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a b s t r a c t

For many decades, the clinical unmet needs of primary Sjögren’s Syndrome (pSS) have been left unre-
solved due to the rareness of the disease and the complexity of the underlying pathogenic mechanisms,
including the pSS-associated lymphomagenesis process. Here, we present the HarmonicSS cloud-
computing exemplar which offers beyond the state-of-the-art data analytics services to address the
pSS clinical unmet needs, including the development of lymphoma classification models and the identi-
fication of biomarkers for lymphomagenesis. The users of the platform have been able to successfully
interlink, curate, and harmonize 21 regional, national, and international European cohorts of 7,551 pSS
patients with respect to the ethical and legal issues for data sharing. Federated AI algorithms were trained
across the harmonized databases, with reduced execution time complexity, yielding robust lymphoma
classification models with 85% accuracy, 81.25% sensitivity, 85.4% specificity along with 5 biomarkers
for lymphoma development. To our knowledge, this is the first GDPR compliant platform that provides
federated AI services to address the pSS clinical unmet needs.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Primary Sjögren’s Syndrome (pSS) is a chronic systemic autoim-
mune disease which is characterized by a wide spectrum of clinical
manifestations varying from mild disease limited to exocrine
glands to severe multi-systemic involvement [1–3]. According to
the literature [1–5], pSS has the most unbalanced gender ratio with
almost 10 females affected per 1 male while the development of B-
cell non-Hodgkin lymphoma (NHL) complicates about 5% of
patients during the disease course [1–5]. Female preponderance,
peri-epithelial lymphocytic infiltration of the affected organs, B-
cell hyperactivity manifested as hypergammaglobulinemia, as well
as, activation of interferon and B-cell activating factor pathways
are considered hallmarks of the disease. Although the cause of
pSS remains unknown, the disease develops in the context of
genetic, environmental, and immune factors. In fact, pSS is unique
not only due to its clinical impact but also as one of the few disease
‘‘models” linking autoimmunity with cancer and especially lym-
phoproliferative disorders. As in other systemic autoimmune or
neoplastic diseases, the lack of patient stratification models in
pSS: (i) increases the risk of producing unsatisfactory or sub-
optimal results in clinical trials employing novel and expensive
drugs, and (ii) hampers the definition of evidence-based health
policies. These two issues are related with the unmet needs in
pSS which involve the development of robust lymphoma classifica-
tion models and the extraction of biomarkers.

Only a few relevant studies have been reported in the literature
concerning the design and application of lymphoma classification
models, as well as, the discovery of biomarkers for lymphoma
development and progression. Most of these studies adopt univari-
ate and multivariate statistical methods [6–8] to identify indepen-
dent factors for lymphoma development which in turn are utilized
as independent variables for regression analysis with the depen-
dent variable being set to lymphoma. A more straightforward
method for the detection of risk factors was presented in two stud-
ies [9,10], where the fast correlation-based filter selection (FCBF)
method was deployed to identify robust independent factors for
lymphoma development, following a logistic regression analysis.
Furthermore, supervised machine learning methods [11–15], such
as, the supervised tree ensembles, the Support Vector Machines
(SVMs), and the artificial neural networks (ANNs) have been uti-
lized in the literature for the development of robust lymphoma
classification models in pSS with adequate performance. However,
these studies have poor statistical power due to the reduced pop-
ulation size, since they adopt either a single cohort analysis
472
approach in [11–13] or a small-scale but straightforward analysis
typically involving no more than four cohorts in [14,15].

The reduced quality and the structural heterogeneity of the
existing cohort databases along with the lack of data curation
pipelines obscure the development of robust AI models and the
detection of biomarkers. According to the literature, the existing
platforms and tools for data curation focus on the development
of qualitative approaches, such as, the ExeTera software [16] which
provides data filtering options based on semantic information, and
the dementias platform UK (DPUK), where emphasis is given on
the definition of standard data quality criteria [17]. Regarding data
harmonization, the existing tools are semi-automated and disease-
specific, focusing on the extensive collaboration of the clinician
with the technical experts. The DataSHaPER [18] uses a
DataSchema as a reference model to harmonize heterogeneous
data structures through the manual definition of elements and
rules for terminology mapping across biobanks. Furthermore, the
BiobankConnect software [19] points particular emphasis on the
application of lexical matching to identify lexically matched termi-
nologies across biobanks. The SORTA tool [20] utilizes ontologies to
align terminologies with conceptual similarity across diverse
ontologies and particularly in biobanks.

Apart from data harmonization, the lack of GDPR compliant and
cross border data sharing mechanisms has a direct effect on the
statistical power of the cohort studies. The conventional data inte-
gration strategy, where patients’ data from different clinical cen-
ters are integrated into a centralized database is not always
feasible neither viable due to legal violations and security compro-
mise attempts that will expose the patient data. The euroCAT plat-
form [21,22] offers a distributed learning framework for the
development of multi-centric models through the installation of
local servers on the hospital’s premises. The PHT platform [23]
adopts a similar methodology for distributed analysis through
the training of distributed logistic regression models with ade-
quate performance. In another study, four cohorts were analyzed
in a distributed manner yielding lymphoma classification models
with more than 85% sensitivity and specificity but with reduced
statistical power [15]. Thus, the existence of a platform which
adopts a federated data management strategy that avoids the
installation of local servers in the hospitals’ premises and enables
the sharing of sensitive data from multiple cohorts with heteroge-
neous structure remains a crucial challenge.

Towards this direction, we present the HarmonicSS platform, a
highly scalable and GDPR compliant cloud computing infrastruc-
ture which offers beyond the state-of-the-art services for federated
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data storage, curation, and harmonization, as well as, trustworthy
and explainable federated AI (Artificial Intelligence) modeling
workflows, which are in line with the EU data protection regula-
tions for novel infrastructures, data spaces, data platforms and AI
tools [24,25]. Τhe platform was developed under the HarmonicSS
EU funded project (HARMONIzation and integrative analysis of
regional, national and international Cohorts on primary Sjögren’s
Syndrome (pSS) towards improved stratification, treatment and
health policy making) [7,9–12,14,15] and removes the need for
the installation of local servers or any type of software in each site
through the adoption of a federated data management platform
which supports a large family of federated AI algorithms yielding
interpretable and explainable AI models. Data curation workflows
are utilized on the cohort data to enhance their quality along with
lexical and semantic interlinking mechanisms to enable data har-
monization. A large-scale case study was conducted to address
the clinical unmet needs in pSS through the federated analysis of
21 European cohorts on pSS. Through the platform, the users were
able to curate and harmonize 7,156 patient records yielding robust,
explainable, and trustworthy AI models for lymphoma classifica-
tion along with five biomarkers for lymphoma development with
small execution time complexity. To our knowledge, this is the first
GDPR compliant and federated cloud computing platform which
provides easy to use services, to address the clinical unmet needs
in pSS.
2. Materials and methods

2.1. Overview

The HarmonicSS platform includes a wealth of harmonized
cohort databases on top of which the core modules operate. The
main architectural components (or core modules) of the Har-
monicSS platform have been designed according to a hierarchical,
top-down approach (Fig. 1) and have been grouped into three lay-
ers, namely: (i) the input layer, (ii) the cohort data management
layer, and (iii) the cohort data analytics layer. The main users of
the HarmonicSS platform are the data provider and the data pro-
Fig. 1. An illustration of the core modules of th

473
cessor. The data provider interacts with the data management
layer which is located on the top of the architecture and includes:
(i) the data sharing assessment module, and (ii) the data sharing
management module. On the other hand, the data processor inter-
acts with the data analytics layer which is located at the bottom of
the architecture and includes: (i) the cohort data harmonization
module, (ii) the federated AI analytics module, and (iii) the visual
analytics and user interfaces module. Depending on the type of
functionality each layer offers, the modules can be also grouped
into two main categories, namely the cohort data governance mod-
ules and the cohort data analytics modules. The former includes
the data sharing assessment and data sharing management mod-
ules, whereas the cohort data analytics modules include the cohort
data harmonization, federated AI analytics, and visual analytics
and user interfaces modules.

The data sharing assessment module ensures the GDPR (Gen-
eral Data Protection Regulation) compliance of the cohort data
through the evaluation of the legal and ethical documents of the
data providers who are interested in sharing their data with the
HarmonicSS private cloud repositories. Once the GDPR compliance
is ensured, a data curation workflow is applied to enhance the
quality of the cohort data in terms of accuracy, relevance, and com-
pleteness. The data sharing management module offers a ‘‘hand-
shaking” process which controls the access of the data analytics
services into the private cloud databases. The cohort data harmo-
nization module includes a series of mechanisms for the alignment
of the heterogeneous structures of the curated cohort data accord-
ing to the pSS reference model using semantic matching methods
for cohort data transformation and ontology alignment based on
a knowledge base. The federated AI analytics module supports
the training of supervised machine learning algorithms across
the federated cloud databases towards the construction of explain-
able and trustworthy AI models which are validated on a series of
federated and harmonized testing cohort databases.

The outcomes of the modules from the cohort data manage-
ment layer and the cohort data analytics layer are presented to
the users of the platform through the visual analytics and user
interfaces module. The latter provide highly interactive graphical
user interfaces (GUIs) and visual analytics services, including 3D
e HarmonicSS cloud computing platform.
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visualization methods based on graph theory and query-based
descriptive statistics for subgroup analysis, as well as, prospective
data entry forms which have been properly designed to enable the
inclusion of prospective patient data automatically interlinked
with the corresponding harmonized retrospective data on the fed-
erated databases. The HarmonicSS federated database manage-
ment system is compatible with HL-7 (Health Level 7) data
exchange protocols, including the FHIR (Fast Healthcare Interoper-
ability Resources) [26] which enhances its adaptability and enables
the interlinking of the HarmonicSS data with existing FHIR data-
base management systems. In addition, the harmonized cohort
data meet the principles of findability, accessibility, interoperabil-
ity, and usability (FAIR) [27] and thus can serve as an interconnec-
tion hub with EOSC (European Open Science Cloud) initiatives and
European data spaces for hosting and processing to support
research in autoimmune diseases. The data management system
avoids the use of centralized repositories and data lakes to avoid
the compromise of sensitive data during a privacy breach and
ensure the legal and ethical compliance of data sharing according
to the GDPR.

2.2. Data sharing assessment module

2.2.1. GDPR compliance evaluation (and cross-border sharing)
The data governance framework of the HarmonicSS platform

puts particular emphasis on the legal and ethical compliance of
patient’s data to fulfill the data protection regulations posed by
the General Data Protection Regulation (GDPR) [28]. Towards this
direction, a Data Controllers Committee (DCC) consisting of three
technical and clinical experts was designated to supervise the
GDPR compliance of the legal and ethical documents. These docu-
ments consist of a data protection impact assessment (DPIA) and a
data protection agreement (DPA). The GDPR evaluation process is
in concordance with the Article 5 of the GDPR, according to which
the personal data are: (i) processed with respect to the legal regu-
lations and in a secure way, (ii) adequate, (iii) accurate, and (iv)
kept in such a form that they can be identified. The GDPR compli-
ance process is in line with the Articles 16–22 of the GDPR [29]
according to which the data subjects of the HarmonicSS platform
have: (i) the right to be informed about the actions and participate
in any automated decision which involves their data, (ii) the right
to be forgotten, (iii) the right to object and restrict the processing
of their data, and (iv) the right for data portability. Apart from
the GDPR compliance, the HarmonicSS platform has enabled the
cross-border sharing of genetic data samples from the U.S. and par-
ticularly from the OMRF (Oklahoma Medical Research Foundation)
through the data sharing assessment procedure which controls
access to sensitive data according to the HIPAA rules (Health Insur-
ance Portability and Accountability Act) [30]. The data controllers
and the data processors prepare codes of conduct with respect
to: (i) the collection of personal data, (ii) the pseudonymization
of personal data (data protection by design), (iii) the legitimate
interests pursued by the data controllers, (iv) the transparency
and fairness in data processing, and (v) data minimization (data
protection by default), among others. The platform poses rules on
data de-identification giving emphasis on protection safeguards,
such as, data minimization, consent forms, employment of data
protection officers for ensuring the GDPR compliance, all of them
with respect to the individual rights who has the right to be forgot-
ten. All patients who participated in the HarmonicSS project ful-
filled the 2016 EULAR/ACR classification criteria for Sjogren’s
syndrome as described in Shiboski et al. [31].

2.2.2. Secure sharing of the cohort data
Upon the GDPR compliance of the DPIA and DPA documents, the

pseudonymized patient data are uploaded into secure private data-
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bases within the Greek Research and Technology Network (GRNET)
cloud infrastructure. The NextCloud [32] file hosting service was
used to develop the federated database management systemwhich
was built on top of the cloud infrastructure to provide private
cloud databases (and private cloud spaces, as well) for each data
provider, as well as, to ensure the secure access of the federated
data analytics services to each private cloud database. Through
the NextCloud [32], the services of the data sharing assessment
module can be easily integrated into any cloud infrastructure that
fulfills the legal and ethical criteria for data sharing. Both the raw
cohort data and the curated cohort data, as well as, the harmonized
cohort data are stored in these private cloud databases. The data
providers manage their private cloud spaces, similarly to the Goo-
gle Drive, for personal use. SSL/TLS communication protocols were
used for the communication with the private database of each data
provider.

2.2.3. Data quality assessment
2.2.3.1. Metadata extraction and outlier detection. Useful metadata
were automatically extracted from the 21 cohort databases,
regarding the names of the available features and the value ranges,
followed by a short description of the clinical domain knowledge.
Then, the data curation workflow ensures that the structure of each
shared dataset fulfills the following requirements: (i) the shared
pseudonymized data are stored in a tabular format, (ii) each row
in the tabular format corresponds to a patient record, and (iii) each
column in the tabular format corresponds to a feature (e.g., a lab-
oratory examination). The outlier detection stage of the data cura-
tion workflow involves the accurate detection and subsequent
elimination of feature values that significantly deviate from the
standard distribution of the clinical data either on a univariate or
on a multivariate level. The univariate methods involve the appli-
cation of the z-score and the Interquartile Range (IQR) [33] mea-
sures. The multivariate outlier detection methods involve the
application of the isolation forests [34–36] and the local outlier
factor (LOF) [34–36]. Isolation trees are binary trees, where
instances are recursively partitioned and produce noticeable
shorter paths for anomalies since: (i) in the regions occupied by
anomalies, less anomalies result in a smaller number of partitions
– shorter paths in a tree structure, and (ii) instances with distin-
guishable attribute-values are separated early in the partitioning
process [34–36]. Given a feature vector x from a larger set of n-
input feature vectors, say X ¼ fx1; x2; � � � ; xng, the anomaly score is
defined as in [34,36]:

s x;Mð Þ ¼ 2�EðhðxÞÞ
cðMÞ ; ð1Þ

where M is the number of samples, cðMÞ the average path length of
unsuccessful searches similar to the Binary Search Trees, hðxÞ is a
harmonic number which is defined as lnðxÞ plus the Euler’s con-
stant, and Eðh xð ÞÞ is the average of hðxÞ from a collection of isolation
forests. Samples with scores very close to 1 are marked as anoma-
lies, whereas samples with scores smaller than 0.5 are inliers. The
Local Outlier Factor (LOF) [34,36] was also used as a density-
based approach which measures the local density of a given data
point with respect to its neighboring points, where the number of
nearest neighbors determines the accuracy of the model. For a data
point q 2 x, the local reachability density of q, lrdðqÞ, is defined as
[36]:

lrd qð Þ ¼ kNkðqÞkP
q02NkðqÞrðq; q0Þ ; ð2Þ

where Nk qð Þ is the set of k-nearest neighbors for q, and rðq; q0 Þ is the
reachability distance which is defined as the distance between x
and its k-nearest neighbor.
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2.2.3.2. De-duplication. De-duplication is a critical stage of the data
curator which involves the detection of highly correlated pairs of
features, as well as, features with common sequences of characters.
Towards this direction, the Spearman rank-order correlation coef-
ficient was used to detect features with increased similarity in
terms of distribution overlap. The Levenshtein distance score [34]
was used to quantify the string similarity between each pair of fea-
tures by calculating the edit distance between each pair of feature
labels. The edit distance aims to calculate the number of different
characters to transform one label into another by performing three
types of operations, namely: (i) insertion, (ii) deletion, and (iii) sub-
stitution. Thus, the number of minimum operations determines the
number of different characters among them and thus their lexical
similarity.

2.2.3.3. Final annotation and data quality approval. A data evaluation
report was generated, where the available features within the raw
cohort data were classified according to their quality status into
three types, namely the: (i) ‘‘bad” features (having more than
50% missing values), (ii) ‘‘good” features (no missing values), and
(iii) ‘‘fair” features (having less than 50% missing values). The ‘‘bad”
features are excluded from the analysis. Features with detected
outliers and/or unknown data types are marked to be excluded
from the analysis. The cohort data curation workflow can be recur-
sively applied until the cohort data quality metrics (completeness,
conformity, and relevance) are fulfilled. The data evaluation report
along with the curated cohort data were finally stored in the pri-
vate cloud spaces which are linked with each individual cohort
database.

2.3. Data sharing management module

The data sharing management module is responsible for: (i)
handling the requests for cohort data access that are made by
the data processors through the application of the data analytics
services (this process is referred to as ‘‘handshaking”), and (ii) pro-
viding regular reports to the data providers regarding the usage of
the cohort data. The ‘‘bring the analysis to the data” design is
adopted according to which the data never leave from their private
cloud spaces during when a data analytics workflow takes place. In
the HarmonicSS platform, a federated data analytics workflow is
executed only when the data provider approves the request that
is sent by the data processor who invokes this workflow. Thus,
when a data processor wishes to train a lymphoma classification
model across multiple cohorts, the handshaking service informs,
in real time, the data providers who own these cohort databases
for this specific request. Thus, the data processor can only proceed
with the analysis of those cohort databases whose data providers
have approved this request.

2.4. Cohort data harmonization module

2.4.1. Construction of the pSS reference ontology
The core of the cohort data harmonization process is based on

the use of the pSS reference ontology [37]. The latter is a hierarchi-
cal data model which consists of classes, subclasses and object
properties which capture the clinical domain knowledge of pSS.
The reference ontology was constructed in cooperation with the
clinical experts to reflect the minimal requirements of the pSS
domain, i.e., a set of clinical, demographic, laboratory and
therapeutic-related parameters which describe the inclusion crite-
ria for pSS. The pSS reference ontology includes 5 main classes (i.e.
demographics, therapies, biopsies, medical conditions, laboratory
tests) with more than 150 terminologies and was expressed into
a .RDF (Resource Description Framework)/.OWL (Web Ontology
Language) format to enhance its sustainability and expandability
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for the easier integration with healthcare data management sys-
tems that support the HL70s FHIR (Fast Healthcare Interoperability
Resources) protocol [38].

2.4.2. Semantic matching and data standardization
Based on the metadata extracted from each cohort, an ontology

was constructed to represent the structure of each cohort as an
hierarchical data model (Fig. 2) through the definition of entities,
data properties (data types) and object properties (hierarchical
relationships), using Protégé [39]. The extracted metadata include
information regarding the terminologies, the range values, and a
short description of each concept. The pSS reference ontology from
Section 2.4.1 was utilized as a gold-standard data model to align
the structure and the range values of the individual ontologies.
More specifically, the terminologies of the individual ontologies
were semi-automatically matched with those from the pSS refer-
ence ontology through the definition of pairing rules according to
clinical guidance, as well as, through the suggestion of relevant
matches. Upon the precise definition of the pairing rules, the range
value of each matched terminology was standardized through an
additional computational procedure which involves the alignment
of the heterogeneous value ranges in each individual ontology with
the pre-defined range values in the pSS reference ontology which
was expressed into the form of a mapping file (similar to a .log file)
which was stored in the secure private cloud space of each cohort.
The data access handler (Fig. 2) was used to monitor the data
access as part of the data sharing management module
(Section 2.3).

2.4.3. Harmonized cohort data storage
In the final stage of the cohort data harmonization process, the

mapping files of each individual cohort was used to align the struc-
ture of the cohort data yielding the harmonized cohort data (Fig. 2).
The latter were stored in secure private cloud databases within the
HarmonicSS cloud computing infrastructure. The private cloud
databases are also referred to as federated databases. The latter
were developed in SPARK-SQL (Structured Query Language) where
secure communication protocols were established to enable easier
data access and management under a virtual private network
(VPN) connection.

2.5. Federated AI analytics module

2.5.1. Federated AI framework
For a given a set of N-databases, say fD1;D2; � � � ;DNg; a machine

learning algorithm trained on the dataset di 2 Di is updated
through the following function:

F dið Þ ¼ F di�1ð Þ þ bqðdiÞ; ð4Þ
where, F dið Þ corresponds to the estimated ML model which has
been trained on the dataset di, F di�1ð Þ corresponds to the estimated
model which was trained on di�1, qðdiÞ is the learner on dj, and b is a
scalar. A loss function can then be defined in the form L f dið Þ; yið Þ
where f dið Þ is the estimator and yi is the target score. Then, the
stochastic gradient descent (SGD) approach [40] is used to mini-
mize the loss function through the following sequential weight
update process:

w dið Þ ¼ w di � 1ð Þ � bðrwL f dið Þ; yið Þ þ arwrðwÞÞ; ð5Þ
where,rwL f dið Þ; yið Þ is the gradient of the loss function with respect
to w, rðwÞ is a regularization function, rwrðwÞ is the gradient of the
regularization function, a is a hyperparameter, and b is a learning
rate parameter. A pseudocode implementation of the incremental
learning process across N-sites is presented in Algorithm 1. The
algorithm uses as input a set of training cohorts, say train, a set



Fig. 2. An illustration of the cohort data harmonization workflow.
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of testing cohort(s), say test, and an initial supervised machine
learning model (object), say M, which will be used for the design
of federated AI models. To do so, a Central Computing Engine
(CCE) is used to orchestrate the federated AI modeling training
and testing procedure by incrementally transferring the weights
of the AI model which is trained on the first training cohort to the
rest of the training cohorts towards the extraction of the final AI
model which is validated on a set of either one or more testing
cohorts. For this purpose, the CCE was built on top of virtual machi-
nes (VMs) which were utilized in the GRNET cloud infrastructure to
enable the secure access of the AI model’s weights on each cohort
database. For demonstration purposes and according to Fig. 3,
which depicts the federated AI model training and testing work-
Fig. 3. An illustration of the federated AI model training and testing workflow, where the
in this figure legend, the reader is referred to the web version of this article.)
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flow, the set of training cohorts was defined as fA; B;C;D; E; Fg and
the testing cohort was set to fGg. The model M is first loaded into
the Central Computing Engine (CCE) along with the set of training
and testing cohorts. According to the workflow (Algorithm 1,
Fig. 3), the model is trained on the dataset in location PA yielding
the model MA. The model’s weights are incrementally updated on
the training cohorts which are stored in the private locations
PB;PC ;PD;PE;PF yielding the intermediate AI models
MB;MC ;MD;ME;MF . During each iteration, the weights of each
intermediate AI model are stored in the CCE. The model MF is then
returned as the final federated AI model from the training stage
which is used for the validation procedure in the cohorts which
have been parsed as input in test.
testing cohort is depicted in green color. (For interpretation of the references to color
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Algorithm 1. A pseudocode implementation of the federated
AI modeling process.

Input parameters
train = a set of training cohorts which are stored in federated

databases (and private cloud spaces)
test = a set of testing cohort(s) which are stored in federated

databases (and private cloud spaces)
M = an initial supervised machine learning model

1
 def federatedAImodeling

(train ¼ A;B;C;D; E; Ff g; test ¼ Gf g;M):

2
 train the initial modelM on the dataset in location PA and

receive the model MA
3
 store the weights of MA in the Central Compute Engine
(CCE)
4
 for iintrain do:

5
 retrieve weights and send them to location Pi
6
 update the weights of Mi on dataset in location Piþ1

through (5)

7
 store the weights of the model Miþ1 in the CCE for the

update process in the next location

8
 retrieve the final federated model MG from the training

stage

9
 evaluate the performance ofMG on the dataset in location

PG (test)

10
 return MG;
An illustration of the federated AI workflow is depicted in Fig. 3.

2.5.2. Federated AI algorithms
Federated stochastic gradient descent (FSGD) based classifiers
The incremental strategy which is adopted by the federated AI

modeling process (Algorithm 1) offers a unique scalability which
allows us to extend conventional supervised machine learning
classifiers for federated learning tasks. More specifically, the loss
function, L f dið Þ; yið Þ, in (5) can be adjusted to build supervised
machine learning classifiers for federated training and testing. To
develop the federated logistic regression (FLR) classifier we can
replace the regularization term in (3) with the logistic loss
function:

L f dið Þ; yið Þ ¼ ln 1þ exp �yif dið Þð Þð Þ: ð6Þ
In a similar manner, we can develop the federated SVM (FSVM)

algorithm using the hinge loss function:

L f dið Þ; yið Þ ¼ maxð0;1� yif dið ÞÞ ð7Þ
Finally, if we replace the loss function with the Perceptron loss:

L f dið Þ; yið Þ ¼ maxð0;�yif dið ÞÞ ð8Þ
we develop the federated Perceptron classifier and the feder-

ated Multi-layer Perceptron (FMLP).
Federated multinomial Naïve Bayes (FMNB)
In the case of discrete features, the multinomial Naïve Bayes

(MNB) is preferred. Given an N-dimensional input vector, assume
d ¼ ðd1; d2; � � � ; dNÞ, where di is the frequency of an event ei, the
class, say ck, with the highest probability or the maximum a-
posterior (MAP) class, can be solved as a linear function [41] using
the logarithm expression:

cMAP ¼ argmaxck log P ckð Þð Þ þ
XN
i¼1

log P eijckð Þð Þ
" #

: ð9Þ

where P eijckð Þ is the conditional probability of the event ei given the
class ck, and k is the class index.
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Federated gradient boosting trees (FGBTs) with and without
dropouts

In the case of the gradient boosting trees (GBTs) schema, regres-
sion trees ensembles are used as weak learners to minimize the
expected value of the loss function. In the case of the GBTs, we
incrementally seek for the mapper FðxÞ at a stage m, Fm xð Þ [42]:
Fm dið Þ ¼ Fm�1 dið Þ þ pmh di;amð Þ; ð10Þ
where pm is the line search, and h x;amð Þ is a regression tree learner
with parameters am. A crucial problem in GBTs though is the fact
that the trees added early in the ensemble tend to becomemore sig-
nificant in the decision-making process than those added later. A
solution to this issue is to use dropout rates [50], where the dropped
trees and the newly added tree are scaled by a factor which ensures
that the combination of the dropped trees and the new trees have
the same effect on the outcome. To do so, the DART is trained on
random subsets to prevent the definition of trivial trees. For a
model, say Q , where QðdÞ is the prediction for sample d, and
L Q dð Þð Þ is the loss function DART creates the random subset [43]:

d;�rtL Q dð Þð Þð Þf g; ð11Þ
where a new label with values �rdL Q dð Þð Þ is assigned for each

sample d in the training dataset.

2.5.3. Federated AI model explainability and interpretability
The SHapley Additive explanation analysis (SHAP) is a novel

method from coalition game theory which can shed light into an
AI model’s decision-making process [44]. To do so, SHAP utilizes
explanation models that yield interpretable and explainable classi-
fication outcomes. Given a subset of input features, say
P � fd1; d2; � � � ; dZg, from a larger set of K-features fd1; d2; � � � ; dKg,
where Z � K , the SHAP value of a feature dj 2 D, say Sj, is defined
as the overall contribution of this feature to the outcome, as in
[44]:

Sj ¼
X Dj j! P � Dj j � 1ð Þ!

P!
f d D [ df gð Þ � f d Dð Þð Þ; ð12Þ

where, K is the set of all input features, Dj j is the number of features
in D, and f dðDÞ is the expected value of the function conditioned on
P. To deal with the computational burden introduced in Eq. (12), we
adopt an estimation process [45] which reduces the complexity
from OðTL2ZÞ to OðSLD2Þ, where T is the number of trees, L is the
total number of leaves, Z is the number of features, and D is the tree
depth. The cover metric was also used to measure the number of
observations which are related to a particular feature. For each fea-
ture, the relative number of observations is calculated as the num-
ber of splits that this feature participated across each ensemble and
averaged across the training instances on each distributed database.

2.6. Visual analytics and user interfaces module

The visual analytics methods were implemented using the
HealthVision web visualization platform [46] which consists of
visualization and data analysis components that are linked to each
other in reactive workflows. Each component accepts specific
inputs, either from other components or from the user, and pro-
duces outputs that can be used by other components, or renders
visual components (input controls, etc.) on the screen. The user
interface (UI) serves as connecting link between the platform user
and the backend services (Fig. 4). The contribution is shared
between the actual UI client, and the UI backend server. The back-
end server is responsible for orchestrating: (i) access to the REST
(Representational state transfer) services of other users, including
user authentication, execution of data analytics services, data shar-
ing management, etc. (ii) access to the cloud file storage, where the



Fig. 4. An illustration of the UI interactions within the HarmonicSS platform. Green arrows denote secure communication protocols. POST/GET commands refer to REST
service requests. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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backend server handles file transfer to the cloud and manages
directory structures for services that require file uploads via the
user interface, (iii) access to the MySQL databases of prospective
cohort data, where the structured data are stored in SQL (struc-
tured query language) tables with a common database schema
setup. Semantic information, e.g. a patient’s laboratory test’s result,
is also assembled by different queries across several tables.
3. Results

3.1. Cohort data origin

A summary of the overall demographic information from the 21
European databases on pSS is presented in Table 1. The total num-
ber of eligible patients who fulfilled the inclusion criteria was
7,156, where the gender information was recorded for 7,000
patients (6,512 females, 488 males with a female to male ratio
13.34%). The average age at SS diagnosis in the female group was
51.82 (� 13.96) years whereas in the male group the average age
was 54.24 (� 13.77) years.

The lymphoma types include the B-cell Mucosa-associated
Lymphoid Tissue (MALT) Lymphoma, the Diffuse Large B-cell Lym-
phoma (DLBCL), the B-cell Nodal Marginal Zone Lymphoma
(NMZL), the B-cell Splenic Marginal Zone Lymphoma (SMZL), and
other mature B-cell neoplasms. These lymphoma types were
merged into a single lymphoma type with 354 positive lymphoma
patients and 6,802 non-lymphoma (or missing) patients
Table 1
Demographic information.

Demographics Females Males

Gender 6,512 488
Age at SS diagnosis (mean �

std)
51.82 (� 13.96)
years

54.24 (� 13.77)
years

Disease duration (mean) 7.08 years 5.59 years
Female to male ratio 13.34%
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(lymphoma to non-lymphoma ratio 5.2%). The lymphoma distribu-
tion per cohort is summarized in Table 2.

3.2. High quality and harmonized cohort databases

Data curation was applied on each individual cohort database to
automatically remove outliers, data inconsistencies and duplicated
fields. The LOF algorithm was combined with the Isolation Forests
to track down and remove outliers with 90% accuracy and the
Spearman correlation coefficient was combined with the Jaro dis-
tance score to detect duplicated features. Data imputation was
applied only to features with less than 30% missing values as in
[47] upon approval from the clinical experts. Upon the completion
of the cohort data curation process, ontologies were constructed
for each curated cohort database based on the extracted metadata.
Semantic mapping rules were defined between the individual
ontologies and the pSS reference ontology. As shown on Supple-
mentary Table 1, the cohort data harmonization process resulted
in 48 common concepts (or terminological concepts) which consti-
tute the pSS minimal criteria (minimal common data elements)
across the 21 federated cohort databases.

3.3. Federated AI models for lymphoma classification and biomarker
extraction

According to Table 2, the lymphoma over non-lymphoma ratio
was 5.2% which implies a significant population imbalance. To deal
with this, random downsampling with replacement [15] was
applied on each individual training cohort database among the
lymphoma (target group) and the non-lymphoma (control group)
patients. The process was repeated ten times to avoid biases during
the downsampling process. On each iteration, the downsampled
control group was matched with the target group according to
the age, gender, and disease duration using a ratio 1:1 to yield
equally balanced populations. The Wilcoxon Mann-Whitney
rank-sum test was used to evaluate whether the distributions of



Table 2
Distribution of lymphoma and non-lymphoma patients per cohort.

Cohort
acronym

Cohort full name Number of
lymphoma
patients

Number of non-
lymphoma (or
missing) patients

IDIBAPS Consorci Institut
D’Investigacions
Biomediques August Pi I
Sunyer

0 300

UNIPG Università degli Studi di
Perugia

10 166

UPSUd PARIS Université Paris-Sud
(database 1)

24 483

UoB University of
Birmingham

3 156

UNIVAQ Università degli Studi
dell’Aquila

3 97

ULB Université libre de
Bruxelles

1 726

HUA Harokopion University of
Athens

8 151

UMCG University Medical
Center Groningen

20 166

UiB University of Bergen 3 138
UOI University of Ioannina 7 279
UU Utrecht University 14 108
UNIRO Universita’ Degli Studi Di

Roma La Sapienza
14 532

QMUL Queen Mary University of
London

1 47

UMCU Universitair Medisch
Centrum Utrecht

27 313

MHH Medizinische Hochschule
Hannover

5 178

UNIPI Universita di Pisa 31 687
CUMB Charité –

Universitätsmedizin
Berlin

0 71

UBO Université de Bretagne
Occidentale

4 77

UOA National and
Kapodistrian University
of Athens

101 488

AOUD Azienda Sanitaria
Universitaria Integrata di
Udine

16 281

UNEW University of Newcastle 62 1358
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the age and disease duration did not significantly deviate between
the target group and the downsampled control group whereas the
chi-square test was used for gender matching. The classification
performance of the federated AI models was assessed based on
the accuracy, sensitivity, specificity, and area under the ROC curve
(AUC).

Four large scale federated lymphoma classification scenarios
were conducted; three scenarios including a common set of train-
ing harmonized cohort databases and three different testing data-
bases, as well as, one scenario with a different set of training
databases and a single testing database. The training set in feder-
ated scenarios 1–3 is {UOA, UNIPI, UNEW, UNIPG, PARIS, UoB, UNI-
VAQ, HUA, UOI, UU, UNIRO, UMCU, MHH, UBO} and the testing set
is {AOUD (scenario 1), UNIPG (scenario 2), HUA (scenario 3)}
whereas the training set in federated scenario 4 is {AOUD, UOA,
UNIPI, UNIPG, UNEW, PARIS, UoB, UNIVAQ, UOI, UU, UNIRO, UMCU,
MHH, UBO, UMCU} and the testing set is HUA. According to Table 3,
the federated tree ensembles achieved better performance against
the FSGD-based methods, such as, the FMNB and the FMLP, since
the latter focus on the direct update of the weights of a linear loss
function, without controlling for overfitting effects, their perfor-
mance tends to be lower than in the case of the federated tree
ensembles which utilize boosting to avoid overfitting.
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According to Fig. 5, the ROC curves confirm the favorable per-
formance of the FDART along with the FGBTs, in all cases, where
the FDART with dropout rate 0.4 achieved the best performance
in federated scenario 1 (accuracy 0.85, sensitivity 0.81, specificity
0.85). Regarding federated scenario 2, the FDART with dropout rate
0.2 achieved the best performance (accuracy 0.74, sensitivity 0.8,
specificity 0.73). In federated scenario 4, the FDART with dropout
rates 0.1 and 0.2 achieved the best performance (accuracy 0.78,
sensitivity1, specificity 0.76) like the FGBT (accuracy 0.75, sensitiv-
ity 1, specificity 0.74). In the final scenario, the FDART with drop-
out rate 0.3 achieved the best performance (accuracy 0.8,
sensitivity 0.87, specificity 0.79) yielding better sensitivity than
the FGBTs, where the average execution time was 30 s for data
access and training/testing on each harmonized cohort database.
3.4. Biomarkers for lymphoma classification and federated AI model
explainability

The results of the Shapley additive explanation analysis are
depicted in Fig. 6 for the FGBT classifier and in Fig. 7 for the FDART
classifier with dropout rates 0.1–0.5, where the features are ranked
based on their positive or negative impact on lymphoma develop-
ment. Each panel in Fig. 6 reflects the mean Shapley value (i.e., the
average of the marginal contributions across all permutations) for
a feature, in descending order, as well as, whether the impact of a
feature has a positive (left) or a negative (right) value for lym-
phoma development. In Fig. 6, Fig. 7, the color in the distribution
plots denotes whether the importance of the Shapley value is
either low or high and the vertical line corresponds to the base
score of the AI model centered around zero.

According to Fig. 6 and Fig. 7, the feature ‘‘Parotid or Sub-
mandibular swelling” has the highest impact in lymphoma classi-
fication, where its absence has a negative predictive value and
thus decreases the risk for lymphoma development whereas its
presence has a positive predictive value on lymphoma develop-
ment (i.e., the positive samples shift the ground truth to the right).
Features ‘‘Rheumatoid factor”, ‘‘Fatigue”, ‘‘Age of SS diagnosis”,
‘‘Cryoglobulinemia”, and ‘‘Disease duration” come next with favor-
able impact on lymphoma classification. Features ‘‘Low C4”, ‘‘Pal-
pable purpura”, ‘‘Raynaud’s phenomenon”, ‘‘Arthritis” also appear
to be significant in the decision-making process. The importance
of these features is also confirmed by the average coverage of each
federated tree ensemble algorithm during the lymphoma decision-
making process (Supplementary Fig. 1).

The Shapley explanation analysis results for the federated
learning scenarios 2, 3, and 4 are depicted in Supplementary
Figs. 3-4, 5-6, and 7-8, for the FDART and FGBT, respectively.
According to Fig. 6 and Fig. 7, the features ‘‘Parotid or Submandibu-
lar swelling”, ‘‘Rheumatoid factor”, ‘‘Cryoglobulinemia”, ‘‘Age at SS
diagnosis”, ‘‘Fatigue”, and ‘‘Low C4” appear to be prominent for
lymphoma classification. In all cases, patients with parotid or sub-
mandibular swelling, rheumatoid factor, cryoglobulinemia, fatigue
and Low C4 tend to have higher impact for lymphoma develop-
ment since the positive samples shift the ground truth to the right,
thus yielding a positive contribution to lymphoma development.
The same effect occurs in the case where the pSS spatients exhibit
palpable purpura, Raynaud’s phenomenon, and arthritis, as well
(Fig. 6).
4. Discussion

The HarmonicSS cloud computing services delineated the clini-
cal picture and unmet needs of pSS through: (i) the utilization of a
unique data governance framework that enables the extensive
evaluation of the DPA and DPIA documents by the Data Controller’s



Table 3
A summary of the performance evaluation results across the four federated scenarios.

Federated learning schema Performance evaluation metrics

Accuracy Sensitivity Specificity AUC

Federated scenario 1
FGBT 0.84 0.81 0.85 0.89
FDART, rd = 0.1 0.86 0.75 0.87 0.87
FDART, rd = 0.2 0.84 0.62 0.85 0.86
FDART, rd = 0.3 0.83 0.81 0.84 0.89
FDART, rd = 0.4* 0.85 0.81 0.85 0.89
FDART, rd = 0.5 0.83 0.87 0.83 0.88
FMNB 0.51 0.94 0.49 0.71
FMLP 0.64 0.75 0.63 0.69
Federated scenario 2
FGBT 0.71 0.70 0.71 0.73
FDART, rd = 0.1 0.69 0.70 0.69 0.76
FDART, rd = 0.2* 0.74 0.80 0.73 0.79
FDART, rd = 0.3 0.71 0.70 0.71 0.71
FDART, rd = 0.4 0.71 0.70 0.71 0.75
FDART, rd = 0.5 0.71 0.70 0.71 0.76
FMNB 0.63 0.70 0.63 0.66
FMLP 0.68 0.70 0.68 0.69
Federated scenario 3
FGBT 0.75 0.99 0.74 0.89
FDART, rd = 0.1* 0.78 0.99 0.76 0.90
FDART, rd = 0.2* 0.78 0.99 0.76 0.91
FDART, rd = 0.3 0.76 0.99 0.74 0.90
FDART, rd = 0.4 0.71 0.87 0.69 0.86
FDART, rd = 0.5 0.74 0.75 0.74 0.86
FMNB 0.71 0.87 0.70 0.79
FMLP 0.85 0.62 0.87 0.74
Federated scenario 4
FGBT 0.81 0.75 0.81 0.91
FDART, rd = 0.1 0.78 0.87 0.78 0.92
FDART, rd = 0.2 0.80 0.75 0.80 0.91
FDART, rd = 0.3* 0.80 0.87 0.79 0.91
FDART, rd = 0.4 0.80 0.87 0.80 0.90
FDART, rd = 0.5 0.78 0.75 0.78 0.91
FMNB 0.62 0.87 0.61 0.74
FMLP 0.85 0.62 0.86 0.74

* With light blue color: The federated schema with the best performance, rd: dropout rate.
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Committee (DCC) and the secure upload of the GDPR compliant
cohort data in federated databases, (ii) the application of cohort
data curation and harmonization workflows on 21 regional,
national and international European cohorts on pSS yielding
7,156 high quality patient records, and (iii) the utilization of
high-performance federated AI workflows towards the develop-
ment of explainable and trustworthy federated AI models for lym-
phoma classification and biomarker extraction. The data sharing
assessment module can also support cross border data sharing
since it ensures: (i) the secure upload of the legally and ethically
compliant data on the federated databases of the platform using
secure data encryption protocols, and (ii) the secure access of the
data analytics services on the data through the handshaking proto-
col towards the development of trustworthy AI models.

The existing platforms and tools that have been developed for
data curation, harmonization and federated or distributed data
analysis are presented in Supplementary Table 2 and compared
against the core services of the HarmonicSS platform. The existing
studies for data curation focus on the development of software
tools, such as, the ExeTera software [16], where the absence of
quantitative methods for data curation along with the lack of re-
usable quality reports hampers the generalizability of the software.
In addition, the DPUK [17] adopts a qualitative approach based on
quality criteria that are manually defined for each individual data
source. In HarmonicSS, quantitative data curation tools have been
developed to enhance the quality of the data and provide re-usable
reports to the clinicians. Regarding data harmonization, the Data-
SHaPER [18] utilizes ontologies based on the definition of a
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DataSchema which is not widely used as a semantic data model.
The BiobankConnect software [19] focuses on lexical matching
which can lead to information loss when the terminologies are
conceptually similar. The SORTA tool [20] focuses on the alignment
of heterogeneous ontologies through manual semantic interlinking
methods. Contrary to these, the HarmonicSS platform offers a
cohort data harmonization service which uses lexical and semantic
matching to identify terminologies with common lexical and con-
ceptual basis, where the pSS reference model is expressed into a .
RDF/.OWL format. As far as federated/distributed learning is con-
cerned, the euroCAT platform [21,22] requires the installation of
local servers on each hospital’s premises, where the distributed
learning algorithms include Bayesian networks and Support Vector
Machines which were trained across 3 centers to predict dyspnea
yielding modest prediction performance. In the PHT platform
[23], a distributed logistic regression model was trained across 8
sites to predict post-treatment with adequate performance. In
other studies, lymphoma classification models were trained across
4 pSS cohorts for federated lymphoma classification [15] and single
cohorts were used to develop lymphoma classification models
with reduced statistical power [11–13]. The HarmonicSS platform
removes the need for the installation of local servers or any type
of software on premises through the development of a federated
data management system that supports a large family of federated
AI algorithms with small execution time complexity yielding
robust and explainable AI models for lymphoma classification. In
addition, the HarmonicSS platform is cloud agnostic and thus can
be adapted to any cloud infrastructure.



Fig. 5. Receiver Operating Characteristic (ROC) curves for each federated algorithm across the two federated scenarios. From top to bottom: on the left for federated scenario
1 with testing cohorts AOUD, UNIPG, HUA and for federated scenario 2 testing cohort HUA.

Fig. 6. An illustration of the SHAP plot in federated scenario 1 for the FGBT.
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The automated data curation workflow enhanced the quality of
the raw cohort data at a great extent and the cohort data harmo-
nization module enabled the application of semantic interlinking
mechanisms on each curated cohort database yielding harmonized
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cohort databases with 7,156 patients. The federated AI services
provided trustworthy and explainable AI models for lymphoma
classification and biomarker(s) detection, where the federated AI
modeling process is orchestrated by the central computing engine



Fig. 7. An illustration of the SHAP plot in federated scenario 1 for the FDART schemas.
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(CCE). The access of the CCE to each individual harmonized cohort
database is monitored by the data sharing management module to
enhance the trustworthiness of the AI models. So far, the platform
supports six algorithms for federated learning, including the feder-
ated logistic regression, the federated SVM, the federated MLP, the
federated Multinomial Naïve Bayes (FMNB), the federated gradient
boosting trees (FGBT), and the FGBTs with and without dropout
elimination (FDART). The FGBT and the FDART achieved the best
performance for lymphoma classification due to the robustness
of the boosting stages which reduce the classification error on each
stage. The FDART outperformed the rest of the algorithms yielding
lymphoma classification models with average AUC 0.87 across the
scenarios. The dropout rates introduced by the FDART yielded
slightly better performance than the FGBT which confirms that
the dropout elimination can enhance the decision-making process.
The execution time of the federated AI workflows was 30 s (in
average) per database which confirms the small execution time
complexity.

The biomarkers for lymphoma development include parotid or
submandibular swelling, cryoglobulinemia, rheumatoid factor,
and low C4 levels, among others, which have been validated in pre-
vious studies [48–50] highlighting the significance of parotid or
submandibular gland swelling, low C4, rheumatoid factor and
cryoglobulinemia for lymphoma development. In [48,49] salivary
gland swelling and cryoglobulinemia appear to be significantly
higher in pSS patients evolving into lymphoma compared to pSS
controls. In fact, cryoglobulinemia can affect many extraglandular
organs, such as, the kidney, the skin, and the peripheral nerves,
leading to permanent damage. The impact of age of SS diagnosis
was also highlighted as a prominent factor in [9,10], where the
time interval from pSS diagnosis to lymphoma has been stated as
a biomarker for lymphoma prediction. Furthermore, patients with
the presence of parotid or submandibular swelling, rheumatoid
factor (RF), cryoglobulinemia, and low C4 tend to have higher
impact for lymphoma development. This can be confirmed by the
distribution of the samples in Fig. 6 and Fig. 7 which shift the
ground truth to the right direction and thus have a positive predic-
tive value for lymphoma development.

The federated AI workflows which are offered by the platform
are built on top of a federated repository on autoimmune disease
data along with the data curation and harmonization services for
enhancing the quality of the cohort data. These services are exe-
cuted under a PaaS (Platform as a Service) cloud computing model,
which enhances the sustainability of the platform based on three
trajectories: (i) the maintenance of the PaaS operations from a legal
and ethical point of view, (ii) the collaboration among multidisci-
plinary and international partners able to attract funds and invest-
ments from sponsors, and (iii) the implementation of a business
model. The fact that the HarmonicSS platform is compliant with
HL7 standards enhances its applicability to other clinical domains.
The federated data analytics services of the platform can be applied
only on harmonized databases and thus emphasis shall be given
towards the definition of an ontology for the domain of interest.
Apart from the core modules though, the HarmonicSS platform
provides services for health policies impact assessment, associa-
tion rule mining, and query-based knowledge discovery, as well
as, tools for salivary gland ultrasonography image segmentation
and patient selection for multinational clinical trials, and training
material for both clinicians and patient organizations. The platform
can also offer, upon request to the DCC, the option for the extrac-
tion of the anonymized harmonized data to provide the clinicians
with the opportunity to apply statistical analysis and related
approaches. The federated AI model can be used for the accurate
risk prediction of lymphoma and thus contribute to the early lym-
phoma diagnosis in patients who have been diagnosed with pSS
avoiding additional costs for biopsies. In addition, the AI model
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provides explainable scores which can be used by the clinician to
assess the contribution of critical risk factors for lymphoma devel-
opment and thus support the clinical decision-making process. The
impaired 10-year survival of SS patients with MALT lymphomas
and the association of lymphoma stage with the overall prognosis,
point out the necessity for early lymphoma diagnosis and thus the
development for lymphoma prediction models [51,52]. As a future
work, we plan to further enhance the performance of the federated
AI model by including genetic data (e.g., FMS-like tyrosine kinase 3
ligand).
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