149, 9847, 12462, 21985,
50073, 50065, 659, 1822, 106, 10998, 3036, 737, 103, 13083, 1144, 143,
2649, 737, 103]\newline

attention mask: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

['[CLS]', 'Eksempel', 'artikkel', 'tekst', '.', '[SEP]', 'Dette',
'er', 'et', 'eksempel', 'på', 'en', 'tok', '##en', '##ifi', '##sert',
'setning', 'ved', 'bruk', 'av', 'Long', '##Nor', '##BER', '##T', '##2',
'sin', 'tok', '##en', '##ifi', '##serer', '.', '[SEP]', 'Eksempel',
'svar', 'til', 'kommentar', '.', '[SEP]']

Figure 4.2: Example of the input ids, attention mask and converted tokens generated by using
LongNorBERT 2’s tokenizer, which was used for the long model, on the Norwegian example
phrase with artilce and reply context texts: ”Eksempel artikkel tekst. [SEP] Dette er et eksempel
på en tokenifisert setning ved bruk av LongNorBERT2 sin tokenifiserer. [SEP] Eksempel svar
til kommentar.”

To prevent a difference in shape between each input. All inputs are padded to
their maximum allowed length, which is 512 for the 512 token length limit short
models and 1024 for the long model. The padding adds 0 at the end to both the
input ids and attention mask until their lists reach their maximum length.

4.3 Implementation
Using only the comments and replies as separate inputs, the corona politics dataset
was used to train one 512 token limit model fine-tuned from norBERT 2, called
TV2FacebookCoronaPoliticsIronyShortNorBERT2, and with the articles, com-
ments and replies each in one input, one 1024 token limit model, called TV2Face-
bookCoronaPoliticsIronyLongNorBERT2. Lastly, using the dataset containing
data from the all the posts, another 512 token limit fine-tuned norBERT 2 model
was trained called TV2FacebookIronyShortNorBERT2. All models were trained
with BCE loss as their criterion.

The training was done using Pytorch and Pytorch Lightning, due to Pytorch
Lightning’s speed and multi-GPU support, using code modified from Curiousily’s
article Multi-label Text Classification with BERT and PyTorch Lightning [4]. The
norBERTLongForSequenceClassification class is replaced by the BertModel class
for the short models.

[breaklines]
class IronyLongCommentTagger(pl.LightningModule):

def __init__(self, n_classes: int, n_training_steps=None, n_warmup_steps=None):
super().__init__()
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self.bert = norBERTLongForSequenceClassification.from_pretrained('D:/noBert/LongNorBERT_v2',
attention_window=512, num_labels=1, return_dict=True)

self.classifier = nn.Linear(self.bert.config.hidden_size, n_classes)
self.n_training_steps = n_training_steps
self.n_warmup_steps = n_warmup_steps
self.criterion = nn.BCELoss()

def forward(self, input_ids, attention_mask, label=None):

output = self.bert(input_ids, attention_mask=attention_mask)
output = torch.sigmoid(output[0])
loss = 0
if label is not None:

loss = self.criterion(output, label)

return loss, output

def training_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
label = batch["label"]
loss, outputs = self(input_ids, attention_mask, label)
self.log("train_loss", loss, prog_bar=True, logger=True)
return {"loss": loss, "predictions": outputs.detach(), "label": label}

def validation_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
label = batch["label"]
loss, outputs = self(input_ids, attention_mask, label)
self.log("val_loss", loss, prog_bar=True, logger=True)
return loss

def test_step(self, batch, batch_idx):
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
label = batch["label"]
loss, outputs = self(input_ids, attention_mask, label)
self.log("test_loss", loss, prog_bar=True, logger=True)
return loss

def training_epoch_end(self, outputs):
label = []
predictions = []
for output in outputs:

for out_label in output["label"].detach().cpu():
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label.append(out_label)
for out_predictions in output["predictions"].detach().cpu():
predictions.append(out_predictions)

label = torch.stack(label).int()
predictions = torch.stack(predictions)

for i, name in enumerate(LABEL_COLUMNS):
class_roc_auc = auroc(predictions[:, i], label[:, i])
self.logger.experiment.add_scalar(f"{name}_roc_auc/Train", class_roc_auc,

self.current_epoch)

def configure_optimizers(self):
optimizer = AdamW(self.parameters(), lr=2e-5)
scheduler = get_linear_schedule_with_warmup(

optimizer,
num_warmup_steps=self.n_warmup_steps,
num_training_steps=self.n_training_steps

)
return dict(

optimizer=optimizer,
lr_scheduler=dict(scheduler=scheduler,interval='step'),

)

These are the training parameters of the three final models and the training
step checkpoints with the minimum validation loss that were used for evaluation:

TV2FacebookCoronaPoliticsIronyLongNorBERT2
Training Parameter Value
Strategy ddp sharded GPU
Batch Size 1
Accumulate Grad Batches 1
Epochs 30
Learning Rate 5e-5
Total Training Steps 24840
Warm-up Steps 4968
Training Time 8 Hours
Lowest Validation Loss 0.194
Lowest Val Loss Train Step 12,450

Table 4.4: Training parameters for the TV2FacebookCoronaPoliticsIronyLongNorBERT2
model.
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TV2FacebookCoronaPoliticsIronyShortNorBERT2
Training Parameter Value
Strategy GPU
Batch Size 1
Accumulate Grad Batches 1
Epochs 10
Learning Rate 5e-5
Total Training Steps 8150
Warm-up Steps 1630
Training Time 2 Hours
Lowest Validation Loss 0.216
Lowest Val Loss Train Step 815

Table 4.5: Training parameters for the TV2FacebookCoronaPoliticsIronyShortNorBERT2
model.

TV2FacebookIronyShortNorBERT2
Training Parameter Value
Strategy GPU
Batch Size 1
Accumulate Grad Batches 1
Epochs 10
Learning Rate 5e-5
Total Training Steps 18320
Warm-up Steps 3664
Training Time 4 Hours
Lowest Validation Loss 0.184
Lowest Val Loss Train Step 3664

Table 4.6: Training parameters for the all topic TV2FacebookIronyShortNorBERT2 model.
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4.4 Evaluation

Evaluation of the artefact was conducted by applying the artefact to tokenized
text inputs from the validation dataset to recieve irony value predictions for each
text input. The long model text inputs also included the article and potential
reply context texts from the validation set. Various metrics commonly used to
gauge the performance of classification models were then used on the resulting
predictions. In addition to the raw true positive, true negative, false positive and
false positive metrics, the metrics used were accuracy, precision, recall, F1 score
and ROC.

Accuracy shows how many of all the predictions made are correct predictions.

Figure 4.3: Formula for accuracy metric

Precision indicates how many of the positive predictions actually were correct pre-
dictions.

Figure 4.4: Formula for precision metric

Recall denotes how many of the true positives were correctly predicted.

Figure 4.5: Formula for recall metric
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F1 otherwise known as F-score, is a harmonious combination of precision and re-
call, which measures accuracy of predictions by displaying the relation between
precision and recall.

Figure 4.6: Formula for F1 score metric

The ROC curve, which is short for the receiver operating characteristic curve, is
a way to graph the performance of classification by plotting the true positive rate
against the false positive rate at different classification threshold values.

Figure 4.7: ROC by comparing TPR and FPR values
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Chapter 5

Results and Discussion

5.1 Results and Analysis

When giving the trained model a list of tokenized input ids and an attention
mask of a tokenized text it returns a value between 0.0 and 1.0, signifying its
predicted irony value for the tokenized text. However, what threshold or cutoff
value between 0.0 and 1.0 that determines whether the input is classified as ironic
or not needs to be determined and is likely unique for each of the three models.
In order to determine which threshold value leads to the best model classification
performance, all values between 0.0 and 1.0 in 0.01 increments are tested. There
was no difference between increments of 0.01 and 0.001 for values in terms of
classification results.

5.1.1 Models’ Metrics
The validation set which consists of comments and the article from a corona pol-
itics topic post, has a percentage of irony at 6.79 percent, which is more than
2 percent lower than the corona politics dataset, but 1 percent higher than the
all topic dataset. Its high comment uniqueness and complexity compared to the
datasets makes it a rather difficult dataset to accurately classify, and all of the
models will therefore likely perform badly. With more, varied and complex data
in the datasets for the models to train on, they would likely perform better.

Validation Dataset
Distribution Amount
Total Comments 283
Non-Ironic Comments 265
Ironic Comments 18
Ironic Percentage 6.792

Table 5.1: The validation set’s metrics
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In the graph of accurately classified ironic comments, otherwise referred to as
true positives, at value 0.0, all 18 comments are classified as ironic, but so are all
non-ironic, as shown in the graph of false positives. While the all topic and long
models immediately wrongly classify a few ironic comments, they do so in slower
increments as the threshold values increases. The corona politics short however,
retains almost all of the true positives, until about 0.24, where it reaches 0 true
positives. The same happens to the false positives graph for the same model,
showing that the corona politics short model predicts no comment’s ironic value
to be above 0.24, and that its volatile nature indicates that it struggles to sepa-
rate ironic comments from non-ironic comments. Its unique results compared to
the other models is likely due to its smaller dataset and non-contextual encoding.

Figure 5.1: Graph of the number of true positive predictions given classification threshold values
by the three models on the validation set

As assumed, all of the models have a higher false positive number than true posi-
tives for all except very high value thresholds. Notably, the false positive classifi-
cation number for the long model immediately drops significantly below the two
other models until significantly higher values. It seems that the long model out-
performs the other models at low threshold values, but is beaten the by non-topic
short model at threshold values above 0.5.
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Figure 5.2: Graph of the number of false positive predictions given classification threshold values
by the three models on the validation set

This is even more apparent when looking at the distance between true positives
and false positives for each threshold value. Calculated as the absolute value of
true positives minus false positives. In this graph it is shown that the long model
has comparatively a significantly smaller distance between wrong and correct clas-
sifications compared to the non-topic short model, until about threshold value 0.5.
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Figure 5.3: Graph of the numerical difference between the TP and FP number predictions given
classification threshold values by the three models on the validation set

Comparing the specific numbers for true positives and false positives for each
value we can see the extreme drop of 18/265 to 17/35 with only a 0.01 value dif-
ference for the long model, while its short counterpart remains at 18/265 and the
non-topic short model only drops to 17/207.

Spesific TP and FP Results
Irony
Threshold

TV2FacebookCoro-
naPoliticsIrony-
LongNorBERT2

TV2FacebookCoro-
naPoliticsIronyNor-
BERT2

TV2Face-
bookIronyNor-
BERT2

Value TP/FP TP/FP TP/FP
0.0 18/265 18/265 18/265
0.01 17/35 18/265 17/207
0.02 15/28 18/265 16/136
0.03 15/26 18/265 12/106
0.04 13/19 18/220 11/84
0.05 10/18 17/152 8/68
0.06 8/16 14/106 8/58
0.07 8/16 14/89 7/54
0.08 8/14 13/77 7/50
0.09 7/14 13/65 7/42
0.1 7/14 13/56 7/37
0.11 7/14 11/52 7/33
0.12 7/14 11/48 6/29
0.13 7/14 11/41 6/28
0.14 7/14 10/36 6/26
0.15 7/13 10/32 6/26
0.16 6/13 9/29 6/25
0.17 6/12 9/28 6/25
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0.18 6/12 8/23 6/25
0.19 6/10 6/23 6/24
0.2 6/10 6/21 6/22
0.21 6/10 5/16 5/21
0.22 5/10 4/11 5/19
0.23 4/10 2/7 5/19
0.24 4/10 2/4 5/19
0.25 3/10 1/3 5/17
0.26 3/10 0/0 5/17
0.27 3/10 0/0 5/16
0.28 3/10 0/0 4/15
0.29 3/10 0/0 4/15
0.3 3/10 0/0 4/15
0.31 3/10 0/0 4/14
0.32 3/10 0/0 4/13
0.33 3/10 0/0 3/12
0.34 2/10 0/0 3/12
0.35 2/10 0/0 3/12
0.36 2/9 0/0 3/12
0.37 2/8 0/0 3/12
0.38 2/8 0/0 3/11
0.39 2/8 0/0 3/11
0.4 2/8 0/0 3/11
0.41 2/8 0/0 3/11
0.42 2/8 0/0 3/11
0.43 2/8 0/0 3/11
0.44 2/8 0/0 3/9
0.45 2/8 0/0 3/9
0.46 2/8 0/0 3/8
0.47 2/8 0/0 3/8
0.48 2/8 0/0 3/7
0.49 2/8 0/0 3/7
0.5 2/8 0/0 3/6
0.51 2/8 0/0 3/6
0.52 2/8 0/0 3/6
0.53 2/8 0/0 3/6
0.54 2/8 0/0 3/5
0.55 2/7 0/0 3/5
0.56 2/6 0/0 3/5
0.57 2/6 0/0 3/4
0.58 2/4 0/0 3/3
0.59 2/4 0/0 3/3
0.6 2/4 0/0 3/3
0.61 2/4 0/0 2/3
0.62 2/4 0/0 2/3
0.63 2/4 0/0 2/3
0.64 2/4 0/0 2/3
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0.65 2/4 0/0 2/2
0.66 2/4 0/0 2/2
0.67 2/4 0/0 2/2
0.68 2/4 0/0 2/2
0.69 2/4 0/0 2/2
0.7 2/4 0/0 2/2
0.71 2/3 0/0 2/2
0.72 2/2 0/0 2/2
0.73 2/2 0/0 2/2
0.74 2/2 0/0 2/2
0.75 2/2 0/0 2/2
0.76 2/2 0/0 2/2
0.77 2/2 0/0 2/2
0.78 2/2 0/0 2/2
0.79 2/2 0/0 2/2
0.8 2/2 0/0 2/2
0.81 2/2 0/0 2/2
0.82 2/2 0/0 1/2
0.83 2/1 0/0 1/2
0.84 2/1 0/0 1/2
0.85 2/1 0/0 1/2
0.86 2/1 0/0 1/2
0.87 2/0 0/0 1/2
0.88 2/0 0/0 1/2
0.89 1/0 0/0 1/2
0.9 1/0 0/0 1/1
0.91 1/0 0/0 1/1
0.92 1/0 0/0 1/1
0.93 1/0 0/0 1/1
0.94 1/0 0/0 1/1
0.95 1/0 0/0 1/1
0.96 1/0 0/0 1/1
0.97 1/0 0/0 0/1
0.98 1/0 0/0 0/0
0.99 1/0 0/0 0/0
1.0 0/0 0/0 0/0

The observation of the long model’s superior early performance is further cor-
roborated by looking at the graphs for the other evaluation metrics; F1 score,
precision, recall, accuracy and the ROC curve.



5.1 Results and Analysis 47

Figure 5.4: Graph of the accuracy of predictions given classification threshold values by the
three models on the validation set

Figure 5.5: Graph of the F1 scores the of predictions given classification threshold values by
the three models on the validation set
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Figure 5.6: Graph of the precision of predictions given classification threshold values by the
three models on the validation set

Figure 5.7: Graph of the recall of predictions given classification threshold values by the three
models on the validation set
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Figure 5.8: Graph of the relation between the true postive rate and false positive rate of
predictions given classification threshold values by the three models on the validation set

5.2 Discussion
When comparing the long model to the all topic short model to determine which
performs the best, the ratio of how much a true positive is worth compared to a
false positive becomes a critical question. The all topic model notably has about
3 percent lower ironic comments in its dataset, which may have a large affect with
such small datasets. Though, it outperforms at higher values, but at these val-
ues it only predicts 3 or less out of the 18 ironic comments. These comments as
seen in the figure below are also some of the shorter, easier and more linguisti-
cally ironic comments among the 18 ironic comments in the validation dataset.

TV2 All Topic Short Model
Comment Text Prediction
Du skriver som du har vett til. 0.965
Ja, helt sikkert 0.813
J-vla effektive vaksiner de har gitt oss!! 0.603

Table 5.3: Caption

A recommendation tool that only accurately recommends ironic comments 3/18
of the time, but only wrongly recommends non-ironic comments 3/265 of the time,
is less useful than one that wrongly predicts 35/265 of the time but also accu-
rately predicts 17/18 of the time ironic comments. As deduced from the labelling
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process, it is far often clearer that a comment is non-ironic than vice versa. If a
person has to analyze almost all recommendations to see if they contain irony as
they know the model will wrongly recommend 15/18 of the ironic comments, it
will take more focus and time then knowing almost all ironic-comments will be
accurately recommended and only wrongly predict non-ironic comments needs to
quickly analyzed to determine they are non-ironic.

With this in mind, the artefacts intended environment and purpose of saving
a manual moderator time and mental processing capacity, it could be argued that
the long model significantly outperforms the all topic model. Due to the long
model’s dataset being smaller than the all topic model’s dataset, its superior clas-
sification ability could be argued to be an indication that context encoding, which
also encompasses the linguistic patterns, is a greater method of creating datasets
for the training of irony detection models.

Revisiting the research questions from 1.3, while the results taken at face value
show that context encoding and topic diversity increase accuracy to a significant
degree, the overfitting of the model they are compared to make this conclusion less
reliable. Especially in the measurement of degree of better or worse performance.
In order to have a more solid answer to these research questions, larger datasets
and more trained models are required to compare, which was not possible under
the circumstances of this thesis.
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Conclusions and Future Work

6.1 Conclusions
The datasets used for the models compared to contemporary state of the art
model datasets, are too small and the range of topics included compared to the
total amount of topics TV2 Nyheter regularly posts articles about, are too nar-
row. And there are several threats to the results’ validity. However, I think the
results are sufficient enough to suggest that a context encoded fine-tuned long
model performs better than a non-context encoded short fine-tuned model in at
least the aspect of irony text classification. And that there is not much that sug-
gests that this behaviour will not be present at larger scales. However, to what
degree a context-encoded model outperforms a non-context-encoded model is un-
certain, though longformer models in the original longformer paper only had a
slightly better performance on for instance the wikihop dataset than RoBERTa
512 token limit model, as seen in 3.4 [2]. And whether the exponentially longer
training times required to train them are worth the higher performance is also
trade-off to consider.

6.2 Future Work
There are lot of potential improvements and extensions to this technique, and
combinations of the cutting edge NLP machine learning technology that remains
to be explored.

6.2.1 Larger Datasets
Whether context-encoding works and to what degree it scales with larger datasets
is a useful question to answer for large scale company automatic moderation. For
instance training long models such as the longformer-base-4096, longformer-large-
4096, or a long version of the RoBERTa model, such as xlm-roberta-longformer-
base-4096 on a more readily available and larger English dataset with context-
encoded inputs, would likely shed some light on the scalability of this dataset
encoding technique [2] [? ].
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6.2.2 Induvidual Detection
Another method of increasing classification accuracy is either training separate
models for separate comment authors, or including some identification in the
dataset inputs to encode the author of each input. This would allow a trained
model to understand individual’s styles of irony. While this method could poten-
tially increase accuracy by a worth-while amount, it is a strict violation of the
previously stated GDPR privacy values, and is therefore ethically questionably in
its worth of implementation [? ].

6.2.3 Multi-Label
Multi-label text classification is a method of classification that allows you to assign
an input multiple labels. This could be used to have more graded and nuanced
classification of irony with multiple irony sub-categories. Similar to what is done
in Detecting and Grading Hateful Messages in the Norwegian Language [? ].

6.2.4 Multi-Modal
Multiple potentially useful types of data included in a Facebook posts were not
used, such as reactions, which can be used to gauge the viewer’s general sentiment
towards a post or comment, but also images, GIFs and videos. As mentioned in
3.3, using the multi-modal technology, images and by extension GIFs and videos,
reaction numbers or other numerical data, can be combined with the text to make
more data rich inputs [? ]. And there are papers that claim that multi-modal
models are significantly better [7].

6.2.5 Dialect
A way to improve the disruptions caused by the language issues described in 3.2,
is to pre-train a model on the domain you are attempting to detect language
phenomena in, instead of fine-tuning on it. Though, Facebook’s terms of service
and robot.txt disallow automatic gathering of data which is needed to realistically
make a large enough corpus to pre-train a language model [19]. However, other
website with comment sections that contain dialect, slang, mixed languages and
malformed grammar, which allow large scale data scraping, could pre-train a
model specific to their site’s comment section.

6.2.6 Other Sentiments and Contexts
The dataset encoding technique of separating chaining elements of text that re-
late to one another, such as article, comment and reply to comment. Can be
applied to other contexts, such as messages that respond to each other or sen-
tences in a book. In the case of automated moderation, it remains to be seen,
but would likely have a similar performance to irony if applied to other complex
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sentiments, for instance, insults, threats and discrimination. With technology ca-
pable of training a model with longer input limits than 1024, data such as the
contents of links in comments or entire sequences of an article, its comments and
their replies could be encoded as one input, which may lead to higher accuracy.



54 Conclusions and Future Work



Bibliography

[1] adamwawrzynski (2020), longformer github. 4.1

[2] Beltagy, I., M. E. Peters, and A. Cohan (2020), Longformer: The long-
document transformer, arXiv:2004.05150. (document), 2.2.3, 2.10, 4.1, 6.1,
6.2.1

[3] Colebrook, C. (2004), Irony, Routledge. 2.1.1

[4] Curiousily (2021), Multi-label text classification with bert and pytorch light-
ning. 4.3

[5] Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2019), Bert: Pre-
training of deep bidirectional transformers for language understanding. (doc-
ument), 2.2, 2.5, 2.6, 2.2.1, 2.2.3

[6] Hochreiter, S., and J. Schmidhuber (1997), Long short-term memory, Neural
computation, 9, 1735–80, doi:10.1162/neco.1997.9.8.1735. 2.2

[7] Huang, Y., C. Du, Z. Xue, X. Chen, H. Zhao, and L. Huang (2021), What
makes multi-modal learning better than single (provably). 6.2.4

[8] ibeltagy (2020), longformer github. 3.5, 4.1

[9] Khare, Y., V. Bagal, M. Mathew, A. Devi, U. D. Priyakumar, and C. V. Jawa-
har (2021), MMBERT: multimodal BERT pretraining for improved medical
VQA, CoRR, abs/2104.01394. 3.3

[10] Merriam-Webster (2022), Irony. (document), 2.1.1, 2.2

[11] Merriam-Webster (2022), Sarcasm. (document), 2.1.1, 2.3

[12] Ministry of Culture and Equality (2020), Act relating to the editorial in-
dependence and liability of editor-controlled journalistic media (the media
liability act). 1.1

[13] Ministry of Foreign Affairs (2020), International efforts to promote freedom
of expression and independent media). 1.1

[14] Nilsen, D., and A. Nilsen (2021), Irony, the many types: Irony vs. satire and
paradox, linguistic irony vs. situational irony, stable vs. observable irony,
dramatic irony, tragic irony, dark irony, and visual irony. 2.1.1



56 BIBLIOGRAPHY

[15] Patel, D., P. Raval, R. Parikh, and Y. Shastri (2020), Comparative study of
machine learning models and bert on squad. (document), 2.2, 2.4

[16] Potamias, R. A., G. Siolas, and A. G. Stafylopatis (2020), A transformer-
based approach to irony and sarcasm detection - neural computing and ap-
plications. (document), 1.2, 2.1.1, 2.2.1, 2.8, 3.1

[17] Rogers, A., O. Kovaleva, and A. Rumshisky (2021), Primer in bertology:
What we know about how bert works. 2.2.1

[18] Schuster, M., and K. Paliwal (1997), Bidirectional recurrent neural networks,
IEEE Transactions on Signal Processing, 45(11), 2673–2681, doi:10.1109/78.
650093. 2.2

[19] TV2 (2022), Tv 2 nyheter. 1.3, 6.2.5

[20] Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin (2017), Attention is all you need. (document),
2.2.1, 2.7, 2.2.3

[21] Williamson, K., and G. Johanson (2018), Research methods: Information,
systems, and contexts, Chandos Publishing. (document), 3, 3.1, 3.1

[22] Wilson, D., and D. Sperber (2012), Explaining irony, pp. 123–145, doi:10.
1017/CBO9781139028370.008. (document), 2.1.1, 2.1

[23] Zaheer, M., G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontañón,
P. Pham, A. Ravula, Q. Wang, L. Yang, and A. Ahmed (2020), Big bird:
Transformers for longer sequences, CoRR, abs/2007.14062. 4.1



Model and Python Files

As the model files are larger than the allowed upload size for appendix files, they
have been compressed and uploaded using Git LFS on a public github repository:
https://github.com/ThorTheStone/Irony-Detection-Master-Thesis-Files

• create_long_model.py, a file that converts a 512 token limit BERT
model to 1024 token limit long BERT model.

• long_text_classification_trainer.py, a file that fine-tunes a 1024 token
limit long BERT model for ForSequenceClassification of irony on a CSV file
dataset using sharded distributed data parellel on two GPUs.

• long_text_predicter.py, Uses a 1024 token limit long fine-tuned BERT
model to make predictions on a CSV validation dataset, and stores the
results as a CSV.

• short_text_classification_trainer.py, a file that fine-tunes a BERT
model for ForSequenceClassification of irony on a CSV file dataset.

• short_text_predicter.py, Uses a fine-tuned BERT model to make pre-
dictions on a CSV validation dataset, and stores the results as a CSV.

• calculate_prediction_metrics.py, a file that contains code for calculat-
ing and showing graphs of various metrics of the predictions made by one or
multiple models from CSV prediction files.

The files use the Python transformers package version 4.18.0 and torch ver-
sion 1.11.0, with small modifications to the sharded.py file, as problems with the
detection of the Python package fairscale occured.
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