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Abstract 

 

The World Health Organization has predicted a doubling in the global population for persons 

with amputation by 2050 because of steady population growth, ageing populations, and 

climbing rates chronic conditions such as peripheral arterial disease and diabetes mellitus. 

Without proper and timely prosthetic interventions, amputees with major lower-limb loss 

experience adverse mobility outcomes, including the loss of independence, lowered quality of 

life, and decreased life expectancy. Yet, a vast majority of amputees still do not have access to 

prosthetic services given the present capacity constraints, lack of proximity to services, high 

costs and poor healthcare coverage. Today, the entry of digital technology to the prosthetics 

services industry (e.g., 3D-printed sockets) is touted to be a plausible solution to this problem.  

This thesis aims to assess the impact of digital prosthetics on the amputee mobility 

outcomes – specifically, the proportion of amputees who successfully regain mobility from 

using a prosthesis and the health-economic consequences of such mobility. Using the system 

dynamics approach, this study presents a computational simulation model – representing the 

patient-care continuum and digital prosthetics system – that provides a feedback-rich causal 

theory of how digital prosthetics impacts amputee mobility outcomes over time. In general, 

this study has found that with sufficient resources for market formation and capacity expansion 

for digital prosthetics services, substantial improvements to mobility outcomes for amputees 

can be expected. In doing so, it serves as proof-of-concept for the viability of scaling digital 

prosthetics for enabling mobility and bolstering the social impact of providing a prosthesis. 

Based on the high-leverage policy levers found in the system, this study further discusses the 

model-based insights that could inform policy design for alleviating the barriers to access and 

enhancing the health-economic outcomes of prosthetics care. 
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1. Introduction 

 

 

 

 

Problem Orientation 

Major Lower-Limb Amputations & Mobility 

Although lacking definitive and reliable data, the World Health Organization (WHO) estimates 

that around 0.5% of any given population require prosthetics and orthotics services (World 

Health Organization, 2017). This figure is further expected to double by 2050 due an ageing 

population (exacerbated by the growing life expectancy) and rising rates of medical conditions. 

Diabetes mellitus, peripheral arterial disease (PAD), and sepsis are the most common culprits 

for disease-related lower limb amputations (Moxey et al., 2011). In most industrialised 

countries, traumatic injuries make up only a small percentage of major lower-limb amputations 

(i.e., above ankle), whereas over 90% is attributed to PAD (Ahmad et al., 2016; Geertzen et al., 

2015; Kohler et al., 2009). PAD is a progressive vascular disease that causes obstruction in the 

peripheral arteries, most commonly in the lower extremities. PAD incidence is low for 

populations below the age 50, but sharply rises with age – particularly for populations in high-

income countries (Criqui & Aboyans, 2015). Risk factors for PAD include cigarette smoking, 

diabetes mellitus, hypertension, and dyslipidaemia (Criqui & Aboyans, 2015; Meffen et al., 

2020). Arterial obstruction, when symptomatic, leads to intermittent claudication (fatigue, 

cramping or pain) due to insufficient blood supply to the limbs (Criqui & Aboyans, 2015; Shu 

& Santulli, 2018). If not managed effectively at an earlier stage, PAD progresses to the more 

severe critical limb ischemia, which could eventually lead to amputation (Belch, 2003).  

Major lower-limb amputation, without timely prosthetic intervention, leads to a loss of 

mobility, which has several ripple effects at both the individual and societal level. It worsens 

individual health and psychosocial outcomes, including the loss of independence, increased 

depression and self-esteem issues, lowered quality of life, and increased risk of comorbidities 

and mortality (Akarsu et al., 2013; Horgan & MacLachlan, 2004; Roberts et al., 2006). There 

is also high economic burden on patients, families (increased caregiving), health and welfare 

systems, as well as the workforce (lower rates of return to work) (Darter et al., 2018; Stewart 



2 

 

 

et al., 2022; World Health Organization, 2017). Importantly, such negative externalities can be 

alleviated with the use of prostheses to regain mobility. 

Increased prosthetic usage is associated with higher levels of employment, 

increased quality of life, decreased phantom limb pain, and lower levels of general 

psychiatric symptoms. Additionally, prosthetic use has been shown to facilitate a 

reduction in secondary health issues and therefore a larger degree of mobility and 

functional independence for those with amputation (Pasquina et al., 2015, p. 536). 

Hence, efficacious prosthetics service provision is a necessary component of amputee 

health care and their right to a dignified life (cf. Sustainable Development Goal 3, Convention 

for the Rights of Persons with Disabilities).  

Prosthetics Service Provision 

Yet, presently, prosthetics services are not accessible for a vast majority of amputees. WHO 

(2017) speculates that only 5 to 15% of the amputee population has access to them. Barriers to 

access include high financial costs for treatment, poor healthcare coverage, prosthetics service 

capacity constraints, lack of proximity to services, and inadequate continuity of care (Pasquina 

et al., 2015; ProsFit Technologies, 2022; Wyss et al., 2015).  

Digital Solutions in Prosthetics 

To alleviate this problem, Silva et al. (2015, p. 1312) raise awareness for “the potential 

application of 3-dimensional (3-D) printing as a method of improving access to care while 

reducing cost.” Indeed, by then, ProsFit Technologies, an early entrant to digital prosthetics, 

had developed end-to-end digital solutions to the socket fitting process. The traditional fitting 

process has considerable delays in the Definitive Device stage (see Figure 1.1 below for a 

general timeline). Moreover, approximately 50% of amputees in this stage abandon the device 

due to improper fit, discomfort and pain (ProsFit Technologies, 2022; Raichle et al., 2008). 

Using traditional methods, the prosthetists must handcraft the sockets in clinics using plaster 

casts and test the fittings several times before a definitive socket is manufactured and 

assembled with the mechanical part (Kozbunarova, 2019). Manufacturing delays have adverse 

consequences for fitting success as the patient’s limb and/or weight may have changed before 

receiving the prosthesis, resulting in an improper fit that causes discomfort and pain (ProsFit 

Technologies, 2022). Digital-solutions-based prosthesis (digital prosthesis henceforth), on the 

other hand, could be delivered within 5 to 10 days with a more streamlined manufacturing 
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process; “the limb gets scanned, the prosthetist uses PandoFit software to create a model of the 

socket and sends the file for 3D printing” (Kozbunarova, 2019 para 5; ProsFit Technologies, 

2022). According to ProsFit (correspondence), this has a much higher success rate as the digital 

design is more accurate and independent of variability in prosthetist’s skill-level, has a much 

shorter timeframe such that there is little time for limb changes, and results in a more 

comfortable fit for patients.  

 
 

Figure 1.1 General Timeline for Prosthesis Fitting (Rheinstein et al., 2021) 

With a more streamlined and effective fitting process, ProsFit believes that digital 

prosthetics is the solution to the accessibility problem – especially with the enhanced fitting 

capacity per prosthetist and the flexibility to bring the service to patients through distributed 

care networks (A. Hutchison, 2020). Consequently, ProsFit anticipates that there will be several 

positive externalities for amputees, their families, and the economy more broadly. They have 

attempted to demonstrate this social impact by developing a Health Economics Model, which 

calculates the returns on investment for providing prosthetics in 10 country cases (net benefit 

from calculated economic costs and benefits). The model is based on a comparison for scaling 

up traditional and digital approaches to fit 50% of the estimated amputee population (C. 
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Hutchison, 2021). In its current iteration, however, it remains as a static model that is unable 

to capture the dynamics in the amputee population over time. In other words, it holds the 

estimated amputee population constant, and estimates the economic costs and benefits of 

providing prosthetics services with no feedback on the decision choices for existing amputees. 

For a more nuanced understanding of the impact of digital prosthetics, then, a dynamic model 

should be considered.    

Research Purpose 

This study aims to assess the impact of digital prosthetics service provision on country-level 

mobility outcomes. Mobility outcomes, in this study, refer to the proportion of amputees who 

are able to successfully regain mobility from using a prosthesis as well as the health-economic 

consequences of such mobility, namely the economic contribution from returning to work and 

the economic costs incurred or avoided (healthcare, family opportunity cost, welfare payments, 

and prosthesis reimbursement). Moreover, this study aims to provide additional insight to the 

health economics model by capturing the feedback dynamics in the prosthetic care system in a 

system dynamics model. In doing so, it further aims to identify high-leverage policy levers for 

enhancing the mobility outcomes.  

The purpose of this study is, thus, to conduct a model-based hypothesis testing of the 

anticipated impact of ProsFit’s digital prosthesis fitting process and distributed healthcare 

delivery (i.e., digital prosthetics) as described in the preceding section – namely, that scaling 

up digital prosthetics positively impacts mobility outcomes. 

 

 

Figure 1.2 Qualitative Reference Modes for Hypothesis Testing 
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 In Figure 1.2, I present the reference mode of behaviour for the prosthetic care system 

and the hypothesised development. Reference modes are graphical representations of the 

system’s problem behaviour to be investigated; these are “stylized problem patterns” that can 

be constructed quantitatively from historical time-series data or qualitatively from estimates or 

speculations (Saeed, 2017, p. 13). A major challenge in prosthetics is the dearth of reliable data 

on the amputee population and their service needs (World Health Organization, 2017). As a 

result, the reference modes were constructed qualitatively based on guesstimates from WHO 

and expert opinion. Here, we observe a doubling of the amputee population across the time 

horizon (2010 to 2050). If the approach to prosthetics fundamentally remains unchanged 

(dominated by traditional approaches), then we can expect a decrease in the mobility proportion 

from the current estimate of 15% – fearing a decrease in prosthetics accessibility as the demand 

for prosthesis grows from a rising amputee population. Based on the research hypothesis, we 

hope for the proportion of mobile amputees to increase over time with the scaling up of digital 

prosthetics.  

Research Questions 

To guide our hypothesis testing effort, we consider the following research questions:  

1) How does digital prosthetics service provision affect amputee mobility outcomes over 

time? 

a) What are the dynamic structures found in the patient-care continuum and the prosthetic 

service provision systems responsible for changes in amputee mobility outcomes over 

time?  

b) What are the key causal mechanisms that drive these changes and explain the impact 

of digital prosthetics on mobility outcomes? 

2) What are the model-based insights for bolstering the social impact of digital prosthetics? 

a) What are the leverage points in the system that can enhance the effects of digital 

prosthetics service provision on mobility outcomes? 

b) What are the plausible implications for policy design? 
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Research Methods 

Methodological Approach 

To examine the research questions and test the overall hypothesis posited above, this study 

employs the system dynamics (SD) method, using compartment models, for conducting a 

model-based hypothesis testing. The SD approach seeks to simulate and explain problematic 

system developments by modelling the underlying structural interdependencies within the 

system (Sterman, 2000). Importantly, SD models offer an “endogenous or feedback perspective” 

to structural problems (Hovmand, 2014, p. 1) that can aid “theory building, policy analysis, 

and strategic decision support” (Richardson, 2019, p. 11). This endogenous perspective refers 

to two fundamental tenets: (1) problem behaviours arise from the complex interaction of 

interrelated components within a closed boundary of a system, and (2) the system components 

are connected in feedback loops (circular chains of causal relationships), which endogenously 

generate the observed system behaviour (Forrester, 1968; Richardson, 2011). In this sense, the 

SD approach “helps construct a causal-loop theory of system behavior in terms of feedback 

linkages” (Sohn & Surkis, 1985, p. 400).  

SD is well-suited to and has a history of being applied to a wide array of domains in 

public health (for a review, see Darabi & Hosseinichimeh, 2020; Davahli et al., 2020). The 

“dynamic complexity in public health” (particularly due to nonlinear effects of multiple 

interacting variables within the system that affect health outcomes) makes it “difficult to know 

how, where, and when to intervene” (Homer & Hirsch, 2006, p. 452). SD simulation modelling 

can effectively address this challenge and “elucidate the counterintuitive behavior of complex 

healthcare problems” (Davahli et al., 2020, p. 1). While there has been over 300 applications 

of SD to health and medicine (Darabi & Hosseinichimeh, 2020), to our knowledge there is no 

application of SD to prosthetic service provision or major lower limb amputations in the 

academic literature. Hence, this research further contributes to the SD literature in the domain 

of public health. 

  Importantly, SD simulation modelling is a powerful tool for testing alternative policy 

options and scenarios “in a systematic way that answers both ‘what if’ and ‘why’” (Homer & 

Hirsch, 2006, p. 452). Through experimentation under different assumed conditions, we can 

anticipate plausible future system behaviours and pinpoint the structural reasons for such 

observed developments. In turn, this exercise could identify leverage points – “places in the 

system where a small change could lead to a large shift in behavior” (Meadows, 2009, p. 145) 
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– that are capable of mitigating problematic behaviours, and thus generate useful policy 

insights. Particularly for prosthetics, SD modelling can aid decision-making under uncertainty. 

As mentioned, the domain of prosthetics services is mired by the lack of robust data collection, 

contributing to a high level of uncertainty surrounding policy planning (ProsFit Technologies, 

2022; World Health Organization, 2017). SD models, however, can “admit more variables on 

the basis of logic or expert opinion and for which solid statistical estimates may not be available” 

(Homer & Hirsch, 2006, p. 453) and still generate useful insights under such uncertainty. For 

these reasons, the SD approach is an excellent fit for our research purpose.     

Data Collection 

Primary Sources 

The iterative model building process, from conceptualisation, quantification, to validation, was 

conducted in collaboration with two partners: (1) ProsFit Technologies – digital prosthetics 

service provider, and (2) Toyota Mobility Foundation – expert in system dynamics and human 

centred design for promoting mobility. Including problem owners in the model building 

process has been a longstanding tradition in SD since they possess important domain expertise, 

experiential knowledge, and mental models of the system under study (Forrester, 1961; Király 

& Miskolczi, 2019; McCardle-Keurentjes et al., 2018). Over the course of this research project, 

several iterations of the model were presented to the collaborators for validation. In terms of 

model parameterisation, ProsFit provided numerical estimates for some parameter values 

where existing data was not available. In such instances, ProsFit relied on its network of 

prosthetists in the field to corroborate their assumptions and understanding. Estimates and 

comments from these domain experts were anonymised and shared via email correspondence. 

Such estimates represent the best available data at the time of the model development. 

Secondary Sources 

Apart from expert opinion, existing peer-reviewed literature was utilised extensively 

for model conceptualisation – especially so for the conceptual market formation subsystem in 

the model. As for quantification, parameter values were obtained either from epidemiological 

data reported in the literature or from secondary datasets. The various datasets are described in 

Table 1.1 below. 
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Table 1.1 Description of Secondary Datasets 

Source Type Description Use 

Office for National 

Statistics, UK (2015, 

2020, 2021, 2022a, 

2022b, 2022c) 

UK Population 

Statistics 

Datasets on population estimates 

and projections, fertility rates, 

mortality rates as well and 

international migration rates 

Parameterisation; 

Validation 

Healthcare Quality 

Improvement 

Partnership (2015, 

2016, 2018a, 2018b, 

2019, 2020)  

on behalf of the 

National Vascular 

Registry 

UK PAD-related 

Amputation 

Statistics 

A composite dataset was 

constructed from annual reporting 

on clinical outcomes from major 

lower-limb amputation in the UK 

from 2015 to 2020 – data points 

were averaged to generate 

parameter estimates mainly for the 

Primary Care Sector in the model 

Conceptualisation; 

Parameterisation 

 

Global Burden of 

Disease 

Collaborative 

Network (2020) 

UK PAD & 

Traumatic 

Amputation 

Statistics 

Datasets on yearly prevalence and 

incidence estimates on PAD as 

well as lower limb amputations 

from injuries as a cause between 

2010 and 2019 

Parameterisation 

Christopher 

Hutchison (2021)  

on behalf of ProsFit 

Technologies 

UK Health 

Economics Data 

Dataset from ProsFit’s Health 

Economic Model estimating the 

economic costs and net benefits of 

prosthetic service provision  

Conceptualisation; 

Parameterisation; 

ProsFit 

Technologies (2022) 

Digital 

Prosthetics Care 

Internal document reporting data 

on the problem context, prosthetics 

service provision, patient journey 

mapping, and ProsFit’s digital-

based solutions 

Conceptualisation; 

Parameterisation 

Ethical Considerations 

Research Standards 

This research adheres to the guidelines set by The Norwegian National Research Ethics 

Committees (2022) in its entirety. As a researcher, I am obligated to observe the professional 

standards and best practices set in both research praxis, in general, and the more specific SD 

sub-field. To that end, this research conforms to the guidelines on model development, 

validation, and documentation as described in seminal SD literature (Barlas, 1996; Rahmandad 
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& Sterman, 2012; Sterman, 2000). Briefly, Chapters 2 and 3 provide detailed descriptions of 

the model structure and hypothesised structural relationships, while making transparent the 

main assumptions built into the model. Model validation results are also reported in Chapter 3. 

Appendix C contains the full model documentation, where each variable in the model is 

described and validated. 

Research Participants 

As this study did not involve systematic primary data collection, considerations for 

informed consent and protected groups are not applicable. Nevertheless, it is prudent to make 

transparent the nature of the relationship between the modeller (myself) and the collaborators, 

ProsFit Technologies and Toyota Mobility Foundation, who have been involved in the research 

project. From the outset, this collaboration did not involve any monetary compensation and did 

not entail any known conflict of interests between parties. This project commenced with the 

signing of a Partnership Agreement between all parties involved. Obligations covered issues 

of intellectual property, prior inventions, confidentiality, and storage of sensitive data. Of 

particular note, is the clause in the Agreement that specifies, “the Student should not be 

constrained to reach any particular conclusion or to make any particular recommendation in 

the exercise of their functions.” Here, we have codified my independence as a researcher 

against pressure and control (The Norwegian National Research Ethics Committees, 2022).  

Reflections on Subjective Values 

Diekmann & Peterson (2013, p. 207) contend that “non-epistemic values, including 

moral ones, play an important role in the construction and choice of models.” Such subjective 

values influence the modelling process, including problem selection, boundary demarcation, 

and representational choices and are as such subject to ethical considerations (Diekmann & 

Peterson, 2013; Pruyt & Kwakkel, 2007). Here, the problem selection was intrinsically tied to 

the collaborators’ interests, who are stakeholders in prosthetics service provision (ProsFit) and 

improving mobility, especially for underserved communities (Toyota Mobility Foundation). 

Their worldview and perspectives are tied into the model, and thus cannot fully represent the 

interests of other key stakeholders. This should be kept in mind when interpreting the findings 

of the research. Choices related to model boundary and structural representations are not only 

influenced by the collaborators, but also the time-bound nature of this thesis research project. 

Hence, certain exclusions were necessary to keep the scope of the research relatively small. 

While ProsFit’s experiential knowledge is relied upon for representational activities such as 
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parameterisation, there have been attempts to corroborate it with existing literature and third 

parties. 

Moreover, Walker (2009, p. 1054) reminds us that modellers occupy both the analyst 

and the advocate positions, and thus must “make clear which of these role he/she is playing at 

any given time.” This study is meant to evaluate the impact of digital prosthetics on the mobility 

outcomes of amputees. By design, it is meant to elucidate model-based insights that could 

potentially influence policy making. To that end, I do occupy the advocate position. However, 

Palmer (2017) emphasises the need for transparency about model uncertainty not just for the 

sake of model validation, but also for policy decisions that may follow from the modelling 

pursuit. SD models are “a set of aggregated causal assumption (“observed operation 

relationships”) – and regardless of validation – are by definition uncertain, because causality 

is assumed” (Palmer, 2017, p. 92). This fundamental uncertainty is then spilled over to any 

policy insights generated by the model. Hence, decision-makers should be cognisant of this 

limitation prior to carrying out any form of policy implementation. 



11 

2. Dynamic Hypothesis  

 

 

 

 

In system dynamics, a dynamic hypothesis refers to “an abstract and aggregate mental model” 

of the hypothesised system structure that can explain the reference mode of behaviour (Saeed, 

2017, p. 11). It serves as an explanation of how various system components interact to 

endogenously cause the observed behaviour (Forrester, 1968; Oliva, 1996; Richardson, 2011). 

Endogeneity, as mentioned in the previous chapter, is reflected in the main feedback loops 

driving the behaviour. Here, I present my dynamic hypothesis in the form of a hybrid stock-

and-flow model that clearly demarcates the main interacting feedback loops. Given the size of 

the model, the simplified structure is split into the main top-level Prosthetic Care System and 

the Market Formation Subsystem. For each feedback loop, I describe the hypothesised causal 

relationships, supported by the relevant literature and assumptions that underpin the hypothesis.    

The Prosthetic Care System 

‘Aging chains’ that capture the flow of populations across different stages or compartments are 

commonly used to represent health care systems. This structure has become the “main 

backbone” of SD health models for its simplicity and effectiveness, especially in identifying 

accumulations and key bottle-necks to patient flows (Darabi & Hosseinichimeh, 2020, p. 50). 

Similarly, the prosthetic care system is represented as an aging chain in the model presented 

here. With reference to Figure 2.1 below, we represent the flow of people to acute or primary 

care for amputation, before they journey on to the prosthetic care stage. To best estimate the 

accumulation level in each of these stages, patients are drawn from the general population stock 

and the peripheral arterial disease (PAD) population stock. From the Prosthetic Care stage, 

amputees either become successfully fitted with a prosthesis and achieve Full Mobility or they 

abandon the prosthesis fitting process and maintain Limited Mobility. 

Beyond the aging chains, the hypothesised model structure includes several feedback 

mechanisms that influence the flows. It was conceptualised with input from ProsFit to better 

reflect the reality of the prosthetic care system. To test the main working hypothesis of this 
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project, most of the feedback mechanisms, presented below, strive to explain how the 

emergence of digital prosthetic market could impact population flows, patient or healthcare 

provider decisions at each aging chain step, and yield better mobility outcomes for persons 

with major lower-limb loss.  

 

Figure 2.1 Simplified Model Structure of Prosthetic Care System 

Feedback Loop Description 

For ease of interpreting the causal loops, each description includes the causal pathway shown 

in Figure 2.1. The arrow symbol (→) represents a causal link between two variables. The 

corresponding polarity is provided: (+) indicates a positive polarity and (–) indicates a negative 

polarity. Polarities simply indicate the directionality of the correlation. For instance, “A →(–) 

B →(+) C” should be interpreted as such: when A increases, B decreases, and in turn C 

decreases. Here, the positive polarity between B and C indicates that both vary in the same 

direction. 

Prevention Pressure – B1 Loop 

B1 Pathway: PAD Amputation →(+) PAD Prevention Programmes →(–) PAD 

Incidence →(+) PAD Population →(+) PAD Amputation 
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This balancing feedback loop represents the prevention pressure faced by public health 

agencies to address the prevalence of PAD. As PAD-related amputation rates increases over 

time, we expect reporting from medical professionals to raise the alarms for stepping up efforts 

towards primary prevention. This is observed, for instance, in trend studies of PAD incidence 

and risk factors, calling for better detection and prevention interventions (Cea-Soriano et al., 

2018; Farndon et al., 2018; Stansby et al., 2011). With increased reporting, we can expect more 

resources directed towards prevention interventions such as screening, smoking cessation, 

nutritional and activity programmes (Farndon et al., 2018). In the long run, such interventions 

could lead to a decrease in PAD incidence rate. Indeed, there is evidence that PAD incidence 

have declined in the UK, which have been attributed to the uptake of prevention strategies 

(Cea-Soriano et al., 2018). A declining PAD incidence would lead to a reduction of the PAD 

Population over time, which would eventually decrease the PAD Amputation Rate. Since an 

initial increase in amputation rate ends up with an eventual decrease in amputation rate, this 

feedback loop has a negative polarity overall and is thus described as a balancing loop. 

Prosthesis Lifecycle – R1 Loop 

R1 Pathway: Amputees in Prosthetic Care →(+) Successful Fitting →(+) Full 

Mobility →(+) Prosthesis Degradation →(+) Awaiting Replacement →(+) 

Prosthesis Replacement →(+) Amputees in Prosthetic Care  

This reinforcing loop describes the lifecycle that is part of the lifelong holistic care for 

amputees successfully fitted with a prosthesis (Rheinstein et al., 2021). As more amputees enter 

the prosthetic care continuum, there will be more people who are successfully fitted with a 

prosthesis thus increasing the number of amputees with full mobility. However, the prosthesis 

device has an average lifespan of three years (ProsFit Technologies, 2022; Rheinstein et al., 

2021). Hence, over time, prosthesis degradation increases the number of amputees awaiting 

replacement of their devices before re-entering the prosthetic care continuum to be fitted for a 

new device again. In this regard, this loop represents a growing pressure emanating from our 

best efforts to successfully fit individuals with a prosthesis. 

Prosthetics Re-entry– R2 Loop 

R2 Pathway: Amputees in Prosthetic Care →(+) Abandon Prosthesis →(+) 

Limited Mobility →(+) Readopt Prosthesis →(+) Amputees in Prosthetic Care  

R2 represents the Prosthetic Care Re-entry process for amputees. Not all amputees who 

enter the care continuum end up with a prosthesis; some individuals dropout from the fitting 



14 

 

process or some abandon the device due to an unsuccessful fit (Davie-Smith et al., 2018; 

ProsFit Technologies, 2022). Hence, with more people in the continuum abandoning prosthesis, 

there will be more people who are left with limited mobility due to the lack of a prosthesis 

device. However, more amputees might later decide to readopt a prosthesis, thus re-entering 

the prosthesis fitting process.   

 Digital Growth – R3 & R4 Loops 

R3 Pathway: Amputees in Digital Prosthetic Care →(+) Successful Fitting →(+) 

Perceived Relative Success of Digital Fitting →(+) Digital Market Size →(+) 

Digital Market Share →(+) Digital Prosthesis Referral →(+) Amputees in Digital 

Prosthetic Care 

R3 is a reinforcing loop that represents the hypothesis for the market growth of digital 

prosthesis solutions – namely, the use of digital technology for prosthesis measurements and 

3D-printed sockets. As more amputees get referred to a digital prosthetic clinic and more 

people become successfully fitted with a prosthesis with better outcomes, we expect favourable 

word-of-mouth diffusion about the success of digital prosthesis (Chernicoff et al., 2014). This 

is captured with the Perceived Relative Success of Digital Fitting, which represents the mental 

perceptions of people’s comparison of success between the digitally fitted prosthesis and 

traditional plaster-casted device. Over time, we expect the attractiveness of digital fitting to 

grow the digital market size and thus the market share of the digital prosthetics relative to 

traditional. With a higher market share, more amputees are probabilistically to be referred to a 

digital prosthetist and thus driving up the number of amputees in the digital prosthetic care 

continuum as opposed to the traditional one. 

R4 Pathway: Amputees in Digital Prosthetic Care →(+) Successful Fitting →(+) 

Perceived Relative Success of Digital Fitting →(+) Digital Market Size →(+) 

Digital Market Share →(+) Digital Prosthesis Readoption →(+) Amputees in 

Digital Prosthetic Care 

Similarly, R4 loops drives up the number of amputees in Digital Prosthetic Care by way 

of readoption. As the digital market share increases, potential re-adoptees looking to restart 

their prosthetic fitting journey are more likely to seek out a digital prosthetist. The assumption 

here is that as digital fittings experience more success, people are more likely to be motivated 

to try the digital process and experience a similar success as others (Chernicoff et al., 2014; 
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Nieuwenhuijsen et al., 2018). Thus, more re-adoptees enter the digital prosthetic care 

continuum as opposed to the traditional one. 

Access Constraint – B2, B3 & B4 Loops 

B2 Pathway: Amputees in Prosthetic Care →(+) Fitting Demand →(-) Prosthetic 

Accessibility →(+) Prosthesis Referral→(+) Amputees in Prosthetic Care  

The balancing feedback loop B2 counteracts the reinforcing Digital Growth loops. As 

more Amputees in Prosthetic Care are attracted to the digital prosthesis fitting process, the 

Fitting Demand for digital prosthesis increases. In turn, this drives down Prosthetic 

Accessibility if demand outweighs the fitting capacity, which then reduces the amount of 

people who can enter the prosthesis fitting process. Hence, the Amputees in Prosthetic Care 

declines to a level lower than it otherwise would have been. Through this balancing feedback, 

B2 dampens the strength of the R3 and R4 loops. 

B3 Pathway: Prosthesis Readoption →(+) Subtotal Re-adoptees →(+) Fitting 

Demand →(-) Prosthetic Accessibility →(+) Prosthesis Readoption 

B4 Pathway: Amputees Awaiting Replacement →(+) Fitting Demand →(-) 

Prosthetic Accessibility →(+) Prosthesis Replacement →(+) Amputees Awaiting 

Replacement 

Fitting Demand is not solely determined by the number of Amputees in Prosthetic Care. 

Amputees who have previously abandoned the fitting process and those seeking to replace their 

degraded prosthesis device also make up the demand. Hence, B3 captures a similar mechanism 

whereby more Prosthesis Readoption brings up the demand and consequently reduces the 

Prosthetic Accessibility. B4, on the other hand, reduces the Accessibility through the Prosthesis 

Replacement process. All three balancing loops work in concert to counteract the reinforcing 

loops seeking to increase the demand for digital prosthesis fitting. 

Market Access – R5, R6 & R7 Loops 

R5 Pathway: Amputees in Prosthetic Care →(+) Successful Fitting →(+) 

Perceived Relative Success of Digital Fitting →(+) Digital Market Size →(+) 

Fitting Capacity →(+) Prosthetic Accessibility →(+) Prosthesis Referral →(+) 

Amputees in Prosthetic Care 

The Market Access loops, however, interplay with the balancing Access Constraint 

loops described above. In the longer term, these loops work to increase the Fitting Capacity so 
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as to improve the Prosthetic Accessibility that was driven down by increased demand. With 

reference to R5 loop, when more Amputees in Prosthetic Care get successfully fitted with the 

prosthesis and the perceived success of digital prosthesis relative to traditional increases, the 

digital market share grows. The growth in market share is likely to lead to the expansion of 

digital prosthetic clinics, which in turn drives up the Fitting Capacity. Hence, with more 

capacity, more people have access to prosthetic services, and thus the care continuum can 

accommodate a larger number of new amputees seeking a prosthesis.  

R6 Pathway: Amputees in Prosthetic Care →(+) Successful Fitting →(+) 

Perceived Relative Success of Digital Fitting →(+) Digital Market Size →(+) 

Fitting Capacity →(+) Prosthetic Accessibility →(+) Readopt Prosthesis→(+) 

Amputees in Prosthetic Care 

R7 Pathway: Amputees in Prosthetic Care →(+) Successful Fitting →(+) 

Perceived Relative Success of Digital Fitting →(+) Digital Market Size →(+) 

Fitting Capacity →(+) Prosthetic Accessibility →(+) Prosthesis Replacement 

→(+) Amputees in Prosthetic Care 

Likewise, R6 enables a larger number of people seeking to readopt the prosthesis fitting 

process to enter the Prosthetic Care, whereas R7 enables more people waiting to replace their 

old prosthesis to re-enter the care continuum at any one point in time. However, it must be 

noted that increasing capacity involves a delay as it takes time to assess the market and set up 

new clinics. Hence, the effects of Market Access loops are delayed. 

Prosthesis Attractiveness – R8 & R9 Loops 

R8 Pathway: Amputees in Prosthetic Care →(+) Successful Fitting →(+) 

Perceived Relative Success of Digital Fitting →(–) Dropout Rate →(+) Abandon 

Prosthesis →(–) Amputees in Prosthetic Care 

R9 Pathway: Amputees in Prosthetic Care →(+) Successful Fitting →(+) 

Perceived Relative Success of Digital Fitting →(+) Re-adoption Rate →(+) 

Readopt Prosthesis →(+) Amputees in Prosthetic Care 

As previously described, when people perceive digital prosthesis to be more successful 

than traditional ones, the attractiveness of digital prosthesis is expected to increase through 

word-of-mouth diffusion (Chernicoff et al., 2014). Hence, R8 captures the process by which a 

higher attractiveness translates to a lower dropout rate as individuals might be more motivated 

to see through the process and experience a similar success as others. This could lead to fewer 



17 

 

people abandoning the prosthesis fitting process and therefore increasing the number of 

Amputees in Prosthetic Care to a level higher than it otherwise would have been. R9, on the 

hand, works to increase the re-adoption rate amongst those who have previously abandoned 

the process. The higher attractiveness of digital fitting would then increase the number of 

people readopting a prosthesis and thus re-entering the prosthetic care continuum.  

Prosthesis Abandonment – B5 Loop 

B5 Pathway: Amputees in Prosthetic Care →(+) Successful Fitting →(+) 

Perceived Relative Success of Digital Fitting →(–) Dropout Rate →(+) Abandon 

Prosthesis →(+) Limited Mobility →(+) Readopt Prosthesis →(+) Amputees in 

Prosthetic Care 

This balancing feedback loop counteracts the effects of R2 and R9, by draining the 

number of people available for entering readoption process. When more Amputees in 

Prosthetic Care results in more successful fitting and thus more attractiveness of digital fitting, 

less people abandon the prosthesis fitting process. As a result, the number of people with 

Limited Mobility is at a lower level than it otherwise would have been. Hence, the readoption 

rate would consequently be lower, resulting in a lower number of Amputees in Prosthetic Care 

than it otherwise would have been. However, this is a positive effect that prevents prosthesis 

abandonment altogether and thus yielding better mobility outcomes in the grand scheme of 

things. 

 

The Market Formation Subsystem 

In the top-level Prosthetic Care System, we made the leap of faith that the relative success of 

digital prosthetics would increase the share of the digital market. Inherently, we understand 

that market growth for new technologies is a complex process that necessarily requires market 

formation. Lee et al. (2018) and Struben et al. (2020) emphasise the collective action problem 

in early market formation. It requires market-oriented action from diverse actors to collectively 

develop “shared market infrastructure” for “supporting the functioning of a stable market” (Lee 

et al., 2018, p. 244). Indeed, “technological change is a complex non-linear interactive process” 

concerning several actors and institutions (Uriona & Grobbelaar, 2019, p. 28). It is, thus, better 

served to explicitly represent this complexity than the alternative: a simplistic table function.  
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To elucidate the feedback story, I rely on the work of Walrave & Raven (2016a, 2016b), 

who have translated the literature on Technological Innovation Systems (TIS) framework 

(Bergek et al., 2008; Hekkert et al., 2007; Markard & Truffer, 2008) into a system dynamics 

model. TIS theory posits that seven key functions undergird the formation and growth of 

innovation systems, namely, “(1) entrepreneurial activities, (2) knowledge development, (3) 

knowledge diffusion, (4) guidance of search, (5) market formation, (6) mobilization of 

resources, and (7) creation of legitimacy” (Hekkert et al., 2007; Walrave & Raven, 2016b, p. 

1834; Wicki & Hansen, 2017). These functions power the ‘motors of innovation’ through 

complex interactions and have been described through informal causal loop diagrams (see 

Suurs, 2009; Suurs et al., 2009, 2010; Suurs & Hekkert, 2012). These loops were, in turn, 

formalised and operationalised into a SD simulation model (Walrave & Raven, 2016b). This 

TIS modelling approach was selected over the more common Bass Diffusion Model as it 

captures more feedback mechanisms beyond the simple “innovator and imitator adoption 

mechanisms” (Uriona & Grobbelaar, 2019, p. 34). 

In the section, I (re-)present the main feedback loops that could endogenously explain 

the market formation and thus growth of digital prosthetic market share over time. This is 

meant to be a conceptual model that was after all built from theory (Walrave & Raven, 2016b). 

As a result, it is bound to introduce more uncertainty to the relatively empirical top-level model. 

Nevertheless, as George E.P. Box famously stated, “all models are wrong, but some are useful.” 

Here, understanding how digital prosthetic market formation may plausibly occur from a 

feedback perspective could prove to be a useful exercise for ProsFit, who is an early market 

actor in the emerging digital prosthetic technology, as well as health policy leaders seeking to 

improve mobility outcomes and maximise the impact of limited resources. 
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Figure 2.2 Simplified Model Structure of Market Subsystem 

Feedback Loop Description 

Technology Development – R10 Loop 

R10 Pathway: Innovation Developed →(+) Guidance of Search →(+) Resources 

to R&D →(+) Innovation Development →(+) Innovation Developed 

This feedback loop represents the process of technological knowledge development, 

typical of research and development (R&D), required for any TIS to grow (Hekkert et al., 2007; 

Suurs, 2009). As more innovation is developed, the Guidance of Search for the technology 

increases. Guidance of search refers to the “visibility and clarity” of the state of the art (Hekkert 

et al., 2007, p. 423) that reflects the “promises and expectations of the emerging technology” 

(Suurs, 2009, p. 56). It helps in the priority-setting process for R&D resource allocation and 

“thus the direction of technological change” (Hekkert et al., 2007, p. 423). Hence, in this 

context, increased Guidance of Search for the digital solutions in prosthetic fittings, would help 

increase the Resources to R&D, which would enable further Innovation Development that 

increases the Innovation Developed even more (Nieuwenhuijsen et al., 2018). 



20 

 

Knowledge Diffusion – R11 Loop 

R11 Pathway: Knowledge Diffused →(+) Guidance of Search →(+) Resources to 

R&D →(+) Knowledge Diffusion →(+) Knowledge Diffused 

Knowledge Diffusion, R11 loop, refers to process by which various actors in the TIS 

interact and exchange knowledge and thus establish “a mutual understanding” that enables 

institutions to gradually adjust to new technologies (Suurs, 2009, p. 55). Since Guidance of 

Search is also “an interactive and cumulative process of exchanging ideas” (Hekkert et al., 

2007, p. 423), it increases with more Knowledge Diffused (Walrave & Raven, 2016b). In turn, 

this works to increase the Resources to R&D, which further enables more Knowledge Diffusion. 

Knowledge Erosion – B6 Loop 

B6 Pathway: Knowledge Diffused →(+) Guidance of Search →(+) Resources to 

R&D →(+) Innovation Development →(+) Knowledge Decay →(–)  

Knowledge Diffused 

B6 loop represents the process of Knowledge Erosion, which counteracts R11. 

Knowledge Diffused can become “obsolete over time (due to new technological developments, 

etc.)” (Walrave & Raven, 2016a, p. 4). When knowledge diffusion increases guidance of search, 

and thus secures more resources for R&D to further develop innovation, previously diffused 

knowledge become outdated, and thus increases the Knowledge Decay. In turn, this drains the 

body of Knowledge Diffused.  

Innovation Attractiveness – R12 Loop 

R12 Pathway: Innovation Developed →(+) Perceived Legitimacy →(+) 

Entrepreneurial Activity →(+) External Funding →(+) Total Resources →(+) 

Resources to R&D →(+) Innovation Development →(+) Innovation Developed 

According to Hekkert et al. (2007) and Surrs (2009), entrepreneurs are central to any 

TIS. Entrepreneurs refer to actors within the system whose “actions are directed at conducting 

market-oriented experiments with an emerging technology” (Suurs, 2009, p. 54). The 

Innovation Attractiveness loop represents the process of attracting new entrepreneurs to the 

system through innovation. When the Innovation Developed increases, “technological 

legitimacy” of the innovation system increases (Walrave & Raven, 2016b, p. 1837). As 

potential entrants perceive the legitimacy of the emerging technology positively, they are more 

willing to enter the market, thus increasing the Entrepreneurial Activity. Entrepreneurial 
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activities indicate the health and sustainability of an innovation system (Hekkert et al., 2007). 

Higher levels of Entrepreneurial Activity thus increase the Total Resources in the system by 

way of attracting more External Funding or resources from private or public actors (Suurs, 

2009; Walrave & Raven, 2016b). In turn, more resources become available for R&D, which 

spurs further development of innovation that increases the attractiveness to entrepreneurs even 

more. 

Knowledge Attractiveness – R13 Loop 

R13 Pathway: Knowledge Diffused →(+) Perceived Legitimacy →(+) 

Entrepreneurial Activity →(+) External Funding →(+) Total Resources →(+) 

Resources to R&D →(+) Knowledge Diffusion →(+) Knowledge Diffused 

R13 loop works in a similar mechanism in attracting entrepreneurs. Technological 

legitimacy is a function of both Innovation Developed and Knowledge Diffused. The more 

knowledge about the technological innovation diffused in various networks, the higher the 

perceived legitimacy of the technology. Loops R12 and R13, thus, work concurrently and in 

concert to shore up the attractiveness of the emerging technology to potential market actors.     

External Engine – R14 Loop 

R14 Pathway: Entrepreneurial Activity →(+) External Funding →(+) Total 

Resources →(+) Resources to Market Development →(+)  

Entrepreneurial Activity 

The External Engine loop represents the effect of external funding in reinforcing the 

growth of entrepreneurial activity within the emerging market. As explained previously, 

Entrepreneurial Activity can build confidence in the prospect of investment, thus increasing 

funding and resources from external actors, either private funders or governmental bodies. This 

increases the Total Resources available for market development. External backing reduces the 

perceived entrepreneurial risks involved, and consequently is better able to attract further entry 

into the market to spur even more Entrepreneurial Activity (Suurs, 2009; Walrave & Raven, 

2016b).  

Internal Engine – R15 Loop 

R15 Pathway: Entrepreneurial Activity →(+) Market Infrastructure →(+)  

Market Size →(+) Internal Resources from Market →(+) Total Resources →(+) 

Resources to Market Development →(+) Entrepreneurial Activity 
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While the external engine stimulates entrepreneurial activity temporarily, the Internal 

Engine endogenously generates internal (“financial, material, human capital”) resources over 

the longer term through market formation to become self-sufficient (Suurs, 2009, p. 57). With 

reference to R15, increased Entrepreneurial Activity leads to the development of Market 

Infrastructure (Lee et al., 2018). Entrepreneurs contribute to the “development of formal 

market rules, establishment of intermediary networks, the building of infrastructure, or the 

development of formal regulations” (Walrave & Raven, 2016a, p. 1837). Through establishing 

the Market Infrastructure for market formation, entrepreneurial activity “contribute to the 

creation of a demand for the emerging technology” (Suurs, 2009, p. 56). This increases the 

Market Size for the technology that generates Internal Resources from the Market. In turn, with 

more Total Resources in the innovation system, Entrepreneurial Activity can further flourish 

by attracting more entrants to the system.  

System Building – R16 Loop 

R16 Pathway: Perceived Legitimacy →(+) Entrepreneurial Activity →(+) Market 

Infrastructure →(+) Perceived Legitimacy 

Previously, we discussed how innovation diffusion increases the technological 

legitimacy of the emerging technology. Here, we consider market legitimacy, which stems 

from established market structures (Walrave & Raven, 2016b). When market infrastructure is 

developed, it reduces market formation uncertainty and the perceived cost to participation (Lee 

et al., 2018). With reference to R16, as the Perceived Legitimacy of the emerging technology 

increases, more entrepreneurs are willing to overcome perceived risks and enter the market. 

Consequently, the development of Market Infrastructure increases with the growth of 

Entrepreneurial Activity. This feeds back into increasing the market legitimacy of the emerging 

technology. 

System Legitimacy – R17 Loop 

R17 Pathway: Entrepreneurial Activity →(+) Market Size →(+) Internal 

Resources from Market →(+) Total Resources →(+) Resources to Market 

Development →(+) Market Infrastructure →(+)  

Perceived Legitimacy →(+) Entrepreneurial Activity 

The System Legitimacy loop, R17, encompasses the aforementioned smaller loops R15 

and R16, and “constitutes the most powerful self-reinforcing loop, potentially able to drive the 

whole system” (Walrave & Raven, 2016b, p. 1838). Following the previous explanations 
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provided for the individual links between variables, we observe that when Entrepreneurial 

Activity increases Market Size through market formation, Internal Resources from the Market 

burgeon and increase the Total Resources. This translates to more Resources for Market 

Development, which enables further development of Market Infrastructure. Consequently, the 

market legitimacy of the technological innovation flourishes, and thus begets even more 

Entrepreneurial Activity.  

Resistance – R18 Loop 

R18 Pathway: Regime Resistance →(–) Perceived Legitimacy →(+) 

Entrepreneurial Activity →(+) Market Infrastructure →(–) Regime Resistance 

Market formation of a new technology is bound to precipitate “resistance from actors 

with interests in the incumbent” regime (Suurs, 2009, p. 57). This Resistance is captured in 

R18. Regime Resistance decreases the market legitimacy of the emerging technology, for 

instance “when regime actors try to influence public discourses, or lobby against favourable 

support” (Walrave & Raven, 2016b, p. 1837). In turn, entrepreneurs might be less willing to 

enter the market due to higher perceived risks, thus reducing the Entrepreneurial Activity to a 

lower level than it otherwise would have been. In turn, there will be less Market Infrastructure 

development to counter Regime Resistance, which further emboldens resistance given the 

inverse relationship. The underlying mechanism for the negative link is supported by the fact 

that market infrastructure enables the system “to become less dependent on external dynamics 

and counter-balance regime-resistance” (Walrave & Raven, 2016b, p. 1838). Importantly, R18 

could work in a virtuous or vicious manner, depending on whosever perspective, either 

working to reinforce more resistance or reduce it.  

Sailing Ship – B7 Loop 

B7 Pathway: Perceived Legitimacy →(+) Entrepreneurial Activity →(+) Market 

Infrastructure →(+) Market Size →(+) Sailing Ship Effect →(+) Regime 

Resistance →(–) Perceived Legitimacy 

As the emerging market grows and competes with the incumbent regime, resistance 

could also come in the form of innovation. Given the new threat, regime actors would “increase 

their efforts to improve the performance of the existing regime through innovation” (Walrave 

& Raven, 2016b, p. 1838). This “response aimed at improving the incumbent technology” is 

referred to as the sailing-ship effect (De Liso et al., 2022; De Liso & Filatrella, 2008, p. 593). 

The Sailing Ship effect is thus represented in the balancing loop, B7. When the Perceived 
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Legitimacy of the emerging technology increases, which attracts more entrepreneurial activity 

and thus market formation, the Sailing Ship Effect increases. This contributes to a stronger 

Regime Resistance, which consequently reduces the Perceived Legitimacy of the emerging 

technology. This loop thus seeks to counteract the effect of the System Legitimacy loop, R17.  

Digital Growth – R3 & R4 Loops 

In the top-level Prosthetic Care System, we made the assumption that the Perceived 

Relative Success of Digital Fitting will lead to an increase in Digital Market Size, thus masking 

the underlying structure between that link. Here, we consider the conceptual model in the 

Market Formation subsystem that could possibly explain how exactly the two variables are 

linked. Since R3 & R4 share a similar pathway in the subsystem, I will only comment on R3. 

R3 Pathway: Amputees in Digital Prosthetic Care →(+) Successful Fitting →(+) 

Perceived Relative Success of Digital Fitting →(+) Digital Fitting Reputation 

→(+) Perceived Legitimacy →(+) Entrepreneurial Activity →(+) Market 

Infrastructure →(+)  Digital Market Size →(+) Digital Market Share →(+) 

Digital Prosthesis Referral →(+) Amputees in Digital Prosthetic Care 

When the perceived relative success of digital fittings increases, we expect the 

emerging digital technology for prosthesis fitting to start amassing a reputation. This formed 

reputation improves the technological legitimacy, which would attract more Entrepreneurial 

Activity to the emerging technological innovation system. Hence, the System Legitimacy loop 

works to increase the Market Infrastructure as well as Market Size for digital prosthetics. 

Consequently, the Digital Market Share rises to compete with the traditional prosthetics 

industry. The Digital Growth loops and the System Legitimacy loop thus work in tandem to 

increase the number of Amputees in Digital Prosthetic Care.   

Market Access – R5, R6 & R7 Loops 

R5 Pathway: Amputees in Prosthetic Care →(+) Successful Fitting →(+) 

Perceived Relative Success of Digital Fitting →(+) Digital Fitting Reputation 

→(+) Perceived Legitimacy →(+) Entrepreneurial Activity →(+) Market 

Infrastructure →(+)  Digital Market Size →(+) Prosthetic Clinics →(+) Fitting 

Capacity →(+) Prosthetic Accessibility →(+) Prosthesis Referral →(+) Amputees 

in Prosthetic Care 
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Similarly, we expect the interaction of the Market Access loops and the System 

Legitimacy loop. As Digital Fitting Reputation forms over time and builds the Digital Market 

Size, through the same pathway described above, we expect the expansion of digital prosthetic 

clinics that increases the Fitting Capacity. This improves the Market Access in the digital 

prosthetic continuum, which enables more people to be fitted with a prosthesis and improves 

the overall mobility outcomes. 
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3. Model Structure & Validation 

 

 

 

 

The dynamic hypothesis, described in the preceding chapter, was operationalised into a SD 

simulation model for hypothesis testing. Simulation modelling not only helps us visualise the 

impact of digital prosthetics on mobility outcomes, but also conduct experimentations to better 

understand the dynamic complexity of the prosthetic care system (Homer & Hirsch, 2006; 

Sterman, 2000). Here, I report the results of the model validation procedure, as proposed by 

Forrester & Senge (1980) and Barlas (1996), including direct structure tests, structure-oriented 

behaviour tests, and behaviour pattern test. Validation tests help us build confidence in the 

outputs of the simulation model by ensuring that “the structure and behavior of the model 

correspond to existing knowledge about the system” (Homer, 2012, p. 282) and that “the right 

outputs are being generated for the right reasons” (Barlas, 1996, p. 189).  

Direct Structure Tests 

Structure Verification 

The structure verification test ensures that the model does not “contradict the knowledge about 

the structure of the real system” (Senge & Forrester, 1980, p. 212). This can be done 

empirically, by comparing the model’s structural relationships to the real system (Senge & 

Forrester, 1980), theoretically, by comparing it to generalised knowledge as reported in 

literature (Barlas, 1996), or qualitatively by consulting problem owners (D. L. Andersen et al., 

2012). Here, I report the main basis on which each sector was constructed and further discuss 

the main assumptions in the structure that could have introduced uncertainty into the model.    

Population Sector 

Though meant to be a model generalisable to other contexts, in this iteration, the model 

is calibrated to the United Kingdom (UK); this context was selected as ProsFit had knowledge 

of the system structures (as well as access to more of the data) pertaining to the country. The 

population is disaggregated into the PAD Population and Non-PAD Population (see Figure 3.1 

below). In most industrialised countries, including the UK, more than 90 percent of major 
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lower-limb amputations are attributed to PAD alone, whether primary or secondary to the onset 

of diabetes (Ahmad et al., 2014; Kohler et al., 2009). Hence, we simplify the model to only 

account for PAD-related and traumatic-injury-related amputation, which in turn could lead to 

small underestimation in the amputee population. Since PAD incidence is dependent on age 

with different rates for each age group, the model is arrayed by age cohorts: Under 15, 15 to 

44, 45 to 59, 60 to 79, and 80+. In doing so, we can better estimate the amputation rates and 

changes in the amputee population.  

 

Figure 3.1 Model Structure: Population Sector 

As mentioned previously, public health agencies respond with interventions when the 

prevention pressure amasses. Since it takes time for prevention programmes to influence 

behaviour, we know that this has a delayed effect on the incidence rate. Hence, the effect was 

smoothed with a 10-year delay. Moreover, this effect was formulated as an inverse Sigmoid 

function (z-shaped), where a lower prevention pressure increases the incidence rate and higher 

pressure decreases the incidence rate. To reduce the uncertainty introduced, a conservative 

effect was used that at most doubles the fractional rate. 

Primary Care Sector 

The primary care sector (Figure 3.2) mainly represents the hospital setting where 

amputation is performed. The model structure was elicited from UK’s National Vascular 

Registry (Healthcare Quality Improvement Partnership, 2015, 2016, 2018a, 2018b, 2019, 

2020), which also provided the data points for parameter estimation in this sector. The structure 

was corroborated by reported Patient Journey Mapping (ProsFit Technologies, 2022).        
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Figure 3.2 Model Structure: Primary Care Sector 

Prosthetic Care Sector 

 

Figure 3.3 Model Structure: Prosthetic Care Sector 
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The prosthetic care sector (Figure 3.3) captures the prosthesis fitting process and 

lifecycle for amputees. Here, the prosthesis fitting process has been disaggregated into the 

various stages according to the general timeline for major lower-limb amputee rehabilitation 

(Rheinstein et al., 2021) and corroborated by ProsFit, a digital prosthetics service provider. The 

choice in disaggregation is motivated by the utility in capturing the endogenous disposition of 

amputees in relation to dropout and readoption of the fitting process at various stages (Paine, 

2022). This disposition to dropout or readopt is simplified with a fractional rate that responds 

to changes in the perceived relative success of digital prosthetics.  

As mentioned in Chapter 2, we expect such dispositional changes due to word-of-mouth 

diffusion processes that affects consumer preferences in technology adoption and abandonment 

(Chernicoff et al., 2014). This is simplified and captured with effect variables that increases 

adoption and decreases dropout as the perceived relative success increases (see Figure 3.4). As 

digital prosthetics’ success grows, we expect the fractional dropout rate to exponentially decay 

towards 0 from its normal or reference value. On the other hand, we expect readoption to grow 

exponentially as perceived success and word-of-mouth diffusion picks up steam. Since the 

effect is assumed, we remain conservative by at most doubling the fractional rate. 

  

Figure 3.4 Effects of Perceived Relative Fitting Success on Dispositions 

The prosthetic care sector is further arrayed by an additional dimension: prosthesis type 

(digital or traditional). According to ProsFit (2022), although the digital and traditional fitting 

process is essentially identical, they have different input parameter values; the digital process 

has a much shorter manufacturing (and thus delivery) duration and a higher success fraction in 

the final prosthesis fitting.  

Lastly, the prosthetics in-progress stocks were initialised with 0 amputees, assuming 

that at the start of the simulation the initial amputees have already been (un)successfully fitted. 

This had to be done as there are no data available on the amputee population in relation to the 

prosthetic fitting process. This simplification, thus, produces estimation errors in the initial part 

of the results – instances where the results show a step up from 0. 
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Health Economics Sector 

This sector exogenously calculates to the Total Economic Cost and Contributions 

associated with the amputee population, which is meant to assess the net benefit of prosthetics 

service provision (see Figure 3.5). The conceptualisation of this sector was heavily drawn from 

the variables and data points used in ProsFit’s Health Economics Model (C. Hutchison, 2021). 

The boundary of this sector was defined as such since one of our research objectives is to 

provide dynamic inputs from the SD model into an otherwise static model. Given the 

exogenous nature of the calculations, this sector can be easily expanded in the future to account 

for other indicators of interest to relevant stakeholders.  

 

Figure 3.5 Model Structure: Health Economics Sector 

Market Subsystem 

As discussed previously, this subsystem (Figure 3.6) was adapted from a published SD 

model by Walrave & Raven (2016a, 2016b), which adequately represents the complexity of 

market formation in technological innovation systems – and thus appropriate for the nascent 

digital prosthetics market. Here, I discuss the main differences in modelling choices. 

In this model, we replace absolute values for resources (as in the original model) with 

relative values – where a relative value of 1 indicates the typical value, which is then adjusted 

above and below the normal level. This simplification was necessary as there is no knowledge 

on the absolute level of resources in the digital prosthetics market system. Moreover, the 

absolute values used in the original model seem suspect as there was no documentation 

provided for those parameters related to resources and the resources to stock changes ratio (e.g., 

resources to knowledge ratio, resources to infrastructure ratio, resources to entrepreneurial 

activity ratio). To avoid unsubstantiated inputs, I opted to introduce relative resources and their 

corresponding effects on market development. With reference to Figure 3.7, when total relative 
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resources increase beyond 0, we expect an increase in entrepreneurial activities and market 

infrastructure that exponentially decays towards their maximum levels – the assumption here 

is based on the economic principle of diminishing return of investment.  

 

Figure 3.6 Model Structure: Market Subsystem Module 

  

Figure 3.7 Effects of Resources on Entrepreneurial Activity and Market Infrastructure 

Moreover, the subsystem is connected to the top-level system through Digital Fitting 

Reputation, which was introduced as part of technological legitimacy. Here, weights for 

different types of legitimacy were added as part of an additive relationship. This is different 

from the original model that opted for a multiplicative relationship. Multiplicative relationship 

did not hold up to direct extreme condition test, where a full technological legitimacy and 0 



32 

 

market legitimacy results in an indicated legitimacy of 0. People’s perception of legitimacy 

adds up over time by taking in various input sources and need not be completely negated when 

it falls short in one aspect. However, the relative weights for the input sources are assumed in 

this model based on reason given the lack of data. 

Parameter Verification 

The parameter verification test ensures that the exogenous parameters conceptually correspond 

to elements of the real system, and numerically lies within a range of plausible values (Barlas, 

1996; Senge & Forrester, 1980). For the top-level Prosthetics Care System, most parameter 

values were obtained from empirical data reported in the literature. In instances where data was 

not available, the values were estimated from expert opinion. This mainly pertains to the 

reference fractional dropout and readoption rates, which are estimates from ProsFit and their 

network of prosthetists. More details can be found in the Model Documentation (Appendix C).  

Importantly, numerical verification is challenging for the conceptual Market Subsystem. 

The values for the parameters correspond to the values set in the original model that was 

adapted here (Walrave & Raven, 2016b). While this introduces uncertainty to the model, it is 

arguably less uncertain than the alternative, which is simplifying the entire subsystem into a 

single table function. At the very least, this conceptual model that is based on literature, 

provides more confidence that the market subsystem matches elements of the real system 

(conceptual correspondence). Moreover, the uncertain parameters are subject to further tests 

(sensitivity analysis), which could reduce the level of uncertainty if they are found to be 

insignificant to the model’s sensitivity.  

Direct-Extreme Conditions 

Through partial model testing, each equation in the model was subjected to direct-extreme 

conditions tests to ensure that they are robust and perform expectedly under extreme conditions. 

To prevent computational errors, MIN or MAX functions were used, where necessary, to 

prevent variables from taking on unreasonable values. Where relevant, a maximum effect was 

set for nonlinear effect variables to ensure a reasonable output under extreme conditions. With 

these preventative measures, there were no computational errors detected in the model and 

results conform to values that are within bounds. 
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Dimensional Consistency 

All variables and constants in the model were found to be dimensionally consistent, meaning 

that their units of measurement are both mathematically consistent and conceptually consistent 

– they have ‘real world’ meaning and were not arbitrarily included (Barlas, 1996; Sterman, 

2000). Mathematical consistency is further validated by the modelling software (Stella 

Architect 3.0) that has found no unit errors. In the Model Documentation, each variable’s real-

world equivalency is described. 

Boundary Adequacy 

To evaluate the model’s level of aggregation and inclusion of all relevant structure in the model 

boundary (Senge & Forrester, 1980), we need to consider its purpose. As mentioned, the main 

purpose of this model is to provide proof-of-concept for the causal theory on digital prosthetics’ 

impact on amputee mobility outcomes. For this purpose, numerical accuracy is not sought as 

there are uncertainties surrounding digital prosthetics market that is in its infancy – there is no 

historical data nor systematic data collection presently available. Hence, simplification in the 

market subsystem structures is justifiable as it is meant to simply show us plausible endogenous 

market growth scenarios. As for the main prosthetics care system, the level of aggregation has 

been fully justified in the structure verification section. The boundary of the model has also 

been validated by the collaborators and secondary literature to adequately capture the patient 

journey from pre-amputation, acute care, and prosthesis fitting.  

Structure-Oriented Behaviour Tests 

Integration Error  

The integration error test ensures that the model results are not “sensitive to changes in either 

the applied integration method or the chosen integration interval” (Schwaninger & Groesser, 

2011, p. 773). The Euler integration method is applied to the model settings with an interval 

(time-step) of 1/64 months. This interval was chosen since it is smaller than the minimum 

plausible adjustment time (1/30) for parameters that take on values corresponding to days, and 

it is set to a power of 2 (i.e., 26) to prevent round-off errors in numerical calculations (Sterman, 

2000). The model outputs were not sensitive to changes in the time-step, which was halved and 

doubled, producing the same results. Using an alternative integration method, RK4, also 

yielded no difference. 
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Indirect Extreme Conditions 

While the direct test ensures that each variable is robust under extreme conditions, the indirect 

test involves the entire model’s response. Extreme values are assigned to selected parameters 

and the generated system behaviour is compared to “expected behavior of the real system under 

the same extreme conditions” (Schwaninger & Groesser, 2011, p. 773). Here, we simulate the 

unlikely extreme conditions where amputation incidence is completely eradicated, and the 

market subsystem has no external resources flowing into it. Table 3.1, below, show the relevant 

parameter values assigned.    

Table 3.1 Parameter Values under Extreme Conditions 

Parameter Sector Extreme Condition 

RER Size Market Formation 0 

Trauma Incidence Population 0 

PAD-related Amputation Rate Population 0 

 

The system’s response conforms to behavioural expectations. First, we expect that the 

digital Market Share will not increase. In Figure 3.8, we observe that the Market Share is 

effectively 0 (though exponentially decaying from 0 to 0.0000402). The slight increase is due 

to the initial values of the innovation diffusion stocks that are set slightly above zero to push 

the stocks out of an unstable equilibrium for exponential growth, which in turn results in other 

stocks accumulating to a value that is slightly above 0. Second, we expect that the amputee 

stocks would exponentially decay towards zero since the inflows are cut off and the death 

outflows would continue to drain the stocks. This is evident in the remaining graphs in Figure 

3.8, where the Full Mobility and Limited Mobility stocks are exponentially decaying towards 

0, and consequently the Total Economic Cost and Contribution is falling towards 0. Hence, we 

can conclude that the model structure is robust under extreme conditions. 
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Figure 3.8 System Behaviour under Extreme Conditions 

Behaviour Sensitivity 

Sensitivity analysis reveals the model’s behavioural sensitivity to systematic variations in the 

parameter values (Schwaninger & Groesser, 2011, p. 773). If the model’s sensitivity does not 

correspond to a similar expected sensitivity in the real world system, then the confidence of 

the structure is put to question (Barlas, 1996). Where sensitivity is expected, those points in 

the system could be plausible policy levers for intervention. There are three types of sensitivity: 

(1) numerical sensitivity – significant changes in numerical value but behavioural pattern is 

retained; (2) behavioural sensitivity – significant changes in behavioural modes; and (3) policy 

sensitivity – reversals in “the impacts or desirability of a proposed policy” (Schwaninger & 

Groesser, 2011; Sterman, 2000, p. 883). Since we are less concerned with the numerical 

accuracy of results, given the conceptual nature of the market subsystem, we define significant 

sensitivity in the model to constitute behavioural sensitivity or policy sensitivity. Here, I 

summarise the results of the sensitivity analysis (available in Appendix B) and discuss the more 

salient findings. 

Top-level Prosthetic Care System 

The main top-level structure was largely insensitive to variations in its input parameters, 

suggesting robustness in the model structure. Of the 34 parameters, the model exhibited 

moderate numerical sensitivity to only 2 (summarised in Table 3.2 below). 

Table 3.2 Top-Level Parameters resulting in Model Sensitivity 

Parameter Variation Sensitivity Type Uncertainty 

PAD-related 

Amputation Rate 

Uniform (Halved to 

Doubled) 

Moderate (numerical) Low; values were 

estimated from data 

Reference PAD 

Incidence Rate 

Uniform (Halved to 

Doubled) 

Moderate (numerical) Low; values were 

estimated from data 
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Both parameters produced similar moderate numerical sensitivity in the model’s output 

for the mobility outcomes. This is expected as lower incidence rates would lead to lower 

amputee population in the first place. Since we are quite confident in the parameterisation, 

these results suggest that lowering these rates are high-leverage policies for consideration. 

Though we will keep this in mind for the discussion on policy insights, policy experimentation 

on this parameter will not be conducted in the following chapter for two reasons: (1) this is a 

common insight for public health interventions, and (2) this relates to the effect of the balancing 

B1 Prevention Pressure loop, which has little interplay with the other feedback loops. 

Market Subsystem Module 

Given the conceptual nature of the market subsystem, the model is unsurprisingly more 

sensitive to the parameters in this module. Of the 32 parameters, the model was moderately 

sensitive to 9 and significantly sensitive to 3 (see Table 3.3). 

Table 3.3 Market Subsystem Parameters resulting in Model Sensitivity 

Parameter Variation Sensitivity Uncertainty 

Relative 

External 

Resources Size 

Uniform (0 to 9) Significant (behavioural) Leverage Point discussed 

in Chapter 4 

Weight of 

Entrepreneurial 

Activity 

Uniform (0.3 to 0.7) Significant (behavioural) High; assumption in the 

model 

Market Size 

Threshold 

Uniform (0.025 to 

0.075) 

Significant (behavioural) Moderate; logical 

assumption and expected 

output 

Steepness EA Uniform (1 to 5) Moderate (numerical) Moderate; assumption in 

the model 

Steepness EA 

on MI 

Uniform (0.2 to 0.8) Moderate (numerical) Moderate; table function in 

original model 

Steepness MI Uniform (1 to 5) Moderate (numerical) Moderate; assumption in 

the model 

Time to Adjust 

MI 

Uniform (30 to 120) Moderate (numerical) Moderate; value obtained 

from original model and 

expected output 

Time to Adjust 

MS 
Uniform (12 to 48) Moderate (numerical) Moderate; value obtained 

from original model and 

expected output 
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Weight of PL Uniform (0.3 to 0.7) Moderate (numerical) Moderate; assumption in 

model 

Steepness PL on 

EA 

Uniform (0.2 to 0.8) Moderate (numerical) Moderate; table function in 

original model 

Ref Digital 

Clinics 

Uniform (1 to 6) Moderate (numerical) Low; calibrated value to 

projected clinics 

Sensitivity of 

Clinics to 

Market Size 

Uniform (0.5 to 1.5) Moderate (numerical) Leverage Point discussed 

in Chapter 4 

 

Based on the results, it is evident that the model results exhibit sensitivity, particularly 

around the effect variables affecting the Entrepreneurial Activity and Market Infrastructure 

stocks. The accumulation level of these stocks is dependent on four effect variables whose 

structural relationships have been assumed. For a more accurate estimation in digital market 

growth, we need more data collection to better quantify the extent to which (1) total resources 

will affect the entry of new entrepreneurs and the development of market infrastructure; (2) 

perceived legitimacy affects entrepreneurial activity; and (3) entrepreneurial activity affects 

market infrastructure growth. Despite the numerical uncertainty observed in the analysis of the 

effect variables, the overall behaviour mode is retained and thus gives us confidence in the 

directionality of the change in the model results. 

However, in the development of market infrastructure, we observe that when more 

weight is allocated to entrepreneurial activity, the behaviour mode of market share changes 

(see Figure 3.9 and Table 3.4). When infrastructure development is disproportionately 

dependent on entrepreneurial activities (>0.5 weight) as opposed to available resources for 

market development, then market infrastructure growth is stunted. Through the feedback 

processes in the system, market growth stagnates over time and even declines slowly. While 

this constitutes a high level of uncertainty, we can reason that a higher weight is an unlikely 

condition as infrastructure development typically is strongly influenced by resources. 

Consequently, the conservative parameter value for Weight of EA set at 0.4 need not betray 

the confidence of the simulation results. 
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Figure 3.9 Sensitivity Runs of Market Share for variation in Weight of EA 

Table 3.4 Parameter Values for Sensitivity Runs for variation in Weight of EA 

Parameter Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 

Weight of EA 

(Input) 

0.5 0.4 0.6 0.45 0.65 0.35 0.55 0.425 0.625 

Market Share 

(Output) 

0.46 0.63 0.24 0.55 0.18 0.70 0.36 0.59 0.23 

 

Behaviour Reproduction Tests 

This set of tests aims to evaluate “how well model-generated behavior matches the observed 

historical behavior of the real system” (Schwaninger & Groesser, 2011, p. 774). In other words, 

we compare the system performance against the reference mode of behaviour. This, however, 

proves to be particularly difficult for the prosthetic care system given the dearth of data 

available as mentioned in Chapter 1. Instead, here, we compare the simulated system behaviour 

to the qualitative reference modes presented previously and other sources of estimations. 

Firstly, the only available historical and projected dataset pertains to UK’s population 

size. In Figure 3.10, we observe that the model produces a relatively good fit of the Reference 

Total Population, largely because population is exogenous. Nevertheless, since the population 

includes the various amputee stocks that are subject to the system feedback, it is important to 

ensure that the total population does not radically differ from known data.  
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Figure 3.10 System Performance for Behaviour Reproduction Test 

Second, the WHO (2017) estimates that the amputee population will double in size by 

2050. The model estimates 1.83 times increase in amputee population, from 56.9K people to 

104K people in 2050. In Figure 3.10 we observe a slight initial decrease in this population 

before steady growth; this is due the amputation rates for those aged 80 and above. Given that 

fractional mortality rate is much higher for this population (but decreases over time to simulate 

an ageing population) and further amplified with the relative mortality risk from PAD, there 

are more PAD deaths (outflow) for this age group than incidence of PAD (inflow). Hence, 

there is a transient stock adjustment. While the fractional mortality rate and initial stock value 

were obtained from known estimates in the literature, this could perhaps suggest an error in 

those estimates.   

Third, the WHO (2017) also reckons that only 5 to 15% of amputees have access to 

prostheses. The model’s baseline results show a 18% mobility proportion that eventually 

declines to about 10% by 2050 – an anticipated result due to the increase in amputee population 

over time. A slightly higher proportion is also not surprising as the range provided by WHO is 

a global estimate, whereas this is more specific to a high-income country expected to have an 

above-average healthcare system.  

Given that the system’s performance is close to available estimates, we can 

qualitatively conclude that the model is adequately able to reproduce the behaviour of the real 

system – thus building confidence in the simulation results generated by the model.
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4. Analysis of Simulation Results 

 

 

 

 

In this chapter, I present the simulation results generated by the SD model for the business-as-

usual scenario (BAU) that provides the baseline performance for our key indicators: digital 

market share, mobility proportion, economic cost, and economic contribution. I, then, provide 

an endogenous explanation for the observed behaviour in terms of the feedback loops identified 

in Chapter 2. Thereafter, I experiment with leverage points in the system in two other scenarios 

– heightened resources (HRS) and expanded capacity (ECS)– and further provide explanations 

for the observed differences in behaviour.  

Business As Usual Scenario 

Experimental Setup 

The BAU is set up such that the Relative External Resources is 1 (External Resource Size 

SWITCH = 0 & Clinic Sensitivity SWITCH = 0). Although set to 1, the actual amount is 

dependent on the level of Entrepreneurial Activity, where the variable portion of the external 

resources increases with more activity. So long as Entrepreneurial Activity is low, the amount 

of external stream of resources will be lower than normal. This represents the scenario wherein 

the exogenous funding (e.g., investment backing for early entrepreneurial entrants from private 

or public actors) is relatively low. In the model, the external resource stream kicks in at 96 

months (year 2018) for a duration of 180 months, as shown in Figure 4.1.  

 

Figure 4.1 Set up of Relative External Resources variable in BAU 
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Results Overview 

The graphs in Figure 4.2, below, present the simulation results for the key indicators in the 

BAU scenario. We observe that the digital prosthetics market share increases increasingly to 

about 6.4% before falling back down to about 3% by 2050. This suggests that with business as 

usual, we can expect a temporary market growth that does not successfully take off. The impact 

of this short-lived growth is seen in the total proportion of amputees who have achieved full 

mobility. The proportion declines from about 18% to 9% before rising to a maximum of about 

11% some time in 2038 (after the time when the digital market share has reached its peak 

growth), and eventually declining back down to 10% as digital market share dwindles. As a 

result, the Total Economic Contribution from amputee participation in the workforce follows 

a similar development – since it is dependent on the total number of mobile amputees who have 

been reintegrated into the workforce. The Total Economic Cost for supporting the amputee 

population, however, steadily increases throughout the simulation duration. These results, thus, 

indicate that digital prosthetics do in fact impact the mobility outcomes for the UK. An 

increased digital market growth improves the mobility proportion and leads to increased 

economic contribution, vice versa. 

  

  

Figure 4.2 Results of Key Indicators with Business as Usual 
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Behavioural Explanation 

Digital Prosthetics Market Share 

We begin with a structural explanation for the development observed in the market share. The 

External Engine loop (R14) kick-starts the dynamics in the market subsystem when external 

resources first pour in. As mentioned previously, external backing reduces entrepreneurial risks, 

which enables the self-reinforcing growth in Entrepreneurial Activity – as observed in Figure 

4.3, where it increases sharply from 2018.1 External resources and entrepreneurial activities, in 

turn, foster the development of Market Infrastructure, which does not increase as quickly due 

to the longer delay time. This lends strength to the System Building loop (R16), which works 

to endogenously increase the market legitimacy of digital prosthetics. Hence, we observe the 

level of Perceived Legitimacy rising, albeit to a slower and lower extent. This dampened 

development is due to a low level of technological legitimacy, which is dependent on digital 

prosthetics reputation and innovation diffusion.  

For one, the small digital market share means a smaller number of people being fitted 

with a digital prosthesis. In Figure 4.3, we see the Rate of Successful Fitting for both the 

traditional and digital prosthetics. There is an abrupt increase in the traditional rate due to the 

estimation error introduced from initialising all the “in-progress” stocks at 0, as explained in 

the preceding chapter. Importantly, we observe that the performance of digital prosthetics is 

much lower than the incumbent for the entire simulation duration. In turn, the Digital Growth 

loops (R3 & 4), meant to reinforce market growth and digital fitting rate, remains too weak to 

effectively increase the reputation of digital prosthetics over time.  

Moreover, the relatively small External Resources Size and the low guidance of search 

result in a lower-than-normal resources available for R&D (<1) up until 2027. In turn, the 

innovation development rate and knowledge diffusion rate (inflows) are lowered below the 

respective decay rates (outflows). Hence, the Innovation Developed and Knowledge Diffused 

stocks decline for the first part of the simulation and contribute to a low level of technological 

legitimacy of digital prosthetics. A low level of Perceived Legitimacy consequently holds back 

the strength of the System Legitimacy loop (R17), which powers the smaller market loops that 

 

1 Note that the Entrepreneurial Activity, Market Infrastructure, and Perceived Legitimacy stocks are at a level slightly above 

0 prior to the exogenous increase in external resources. As explained in Chapter 3, this is due to the initial value of the 

Innovation Developed and Knowledge Diffused stocks at 0.001 (meant to kick it out of an unstable equilibrium). This is a 

product of mathematical computation, and for all intents and purposes the respective levels should be interpreted as 0. 
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seek to reinforce the growth in Entrepreneurial Activity, Market Infrastructure and Market Size. 

Importantly, it holds back the strength of the Internal Engine loop (R15) – when market size 

increases, internal (financial, material and human) resources increase, which then enables the 

growth of further entrepreneurial activities and market infrastructure development that 

consequently reinforce the growth in market size. By holding back this loop, R17 essentially 

dampens the market’s ability to grow and endogenously generate its own internal resources.  

  

  

 

Figure 4.3 Key Explanatory Variables for Market Share (BAU) 

By 2033, when the External Engine is cut off, we observe a sharp decline in the level 

of Entrepreneurial Activity and Market Infrastructure. The weakened Internal Engine (R15) 

fails to generate sufficient internal resources for the market system to be self-sufficient, instead 

contributing to its decline. Hence, we observe the market share decrease increasingly. The most 

powerful driver of the system, R17, is reinforcing negative growth, which is boosted by the 

smaller reinforcing loops in the system. We further observe this in the exponentially increasing 
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Regime Resistance (due to R18), and rapidly declining Innovation Developed and Knowledge 

Diffused (due to R10 and R11). This feedback story explains the rise and fall in market share 

as observed in Figure 4.2. 

Mobility Outcomes 

Prior to the growth in digital market share, we observed a declining mobility proportion for the 

amputee population. There are two reasons: (1) the total UK population is increasing and as a 

result the Total Amputees is increasing proportionally and (2) the Total Capacity for prosthetic 

fitting is held constant. Hence, we observe in Figure 4.4 that the gap between the Total Limited 

Mobility and Total Full Mobility is increasing over time, thus leading to a declining mobility 

proportion up until the market share of digital prosthetics grows. 

 

 

 

Figure 4.4 Key Explanatory Variables for Mobility Outcomes (BAU) 

Once the market share of digital prosthetics grows, the mobility proportion increases 
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fitted with a prosthesis. The delay is explained by the fitting process that involves multiple 

aging chains with delays and, more importantly, by the fact that Limited Mobility is increasing 

at a faster rate given low prosthetic accessibility. Nevertheless, the Total Full Mobility 

increases as a result of the Digital Growth Loops (R3 & 4) and Prosthetic Attractiveness loops 

(R8 & 9). R3 enables additional eligible new entrants to the digital prosthesis fitting process 

while R4 enables more of the Limited Mobility population to successfully take-up the process 

once again. Again, the limited market growth translates to a relatively weak reinforcing effect, 

as evidence by the lower Rate of Successful Fitting for digital prosthetics (Figure 4.3).  

As for R8, it reduces the digital prosthesis dropout rates as its relative success 

encourages retention in the process. In Figure 4.4, we observe the Digital Dropout first 

increases as more people enter digital prosthetics, but starts decreasing some time in 2034, 

when Digital Successful Fitting Rate is increasing at its fastest. R9, on the other hand, makes 

prosthesis readoption more attractive to those in the Limited Mobility stock, hence partially 

contributing to the increasing number of people desiring to re-adopt a prosthesis. Note that the 

development of Desired Re-Adoption Rate is proportional to the Limited Mobility; and as such 

it increases so long as the Limited Mobility stock grows. Similarly, the Digital Dropout is also 

decreasing partially due to the declining number of Successful Entries to the prosthesis fitting 

process at the tail end of the simulation as the market share drops. 

As alluded to, the strength of the reinforcing loops is also being dampened by the 

Access Constraint loops (B2 to 4). As more people attempt to enter the prosthetics care system, 

the Total Demand for a prosthesis increases (see Figure 4.4), and consequently these loops 

prevent entry by reducing the Prosthetic Accessibility so long as demand outpaces capacity. In 

this case, the Market Access loops (R5 to 7) barely make a dent as they involve a long delay in 

expanding capacity, coupled with a minimal digital market expansion.     

Lastly, the economic indicators are exogenous parameters which are dependent on the 

dynamics of the feedback loops in the model. As mentioned, the Total Economic Contribution 

calculate the contribution of amputees in the workforce. Since only a portion of the fully mobile 

populations participate in the workforce, the development follows the mobility proportion. As 

for the Total Economic Cost, it increases as the Total Amputee Population is increasing, thus 

incurring more unemployment and social payments, healthcare and family costs, and a higher 

prosthesis cost, which is covered by the National Health Service in the UK.  
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Heightened Resources Scenario 

Experimental Setup 

The Heightened Resources scenario (HRS) represents the situation where the Relative External 

Resources is amplified from 1 to 5 (External Resource Size SWITCH = 1 & Clinic Sensitivity 

SWITCH = 0). In setting up the external resources to a much higher than normal level, we 

heighten the reinforcing feedback of the External Engine (R14) that initially powers the market 

subsystem. 

Results Overview 

With reference to the comparative results presented in Figure 4.5 and Table 4.1, it is evident 

that a well-resourced digital prosthetics market results in much improved mobility outcomes. 

The digital market subsystem is self-sufficient, increasing steadily to capture 63% of the market 

share by 2050. The mobility proportion increases at a much faster rate and to a higher level, 

more than doubling by the end of the simulation. Consequently, the total economic contribution 

more than doubles as well. While the monthly cost rises steadily, given the increasing amputee 

population, it does so at a slower rate. Based on the simulation results, we can calculate the Net 

Economic Benefit of the successful re-integration of amputees in society, which is represented 

by the area between the lines in the Total Economic Contribution (additional contributions) 

and Total Economic Cost (cost saving). This is calculated to be about US$7.73 billion.  

 

 

Figure 4.5 Results of Key Indicators for Heightened Resources Scenario (HRS) 
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Table 4.1 Numerical Simulation Results in 2050 Jan for BAU, HRS 

Indicator BAU HRS 

Digital Market Share 0.03 0.63 

Mobility Proportion 0.1 0.25 

Total Economic Cost $256.5M/month $252.9M/month 

Total Economic Contribution $23.5M/month $55.6M/month 

Cumulative Net Benefit   $7.73B 

 

Behavioural Explanation 

Digital Prosthetics Market Share 

With a heightened effect of the External Engine (R14), we observe a much steeper increase in 

Entrepreneurial Activity and Market Infrastructure from the get-go (see Figure 4.6). This, then, 

bolsters the strength of the System Building loop (R16) that increases the market legitimacy of 

digital prosthetics. However, we observe that Perceived Legitimacy increases at a slower rate 

initially, as there are delays involved in increasing the technological legitimacy. It takes time 

for the Technology Development loop to kick-off, hence initially holding back the strength of 

the Innovation Attractiveness loop (R12) that seeks to increase legitimacy for attracting new 

entrants to the system. Moreover, the Digital Growth loops (R3 & 4) requires time to increase 

the Rate of Successful Fitting for digital prosthetics and hence its reputation. Once the digital 

successful fitting rate increases beyond the traditional successful fitting rate, and innovation 

development is increasing at its fastest, we observe a steep increase in Perceived Legitimacy 

some time in 2028. Consequently, the System Legitimacy loop (R17) is at its full strength to 

power the rest of the reinforcing loops in the system, enabling the build-up of the digital market 

and thus the internal resources. This strength is further evidenced by the weak Sailing Ship 

loop (B7), which is unable dampen R17 despite experiencing a spike in Regime Resistance due 

to the sailing ship effect, and, more importantly, the continued growth in digital market despite 

cutting off the External Engine loop. In essence, there has been sufficient internal build-up for 

self-sufficiency.  
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Figure 4.6 Explanatory Variables for Market Share (HRS) 

Mobility Outcomes 
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2030. Consequently, we observe that the growth in Full Mobility and Mobility Proportion 
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As the mobility proportion increases, lower costs are incurred. An overall increase in Total 

Amputee Population, as observed in Figure 4.7, incurs higher costs. If the amputee population 

had not risen, then the total economic costs would have been at a lower level. This is due to 

deaths. Fully Mobile amputees have improved health outcomes, including a lower mortality 

risk. Hence, as we fit more people successfully, we are preventing more deaths. And to sustain 

this otherwise dead population, we incur higher costs. This is a counterintuitive insight that is 

not readily made apparent due to open loop thinking, which we can overcome with modelling. 

 

 

Figure 4.7 Explanatory Variables for Mobility Outcomes (HRS) 

Expanded Capacity Scenario 

Experimental Setup 
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can increase the number of Digital Prosthetics Clinics to a much higher level as the digital 

market grows, as shown in Figure 4.8. 

  

Figure 4.8 Results for Digital Prosthetics Clinics in ECS 

Results Overview 

The expanded capacity leads to substantial differences in the mobility proportion and economic 

indicators as seen in Figure 4.9 and Table 4.2, which suggest a significant improvement in the 

mobility outcomes. The mobility proportion exponentially increases to a much higher level (5 

times more than the BAU). Given the amplified Total Economic Contribution and reduced 

Total Economic Cost, the Net Economic Benefit swells to $19.4 billion, about 2.5 times more 

than the previous scenario.  

 

 

 

Figure 4.9 Results of Key Indicators for Expanded Capacity Scenario (ECS) 
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Table 4.2 Numerical Simulation Results in 2050 Jan for BAU, HRS, ECS 

Indicator BAU HRS ECS 

Digital Market Share 0.03 0.63 0.63 

Mobility Proportion 0.11 0.25 0.60 

Total Economic Cost $256.5M/month $252.9M/month $233.5M/month 

Total Economic Contribution $23.5M/month $55.6M/month $139.6M/month 

Cumulative Net Benefit  – $7.73B $19.4B 

 

Behavioural Explanation 

Mobility Outcomes 

There is not much change in the Market Share since the Digital Fitting Reputation contribution 

to Technological Legitimacy is already at its maximum in the previous scenario. Hence, we go 

right into explaining the observed developments in the mobility outcomes. Very simply put, 

the enhanced Market Access loops (R5 to 7) have weakened the Access Constraint loops (B2 

to 4), which were previously dampening the effects of the Digital Growth loops (R3 &4) and 

the Prosthesis Attractiveness loops (R8 & 9).  

 

Figure 4.10 Explanatory Variables for Mobility Outcomes (ECS) 
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With reference to Figure 4.10, we observe that the gap between Total Demand and 

Total Capacity is generally closing; this shows that the strength of Access Constraint is 

becoming weaker as Market Access grows stronger. With much better Prosthetic Accessibility, 

more amputees can successfully enter the fitting process than previous scenarios. Moreover, 

the R8 & 9 are working to increase the desired re-adoption rate while driving down the dropout 

rate from the digital prosthetic care system. Hence, in Figure 4.10 we see that the Limited 

Mobility stock is draining quickly and to a larger extent. Furthermore, as more people move 

on down the digital fitting process to be successfully fitted with a prosthesis, we observe that 

the Relative Successful Fitting Rate increases by more than 10 times. As a result, substantially 

more people are achieving Full Mobility who would otherwise have entered the Limited 

Mobility stock. These developments thus enable the mobility proportion to rise significantly 

and result in a much-improved Net Economic Benefit (for the same reasons explained before). 
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5. Discussion 

 

 

 

 

Hitherto, we have only addressed the first research question: how does digital prosthetics 

service provision affect amputee mobility over time? In this chapter, I begin with a summary 

of the impact of digital prosthetics revealed from our dynamic hypothesis testing exercise. 

Thereafter, I transition from the analyst position to that of an advocate (Walker, 2009) in order 

to answer the second research question: what are the model-based policy insights for bolstering 

the social impact of digital prosthetics? Lastly, we consider the limitations of this study and 

opportunities for further research.  

Impact of Digital Prosthetics 

We began this study with the intent to test the hypothesis that scaling up digital prosthetics 

positively impacts the mobility outcomes for the amputee population, which is thought to be a 

viable solution for alleviating the prosthetics accessibility problem as described in Chapter 1. 

To that end, we opted for the system dynamics method to construct a dynamic simulation model 

that could provide a feedback-rich explanation for the dynamics found in the prosthetic care 

system and the digital prosthetics market subsystem in relation to amputee mobility outcomes.    

RQ1(a): What are the dynamic structures found in the patient-care continuum and 

the prosthetic service provision systems responsible for changes in amputee 

mobility outcomes over time?  

To represent the dynamic structures found in the respective systems, I conceptualised 

the model and the constituent feedback mechanisms from secondary literature and experiential 

knowledge from stakeholder involvement in the model building process (Chapter 2). We then 

reviewed the computational model structure in Chapter 3 and evaluated its validity in 

representing the system for the purpose of our investigation. While we are confident in the 

dynamic structures of the patient-care continuum (from PAD incidence to amputation and to 

the prosthesis fitting process), the digital prosthetics market subsystem engenders uncertainty 

given its conceptual nature. Nevertheless, this conceptual model was able to generate plausible 
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market growth conditions, which was then used to evaluate the impact on the main system. We 

were also able to reproduce the behaviour patterns anticipated in the reference modes presented 

in Chapter 1. This means that the model was not only able to capture the dynamics of the 

system, but it has done so with some level of confidence. In this respect, it allows us to 

adequately test the hypothesis without offering numerical accuracy for simulation results. 

Moreover, this research has contributed to the health-related SD literature as the first 

application of SD modelling to prosthetic care. 

RQ1(b):What are the main causal mechanisms that drive these changes and explain 

the impact of digital prosthetics on mobility outcomes? 

Based on the structural explanations discussed in Chapter 4, I now summarise the key 

feedback loop mechanisms responsible for explaining the impact of digital prosthetics on 

mobility outcomes. The Digital Growth Loops and Prosthesis Attractive Loops were the key 

drivers for increasing prosthetic accessibility and successful prosthesis fitting, which in turn 

improved the mobility outcomes. The Market Access loops are particularly important for 

determining the extent of accessibility by increasing capacity over time and counteracting the 

Access Constraint loops. As for the market subsystem, the External Engine loop is key for 

fuelling the various endogenous market formation loops. Particularly, the System Legitimacy 

loop, the most powerful driver of market growth, requires sufficient resources and momentum 

to increase and sustain entrepreneurial activities, market infrastructure development, perceived 

legitimacy of digital prosthetics, and its market size.  

In summary, the findings of the simulation results (Chapter 4) lend support to the 

research hypothesis, namely that the scaling up of digital prosthetics positively impacts the 

mobility outcomes for the amputee population. We observed in all experimental scenarios that 

an increase in digital prosthetics market share was associated with an increase in the mobility 

proportion, a decrease in total economic costs and an increase in total economic contributions. 

However, the scenarios also revealed that the level of improvement in mobility outcomes is 

dependent on the extent of digital prosthetics market growth, which in turn requires sufficient 

resources and capacity expansion. To better reflect these caveats, we modify the hypothesis: 

with sufficient resources for market formation and capacity expansion for digital prosthetics 

services, we can expect substantial improvements to the mobility outcomes for the amputee 

population. Regardless, this model-based study of the prosthetics system serves as proof-of-

concept for the expansion of digital prosthetics, which bears with it positive social impact for 

amputees and the country alike. 
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Model-Based Policy Insights 

Likewise, we consider the sub-questions to fully address the second research question on the 

policy insights gleaned from the modelling exercise. 

RQ2(a): What are the leverage points in the system that can enhance the effects of 

digital prosthetics service provision on mobility outcomes? 

Based on the scenario analyses in Chapter 4, we found that the size of external resources 

used to kickstart the dynamics in the market subsystem was a leverage point in the system as 

it involved significant behavioural changes. For low levels of external resources, we observe a 

rise and decline in market share over time, but high levels resulted in sustained growth; 

consequently, the mobility outcomes followed similar behaviour patterns. We also found that 

the effect of market size on changes in prosthetic clinics was a high-leverage point in the system. 

If the clinics increased to a higher level for every increase in market size, then we had a much 

expanded prosthetics fitting capacity. In turn, the mobility outcomes improved to a much larger 

extent. 

RQ2(b) What are the plausible implications for policy design? 

Based on the identified leverage points, here, we discuss their implications for policy design. 

Specifically, I offer the model-based insights regarding resources and capacity for digital 

prosthetics service provision, as well as upstream prevention. We first consider the need for 

sufficient resources to power the System Legitimacy loop, and thus enable digital prosthetics 

to experience sustained growth in the future. We then consider the need for intervention in 

prosthetics capacity expansion, especially since demand far outpaces capacity even in highly 

resourced digital prosthetics conditions. Afterall, improving prosthetic accessibility is key for 

significant improvements in the mobility outcomes. Lastly, we consider upstream prevention 

that is not directly related to prosthetics service provision. Bringing down the PAD incidence 

rate as well as amputation rates would not only address the root cause of the problem, but also 

ameliorate the prosthetics capacity constraint and reduce the economic costs associated with 

caring for the amputee population. 

Resources for Market Formation 

Based on the simulation results from the business-as-usual and heightened resources scenarios, 

it is evident that a key factor in determining the extent of digital prosthetics market growth is 
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the total amount of resources flowing in the market subsystem. Here, we observed radically 

different behaviour modes, where insufficient external resources to kickstart the dynamics 

resulted in a small increase in market share before its eventual decline. This suggest that there 

is a tipping point in the model parameter for resources. Let us further consider the effect of 

increasing the Relative External Resource Size incrementally from 1 to 9; in Figure 5.1 each 

run number corresponds to the relative size. So long as the relative resource size is above 1, we 

shift the dynamics in BAU and expect sustained growth in the digital market share, albeit with 

varying speed and extent. For the HRS, a relative value of 5 was chosen since beyond that the 

sensitivity considerably reduces – perhaps indicative of diminishing returns of investment. 

Nevertheless, given the conceptual nature of the model and the use of relative values, we cannot 

identify the exact tipping point in  terms of the absolute number of external resources required 

for sustained market growth. An understanding of the feedback loop interplay in the market 

subsystem, however, can help us postulate on the key areas for intervention. 

 

Figure 5.1 Results of variation in RER Size (range: 1 to 9) 

   We know that external resources are key for fuelling the External Engine loop 

responsible for accumulating Entrepreneurial Activity, a key stock that is intertwined with 

several other feedback mechanisms. Resources refer to “financial, material and human capital” 

allocated to both innovation and market development (Suurs, 2009, p. 57). External resources 

brought into digital prosthetics through investments or subsidies, could not only reinforce the 

growth of entrepreneurial activities, but also contribute to market infrastructure and market 

legitimacy building through the System Building loop. In turn, this powers the Internal Engine 

loop through the creation of a niche market that endogenously generates further resources for 

the system.  
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instance, through setting up contracts with rehabilitation centres in countries like Singapore, 

France, and the Middle East (Kozbunarova, 2019). They have also experimented with a niche 

market that led to innovations in their 3D-printed socket design (HP Development Company, 

2022). Further, they have spurred knowledge development through partnerships with Toyota 

Mobility Foundation, University of New South Wales, and University of Bergen (this project). 

While such entrepreneurial activities are promising, the model insight gleaned from the 

simulation result questions if this is sufficient to create enough momentum for sustainable 

market growth. Hence, for ProsFit, their efforts to build technological and market legitimacy 

of digital prosthetics should be strengthened. 

  However, market formation is a collective action problem “beyond the ability and 

resources of any one actor” (Lee et al., 2018, p. 245), and thus ProsFit should not aim to trudge 

it out alone. Efforts to build market legitimacy should go beyond building one’s own internal 

capabilities, and oriented towards developing market infrastructure even if those benefits could 

spill over to potential competitors (Lee et al., 2018). Regardless, the resources required for 

infrastructure building, where it is lacking, is considerably high and thus could be subsidised 

by public actors (Lee et al., 2018; Struben et al., 2020; Suurs, 2009). Public health agencies, 

for instance, could provide resources (financial, regulatory, supportive policies etc.) for 

infrastructure development. The amount of support provided could be crucial for determining 

the extent to which digital prosthetics market share grows and distributed delivery of prosthetic 

care expands, which consequently determines the extent to which the mobility outcomes may 

be improved. Regardless, the results of this simulation model suggests that so long as the 

market grows, there will be a net economic benefit accrued – this could potentially justify the 

need for public investment.  

Fitting Capacity Expansion 

The simulation results also revealed that there is a bottleneck in prosthetic service provision – 

the demand for fittings outpaces fitting capacity. This validates WHO’s concern that a large 

majority of people who require prosthetic services do not have access – partially due to the 

“limited availability of products” and “lack of qualified personnel” – which could worsen as 

the population is expected to grow (World Health Organization, 2017, p. xxviii). By expanding 

capacity, with the increased through put of digital and distributed service provision, we not 

only mitigate the bottleneck but also improve the mobility outcomes. In the expanded capacity 

scenario, we saw that an improved accessibility led to a significant increase in the mobility 
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proportion and net economic benefit from re-integrating amputees in society. To that end, 

training existing and new prosthetists for implementing digital solutions in the fitting process 

could prove to be fruitful – particularly since digital prosthetics allow for expanding fitting 

capacity per prosthetist. Moreover, emboldening ProsFit’s foray into Distributed Care 

Networks for providing mobile digital prosthetic services (see A. Hutchison, 2020) could be a 

productive business model for stepping up digital fitting capacity and improving prosthetic 

accessibility more generally. Regardless of the medium, the simulation results highlight a need 

for policy intervention in the supply of prosthetic service provision for better mobility 

outcomes. 

Upstream Prevention 

Thus far, we have only considered plausible downstream intervention at the prosthetics service 

provision level. However, as the field of public health has moved towards upstream root-cause 

prevention for chronic conditions (Kansagra & Isac, 2021), we also ought to consider the model 

insights for upstream intervention. The behaviour sensitivity test revealed that the model was 

numerically sensitive to the parameters PAD incidence rate and PAD-related amputation rates. 

Naturally, this points to the importance of primary prevention that could bring down these rates. 

Given the gravity of PAD as a chronic condition, there have been calls to action for scaling up 

public health interventions for raising awareness, screening for early detection, and treatment 

for deterring progression (Belch, 2003; Farndon et al., 2018). Hence, public health agencies 

should not lose sight of prevention efforts – be it to prevent PAD incidence altogether, or to 

prevent progression to critical limb ischemia for those diagnosed. Effective intervention in this 

area would not only improve populational health in general, but also dampen the growth in the 

amputee population over time. Consequently, we can expect more prosthetic accessibility from 

a reduced demand for prosthesis fitting, improved mobility proportion, and a lowered total 

economic cost associated with major lower limb amputations and the loss of mobility.  

 

 

 

 

 



   59 

 

Limitations & Further Work 

Policy Implementation and Costs 

While I have advocated for policy interventions in the prosthetics care system, based on the 

identified policy levers, it bears repeating that there are uncertainties involved for policy 

implementation. For one, all models inherently involve some level of uncertainty since they 

constitute a set of causal assumptions that may not represent “reality accurately enough to build 

policy” (Palmer, 2017, p. 90). Importantly, the SD model presented in this study is an 

explanatory model, and does not concern itself with robust policy implementation modelling 

(Palmer, 2017; Wheat, 2010). Consequently, it cannot comment on the effectiveness of policy 

implementation that follow from the discussed policy implications, nor anticipate plausible 

policy resistance. Hence, the discussion here can only partially inform policy design – by 

stimulating further research on policy implementation either through further modelling of 

explicit policy structures or other forms of policy research. 

Moreover, there are costs involved in policy implementation – be it public health 

intervention campaigns, governmental investments or funding in digital prosthetics, or costs of 

expanding capacity. These costs are not captured in the model, given that those structures are 

not explicitly represented. In turn, the Total Economic Cost for persons with major lower limb 

loss (as conceptualised in this study) does not involve these additional costs borne by the health 

care system. The Net Economic Benefit of providing prosthetic services, as described in 

Chapter 4, could be much lower if we were to account for these additional costs. Instead, here, 

it should be interpreted as the net benefit of re-integrating amputees in society as opposed to 

return of investment in prosthetics.  

Market Subsystem Operationalisation 

In terms of the model structure, its main limitation is in its partially conceptual nature – 

specifically, the market subsystem, which has been extensively discussed. There is uncertainty 

in the parameter values and non-linear functions formulated in this module, which in turn 

translates to a low level of numerical accuracy for the simulation results. Though numerical 

estimation was never part of this research scope, further modelling work could be carried out 

to increase the model’s ability to do so. Further, the boundary of the subsystem could be 

expanded for the inclusion of fitting capacity adjustment structures that are more responsive to 

market dynamics (demand, supply, profits etc.). Here, a much larger research scope is required 

to empirically study the digital prosthetic market and should involve robust data collection for 
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operationalising the various identified relationships. Regardless, for the purpose of our research, 

the market subsystem in its current iteration suffices in providing a structural explanation for 

digital prosthetics market growth and reasonable projections for its anticipated development 

under different conditions. 

Individual Factors 

On the other hand, the main limitation in the top-level prosthetic care sector pertains to the 

uncertainties involved in modelling individual predispositions or decisions – the propensity to 

dropout from the fitting process or readopt a prosthesis. For a more accurate numerical 

estimation, vigorous data collection is required to ascertain the fractional dropout and 

readoption rates. Moreover, they remain as simplifications that could benefit from further work. 

Such predispositions are not simply functions of attractiveness, but also dependent on a broad 

array of individual factors, including mental health state, level of social support, and occurrence 

of limb pain (Webster et al., 2012). In addition, we have excluded individual factors related to 

quality of life for amputees (Pell et al., 1993) – which is particularly difficult to operationalise 

without the involvement of amputees in the model building process. In this research, we have 

mainly represented the interest of the prosthetic service provider at the expense of amputees 

themselves. Including amputees, through Group Model Building (D. F. Andersen et al., 1997), 

could be a potent avenue for further research in this field. This could lead to a more robust 

model boundary that includes individual predispositions as well as quality of life measures. 
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Appendices 

A.  Simulation Experiment Report 

In this appendix, I provide the minimum simulation reporting guidelines recommended by 

Rahmandad & Sterman (2012). 

  

Modelling Software: Stella Architect 3.0 

Integration Method: Euler’s Integration 

DT = 1/64 

Time Units: Months 

Simulation Start Time: 0 (Jan 2010) 

Simulation End Time: 480 (Jan 2050) 

Business As Usual Scenario 

Population Sector 

Table A.0.1 Parameter Values and Units for Population Sector in BAU 

Parameter Value Units 

Inflection_AoI = 1 dmnl 

Initial_PAD_Population[Under_15] = 0 

Initial_PAD_Population["15_to_44"] = 0 

Initial_PAD_Population["45_to_59"] = 285116 

Initial_PAD_Population["60_to_79"] = 974435 

Initial_PAD_Population[Above_80] = 555477 

People 

People 

People 

People 

People 

Initial_Total_Population[Under_15] = 11053185 

Initial_Total_Population["15_to_44"] = 25466363 

Initial_Total_Population["45_to_59"] = 12197752 

Initial_Total_Population["60_to_79"] = 11187462 

Initial_Total_Population[Above_80] = 2854694 

People 

People 

People 

People 

People 

Max_Effect_AoI = 2 dmnl 
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Mortality_Rate[Under_15] = GRAPH(TIME) 

Mortality_Rate["15_to_44"] = GRAPH(TIME) 

Mortality_Rate["45_to_59"] = GRAPH(TIME) 

Mortality_Rate["60_to_79"] = GRAPH(TIME) 

Mortality_Rate[Above_80] = GRAPH(TIME) 

dmnl/month 

dmnl/month 

dmnl/month 

dmnl/month 

dmnl/month 

Net_Migration_Rate[Under_15] = GRAPH(TIME) 

Net_Migration_Rate["15_to_44"] = GRAPH(TIME) 

Net_Migration_Rate["45_to_59"] = GRAPH(TIME) 

Net_Migration_Rate["60_to_79"] = GRAPH(TIME) 

Net_Migration_Rate[Above_80] = GRAPH(TIME) 

dmnl/month 

dmnl/month 

dmnl/month 

dmnl/month 

dmnl/month 

Newborn_Mortality = GRAPH(TIME)  dmnl 

PAD_Relative_Mortality_Risk = 1.86 dmnl 

"PAD-related_Amputation_Rate"[Under_15] = 0 

"PAD-related_Amputation_Rate"["15_to_44"] = 0 

"PAD-related_Amputation_Rate"["45_to_59"] = 0.00414/12 

"PAD-related_Amputation_Rate"["60_to_79"] = 0.00278/12 

"PAD-related_Amputation_Rate"[Above_80] = 0.00181/12 

dmnl/month 

dmnl/month 

dmnl/month 

dmnl/month 

dmnl/month 

Proportion_Major_Amputation = 0.1 dmnl 

Proportion_of_Female = 0.584 dmnl 

Reference_PAD_IR[Under_15] = 0 

Reference_PAD_IR["15_to_44"] = 0 

Reference_PAD_IR["45_to_59"] = 28542/12197752/12 

Reference_PAD_IR["60_to_79"] = 95697/11187462/12 

Reference_PAD_IR[Above_80] = 27979/2854694/12 

dmnl/month 

dmnl/month 

dmnl/month 

dmnl/month 

dmnl/month 

Steepness_AoI = 2 dmnl 

Time_for_Prevention_to_take_effect = 10*12 Months 
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Time_to_Age[Under_15] = 15*12 

Time_to_Age["15_to_44"] = 29*12 

Time_to_Age["45_to_59"] = 14*12 

Time_to_Age["60_to_79"] = 19*12 

Time_to_Age[Above_80] = 0 

Months  

Months  

Months 

Months 

Months 

Time_to_Report = 36 Months 

Total_Fertility_Rate = GRAPH(TIME) dmnl 

Trauma_Incidence[Under_15] = 0.0000566/12 

Trauma_Incidence["15_to_44"] = 0.000105/12 

Trauma_Incidence["45_to_59"] = 0.000197/12 

Trauma_Incidence["60_to_79"] = 0.000453/12 

Trauma_Incidence[Above_80] = 0.00241/12 

dmnl/month 

dmnl/month 

dmnl/month 

dmnl/month 

dmnl/month 

 

Primary Care Sector 

Table A.0.2 Parameter Values and Units for Primary Care Sector in BAU 

Parameter Value Units 

Amputee_Relative_Mortality_Risk = 3.1 dmnl 

Eligible_Fraction[Under_15] = 0.9 

Eligible_Fraction["15_to_44"] = 0.9 

Eligible_Fraction["45_to_59"] = 0.9 

Eligible_Fraction["60_to_79"] = 0.9 

Eligible_Fraction[Above_80] = 0.70 

dmnl 

dmnl 

dmnl 

dmnl 

dmnl 

"In-Patient_Duration" = 21.5/30 Months 

"In-Patient_Mortality_Rate" = 0.08 dmnl/month 

PAD_Amputation_Prevalence_Rate = 34/100000  dmnl 

"Post-Op_Stay" = 14.5/30 Months 
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"Re-Admission_Rate" = 0.095 dmnl/month 

"Re-Op_Rate" = 0.09 dmnl/month 

Reference_Total_Population = GRAPH(TIME) People 

Traumatic_Amputation_Prevalence[Under_15] = 4716 

Traumatic_Amputation_Prevalence["15_to_44"] = 68727 

Traumatic_Amputation_Prevalence["45_to_59"] = 71724 

Traumatic_Amputation_Prevalence["60_to_79"] = 120616 

Traumatic_Amputation_Prevalence[Above_80] = 89340 

People 

People 

People 

People 

People 

Wound_Healing_Duration = 1 Months 

 

Prosthetic Care Sector 

Table A.0.3 Parameter Values and Units for Prosthetic Care Sector in BAU 

Prosthetic Care Sector Units 

Adjustment_Duration[Prosthesis_Type] = 3 Months 

Delivery_Duration[Digital] = 0.25 

Delivery_Duration[Traditional] = 1.5 

Months 

Months 

Desired_Appointment_Time = 1 Months 

Fit_First_Duration[Prosthesis_Type] = 4 Months 

Initial_Accessibility = 0.5 dmnl 

Initial_FRD = 1 dmnl 

Initial_FRR = 1 dmnl 

Initial_Measurement_Duration[Prosthesis_Type] = 0.5 Months 

Insurance_Coverage_Cycle = 36 Months 

Max_FRR = 2 dmnl 
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Prosthesis_Lifespan = 36 Months 

Ref_EP_Dropout_Fraction[Prosthesis_Type] = 0.1 dmnl 

Ref_ID_Dropout_Fraction[Prosthesis_Type] = 0.1 dmnl 

Ref_ML_Dropout_Fraction[Prosthesis_Type] = 0.1 dmnl 

Ref_Readoption_Fraction[Prosthesis_Type] = 0.2 dmnl 

Relative_Mortality_Risk_Adjustment = 0.5 dmnl 

Steepness_FRD = 1.5 dmnl 

Steepness_FRR = 6 dmnl 

Success_Fraction[Digital] = 0.9 

Success_Fraction[Traditional] = 0.5 

dmnl 

dmnl 

Time_to_Dropout = 1 Months 

Time_to_Perceive_Fitting_Rate = 3*12 Months 

 

Health Economics Sector 

Table A.0.4 Parameter Values and Units for Health Economics Sector in BAU 

Health Economics Sector Units 

Family_Costs[Not_Fitted] = 19845/12 

Family_Costs[Traditional_Fit] = 13230/12 

Family_Costs[Digital_Fit] = 8820/12 

USD/person/month 

USD/person/month 

USD/person/month 

GDP_per_Capita = 44100/12 USD/person/month 

Healthcare_Costs[Not_Fitted] = 7277/12 

Healthcare_Costs[Traditional_Fit] = 6064/12 

Healthcare_Costs[Digital_Fit] = 5336/12 

USD/person/month 

USD/person/month 

USD/person/month 

Maintenance_Multiplier = 1.2 dmnl 
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Overhead_Multiplier = 1/0.75 dmnl 

Proportion_of_FM_Employed = 0.8 dmnl 

Social_Payments = 1191/12 USD/person/month 

Unemployment_Payment = 2381/12 USD/person/month 

Unit_Cost[Digital] = 1573 

Unit_Cost[Traditional] = 2186 

USD/person 

USD/person 

 

Innovation Diffusion Sector 

Table A.0.5 Parameter Values and Units for Innovation Diffusion Sector in BAU 

Innovation Diffusion Sector Units 

Market_Subsystem.GoS_Effectiveness_Factor = 0.25 dmnl 

Market_Subsystem.Sensitivity_of_Resources_to_MS = 1 dmnl 

Market_Subsystem.Time_to_Adjust_GoS = 3 Months 

Market_Subsystem.Time_to_Decay = 60 Months 

Market_Subsystem.Time_to_Develop_Innovation = 12 Months 

Market_Subsystem.Time_to_Diffuse_Knowledge = 12 Months 

Market_Subsystem.Time_to_Mobilise_Resources = 6 Months 

 

Market Formation Sector 

Table A.0.6 Parameter Values and Units for Market Formation Sector in BAU 

Market Formation Sector Units 

Market_Subsystem.Clinics[Traditional] = 35 Clinics 

Market_Subsystem.Clinics_Sensitivity_SWITCH = 0 dmnl 
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Market_Subsystem.Duration_RER = 180 Months 

Market_Subsystem.External_Resource_Size_SWITCH = 0 dmnl 

Market_Subsystem.Fitting_Capacity_per_Prosthetist[Digital] = 288/12 

Market_Subsystem.Fitting_Capacity_per_Prosthetist[Traditional] = 

58/12 

People/Prosthetist/Month 

People/Prosthetist/Month 

Market_Subsystem.Inflection_DFR = 1 dmnl 

Market_Subsystem.Inflection_EA_on_MI = 2 dmnl 

Market_Subsystem.Inflection_PL_on_EA = 2 dmnl 

Market_Subsystem.Limit_DFR = 1 dmnl 

Market_Subsystem.Limit_EA = 2 dmnl 

Market_Subsystem.Limit_EA_on_MI = 4 dmnl 

Market_Subsystem.Limit_MI = 2 dmnl 

Market_Subsystem.Limit_PL_on_EA = 4 dmnl 

Market_Subsystem.Maximum_Effect_MS = 1 dmnl 

Market_Subsystem.Maximum_SSE = 0.25 dmnl 

Market_Subsystem.Mean_Position_MS = 5 dmnl 

Market_Subsystem.MS_Threshold = 0.05 dmnl 

Market_Subsystem.Prosthetist_per_clinic = 2 Prosthetist/Clinic 

Market_Subsystem.Ref_Digital_Clinics = 3 Clinic 

Market_Subsystem.Ref_EA = 0.5 dmnl 

Market_Subsystem.Ref_MI = 0.5 dmnl 

Market_Subsystem.Ref_PL = 0.5 dmnl 
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Market_Subsystem.Relative_Weight_of_Reputation = 0.6 dmnl 

Market_Subsystem.Relative_Weight_of_Resistance = 0.6 dmnl 

Market_Subsystem.RER_Size = 1 dmnl 

Market_Subsystem.Sensitivity_of_Clinics_to_Market_Size = 0.5 dmnl 

Market_Subsystem.Spread_MS = 0.25 dmnl 

Market_Subsystem.Steepness_DFR = 0.2 dmnl 

Market_Subsystem.Steepness_EA = 2.5 dmnl 

Market_Subsystem.Steepness_EA_on_MI = 0.4 dmnl 

Market_Subsystem.Steepness_MI = 2.5 dmnl 

Market_Subsystem.Steepness_PL_on_EA = 0.4 dmnl 

Market_Subsystem.Time_to_Adjust_Clinics = 24 Months 

Market_Subsystem.Time_to_Adjust_EA = 12 Months 

Market_Subsystem.Time_to_Adjust_MI = 60 Months 

Market_Subsystem.Time_to_Adjust_MS = 24 Months 

Market_Subsystem.Time_to_Adjust_RR = 12 Months 

Market_Subsystem.Time_to_Perceive_Legitimacy = 12 Months 

Market_Subsystem.Timing_RER = 96 Months 

Market_Subsystem.Variable_Input_Fraction = 0.25 dmnl 

Market_Subsystem.Weight_of_EA = 0.4 dmnl 

Market_Subsystem.Weight_of_PL = 0.5 dmnl 

Market_Subsystem.Weight_of_Technological_Legitimacy = 0.5 dmnl 
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Heightened Resources Scenario 

In the heightened resources scenario, all parameter values from the BAU scenario are retained 

except for the following: 

Market Formation Sector 

Table A.0.7 Parameter Values and Units for Market Formation Sector in HRS 

Market Formation Sector Units 

Market_Subsystem.External_Resource_Size_SWITCH = 1 dmnl 

Market_Subsystem.RER_Size = 5 dmnl 

 

Expanded Capacity Scenario 

In the expanded capacity scenario, all parameter values from the HRS are retained except for 

the following: 

Market Formation Sector 

Table A.0.8 Parameter Values and Units for Market Formation Sector in ECS 

Market Formation Sector Units 

Market_Subsystem.Clinics_Sensitivity_SWITCH = 0 dmnl 

Market_Subsystem.Sensitivity_of_Clinics_to_Market_Size = 1 dmnl 
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B. Sensitivity Analysis 

 

Here, I present the results of the sensitivity analysis conducted as part of model testing and 

validation. The model’s sensitivity was tested against the Heightened Resource scenario 

(External Resource Size SWITCH =1). A total of 66 constant parameters, excluding the arrayed 

dimensions, were tested using the Model Analysis Tools in Stella Architect 3.0. Sensitivity 

Analysis was configured for nine runs with Sobol Sequence sampling. The distribution type 

selected for each parameter and its range are specified in the individual results below. The 

results are grouped by parameter types: (1) adjustment times; (2) nonlinear functions – 

parameters affecting the shape; (3) reference values – known parameter values that have been 

validated; and (4) assumed values – uncertain parameter values that requires further validation. 

The output of the sensitivity runs is presented for the following indicators: Digital Prosthetic 

Market Share, Mobility Proportion of Eligible Amputees, Total Economic Cost, and Total 

Economic Contribution. For the sake of parsimony, only results with observed sensitivity are 

presented below.  

Adjustment Times 

In general, the model was not very sensitive to the adjustment times. Only one out of 25 

parameters resulted in moderate numerical sensitivity. Seven parameters resulted in slight 

sensitivity, with slight changes to the outputs – the most sensitive of these will be shown below.   

Time to Adjust Market Infrastructure (uniform distribution 30 to 120 months) 
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Figure B.0.1 Sensitivity Runs for Time to Adjust Infrastructure 

The model is moderately sensitive to Market Infrastructure adjustment time, although 

this conforms to expectations. A shorter adjustment time leads to a faster adjustment of the 

Market Infrastructure stock, which in turn increases the Digital Prosthetic Market Share to a 

higher level than it otherwise would have been. A higher digital market share enables more 

eligible amputees to be fitted with a prosthesis, which expectedly increases both the mobility 

proportion and the total economic contribution as more people can work. The parameter value 

of 60 months was set by Walrave & Raven (2016a) in the original conceptual model. 

Regardless, more robust data collection can improve the certainty of the model results, 

particularly for the market share.    

Desired Appointment Time (uniform distribution 0.5 to 2) 

 

 

 

Figure B.0.2 Sensitivity Runs for Desired Appointment Time 
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Of the slightly sensitive parameters, Desired Appointment Time yielded the largest 

range of output in Mobility Proportion and Economic Contribution. The Desired Appointment 

Time controls the rate at which amputees are desiring to be fitted with a prosthesis (i.e., the 

fitting demand). This impacts the Prosthetic Accessibility, which in turn affects the flow of 

amputees through the prosthetic care sector. Hence, we observe slight variability in the 

proportion of amputees who become mobile and thus able to contribute to the economy. The 

parameter value of 1 month is a reasonable assumption, that nevertheless can be made more 

certain with data collection.   

 

Nonlinear Functions 

There were some measures of sensitivity in the model results to the nonlinear functions 

formulated as effect variables. The 11 parameters controlling the shape of these functions were 

tested, of which five resulted in moderate sensitivity. 

Sensitivity of Clinics to Market Size (uniform distribution 0.5 to 1.5) 

 

Figure B.0.3 Effect of Market Size on Clinics 

The Sensitivity of Clinics to Market Size controls the steepness of the exponential 

growth curve that governs the relationship between the Relative Market Size and the Effect of 

Market Size on Clinics, as shown in the structure graph above. A higher sensitivity thus yields 

a steeper growth in digital clinics over time. With more clinics, the Prosthetic Accessibility 

increases for digital prosthesis, which enables more amputees to get fitted with a prosthesis. 

Hence, expectedly, we observe moderate sensitivity in the mobility proportion and economic 

contribution (see Figure B.0.4 below).   
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Figure B.0.4 Sensitivity Runs for Sensitivity of Clinics 

Despite a large range of output in Mobility Proportion and Economic Contribution, the 

overall shape of development is maintained, and thus the results can be considered moderately 

sensitive (numerical). This parameter nevertheless could be a leverage point as it indicates the 

importance of building capacity for prosthetic fitting, which could yield much better outcomes 

for amputees as well as the economy at large. 

 

Steepness PL on EA (uniform distribution 0.2 to 0.8) 

 

Figure B.0.5 Effect of Perceived Legitimacy on Entrepreneurial Activity 

The Steepness of the effect of Perceived Legitimacy on Entrepreneurial Activity 

controls the rate of exponential growth of the effect variable. The higher the steepness, the 

faster the rate of growth.  
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Figure B.0.6 Sensitivity Runs for Steepness Perceived Legitimacy on EA 

A steeper effect on entrepreneurial activity increases the stock to a level higher than it 

otherwise would have been, and this impacts several feedback mechanisms that work to 

increase the market size of the digital prosthesis. Hence, we observe the sensitivity in market 

share. In turn, this influences the number of amputees that are successfully fitted with the 

prosthesis and thus can contribute to the economy. While such sensitivity indicates uncertainty 

with the parameter, this value was calibrated to fit the table function used in the original model 

(see Walrave & Raven, 2016a).  

Steepness EA (uniform distribution 1 to 5) 

 

Figure B.0.7 Effect of Total Relative Resources on Entrepreneurial Activity 

This parameter controls the rate at which the Effect of Total Relative Resources on 

Entrepreneurial Activity increases decreasingly. The faster the exponential decay, the higher 
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the relative resources available for spurring the growth of Entrepreneurial Activity, which in 

turn increases market share, mobility proportion and economic contribution as explained above. 

 

 

Figure B.0.8 Sensitivity Runs for Steepness Entrepreneurial Activity 

This parameter value was assumed and thus points to some uncertainty in this structure. 

Afterall, this table function simplifies a more complex structure surrounding funding for 

entrepreneurial activity. Nevertheless, given that this subsystem is a conceptual model, and the 

shape of development is fundamentally retained, confidence in this parameter value can be 

maintained. For greater confidence, further modelling with more robust parameterisation 

should be conducted. 

Steepness EA on MI (uniform distribution 0.2 to 0.8) 

 

Figure B.0.9 Effect of Entrepreneurial Activity on Market Infrastructure 

The Steepness of the effect of Entrepreneurial Activity on Market Infrastructure 

controls the rate of exponential growth of the effect variable. The higher the steepness, the 
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faster the rate growth in the Market Infrastructure. When the Market Infrastructure increases 

to a level higher than it otherwise would have been, the market size increases directly and 

indirectly through reduced regime resistance and increased perceived legitimacy of digital 

technology. Hence, we observe sensitivity in Digital Prosthetic Market Share in Figure B.0.10. 

In turn, this increases more amputees getting prosthesis, thereby influencing the Mobility 

Proportion and Total Economic Contribution. Again, this value was calibrated to fit the table 

function used in the original model (see Walrave & Raven, 2016a). 

 

 

Figure B.0.10 Sensitivity Runs for Steepness EA on MI 

 

Steepness MI (uniform distribution 1 to 5) 

 

Figure B.0.11 Effect of Total Relative Resources on Market Infrastructure 

This parameter controls the rate at which the Effect of Total Relative Resources on 

Market Infrastructure increases decreasingly. The faster the exponential decay, the higher the 
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relative resources available for building Market Infrastructure, which in turn increases market 

share, mobility proportion and economic contribution as explained previously. 

 

 

Figure B.0.12 Sensitivity Runs for Steepness of Market Infrastructure 

Similarly, the table function associated with this parameter simplifies a more complex 

structure surrounding the funding for market infrastructure building. While further modelling 

could improve the sensitivity results, we can still assert confidence in this parameter as the 

shape of development is fundamentally retained. 

Reference Values 

Parameters typed as reference values refer to known values that have been obtained or 

calculated from available data. Typically, sensitivity resulting from these parameters do not 

diminish confidence in the model, but instead could point to leverage points in the system. In 

this model, five out 18 parameters were found to be moderately sensitive. 

PAD-related Amputation Rate (uniform distribution halved to doubled) 

Prior to discussing the sensitivity results, elaboration on the distribution is warranted 

given that the parameter is an arrayed dimension. For arrayed parameters, an adjustment 

converter was included in the model and multiplied with the parameter. The adjustment 

converter was put through the sensitivity analysis with a uniform distribution with the range 
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avoid the case where the amputation rate is unrealistically lowered for one age group while the 

rate is increased for the other groups.  

 

 

Figure B.0.13 Sensitivity Runs for PAD-related Amputation Rate 

Here, we observe that the PAD-related Amputation Rate results in sensitivity for 

Mobility Proportion of Eligible Amputees, Total Economic Cost and Contribution. When the 

fractional rate increases, more people experience PAD-related Amputation, which increases 

the total number of amputees, thus decreasing the proportion of people who are mobile (higher 

denominator). While more people become amputees, the accessibility of prosthetic care does 

not increase proportionally, hence more people are left without mobility than with. Hence, we 

see that total economic cost increases disproportionately to the economic contribution. This 

sensitivity thus points to this parameter being a leverage point in the system: naturally, we 

should look to decrease the amputation rate to yield better outcomes. 

Similar outcomes are observed in the Reference PAD Incidence Rate. A lower 

incidence rate improves Mobility Proportion, incurs a lower Total Economic Cost and slightly 

increases the Total Economic Contribution. Hence, this points to another leverage point in the 

system. The model has taken this into account and endogenously reduces this reference value 

through the Prevention Pressure (B1) feedback loop. However, the long delays involved in 

prevention programme slows down this potential. Hence, reducing the adjustment time by 

improving the effectiveness of the prevention programmes could be good policy leverage. 

Digital Prosthetics Market Share

Time

d
m

n
l

0

0.35

0.7

2010 Jan 2020 Jan 2030 Jan 2040 Jan 2050 Jan

Run 1 Run 2 Run 3

Run 4 Run 5 Run 6

Run 7 Run 8 Run 9

Proportion of Amputees Mobile

Time

d
m

n
l

0

0.15

0.3

2010 Jan 2020 Jan 2030 Jan 2040 Jan 2050 Jan

Run 1 Run 2 Run 3

Run 4 Run 5 Run 6

Run 7 Run 8 Run 9

Total Economic Cost

Time

U
S

D
/m

o
n

th

136M

218M

301M

2010 Jan 2020 Jan 2030 Jan 2040 Jan 2050 Jan

Run 1 Run 2 Run 3

Run 4 Run 5 Run 6

Run 7 Run 8 Run 9

Total Economic Contribution

Time

U
S

D
/m

o
n

th

0

28.5M

57M

2010 Jan 2020 Jan 2030 Jan 2040 Jan 2050 Jan

Run 1 Run 2 Run 3

Run 4 Run 5 Run 6

Run 7 Run 8 Run 9



 

 

 89 

Reference Digital Clinics (uniform distribution 1 to 6) 

The model is numerically sensitive to the parameter Reference Digital Clinics. 

Increasing the reference clinics, increases the fitting capacity. In turn, the prosthetic 

accessibility increases and accommodates more amputees to successfully enter the prosthetic 

fitting process. Hence, we observe sensitivity in the Mobility Proportion of Eligible Amputees. 

As more people are successfully fitted, more amputees can return to the workforce, which in 

turn increases the Economic Contribution. More successful digital fittings also increase the 

reputation of the digital technology, which influences the perceived legitimacy and thus the 

Market Share. 

 

  

Figure B.0.14 Sensitivity Runs for Reference Digital Clinics 

These results thus point to increasing Digital Clinics as a leverage point to increase the 

overall fitting capacity of the system. Two other related parameters, Prosthetist per Clinic and 

Fitting Capacity per Prosthetist, also experience similar sensitivity. This clearly emphasises 

the leverage strength of Fitting Capacity.  
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Lastly, this subsection deals with uncertain parameters that take on assumed values based on 

reason. Sensitivity here could suggest the need for further modelling (as it is likely to be 

masking some important underlying structure) or more robust data collection. Here, I present 

the four out of 12 parameters that have resulted in sensitivity in the model. 

Digital Prosthetic Market Share

Time

d
m

n
l

0

0.35

0.7

2010 Jan 2020 Jan 2030 Jan 2040 Jan 2050 Jan

Run 1 Run 2 Run 3

Run 4 Run 5 Run 6

Run 7 Run 8 Run 9

Mobility Proportion of Eligible Amputees

Time

d
m

n
l

0

0.2

0.4

2010 Jan 2020 Jan 2030 Jan 2040 Jan 2050 Jan

Run 1 Run 2 Run 3

Run 4 Run 5 Run 6

Run 7 Run 8 Run 9

Total Economic Cost

Time

U
S

D
/m

o
n
th

0

128M

256M

2020 Jan 2027 Jul 2035 Jan 2042 Jul 2050 Jan

Run 1 Run 2 Run 3

Run 4 Run 5 Run 6

Run 7 Run 8 Run 9

Total Economic Contribution

Time

U
S

D
/m

o
n
th

0

42.2M

84.5M

2020 Jan 2027 Jul 2035 Jan 2042 Jul 2050 Jan

Run 1 Run 2 Run 3

Run 4 Run 5 Run 6

Run 7 Run 8 Run 9



 

 

 90 

Weight of Perceived Legitimacy (uniform distribution 0.3 to 0.7) 

The model is moderately sensitive (since the shape of the development is retained) to 

the weight of the effect of perceived legitimacy on entrepreneurial activity. Given the 

uncertainty in the parameter, the value was set to 0.5 to denote equal distribution between the 

weight of perceived legitimacy and funding. Here, we test values from 0.3 (low weightage) to 

0.7 (high weightage). In general, a higher weight for Perceived Legitimacy results in a lower 

level of Entrepreneurial Activity, which feeds back to not only reduce the market infrastructure 

and market size, but also reduce the relative resources that further reduces the Entrepreneurial 

Activity. Hence, we observe sensitivity in the Market Share, which further impacts the Mobility 

Proportion and Economic Contribution.  

 

 

Figure B.0.15 Sensitivity Runs for Weight of Perceived Legitimacy 

Given the conceptual nature of the market subsystem, this structure is an 

oversimplification of reality and thus results in such sensitivity. The confidence in this 

parameter should be improved with further modelling to capture the underlying system being 

masked. 

Weight of Entrepreneurial Activity (uniform distribution 0.3 to 0.7) 

As discussed in Chapter 3, under the behaviour sensitivity test section, this parameter 

generates behavioural sensitivity. Rather than repeating the discussion, I simply present the 

sensitivity runs of the KPIs in Figure B.0.16. 
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Figure B.0.16 Sensitivity Runs for Weight of Entrepreneurial Activity 

Market Size Threshold (uniform distribution 0.025 to 0.075) 

 

 

Figure B.0.17 Sensitivity Runs for Market Size Threshold 

The model is sensitive to the Market Size Threshold parameter. This threshold 

determines the relative Market Size, which has multiple effects in the market subsystem: 

namely, effect on Total Relative Resource, Effect on Sailing Ship Effect, and Effect on Clinic 
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Size. Hence, naturally we expect sensitivity in the Digital Market Share. This threshold was 

assumed based on reason and should be made more robust through data collection. 

Relative External Resources Size (uniform distribution 0 to 9) 

 

 

Figure B.0.18 Sensitivity Runs for Relative External Resources Size 

Lastly, the model is very sensitive to the Relative External Resources Size. Uncertainty 

is to be expected here as this exogenous parameter is responsible for pushing the market 

subsystem out of steady state development. In general, the more the relative external resources, 

the stronger the feedback mechanisms in the subsystem, which work to increase the market 

share. As a result, the mobility proportion increases, and the economic outcomes improve.  The 

results of this sensitivity analysis were mainly included to emphasise the leverage strength of 

this parameter, which has been used for policy experimentation. 
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C. Model Documentation 

The model has 7 sectors, with one module in the root model. There are 303 (842) variables 

(array expansion in parenthesis). Of which, 21 (108) are Stocks;  57 (360) are Flows; 225 (374) 

are Converters. The model is quantified with 181 (586) Equations, 101 (148) Constants, and 5 

(13) Graphicals. There are also 40 expanded macro variables.   

Top-Level Prosthetic Care System 

Table C.0.9 Documentation for Population Sector 

Population Sector 

Birth_Rate = Fertile_Female_Population*Total_Fertility_Rate/Time_to_Age["15_to_44"] 

    UNITS: People/month 

    DOCUMENT: This variable dynamically calculates the birth rate at any point in time, 

representing the births per month. It is calculated by multiplying the total fertile female population 

by the total fertility rate, and then divided by the fertile duration.  

Effect_of_Amputation_on_Incidence = SMTH3(Indicated_Effect_of_Amputation_on_Incidence, 

Time_for_Prevention_to_take_effect) {DELAY CONVERTER} 

    UNITS: dmnl 

    DOCUMENT: This variable represented the delayed effect of PAD-related amputation rates on 

PAD incidence rate. It is modelled with a third-order information delay with the assumption that it 

goes through several delay processes, which includes prevention activity-planning and 

implementation. 

Fertile_Female_Population = Total_Fertile_Population*Proportion_of_Female 

    UNITS: people 

    DOCUMENT: This variable dynamically calculates the total number of females in the United 

Kingdom who are of fertile age. It simply multiplies the proportion of females with the total fertile 

age population. 

Indicated_Effect_of_Amputation_on_Incidence = Max_Effect_AoI/(1+ 

EXP(Steepness_AoI*("Perceived_PAD-related_Admission_Rate"//INIT("Perceived_PAD-

related_Admission_Rate")-Inflection_AoI))) 

    UNITS: dmnl 

    DOCUMENT: This variable represents the effect of perceived PAD-related admission rate on 

PAD incidence rate. As the relative perceived admission rate from PAD-related amputation cases 

increases (current rate compared to initial), we expect pressure on the public health sector in 

stepping up PAD prevention activities to bring down the incidence rate. 
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    The effect variable is analytically formulated as a inverse Sigmoid function (z-shaped). With this 

formulation, when the relative admission rate is 1, then the effect on incidence rate is 1 – meaning 

that it will be at its reference value. As the relative admission rate increases towards 2, indicating a 

prevention pressure, the effect decreases decreasingly towards 0. Whereas, as relative admission 

decreases towards 0 (situation easing), the effect increases decreasingly towards a maximum effect 

of 2. The assumption here is that if there is no prevention pressure, then the public health sector is 

likely to reallocate resources to other diseases. 

Inflection_AoI = 1 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the inflection point of the Sigmoid curve for the Indicated 

Effect of Amputation on Incidence. The inflection point is set at (1,1) where relative value at 1 

returns the reference PAD incidence rate. 

"Initial_Non-PAD_Population"[Age_Cohort] = Initial_Total_Population-Initial_PAD_Population-

Initial_Amputee_Population 

    UNITS: People 

    DOCUMENT: This variable calculates the Initial Non-Peripheral Arterial Disease (PAD) 

Population by subtracting the initial PAD and initial amputee populations from the initial total 

population. 

Initial_PAD_Population[Under_15] = 0 

Initial_PAD_Population["15_to_44"] = 0 

Initial_PAD_Population["45_to_59"] = 285116 

Initial_PAD_Population["60_to_79"] = 974435 

Initial_PAD_Population[Above_80] = 555477 

    UNITS: People 

    DOCUMENT: This constant parameter represents the total initial peripheral arterial disease 

(PAD) population for each age cohort in year 2010. The data was obtained from Global Burden of 

Disease Study filtered by cause "peripheral artery disease" (Global Burden of Disease 

Collaborative Network, 2020) 

Initial_Total_Population[Under_15] = 11053185 

Initial_Total_Population["15_to_44"] = 25466363 

Initial_Total_Population["45_to_59"] = 12197752 

Initial_Total_Population["60_to_79"] = 11187462 

Initial_Total_Population[Above_80] = 2854694 

    UNITS: People 
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    DOCUMENT: This constant parameter represents the total initial population for each age cohort 

in year 2010. The data was obtained from UK population estimates for that year (Office for 

National Statistics, 2015). 

Max_Effect_AoI = 2 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the maximum effect at 2 for the Indicated Effect of 

Amputation on Incidence. It is assumed that the fractional PAD incidence rate would at worse 

double, and best reduce towards towards 0. 

Mortality_Rate[Under_15] = GRAPH(TIME) 

Points: (0.0, 0.0000109), (12.0, 0.0000106), (24.0, 0.0000103), (36.0, 0.00001), (48.0, 0.0000097), 

(60.0, 0.0000094), (72.0, 0.0000091), (84.0, 0.0000088), (96.0, 0.0000086), (108.0, 0.0000083)… 

Mortality_Rate["15_to_44"] = GRAPH(TIME) 

Points: (0.0, 0.0000635), (12.0, 0.0000626), (24.0, 0.0000618), (36.0, 0.000061), (48.0, 

0.0000603), (60.0, 0.0000596), (72.0, 0.000059), (84.0, 0.0000584), (96.0, 0.0000579), (108.0, 

0.0000574)… 

Mortality_Rate["45_to_59"] = GRAPH(TIME) 

Points: (0.0, 0.0003067), (12.0, 0.0003017), (24.0, 0.0002975), (36.0, 0.0002942), (48.0, 

0.0002908)… 

Mortality_Rate["60_to_79"] = GRAPH(TIME) 

Points: (0.0, 0.0017167), (12.0, 0.001675), (24.0, 0.0016417), (36.0, 0.0016167), (48.0, 

0.0015917)… 

Mortality_Rate[Above_80] = GRAPH(TIME) 

Points: (0.0, 0.0166667), (12.0, 0.0165833), (24.0, 0.0165), (36.0, 0.0165), (48.0, 0.0164167), 

(60.0, 0.0163333), (72.0, 0.0163333), (84.0, 0.01625), (96.0, 0.0161667), (108.0, 0.0160833)… 

    UNITS: dmnl/month 

    DOCUMENT: This variable is the time-series data for mortality rates by age groups in the 

United Kingdom. The time-series is retrieved from population projections up to 2050 (Office for 

National Statistics, 2022c). The values have been adjusted from years to months. 
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Net_Migration_Rate[Under_15] = GRAPH(TIME) 

Points: (0.0, 0.0000911), (12.0, 0.0000828), (24.0, 0.0000822), (36.0, 0.0001263), (48.0, 

0.0001327), (60.0, 0.0001828), (72.0, 0.0001596), (84.0, 0.0001226), (96.0, 0.0000573), (108.0, 

0.0001141)… 

Net_Migration_Rate["15_to_44"] = GRAPH(TIME) 

Points: (0.0, 0.00089), (12.0, 0.0007375), (24.0, 0.0006117), (36.0, 0.0007017), (48.0, 0.0011417), 

(60.0, 0.0011708), (72.0, 0.0009042), (84.0, 0.00089), (96.0, 0.0009467), (108.0, 0.0010758)… 

Net_Migration_Rate["45_to_59"] = GRAPH(TIME) 

Points: (0.0, 0.0000067), (12.0, 0.0000132), (24.0, 0.0000327), (36.0, 0.000052), (48.0, 

0.0000709), (60.0, 0.0000576), (72.0, 0.000019), (84.0, 0.0000568), (96.0, -0.0000063), (108.0, 

0.0000624)… 

Net_Migration_Rate["60_to_79"] = GRAPH(TIME) 

Points: (0.0, 0.0000313), (12.0, 0.0000078), (24.0, 0), (36.0, 0.0000077), (48.0, -0.0000076), (60.0, 

0.0000301), (72.0, -0.0000373), (84.0, 0.000052), (96.0, -0.0000295), (108.0, -0.0000073)… 

Net_Migration_Rate[Above_80] = GRAPH(TIME) 

Points: (0.0, 0.0000381), (12.0, 0.0000381), (24.0, 0.0000381), (36.0, 0.0000381), (48.0, 

0.0000381), (60.0, 0.0000381), (72.0, 0.0000381), (84.0, 0.0000381), (96.0, 0.0000381), (108.0, 

0.0000381)… 

    UNITS: dmnl/month 

    DOCUMENT: This variable is the time-series data for net international migration into the United 

Kingdom. The time-series is a composite of estimated historical census data up to 2019 (Office for 

National Statistics, 2020) and population projections up to 2050 (Office for National Statistics, 

2022a). The values have been adjusted from years to months. 

Newborn_Mortality = GRAPH(TIME) 

Points: (0.0, 0.000365), (12.0, 0.0003567), (24.0, 0.0003483), (36.0, 0.0003408), (48.0, 

0.0003333), (60.0, 0.0003258), (72.0, 0.0003183), (84.0, 0.0003117), (96.0, 0.000305), (108.0, 

0.0002983)… 

    UNITS: dmnl 

    DOCUMENT: This variable is the time-series data for the infant mortality rate in the United 

Kingdom. The time-series is retrieved from population projections up to 2050 (Office for National 

Statistics, 2022c).  
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"Non-PAD_Population"[Age_Cohort](t) = "Non-PAD_Population"[Age_Cohort](t - dt) + 

(Births[Age_Cohort] + NPAD_Migration[Age_Cohort] + NPAD_Aging_In[Age_Cohort] - 

NPAD_Aging_Out[Age_Cohort] - NPAD_Deaths[Age_Cohort] - 

NPAD_Amputation[Age_Cohort] - Peripheral_Arterial_Disease_Incidence[Age_Cohort]) * dt 

    INIT "Non-PAD_Population"[Age_Cohort] = "Initial_Non-PAD_Population" 

    UNITS: People 

    DOCUMENT: This stock represents the total non-amputee population who do not have 

peripheral arterial disease. It is accumulated by the inflows Births and net migration, and depleted 

by the outflows Deaths, PAD Incidence, and Amputation. The stock is arrayed by age cohorts. The 

initial value of the stock is simply the calculated Initial Non-PAD Population. 

    INFLOWS: 

        Births[Under_15] = Birth_Rate*(1-Newborn_Mortality) 

        Births["15_to_44"] = 0 

        Births["45_to_59"] = 0 

        Births["60_to_79"] = 0 

        Births[Above_80] = 0 

            UNITS: People/month 

            DOCUMENT: This inflow represents the number of successful births in the UK per month, 

and it accumulates the Non-PAD Population stock. The successful birth rates is determined by the 

total birth rates multiplied by the fraction of newborns that do not die, or rather survive. 

        NPAD_Migration[Age_Cohort] = "Non-PAD_Population"*Net_Migration_Rate 

            UNITS: People/month 

            DOCUMENT: This biflow represents the net migration for non-peripheral arterial disease 

population, that accumulates the population stock. The rate of net migration is determined by the 

the fractional net migration rate multiplied by the Non-PAD Population stock value. 

        NPAD_Aging_In[Under_15] = 0 

        NPAD_Aging_In["15_to_44"] = NPAD_Aging_Out[Under_15] 

        NPAD_Aging_In["45_to_59"] = NPAD_Aging_Out["15_to_44"] 

        NPAD_Aging_In["60_to_79"] = NPAD_Aging_Out["45_to_59"] 

        NPAD_Aging_In[Above_80] = NPAD_Aging_Out["60_to_79"] 

            UNITS: People/month 

            DOCUMENT: This inflow takes those who have aged out of the previous cohort and allows 

re-entry into the next appropriate age group.  
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    OUTFLOWS: 

        NPAD_Aging_Out[Age_Cohort] = "Non-PAD_Population"//Time_to_Age 

            UNITS: People/month 

            DOCUMENT: This outflow represents the rate at which people age out of their respective 

cohort groups. This rate is determined by a simple first order adjustment, where the the total 

number of people in the population stock is divided by the residence time. 

        NPAD_Deaths[Age_Cohort] = "Non-PAD_Population"*Mortality_Rate 

            UNITS: People/month 

            DOCUMENT: This outflow represents the deaths for non-peripheral arterial disease 

population, that depletes the population stock. The rate is determined by the the mortality rate 

multiplied by the respective Non-PAD Population stock value. 

        NPAD_Amputation[Age_Cohort] = "Non-PAD_Population"*Traumatic_Amputation_Rate 

            UNITS: People/month 

            DOCUMENT: This outflow represents the amputation rates for non-peripheral arterial 

disease population, that depletes the population stock. The rate is determined solely by the 

traumatic amputation rate multiplied by the respective Non-PAD Population stock. 

        Peripheral_Arterial_Disease_Incidence[Age_Cohort] = "Non-

PAD_Population"*PAD_Incidence_Rate 

            UNITS: People/month 

            DOCUMENT: This biflow represents the incidence rate for peripheral arterial disease 

(PAD); it depletes the non-PAD population stock and simultaneously accumulates the PAD 

population stock. The rate is determined by fractional PAD incidence rate multiplied with the Non-

PAD population stock. 

PAD_Incidence_Rate[Age_Cohort] = Reference_PAD_IR*Effect_of_Amputation_on_Incidence 

    UNITS: dmnl/month 

    DOCUMENT: This variable represents the monthly fractional incidence rate of peripheral 

arterial disease in the United Kingdom. It is determined by the reference fractional rate adjusted by 

the effect from PAD-related amputation admission rate.  
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PAD_Population[Age_Cohort](t) = PAD_Population[Age_Cohort](t - dt) + 

(Peripheral_Arterial_Disease_Incidence[Age_Cohort] + PAD_Migration[Age_Cohort] + 

PAD_Aging_In[Age_Cohort] - PAD_Amputation[Age_Cohort] - PAD_Deaths[Age_Cohort] - 

PAD_Aging_Out[Age_Cohort]) * dt 

    INIT PAD_Population[Age_Cohort] = Initial_PAD_Population 

    UNITS: People 

    DOCUMENT: This stock represents the total non-amputee population with peripheral arterial 

diseases population, and are at greater risk for amputation. It is accumulated by the inflows PAD 

Incidence and net migration, and depleted by the outflows Deaths and Amputation. The stock is 

arrayed by age cohorts. The initial value of the stock is simply the Initial Non-PAD Population 

obtained from data. 

    INFLOWS: 

        Peripheral_Arterial_Disease_Incidence[Age_Cohort] = "Non-

PAD_Population"*PAD_Incidence_Rate 

            UNITS: People/month 

            DOCUMENT: This biflow represents the incidence rate for peripheral arterial disease 

(PAD); it depletes the non-PAD population stock and simultaneously accumulates the PAD 

population stock. The rate is determined by fractional PAD incidence rate multiplied with the Non-

PAD population stock. 

        PAD_Migration[Under_15] = 0 

        PAD_Migration["15_to_44"] = 0 

        PAD_Migration["45_to_59"] = 

PAD_Population["45_to_59"]*Net_Migration_Rate["45_to_59"] 

        PAD_Migration["60_to_79"] = 

PAD_Population["60_to_79"]*Net_Migration_Rate["60_to_79"] 

        PAD_Migration[Above_80] =   

PAD_Population[Above_80]*Net_Migration_Rate[Above_80] 

            UNITS: People/month 

            DOCUMENT: This biflow represents the net migration for peripheral arterial disease 

population, that accumulates the population stock. The rate of net migration is determined by the 

the fractional net migration rate multiplied by the PAD Population stock value. 

        PAD_Aging_In[Under_15] = 0 

        PAD_Aging_In["15_to_44"] = 0 

        PAD_Aging_In["45_to_59"] = 0 

        PAD_Aging_In["60_to_79"] = PAD_Aging_Out["45_to_59"] 

        PAD_Aging_In[Above_80] = PAD_Aging_Out["60_to_79"] 
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            UNITS: People/month 

            DOCUMENT: This inflow takes those who have aged out of the previous cohort and allows 

re-entry into the next appropriate age group.  

    OUTFLOWS: 

        PAD_Amputation[Age_Cohort] = PAD_Population*(Traumatic_Amputation_Rate+"PAD-

related_Amputation_Rate") 

            UNITS: People/month 

            DOCUMENT: This outflow represents the amputation rates for peripheral arterial disease 

population, that depletes the population stock. The rate is determined by both the traumatic 

amputation rate and PAD-related amputation rate multiplied by the respective Non-PAD 

Population stock. 

        PAD_Deaths[Age_Cohort] = 

PAD_Population*Mortality_Rate*PAD_Relative_Mortality_Risk 

            UNITS: People/month 

            DOCUMENT: This outflow represents the deaths for peripheral arterial disease population, 

that depletes the population stock. The rate is determined by the the mortality rate multiplied by the 

respective PAD Population stock value, adjusted by a multiplier to take into account the relative 

mortality rate as a result of PAD. 

        PAD_Aging_Out[Age_Cohort] = PAD_Population//Time_to_Age 

            UNITS: People/month 

            DOCUMENT: This outflow represents the rate at which people age out of their respective 

cohort groups. This rate is determined by a simple first order adjustment, where the the total 

number of people in the population stock is divided by the residence time. 

PAD_Relative_Mortality_Risk = 1.86 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the relative risk of death from all causes, or hazard 

ratio of persons diagnosed with peripheral arterial disease as compared to the rest of the population. 

Based on two separate studies, the average relative mortality risk was ascertained to be 1.86 across 

all stages of PAD (Diehm et al., 2009; Sartipy et al., 2018). 

"PAD-related_Admission_Rate"[Age_Cohort] = PAD_Population*"PAD-

related_Amputation_Rate" 

    UNITS: People/month 

    DOCUMENT: This variable dynamically calculates the PAD-related amputation admissions per 

month without taking into account traumatic injuries for each age cohort. It is calculated by 

multiplying the PAD Population with the fractional amputation rate.  
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"PAD-related_Amputation_Rate"[Under_15] = 0 

"PAD-related_Amputation_Rate"["15_to_44"] = 0 

"PAD-related_Amputation_Rate"["45_to_59"] = 0.00414/12 

"PAD-related_Amputation_Rate"["60_to_79"] = 0.00278/12 

"PAD-related_Amputation_Rate"[Above_80] = 0.00181/12 

    UNITS: dmnl/month 

    DOCUMENT: This parameter represents the major lower limb amputation rate for patients with 

peripheral arterial disease. This number was calculated from a composite data set constructed from 

the UK's National Vascular Registry annual reports. It was calculated by dividing the estimated 

average (data points from year 2015 to 2020) PAD-related amputations for each age cohort 

(Healthcare Quality Improvement Partnership, 2015, 2016, 2018a, 2018b, 2019, 2020, 2021) with a 

reference number of people with PAD in each group (Global Burden of Disease Collaborative 

Network, 2020). 

"Perceived_PAD-related_Admission_Rate" = SMTH3("Total_PAD-related_Admission_Rate", 

Time_to_Report, "Total_PAD-related_Admission_Rate") {DELAY CONVERTER} 

    UNITS: People/month 

    DOCUMENT: This variable represented the general perception of PAD-related admission rate. 

It is modelled with a third-order information delay with the assumption that it goes through several 

delay processes, which includes data collection, reporting, and dissemination. 

Proportion_Major_Amputation = 0.1 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the proportion of lower limb amputation that are of 

major (above-ankle). The parameter was calibrated to 10% in order to attain an approximate 

proportion of traumatic amputation cases to 25% of all major lower limb amputations. This 

estimate was provided by expert opinion from ProsFit Technologies. 

Proportion_of_Female = 0.584 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the proportion of females in the UK population. It is 

calculated as around 0.51 from population estimates (Office for National Statistics, 2015). 

However, the parameter was calibrated to a higher value to better fit the reference total population. 

This discrepancy can be explained by the fact that females have a lower mortality rate than males, 

which is not accounted for in this model. 
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Reference_PAD_IR[Under_15] = 0 

Reference_PAD_IR["15_to_44"] = 0 

Reference_PAD_IR["45_to_59"] = 28542/12197752/12 

Reference_PAD_IR["60_to_79"] = 95697/11187462/12 

Reference_PAD_IR[Above_80] = 27979/2854694/12 

    UNITS: dmnl/month 

    DOCUMENT: This parameter is the reference peripheral arterial disease (PAD) fractional 

incidence rate for each age cohort in year 2010. It is calculated by taking the incidence estimate as 

a fraction of the prevalence estimate, divided by 12 months. The data was obtained from Global 

Burden of Disease Study filtered by cause "peripheral artery disease" (Global Burden of Disease 

Collaborative Network, 2020). 

Steepness_AoI = 2 

    UNITS: dmnl 

    DOCUMENT: This parameter controls the steepness of the curve or the rate of increase or 

decline of the Indicated Effect of Amputation on Incidence variable. The steepness is assumed to 

be 2, but can be calibrated to data if available. 

Time_for_Prevention_to_take_effect = 10*12 

    UNITS: month 

    DOCUMENT: This parameter represents the time taken for prevention activities to be 

implemented before there is an effect on the incidence rate. Here, it is assumed that the delay time 

is 10 years. 

Time_to_Age[Under_15] = 15*12 

Time_to_Age["15_to_44"] = 29*12 

Time_to_Age["45_to_59"] = 14*12 

Time_to_Age["60_to_79"] = 19*12 

Time_to_Age[Above_80] = 0 

    UNITS: Months 

    DOCUMENT: This parameter is the residence time for each age cohort. In other words, it 

represents the duration they will remain in the cohort before moving on to the next age cohort 

group. The residence time is multiplied by 12 for each value to convert the duration from years to 

months. 

Time_to_Report = 36 

    UNITS: months 
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    DOCUMENT: This parameter represents the time taken for the information to collected, 

reported and disseminated before reaching the wider public. Here, it is assumed that the 

information is updated with a three-year delay time. 

Total_Fertile_Population = "Non-PAD_Population"["15_to_44"] + "Post-

Op_Hospital_Care"["15_to_44"] + "Pre-Op_Hospital_Care"["15_to_44"] + 

"Recovery_(First_30_Days)"["15_to_44"] + SUM(Awaiting_Replacement["15_to_44", *]) + 

SUM(Definitive_Device["15_to_44",*]) + SUM(Eligible_for_Prosthesis["15_to_44",*]) + 

SUM(Full_Mobility["15_to_44",*]) + Ineligible_for_Prosthesis["15_to_44"] + 

SUM(Initial_Device["15_to_44",*]) + SUM(Limited_Mobility["15_to_44",*]) + 

SUM(Matured_Limb["15_to_44",*]) + PAD_Population["15_to_44"] {SUMMING 

CONVERTER} 

    UNITS: people 

    DOCUMENT: This summing converter dynamically calculates the total number of people in the 

age cohort 15-44 at any one point in time. 

Total_Fertility_Rate = GRAPH(TIME) 

Points: (0.0, 1.930), (12.0, 1.920), (24.0, 1.930), (36.0, 1.840), (48.0, 1.830), (60.0, 1.820), (72.0, 

1.810), (84.0, 1.750), (96.0, 1.690), (108.0, 1.650)… 

    UNITS: dmnl 

    DOCUMENT: This variable is the reference time-series for Total Fertility Rate in the United 

Kingdom. The time-series is a composite of estimated historical census data up to 2019 (Office for 

National Statistics, 2022b) and thereafter, population projections up to 2050 (Office for National 

Statistics, 2022a). 

"Total_Non-PAD_Population" = SUM("Non-PAD_Population"[*]) {SUMMING CONVERTER} 

    UNITS: people 

    DOCUMENT: This variable dynamically sums the various age cohorts of the non-peripheral 

arterial disease population. 

Total_PAD_Population = SUM(PAD_Population[*]) {SUMMING CONVERTER} 

    UNITS: people 

    DOCUMENT: This variable dynamically sums the various age cohorts of the peripheral arterial 

disease population. 

"Total_PAD-related_Admission_Rate" = SUM("PAD-related_Admission_Rate") 

    UNITS: People/month 

    DOCUMENT: This converter simply sums up the PAD-related admission rate of the age cohort 

groups.  
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Trauma_Incidence[Under_15] = 0.0000566/12 

Trauma_Incidence["15_to_44"] = 0.000105/12 

Trauma_Incidence["45_to_59"] = 0.000197/12 

Trauma_Incidence["60_to_79"] = 0.000453/12 

Trauma_Incidence[Above_80] = 0.00241/12 

    UNITS: dmnl/month 

    DOCUMENT: This parameter represents the average estimated traumatic injury incidence rate 

for each age cohort. The data was obtained from Global Burden of Disease Study filtered by cause 

"Injuries" and "Amputation of lower limb" (Global Burden of Disease Collaborative Network, 

2020). The estimates from year 2010 to 2019 were averaged and adjusted to a monthly rate. 

Traumatic_Amputation_Rate[Age_Cohort] = Trauma_Incidence*Proportion_Major_Amputation 

    UNITS: dmnl/month 

    DOCUMENT: This variable calculates the traumatic amputation rate for major lower limb cases 

by multiplied the trauma incidence rate with the proportion of which that are major amputation 

cases. 

 

Table C.0.10 Documentation for Primary Care Sector 

Primary Care Sector 

Amputee_Relative_Mortality_Risk = 3.1 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the relative risk of death from all causes, or hazard 

ratio of persons with major lower limb amputation as compared to the rest of the population. The 

average relative mortality risk was ascertained to be between 2.9 and 3.3 after the third year 

(Ebskov, 1999). 

Eligible_Fraction[Under_15] = 0.9 

Eligible_Fraction["15_to_44"] = 0.9 

Eligible_Fraction["45_to_59"] = 0.9 

Eligible_Fraction["60_to_79"] = 0.9 

Eligible_Fraction[Above_80] = 0.70 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the estimated fraction of people, based on age cohort, 

that typically are eligible for prosthesis. The numbers were estimated from expert opinion 

(correspondence with ProsFit Technologies). 
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"In-Patient_Duration" = 21.5/30 

    UNITS: months 

    DOCUMENT: This parameter represents the total in-patient stay duration for patients 

undergoing surgical amputation. This number was obtained from a composite data set constructed 

from the UK's National Vascular Registry annual reports. The data points available from year 2017 

to 2020 was averaged (Healthcare Quality Improvement Partnership, 2018a, 2018b, 2019, 2020, 

2021) and adjusted from days to months. 

"In-Patient_Mortality_Rate" = 0.08 

    UNITS: dmnl/month 

    DOCUMENT: This parameter represents the in-patient mortality rate for patients undergoing 

surgical amputation. This number was obtained from a composite data set constructed from the 

UK's National Vascular Registry annual reports. The mortality rate data points available from year 

2017 to 2020 was averaged (Healthcare Quality Improvement Partnership, 2018a, 2018b, 2019, 

2020, 2021). Age-specific data was not available, and hence assumed to be the same across the 

board. Moreover, the mortality rate is assumed to be the same for PAD and non-PAD amputation 

cases. 

Ineligible_for_Prosthesis[Age_Cohort](t) = Ineligible_for_Prosthesis[Age_Cohort](t - dt) + 

(To_Home_Care[Age_Cohort] + Ineligible_Aging_In[Age_Cohort] - 

Ineligible_Deaths[Age_Cohort] - Ineligible_Aging_Out[Age_Cohort]) * dt 

    INIT Ineligible_for_Prosthesis[Age_Cohort] = Initial_Ineligible_Population 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who are deemed ineligible for prosthesis 

for medical reasons. It is accumulated by the inflow To Home Care, and depleted by the outflow 

Ineligible Deaths. The stock is arrayed by age cohorts. The initial value of the stock is simply the 

calculated Initial Eligible Population. 

    INFLOWS: 

        To_Home_Care[Age_Cohort] = 

("Recovery_(First_30_Days)"/Wound_Healing_Duration)*(1-Eligible_Fraction) 

            UNITS: People/month 

            DOCUMENT: This biflow represents the rate at which amputees are deemed ineligible for 

prosthesis and sent To Home Care permanently after recovering; it depletes the Recovery 

population stock and simultaneously accumulates the Ineligible for Prosthesis population stock. 

This rate is determined by the fraction of people who are ineligble for prosthesis multiplied by the 

total number of people recovering at any one point in time. This recovery rate is a first order 

adjustment, where the the total number of people in the Recovery stock is divided by the wound 

healing duration. 



 

 

 106 

        Ineligible_Aging_In[Under_15] = 0 

        Ineligible_Aging_In["15_to_44"] = Ineligible_Aging_Out[Under_15] 

        Ineligible_Aging_In["45_to_59"] = Ineligible_Aging_Out["15_to_44"] 

        Ineligible_Aging_In["60_to_79"] = Ineligible_Aging_Out["45_to_59"] 

        Ineligible_Aging_In[Above_80] = Ineligible_Aging_Out["60_to_79"] 

            UNITS: People/month 

            DOCUMENT: This inflow takes those who have aged out of the previous cohort and allows 

re-entry into the next appropriate age group.  

    OUTFLOWS: 

        Ineligible_Deaths[Age_Cohort] = 

Ineligible_for_Prosthesis*Mortality_Rate*Amputee_Relative_Mortality_Risk 

            UNITS: People/month 

            DOCUMENT: This outflow represents the deaths for the amputee population ineligible for 

prosthesis. The rate is determined by the fractional mortality rate multiplied by the respective 

population stock, adjusted by a multiplier to take into account the relative mortality rate as a result 

of amputation. 

        Ineligible_Aging_Out[Age_Cohort] = Ineligible_for_Prosthesis/Time_to_Age 

            UNITS: People/month 

            DOCUMENT: This outflow represents the rate at which people age out of their respective 

cohort groups. This rate is determined by a simple first order adjustment, where the the total 

number of people in the population stock is divided by the residence time. 

Inital_Above_45_Population = Initial_Total_Population["45_to_59"] + 

Initial_Total_Population["60_to_79"] + Initial_Total_Population[Above_80] {SUMMING 

CONVERTER} 

    UNITS: People 

    DOCUMENT: This summing converter totals the number of people above 45 years of age in 

2010 in the United Kingdom. 

Initial_Amputee_Population[Under_15] = 

Traumatic_Amputation_Prevalence[Under_15]*Proportion_Major_Amputation 

Initial_Amputee_Population["15_to_44"] = 

Traumatic_Amputation_Prevalence["15_to_44"]*Proportion_Major_Amputation 

Initial_Amputee_Population["45_to_59"] = 

(Initial_Total_Population["45_to_59"]/Inital_Above_45_Population)*PAD_Amputation_Prevalenc

e + Traumatic_Amputation_Prevalence["45_to_59"]*Proportion_Major_Amputation 
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Initial_Amputee_Population["60_to_79"] = 

(Initial_Total_Population["60_to_79"]/Inital_Above_45_Population)*PAD_Amputation_Prevalenc

e + Traumatic_Amputation_Prevalence["60_to_79"]*Proportion_Major_Amputation 

Initial_Amputee_Population[Above_80] = 

(Initial_Total_Population[Above_80]/Inital_Above_45_Population)*PAD_Amputation_Prevalence 

+ Traumatic_Amputation_Prevalence[Above_80]*Proportion_Major_Amputation 

    UNITS: People 

    DOCUMENT: This converter calculates the total initial amputee population of each age cohort 

in year 2010. In general, it is the sum of the total amputees from traumatic injuries and PAD for 

each age group. As for the PAD-amputees, the calculated total number of amputees is 

proportionally distributed to the respective age cohort.  

Initial_Eligible_Population[Age_Cohort] = Initial_Amputee_Population*Eligible_Fraction 

    UNITS: People 

    DOCUMENT: This converter calculates the initial number of amputees who are eligible for 

prosthesis. This is calculated as the product of initial amputee population and the fraction of 

amputees who are typically deemed eligible. 

Initial_Ineligible_Population[Age_Cohort] = Initial_Amputee_Population*(1-Eligible_Fraction) 

    UNITS: People 

    DOCUMENT: This converter calculates the initial number of amputees who are ineligible for 

prosthesis. This is calculated as the product of initial amputee population and the fraction of 

amputees who are typically deemed ineligible. 

PAD_Amputation_Prevalence = 

PAD_Amputation_Prevalence_Rate*INIT(Reference_Total_Population) 

    UNITS: People 

    DOCUMENT: This converter calculates the prevalence of amputees from PAD-related 

amputations in year 2010 by multiplying the total population size in that year with the prevalence 

rate. 

PAD_Amputation_Prevalence_Rate = 34/100000 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the prevalence rate for PAD-related amputations in 

year 2010. The data was obtained from Ahmad et al. (2016), which reported a prevalence rate of 

around 34 per 100,00 people in England. Here, this is extrapolated to the larger United Kingdom 

population.  
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"Post-Op_Hospital_Care"[Age_Cohort](t) = "Post-Op_Hospital_Care"[Age_Cohort](t - dt) + 

(Surgical_Amputation[Age_Cohort] + Readmission[Age_Cohort] - Discharge[Age_Cohort] - 

"Post-Op_Deaths"[Age_Cohort] - "Re-Amputation"[Age_Cohort]) * dt 

    INIT "Post-Op_Hospital_Care"[Age_Cohort] = 0 

    UNITS: People 

    DOCUMENT: This stock represents the total people in the post-operative stage of major lower 

limb amputation. It is accumulated by the inflows Surgical Amputation and Readmission, and 

depleted by the outflows Post-Op Deaths, Discharge and Re-Amputation. The stock is arrayed by 

age cohorts. The initial value for the stock is 0 with the assumption that there is no one in the 

primary care setting at the very start of the simulation. 

    INFLOWS: 

        Surgical_Amputation[Age_Cohort] = "Pre-Op_Hospital_Care"/"Pre-Op_Stay" 

            UNITS: People/month 

            DOCUMENT: This biflow represents the Surgical Amputation rate; it depletes the Pre-Op 

population stock and simultaneously accumulates the Post-Op population stock. This rate is 

determined by a simple first order adjustment, where the the total number of people in the Pre-Op 

population stock is divided by the residence time (pre-op stay duration). 

        Readmission[Age_Cohort] = "Recovery_(First_30_Days)"*"Re-Admission_Rate" 

            UNITS: People/month 

            DOCUMENT: This biflow represents the readmission rate for amputees who have been 

discharged; it depletes the Recovery stock and simultaneously accumulates the Post-Op stock. The 

rate is determined by the fractional readmission rate multiplied with the Recovery stock. 

    OUTFLOWS: 

        Discharge[Age_Cohort] = ("Post-Op_Hospital_Care"/"Post-Op_Stay") 

            UNITS: People/month 

            DOCUMENT: This biflow represents the Discharge rate; it depletes the Post-Op population 

stock and simultaneously accumulates the Recovery population stock. This rate is determined by a 

simple first order adjustment, where the the total number of people in the Post-Op population stock 

is divided by the residence time (post-op stay duration). 

        "Post-Op_Deaths"[Age_Cohort] = "Post-Op_Hospital_Care"*"In-Patient_Mortality_Rate" 

            UNITS: People/month 

            DOCUMENT: This outflow represents the post-operation deaths, that depletes the 

population stock. The rate is determined by the in-patient mortality rate multiplied by the respective 

Post-Op Hospital Care stock. 
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        "Re-Amputation"[Age_Cohort] = "Post-Op_Hospital_Care"*"Re-Op_Rate" 

            UNITS: People/month 

            DOCUMENT: This biflow represents the re-amputation rate for post-op amputees; it 

depletes the Post-Op population stock and simultaneously accumulates the Pre-Op population 

stock. The rate is determined by the fractional re-operation rate multiplied with the Post-Op 

population stock. 

"Post-Op_Stay" = 14.5/30 

    UNITS: months 

    DOCUMENT: This parameter represents the post-operation stay duration for patients who 

underwent surgical amputation. This number was obtained from a composite data set constructed 

from the UK's National Vascular Registry annual reports. The data points available from year 2017 

to 2020 was averaged (Healthcare Quality Improvement Partnership, 2018a, 2018b, 2019, 2020, 

2021) and adjusted from days to months. 

"Pre-Op_Hospital_Care"[Age_Cohort](t) = "Pre-Op_Hospital_Care"[Age_Cohort](t - dt) + ("Re-

Amputation"[Age_Cohort] + Admission[Age_Cohort] - Surgical_Amputation[Age_Cohort] - "Pre-

Op_Deaths"[Age_Cohort]) * dt 

    INIT "Pre-Op_Hospital_Care"[Age_Cohort] = 0 

    UNITS: People 

    DOCUMENT: This stock represents the total people admitted to hospital for major lower limb 

amputation, at the pre-operation stage. It is accumulated by the inflows Admission and Re-

Amputation, and depleted by the outflows Pre-Op Deaths and Surgical Amputation. The stock is 

arrayed by age cohorts. The initial value for the stock is 0 with the assumption that there is no one 

in the primary care setting at the very start of the simulation. 

    INFLOWS: 

        "Re-Amputation"[Age_Cohort] = "Post-Op_Hospital_Care"*"Re-Op_Rate" 

            UNITS: People/month 

            DOCUMENT: This biflow represents the re-amputation rate for post-op amputees; it 

depletes the Post-Op population stock and simultaneously accumulates the Pre-Op population 

stock. The rate is determined by the fractional re-operation rate multiplied with the Post-Op 

population stock. 

        Admission[Age_Cohort] = NPAD_Amputation[Age_Cohort]+ 

PAD_Amputation[Age_Cohort] 

            UNITS: People/month 

            DOCUMENT: This inflow represents the number of hopital admissions per month for 

major lower limb amputation, and it accumulates the Pre-Op Hospital Care stock. The admission 

rate is simply the sum of the Non-peripheral arterial diseases amputation cases and PAD 

amputation cases. 
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    OUTFLOWS: 

        Surgical_Amputation[Age_Cohort] = "Pre-Op_Hospital_Care"/"Pre-Op_Stay" 

            UNITS: People/month 

            DOCUMENT: This biflow represents the Surgical Amputation rate; it depletes the Pre-Op 

population stock and simultaneously accumulates the Post-Op population stock. This rate is 

determined by a simple first order adjustment, where the the total number of people in the Pre-Op 

population stock is divided by the residence time (pre-op stay duration). 

        "Pre-Op_Deaths"[Age_Cohort] = "Pre-Op_Hospital_Care"*"In-Patient_Mortality_Rate" 

            UNITS: People/month 

            DOCUMENT: This outflow represents the pre-operation deaths, that depletes the 

population stock. The rate is determined by the in-patient mortality rate multiplied by the respective 

Pre-Op Hospital Care stock. 

"Pre-Op_Stay" = "In-Patient_Duration"-"Post-Op_Stay" 

    UNITS: months 

    DOCUMENT: This converter calculates the pre-operation stay duration for patients undergoing 

surgical amputation. It is calculated by subtracting the Post-Op Stay from the total In-Patient 

Duration. 

"Re-Admission_Rate" = 0.095 

    UNITS: dmnl/month 

    DOCUMENT: This parameter represents the fractional rate at which patients were re-admitted 

within the first 30 days after surgery. This number was obtained from a composite data set 

constructed from the UK's National Vascular Registry annual reports. The data points available 

from year 2017 to 2020 were averaged (Healthcare Quality Improvement Partnership, 2018a, 

2018b, 2019, 2020, 2021). 

"Re-Op_Rate" = 0.09 

    UNITS: dmnl/month 

    DOCUMENT: This parameter represents the fractional rate at which post-op patients return to 

theatre for re-amputation arising from complications. This number was obtained from a composite 

data set constructed from the UK's National Vascular Registry annual reports. The data points 

available from year 2017 to 2020 were averaged (Healthcare Quality Improvement Partnership, 

2018a, 2018b, 2019, 2020, 2021). 
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"Recovery_(First_30_Days)"[Age_Cohort](t) = "Recovery_(First_30_Days)"[Age_Cohort](t - dt) 

+ (Discharge[Age_Cohort] - Readmission[Age_Cohort] - Prosthesis_Referral[Age_Cohort] - 

To_Home_Care[Age_Cohort]) * dt 

    INIT "Recovery_(First_30_Days)"[Age_Cohort] = 0 

    UNITS: People 

    DOCUMENT: This stock represents the total people in the first 30 days of recovery after 

discharge. This is the critical period where patients might experience complications as well as the 

wound healing duration before being assessed and referred to a prosthetist. It is accumulated by the 

inflow Discharge, and depleted by the outflows Re-admission, Prosthesis Referral and To Home 

Care. The stock is arrayed by age cohorts. The initial value for the stock is 0 with the assumption 

that there is no one in the primary care setting at the very start of the simulation. 

    INFLOWS: 

        Discharge[Age_Cohort] = ("Post-Op_Hospital_Care"/"Post-Op_Stay") 

            UNITS: People/month 

            DOCUMENT: This biflow represents the Discharge rate; it depletes the Post-Op population 

stock and simultaneously accumulates the Recovery population stock. This rate is determined by a 

simple first order adjustment, where the the total number of people in the Post-Op population stock 

is divided by the residence time (post-op stay duration). 

    OUTFLOWS: 

        Readmission[Age_Cohort] = "Recovery_(First_30_Days)"*"Re-Admission_Rate" 

            UNITS: People/month 

            DOCUMENT: This biflow represents the readmission rate for amputees who have been 

discharged; it depletes the Recovery stock and simultaneously accumulates the Post-Op stock. The 

rate is determined by the fractional readmission rate multiplied with the Recovery stock. 

        Prosthesis_Referral[Age_Cohort] = 

("Recovery_(First_30_Days)"/Wound_Healing_Duration)*Eligible_Fraction 

            UNITS: People/month 

            DOCUMENT: This outflow represents the rate at which amputees are deemed eligible for 

prosthesis and referred to a prosthetist. It depletes the Recovery population stock. The rate is 

determined by the fraction of people who are eligible for prosthesis multiplied by the total number 

of people recovering at any one point in time. This recovery rate is a first order adjustment, where 

the the total number of people in the Recovery stock is divided by the wound healing duration. 
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        To_Home_Care[Age_Cohort] = 

("Recovery_(First_30_Days)"/Wound_Healing_Duration)*(1-Eligible_Fraction) 

            UNITS: People/month 

            DOCUMENT: This biflow represents the rate at which amputees are deemed ineligible for 

prosthesis and sent To Home Care permanently after recovering; it depletes the Recovery 

population stock and simultaneously accumulates the Ineligible for Prosthesis population stock. 

This rate is determined by the fraction of people who are ineligble for prosthesis multiplied by the 

total number of people recovering at any one point in time. This recovery rate is a first order 

adjustment, where the the total number of people in the Recovery stock is divided by the wound 

healing duration. 

Reference_Total_Population = GRAPH(TIME) 

Points: (0.0, 62759500.0), (12.0, 63285100.0), (24.0, 63705000.0), (36.0, 64105700.0), (48.0, 

64596800.0), (60.0, 65110000.0), (72.0, 65648100.0), (84.0, 66040200.0), (96.0, 66435600.0), 

(108.0, 66796800.0)… 

    UNITS: People 

    DOCUMENT: This variable is the reference time-series for Total Population in the United 

Kingdom. The time-series is a composite of estimated historical census data up to 2019 (Office for 

National Statistics, 2021) and population projections up to 2050 (Office for National Statistics, 

2022a). 

Total_Admission_Rate = SUM(Admission[*]) {SUMMING CONVERTER} 

    UNITS: People/month 

    DOCUMENT: This summing converter totals the number of admissions irrespective of age 

groups at any one point in time. 

Traumatic_Amputation_Prevalence[Under_15] = 4716 

Traumatic_Amputation_Prevalence["15_to_44"] = 68727 

Traumatic_Amputation_Prevalence["45_to_59"] = 71724 

Traumatic_Amputation_Prevalence["60_to_79"] = 120616 

Traumatic_Amputation_Prevalence[Above_80] = 89340 

    UNITS: People 

    DOCUMENT: This parameter represents the prevalence of lower limb amputations (both major 

and minor) from traumatic injuries in year 2010 for each age cohort. The data was obtained from 

Global Burden of Disease Study filtered by cause "Injuries" and "Amputation of lower limb" 

(Global Burden of Disease Collaborative Network, 2020). 
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Wound_Healing_Duration = 1 

    UNITS: month 

    DOCUMENT: This parameter represents the wound healing duration for patients who underwent 

surgical amputation. Based on the general timeline for prosthetic rehabilitation, amputees incision 

fully heals within the first month after surgery and receive an initial prosthetic evaluation 

(Rheinstein et al., 2021). 

 

Table C.0.11 Documentation for Prosthetic Care Sector 

Prosthetic Care Sector 

Access_S1[Age_Cohort] = Initial_Population_with_Access*(1-

Ref_EP_Dropout_Fraction[Traditional]) 

    UNITS: People 

    DOCUMENT: This converter calculates the remaining amputees who did not dropout in the first 

stage. It is calculated as the product of the initial population with access and the inverse of the 

reference eligible for prosthesis dropout fraction (retention fraction).  

Access_S2[Age_Cohort] = Access_S1*(1-Ref_ID_Dropout_Fraction[Traditional]) 

    UNITS: People 

    DOCUMENT: This converter calculates the remaining amputees who did not dropout in the 

initial device stage. It is calculated as the product of the remaining amputee population in the initial 

device stage and the inverse of the reference initial device dropout fraction (retention fraction).  

Access_S3[Age_Cohort] = Access_S2*(1-Ref_ML_Dropout_Fraction[Traditional]) 

    UNITS: People 

    DOCUMENT: This converter calculates the remaining amputees who did not dropout in the 

matured limb stage and moved on to the definitive device stage. It is calculated as the product of 

the remaining amputee population in the matured limb stage and the inverse of the reference 

matured limb dropout fraction (retention fraction).  

Adjustment_Duration[Prosthesis_Type] = 3 

    UNITS: month 

    DOCUMENT: This parameter represents the duration for amputees to adjust to their newly fitted 

prosthesis. Based on the general timeline for prosthetic rehabilitation, amputees continue to 

undergo rehabilitation after receiving the definitive device months (Rheinstein et al., 2021). In the 

timeline, the definitive device duration is 6 months and includes both delivery and rehabilitation. 

Hence, subtracting the delivery duration for traditional prosthesis from this timeline, gives us 

around 3 months of rehabilitation period before the patient exits prosthetic care and into holistic 

lifelong care (Rheinstein et al., 2021). 
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Awaiting_Replacement[Age_Cohort, Prosthesis_Type](t) = Awaiting_Replacement[Age_Cohort, 

Prosthesis_Type](t - dt) + (Prosthesis_Degradation[Age_Cohort, Prosthesis_Type] + 

AR_Aging_In[Age_Cohort, Prosthesis_Type] - Prosthesis_Replacement[Age_Cohort, 

Prosthesis_Type] - AR_Deaths[Age_Cohort, Prosthesis_Type] - AR_Aging_Out[Age_Cohort, 

Prosthesis_Type]) * dt 

    INIT Awaiting_Replacement[Age_Cohort, Prosthesis_Type] = 0 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who are awaiting the replacement of 

their degraded prosthesis and are thus temporarily made immobile. It is accumulated by the inflow 

Prosthesis Degradation, and depleted by the outflows AR Deaths and Prosthesis Replacement. The 

stock is arrayed by age cohorts and prosthesis type. The initial value for the stock is 0 with the 

assumption that there are no amputees in the midst of the fitting process at the very start of the 

simulation. 

    INFLOWS: 

        Prosthesis_Degradation[Age_Cohort, Prosthesis_Type] = Full_Mobility/Prosthesis_Lifespan 

            UNITS: People/month 

            DOCUMENT: This biflow represents the Prosthesis Degradation rate; it depletes the Full 

Mobility stock and simultaneously accumulates the Awaiting Replacement stock. This rate is 

determined by a simple first order adjustment, where the the total number of people in the Full 

Mobility stock is divided by the residence time (prosthesis lifespan). 

        AR_Aging_In[Under_15, Digital] = 0 

        AR_Aging_In[Under_15, Traditional] = 0 

        AR_Aging_In["15_to_44", Digital] = AR_Aging_Out[Under_15,Digital] 

        AR_Aging_In["15_to_44", Traditional] = AR_Aging_Out[Under_15,Traditional] 

        AR_Aging_In["45_to_59", Digital] = AR_Aging_Out["15_to_44",Digital] 

        AR_Aging_In["45_to_59", Traditional] = AR_Aging_Out["15_to_44",Traditional] 

        AR_Aging_In["60_to_79", Digital] = AR_Aging_Out["45_to_59",Digital] 

        AR_Aging_In["60_to_79", Traditional] = AR_Aging_Out["45_to_59",Traditional] 

        AR_Aging_In[Above_80, Digital] = AR_Aging_Out["60_to_79",Digital] 

        AR_Aging_In[Above_80, Traditional] = AR_Aging_Out["60_to_79",Traditional] 

            UNITS: People/month 

            DOCUMENT: This inflow takes those who have aged out of the previous cohort and allows 

re-entry into the next appropriate age group.  
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    OUTFLOWS: 

        Prosthesis_Replacement[Age_Cohort, Prosthesis_Type] = 

Prosthetic_Accessibility[Prosthesis_Type]*Awaiting_Replacement/Desired_Appointment_Time 

            UNITS: People/month 

            DOCUMENT: This biflow represents the Prosthesis Replacement rate; it depletes the 

Awaiting Replacement stock and simultaneously accumulates the Matured Limb stock. The rate is 

determined by the fraction of people who have access to a prosthetist multiplied by the total 

number of people requiring a replacement at any one point in time. 

        AR_Deaths[Age_Cohort, Prosthesis_Type] = 

Awaiting_Replacement*Mortality_Rate[Age_Cohort]*Amputee_Relative_Mortality_Risk 

            UNITS: People/month 

            DOCUMENT: This outflow represents the deaths for the amputee population awaiting the 

replacement of their degraded prosthesis. The rate is determined by the fractional mortality rate 

multiplied by the respective population stock, adjusted by a multiplier to take into account the 

relative mortality rate as a result of amputation. 

        AR_Aging_Out[Age_Cohort, Prosthesis_Type] = 

Awaiting_Replacement//Time_to_Age[Age_Cohort] 

            UNITS: People/month 

            DOCUMENT: This outflow represents the rate at which people age out of their respective 

cohort groups. This rate is determined by a simple first order adjustment, where the the total 

number of people in the population stock is divided by the residence time. 

Definitive_Device[Age_Cohort, Prosthesis_Type](t) = Definitive_Device[Age_Cohort, 

Prosthesis_Type](t - dt) + (Device_Delivery[Age_Cohort, Prosthesis_Type] - 

Successful_Fitting[Age_Cohort, Prosthesis_Type] - Unsuccessful_Fitting[Age_Cohort, 

Prosthesis_Type]) * dt 

    INIT Definitive_Device[Age_Cohort, Prosthesis_Type] = 0 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who has received a definitive device and 

are adjusting to the new prosthesis with rehabilitation. It is accumulated by the inflow Device 

Delivery and depleted by the outflows Successful Fitting and Unsuccessful Fitting. The stock is 

arrayed by age cohorts and prosthesis type. The initial value for the stock is 0 with the assumption 

that there are no amputees in the midst of the fitting process at the very start of the simulation. 
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    INFLOWS: 

        Device_Delivery[Age_Cohort, Prosthesis_Type] = 

Matured_Limb/Delivery_Duration[Prosthesis_Type] 

            UNITS: People/month 

            DOCUMENT: This biflow represents the rate at which amputees, whose limbs have 

matured, receive a definitive prosthesis device. It depletes the Matured Limb stock and 

simultaneously accumulates the Definitive Device stock. The rate is determined by a first order 

material delay, where the the total number of people in the Matured Limb stock is divided by the 

Delivery Duration. 

    OUTFLOWS: 

        Successful_Fitting[Age_Cohort, Prosthesis_Type] = 

(Definitive_Device/Adjustment_Duration[Prosthesis_Type])*Success_Fraction[Prosthesis_Type] 

            UNITS: People/month 

            DOCUMENT: This biflow represents the rate at which amputees are successfully fitted 

with a prosthesis. It depletes the Definitive Device stock and simultaneously accumulates the Full 

Mobility stock. The rate is determined by the product of the success fraction and the total number 

of people who have adjusted to their new prosthesis device at any one point in time. This 

adjustment rate is a first order adjustment, where the the total number of people in the Definitive 

Device stock is divided by the adjustment duration. 

        Unsuccessful_Fitting[Age_Cohort, Prosthesis_Type] = 

(Definitive_Device/Adjustment_Duration[Prosthesis_Type])*(1-

Success_Fraction[Prosthesis_Type]) 

            UNITS: People/month 

            DOCUMENT: This biflow represents the rate at which amputees are unsuccessfully fitted 

with a prosthesis, thus leading to abandonment of the definitive device. It depletes the Definitive 

Device stock and simultaneously accumulates the Limited Mobility stock. The rate is determined 

by the product of the total number of people who have adjusted to their new prosthesis device at 

any one point in time and the inverse of the success fraction. The adjustment rate is a first order 

adjustment, where the the total number of people in the Definitive Device stock is divided by the 

adjustment duration. 

Delivery_Duration[Digital] = 0.25 

Delivery_Duration[Traditional] = 1.5 

    UNITS: month 

    DOCUMENT: This parameter represents the delivery duration for the definitive device to be 

manufactured and fitted on the amputees. Based on expert opinion from prosthetists, this delivery 

delay is estimated to be 1.5 months for traditional plaster-cast socket devices and a much shorter 

duration of 0.25 months for a 3D-printed digital device (correspondence with ProsFit). 
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Desired_Appointment_Time = 1 

    UNITS: month 

    DOCUMENT: This parameter represents the desired time for an individual to make an 

appointment with a prosthetist in order to get fitted for a prosthesis or replace their degraded 

prosthesis. Here, the assumption is that people would want to get an appointment within the first 

month. 

Effect_of_Fitting_Rate_on_Dropout = Initial_FRD*(EXP(-

Perceived_Relative_Fitting_Rate/Steepness_FRD)) 

    UNITS: dmnl 

    DOCUMENT: This variable represents the effect of perceived Relative Fitting Rate on the 

reference Dropout Fraction. As the relative perceived successful fitting rate of the digital prosthesis 

increases, we expect more word of mouth dissemination of information. The assumption here is 

that as digital fittings experience more success, people are less likely to dropout since they might be 

motivated to see through the process and experience a similar success as others. 

    The effect variable is analytically formulated as an exponential decay from 1 to 0. In other 

words, the effect decreases decreasingly from an initial value of 1 to 0, with a certain steepness. 

Hence, when the relative rate is 0, then the dropout fraction will be at it's normal or reference value. 

As the relative rate starts increasing, the dropout fraction will exponentially decay from its 

reference value towards 0.  

Effect_of_Fitting_Rate_on_Readoption = MIN(Max_FRR, 

Initial_FRR*(EXP(Perceived_Relative_Fitting_Rate/Steepness_FRR))) 

    UNITS: dmnl 

    DOCUMENT: This variable represents the effect of perceived Relative Fitting Rate on the 

reference Readoption Fraction. As the relative perceived successful fitting rate of the digital 

prosthesis increases, we expect more word of mouth dissemination of information. The assumption 

here is that as digital fittings experience more success, people are more likely to readopt digital 

prosthesis since they might be motivated to try the digital process and experience a similar success 

as others. 

    The effect variable is analytically formulated as an exponential growth from 1 to a maximum 

effect of 2. In other words, the effect increases increasingly from an initial value of 1 to 2, with a 

certain steepness. Hence, when the relative rate is 0, then the readoption fraction will be at it's 

normal or reference value. As the relative rate starts increasing, the dropout fraction will 

exponentially increase from its reference value towards a maximum of twice its value. 
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Eligible_for_Prosthesis[Age_Cohort, Prosthesis_Type](t) = Eligible_for_Prosthesis[Age_Cohort, 

Prosthesis_Type](t - dt) + (Prosthesis_Referred[Age_Cohort, Prosthesis_Type] - 

Fit_First_Prosthesis[Age_Cohort, Prosthesis_Type] - EP_Dropout[Age_Cohort, Prosthesis_Type]) 

* dt 

    INIT Eligible_for_Prosthesis[Age_Cohort, Prosthesis_Type] = 0 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who are eligible for a prosthesis and 

have entered the prosthetic care continuum. It is accumulated by the inflow Prosthesis Referred and 

depleted by the outflows Fit First Prosthesis and EP Dropout. The stock is arrayed by age cohorts 

and prosthesis type. The initial value for the stock is 0 with the assumption that there are no 

amputees in the midst of the fitting process at the very start of the simulation. 

    INFLOWS: 

        Prosthesis_Referred[Under_15, Digital] = 

Prosthesis_Referral[Under_15]*Market_Subsystem.Market_Share[Digital] 

        Prosthesis_Referred[Under_15, Traditional] = 

Prosthesis_Referral[Under_15]*Market_Subsystem.Market_Share[Traditional] 

        Prosthesis_Referred["15_to_44", Digital] = 

Prosthesis_Referral["15_to_44"]*Market_Subsystem.Market_Share[Digital] 

        Prosthesis_Referred["15_to_44", Traditional] = 

Prosthesis_Referral["15_to_44"]*Market_Subsystem.Market_Share[Traditional] 

        Prosthesis_Referred["45_to_59", Digital] = 

Prosthesis_Referral["45_to_59"]*Market_Subsystem.Market_Share[Digital] 

        Prosthesis_Referred["45_to_59", Traditional] = 

Prosthesis_Referral["45_to_59"]*Market_Subsystem.Market_Share[Traditional] 

        Prosthesis_Referred["60_to_79", Digital] = 

Prosthesis_Referral["60_to_79"]*Market_Subsystem.Market_Share[Digital] 

        Prosthesis_Referred["60_to_79", Traditional] = 

Prosthesis_Referral["60_to_79"]*Market_Subsystem.Market_Share[Traditional] 

        Prosthesis_Referred[Above_80, Digital] = 

Prosthesis_Referral[Above_80]*Market_Subsystem.Market_Share[Digital] 

        Prosthesis_Referred[Above_80, Traditional] = 

Prosthesis_Referral[Above_80]*Market_Subsystem.Market_Share[Traditional] 

            UNITS: People/month 

            DOCUMENT: This inflow represents the number of amputees who are deemed eligible and 

given a referral to prosthetic care, and it accumulates the Eligible for Prosthesis stock. The referred 

rate is simply the prosthesis referral rate that is redistributed to the respective prosthesis array 

dimension based on the market share of each prosthesis type. The market share is taken as the 

probability that an amputee will be referred to either a traditional or digital prosthetist. 
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    OUTFLOWS: 

        Fit_First_Prosthesis[Age_Cohort, Prosthesis_Type] = 

Eligible_for_Prosthesis*Prosthetic_Accessibility[Prosthesis_Type]/Initial_Measurement_Duration[

Prosthesis_Type] 

            UNITS: People/month 

            DOCUMENT: This biflow represents the rate at which amputees get measured and fitted 

with an initial fit first device. It depletes the Eligible for Prosthesis stock and simultaneously 

accumulates the Initial Device stock. The rate is determined by the product of the total number of 

people who would like to be fitted with an initial device at any one point in time and the prosthetic 

accessibility fraction. This initial measurement rate is a first order material delay, where the the 

total number of people in the Eligible for Prosthesis stock is divided by the Initial Measurement 

Duration. 

        EP_Dropout[Age_Cohort, Prosthesis_Type] = 

Eligible_for_Prosthesis*EP_Dropout_Fraction[Prosthesis_Type]/Time_to_Dropout 

            UNITS: People/month 

            DOCUMENT: This biflow represents the rate at which amputees who eligible for prosthesis 

dropout before the start of the fitting process. It depletes the Eligible for Prosthesis stock and 

simultaneously accumulates the Limited Mobility stock. The rate is simply a fraction of the total 

number of people in the Eligible for Prosthesis stock over a certain decision time to dropout. 

EP_Dropout_Fraction[Digital] = 

Ref_EP_Dropout_Fraction[Digital]*Effect_of_Fitting_Rate_on_Dropout 

EP_Dropout_Fraction[Traditional] = Ref_EP_Dropout_Fraction[Traditional] 

    UNITS: dmnl 

    DOCUMENT: This variable represents the fraction of people that on average decides to dropout 

from the prosthetic fitting process from the get-go, even before being fitted with an initial device. It 

is determined by the reference fraction adjusted by the effect from Perceived Relative Fitting Rate.  

Fit_First_Duration[Prosthesis_Type] = 4 

    UNITS: month 

    DOCUMENT: This parameter represents the fit first duration for amputees. Based on the general 

timeline for prosthetic rehabilitation, amputees undergo gait training with an initial device for about 

2 months and an additional 2 months while awaiting for the limb to mature and stabilise in volume 

(Rheinstein et al., 2021). 

Fitting_Demand[Prosthesis_Type] = Prosthesis_To_Fit+Prosthesis_Reentry + 

Prosthesis_To_Replace 

    UNITS: People/month 

    DOCUMENT: This variable dynamically calculates the total demand for prosthesis fitting at any 

one point in time. It is simply the sum of the desired prosthesis to fit for new amputees, the desired 

prosthesis for rentrants, and the desired prosthesis for amputees who need to replace their device. 
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Full_Mobility[Under_15, Digital](t) = Full_Mobility[Under_15, Digital](t - dt) + 

(FM_Aging_In[Under_15, Digital] + Successful_Fitting[Under_15, Digital] - 

Prosthesis_Degradation[Under_15, Digital] - FM_Deaths[Under_15, Digital] - 

FM_Aging_Out[Under_15, Digital]) * dt 

    INIT Full_Mobility[Under_15, Digital] = 0 

Full_Mobility[Under_15, Traditional](t) = Full_Mobility[Under_15, Traditional](t - dt) + 

(FM_Aging_In[Under_15, Traditional] + Successful_Fitting[Under_15, Traditional] - 

Prosthesis_Degradation[Under_15, Traditional] - FM_Deaths[Under_15, Traditional] - 

FM_Aging_Out[Under_15, Traditional]) * dt 

    INIT Full_Mobility[Under_15, Traditional] = Initial_Full_Mobility[Under_15] 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who are successfully fitted with a 

prosthesis and are thus fully mobile. It is accumulated by the inflow Successful Fitting, and 

depleted by the outflows FM Deaths and Prosthesis Degradation. The stock is arrayed by age 

cohorts and prosthesis type. The initial value for digital prosthesis is 0 simply because digital 

solutions started after 2010. The initial value for the traditional prosthesis is the calculated Initial 

Full Mobility. 

Full_Mobility["15_to_44", Digital](t) = Full_Mobility["15_to_44", Digital](t - dt) + 

(FM_Aging_In["15_to_44", Digital] + Successful_Fitting["15_to_44", Digital] - 

Prosthesis_Degradation["15_to_44", Digital] - FM_Deaths["15_to_44", Digital] - 

FM_Aging_Out["15_to_44", Digital]) * dt 

    INIT Full_Mobility["15_to_44", Digital] = 0 

Full_Mobility["15_to_44", Traditional](t) = Full_Mobility["15_to_44", Traditional](t - dt) + 

(FM_Aging_In["15_to_44", Traditional] + Successful_Fitting["15_to_44", Traditional] - 

Prosthesis_Degradation["15_to_44", Traditional] - FM_Deaths["15_to_44", Traditional] - 

FM_Aging_Out["15_to_44", Traditional]) * dt 

    INIT Full_Mobility["15_to_44", Traditional] = Initial_Full_Mobility["15_to_44"] 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who are successfully fitted with a 

prosthesis and are thus fully mobile. It is accumulated by the inflow Successful Fitting, and 

depleted by the outflows FM Deaths and Prosthesis Degradation. The stock is arrayed by age 

cohorts and prosthesis type. The initial value for digital prosthesis is 0 simply because digital 

solutions started after 2010. The initial value for the traditional prosthesis is the calculated Initial 

Full Mobility. 

Full_Mobility["45_to_59", Digital](t) = Full_Mobility["45_to_59", Digital](t - dt) + 

(FM_Aging_In["45_to_59", Digital] + Successful_Fitting["45_to_59", Digital] - 

Prosthesis_Degradation["45_to_59", Digital] - FM_Deaths["45_to_59", Digital] - 

FM_Aging_Out["45_to_59", Digital]) * dt 

    INIT Full_Mobility["45_to_59", Digital] = 0 
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Full_Mobility["45_to_59", Traditional](t) = Full_Mobility["45_to_59", Traditional](t - dt) + 

(FM_Aging_In["45_to_59", Traditional] + Successful_Fitting["45_to_59", Traditional] - 

Prosthesis_Degradation["45_to_59", Traditional] - FM_Deaths["45_to_59", Traditional] - 

FM_Aging_Out["45_to_59", Traditional]) * dt 

    INIT Full_Mobility["45_to_59", Traditional] = Initial_Full_Mobility["45_to_59"] 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who are successfully fitted with a 

prosthesis and are thus fully mobile. It is accumulated by the inflow Successful Fitting, and 

depleted by the outflows FM Deaths and Prosthesis Degradation. The stock is arrayed by age 

cohorts and prosthesis type. The initial value for digital prosthesis is 0 simply because digital 

solutions started after 2010. The initial value for the traditional prosthesis is the calculated Initial 

Full Mobility. 

Full_Mobility["60_to_79", Digital](t) = Full_Mobility["60_to_79", Digital](t - dt) + 

(FM_Aging_In["60_to_79", Digital] + Successful_Fitting["60_to_79", Digital] - 

Prosthesis_Degradation["60_to_79", Digital] - FM_Deaths["60_to_79", Digital] - 

FM_Aging_Out["60_to_79", Digital]) * dt 

    INIT Full_Mobility["60_to_79", Digital] = 0 

Full_Mobility["60_to_79", Traditional](t) = Full_Mobility["60_to_79", Traditional](t - dt) + 

(FM_Aging_In["60_to_79", Traditional] + Successful_Fitting["60_to_79", Traditional] - 

Prosthesis_Degradation["60_to_79", Traditional] - FM_Deaths["60_to_79", Traditional] - 

FM_Aging_Out["60_to_79", Traditional]) * dt 

    INIT Full_Mobility["60_to_79", Traditional] = Initial_Full_Mobility["60_to_79"] 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who are successfully fitted with a 

prosthesis and are thus fully mobile. It is accumulated by the inflow Successful Fitting, and 

depleted by the outflows FM Deaths and Prosthesis Degradation. The stock is arrayed by age 

cohorts and prosthesis type. The initial value for digital prosthesis is 0 simply because digital 

solutions started after 2010. The initial value for the traditional prosthesis is the calculated Initial 

Full Mobility. 

Full_Mobility[Above_80, Digital](t) = Full_Mobility[Above_80, Digital](t - dt) + 

(FM_Aging_In[Above_80, Digital] + Successful_Fitting[Above_80, Digital] - 

Prosthesis_Degradation[Above_80, Digital] - FM_Deaths[Above_80, Digital] - 

FM_Aging_Out[Above_80, Digital]) * dt 

    INIT Full_Mobility[Above_80, Digital] = 0 

Full_Mobility[Above_80, Traditional](t) = Full_Mobility[Above_80, Traditional](t - dt) + 

(FM_Aging_In[Above_80, Traditional] + Successful_Fitting[Above_80, Traditional] - 

Prosthesis_Degradation[Above_80, Traditional] - FM_Deaths[Above_80, Traditional] - 

FM_Aging_Out[Above_80, Traditional]) * dt 

    INIT Full_Mobility[Above_80, Traditional] = Initial_Full_Mobility[Above_80] 
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    UNITS: People 

    DOCUMENT: This stock represents the total amputees who are successfully fitted with a 

prosthesis and are thus fully mobile. It is accumulated by the inflow Successful Fitting, and 

depleted by the outflows FM Deaths and Prosthesis Degradation. The stock is arrayed by age 

cohorts and prosthesis type. The initial value for digital prosthesis is 0 simply because digital 

solutions started after 2010. The initial value for the traditional prosthesis is the calculated Initial 

Full Mobility. 

Full_Mobility_by_Type[Digital] = SUM(Full_Mobility[*,Digital]) 

Full_Mobility_by_Type[Traditional] = SUM(Full_Mobility[*, Traditional]) 

    UNITS: People 

    DOCUMENT: This converter calculates the subtotals of amputees with full mobility by type of 

prosthesis. 

ID_Dropout_Fraction[Digital] = 

Ref_ID_Dropout_Fraction[Digital]*Effect_of_Fitting_Rate_on_Dropout 

ID_Dropout_Fraction[Traditional] = Ref_ID_Dropout_Fraction[Traditional] 

    UNITS: dmnl 

    DOCUMENT: This variable represents the fraction of people that on average decides to dropout 

from the Initial Device stage of the prosthetic fitting process. It is determined by the reference 

fraction adjusted by the effect from Perceived Relative Fitting Rate.  

Initial_Accessibility = 0.5 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the initial fraction of amputees in UK who have access 

to prosthetic care. This number is estimated to be 50% based on ProsFit's health economic model 

data set (C. Hutchison, 2021). 

Initial_Device[Age_Cohort, Prosthesis_Type](t) = Initial_Device[Age_Cohort, Prosthesis_Type](t 

- dt) + (Fit_First_Prosthesis[Age_Cohort, Prosthesis_Type] - Maturation[Age_Cohort, 

Prosthesis_Type] - ID_Dropout[Age_Cohort, Prosthesis_Type]) * dt 

    INIT Initial_Device[Age_Cohort, Prosthesis_Type] = 0 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who have taken the initial measurements 

for their device and provided with a fit first device for gait training. It is accumulated by the inflow 

Fit First Prosthesis and depleted by the outflows Maturation and ID Dropout. The stock is arrayed 

by age cohorts and prosthesis type. The initial value for the stock is 0 with the assumption that 

there are no amputees in the midst of the fitting process at the very start of the simulation. 
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    INFLOWS: 

        Fit_First_Prosthesis[Age_Cohort, Prosthesis_Type] = 

Eligible_for_Prosthesis*Prosthetic_Accessibility[Prosthesis_Type]/Initial_Measurement_Duration[

Prosthesis_Type] 

            UNITS: People/month 

            DOCUMENT: This biflow represents the rate at which amputees get measured and fitted 

with an initial fit first device. It depletes the Eligible for Prosthesis stock and simultaneously 

accumulates the Initial Device stock. The rate is determined by the product of the total number of 

people who would like to be fitted with an initial device at any one point in time and the prosthetic 

accessibility fraction. This initial measurement rate is a first order material delay, where the the 

total number of people in the Eligible for Prosthesis stock is divided by the Initial Measurement 

Duration. 

    OUTFLOWS: 

        Maturation[Age_Cohort, Prosthesis_Type] = 

Initial_Device/Fit_First_Duration[Prosthesis_Type] 

            UNITS: People/month 

            DOCUMENT: This biflow represents the maturation rate of amputees limb, while they 

undergo rehabilitation with an initial fit first device. It depletes the Initial Device stock and 

simultaneously accumulates the Matured Limb stock. The rate is determined by a first order 

material delay, where the the total number of people in the Initial Device stock is divided by the Fit 

First Duration. 

        ID_Dropout[Age_Cohort, Prosthesis_Type] = 

ID_Dropout_Fraction[Prosthesis_Type]*Initial_Device/Time_to_Dropout 

            UNITS: People/month 

            DOCUMENT: This biflow represents the rate at which amputees dropout from the Initial 

Device stage of the fitting process. It depletes the Initial Device stock and simultaneously 

accumulates the Limited Mobility stock. The rate is simply a fraction of the total number of people 

in the Initial Device stock over a certain decision time to dropout. 

Initial_FRD = 1 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the initial value for the effect of Fitting Rate on Dropout. 

Here, the initial effect is set at 1, so that the Dropout Fraction is initially set to its reference or 

normal value. 

Initial_FRR = 1 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the initial value for the effect of Fitting Rate on Readoption. 

Here, the initial effect is set at 1, so that the Readoption Fraction is initially set to its reference or 

normal value. 
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Initial_Full_Mobility[Age_Cohort] = Access_S3*Success_Fraction[Traditional] 

    UNITS: People 

    DOCUMENT: This converter calculates the initial population who are successfully fitted with a 

prosthesis, thus achieving full mobility. It is calculated as the product of the remaining population 

who have moved on the definitive device stage and the success fraction.  

Initial_Limited_Mobility[Age_Cohort] = Initial_Eligible_Population*(1-Initial_Accessibility) + 

Access_S3*(1-Success_Fraction[Traditional]) + Initial_LM1 + Initial_LM2 + Initial_LM3 

    UNITS: People 

    DOCUMENT: This converter calculates the initial population who are not fitted with a 

prosthesis, thus experiencing limited mobility. It is calculated the sum of the various initial flow of 

people who have dropped out in the various stages, the initial eligible population without access, as 

well as the initial unsuccessfully fitted amputees. 

Initial_LM1[Age_Cohort] = 

Initial_Population_with_Access*Ref_EP_Dropout_Fraction[Traditional] 

    UNITS: People 

    DOCUMENT: This converter calculates the initial flow of amputees who dropout from the 

Eligible for Prosthesis stage. It is simply the product of the initial population with access and the 

reference eligible for prosthesis dropout fraction.  

Initial_LM2[Age_Cohort] = Access_S1*Ref_ID_Dropout_Fraction[Traditional] 

    UNITS: People 

    DOCUMENT: This converter calculates the initial flow of amputees who dropout from the 

Initial Device stage. It is simply the product of the remaining population in initial device stage and 

the reference initial device dropout fraction.  

Initial_LM3[Age_Cohort] = Access_S2*Ref_ML_Dropout_Fraction[Traditional] 

    UNITS: People 

    DOCUMENT: This converter calculates the initial flow of amputees who dropout from the 

Matured Limb stage. It is simply the product of the remaining population in Matured Limb stage 

and the reference matured limb dropout fraction.  

Initial_Measurement_Duration[Prosthesis_Type] = 0.5 

    UNITS: month 

    DOCUMENT: This parameter represents the initial measurement duration for amputee. Based 

on the general timeline for prosthetic rehabilitation, amputees measure for a prosthesis after the 

incision fully heals about 8 weeks after surgery (Rheinstein et al., 2021). Expert opinion suggest 

that this measurement duration and initial device fitting is done in about 2 weeks or half a month 

(correspondence with ProsFit). 
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Initial_Population_with_Access[Age_Cohort] = Initial_Eligible_Population*Initial_Accessibility 

    UNITS: People 

    DOCUMENT: This converter calculates the initial amputee population who have had access to 

prosthetic care. It is simply the total initial eligible population multiplied by the accessibility 

fraction. 

Insurance_Coverage_Cycle = 36 

    UNITS: months 

    DOCUMENT: This parameter represents the average duration an amputee will take before 

deciding to restart the prosthesis fitting process. It is assumed that amputees would on average take 

3 years for that decision since it is inline with the insurance coverage cycle. In the United 

Kingdom, the national health insurance covers the cost of prosthesis once every three years. 

Limited_Mobility[Under_15, Digital](t) = Limited_Mobility[Under_15, Digital](t - dt) + 

(LM_Aging_In[Under_15, Digital] + EP_Dropout[Under_15, Digital] + ID_Dropout[Under_15, 

Digital] + Unsuccessful_Fitting[Under_15, Digital] + ML_Dropout[Under_15, Digital] + 

Failed_Readoption[Under_15, Digital] - LM_Deaths[Under_15, Digital] - 

LM_Aging_Out[Under_15, Digital] - Readoption[Under_15, Digital]) * dt 

    INIT Limited_Mobility[Under_15, Digital] = 0 

Limited_Mobility[Under_15, Traditional](t) = Limited_Mobility[Under_15, Traditional](t - dt) + 

(LM_Aging_In[Under_15, Traditional] + EP_Dropout[Under_15, Traditional] + 

ID_Dropout[Under_15, Traditional] + Unsuccessful_Fitting[Under_15, Traditional] + 

ML_Dropout[Under_15, Traditional] + Failed_Readoption[Under_15, Traditional] - 

LM_Deaths[Under_15, Traditional] - LM_Aging_Out[Under_15, Traditional] - 

Readoption[Under_15, Traditional]) * dt 

    INIT Limited_Mobility[Under_15, Traditional] = Initial_Limited_Mobility[Under_15] 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who have dropped out of the prosthetic 

care continuum and thus experience limited mobility due to a lack of prosthesis. It is accumulated 

by the inflows Dropout Rate (various stages), Unsuccessful Fitting and Failed Readoption, and 

further depleted by the outflows LM Deaths and Prosthesis Re-adoption. The stock is arrayed by 

age cohorts and prosthesis type. The initial value for digital prosthesis is 0 simply because digital 

solutions started after 2010. The initial value for the traditional prosthesis is the calculated Initial 

Limited Mobility. 

Limited_Mobility["15_to_44", Digital](t) = Limited_Mobility["15_to_44", Digital](t - dt) + 

(LM_Aging_In["15_to_44", Digital] + EP_Dropout["15_to_44", Digital] + 

ID_Dropout["15_to_44", Digital] + Unsuccessful_Fitting["15_to_44", Digital] + 

ML_Dropout["15_to_44", Digital] + Failed_Readoption["15_to_44", Digital] - 

LM_Deaths["15_to_44", Digital] - LM_Aging_Out["15_to_44", Digital] - Readoption["15_to_44", 

Digital]) * dt 

    INIT Limited_Mobility["15_to_44", Digital] = 0 



 

 

 126 

Limited_Mobility["15_to_44", Traditional](t) = Limited_Mobility["15_to_44", Traditional](t - dt) 

+ (LM_Aging_In["15_to_44", Traditional] + EP_Dropout["15_to_44", Traditional] + 

ID_Dropout["15_to_44", Traditional] + Unsuccessful_Fitting["15_to_44", Traditional] + 

ML_Dropout["15_to_44", Traditional] + Failed_Readoption["15_to_44", Traditional] - 

LM_Deaths["15_to_44", Traditional] - LM_Aging_Out["15_to_44", Traditional] - 

Readoption["15_to_44", Traditional]) * dt 

    INIT Limited_Mobility["15_to_44", Traditional] = Initial_Limited_Mobility["15_to_44"] 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who have dropped out of the prosthetic 

care continuum and thus experience limited mobility due to a lack of prosthesis. It is accumulated 

by the inflows Dropout Rate (various stages), Unsuccessful Fitting and Failed Readoption, and 

further depleted by the outflows LM Deaths and Prosthesis Re-adoption. The stock is arrayed by 

age cohorts and prosthesis type. The initial value for digital prosthesis is 0 simply because digital 

solutions started after 2010. The initial value for the traditional prosthesis is the calculated Initial 

Limited Mobility. 

Limited_Mobility["45_to_59", Digital](t) = Limited_Mobility["45_to_59", Digital](t - dt) + 

(LM_Aging_In["45_to_59", Digital] + EP_Dropout["45_to_59", Digital] + 

ID_Dropout["45_to_59", Digital] + Unsuccessful_Fitting["45_to_59", Digital] + 

ML_Dropout["45_to_59", Digital] + Failed_Readoption["45_to_59", Digital] - 

LM_Deaths["45_to_59", Digital] - LM_Aging_Out["45_to_59", Digital] - Readoption["45_to_59", 

Digital]) * dt 

    INIT Limited_Mobility["45_to_59", Digital] = 0 

Limited_Mobility["45_to_59", Traditional](t) = Limited_Mobility["45_to_59", Traditional](t - dt) 

+ (LM_Aging_In["45_to_59", Traditional] + EP_Dropout["45_to_59", Traditional] + 

ID_Dropout["45_to_59", Traditional] + Unsuccessful_Fitting["45_to_59", Traditional] + 

ML_Dropout["45_to_59", Traditional] + Failed_Readoption["45_to_59", Traditional] - 

LM_Deaths["45_to_59", Traditional] - LM_Aging_Out["45_to_59", Traditional] - 

Readoption["45_to_59", Traditional]) * dt 

    INIT Limited_Mobility["45_to_59", Traditional] = Initial_Limited_Mobility["45_to_59"] 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who have dropped out of the prosthetic 

care continuum and thus experience limited mobility due to a lack of prosthesis. It is accumulated 

by the inflows Dropout Rate (various stages), Unsuccessful Fitting and Failed Readoption, and 

further depleted by the outflows LM Deaths and Prosthesis Re-adoption. The stock is arrayed by 

age cohorts and prosthesis type. The initial value for digital prosthesis is 0 simply because digital 

solutions started after 2010. The initial value for the traditional prosthesis is the calculated Initial 

Limited Mobility. 

Limited_Mobility["60_to_79", Digital](t) = Limited_Mobility["60_to_79", Digital](t - dt) + 

(LM_Aging_In["60_to_79", Digital] + EP_Dropout["60_to_79", Digital] + 

ID_Dropout["60_to_79", Digital] + Unsuccessful_Fitting["60_to_79", Digital] + 

ML_Dropout["60_to_79", Digital] + Failed_Readoption["60_to_79", Digital] - 
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LM_Deaths["60_to_79", Digital] - LM_Aging_Out["60_to_79", Digital] - Readoption["60_to_79", 

Digital]) * dt 

    INIT Limited_Mobility["60_to_79", Digital] = 0 

Limited_Mobility["60_to_79", Traditional](t) = Limited_Mobility["60_to_79", Traditional](t - dt) 

+ (LM_Aging_In["60_to_79", Traditional] + EP_Dropout["60_to_79", Traditional] + 

ID_Dropout["60_to_79", Traditional] + Unsuccessful_Fitting["60_to_79", Traditional] + 

ML_Dropout["60_to_79", Traditional] + Failed_Readoption["60_to_79", Traditional] - 

LM_Deaths["60_to_79", Traditional] - LM_Aging_Out["60_to_79", Traditional] - 

Readoption["60_to_79", Traditional]) * dt 

    INIT Limited_Mobility["60_to_79", Traditional] = Initial_Limited_Mobility["60_to_79"] 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who have dropped out of the prosthetic 

care continuum and thus experience limited mobility due to a lack of prosthesis. It is accumulated 

by the inflows Dropout Rate (various stages), Unsuccessful Fitting and Failed Readoption, and 

further depleted by the outflows LM Deaths and Prosthesis Re-adoption. The stock is arrayed by 

age cohorts and prosthesis type. The initial value for digital prosthesis is 0 simply because digital 

solutions started after 2010. The initial value for the traditional prosthesis is the calculated Initial 

Limited Mobility. 

Limited_Mobility[Above_80, Digital](t) = Limited_Mobility[Above_80, Digital](t - dt) + 

(LM_Aging_In[Above_80, Digital] + EP_Dropout[Above_80, Digital] + ID_Dropout[Above_80, 

Digital] + Unsuccessful_Fitting[Above_80, Digital] + ML_Dropout[Above_80, Digital] + 

Failed_Readoption[Above_80, Digital] - LM_Deaths[Above_80, Digital] - 

LM_Aging_Out[Above_80, Digital] - Readoption[Above_80, Digital]) * dt 

    INIT Limited_Mobility[Above_80, Digital] = 0 

Limited_Mobility[Above_80, Traditional](t) = Limited_Mobility[Above_80, Traditional](t - dt) + 

(LM_Aging_In[Above_80, Traditional] + EP_Dropout[Above_80, Traditional] + 

ID_Dropout[Above_80, Traditional] + Unsuccessful_Fitting[Above_80, Traditional] + 

ML_Dropout[Above_80, Traditional] + Failed_Readoption[Above_80, Traditional] - 

LM_Deaths[Above_80, Traditional] - LM_Aging_Out[Above_80, Traditional] - 

Readoption[Above_80, Traditional]) * dt 

    INIT Limited_Mobility[Above_80, Traditional] = Initial_Limited_Mobility[Above_80] 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees who have dropped out of the prosthetic 

care continuum and thus experience limited mobility due to a lack of prosthesis. It is accumulated 

by the inflows Dropout Rate (various stages), Unsuccessful Fitting and Failed Readoption, and 

further depleted by the outflows LM Deaths and Prosthesis Re-adoption. The stock is arrayed by 

age cohorts and prosthesis type. The initial value for digital prosthesis is 0 simply because digital 

solutions started after 2010. The initial value for the traditional prosthesis is the calculated Initial 

Limited Mobility. 
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Limited_Mobility_by_Type[Digital] = SUM(Limited_Mobility[*,Digital])+ 

SUM(Awaiting_Replacement[*, Digital]) 

    UNITS: People 

    DOCUMENT: This converter calculates the subtotals of amputees with limited mobility by type 

of prosthesis. 

Limited_Mobility_by_Type[Traditional] = SUM(Limited_Mobility[*,Traditional]) + 

SUM(Awaiting_Replacement[*, Traditional]) 

    UNITS: People 

    DOCUMENT: This converter calculates the subtotals of amputees with limited mobility by type 

of prosthesis. 

Matured_Limb[Age_Cohort, Prosthesis_Type](t) = Matured_Limb[Age_Cohort, 

Prosthesis_Type](t - dt) + (Maturation[Age_Cohort, Prosthesis_Type] + Reentry[Age_Cohort, 

Prosthesis_Type] + Prosthesis_Replacement[Age_Cohort, Prosthesis_Type] - 

Device_Delivery[Age_Cohort, Prosthesis_Type] - ML_Dropout[Age_Cohort, Prosthesis_Type]) * 

dt 

    INIT Matured_Limb[Age_Cohort, Prosthesis_Type] = 0 

    UNITS: People 

    DOCUMENT: This stock represents the total amputees whose limb stump has matured and 

ready for a definitive device. It is accumulated by the inflows Maturation and Reentry (of amputees 

who have matured limbs and have decided to re-adopt a prosthesis) and further depleted by the 

outflows Device Delivery and ML Dropout. The stock is arrayed by age cohorts and prosthesis 

type. The initial value for the stock is 0 with the assumption that there are no amputees in the midst 

of the fitting process at the very start of the simulation. 

    INFLOWS: 

        Maturation[Age_Cohort, Prosthesis_Type] = 

Initial_Device/Fit_First_Duration[Prosthesis_Type] 

            UNITS: People/month 

            DOCUMENT: This biflow represents the maturation rate of amputees limb, while they 

undergo rehabilitation with an initial fit first device. It depletes the Initial Device stock and 

simultaneously accumulates the Matured Limb stock. The rate is determined by a first order 

material delay, where the the total number of people in the Initial Device stock is divided by the Fit 

First Duration. 
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        Reentry[Age_Cohort, Prosthesis_Type] = 

Subtotal_Readoptees[Age_Cohort]*Market_Subsystem.Market_Share[Prosthesis_Type]*Prosthetic

_Accessibility[Prosthesis_Type] 

            UNITS: People/month 

            DOCUMENT: This inflow represents the rate at which matured amputees without a 

prosthesis have successfully re-entered the prosthesis fitting process. The rate is determined by the 

subtotal readoptees who are redistributed to the respective prosthesis array dimension based on the 

market share of each prosthesis type. The market share is taken as the probability that an amputee 

will be referred to either a traditional or digital prosthetist. Moreover, the Prosthetic Accessibility 

limits this rate by taking a fraction of people who are able to successfully gain access to a 

prosthetist.  

        Prosthesis_Replacement[Age_Cohort, Prosthesis_Type] = 

Prosthetic_Accessibility[Prosthesis_Type]*Awaiting_Replacement/Desired_Appointment_Time 

            UNITS: People/month 

            DOCUMENT: This biflow represents the Prosthesis Replacement rate; it depletes the 

Awaiting Replacement stock and simultaneously accumulates the Matured Limb stock. The rate is 

determined by the fraction of people who have access to a prosthetist multiplied by the total 

number of people requiring a replacement at any one point in time. 

    OUTFLOWS: 

        Device_Delivery[Age_Cohort, Prosthesis_Type] = 

Matured_Limb/Delivery_Duration[Prosthesis_Type] 

            UNITS: People/month 

            DOCUMENT: This biflow represents the rate at which amputees, whose limbs have 

matured, receive a definitive prosthesis device. It depletes the Matured Limb stock and 

simultaneously accumulates the Definitive Device stock. The rate is determined by a first order 

material delay, where the the total number of people in the Matured Limb stock is divided by the 

Delivery Duration. 

        ML_Dropout[Age_Cohort, Prosthesis_Type] = 

ML_Dropout_Fraction[Prosthesis_Type]*Matured_Limb/Time_to_Dropout 

            UNITS: People/month 

            DOCUMENT: This biflow represents the rate at which amputees dropout from the Matured 

Limb stage of the fitting process. It depletes the Matured Limb stock and simultaneously 

accumulates the Limited Mobility stock. The rate is simply a fraction of the total number of people 

in the Matured Limb stock over a certain decision time to dropout. 

Max_FRR = 2 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the maximum effect at 2. In this case, the maximum effect 

was set at 2 in order to limit the readoption fraction from exceeding 1.  
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ML_Dropout_Fraction[Digital] = 

Ref_ML_Dropout_Fraction[Digital]*Effect_of_Fitting_Rate_on_Dropout 

ML_Dropout_Fraction[Traditional] = Ref_ML_Dropout_Fraction[Traditional] 

    UNITS: dmnl 

    DOCUMENT: This variable represents the fraction of people that on average decides to dropout 

from the Matured Limb stage of the prosthetic fitting process. It is determined by the reference 

fraction adjusted by the effect from Perceived Relative Fitting Rate. 

Mobility_Proportion[Prosthesis_Type] = 

Full_Mobility_by_Type//(Full_Mobility_by_Type+Limited_Mobility_by_Type) 

    UNITS: dmnl 

    DOCUMENT: This converter calculates the proportion of amputees who are fully mobile (by 

prosthesis type) as a fraction of the total amputee population who are deemed eligible for 

prosthesis. Note that it excludes those medically ineligible for prosthesis from the total amputee 

population. 

Perceived_Relative_Fitting_Rate = SMTH3(Relative_Successful_Fitting_Rate_of_Digital, 

Time_to_Perceive_Fitting_Rate, 0) {DELAY CONVERTER} 

    UNITS: dmnl 

    DOCUMENT: This variable represented the general perception of the information about the 

relative successful fittings of the digital and traditional prosthesis type. It is modelled with a third-

order information delay with the assumption that it goes through several delay processes, which 

includes data collection, reporting, and word of mouth dissemination. 

Prosthesis_Lifespan = 36 

    UNITS: months 

    DOCUMENT: This parameter represents the average lifespan of a prosthesis before it degrades 

and requires a complete replacement. On average, each device has a 3-year lifespan (C. Hutchison, 

2021; Rheinstein et al., 2021). 

Prosthesis_Reentry[Digital] = 

SUM(Subtotal_Readoptees)*Market_Subsystem.Market_Share[Digital] 

Prosthesis_Reentry[Traditional] = 

SUM(Subtotal_Readoptees)*Market_Subsystem.Market_Share[Traditional] 

    UNITS: People/month 

    DOCUMENT: This variable represents the desired rate at which amputees would like to renter 

the prosthetic care continuum. Here, the aggregated subtotal readoptees are redistributed into the 

prosthesis type array dimension based on the respective market share. The market share is taken as 

the probability that an amputee will choose either a traditional or digital prosthetist. 
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Prosthesis_To_Fit[Digital] = 

SUM(Eligible_for_Prosthesis[*,Digital])/Desired_Appointment_Time 

Prosthesis_To_Fit[Traditional] = 

SUM(Eligible_for_Prosthesis[*,Traditional])/Desired_Appointment_Time 

    UNITS: People/month 

    DOCUMENT: This variable represents the desired rate at which new prostheses are to be fitted. 

In other words, the number of people per month who would like to start the prosthesis fitting 

process. This rate is a first order adjustment, where the the total number of people Eligible for 

Prosthesis is divided by the Desired Appointment Time for meeting a prosthetist. 

Prosthesis_To_Replace[Digital] = 

SUM(Awaiting_Replacement[*,Digital])/Desired_Appointment_Time 

Prosthesis_To_Replace[Traditional] = 

SUM(Awaiting_Replacement[*,Traditional])/Desired_Appointment_Time 

    UNITS: People/month 

    DOCUMENT: This variable represents the desired rate at which prostheses are to be replaced. In 

other words, the number of people per month who would like a replacement. This rate is a first 

order adjustment, where the the total number of people Awaiting Replacement is divided by the 

Desired Appointment Time for meeting a prosthetist. 

Prosthetic_Accessibility[Prosthesis_Type] = MIN(1, 

Market_Subsystem.Fitting_Capacity//Fitting_Demand) 

    UNITS: dmnl 

    DOCUMENT: This variable represents the prosthetic accessibility for amputees desiring to be 

fitted with a new prosthesis. It refers to the ability of the existing fitting capacity to meet the 

demand. Hence, when fitting capacity is equal to fitting demand, the accessibility is 1, meaning 

100% of all desired fittings can be accommodated. When the fraction is less than 1, it means that 

existing capacity can only meet a fraction of the demand. The equation includes a MIN function to 

limit this value from going above 1. So long as there is more capacity than demand, then 

prosthetists will still be able to meet 100% of all demand. Accessibility is conceptualised as a 

function of demand and capacity but does not take into account proximity. It is assumed that in the 

UK, all amputees have access to prosthetic healthcare in terms of physical location. 

Readoption_Fraction[Prosthesis_Type] = 

Effect_of_Fitting_Rate_on_Readoption*Ref_Readoption_Fraction 

    UNITS: dmnl 

    DOCUMENT: This variable represents the fraction of people, who have previously abandoned a 

prosthesis, that on average decides to readopt it. It is determined by the reference fraction adjusted 

by the effect from Perceived Relative Fitting Rate.  
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Ref_EP_Dropout_Fraction[Prosthesis_Type] = 0.1 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the typical or normal fraction of people that on average 

decides to dropout from the prosthetic fitting process from the get-go, even before being fitted with 

an initial device. The reference value was estimated by prosthetists in the field based on their 

experience (correspondence with ProsFit Technologies). 

Ref_ID_Dropout_Fraction[Prosthesis_Type] = 0.1 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the typical or normal fraction of people that on average 

decides to dropout from the Initial Device stage of the prosthetic fitting process. The reference 

value was estimated by prosthetists in the field based on their experience (correspondence with 

ProsFit Technologies). 

Ref_ML_Dropout_Fraction[Prosthesis_Type] = 0.1 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the typical or normal fraction of people that on average 

decides to dropout from the Matured Limb stage of the prosthetic fitting process. The reference 

value was estimated by prosthetists in the field based on their experience (correspondence with 

ProsFit Technologies). 

Ref_Readoption_Fraction[Prosthesis_Type] = 0.2 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the typical or normal fraction of people, who have 

previously abandoned a prosthesis, that on average decides to readopt it. The reference value was 

estimated by prosthetists in the field based on their experience (correspondence with ProsFit 

Technologies). 

Relative_Mortality_Risk_Adjustment = 0.5 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the adjustment to Amputee Relative Mortality Risk as 

a result of prosthetic fitting. It has been acknowledged that prosthetic fitting is a statistically 

predictor of a lower mortality risk for amputees (Meshkin et al., 2021; Singh & Prasad, 2016). 

Based on the odds ratio found by Singh & Prasad (2016), amputees who have died are 2.6 times 

more likely to have not been fitted with a prosthesis than those who have. Although odds ratio and 

relative risks are not directly interchangeable, here, we make the extrapolation that Amputees who 

have been fitted with a prosthesis is half as likely to die than those without. 
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Relative_Successful_Fitting_Rate_of_Digital = 

SUM(Successful_Fitting[*,Digital])//SUM(Successful_Fitting[*,Traditional]) 

    UNITS: dmnl 

    DOCUMENT: This variable represents relative successful fitting rate of digital prosthesis as 

compared to the traditional prosthesis. The variable sums all the Successful Fitting rate by 

prosthesis type, and then takes the ratio of digital prosthesis to traditional. When digital successful 

fitting is equal to traditional successful fitting, the ratio is 1. When the ratio is less than 1, it means 

that there is more traditional fitting success as compared to digital. When the ratio is more than 1, it 

means that there is more digital fitting success than traditional. 

Steepness_FRD = 1.5 

    UNITS: dmnl 

    DOCUMENT: This parameter controls the steepness of the curve or the rate of increase or 

decline of the Effect of Fitting Rate on Dropout variable. The steepness is assumed to be 1.5, but 

can be calibrated to data if available. 

Steepness_FRR = 6 

    UNITS: dmnl 

    DOCUMENT: This parameter controls the steepness of the curve or the rate of increase or 

decline of the Effect of Fitting Rate on Readoption variable. The steepness is assumed to be 6, but 

can be calibrated to data if available. 

Subtotal_Dropout_Rate[Prosthesis_Type] = SUM(EP_Dropout[*, Prosthesis_Type]) + 

SUM(ID_Dropout[*, Prosthesis_Type]) + SUM(ML_Dropout[*, Prosthesis_Type]) {SUMMING 

CONVERTER} 

    UNITS: People/month 

    DOCUMENT: This converter calculates the subtotal number of amputees who drop out from the 

fitting process at varying stages. 

"Subtotal_Fitting_(Re)Entries"[Prosthesis_Type] = Subtotal_New_Fitting + Subtotal_Replacement 

+ "Subtotal_Re-entry" 

    UNITS: People/month 

    DOCUMENT: This converter calculates the subtotal number of eligible amputees who 

successfully (re)enter the fitting process either for a new prosthesis, replacement or readoption. 

Subtotal_New_Fitting[Prosthesis_Type] = SUM(Fit_First_Prosthesis[*,Prosthesis_Type]) 

    UNITS: People/month 

    DOCUMENT: This converter calculates the subtotal number of eligible amputees who 

successfully enter into the first stage of the fitting process. 
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"Subtotal_Re-entry"[Prosthesis_Type] = SUM(Reentry[*,Prosthesis_Type]) 

    UNITS: People/month 

    DOCUMENT: This converter calculates the subtotal number of  amputees wanting to re-adopt a 

prosthesis who successfully re-enter the fitting process. 

Subtotal_Readoptees[Age_Cohort] = SUM(Readoption[Age_Cohort,*]) 

    UNITS: People/month 

    DOCUMENT: This variable represents the desired rate at which matured amputees without a 

prosthesis would like to readopt a prosthesis. In other words, the number of people per month who 

would like to re-start the prosthesis fitting process. This rate is simply the sum of the Readoption 

rate by age cohorts. Amputees are re-aggregated (no longer differentiated by prosthesis type) since 

they have the choice to switch between prosthesis types.  

Subtotal_Readoption_Rate[Prosthesis_Type] = SUM(Readoption[*, Prosthesis_Type]) 

{SUMMING CONVERTER} 

    UNITS: People/month 

    DOCUMENT: This converter calculates the subtotal number of amputees who wish to re-adopt a 

prosthesis and re-join the fitting process. 

Subtotal_Replacement[Prosthesis_Type] = SUM(Prosthesis_Replacement[*,Prosthesis_Type]) 

    UNITS: People/month 

    DOCUMENT: This converter calculates the subtotal number of amputees who successfully enter 

the fitting process for replacing their degraded prosthesis. 

Subtotal_Successful_Fitting_Rate[Prosthesis_Type] = 

SUM(Successful_Fitting[*,Prosthesis_Type]) 

    UNITS: People/month 

    DOCUMENT: This converter sums the Successful Fitting rate across the various age groups for 

each prosthetic types. 

Success_Fraction[Digital] = 0.9 

Success_Fraction[Traditional] = 0.5 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the fraction of people who have been fitted with a 

definitive device that would successfully adjust to it. The probability of success is related to the 

level of comfort or pain experienced by the amputee. According to expert opinion, digitally fitted 

prosthesis have a much higher success rate at 90% whereas traditional fitting yields only about 50% 

success (correspondence with ProsFit). The figure for traditional success rate is corroborated with 

literature, where two studies have observed a 43% (Kralovec et al., 2015) and 41.18% (Fajardo-

Martos et al., 2018) successful fitting amongst their respective samples.  
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Time_to_Dropout = 1 

    UNITS: month 

    DOCUMENT: This parameter represents the time taken for amputees to decide to drop out from 

the prosthetic fitting process. It is assumed that amputees would take 1 month to make the decision 

and drop out. 

Time_to_Perceive_Fitting_Rate = 3*12 

    UNITS: months 

    DOCUMENT: This parameter represents the time taken for the wider public to perceive the 

information about the relative successful fittings of the digital and traditional prosthesis type. This 

is assumed to be 3 years with the simple rationale that it often takes three years to form a pattern.  

Total_Capacity = SUM(Market_Subsystem.Fitting_Capacity) 

    UNITS: People/month 

    DOCUMENT: This converter calculates the total fitting capacity at any one point in time. It is 

simply the sum of the traditional fitting capacity and the digital fitting capacity. 

Total_Demand = SUM(Fitting_Demand) 

    UNITS: People/month 

    DOCUMENT: This converter calculates the total fitting demand at any one point in time. It is 

simply the sum of the traditional fitting demand and the digital fitting demand. 

Total_Eligible_Amputee_Population = Total_Limited_Mobility+Total_Full_Mobility 

    UNITS: People 

    DOCUMENT: This converter calculates the total number of amputee population who are 

deemed eligible for a prosthesis. It is simply the sum of the total limited mobility population and 

the total full mobility population. 

Total_Full_Mobility = SUM(Full_Mobility_by_Type) 

    UNITS: People 

    DOCUMENT: This converter sums the total amputees with full mobility, including both 

prosthesis types. 

Total_Limited_Mobility = SUM(Limited_Mobility_by_Type) 

    UNITS: People 

    DOCUMENT: This converter sums the total amputees with limited mobility, including both 

prosthesis types. 
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Total_Mobility_Proportion = Total_Full_Mobility//Total_Eligible_Amputee_Population 

    UNITS: dmnl 

    DOCUMENT: This converter calculates the proportion of amputees who are fully mobile (both 

prosthesis type) as a fraction of the total amputee population who are deemed eligible for 

prosthesis. Note that it excludes those medically ineligible for prosthesis from the total amputee 

population. 

Total_Readoptees = SUM(Subtotal_Readoption_Rate) 

    UNITS: People/month 

    DOCUMENT: This converter calculates the subtotal number of amputees who wish to re-adopt a 

prosthesis and re-join the fitting process. 

 

Table C.0.12 Documentation for Health Economics Sector 

Health Economics Sector 

Amputee_Proportion = Total_Amputees//Total_Population 

    UNITS: dmnl 

    DOCUMENT: This variable dynamically calculates the proportion of amputees in the United 

Kingdom population. This is simply the total amputee population as a fraction of the total 

population. 

Family_Costs[Not_Fitted] = 19845/12 

Family_Costs[Traditional_Fit] = 13230/12 

Family_Costs[Digital_Fit] = 8820/12 

    UNITS: USD/person/month 

    DOCUMENT: This parameter represents the social cost borne by the families of amputees in the 

United Kingdom. According to ProsFit's health economic model data set, digitally fitted amputees 

incur the least social cost to their families (C. Hutchison, 2021). The assumption here is that 

digitally fitted amputees end up with better health and mobility outcomes, requiring less care work 

from the families and therefore less opportunity cost. The yearly cost is divided by 12 to obtain the 

monthly cost. 

GDP_per_Capita = 44100/12 

    UNITS: USD/person/month 

    DOCUMENT: This parameter represents the gross domestic product per capita of the United 

Kingdom. In ProsFit Health Economics Model, the GDP per capita is used as a proxy for the 

economic contribution of a working person (C. Hutchison, 2021). The model also standardises all 

monetary currencies for all countries to the US Dollar. The GDP per capita per annum was divided 

by 12 for a monthly rate. 
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Healthcare_Costs[Not_Fitted] = 7277/12 

Healthcare_Costs[Traditional_Fit] = 6064/12 

Healthcare_Costs[Digital_Fit] = 5336/12 

    UNITS: USD/person/month 

    DOCUMENT: This parameter represents the healthcare cost associated with an amputee in the 

United Kingdom. According to ProsFit's health economic model data set, each type of amputee has 

differing healthcare costs, with digitally fitted amputees incurring the least healthcare costs (C. 

Hutchison, 2021). The assumption here is that digitally fitted amputees end up with better health 

outcomes. The yearly cost is divided by 12 to obtain the monthly cost. 

Maintenance_Multiplier = 1.2 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the multiplier to the unit cost for taking into account 

the cost associated with maintenance for each prosthesis unit. The data was obtained from ProsFit's 

health economic model data set (C. Hutchison, 2021). 

Overhead_Multiplier = 1/0.75 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the multiplier to the unit cost for taking into account 

the overhead cost associated with manufacturing each prosthesis unit. The data was estimated from 

ProsFit's health economic model data set, where direct unit cost account for about 75% of the total 

cost (C. Hutchison, 2021). 

Proportion_of_FM_Employed = 0.8 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the proportion of amputees successfully fitted with a 

prosthesis who are actually employed. This number is estimated to be around 80% in the ProsFit's 

health economics model (C. Hutchison, 2021). 

Social_Payments = 1191/12 

    UNITS: USD/person/month 

    DOCUMENT: This parameter represents the cost of social payment per person per month in the 

United Kingdom, which paid to all amputees regardless of type. The annual social payment sum 

was obtained from ProsFit's health economic model data set, and divided by 12 for the monthly 

payment (C. Hutchison, 2021). 
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Subtotal_Prosthesis_Cost[Prosthesis_Type] = 

SUM(Successful_Fitting)*Unit_Cost*Overhead_Multiplier*Maintenance_Multiplier + 

SUM(Unsuccessful_Fitting)*Unit_Cost*Overhead_Multiplier 

    UNITS: USD/month 

    DOCUMENT: This variable dynamically calculates the subtotal prosthesis cost incurred for the 

total devices delivered. For successful fittings, the total devices is multiplied by the unit cost, 

overhead multiplier and maintenance multiplier. Whereas for unsuccessful fittings, there are no 

maintenance cost associated as the device is assumed to be abandoned soon after. The sum of the 

two products gives us the subtotal costs of each prosthesis type. 

Total_Amputees = Total_Digital_Fit+Total_Traditional_Fit+Total_Not_Fitted 

    UNITS: People 

    DOCUMENT: This converter sums the total number of amputees in the United Kingdom at any 

point in time. 

Total_Amputees_in_Primary_Care = SUM("Post-Op_Hospital_Care"[*]) + SUM("Pre-

Op_Hospital_Care"[*]) + SUM("Recovery_(First_30_Days)"[*]) {SUMMING CONVERTER} 

    UNITS: People 

    DOCUMENT: This summing converter totals the number of amputees in primary care, meaning 

that they are either in pre-op, post-op or recovery, prior to being referred to a prosthetist. 

Total_Amputees_in_Prosthetic_Care = SUM(Definitive_Device[*, *]) + 

SUM(Eligible_for_Prosthesis[*, *]) + SUM(Initial_Device[*, *]) + SUM(Matured_Limb[*, *]) 

{SUMMING CONVERTER} 

    UNITS: People 

    DOCUMENT: This summing converter totals the number of amputees in prosthetic care, 

meaning that they are either in one of the prosthesis fitting stages. 

Total_Amputees_outside_of_Care = SUM(Awaiting_Replacement[*, *]) + 

SUM(Ineligible_for_Prosthesis[*]) + SUM(Limited_Mobility[*,*]) {SUMMING CONVERTER} 

    UNITS: People 

    DOCUMENT: This summing converter totals the number of amputees who are outside of 

primary or prosthetic care, and are not fitted with a prosthesis. 

Total_Digital_Fit = SUM(Full_Mobility[*, Digital]) {SUMMING CONVERTER} 

    UNITS: People 

    DOCUMENT: This summing converter totals the number of amputees who are successfully 

fitted with a digital 3D-printed prosthesis. 
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Total_Economic_Contribution = GDP_per_Capita*Total_Employed_Amputees 

    UNITS: USD/month 

    DOCUMENT: This variable dynamically calculates the total economic contribution of amputees, 

particularly from fully mobile amputees who are participating in the workforce, It is calculated by 

multiplying the total employed amputees with the GDP per capita. 

Total_Economic_Cost = 

Total_Unemployment_Cost+Total_Healthcare_Cost+Total_Family_Cost+Total_Social_Payment_

Costs+Total_Prosthesis_Cost 

    UNITS: USD/month 

    DOCUMENT: This variable dynamically calculates the total economic cost incurred as a result 

of caring for the amputee population in the United Kingdom. It is sum of the various costs: 

unemployment, healthcare, family, social payout, prosthesis costs. 

Total_Employed_Amputees = Proportion_of_FM_Employed*Total_Working_Age_FM 

    UNITS: People 

    DOCUMENT: This variable dynamically calculates the total number of fully mobile amputees 

who are employed. It simply multiplies the total working age population with the proportion who 

are employed. 

Total_Family_Cost = Family_Costs[Not_Fitted]*Total_Not_Fitted+ 

Family_Costs[Traditional_Fit]*Total_Traditional_Fit + 

Family_Costs[Digital_Fit]*Total_Digital_Fit 

    UNITS: USD/month 

    DOCUMENT: This variable dynamically calculates the total social costs born by families of 

amputees. This is simply the sum of the various product of the amputee population by type and the 

respective family cost per person. 

Total_Healthcare_Cost = Healthcare_Costs[Not_Fitted]*Total_Not_Fitted+ 

Healthcare_Costs[Traditional_Fit]*Total_Traditional_Fit + 

Healthcare_Costs[Digital_Fit]*Total_Digital_Fit 

    UNITS: USD/month 

    DOCUMENT: This variable dynamically calculates the total healthcare costs of amputees. This 

is simply the sum of the various product of the amputee population by type and the respective 

healthcare cost per person. 
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Total_Not_Fitted = 

Total_Amputees_outside_of_Care+Total_Amputees_in_Primary_Care+Total_Amputees_in_Prosth

etic_Care 

    UNITS: People 

    DOCUMENT: This converter sums the total amputees who are either outside of care, in primary 

care or in prosthetic care. They represent the total amputees who are not fitted with a prosthesis 

(yet). 

Total_Population = SUM("Non-PAD_Population"[*]) + SUM("Post-Op_Hospital_Care"[*]) + 

SUM("Pre-Op_Hospital_Care"[*]) + SUM("Recovery_(First_30_Days)"[*]) + 

SUM(Awaiting_Replacement[*, *]) + SUM(Definitive_Device[*, *]) + 

SUM(Eligible_for_Prosthesis[*, *]) + SUM(Full_Mobility[*, *]) + 

SUM(Ineligible_for_Prosthesis[*]) + SUM(Initial_Device[*, *]) + SUM(Limited_Mobility[*, *]) + 

SUM(Matured_Limb[*, *]) + SUM(PAD_Population[*]) {SUMMING CONVERTER} 

    UNITS: people 

    DOCUMENT: This summing converter totals the number of people in simulated the United 

Kingdom population.  

Total_Prosthesis_Cost = SUM(Subtotal_Prosthesis_Cost) 

    UNITS: USD/month 

    DOCUMENT: This converter sums the total cost of providing a prosthesis, including both 

traditional and digital types. 

Total_Prosthesis_Delivered[Prosthesis_Type] = 

SUM(Successful_Fitting)+SUM(Unsuccessful_Fitting) 

    UNITS: People/month 

    DOCUMENT: This variable dynamically calculates the total prosthesis device delivered 

regardless whether it was a successful fit or not. It is arrayed by prosthesis type. 

Total_Social_Payment_Costs = Total_Amputees*Social_Payments 

    UNITS: USD/month 

    DOCUMENT: This variable dynamically calculates the total social payment costs paid out to 

amputees. This is simply the product of social payment per person and the total number of 

amputees. 

Total_Traditional_Fit = SUM(Full_Mobility[*, Traditional]) {SUMMING CONVERTER} 

    UNITS: People 

    DOCUMENT: This summing converter totals the number of amputees who are successfully 

fitted with a traditional plaster-cast prosthesis. 
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Total_Unemployed_Amputees = Total_Working_Age_without_Mobility+ (1-

Proportion_of_FM_Employed)*Total_Working_Age_FM 

    UNITS: People 

    DOCUMENT: This variable calculates the total number of amputees who are unemployed at any 

one point in time. It is the sum of the total working age amputees without mobility and the 

proportion of fully mobile amputees who are not employed. 

Total_Unemployment_Cost = Total_Unemployed_Amputees*Unemployment_Payment 

    UNITS: USD/month 

    DOCUMENT: This variable dynamically calculates the total economic cost of making 

unemployment payments to amputees who are not employed. This is simply the product of the total 

unemployed amputees and the cost of unemployment payment per person. 

Total_Working_Age_FM = SUM(Full_Mobility["15_to_44",*]) + 

SUM(Full_Mobility["45_to_59",*]) + SUM(Full_Mobility["60_to_79", *]) {SUMMING 

CONVERTER} 

    UNITS: People 

    DOCUMENT: This summing converter totals the number of fully mobile amputees who are 

capable to work. Fully mobile, here, means that they are successfully fitted with a prosthesis and is 

integrated back into society.   

Total_Working_Age_without_Mobility = SUM(Awaiting_Replacement["15_to_44", *]) + 

SUM(Awaiting_Replacement["45_to_59", *]) + SUM(Awaiting_Replacement["60_to_79", *]) + 

SUM(Limited_Mobility["15_to_44",*]) + SUM(Limited_Mobility["45_to_59",*]) + 

SUM(Limited_Mobility["60_to_79",*]) + Ineligible_for_Prosthesis["15_to_44"] + 

Ineligible_for_Prosthesis["45_to_59"] + Ineligible_for_Prosthesis["60_to_79"] {SUMMING 

CONVERTER} 

    UNITS: People 

    DOCUMENT: This summing converter totals the number of amputees who are of working age, 

but do not have full mobility. This includes people who are ineligible for prosthesis, those who have 

dropped out of the prosthetic care continuum, and those who are awaiting replacement of their 

prosthesis after degradation. 

Unemployment_Payment = 2381/12 

    UNITS: USD/person/month 

    DOCUMENT: This parameter represents the cost of unemployment payment per person per 

month in the United Kingdom. The annual payment sum was obtained from ProsFit's health 

economic model data set, and divided by 12 for the monthly payment (C. Hutchison, 2021). 
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Unit_Cost[Digital] = 1573 

Unit_Cost[Traditional] = 2186 

    UNITS: USD/person 

    DOCUMENT: This parameter represents the unit cost of manufacturing a prosthesis by type. The 

data was obtained from ProsFit's health economic model data set (C. Hutchison, 2021). 

 

Market Subsystem Module 

Table C.0.13 Documentation for Innovation Diffusion Sector 

Innovation Diffusion Sector 

Market_Subsystem.Desired_Development = 

Innovation_Decay*Time_to_Develop_Innovation*Relative_Resources_for_R&D 

    UNITS: dmnl 

    DOCUMENT: This variable represents the desired innovation development rate. The base 

desired development rate is a function of the innovation decay rate and the average time taken for 

the development process, hence taking into account the delay time. The assumption here is that as 

the innovation becomes outdated, the industry at the very minimum seeks to maintain equilibrium 

replacement to prevent the technology from becoming obsolete. This base rate is then adjusted 

based on the relative resources available for research and development (R&D). When the R&D 

resources is at its normal level (1), then the desired development is at equilibrium replacement. 

When relative resources is more than 1, then the desired development is proportionally higher than 

the replacement rate. This means that there is room for new innovation to be developed. Similarly, 

if the relative resources is less than 1, then the desired development is proportionally reduced – 

meaning that there is insufficient resources to even maintain equilibrium replacement. 

Market_Subsystem.Desired_Diffusion = 

Knowledge_Decay*Time_to_Diffuse_Knowledge*Relative_Resources_for_R&D 

    UNITS: dmnl 

    DOCUMENT: This variable represents the desired knowledge diffusion rate. The base desired 

diffusion rate is a function of the knowledge decay rate and the average time taken to diffuse new 

knowledge, hence taking into account the delay time. The assumption here is that as the knowledge 

decays, the industry at the very minimum seeks to maintain equilibrium replacement to prevent 

obscurity. This base rate is then adjusted based on the relative resources available for research and 

development (R&D). When the R&D resources is at its normal level (1), then the desired diffusion 

is at equilibrium replacement. When relative resources is more than 1, then the desired diffusion is 

proportionally higher than the replacement rate. This means that there is room for new knowledge 

to be diffused. Similarly, if the relative resources is less than 1, then the desired diffusion is 

proportionally reduced – meaning that there is insufficient resources to even maintain equilibrium 

replacement. 
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Market_Subsystem.GoS_Effectiveness_Factor = 0.25 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the Effectiveness Factor of the Guidance of Search 

function. It refers to the fraction of available resources for research and development that is subject 

to the influence of Guidance of Search. Here, Guidance of Search contributes up to 25% variability 

in the resources set for R&D, an assumption made in Walrave & Raven (2016a). 

Market_Subsystem.Guidance_of_Search(t) = Guidance_of_Search(t - dt) + (Change_in_GoS) * dt 

    INIT Market_Subsystem.Guidance_of_Search = Indicated_Guidance_of_Search 

    UNITS: Dmnl 

    DOCUMENT: This stock represents the level of Guidance of Search for the technological 

knowledge. The Guidance of Search function "refers to those activities within the innovation 

system that can positively affect the visibility and clarify of specific wants among technology 

users" (Hekkert et al., 2007, p. 423). It acts as a priority setting indicator for allocating resources to 

R&D based on technological prominence (Walrave & Raven, 2016a). The stock varies between 0 

and 1, where 0 means the lowest level and 1 is the maximum level of Guidance of Search. The 

initial value of the stock is set at its indicated value. 

    INFLOWS: 

        Market_Subsystem.Change_in_GoS = (Indicated_Guidance_of_Search-

Guidance_of_Search)/Time_to_Adjust_GoS 

            UNITS: dmnl/month 

            DOCUMENT: This inflow represents the rate of change in the Guidance of Search level. It 

is formulated as a first order adjustment, where the Guidance of Search adjusts to its indicated level 

with a certain adjustment time. 

Market_Subsystem.Indicated_Guidance_of_Search = Innovation_Developed*Knowledge_Diffused 

    UNITS: dmnl 

    DOCUMENT: This variable represents the indicated level of the Guidance of Search prior to the 

delay adjustment. The indicated value is determined by the product of Innovation Developed and 

Knowledge Diffused. The product of the two "reflect the status" of the current innovation 

knowledge that is circulating amongst relevant actors (Walrave & Raven, 2016a, p. 7). A reduction 

in any of the two would proportionally reduce the "visibility and clarity" of the state of the art 

(Hekkert et al., 2007, p. 423). 
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Market_Subsystem.Innovation_Developed(t) = Innovation_Developed(t - dt) + 

(Innovation_Development - Innovation_Decay) * dt 

    INIT Market_Subsystem.Innovation_Developed = 0.001 

    UNITS: Dmnl 

    DOCUMENT: This stock represents the level of innovation developed, or the "current state-of-

the-art, with respect to technological knowledge developed" (Walrave & Raven, 2016a, p. 4). The 

stock varies between 0, denoting "no knowledge" or the lowest level of innovation developed, and 

1, denoting "a nearly, for that moment in time, 'complete' understanding of the technology" 

(Walrave & Raven, 2016a, p. 4). 

    The initial value of the stock is set at 0.001, in order to kick it out of the unstable equilibrium 

point and allow for exponential growth. 

    INFLOWS: 

        Market_Subsystem.Innovation_Development = 

Desired_Development/Time_to_Develop_Innovation*MAX(0, 1-Innovation_Developed) 

            UNITS: Per Month 

            DOCUMENT: This inflow represents the innovation development rate. The rate is 

determined by a first order adjustment, where the desired rate is divided by the delay time. This 

delay adjusted rate is further controlled by the current Innovation Developed level. As the 

innovation reaches its maximum potential (innovation level = 1), the equation '1 - Innovation 

Developed' enforces "a S-shaped growth curve, typical for technological development" that makes 

the development of new innovation to be progressively more difficult (Schilling & Esmundo, 2009; 

Walrave & Raven, 2016a, p. 4). In essence, it prevents the stock from increasing beyond the 

maximum level. The MAX function prevents the inflow from going below 0. 

    OUTFLOWS: 

        Market_Subsystem.Innovation_Decay = Innovation_Developed/Time_to_Decay 

            UNITS: Per Month 

            DOCUMENT: This outflow represents the innovation decay rate since technological 

knowledge may become outdated over time, especially with the development of new innovation. 

The decay rate is simply a first order adjustment where the innovation decays with a certain 

adjustment time (time to decay).  
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Market_Subsystem.Knowledge_Diffused(t) = Knowledge_Diffused(t - dt) + 

(Knowledge_Diffusion - Knowledge_Decay) * dt 

    INIT Market_Subsystem.Knowledge_Diffused = 0.001 

    UNITS: Dmnl 

    DOCUMENT: This stock represents the level of technological knowledge diffused amongst 

relevant parties. The stock varies between 0, denoting no diffusion of knowledge and 1, denoting 

"that nearly all currently available technological knowledge is diffused" (Walrave & Raven, 2016a, 

p. 6). 

    The initial value of the stock is set at 0.001, in order to kick it out of the unstable equilibrium 

point and allow for exponential growth. 

    INFLOWS: 

        Market_Subsystem.Knowledge_Diffusion = 

Desired_Diffusion/Time_to_Diffuse_Knowledge*MAX(0, 1-Knowledge_Diffused) 

            UNITS: dmnl/month 

            DOCUMENT: This inflow represents the knowledge diffusion rate. The rate is determined 

by a first order adjustment, where the desired rate is divided by the delay time. This delay-adjusted 

rate is further controlled by the current Knowledge Diffused level. As the Knowledge Diffused 

reaches its maximum potential (1), the equation '1 - Knowledge Diffused' enforces "a S-shaped 

growth curve" that makes diffusion to be progressively more difficult (Walrave & Raven, 2016a, p. 

6). In essence, it prevents the stock from increasing beyond the maximum level. The MAX function 

prevents the inflow from going below 0. 

    OUTFLOWS: 

        Market_Subsystem.Knowledge_Decay = (Knowledge_Diffused/Time_to_Decay) + 

(Knowledge_Diffused*New_Innovation_Proportion) 

            UNITS: dmnl/month 

            DOCUMENT: This outflow represents the technological knowledge decay rate since 

diffused knowledge may become outdated over time with the development of new innovation. The 

decay rate is a sum of a first order adjustment where the level of Knowledge Diffused decays over 

a certain adjustment time (time to decay) and the fraction of the knowledge diffused that is made 

obsolete by new innovation. This formulation ensures that the level of knowledge diffused 

decreases pro-rata to the new innovation that is developed (Walrave & Raven, 2016a, p. 6). 

Market_Subsystem.New_Innovation_Proportion = 

Innovation_Development/Innovation_Developed 

    UNITS: dmnl/month 

    DOCUMENT: This variable calculates the ratio of the innovation development rate to the 

current state of the innovation. This gives a proportion of the new to old innovation level, which 

then gives us the pro-rate knowledge that has become obsolete. 



 

 

 146 

Market_Subsystem.Relative_Internal_Resources = Relative_MS^Sensitivity_of_Resources_to_MS 

    UNITS: dmnl 

    DOCUMENT: This variable represents the relative change in Internal Resource with respect to a 

certain sensitivity to changes in Relative Market Size. This is calculated by taking the Sensitivity of 

Resources as an exponent of the Relative Market Size.  

Market_Subsystem.Relative_Resources_for_R&D = Total_Relative_Resources*(1-

GoS_Effectiveness_Factor) +  

Total_Relative_Resources*GoS_Effectiveness_Factor*Guidance_of_Search 

    UNITS: dmnl 

    DOCUMENT: This variable represents the relative resources available for research and 

development (R&D). It is the Total Relative Resources adjusted by the Guidance of Search level. 

The Effectiveness Factor determines the percentage of the Total Relative Resources that is 

influenced by the Guidance of Search (GoS). This percentage varies proportionally to the level of 

GoS. When the GoS is at its lowest (0), then the relative resources allocated to R&D will be at its 

fixed level (in this case, 75% of the total relative resources). When the GoS is at its maximum (1), 

then the relative resources for R&D will be the total relative resources (100%). For values of GoS 

between 0 and 1, the relative resources varies proportionally.  

Market_Subsystem.Sensitivity_of_Resources_to_MS = 1 

    UNITS: dmnl 

    DOCUMENT: This parameter determines the sensitivity of Relative Internal Resources to 

changes in Relative Market Size. In this model, it is assumed that Internal Resources is sensitive 

and responds proportionally to changes in Market Size. 

Market_Subsystem.Time_to_Adjust_GoS = 3 

    UNITS: month 

    DOCUMENT: This parameter represents the adjustment time for the Guidance of Search to 

update. Here, the adjustment time of 3 months, set by Walrave & Raven (2016a), was kept. 

Market_Subsystem.Time_to_Decay = 60 

    UNITS: month 

    DOCUMENT: This parameter represents the residence time of any innovation developed or 

diffused, or the time taken for knowledge to decay. Here, the decay time of 60 months, set by 

Walrave & Raven (2016a), was kept. 

Market_Subsystem.Time_to_Develop_Innovation = 12 

    UNITS: month 

    DOCUMENT: This parameter represents the delay time for the development of new innovation. 

Here, the average delay time is assumed to be a year. 
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Market_Subsystem.Time_to_Diffuse_Knowledge = 12 

    UNITS: month 

    DOCUMENT: This parameter represents the delay time for the diffusion of new technological 

knowledge. Here, the average delay time is assumed to be a year. 

Market_Subsystem.Time_to_Mobilise_Resources = 6 

    UNITS: month 

    DOCUMENT: This parameter represents the delay time for the mobilising resources. Here, the 

adjustment time of 6 months, set by Walrave & Raven (2016a), was kept. 

Market_Subsystem.Total_Relative_Resources = 

SMTH1(Relative_Internal_Resources+Adjusted_Relative_External_Resources, 

Time_to_Mobilise_Resources) {DELAY CONVERTER} 

    UNITS: dmnl 

    DOCUMENT: This variable represents the Total Relative Resources available to the 

technological innovation system. It is the sum of the relative external and relative internal 

resources, adjusted by a delay time to mobilise resources. This delay process is captured by the 

SMTH1 function that introduces a first order delay adjustment. 

 

Table C.0.14 Documentation for Market Formation Sector 

Market Formation Sector 

Market_Subsystem.Adjusted_Relative_External_Resources = (1-

Variable_Input_Fraction)*Relative_External_Resources + 

Variable_Input_Fraction*Relative_External_Resources*Entrepreneurial_Activity 

    UNITS: dmnl 

    DOCUMENT: This variable represents the Adjusted Relative External Resources that is actually 

pumped into the innovation system, by external funders. Although exogenous, Relative External 

Resources is influenced by the Entrepreneurial Activity level by some extent. The Variable Input 

Fraction determines the percentage of the resources that is dependent on the Entrepreneurial 

Activity. When Activity is at its lowest (0), then the relative resources will be at its fixed level 

(inverse of variable fraction). When the Activity is at its maximum (1), then there will be no 

adjustment to the Relative External Resources. For values of EA between 0 and 1, the variable 

portion of the relative external resources varies proportionally.  
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Market_Subsystem.Clinics[Digital] = Ref_Digital_Clinics*Effect_of_MS_on_Clinics 

Market_Subsystem.Clinics[Traditional] = 35 

    UNITS: clinic 

    DOCUMENT: This variable represents the number of prosthetic clinics at any one point in time. 

For the traditional clinics, the number is held constant at 35 – it includes both the public-funded 

NHS clinics and private clinics (Amputation Foundation, 2022). For the digital clinics, the 

reference number of clinics endogenously changes with the relative Market Size. 

Market_Subsystem.Clinics_Sensitivity_SWITCH = 0 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the experimental switch for changing the sensitivity of 

Clinics to Market Size according to different scenarios. 

Market_Subsystem.Digital_Fitting_Reputation =  

Limit_DFR/(1+EXP((Inflection_DFR-.Perceived_Relative_Fitting_Rate)/Steepness_DFR)) 

    UNITS: dmnl 

    DOCUMENT: This variable represents the Reputation of Digital Fitting that dependent on the 

perceived relative fitting rate of the digital prosthesis as compared to the traditional one. The 

reputation level can vary from 0 to 1 and is analytically formulated as a Sigmoid function (s-shape 

curve). When the perceived ratio is 0, then we can expect reputation formed to be non-existent (0). 

However, as the ratio increases towards 1, we can expect the reputation of digital fitting to increase 

increasingly towards the mid-point (0.5), indicating a someone neutral reputation position. As the 

ratio increases above 1, then the reputation increases decreasingly towards the maximum of 1.  

Market_Subsystem.Duration_RER = 180 

    UNITS: month 

    DOCUMENT: This parameter sets how long the external resources will be pumped into the 

system. 
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Market_Subsystem.Effect_of_EA_on_MI = MIN(2, 

Limit_EA_on_MI/(1+EXP((Inflection_EA_on_MI-

Entrepreneurial_Activity//Ref_EA)/Steepness_EA_on_MI))) 

    UNITS: dmnl 

    DOCUMENT: This variable represents the Effect of entrepreneurial activity on market 

infrastructure.  

    According Walrave & Raven (2016a, p. 12), the relationship between the two is one of 

exponential growth curve, where the "influence of entrepreneurs on the formation processes of 

[market infrastructure] becomes increasingly large as Entrepreneurial activity increases – reflecting 

the need for a certain critical mass before substantial influence can be exercise."  

    The table function provided by the authors was replicated here with an analytical formulation. To 

best control the curvature and end points of the exponential growth function, a Sigmoid curve was 

formulated such that the inflection point ends at the desired end point (2,2). In doing so, we are able 

to obtain an increasing increasingly curve from (~0,0) to (2,2) with a steepness that can be 

calibrated. 

Market_Subsystem.Effect_of_MS_on_Clinics = 

SMTH1(Relative_MS^Sensitivity_of_Clinics_to_Market_Size, Time_to_Adjust_Clinics) 

{DELAY CONVERTER} 

    UNITS: dmnl 

    DOCUMENT: This variable represents the relative change in Digital Clinics with respect to a 

certain sensitivity to changes in Relative Market Size. This relative change is calculated by taking 

the Sensitivity of Clinics as an exponent of the Relative Market Size. The relative change is further 

delayed with a SMTH function to take into account the time taken to set up or tear down clinics.  

Market_Subsystem.Effect_of_MS_on_SSE = Maximum_Effect_MS*EXP(-(Relative_MS-

Mean_Position_MS)^2/(2*Spread_MS^2)) 

    UNITS: dmnl 

    DOCUMENT: This variable represents the effect of Relative Market Size on the Maximum 

Sailing Ship Effect. As the relative market size of the digital prosthesis industry increases beyond a 

threshold, we expect a sailing ship effect, or a response from the incumbent traditional prosthesis 

regime to step up their competitiveness. However, "the sailing ship effect is not likely to last 

indefinitely" and is expected to wane after the market size exceed a certain size (Walrave & Raven, 

2016a, p. 16) 

    Accordingly, the effect variable is analytically formulated as a normal distribution around a 

certain mean position. At the mean position, the effect is at the maximum height (1). The 

distribution around the mean is controlled by the spread. With this normal distribution, the effect 

increases towards the maximum as the relative market size increases towards 5 (corresponding to 

25% market size). Beyond which, the effect decreases towards 0. The distribution references the 

table function provided in Walrave & Raven (2016a, p. 18) 
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Market_Subsystem.Effect_of_PL_on_EA = MIN(2,  

Limit_PL_on_EA/(1+EXP((Inflection_PL_on_EA-

Perceived_Legitimacy//Ref_PL)/Steepness_PL_on_EA))) 

    UNITS: dmnl 

    DOCUMENT: This variable represents the Effect of perceived legitimacy on entrepreneurial 

activity.  According Walrave & Raven (2016a, p. 9), the relationship between the two is one of 

exponential growth curve due to the "band-wagon effect" (Geels, 2005). Particularly, as more 

entrepreneurial activity installs more infrastructure and thus increases the the perceived legitimacy 

of the technological system, we expect even more entrepreneurs to be interested and join the 

activity. 

    The table function provided by the authors was replicated here with an analytical formulation. To 

best control the curvature and end points of the exponential growth function, a Sigmoid curve was 

formulated such that the inflection point ends at the desired end point (2,2). In doing so, we are able 

to obtain an increasing increasingly curve from (~0,0) to (2,2) with a steepness that can be 

calibrated. 

Market_Subsystem.Effect_of_TRR_on_EA = Limit_EA*(1-EXP(-

Total_Relative_Resources/Steepness_EA)) 

    UNITS: dmnl 

    DOCUMENT: This variable represents the effect of total relative resources on entrepreneurial 

activity. External actors, be it government agencies or other private investors, could be backing 

entrepreneurs such that the perceived entrepreneurial risks are reduced (Suurs, 2009; Walrave & 

Raven, 2016a). Hence when total relative resources increases, we assume that funding for 

entrepreneurs increases.  

    Here, the effect of total relative resources is formulated as a nonlinear function that increases 

decreasingly. As funding increases beyond the normal, we can expect entrepreneurial interest to 

increase quickly before increasing decreasingly to the maximum as more and more resources is 

pumped in. 

Market_Subsystem.Effect_of_TRR_on_MI = Limit_MI*(1-EXP(-

Total_Relative_Resources/Steepness_MI)) 

    UNITS: dmnl 

    DOCUMENT: This variable represents the effect of total relative resources on market 

infrastructure. According to Walrave & Raven (2016a, p. 12), "other actors can also stimulate 

development" of market infrastructure. Funding for market development can come from other such 

actors like government institutions that could build the necessary infrastructure for market 

formation (Suurs, 2009). 

    Here, the effect of total relative resources is formulated as a nonlinear function that increases 

decreasingly. As funding increases beyond the normal, we can expect market infrastructure to 

expand quickly. However, as more and more money is pumped in, we expect a diminishing returns 

in investment, thus tailoring off to a maximum effect. 
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Market_Subsystem.Entrepreneurial_Activity(t) = Entrepreneurial_Activity(t - dt) + 

(Change_in_EA) * dt 

    INIT Market_Subsystem.Entrepreneurial_Activity = 0 

    UNITS: dmnl 

    DOCUMENT: This stock represents the level of entrepreneurial activities in the digital 

prosthetic industry. The stock varies between 0 (no activity) and 1 (full activity). The initial value 

of the stock is set at 0. 

    INFLOWS: 

        Market_Subsystem.Change_in_EA = (Indicated_Entrepreneurial_Activity-

Entrepreneurial_Activity)/Time_to_Adjust_EA 

            UNITS: Per Month 

            DOCUMENT: This inflow represents the rate of change in the Entrepreneurial Activity 

stock. It is formulated as a first order adjustment, where the Entrepreneurial Activity adjusts to its 

indicated level with a certain adjustment time. 

Market_Subsystem.External_Resource_Size_SWITCH = 0 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the experimental switch for changing the size of the 

relative external resources according to different scenarios. 

Market_Subsystem.Fitting_Capacity[Prosthesis_Type] = 

Prosthetist_per_clinic*Clinics*Fitting_Capacity_per_Prosthetist 

    UNITS: People/month 

    DOCUMENT: This variable represents the Fitting Capacity or the number of amputees that can 

be seen by a prosthetist and fitted with a prosthesis per month. It is a function of the number of 

clinics available at any one point in time, multiplied with the average number of prosthetist per 

clinic, and the fitting capacity per prosthetist.  

Market_Subsystem.Fitting_Capacity_per_Prosthetist[Digital] = 288/12 

Market_Subsystem.Fitting_Capacity_per_Prosthetist[Traditional] = 58/12 

    UNITS: people/prosthetist/month 

    DOCUMENT: This parameter represents the average number of amputees that a prosthetist can 

fit in each month. The value is obtained from ProsFit's health economic model data set (C. 

Hutchison, 2021) and divided by 12 to convert the value from years to months. 

Market_Subsystem.Indicated_Entrepreneurial_Activity = 

Ref_EA*(Effect_of_PL_on_EA*Weight_of_PL+Effect_of_TRR_on_EA*(1-Weight_of_PL)) 

    UNITS: dmnl 

    DOCUMENT: This variable represents the indicated entrepreneurial activity level of the digital 

prosthetic industry. The indicated activity is formulated as additive effects of Perceived Legitimacy 
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and Total Relative Resources on the Reference Entrepreneurial Activity level, governed by the 

respective weight of each effect. According to Walrave & Raven (2016a), resources available for 

stimulating entrepreneurial activity has an independent effect on activity. Hence, the variable is 

formulated as additive effects rather than multiplicative. 

Market_Subsystem.Indicated_Legitimacy = 

(Knowledge_Diffused*Innovation_Developed)*Weight_of_Innovation_Diffusion  + 

Digital_Fitting_Reputation*Weight_of_Reputation + (1-

Regime_Resistance)*Weight_of_Resistance + Market_Infrastructure*Weight_of_Infrastructure 

    UNITS: dmnl 

    DOCUMENT: This variable represents the indicated legitimacy of the digital prosthetic industry. 

The indicated legitimacy is a function of "both technological legitimacy and market legitimacy" 

(Walrave & Raven, 2016a, p. 8). Digital Fitting Reputation and Innovation Diffusion represent the 

technological legitimacy, where they positively influence the indicated legitimacy. Market 

legitimacy is represented by Market Infrastructure and Regime Resistance. While Market 

Infrastructure positively influences legitimacy, Regime Resistance negatively influences 

legitimacy. Legitimacy is formulated as additive functions with a respective weight for each in 

order to ensure limit the range between 0 (no legitimacy) to 1 (full legitimacy). 

Market_Subsystem.Indicated_Market_Infrastructure = 

Ref_MI*(Effect_of_EA_on_MI*Weight_of_EA+Effect_of_TRR_on_MI*(1-Weight_of_EA)) 

    UNITS: dmnl 

    DOCUMENT: This variable represents the indicated market infrastructure level of the digital 

prosthetic industry. The indicated infrastructure is formulated as additive effects of Entrepreneurial 

Activity and Total Relative Resources on the Reference Market Infrastructure level, governed by 

the respective weight of each effect. According to Walrave & Raven (2016a), market infrastructure 

development is only partially determined by entrepreneurial interest; the other part of the key is the 

effect of funding for market development that could be supported by other actors like the 

government. Hence, the variable is formulated as additive effects rather than multiplicative. 

Market_Subsystem.Indicated_Market_Size = Market_Infrastructure*Entrepreneurial_Activity 

    UNITS: dmnl 

    DOCUMENT: This variable represents the indicated Market Size prior to the delay adjustment. 

The indicated value is determined by the product of Entrepreneurial Activity and Market 

Infrastructure. While Market Size growths with the Entrepreneurial Activity with a delay, the 

market "can only truly develop when innovation system actors successfully navigate" the Market 

Infrastructure (Walrave & Raven, 2016a, p. 13). 
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Market_Subsystem.Indicated_Resistance = MIN(1, (1-Market_Infrastructure) + 

Sailing_Ship_Effect) 

    UNITS: dmnl 

    DOCUMENT: This variable represents the indicated resistance of the incumbent traditional 

prosthetic industry. The indicated resistance is partially determined by the inverse of the market 

infrastructure. The assumption here is that the effective resistance is simply the remaining 

percentage of market infrastructure potential that has been prevented from being reached. The other 

part of resistance comes from sailing ship effect that kicks in to increase the competitiveness of the 

incumbent. The MIN function is added for robustness to ensure that the resistance can never 

increase beyond 1. 

Market_Subsystem.Inflection_DFR = 1 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the inflection point of the Sigmoid curve for the Digital 

Fitting Reputation. The inflection point is set at 1 (i.e. when the perceived relative fitting rate is at 

1).  

Market_Subsystem.Inflection_EA_on_MI = 2 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the inflection point of the Sigmoid curve for the Effect of 

entrepreneurial activity on market infrastructure. The inflection point is set at 2 so that the curve 

only increases increasingly for the range of relative entrepreneurial activity 0 to 2. 

Market_Subsystem.Inflection_PL_on_EA = 2 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the inflection point of the Sigmoid curve for the Effect of 

perceived legitimacy on entrepreneurial activity. The inflection point is set at 2 so that the curve 

only increases increasingly for the range of relative entrepreneurial activity 0 to 2. 

Market_Subsystem.Limit_DFR = 1 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the limit of the Sigmoid curve for the Digital Fitting 

Reputation, which prevents it from growing above 1. 

Market_Subsystem.Limit_EA = 2 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the limit that the exponential decay function approaches, 

thereby controlling the maximum effect at 2. The maximum is set as such in order to prevent 

entrepreneurial activity from exceeding beyond 1.  



 

 

 154 

Market_Subsystem.Limit_EA_on_MI = 4 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the limit that is approached by the Sigmoid curve for the 

Effect of entrepreneurial activity on market infrastructure. By doubling the limit, then we can set 

the inflection point at (2,2), the desired end point for the exponential curve part of the Sigmoid 

function.  

Market_Subsystem.Limit_MI = 2 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the limit that the exponential decay function approaches, 

thereby controlling the maximum effect at 2. The maximum is set as such in order to prevent 

market infrastructure from exceeding beyond 1.  

Market_Subsystem.Limit_PL_on_EA = 4 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the limit that is approached by the Sigmoid curve for the 

Effect of perceived legitimacy on entrepreneurial activity. By doubling the limit, then we can set 

the inflection point at (2,2), the desired end point for the exponential curve part of the Sigmoid 

function.  

Market_Subsystem.Market_Infrastructure(t) = Market_Infrastructure(t - dt) + (Change_in_MI) * dt 

    INIT Market_Subsystem.Market_Infrastructure = Indicated_Market_Infrastructure 

    UNITS: dmnl 

    DOCUMENT: This stock represents the Market Infrastructure of the digital prosthetic industry. 

The stock varies between 0 (no infrastructure developed) and 1 (full market infrastructure). The 

initial value of the stock is set at its indicated value. 

    INFLOWS: 

        Market_Subsystem.Change_in_MI = (Indicated_Market_Infrastructure - 

Market_Infrastructure)/Time_to_Adjust_MI 

            UNITS: Per Month 

            DOCUMENT: This inflow represents the rate of change in the Market Infrastructure. It is 

formulated as a first order adjustment, where the Market Infrastructure adjusts to its indicated level 

with a certain adjustment time. 

Market_Subsystem.Market_Share[Digital] = Market_Size 

Market_Subsystem.Market_Share[Traditional] = 1-Market_Size 

    UNITS: dmnl 

    DOCUMENT: This variable represents the respective Market Shares of the digital and 

traditional prosthetic industry. The digital market share is assumed to be directly proportional to the 
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Market Size, which is taken as percentage between 0 to 1. The traditional market size is simply the 

inverse of the digital market share. 

Market_Subsystem.Market_Size(t) = Market_Size(t - dt) + (Change_in_MS) * dt 

    INIT Market_Subsystem.Market_Size = 0 

    UNITS: dmnl 

    DOCUMENT: This stock represents the Market Size of the digital prosthetic industry. The stock 

varies between 0 and 1, where 0 means the industry failed to capture any prosthetic market, and 1 

indicates 100% of the prosthetic market is captured by the digital industry. The initial value of the 

stock is set at 0. 

    INFLOWS: 

        Market_Subsystem.Change_in_MS = (Indicated_Market_Size-

Market_Size)/Time_to_Adjust_MS 

            UNITS: Per Month 

            DOCUMENT: This inflow represents the rate of change in the Market Size. It is formulated 

as a first order adjustment, where the Market Size adjusts to its indicated level with a certain 

adjustment time. 

Market_Subsystem.Maximum_Effect_MS = 1 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the Maximum Effect of MS on the Maximum SSE. The 

maximum effect is 1, indicating that at the normal or mean position, the sailing ship effect will be 

at its maximum. 

Market_Subsystem.Maximum_SSE = 0.25 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the maximum Sailing Ship Effect. Here, the maximum 

effect of 0.25, set by Walrave & Raven (2016a), was kept. 

Market_Subsystem.Mean_Position_MS = 5 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the normal or mean position of the relative market size. Here, 

the maximum effect will occur when the relative size is 5. This value was chosen as it corresponds 

to 0.25 (5 times the threshold), which is the threshold size before the sailing ship wanes according 

to Walrave & Raven (2016a). 
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Market_Subsystem.MS_Threshold = 0.05 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the Market Size Threshold that acts as the reference 

value for the Relative Market Size. Here, the threshold is set at 0.05, meaning that the minimum 

viability of the digital technology industry is 5%. The assumption here is that below 5% the 

industry is still in the red and is not profiting enough for long-term viability.  

Market_Subsystem.Perceived_Legitimacy(t) = Perceived_Legitimacy(t - dt) + (Change_in_PL) * 

dt 

    INIT Market_Subsystem.Perceived_Legitimacy = Indicated_Legitimacy 

    UNITS: dmnl 

    DOCUMENT: This stock represents the Perceived Legitimacy of system actors towards the 

digital prosthetic industry. The stock varies between 0 and 1, where 0 indicates a complete lack of 

legitimacy, and 1 indicates a very high level of legitimacy. The initial value of the stock is set at its 

indicated value. 

    INFLOWS: 

        Market_Subsystem.Change_in_PL = (Indicated_Legitimacy-

Perceived_Legitimacy)/Time_to_Perceive_Legitimacy 

            UNITS: Per Month 

            DOCUMENT: This inflow represents the rate of change in the Perceived Legitimacy. It is 

formulated as a first order adjustment, where the Perceived Legitimacy adjusts to its indicated level 

with a certain adjustment time. 

Market_Subsystem.Prosthetist_per_clinic = 2 

    UNITS: prosthetist/clinic 

    DOCUMENT: This parameter represents the average number of prosthetist in each clinic. The 

value is obtained from ProsFit's health economic model data set (C. Hutchison, 2021). 

Market_Subsystem.Ref_Digital_Clinics = 3 

    UNITS: clinic 

    DOCUMENT: This parameter represents the reference number of digital clinics in the United 

Kingdom. This number is calibrated to 3 based on the projected number of digital clinics in the 

future based on ProsFit's health economic model data set (C. Hutchison, 2021). 

Market_Subsystem.Ref_EA = 0.5 

    UNITS: dmnl 

    DOCUMENT: The reference Entrepreneurial Activity is set at 0.5, the mid value of the stock 

which ranges from 0 to 1. 
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Market_Subsystem.Ref_MI = 0.5 

    UNITS: dmnl 

    DOCUMENT: The reference market infrastructure is set at 0.5, the mid value of the stock which 

ranges from 0 to 1. 

Market_Subsystem.Ref_PL = 0.5 

    UNITS: dmnl 

    DOCUMENT: The reference Perceived Legitimacy is set at 0.5, the mid value of the stock 

which ranges from 0 to 1. 

Market_Subsystem.Regime_Resistance(t) = Regime_Resistance(t - dt) + (Change_in_RR) * dt 

    INIT Market_Subsystem.Regime_Resistance = 1 

    UNITS: dmnl 

    DOCUMENT: This stock represents the Regime Resistance of the incumbent traditional 

prosthetic industry, then campaigns to counter the growth of the digital market. The stock varies 

between 0 and 1, where 0 means there is no resistance, and 1 implies a severe resistance that 

suppresses the digital industry. The initial value of the stock is set to 1. 

    INFLOWS: 

        Market_Subsystem.Change_in_RR = (MIN(Indicated_Resistance, 1) - 

Regime_Resistance)/Time_to_Adjust_RR 

            UNITS: Per Month 

            DOCUMENT: This inflow represents the rate of change in the Regime Resistance. It is 

formulated as a first order adjustment, where the Regime Resistance adjusts to its indicated level 

with a certain adjustment time. 

Market_Subsystem.Relative_External_Resources = IF TIME>=Timing_RER AND 

TIME<Timing_RER+Duration_RER THEN RER_Size ELSE 0 

    UNITS: dmnl 

    DOCUMENT: This variable represents the Relative External Resources that is being pumped 

into the system at any one point in time. The equation sets External Funding to be temporary. The 

amount is only starts to be pumped from the Timing set and for a certain Duration before returning 

back to 0.  

Market_Subsystem.Relative_MS = Market_Size//MS_Threshold 

    UNITS: dmnl 

    DOCUMENT: This variable calculates the Relative Market Size, the ratio of the current Market 

Size relative to the Threshold. When the ratio is 1, it means that the Market Size is at the threshold 

level. If the ratio is less than 1, it means that the market size is not viable. And if the ratio is more 

than 1, then it indicates that relative market size is above the viability threshold. 
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Market_Subsystem.Relative_Weight_of_Reputation = 0.6 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the relative weight distribution of Reputation to 

Innovation Distribution.  Here, it is assumed that Reputation has a slightly higher weight (60%) 

than Innovation Diffusion (40%) as investors react more favourably to proven success of the 

technology rather than its potential. 

Market_Subsystem.Relative_Weight_of_Resistance = 0.6 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the relative weight distribution of Resistance to Market 

Infrastructure.  Here, it is assumed that Resistance has a slightly higher weight (60%) than Market 

Infrastructure (40%) as investors tend to react more strongly to possible negative repercussion from 

competition. 

Market_Subsystem.RER_Size = (1-External_Resource_Size_SWITCH)*1 + 

External_Resource_Size_SWITCH*5 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the size of the relative external resources. This number 

changes based on the SWITCH for different scenarios. When the switch is turned on, the size of 

external resources is 5 times the normal. When the switch is turned off, the size of external 

resources is set to 1, denoted the normal size.  

Market_Subsystem.Sailing_Ship_Effect = Maximum_SSE*Effect_of_MS_on_SSE 

    UNITS: dmnl 

    DOCUMENT: This variable dynamically calculates the Sailing Ship Effect. The maximum 

effect is endogenously adjusted with changes in the relative Market Size. 

Market_Subsystem.Sensitivity_of_Clinics_to_Market_Size = (1-

Clinics_Sensitivity_SWITCH)*0.5 + Clinics_Sensitivity_SWITCH*1 

    UNITS: dmnl 

    DOCUMENT: This parameter determines the sensitivity of Digital Clinics to changes in 

Relative Market Size. When the SWITCH is turned on, then the clinics is sensitive to changes in 

Market Size and adjusts proportionally. When the SWITCH is turned off, then the clinics is not as 

sensitive to changes in Market Size and adjusts less than proportionally. 

Market_Subsystem.Spread_MS = 0.25 

    UNITS: dmnl 

    DOCUMENT: This parameter sets the dispersion around the mean in the normal distribution. 

This value was calibrated to fit the table function provided by Walrave & Raven (Walrave & 

Raven, 2016a, p. 18), where the values are distributed between 0 and 0.3 market size. 
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Market_Subsystem.Steepness_DFR = 0.2 

    UNITS: dmnl 

    DOCUMENT: This parameter controls the steepness of the curve or the rate of increase or 

decline of the Digital Fitting Reputation. The steepness is assumed to 0.2, which can be further 

calibrated with data collection. 

Market_Subsystem.Steepness_EA = 2.5 

    UNITS: dmnl 

    DOCUMENT: This parameter controls the steepness of the curve or the rate of increase or 

decline of the Effect of total relative resources on entrepreneurial activity. The steepness is 

assumed to be 2.5, and can be calibrated with more robust data collection. 

Market_Subsystem.Steepness_EA_on_MI = 0.4 

    UNITS: dmnl 

    DOCUMENT: This parameter controls the steepness of the curve or the rate of increase or 

decline of the Effect of entrepreneurial activity on market infrastructure. The steepness is set to 0.4 

to fit the table function provided by Walrave & Raven (2016a, p. 12). 

Market_Subsystem.Steepness_MI = 2.5 

    UNITS: dmnl 

    DOCUMENT: This parameter controls the steepness of the curve or the rate of increase or 

decline of the Effect of total relative resources on market infrastructure. The steepness is assumed 

to be 2.5, and can be calibrated with more robust data collection. 

Market_Subsystem.Steepness_PL_on_EA = 0.4 

    UNITS: dmnl 

    DOCUMENT: This parameter controls the steepness of the curve or the rate of increase or 

decline of the Effect of perceived legitimacy on entrepreneurial activity. The steepness is set to 0.4 

to fit the table function provided by Walrave & Raven (2016a, p. 12) 

Market_Subsystem.Time_to_Adjust_Clinics = 24 

    UNITS: months 

    DOCUMENT: This parameter represents the delay time to adjust clinics. Here, it is assumed to 

be 24 months to set up clinics. 

Market_Subsystem.Time_to_Adjust_EA = 12 

    UNITS: month 

    DOCUMENT: This parameter represents the adjustment time for a change in the entrepreneurial 

activity. Here, the adjustment time of 12 months, set by Walrave & Raven (2016a), was kept. 
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Market_Subsystem.Time_to_Adjust_MI = 60 

    UNITS: month 

    DOCUMENT: This parameter represents the adjustment time for a change in the market 

infrastructure. Here, the adjustment time of 60 months, set by Walrave & Raven (2016a), was kept. 

Market_Subsystem.Time_to_Adjust_MS = 24 

    UNITS: month 

    DOCUMENT: This parameter represents the adjustment time for a change in the market size. 

Here, the adjustment time of 24 months, set by Walrave & Raven (2016a), was kept. 

Market_Subsystem.Time_to_Adjust_RR = 12 

    UNITS: month 

    DOCUMENT: This parameter represents the adjustment time for a change in the Regime 

Resistance. Here, the adjustment time of 12 months, set by Walrave & Raven (2016a), was kept. 

Market_Subsystem.Time_to_Perceive_Legitimacy = 12 

    UNITS: month 

    DOCUMENT: This parameter represents the adjustment time for a change in perceived 

legitimacy of digital technology. Here, the adjustment time of 12 months, set by Walrave & Raven 

(2016a), was kept. 

Market_Subsystem.Timing_RER = 96 

    UNITS: month 

    DOCUMENT: This parameter sets the start time for the external resources to be pumped into the 

system. 

Market_Subsystem.Variable_Input_Fraction = 0.25 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the Variable portion of the Relative External 

Resources. It refers to the fraction of resources that is subject to the influence of Entrepreneurial 

Activity, which is assumed to be 25% by Walrave & Raven (2016a). 

Market_Subsystem.Weight_of_EA = 0.4 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the weight of Entrepreneurial Activity. Here, it is 

assumed to be 0.4, meaning that slightly less weight is placed on entrepreneurial interest than on 

the effect of funding for market development.  
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Market_Subsystem.Weight_of_Infrastructure = (1-Weight_of_Technological_Legitimacy)*(1-

Relative_Weight_of_Resistance) 

    UNITS: dmnl 

    DOCUMENT: This converter calculates the weight of the Infrastructure. It is simply the product 

of the inverse of the weight of technological legitimacy and the inverse of the relative weight of 

resistance. 

Market_Subsystem.Weight_of_Innovation_Diffusion = Weight_of_Technological_Legitimacy*(1-

Relative_Weight_of_Reputation) 

    UNITS: dmnl 

    DOCUMENT: This converter calculates the weight of the Innovation Diffusion. It is simply the 

product of the weight of technological legitimacy and the inverse of the relative weight of 

reputation. 

Market_Subsystem.Weight_of_PL = 0.5 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the weight of Perceived Legitimacy. Here, both 

perceived legitimacy and effect of total relative resources are assumed to have equal weight 

distribution. 

Market_Subsystem.Weight_of_Reputation = 

Weight_of_Technological_Legitimacy*Relative_Weight_of_Reputation 

    UNITS: dmnl 

    DOCUMENT: This converter calculates the weight of the Reputation. It is simply the product of 

the weight of technological legitimacy and the relative weight of reputation. 

Market_Subsystem.Weight_of_Resistance = (1-

Weight_of_Technological_Legitimacy)*Relative_Weight_of_Resistance 

    UNITS: dmnl 

    DOCUMENT: This converter calculates the weight of the Resistance. It is simply the product of 

the inverse of the weight of technological legitimacy and the relative weight of resistance. 

Market_Subsystem.Weight_of_Technological_Legitimacy = 0.5 

    UNITS: dmnl 

    DOCUMENT: This parameter represents the relative Weight of Technological Legitimacy to 

Market Legitimacy. Here, the distribution of weight is assumed to be equal between the two types. 

"Technological Legitimacy" is conceptualised as functions of innovation diffusion and reputation 

of digital fittings, while "Market Legitimacy" is conceptualised as function of Market Infrastructure 

and Regime Resistance (Walrave & Raven, 2016a, p. 8). 
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