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Abstract

The purpose of the ATLAS experiment at CERN is to provide a better under-
stand of the underlying principles of fundamental particles and to potentially
discover new ones, such as dark matter. The process of doing so is long and
difficult, requiring different types of expertise. One part of the process is to
investigate the data recorded and determine whether deviations from known
physics can be observed.

In this thesis, different loss functions, including ones that are custom de-
signed, will be applied to machine learning algorithms to assess whether they
can improve the separation of data that has a potential to contain information
about new particles versus the data that contains only known physics. A paper
presenting the findings of this thesis is in a preparation with the intention of
being published.
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1 Introduction

The ATLAS experiment is one of the major experiments at CERN that records
data produced at the Large Hadron Collider (LHC). The LHC is a powerful
particle accelerator, in which two high-energy particle beams are accelerated
close to the speed of light, before they are made to collide [1]. Upon colliding, the
particles release an enormous energy, which results into creation of new particles.
These particles do not live long, before decaying into different particles.

ATLAS (A Toroidal LHC ApparatuS) itself, is a massive detector, weigh-
ing 7,000 tonnes and having approximately 100 M readout channels. It is de-
signed specifically to observe different properties of particles after their collision,
recording properties such as trajectory, momentum and their energy [2].

One of the key points to be taken from these observations is the existence
of missing transverse energy, which is inferred from an imbalance in recorded
momentum. This means that certain particles are able to escape the detector,
without being observed. One of such particles are neutrinos, whose existence
we are aware of. However, it is possible that, upon colliding, an exotic particle,
such as a dark matter particle, will be created.

The main difference between regular matter and dark matter is that it does
not interact with the electromagnetic force, meaning that it does not emit light.
In addition, similarly as neutrinos, they cannot be simply observed by a detector
[3].

By using machine learning methods and simulated data, it is possible to
create models that can differentiate between signal and background data. Briefly
said, the signal data is data that can be of interest, which is generated using
different hypotheses. The background data, on the other hand, is intended
to simulate collisions resulting from known physics. After training a machine
learning model on simulated data, with the intention of differentiating between
the background and the signal data, it is possible that it would yield useful
information regarding the actual data observed from the detector.
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2 Background

2.1 Physics Behind

2.1.1 Standard model

The universe is made up of fundamental particles, whose interactions are de-
scribed by four fundamental forces - electromagnetic, weak, strong and gravi-
tational. The intention of the standard model is to encapsulate the interaction
between these particles and forces. The standard model does not include grav-
ity, however, since gravity is much weaker than the other forces, the standard
model nevertheless has a great predictive power.

Figure 1: The Standard Model [4]

The standard model consists of seventeen fundamental particles, that can be
further divided into two main groups: fermions and bosons. The fundamental
difference between the two groups is that fermions act as the building blocks of
matter, whereas bosons act as mediators of interaction [5]. Fermions can also
be further separated into quarks and leptons.
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Quarks
All the six quarks have a colour charge, hence they interact with the strong
force. In addition, quarks also carry electric charge and weak isospin, meaning
that they also interact with electromagnetic and weak forces.

Leptons
The important distinction between leptons and quarks is the forces they interact
with. First of all, they do not carry a colour charge, hence they do not interact
with the strong force. Secondly, three of the leptons are neutrinos, that also
do not interact with the electromagnetic force. This means, that the only force
they interact with is the weak nuclear force, making their detection difficult.

Gauge Bosons
The Gauge Bosons are also known as the force carrying particles that are able
to interact with strong, weak and electromagnetic forces.

Higgs Boson
The Higgs boson is a scalar boson, discovered in the ATLAS experiment. It
differs from the Gauge bosons by the fact that Higgs boson has a spin equal to
0.

Dark matter
Despite the standard model being the best explanation of the fundamental par-
ticles and their interactions so far, it leaves certain phenomena, such as dark
matter, unexplained[5]. The key differences between regular matter and dark
matter is that the dark matter does not emit light, and it does not interact with
strong force, making its detection challenging. There are several hypotheses
and types of evidence indicating the existence of the dark matter, one of the
most known being observational evidence from galaxy rotation curves [3]. Dark
matter is estimated to account for making approximately 27% of the universe,
outweighing visible matter six to one. One of the key goals of experiments at
CERN is to better understand and potentially to uncover the mystery surround-
ing the dark matter.
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2.1.2 Jets

A high energy particle collision, such as the proton-proton collision at the LHC,
has an ability to produce jets. A jet on its own is a collection of hadrons
produced by hadronization, which occurs as the following [6]:

• Strongly interacting quarks or gluons are produced in a collision event.
For simplicity, let us consider an electron-positron collision.

• One of the possible products of such a collision is a quark and anti-quark
pair: e+ + e− → q + q̄, which will be assumed in this scenario.

• Upon reaching a certain separation distance, the strong interaction of
quarks is strong enough to produce new quark-antiquark pairs.

• The quarks join together, producing a combination of hadrons that can
be recorded in a detector. This process is known as hardronization.

A collection of hadrons with such a narrow spread is also known as a jet.
Typically, two or more jets will be produced. In an electron-positron collision,
one will typically be towards the direction of a quark and the other towards the
direction of an antiquark, due to them having equal momentum [7]. However,
in a proton-proton collider, the constituents of protons will carry some of their
momentum. This means that upon their collision, they may contain different
amounts of momentum, hence the jets will commonly be closer to each other.
Moreover, more jets may be produced if a high energy gluon is produced in
the process, in which case hadrons will be produced along it, as displayed in
Figure 3.

Figure 2: Electron and positron
producing a quark, anti-quark
pair [6]

Figure 3: Electron and positron
producing a quark and an anti-
quark in addition to a gluon [6]
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Figure 4: A typical three jet event
visualized [6]

Figure 5: A typical two jet event
visualized[6]

Figure 6: Hadronization and jet formation [6]
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2.1.3 Taus

Tau particle is the most massive of leptons, having the mass of approximately
1.7768 GeV, making it the only lepton that can possibly decay into hadrons.
A hadronically decaying tau has a detector signature that is similar to a quark
or gluon jet. However, specialized tau reconstruction algorithms are capable of
distinguishing them with an appreciable efficiency [8].

Tau Decay
Particle decay occurs when an unstable particle decays into several other parti-
cles. An important property of the particle decay is that the decayed particles
will be less massive than the original particle, however the total energy must be
conserved.

The typical tau decay is illustrated in the Figure 7. Approximately 65% of
the time, the tau will decay hadronically. The rest of the time it decays into a
tau neutrino, electron and electron neutrino or into a tau neutrino, muon and
muon antineutrino. However, there are two main difficulties with these type of
decays. The first one is the difficulty to determine that electron or muon indeed
came from tau to begin with. The second one is that additional neutrinos,
compared to hadronic decay, additionally reduces knowledge of tau’s original
energy and direction

Figure 7: Tau Decay

2.2 Machine Learning and CERN

The particle collider experiments at CERN attempt to uncover the unresolved
issues of the standard model and potentially discover new particles. Being
able to differentiate between the hypothetical particles and known particles in
simulated data by the use of in-depth analysis and machine learning methods is
a key part of this process. At the moment, the most commonly used machine
learning algorithms for this purpose are neural network and decision-tree based
algorithms. In this thesis, the focus will be placed on random forest algorithm
specifically.
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3 Thesis Outline

3.1 Research questions

The main question that this thesis will attempt to answer is whether currently
used ML models for separating background and signal data in high energy
physics can be improved. Specifically, can a custom, specialized loss function
improve the performance of a ML algorithms used in high energy physics? There
is a wide variety of different, conventional loss functions optimizing regular ML
models, based on different criteria. However, is it possible to develop a loss
function specific to the purpose of separating signal and background data that
outperforms the conventional ML methods?

In order to create an improved and specialized loss function, several prop-
erties of ML models will have to be considered. How are the models measured
and compared? What kind of impact does a custom loss function have in terms
of the results? Is it viable in practice? All of these questions will have to be
considered when assessing whether a new loss function increases the chances of
discovering new particles based on the data from the ATLAS experiment. To
answer them, the performance of different ML models will have to be carefully
compared and evaluated.

3.2 Research Methods

The most suitable research approach in this study is quantitative research. The
goal of using a different, specialized loss function in a machine learning model is
to directly improve its performance. Hence, upon training different ML models
with different loss functions, it is possible to directly assess their performance
based on selected performance measurements. The performance result is a col-
lection of quantitative data that can be numerically compared between different
models, allowing the aforementioned hypotheses to be tested.

In order to test whether a theoretical loss function is going to provide any
improvements, it needs to be applied in practice. To achieve it, different ML
models, using different loss functions will be implemented, trained, evaluated
and tested on the same sets of data.
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3.3 Plan For Evaluation

The evaluation of models’ results will mainly be performed by comparing sen-
sitivities of ML models using custom and conventional loss functions. Nonethe-
less, numerous steps must be taken into an account to ensure the integrity of
the evaluation. Since different loss functions attempt to maximize or minimize
different properties, it is likely that their performance is optimal using different
hyperparameters. Hence, a thorough hyperparameter testing is necessary for all
the loss functions tested and compared. Once the hyperparameter optimization
is completed, the best performing models for each of the loss functions can be
compared.

The goal of ML models developed and trained in this thesis is to achieve the
highest sensitivity possible. Hence, sensitivity measures provide the necessary
information regarding models’ performance in order to make just conclusions.
Other metrics, that do not take significant computational time, such as average
predictions, can be of interest in the early stages of development, as they provide
a general insight on the models’ performance. However, they do not have a direct
impact in making the conclusions regarding the models’ final performance and
results.

3.4 Thesis structure

The thesis will be divided into two core parts. The first part will focus on the
relevant background concepts. To begin with, an explanation of the ATLAS
experiment will be provided. This includes the goals of the experiment, how it
is performed, and lastly the details of the ATLAS detector. This section will
also contain the necessary information regarding the data that will be available
in this thesis, including an explanation of datafiles and their features. Lastly,
relevant machine learning concepts, such as decision trees and loss functions, in
addition to theory behind the custom loss function will be provided.

The second part will mainly focus on the analysis of ML models. Different
loss function will be applied to random forest and decision tree models, following
an in-depth optimization and hyperparameter tuning. The main focus will be
placed on assessing whether the custom loss function can provide better results,
when compared to the conventional loss functions. Lastly, the findings will be
discussed and presented.

3.5 Expectations

In the best case, the expected result for this thesis is to find a loss function
that provides a noticeable improvement over loss functions currently in use
for the background/signal separation. It is, however, impossible to guarantee.
Nonetheless, throughout a thorough experimentation and analysis process, sev-
eral hypotheses will be tested and documented. Despite whether the results
improve or not, a difference in the performance from conventional loss functions
is anticipated.
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3.6 Relevant Research

Using custom loss functions in the field of HEP has been attempted before.
Research done by Adam Elwood and Dirk Krücker, is one of such attempts,
which has played a considerable inspiration to this thesis [9]. In their research,
a custom loss function maximizing statistical significance has been developed,
presenting noticeable improvements in the performance.

The fundamental difference between the custom loss function developed in
this thesis, and in the research of Adam Elwood and Dirk Krücker is the un-
derlying ML algorithm used. The custom loss function in this thesis utilizes
the unique architectural properties of decision trees, whereas the loss function
developed and applied in the aforementioned research is used in neural network
algorithms. Despite that, a large inspiration has been taken from this research
in terms of the general idea to maximize the statistical significance.
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4 The ATLAS Experiment

4.1 LHC

Figure 8: The Aerial View of the Underground LHC [10]

The LHC (Large Hadron Collider) is a particle accelerator, having the length of
27 kilometres. As the name implies, the main purpose of LHC is to accelerate
and collide particles. In particular, it accelerates beams made of bunches of
protons with 1011 protons per bunch, close to the speed of light. The proton
bunches collide with the approximate frequency of 30MHz, each of them con-
taining up to 60 proton-proton collisions. This means that LHC can generate
up to 1 billion particle collisions per second.

The LHC is made of superconducting magnets to boost the energy of the
particles to be collided. The strong magnetic field provided by the supercon-
ducting magnets is necessary to guide the high-energy particles beams. In order
to ensure that the electromagnets are superconducting, they are chilled to tem-
peratures as low as 1.9K. Additionally, the pipes must be kept at an ultra-high
vacuum, which assists the particle beams in avoiding collisions with the gas
molecules inside the particle accelerator [1].
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4.2 Particle detectors

Figure 9: CERN’s Accelerator Complex [11]

As seen in Figure 14 represented by yellow dots, there are multiple detectors at
LHC, all of which are responsible for the capture of particle collisions. Despite
each of the detectors being fit for their particular purpose, their underlying
concept remains similar. The collisions occur within a detector, where each of
the decay-produced particles interacts with the detector material, depositing
their energy. By extracting information such as particles’ charge, momentum,
energy, direction and such, the type of decay-particles can be reconstructed.
This information can in turn be used to reconstruct the particles before their
decay.
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4.3 The ATLAS detector

Figure 10: The ATLAS Detector [12]

The ATLAS detector is 46 meters long and has the diameter of 25 meters, in
addition to weighting 7,000 tonnes. Although the ATLAS detector is complex
and consists of thousands of different parts, its general physical construction
can be divided into four key components: the inner detector, the calorimeter,
the magnet system and the muon spectrometer, each playing a crucial role in
extracting the information necessary to reconstruct the particles [2].

4.3.1 The Inner Detector

Figure 11: ATLAS Inner Detector [13]
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The inner detector is a key component of the ATLAS detector, which allows the
measurement of the direction, momentum, and charge of electrically-charged
particles produced during the collisions. The inner detector is made of a pixel
detector, a semiconductor tracker and a transition radiation tracker[14].

4.3.2 Calorimeter

Figure 12: ATLAS Calorimeter [15]

The main function of a calorimeter is to measure the energy of particles as they
pass through the detector. By using layers of absorbing, high-density materials
that stop incoming particles, the calorimeters are able to absorb the incoming
particles and force them to deposit their energy. The calorimeter’s layers are
also interleaved with active medium that measures their energy. The ATLAS
detector uses electromagnetic and hadronic calorimeters, placed at the centre
and at the end of the detector. The electromagnetic calorimeters measure the
energy of electrons and photons, whereas the hadronic calorimeters measure the
energy of hadrons.

Calorimeters are able to stop most particles, however not muons and neutri-
nos. Muons require different types of measurement, whereas neutrinos cannot
be detected by the ATLAS detector and appear as missing transverse energy
[16].
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4.3.3 Muon Spectrometer

Figure 13: ATLAS Muon Spectrometer [17]

Since muons pass through the inner detector and the calorimeter without being
stopped, there is a need for a different apparatus in order to measure their ap-
pearance. This task is performed by a muon spectrometer. The muon spectrom-
eter consists of Thin Gap Chambers and Resistive Plate Chambers, responsible
for triggering and 2nd coordinate measurement in the central region, Moni-
tored Drift Tubes, which measure the curves of the tracks, and lastly Cathode
Strip Chambers that measure precision coordinates at the end of the detector
[18]. Additionally, the muon spectrometer refines the precision of momentum
measurement.

4.3.4 Magnet System

Figure 14: CERN’s Accelerator Complex [19]
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The magnets in the ATLAS detector are needed to bend the trajectories of
charged particles, which allows the detector to measure their momentum and
charge for further analysis. The magnet system consists of two superconducting
magnets - solenoid magnet and toroid magnet.

The solenoid magnet surrounds the inner detector and is responsible for
bending charged particles to measure their momentum. The toroid magnets,
two of which are placed at the end-caps and one surrounding the centre of the
experiment, are used to measure the momentum of muons.

4.3.5 Cross-Section

Figure 15: Event Cross-Section in a computer generated image of the ATLAS
detector [20].

Figure 15 visualises ATLAS’ capture of particles from the perspective of its
cross-section. An electron will pass through an inner detector, leaving a track
and finally stopping at the electromagnetic calorimeter. A photon will also leave
a track at the electromagnetic calorimeter, however, it will not leave a track in
the inner detector. Since protons are part of the hardonic particles, they will
primarily interact with the hadronic calorimeter, however they also leave a track
of their path in the preceding layers of the detector. Similarly, neutrons are also
hadronic particles, hence they will also interact with the hadronic calorimeter,
depositing their energy there. However, unlike protons, they will not leave a
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track in the preceding layers. Muons will pass until the final layer of the detector,
muon spectrometer, leaving a track behind. Lastly, the detector is unable to
capture the presence of neutrinos. They leave the detector without leaving any
tracks and appear as a part of the missing energy.

4.3.6 Trigger Systems

The vast majority of events from the particle collisions do not contain data of
interest, that is, data that can lead to a discovery of new particles. Considering
this, and the fact that there’s approximately 109 interactions every second, a
data selection is needed for an efficient processing [21]. The trigger system in
ATLAS is designed to select data from the events that can be of interest.

The trigger system is split into two levels. The first level is hardware-base
and reduces the data from 40MHz to 100kHz. When assessing what data is
worth to be processed further, the trigger mainly considers certain parameters
from the calorimeter, using a calorimeter trigger, and muon spectrometer, using
a muon trigger. This process namely includes checking information regarding
electrons, photons, τ -leptons, Jet/Energy-sum and additional data from the
muon spectrometer [22].

The second level trigger is software-based, hence the decisions it makes are
significantly slower, however it enables more complex assessments. If the criteria
is met, the data is stored for offline analysis. At this point, the data has been
reduced to approximately 1000Hz.
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5 Data

The data, which will be used in this thesis, consists of simulated and real coun-
terparts. The data itself contains background and signal samples. The back-
ground samples consist of particle decays from known physics, whereas the signal
data consists of hypothesized exotic particle decay.

5.1 Simulated Data

The simulated data is necessary for numerous reasons. Unlike the real data, it
does not come from the actual ATLAS detector. Instead, it is simulated using
Monte Carlo simulations, based on current theoretical models. The simulation
occurs in the following steps [23]:

Event Generation: The simulation process begins by generating the collision
events. The final states of proton-proton collisions are generated based on
on theoretical calculations, phenomenological models and experimental
inputs.

Detector Simulation: Once the events have been generated, their interac-
tions within the ATLAS detector are simulated.

Digitisation: In this step, the data is written into a format similar to that of
the real output of the detector.

Reconstruction The same principles of reconstruction of the real data are
applied to simulated data.

The key difference between the simulated and the real data, apart from
the obvious of it being simulated, is that the simulated data contains labels,
providing concrete information regarding the type of decays that have been
simulated. This is the essence that allows the supervised machine learning
models to be applied for this problem.

The main purpose of ML models in this problem is to separate signal and
background data in the best way possible. In order to do so, the ML models
must learn the difference between the patterns of background and signal data.
In supervised machine learning, this requires data to be labelled, which the real
data from the ATLAS detector is not.

In addition, simulated data allows an in depth analysis of the models. Not
only is the signal and background data labelled in the simulated data, but also
each of the constituent of background; that is, each type of decay from known
physics. It provides the possibility of choosing the type of decays the background
data should consist of, and the hypothesis chosen for the signal. Lastly, as new
hypotheses arise regarding the exotic particles, it is possible to train the already
implemented models on new data.
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5.2 Real Data

The real data is the actual data as observed and reconstructed from the ATLAS
detector. It contains the same features as simulated data, however it has no
labels to follow along. Its main purpose in this thesis is to verify the integrity
of simulated data, as described in Section 5.6.

5.3 Data files

The data files used for training, evaluating and testing ML models in this thesis
consist of eleven background files and a single signal file. Each of the back-
ground files corresponds to a specific particle decay from known physics. The
background files and their descriptions are summarized in Table 1.

File name Description

diboson.MC16a.hdf5 Direct production of WW, WZ or ZZ

ttbar.MC16a.hdf5 Top and antitop quarks, produced as a pair

ttX.MC16a.hdf5
Top and antitop produced as a pair, and in addition either

W, Z, photon or an extra pair of top and antitop

singletop.MC16a.hdf5 Top and antitop quarks

wenu.MC16a.hdf5 W boson, decayed into electron and its neutrino

wmunu.MC16a.hdf5 W boson, decayed into muon and its neutrino

wtaunu.MC16a.hdf5 W boson, decayed into tau and its neutrino

zee.MC16a.hdf5 Z boson, decayed into electron and positron

zmumu.MC16a.hdf5 Z boson, decayed into two muon leptons

znunu.MC16a.hdf5 Z boson, decayed into two neutrinos

ztautau.MC16a.hdf5 Z boson, decayed into two tau leptons

Table 1: Description of datafiles
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5.4 Features

The available features in the dataset used in this thesis can be divided into three
main parts: weights, meta-information and active features.

Weight features
In general, weight features are needed to match the number of simulated events
to that of the real data. The difference in the amount of events is not acci-
dental, and can typically be attributed to the cost of simulating data, or rare
events being oversimulated, to get a better representation of possible variance.
Nonetheless, in this dataset, the counts of simulated data are adjusted by using
the following weights: Lumiweight, mcEventWeight and pileupweight. While
weights directly impact the decision-making process of models used in this the-
sis, they are not part of the active features that the models learn from.

Meta-information
As implied, meta-information features contain information about the data itself.
In this thesis, the feature SampleID has been used for data selection.

Active features
The active features include features that actively participate in the ML model
training process. The features, along with their explanations, are summarized
in the Table 2.
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Feature name Feature definition

tau n Numbers of taus in the event

jet n Numbers of jets in the event.

jet n btag Numbers of jets with a b-quark associated

mu n Numbers of muons in the event

ele n Numbers of electrons in the event.

met Missing Transverse Energy

met phi Orientation in radians of met in the XY-plane

ht
∑tau n

i tau i pt+
∑jet n

j jet j pt

meff met + ht

METoverPTMean MET
ht/(jet n+tau n)

METSig MET√∑
et

, where
∑
et is the scalar sum of energy in the transverse plane

object pt The transverse momentum of the physics object

object phi The phi angel of the physics object.

object eta Pseudorapidity of the physics object

object width ∆object phi2 + ∆object eta2

object mtMet
√

2 · object pt · Emiss
T · (1− cos(object delPhiMet))

tau 1 charge Electrical charge of first tau

sumMT

{
tau 1 mtMet+ tau 2 mtMet, if tau n ≥ 2

0 otherwise

Table 2: List of active features

5.5 Data cuts

Certain data cuts have to be applied to the simulated data to ensure its valid-
ity. Cuts, as described in the Table 3, have been applied for this purpose. In
particular, these cuts remove close to 100% of multi-jets, which is necessary, as
they tend to be poorly modelled by the Monte-Carlo simulation.
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jet 1 delPhiMet > 0.4

jet 2 delPhiMet > 0.4

jet 1 isBadTight == 0

jet 2 isBadTight == 0

Table 3: Data cuts applied in the ML analysis

5.6 Feature and simulated data validation

Simulated data is central in producing ML models. If there are severe discrep-
ancies between real and simulated data, the resulting model, which is trained
on the simulated data, may not provide adequate results when making predic-
tions on the real data, despite its performance on simulated data. Hence, it is
important to ensure that the simulated data is aligned with the real data and
that it meets general expectations.

One way of validating the simulated data is by using feature validation. In
this process, the distributions of different features of simulated and real data
are plotted and compared. For a chosen feature, each individual background
event is plotted as a stacked histogram, along with signal and real data. In an
ideal scenario, the ratio between simulated and real data would be equal to one,
meaning that they have the same distributions. It is, however, not always the
case. In the plots below, the ratio of simulated to real data is also displayed as
a separate figure, below histograms. In this case, the x-axis remains the same,
displaying the feature values, whereas the y-axis displays the simulated to real
data ratio.

This section will include an overview over the most important features, as
shall be discussed in upcoming sections. The full list of feature validation figures
is included in the Appendix B. In addition to the aforementioned data cuts, the
feature validation plots contain two additional data cuts, as described in the
Table 4. These cuts are necessary, to ensure that the data validation plots do
not contain real data that can potentially contain signal, as to avoid any bias.

met > 400 GeV

ht > 1000 GeV

Table 4: Data cuts applied in feature validation plots

31



Figure 16: Feature validation for feature met

Figure 17: Feature validation for feature METoverPtMean
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Figure 18: Feature validation for feature METSig

Figure 19: Feature validation for feature jet 1 pt
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Figure 20: Feature validation for feature sumMT

As seen from figures above, the quality of simulated data varies between the
features. The met feature has a satisfactory distribution. For the most part,
its simulated to real data ratio remains at approximately 1. It does, however,
have some deviations, where the ratio falls either above or below 1. The most
prominent deviations appear towards the end of the figure, at the highest energy
measurements.

While jet 1 pt feature has a good distribution in the early section, its qual-
ity falls off in with higher energy values. The amount of real data becomes
significantly lesser than its simulated counterpart, starting from approximately
jet 1 pt > 550000. As seen in Table 2, the variable jet 1 pt is a part of multiple
feature calculations. As a result, it is anticipated that the distributions of the
features related to jet 1 pt can be negatively impacted by its inconsistency with
the real data.

Features METoverPtMean and METSig follow similar patterns. In both
cases, their simulated to real data ratio is accurate in the midsection, however,
the ratio falls off in the low and high ends of their respective minimum and
maximum values.

Lastly, the feature sumMT is quite inconsistent with the real data. Up
until approximately 190 000 MeV, its distribution is adequate. However, as
the energy increases, the ratio consistently falls below 1. It is also one of the
features where real to simulated data ratios have the highest errors.

In general, simulated data ratios are sufficiently adequate, to the extent
where models, trained on simulated data, could be applied to real data as well.
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6 Machine Learning

In traditional programming, the underlying logic and rules, responsible for the
program’s behaviour, are created by the person writing the program. In machine
learning, on the other hand, the underlying algorithm is responsible for creating
the rules defining the program’s output, that are learned based on the data and
its results. Machine learning can be further divided into two general categories,
supervised machine learning and unsupervised machine learning.

Figure 21: Machine learning vs Traditional programming [24]

Supervised machine learning
Supervised machine learning is defined by its use of labels - the ground-truth
values for data. As a ML model is being trained, and data is ”fed” into it, the
labels are used to assess whether the model performs well. Supervised learning
includes a variety of ML algorithms, including neural networks, decision-tree
based algorithms, support vector machines and more.

Unsupervised machine learning
Unlike supervised ML algorithms, unsupervised ML algorithms do not use data
labels. Instead, they attempt to discover the hidden patterns in the data, utiliz-
ing data grouping. Different clustering algorithms, such as k-means clustering
and probabilistic clustering, and neural networks are examples of some of the
commonly used unsupervised ML algorithms [25].
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6.1 Decision Trees

Decision tree learning is a commonly used machine learning algorithm, which,
as implied, is based on the idea of decision trees. A simple binary decision
tree consists of a parent node, left and right children. The parent node is split
according to a certain criterion that maximizes a given loss function, such as
information gain for classification problems or variance reduction for regression
problems.

Binary decision tree building algorithms work by recursively splitting the
data into two subsets, based on the features available in the dataset. The
unique values of each of the feature act as thresholds, based on which the splits
are made. For categorial features, the dataset is split according to whether the
current data entry’s feature value is equivalent to that of selected threshold’s.
For continuos features, on the other hand, the data is split according to whether
the current data entry’s feature value is higher or lower than that of selected
threshold’s. Nonetheless, the resulting subsets are used to calculate the chosen
loss function, and the feature maximizing it is chosen as a tree branch. The
parent node is then split into two subsets, that become nodes of their own, for
which the process is repeated until an end condition is met. The end condition
typically is either a maximum depth achieved, a parent node not containing
enough data samples, or the chosen loss function not improving any more. At
this point, the node becomes a leaf node, which has an output and is able to
make a prediction. For regression problems, the output is the average value of
the dependent variable. For classification, the output is the majority vote of
dependent variables within the node.

6.1.1 Variance reduction

The most commonly used loss function for regression decision tree building is
variance reduction. The calculation of maximum variance reduction in a single
node works as follows:

• A feature and its threshold value are selected.

• The entire dataset of a parent node is split into two subsets, based on
whether the feature is lesser or greater than the selected threshold.

• The variance for both of the children and the parent node is calculated
using the following formula:

n∑
i=1

Wi(Xi −X) , (1)
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where:

Wi = The weight of the current data entry

Xi = The current data entry

X = The weighted mean of the current data entry

• Lastly, the variances of left and right children nodes are added, and the re-
sulting value is subtracted from the parent node, which results in variance
reduction score.

• The process is repeated for all the thresholds and all the features until the
maximum variance reduction is found.

6.1.2 Custom loss function

Motivation
Random Forest (RF) machine learning models, with the intention of separat-
ing complex signal and background data, typically use variance reduction loss
function as its basis. The process of using these models goes as follows:

1. A regression RF model is created and trained on selected data.

2. The model predicts evaluation or test data, resulting in predictions ranging
from 0.0 to 1.0, 0.0 indicating that the data is likely of background type
and 1.0 indicating that the data is likely of signal type.

3. A threshold is chosen for what to classify as signal and background.

4. Using this threshold, the regression model is used as a classification model,
predicting everything below the threshold as background and everything
above as signal.

5. Sensitivity values are then calculated for each of the threshold chosen. The
threshold providing the highest sensitivity is then selected to represent the
model.

The issue with this method and also the reasoning for the need of a custom,
specialized loss function is that the desired goal is not optimized directly. In this
case, variance reduction attempts to perfectly separate background and signal
data. However, this is not feasible in practice, due to the problem’s inherit
complexity. Therefore, sensitivity is used as the main metric to assess model’s
performance. Sensitivity is calculated as s√

s+b
, where s is the signal, correctly

predicted as signal and b is background, incorrectly predicted as signal. Briefly
said, sensitivity tells the likelihood of finding signal data. The idea behind
developing a custom loss function is to maximize the sensitivity directly, which
would also provide the model with a possibility to be used as a classification
model without any workarounds.
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Another drawback of variance reduction in HEP-related problems, is that it
places an equal emphasis to background, incorrectly classified as signal, and
signal, incorrectly classified as background, when assessing which split is to be
made. This does not accurately reflect the desired goal, as a model able to
provide clear regions of signal, at the expense of some of it being classified as
background is much preferred over a model that classifies most of the signal
correctly, at the expense of increase in background misclassified as signal.

Theory
The intention behind the custom loss function is to separate signal and back-
ground data as well as possible, while addressing the aforementioned problems
with variance reduction. Since the main priority of this loss function is to achieve
the least background misclassified as signal, while still providing a reasonable
overall separation, it is unlikely that it will provide a more homogeneous sep-
aration than variance reduction, which focuses entirely on it. However, if the
custom loss function is able to reduce false positives at an expense of an increase
in false negatives, it could still provide a better performance classifying regions
of signal.

The ability to separate signal from background is quantified by the signifi-
cance, approximated by the expression: s√

s+b
, which is also the core idea behind

the custom loss function. The hypothesis is that, if it is maximized for each of
the splits made, the machine learning model would not only be able to separate
background and signal, but also reduce the amount of background misclassified
as signal.

Implementation-vise, the theory behind the custom split is to maximize the
sensitivity in the right child nodes. Whenever a split is going to be made, the
increase in the sensitivity of the right child will be calculated and the split
with the highest increase will be chosen. In theory, this would result into the
rightmost nodes being most signal-like and leftmost being most background-like.
The idea can be visualized in the following figure:

Figure 22: Decision tree node split visualized
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, where:

S0
s = Number of signal entries in the root node

S0
s = Number of background entries in the root node

Si
s = Number of signal entries in the signal node after split i

Si
b = Number of background entries in the signal node after split i

Bi
s = Number of signal entries in the background node after split i

Bi
b = Number of background entries in the background node after split i

The custom loss function is then calculated in two ways. The first one, from
here on referred to as custom sum loss function, is calculated as:∑

k S
k
s√∑

k S
k
s +

∑
k S

k
b

(2)

The second one, from here on referred to as custom non-sum loss function, is
calculated as:

Sk
s√

Sk
s + Sk

b

(3)

The key difference between these loss functions is the custom sum loss function
taking into a consideration the intermediate nodes in its calculation. The custom
non-sum loss function, much alike other, traditional decision tree loss functions
takes into a consideration only the parent and its children nodes.

6.2 Random forest

Decision trees excel in runtime performance, and their implementation is rela-
tively uncomplicated. Despite that, it is unlikely for a decision tree algorithm
to provide adequate results for complex tasks on its own. However, decision
trees are also a basis of other, powerful machine learning algorithms that have
a potential to provide improved results for complex problems, one of such al-
gorithms being the Random Forest algorithm. Random forest is an ensemble
algorithm mainly based on the idea of Bagging .

Bagging, as a general idea in machine learning, refers to a variety of al-
gorithms that follow the principle of converting multiple weak learners into a
single, strong one. In the context of machine learning, a weak learner is a ma-
chine learning model that does not provide adequate results, however, it is also
one that surpasses a random guess. By creating multiple weak learners and
combining them together, the resulting learner has a potential to be a strong
one.
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One of the extensions of this idea, applied specifically to decision trees, is known
as random forest. In this case, a weak learner is a tree that only takes into a
consideration a few of the total features to be used in its learning process. Dif-
ferent trees are trained with different samples of features and data. An ensemble
of these trees is also known as Random forest [26].

The random forest algorithm works as follows:

I For each estimator, a tree is built:

i A random set of features based on max features hyperparameter is cho-
sen.

ii Data with replacement is sampled from the training data.

iii A decision tree is trained according to its parameters.

II A prediction is made:

i Each of the decision tree makes a prediction on the data.

ii The average value of the combined tree outputs is the output of the
random forest.
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6.3 Implementation

Libraries, commonly used for decision tree algorithms, are heavily optimized to
provide the best performance. At its expense, the ability to customize them,
such as by implementing a custom split criteria, tends to be limited. Therefore,
in order to test the hypothesis, the decision tree building algorithm was built
without the use of high level ML libraries. The tree building algorithm is based
on two main functions: one for building the tree itself (build tree) and one for
finding the best split(get best split).

Since the loss function is directly dependent on the counts of signal and
background entries, their weights have a direct impact on the implementation.
When calculating the amount of signal or background entries within a node,
their weighted counts are used, rather than the count of entries themselves.
This provides a more accurate representation of the data, based on which the
model learns its patterns.

1 def build_tree(self, dataset, curr_depth=0, s_s =0, s_b =0):

2 num_samples = dataset['summed_weight'].sum()

3 best_split = {}

4

5 if num_samples>=self.min_samples_split and curr_depth<=self.max_depth:

6 best_split, s_s, s_b =self.get_best_split(dataset, num_samples, s_s, s_b)

7

8 if best_split:

9 if best_split["var_red"]>self.min_split_gain:

10 right_subtree = self.build_tree(best_split["dataset_right"],

11 curr_depth+1, s_s, s_b)

12 left_subtree = self.build_tree(best_split["dataset_left"],

13 curr_depth+1, s_s, s_b)

14

15 return Node(...)

16

17 leaf_value = _get_avg(dataset['data_type'], dataset['data_weights'])

18 return Node(value=leaf_value)

The get best split function starts by checking whether the stop conditions are
met. These conditions include the weighted minimum samples in the current
split and the current tree depth. The model checks that the current depth and
minimum samples in a node are not higher than that, which has been specified
in the model’s parameters. If the stop conditions have been met, the current
dataset belongs to a leaf node. Therefore, the weighted mean is calculated by
the function get avg, which calculates the following:∑

i data[i] ∗ data weights[i]∑
i data weights[i]

, (4)

where:

data[i] = Data type of current data entry (0 for background, 1 for signal)

data weights[i] = The product of all the weights belonging to the current data entry
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If the stop conditions were not met, the function continues by recursively finding
new best splits at an increasing depth. By calling best split function, it receives a
dictionary containing information about the split, including the feature chosen,
left and right splits, improvement in the loss function and more. If the dictionary
is empty, it means that the model, after iterating through all features and
thresholds selected, was not able to find any improvements and thereby the
stop condition has been met again. If an improvement was found, however, the
model continues the process recursively for the left and the right children that
were provided by the best split dictionary.

1 def get_best_split(self, dataset, num_samples, s_s, s_b):

2

3 best_split = {}

4 new_s_s, curr_s_s = 0, 0

5 new_s_b, curr_s_b = 0, 0

6 max_all_feature_split_measure = -float("inf")

7

8 for feature in self.features:

9 feature_values = dataset[feature]

10 all_thresholds = self.get_reduced_threshold_list(np.sort(all_thresholds))

11

12 for threshold in all_thresholds:

13 dataset_left, dataset_right = self.split(dataset, feature, threshold)

14 if len(dataset_left)>0 and len(dataset_right)>0:

15 p, p_weights = dataset['data_type'], dataset['data_weights'],

16 r_c, r_c_weights = dataset_right['data_type'], dataset_right['data_weights']

17 l_c, l_c_weights = dataset_left['data_type'], dataset_left['data_weights']

18

19 current_feature_measure, curr_s_s, curr_s_b = self.custom_split_func(...)

20

21 if current_feature_measure > max_all_feature_split_measure:

22 best_split["feature"] = feature

23 best_split["threshold"] = threshold

24 best_split["dataset_left"] = dataset_left

25 best_split["dataset_right"] = dataset_right

26 best_split["var_red"] = current_feature_measure

27 max_all_feature_split_measure = current_feature_measure

28 new_s_s = curr_s_s

29 new_s_b = curr_s_b

30

31 return best_split, new_s_s, new_s_b

As its name implies, get best split function is responsible for finding the best
possible split. The function iteratively loops through all the features provided.
For each of the feature, the function extracts the possible values that a feature
may have, which then are used for the threshold selection. Due to performance
constraints, checking all the thresholds for all the features was deemed too time-
consuming. Therefore, a selected number of thresholds was chosen incrementally
increasing from the lowest to the highest value of the feature by the use of
the function get reduced threshold list. The implications of this constraint are
discussed in the Section 6.4.

Nonetheless, for each of the threshold, the dataset is split into two. The
left split contains all the data whose selected feature value is less than or equal
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to the threshold, and the right split contains the data with the feature value
higher than the threshold. The function then checks if there’s at least one data
entry in each node. If so, the split measure is calculated. If it is higher than
the current one, the best split dictionary is updated with the new information.
Upon iterating through all the features and all the thresholds, the information
regarding the best split is returned.

1 @jit(nopython= True, fastmath=True, parallel= True)

2 def _custom_split(parent, parent_weights, child, child_weights, s_s, s_b):

3

4 child_background_count_sum = s_b

5 child_signal_count_sum = s_s

6 weighted_signal_count, weighted_background_count = 0, 0

7

8 for i in range(len(child)):

9 if child[i] == 1:

10 weighted_signal_count += child_weights[i]

11 else:

12 weighted_background_count += child_weights[i]

13

14 child_signal_count_sum += weighted_signal_count

15 child_background_count_sum += weighted_background_count

16

17 measure_child = child_signal_count_sum / math.sqrt(child_signal_count_sum +

18 child_background_count_sum)

19 measure_parent = s_s / math.sqrt( s_s + s_b)

20

21 measure = measure_child - measure_parent

22

23 return measure, child_signal_count_sum, child_background_count_sum

The last tree building function used is the one responsible for determining
which split is the best one. The function custom split takes in the parent node
and its weights, the right child node and its weights, and lastly the total current
sum of signal and background count in the right nodes. The sum of signal and
background is updated based on the right child node. The measure is then
calculated by the equation (2), which is returned along with the updated signal
and background counts.

1 def make_prediction(self, row, tree):

2 if tree.value!=None: return tree.value

3 feature_val = row[tree.feature]

4

5 if feature_val<=tree.threshold:

6 return self.make_prediction(row, tree.left)

7 else:

8 return self.make_prediction(row, tree.right)

9

10 def predict(self, data):

11 predictions = [self.make_prediction(row, self.root) for (_,row) in data.iterrows()]

12 return predictions

Lastly, the function predict takes in a dataset and is responsible for gener-
ating predictions for each of the dataset’s entry. For each row in the dataset,
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it calls the function make prediction. The function make prediction utilizes the
tree that has been built and stored internally upon calling the build tree func-
tion. The initial tree value is equal to the root node. This means that tree.left
is equivalent to its left child, and likewise tree.right is its right child. Since, in
this implementation, only the leaf nodes have an output value, if the current
node does not have one, a prediction cannot be made using in. In such case,
the process continues by checking the feature and its value, based on which the
current node has been split on. If the feature value of the current data entry,
whose output value is being predicted, is less than or equal to the feature value
in the current tree node, the process is repeated with its left split, else the pro-
cess is repeated with its right split. Once a leaf node is found, the leaf value,
which is its weighted mean, is returned.

As for a short example, if a root node has found that it maximizes its loss
function with the following splits: MET <= 200000 and MET > 200000 for
left and right children respectively, and the MET value of the data entry/row
that is being predicted is 190000, the predict function will iterate to its left child
and then check the conditions of tree.left. The process would then be repeated
for the feature based on which the split has been made in tree.left, and so forth
until a leaf node has been reached.

1 def get_sensitivity_values(data, preds):

2 data['prediction'] = np.array(preds)

3 signal_data = data.loc[data['data_type'] == 1]

4 background_data = data.loc[data['data_type'] == 0]

5 thresholds = np.arange(0.0, 1, 0.025)

6 .

7 .

8 .

9 for threshold in thresholds:

10

11 signal_predicted_as_signal =

12 signal_data.loc[signal_data["prediction"] > threshold]['data_weight'].sum()

13

14 signal_predicted_as_background =

15 signal_data.loc[signal_data["prediction"] <= threshold]['data_weight'].sum()

16

17 background_predicted_as_background =

18 background_data.loc[background_data["prediction"] <= threshold]

19 ['data_weight'].sum()

20 background_predicted_as_signal =

21 background_data.loc[background_data["prediction"] > threshold]

22 ['data_weight'].sum()

23

24 sensitivity =

25 signal_predicted_as_signal / math.sqrt(signal_predicted_as_signal + background_predicted_as_signal)

26

27 sensitivity_measures.append(sensitivity)

28

29 if sensitivity > max_sensitivity:

30 max_sensitivity = sensitivity

31 max_sensitivity_threshold = threshold

32

33 return thresholds, sensitivity_measures, max_sensitivity, max_sensitivity_threshold

44



An important measure to consider when assessing the model’s performance is
its sensitivity. The sensitivity measures are calculated by the function
get sensitivity values. The function takes in data and their predictions generated
by the aforementioned make predictions function. The data is then separated
to signal and background respectively. For each of the threshold selected, rang-
ing [0,1] with increments of 0.025, signal predicted as signal, signal predicted
as background, background predicted as signal and background predicted as
background is calculated. In this case, a threshold is merely a value, which
defines what data is defined as signal and what data is defined as background
for classification purposes. Signal predicted as signal and signal predicted as
background are calculated by counting the weighted amount of data entries in
the signal dataset, whose predictions are respectively higher or lower than the
threshold chosen. Background predicted as signal and background predicted as
background are calculated the same way. The sensitivity is then calculated as
seen in the lines 25 − 26 in the code above. Additionally, the signal and back-
ground counts using the threshold value providing the highest sensitivity are
kept a track of. When plotting sensitivities, the x-axis represents the thresholds
and the y-axis represents the sensitivity value the model achieved with a specific
threshold.
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6.4 Implementation and performance assessment

Considering that the decision tree and random forest algorithms have been
implemented without the use of verified machine learning libraries, ensuring
their performance was essential. In order to do so, several techniques have been
employed.

Comparing decision tree models
The model consistency between custom and verified implementations has been
performed by training and comparing models implemented with Sklearn1 library
and models using a custom implementation. The models were trained and tested
on the same sets of data, and their performance and feature selection was com-
pared. The models also had the same parameters, however, the implementations
are not identical. Sklearn library, to which the custom implementation has been
compared to, is a heavily optimized, state-of-the art machine learning library,
hence, despite the core algorithm being the same in both of the implementations,
sklearn’s implementation has certain improvements over the custom implemen-
tation. Multiple constraints have been implemented in the custom version, in
order to provide better runtime performance, which is anticipated to have a
slight negative impact on the model’s performance.

As seen in Figure 23 and Figure 24, the decision tree performance between
different implementations supports the initial hypothesis that the custom im-
plementation will have a disadvantage in terms of final results. Despite both
models having the same parameters and using the same datasets, the custom
implementation had a peak sensitivity value of 1.749, whereas the sklearn’s im-
plementation had the peak sensitivity value of 1.817. The sensitivity plots are
also alike, and any inconsistencies between the two can be explained with the
decision tree graphs.

The decision trees graphs, displayed in Figure 25 and Figure 26, display the
features chosen by each of the model and the threshold they were split at. With
the exception of one feature, all the features chosen during the splits were the
same. Likewise, the thresholds for the selected features were also similar, and
aligned with expectations. The slight inconsistencies can be explained due to
aforementioned constrain issue with the custom explanation, or sklearn library
taking a different approach to weights in variance reduction calculation.

1One of the most common python ML libraries, also known as scikit-learn https://scikit-
learn.org/stable/
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Figure 23: Sensitivity plot of decision tree model, implemented using a custom
implementation

Figure 24: Sensitivity plot of decision tree model, implemented using sklearn
library
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Figure 25: Decision tree graph of decision tree model, implemented using custom
implementation
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Figure 26: Decision tree graph of decision tree model, implemented using sklearn
library
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Custom implementation assessment remarks
Custom implementation comparison to sklearn’s performance serves a purpose
as a high-level overview check. The custom implementation is not intended to
compete with sklearn’s implementation, as that is not the point of this thesis.
This comparison mainly provided an insight to the custom implementation, and
increases confidence that there are no significant issues within it, in terms of
performance achieved.

Verifying custom split choice
The verification of splits by the custom loss function has been performed by
manually splitting the data for each selected threshold into children nodes, cal-
culating the sensitivities achieved, and plotting the results. In this case, the
parent node was the entire training dataset, just as it would be for the root
node of a tree. In this process, just like in the tree building process, it has
been split into left and right children based on feature and its threshold. The
splitting process has been performed for each of the feature and its threshold,
and their sensitivity values have been calculated.

The Figure 27 below shows an example of the aforementioned process’ re-
sults, comparing two features that were able to achieve the highest, and second-
highest loss function values - sumMT and tau 1 mtMet. The y-axis represents
the custom loss function value, that is, the sensitivity of the right child node,
subtracted by the sensitivity of its parent node. The x-axis, on the other hand,
displays the particular threshold chosen. The title of individual figures also
includes the feature chosen, in addition to its sensitivity increase, at its best
performing threshold.

This test has been performed for two first splits, as made by the decision tree
building algorithm. The features selected, and the increases were found to be
matching the manual selection. However, this particular test was not only useful
for the split verification. It also provided an insight on the impact reducing the
amount of thresholds has on the final loss function value achieved. Testing every
unique value for each of the feature was neither feasible nor practical due to time
and performance constraints. As an example, the feature that is typically chosen
by decision trees for its first split, sumMT, has over 55000 unique values. As
a result, n threshold values have been selected incrementally from lowest to
highest for each of the feature. Such constraint is anticipated to have a slight
impact on the final performance.
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Figure 27: Comparison of top 2 features with the highest sensitivity increase
achieved
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Figure 28: Threshold reduction performance,
n = 10

Figure 29: Threshold reduction performance,
n = 50

Figure 30: Threshold reduction performance,
n = 100

Figure 31: Threshold reduction performance,
n = 300

The figures above display the differences in plots and peak results achieved by
testing n selected thresholds for a selected feature. The absolute difference in
the peak sensitivities achieved was not observed to be significant, and it did
not make an impact in the feature selected. However, it is still theoretically
possible that, when using a reduced amount of thresholds, a different feature
than the best one may be chosen. In this case, the difference in the performance
achieved between the two features would have to be minimal, or the feature
plots, as seen above, would have to have a sharp peak that could be skipped
with fewer thresholds. The first case is possible, however, that would also mean
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that the features provide more or just about the same amount of improvement.
The second case is also possible, yet, no such occurrence was observed in this
test.

As seen in the Appendix C, which displays the figures for all the active fea-
tures tested in custom split verification testing, many of the features follow a
similar pattern. The performance increases with each threshold until a peak
sensitivity is achieved, followed by a rapid decline. As an attempt to utilize
this fact, and to minimize the negative impact of reduced the amount of thresh-
olds, an alternative threshold selection approach has been tested. Using this
approach, the threshold would be tested starting at its minimum, and the loss
function value of n subsequent thresholds would be kept a track of. If n loss
function values have been consistently decreasing, the peak loss function value
before the decrease would be chosen for the split.

One of the issues with this particular method of threshold selection was the
fact that, when using a large quantity of thresholds, the increase towards the
maximum was not as steady as it seemed with a lower amount of thresholds,
visualized by the Figure 32.

Figure 32: Close-up of loss function values calculated for thresholds

This obstacle could possibly be solved by setting a minium amount that the
loss function calculation must decrease for it to count, however, it was also ob-
served that a few features do not follow this pattern, especially as the tree depth
increases. For example, the loss function values for the feature jet 1 mtMet, as
displayed in the Figure 33, falls steadily for lower thresholds, followed by a rapid
increase.
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Figure 33: Loss function value plot for feature jet 1 mtMet, n = 100

6.5 Development Tools

A variety of tools has been used throughout the entire model development pro-
cess. Some of which are typical to building machine learning models, others not
as much.

The main development platform has been a combination of Google Colab
and personal computer. Google Colab offers cloud computing, allowing for an
efficient execution of code. While being sufficient in the earlier iterations of the
project, its downsides shortly became apparent. The main downside being its
inability to guarantee access to a GPU, which eventually became a necessity to
perform thorough testing.

Despite the custom implementation using a GPU for the run time improve-
ments, the efficiency was not on a par to the state-of-the-art python ML libraries.
Building a new ML library was not the intention of this project. However, build-
ing models, whose run-time was sufficiently optimized, was a prerequisite for an
efficient and thorough experimentation and analysis. Nonetheless, this meant
that models were, to a reasonable extent given the circumstances, optimized
performance-wise. However, their runtime was nevertheless not sufficient for
google colab. As a result, there was an attempt to use a different cloud comput-
ing platform. The platform in mention is SWAN, provided by CERN. However,
it was to no avail. The main issue with it was the difficulty of finding library
compatibility with the pre-installed libraries. Hence, heavy computation has
been left to be done by the use of a personal machine, whereas less intensive
tests could still be performed by the use of google colab.
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The aforementioned library, which allows GPU utilization for python, is
called Numba. It allows translating python code into a highly-efficient machine
code at runtime, which in turn allows it to utilize GPU. It does, unfortunately,
come with its own drawbacks. The main drawback is the limitation of supported
data types. In order for python code to be translated to an efficient machine
code, it needs to use low-level data types. The Numba library supports the
following data types:

• Integers up to 64 bits

• Booleans

• Real numbers single-precision (32-bit) and double-precision (64-bit)

• Complex numbers single-precision (2x32-bit) and double-precision (2x64-
bit) complex numbers

• Datetimes and timestamps

• Character sequences (but no operations are available on them)

• Structured Scalars structured scalars made of the types above and ar-
rays of the types above

While Python is likely the most commonly-used programming language used
for machine learning, it is not the only one. However, despite the implementa-
tion not being limited to it, no satisfactory alternatives were found. Majority
of alternative ML libraries based on different programming languages still do
not support the custom implementation of loss functions, or they suffer from
other drawbacks. An attempt was made to use R programming language that
did, in fact, have a library supporting custom loss function implementation for
decision trees. However, it had issues with efficiently handling files of hdf5 for-
mat. In addition, it also had other drawbacks, such as comparatively slow data
processing. Considering this, and the fact that decision tree and random for-
est algorithms are well documented, a decision has been made to use Python
without the use of high level ML libraries.
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7 Decision Tree Analysis

7.1 Hyperparameter testing and model optimization

Despite the fact that it is not anticipated for decision tree models to perform
well on their own, a preliminary hyperparameter testing provides a general
overview over the loss functions’ performance. In addition, the computational
time of single decision tree is much lesser than that of random forest, or other
tree-based algorithms, allowing a relatively time-efficient testing.

7.1.1 Process

The hyperparameter testing has been performed with equal splits of training and
evaluation datasets, each corresponding to randomly sampled data, equivalent
to 25% of the total data and consisting of mixed background and signal entries.
It should be noted that this particular test is intended to provide a high-level
overview over the loss functions and not to make concrete conclusions regarding
the performance of loss functions tested. For this reason, no test dataset was
used to test the models that performed best on the evaluation dataset.

Nonetheless, the hyperparameter test included testing a combination of
depths of [5, 10, 15] and minimum samples split of [2, 20, 50, 100]. For each
of the hyperparameters, three regression models, representing each loss func-
tion tested, have been created and trained using the same parameters. The
first loss function is the control loss function - variance reduction, as defined in
Equation (1). Its purpose is to provide a baseline for custom loss function perfor-
mance comparison. The remaining loss functions are the custom loss functions,
defined by Equation (2) and Equation (3).

Upon training a model and getting their predictions for evaluation dataset,
sensitivities have been calculated and plotted as described in Section 6.3. An
example of such plot can be seen in the Figure 34.
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Figure 34: Sensitivity plots using different loss functions

7.1.2 Results

The results have been summarized in the tables below. For individual sensitivity
plots, refer to Appendix A.

depth\min split 2 20 50 100

5 4.26 4.23 4.26 4.16

10 3.68 4.20 4.24 4.25

15 2.68 4.06 3.94 4.13

Table 5: Peak sensitivities of variance reduction
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depth\min split 2 20 50 100

5 3.17 2.90 3.00 2.67

10 3.02 2.89 3.00 2.68

15 3.01 2.80 3.00 2.67

Table 6: Peak sensitivities of custom sum loss function

depth\min split 2 20 50 100

5 4.05 4.07 4.06 3.97

10 4.19 4.26 4.26 4.23

15 3.94 4.16 4.23 4.22

Table 7: Peak sensitivities of custom non-sum loss function

The initial results were not highly promising for the custom loss function. The
non-sum custom loss function had an on-par performance with variance reduc-
tion, resulting into the peak sensitivity of 4.26. The sum version, however,
resulted into a comparatively poor performance, having the peak sensitivity of
3.02. Apart from it, the results were in align with the expectations. It was
anticipated for the models having high depth and low minimum samples split to
underperform, as are prone to overfitting. Likewise, models with low depth and
high minimum samples split, were not expected to have the best performance,
as they are more likely to underfit the data.

7.2 Observations

Splitting the data with the sum custom loss function does indeed provide rela-
tively strong signal nodes in the right splits. However, it suffers from a major
drawback of classifying a large portion of the data with a few splits. If the model
only takes into a consideration the right splits and maximize their sensitivity,
it quickly becomes unable to find improvements in the left splits. This would
not be an issue if the model would reach the point at which the left-most nodes
would not contain a significant amount of signal. In practice, this does not
occur. As a result, a significant portion of signal is left at the same node as a
large portion of background, which cannot be further split using these criteria.

An example of a decision tree using the custom sum loss function can be
seen in Figure 35, which visualizes its key issues. The decision tree model in
this example is slightly different from the regular models. Instead of using all
the background files, only a single background file, ztautau.MC16a.hdf5, and
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a single signal file, G 1100 968 901 835.MC16a.hdf5, have been used. This
task is severely less complicated to solve for a ML model. The full background
dataset consists of 11 separate background files of varying sizes, meaning that
the signal to background ratio is typically significantly lower. Otherwise, the
process for the split is the same as it would be for the entire dataset, hence
the general patterns in the tree itself are similar. The end conditions for the
decision tree algorithm were: Minimum samples split: 20, Maximum tree depth:
3. The depth of the tree is low and likely results into underfitting, however
the purpose of this decision tree is to visualize the split process rather than
efficiently separate background and signal files.

The first line of the node shows the feature and its value, on which the split,
maximizing its loss function, has been made, followed by a ”?” and the value of
loss function for the split. If the value of a feature is less than or equal to the
selected threshold, the data is separated to the left child, else to the right child.
Each of the node also shows the intermediate count of weighted (having w as
a prefix) and unweighted background classified as background (denoted as b b),
and signal classified as signal (denoted as s s) counts. Lastly, the output of each
of the leaf nodes is the weighted mean of data type variable within them. The
data type is the dependent variable of this model. Its value 0 represents that
the data is of background type and 1 that the data is of signal type.

The first noticeable issue in the tree displayed in the Figure 35 is that,
despite the tree algorithm being allowed to reach the depth of 3, on the second
left split, it is unable to find improvements and stops the split before reaching
its maximum depth. As a result, the left-most node contains 176 signal entries
and 2657 background entries. This corresponds to approximately 42 percent
of the signal and 85 percent of the background. This isn’t an issue inherently,
as the main priority of the ML model is to get pure signal. Hence, if it is
able to classify the remaining signal with a high accuracy, the model could still
perform well. In practice, however, the impact of this issue is too great and is
heavily reflected on the model’s performance. It is also important to take into
a consideration that the optimal tree depth, maximizing the performance of the
model for this task, typically lies between 5 and 10. Hence, if the model fails to
find improvements after merely a couple of splits, it is likely going to underfit
the model. Apart from these issues, it can be seen that the theory itself works
to an extent. The right splits do indeed maximize their sensitivity, as seen by
high loss function values in the example decision tree below.
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Figure 35: Example of a decision tree graph using custom sum loss function



8 Random Forest Analysis

8.1 Random Forest Using Classification

8.1.1 Theory

In Section 6.1.2 it was mentioned that one of the possible advantages of custom
loss function is its ability to be used directly in classification models. This ap-
proach is closer to the nature of the custom loss function, as it already classifies
right leaf nodes as signal nodes, and left as background in its decision-making
process. In this case, the output of the leaves will no longer be the weighted
average of the data type parameter, which indicates whether a particular data
entry is a background or signal. Instead of the prediction output being in the
range [0, 1], the output will be the either 0 or 1. If the majority of data in a tree
leaf is of signal type, the output will be equal to 1 and likewise, if the majority
is background, the output will be equal to 0. The performance comparisons
will still be performed with variance reduction regression models using thresh-
olds for classification purposes, as it provides better results than a regular RF
classification model using information gain.

8.1.2 Process

Initial testing was performed to test the general viability of using RF models as
binary classification models, without placing an emphasis on getting definitive
conclusions regarding the general custom loss function’s performance. In depth
hyperparameter testing will be conducted in later sections. Nonetheless, the
viability of using RF models as classification models directly has been performed
by comparing classification RF models using custom sum loss function and
regression models using variance reduction.

Note that, the reason for the variance reduction models being regression
models initially, and only then being used as classification models, is because it
generally provides better results in terms of peak sensitivity achieved. By se-
lecting different thresholds for signal and background classifications, the precise
threshold maximizing sensitivity can be chosen to represent the model. This is
a common approach for maximizing sensitivity in HEP, that is not limited to
random forest models.
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8.1.3 Results

The figures below display the following information:

• Graphs for the weighted variance reduction. The x-axis represents the
selected threshold, and the y-axis represents the sensitivity achieved using
it.

• Maximum sensitivity achieved with RF regression model using weighted
variance reduction (displayed in the title).

• Maximum sensitivity achieved with RF classification model using the cus-
tom sum loss function (displayed in the title).

• The maximum depth and minimum samples split parameters of the model
(displayed in the title).

In addition, the counts of weighted signal classified as signal and background
classified as signal were computed for both of the loss functions. In case of
variance reduction, the threshold providing the highest sensitivity was selected.

Lastly, the RF model had the following parameters:

• Each tree considered 50, linearly increasing, unique thresholds from each
of the feature when assessing which feature should be selected for the split.

• 30 total features were used. Each individual tree was assigned 6 randomly
chosen features.

• Each tree was trained with 50% of the total training data.

• There were 15 total decision trees in the assembly of RF.

• Maximum depths of [3,6] and minimum samples split of [5, 20, 100] were
tested.

• The sum-version of custom loss function was used.

• The models were tested on 50% of the total data.

62



Figure 36: Sensitivity comparison of RF models using custom sum and variance
reduction loss functions for different minimum splits, using depth 3
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Figure 37: Sensitivity comparison of RF models using custom sum and variance
reduction loss functions for different minimum splits, using depth 6
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The results are summarized in Table 8. The table compares the maximum sen-
sitivity (max sens), weighted signal, correctly classified as signal (w s s) and
background, incorrectly classified as signal (b s s) using the best performing
models for different loss functions respectively. The difference in the sensitiv-
ities of models using custom loss function and variance reduction was approx-
imately 0.731, with the custom loss function providing a better performance.
The difference is substantial, however, the tests performed were not in depth,
and additional analysis must be performed to make trustworthy conclusions re-
garding custom loss function’s performance. Nonetheless, this test did confirm
the ability of using custom sum loss function for classification models directly,
which was the main intention of this test.

w s s b s s max sens

Custom loss function 136 772 5.342

Weighted variance reduction 103 400 4.612

Table 8: High-level performance comparison between custom loss function and
variance reduction

Note that, an ensemble of 15 trees is generally considered low, and RF models are
expected to provide significantly better results with more estimators. However,
the intention of this test was to evaluate the general viability of RF models
being used as a classification models with the custom loss function. In-depth
hyperparameter testing will be performed in upcoming sections.

Hyperparameter testing has also been performed using the of the non-sum
custom loss function with a classification model. However, it provided under-
whelming results. The peak sensitivity remained at approximately 1.5, with
close to no responsiveness to the changes in parameters. In comparison, a regres-
sion model using the custom loss function and the same parameters, provided
maximum sensitivities of approximately 5.0.

8.2 RF performance fluctuation testing

8.2.1 The need for consistency

Previous testing indicates that the custom loss function has a potential to out-
perform traditional loss functions in achieving higher peak sensitivities. How-
ever, in order to achieve reliable conclusions, a thorough hyperparameter testing
is necessary. For the hyperparameter testing to be meaningful, there is a need
for consistent results. The deviations in models’ performance may occur for
several reasons, most of which can be attributed to the inherent randomness of
random forest, in addition to workarounds used for performance improvements.

Since random forest uses a random selection of features and dataset samples
for its trees, its performance can vary significantly if an insufficient amount of
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trees has been used within a forest. The best way to minimize this risk is to
increase the number of trees. The more trees a random forest has, the less likely
it is going to be made of majority weak trees due to its randomness. If a low
amount of trees is combined with a high amount of features, large deviations in
performance may occur.

In the previous section, an ensemble of 15 trees has been used, each of them
selecting 6 random features out of 30 available. Considering the low amount
of trees and high amount of features, the model was a likely candidate for the
aforementioned problem.

8.2.2 Intermediate results

To test RF fluctuations, multiple RF models with the same parameters have
been created. Despite having the same parameters, train and test datasets, the
models chose different, random set of features and dataset samples for their
individual trees. Figures below display information for the performance fluctu-
ations. The y-axis represents the peak sensitivity of each of the model and the
x-axis represents nth model.

Figure 38: Deviations of peak sensitivities for RF models using same parameters
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Variance Reduction Custom Sum Loss Function

Run 1 3.83 4.71

Run 2 3.74 4.17

Run 3 3.94 3.24

Run 4 3.92 4.26

Run 5 3.77 3.99

Table 9: Deviations of peak sensitivities for RF models using same parameters

Five runs were sufficient to ensure that a significant deviation exists between
each of the model’s results. The maximum sensitivities achieved by the model
using custom loss function varied between 3.25 and 4.71. This difference is
substantial enough for the custom loss function to go from overperforming to
substantially underperforming when comparing it to variance reduction. Due
to the lack of consistency, the hyperparameter tests of tree depth and minimum
samples split do not provide trustworthy information regarding the performance
of loss functions themselves. Despite that, it does not take away from the fact
that the custom loss function has a potential to outperform variance reduction
in certain scenarios, but merely that it is not consistent using current RF param-
eters. Variance reduction, on the other hand, did not have significant deviations
in its performance. Its worst performing model had the sensitivity of 3.74 and
best performing model had the sensitivity of 3.94.

8.2.3 Potential Solutions

In order to tackle these issues, several options may be considered. The first one
being to increase the number of trees within a RF. This option is an ideal one
theoretically, yet a challenging one practically. Using current custom implemen-
tation of random forest and decision trees, RF models having as low as 15 trees
can take several hours to test, depending on the tree depth used. Increasing
this amount will also increase the runtime, which makes the overall testing slow
and impractical. A solution to it would be to optimize the code’s performance.
However, the current python code is already heavily optimized and uses GPU
for calculating the loss function and other available helper functions. For further
optimizations, the code would have to be rewritten in a more efficient language,
such as C++.

Another possible solution is to reduce the training data for individual trees,
which would allow using a larger ensemble of trees. This method has a risk of
individual trees underfitting the data, however, it has a high potential to improve
the performance at a low implementational cost as compared to rewriting the
code in a different language.
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A different approach to this problem is to remove the least significant fea-
tures. This method is also known as dimensionality reduction. It is possible
that, by choosing a set amount of the most important features that individual
decision trees tend to pick first, the resulting RF will end up with fever indi-
vidual trees that perform poorly. However, this method comes with a potential
risk of a decrease in model’s performance.

8.2.4 Preliminary dimensionality reduction

The Table 10 and Figure 39 below show the performance of the same five RF
models, using the same hyperparameters. However, in this case, the number of
available features has been reduced from 30 to 12 most commonly used ones.

Variance Reduction Custom Sum Loss Function

Run 1 2.63 2.92

Run 2 3.01 2.72

Run 3 2.82 2.69

Run 4 2.73 2.67

Run 5 2.83 2.84

Table 10: Deviations of peak sensitivities for RF models using 12 most important
features
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Figure 39: Deviations of peak sensitivities for RF models using 12 most impor-
tant features

The initial test of reducing the amount of available features did indeed reduce
the fluctuations in the peak sensitivity significantly. The difference between the
maximum and minimum maximum sensitivities between the different models
was merely 0.25, as opposed to 1.46 in the previous runs. However, a severe drop
in the peak sensitivity has been noticed. Using a higher amount of features, the
best performing model had the peak sensitivity of 4.71, whereas using reduced
features, it has dropped to 2.92. The overall average sensitivity has dropped
from 4.07 to 2.75 for the custom sum loss function and from 3.82 to 2.80 for
the variance reduction. Such a large decrease is unlikely to be caused merely by
randomness, as it appears prominent in both: variance reduction and custom
loss function.

Nonetheless, the features removed were selected by manual inspection of de-
cision trees and their features chosen within the forest, which is not optimal.
Further, in-depth dimensionality reduction has been performed by first imple-
menting feature importance calculations into the decision tree and random forest
models.
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8.2.5 Increasing the number of estimators to 30

The next attempted solution for increased model stability was increasing the
number of estimators of a RF model by the factor of 2, while at the same time
reducing the data per tree by the same factor, for the sake of runtime. It must
be noted that, since the fluctuations in the variance reduction models have not
been significant so far, the efficiency of increased number of estimators within
a RF was only tested on the custom loss function.

Figure 40: Deviations of peak sensitivities for RF models using 30 estimators

The Figure 40 above displays fluctuations of models using custom sum loss
function. The number of estimators has been increased to 30 from 15, and
the training data percentage has been reduced to 25% from 50%. Despite the
higher amount of estimators, the models still had relatively high fluctuations in
the peak sensitivities achieved. Nonetheless, a noticeable improvement in the
sensitivities produced by the models using this combination of RF hyperparam-
eters can be observed.

8.2.6 Balanced dataset and alternative weighting

As the results did not yet indicate consistency between RF models with same
parameters, further testing and other improvements had to be considered. One
of them was to use a balanced dataset. Since RF models use a random sampling
of the data, selected from the entire train dataset, it was expected for models
to have different data distributions. This is not an issue inherently. In fact, it is
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one of the advantages of the random forest algorithm, as it provides additional
diversity between the trees. Nonetheless, an important fact to consider is that,
while the goal of the model is to differentiate between the background and the
signal data, the background data is sampled from a set of individual background
files, corresponding to different simulated particle decays. Hence, choosing data
completely at random has a potential to cause a discrepancy between RF models’
performance, especially if a relatively low amount of estimators is used.

In order to test the impact this idea has on the RF models’ performance
and their fluctuations, a different approach of data sampling has been tested.
Instead of selecting data completely at random, it was selected similarly as
when splitting the data into training, validation and test datasets. Each of the
background data sample was given a unique identifier, which allowed to select
the same percentage of data from each of individual samples. As a result, each
tree within a RF model will have an equal amount of each of the background
data type, while still choosing random samples. Additionally, it also ensured
that each tree had a some signal data in it.

Moreover, a different approach to tree voting has been tested. Instead of
each tree’s vote being equal, their votes were weighted based on their peak
sensitivities. This means that, when making the final decision whether a sample
is signal or background, the votes of the trees that performed well will be more
impactful in comparison to trees that performed poorly.

Figure 41: Deviations of peak sensitivities for RF models using balanced dataset
sampling
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The Figure 41 above displays the deviations of RF models using the same depth
and minimum split parameters in addition to 30 estimators. The models were
trained with a balanced dataset consisting of 25% of the total training data.
The blue plot represents the models trained with their votes weighted accord-
ing to their sensitivity, and the yellow plot represents the models with regular
voting. The results were unanticipated, as the difference in the peak sensitivi-
ties between the best and worst performing models increased in comparison to
unbalanced datasets. The difference between the lowest and highest performing
models’ sensitivities was as large as 1.6, whereas using the unbalanced dataset
the difference was 0.9. There is a possibility of the lowest performing model
being a heavy outlier, as no other models using the same parameters were ob-
served to have such a low peak sensitivity. However, even if this was the case,
the peak sensitivities would still be approximately that of unweighted dataset
in this case. Hence, using this particular combination of hyperparameters, no
observations of improvement of balanced dataset were noticed. There were also
no noticeable improvements in different tree vote weighing during this test.

8.2.7 Feature importance

It is possible to get a better insight into each individual RF model’s decision-
making process by the use of feature importance. The feature importance was
calculated by analysing the features chosen of each individual tree within the
forest. When a split was made within a tree, the selected feature was assigned
a value, equal to the loss function’s calculation. For custom loss functions, this
meant sensitivity increase, and for variance reduction it meant the decrease in
variance between children and parent nodes. This means that, a feature with a
high feature importance value will be one that was chosen often and provided
a high increase in sensitivity, whereas a feature with a low feature importance
value was either not chosen often or did not provide a significant increase in
sensitivity.

Figure 42 displays an example of feature importance graph, showing feature
importance from the first model of Figure 41.
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Figure 42: An example of initial feature importance plots
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8.2.8 Increasing the number of estimators to 60

The fluctuations with balanced and unbalanced datasets have also been tested
using 60 estimators, training each estimator with 12.5% of training data. The
results of this test are summarized in Figure 43.

This combination of tested parameters provided most consistent results,
while not having a negative impact regarding the peak sensitivity achieved.
Using a balanced dataset, represented by the blue plot in the figure, the differ-
ence in peak sensitivity achieved between the worst and best performing models
was equal to 0.79. Using an unbalanced dataset, represented by the orange plot
in the figure, the difference was even lower at 0.55.

Using a balanced dataset did not seem to provide noticeable, if any, im-
provements in achieving more consistent results. It also provided worse average
results, however, the difference was not significant. Nonetheless, RF models
with a balanced dataset had the mean sensitivity of 6.15, whereas the models
with an unbalanced dataset had an average of 6.33. The difference in sensi-
tivities could very well be caused by the fluctuations of the models, however,
since using a balanced dataset did not seem to provide any improvements, an
unbalanced dataset will be used for upcomming tests.

Figure 43: Deviations of peak sensitivities for RF models using 60 estimators
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Another point to notice is that, while the sensitivities had relatively low
fluctuations, the feature importance graphs for the best and worst perform-
ing models were quite different. In the worst performing model, the feature
tau 1 mtMet was the most important one, closely followed by sumMt. In the
best performing model, sumMt feature had a clear difference in its importance
among other features. Otherwise, with some exceptions, the selection of the
most important features was similar among the models.

The fluctuations of non-sum version of custom loss function have also been
tested. However, as it did not provide adequate results when being used as
a classification model, it has been used as a regression model using different
thresholds for classification instead. The model has been tested with 30 esti-
mators and 25% of data per model, and 60 estimators and 12.5% of data per
model.

As seen in Figure 44 and Figure 45, the fluctuations were not as severe as
when using sum custom loss function in both cases. The difference in peak
sensitivities using 30 estimators was merely 0.22, however it increased to 0.775
using 60 estimators. Based on this information, it can be concluded that 30 es-
timators using 25% provides adequate and consistent results using the non-sum
version.

Figure 44: Sensitivity deviations using custom non-sum loss funcion with 30
estimators
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Figure 45: Sensitivity deviations using custom non-sum loss funcion with 60
estimators

8.2.9 Remarks

While the tests described above did provide an insight into RF models’ con-
sistency, several points have to be taken into an account. The computational
limitations were always a key factor in deciding models’ parameters. Each of the
fluctuation test has been performed by the use of same decision tree parameters:
tree depth of 3 and minimum samples to split of 20.

The reason behind choosing this particular set of decision tree parameters is
that, due to the previous tests performed, it was known that RF models with
these parameters were able to provide adequate results for all the loss functions
tested. In addition, the tree depth has a major impact on the runtime of models.
With the current depth and other RF hyperparameters as described above,
a five model fluctuation test has a runtime of approximately 5 hours. That
means, testing the fluctuations for 2 different loss functions has the runtime of
approximately 10 hours for a single combination of RF hyperparameters.

Had the runtime not been a limiting factor, more adequate tests could be
performed. This includes testing different depths and minimum splits, different
training percentages for trees, different amount of features chosen and additional
runs, which would provide definitive results. However, this was not feasible due
to runtime constraints. Conversely, if the runtime was not an issue, there would
also be no need to test the consistency of the models. Random forest is inher-
ently supposed to fluctuate to a certain extent. By minimizing those fluctua-
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tions, it is possible that the peak performance could also be potentially reduced.
At the end of the day, it is desired to find a model with the best performance,
despite the fluctuations. The model’s state, its chosen data and features for
each tree could then be easily extracted, replicating the best performing model,
which could then be used on real data.

In a theoretical scenario where runtime was not an issue, the preferred ap-
proach in tackling the inherent inconsistencies of RF models would be to create
multiple models for each set of hyperparameters tested and choose the best
performing one. However, this is not feasible with the current constrains.

It is also important to note that RF model performance depends not only on
its own parameters, but also greatly on the parameters of the individual decision
trees it consists of. The following parameters are the main ones contributing to
the model’s performance:

• The number of estimators of in a random forest.

• The train percentage of individual trees within the forest.

• The maximum depth of the trees within the forest.

• The minimum amount of samples split for trees within the forest.

If we were to test 3 different parameters for each of the point listed above,
that would make 34 or 81 combinations. Testing 5 models for each of them and
picking the best performing one, would be equivalent to making 405 models.
Additionally, the tests would have to be performed using 3 different loss func-
tions, resulting into 1215 total models. If the approximate runtime of a single
model, which also depends on the parameters themselves, is 40 to 60 minutes,
testing would require 48 600 minutes or approximately 34 days.

Fluctuation testing provided a certain level of guarantee of the model’s per-
formance, taking out two of the parameters out of the equation. Nonetheless,
this does not mean that the fluctuations are non-existent. Rather, they are an-
ticipated to be low enough to the point where conclusions can be made regarding
the loss function themselves and not the parameters of the RF.
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8.3 Hyperparameter testing using reduced fluctuations

Using information gained from the fluctuation testing, it was now possible to
test other hyperparameters, namely tree depth and minimum samples split, with
a higher level of confidence for the result consistency. Parameters of number of
estimators and train percentages were chosen accordingly to ones providing the
least fluctuations and best performance for each of the loss function. In total,
the following loss functions and RF parameters were tested:

• Custom sum loss function, unweighted tree voting

• Custom sum loss function, weighted tree voting

• Custom non-sum loss function

• Variance reduction using 30 estimators and 25% train percentage

• Variance reduction using 60 estimators and 12.5% train percentage

For each of the loss function, a combination of depths of 3, 5 and 7, and
minimum samples split of 2, 10, 50 and 100 were tested, making a total of 12
models per loss function.

8.3.1 Results

The tables below summarize the peak sensitivities achieved with a specified
combination of depth and minimum samples split parameters.

depth\min split 2 10 50 100

3 6.23 6.60 5.85 6.13

5 6.06 6.10 6.10 5.89

7 6.10 6.30 6.40 6.15

Table 11: Hyperparameter test results using weighted custom sum loss function

depth\min split 2 10 50 100

3 6.37 6.69 6.00 6.08

5 6.24 6.16 6.24 6.04

7 6.20 6.34 6.38 6.25

Table 12: Hyperparameter test results using unweighted custom sum loss func-
tion
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depth\min split 2 10 50 100

3 5.75 5.86 5.80 5.39

5 5.67 5.98 6.16 5.41

7 5.18 5.96 6.09 6.16

Table 13: Hyperparameter test results using custom non-sum loss function

depth\min split 2 10 50 100

3 5.20 5.55 5.11 5.01

5 4.99 5.95 4.54 5.91

7 5.18 4.76 5.36 5.00

Table 14: Hyperparameter test results using variance reduction with 30 estima-
tors and 25% train data per tree

depth\min split 2 10 50 100

3 4.72 5.59 5.62 5.70

5 4.96 5.24 5.57 6.08

7 4.00 4.30 5.58 5.95

Table 15: Hyperparameter test results using variance reduction with 60 estima-
tors and 12.5% train data per tree
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Loss function Parameters Sensitivity s s b s

Weighted custom sum depth: 3, min split: 10 6.60 120 203

Unweighted custom sum depth: 3, min split: 10 6.69 126 228

Custom non-sum depth: 5, min split: 50 6.16 154 470

Weighted variance reduction depth: 5, min split: 10 6.08 140 390

Table 16: RF model performance comparison using different loss functions and
corresponding best depth and minimum samples split hyperparameters

Table 16 summarizes the results from all the tables shown above. The best
performing model using custom loss function had peak sensitivity equal to 6.69,
whereas the best performing model using variance reduction had the peak sensi-
tivity of 6.08. This means that the custom loss function did provide an increase
in the peak sensitivity achieved by approximately 10.03%. Additionally, the
custom loss function had a severe decrease in background incorrectly classified
as signal. The amount has decreased by approximately 58.46%, whereas the
amount of signal correctly classified as signal has only decreased by 10.0%.

Another point to notice is the average sensitivity for any combinations of
parameters. Using the custom sum loss function, only two of the models with
different combinations of hyperparameters achieved sensitivity less than 6.00, as
seen in Table 12. In comparison, out of all the models using variance reduction,
only a single one was able to achieve sensitivity higher than 6.00, as seen in
Table 15 and Table 14.

To ensure that the difference in sensitivities for different loss functions is not
caused by fluctuations, the models using parameters of best performing models
were trained and tested multiple times, similarly as in fluctuation testing.
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Figure 46: RF model deviations in peak sensitivities using different loss func-
tions and corresponding best hyperparameter combinations

As seen from the Figure 46 above, noticeable fluctuations in the performance
of models of non-sum custom loss function and variance reduction can be ob-
served, despite the models having the least fluctuations during the fluctuation
testing. Including the first tests, the peak sensitivity of best-performing variance
reduction model ranged from 5.29 to 6.08 and the sensitivity of best performing
model using custom loss function ranged from 6.34 to 6.69. The most likely
explanation for it is the fact that the fluctuation testing was performed with a
set depth and minimum samples split parameters in order to keep a reasonable
experimentation runtime. Therefore, by changing these parameters in hyperpa-
rameter testing, additional fluctuations may occur.

Nonetheless, with the extra confidence provided in the results of different loss
functions, it is now possible to compare models’ feature importance distribu-
tions. There exists a noticeable difference in the features selected by the model
using variance reduction, however, the difference is not as prominent between
the different versions of custom loss function.

Additionally, the feature values in feature importance plots are now averaged
according to the number of times a feature has been randomly selected. This
provides more consistent results, by separating feature importance from the
randomness of the random forest.
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Figure 47: Feature importance distributions for different loss functions
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8.4 Increasing the number of features

Previous random forest tests have been performed using a set amount of features
equal to d√pe, where p is the number of total available features. Since 30 initial
features were used, this resulted into each tree being trained with 6 features
each. However, the number of features per tree is also a parameter to be tested,
as it can directly influence the model’s performance.

The effect increased number of features per tree has on the final performance
of the model has been tested by increasing the number of features to 9 and 15.
The test involving 9 features per tree has been performed with maximum depths
of 3, 5 and 7, and the best matching minimum samples split parameter, based
on the performance in the prior hyperparameter testing. For models using 15
features per tree, the test was limited to a single combination of depth and
minimum samples split, due to runtime constraints. The results of this test are
summarized in the tables below.

parameters\number of features 6 9 15

depth: 7, min split: 100 6.16 6.07 5.95

depth: 5, min split: 50 6.16 5.47 x

depth: 3, min split: 10 5.86 5.26 x

Table 17: RF model performance comparison with different amount of features
selected per tree, using custom non-sum custom loss function.

parameters\number of features 6 9 15

depth: 7, min split: 50 6.38 6.27 5.75

depth: 5, min split: 2 6.24 4.92 x

depth: 3, min split: 10 6.69 6.03 x

Table 18: RF model performance comparison with different amount of features
selected per tree, using custom sum loss function
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parameters\number of features 6 9 15

depth: 7, min split: 50 6.40 6.31 6.37

depth: 5, min split: 2 6.06 4.69 x

depth: 3, min split: 10 5.60 5.86 x

Table 19: RF model performance comparison with different amount of features
selected per tree, using custom sum custom loss function with weighted voting.

parameters\number of features 6 9 15

depth: 7, min split: 100 5.95 5.80 5.74

depth: 5, min split: 10 5.57 4.73 x

depth: 3, min split: 50 5.59 5.84 x

Table 20: RF model performance comparison with different amount of features
selected per tree, using variance reduction

Before assessing the results, it is important to note that, if sensitivity dif-
ferences between models trained with different amount of features per tree are
not substantial enough, they can be outweighed by the model’s fluctuations. To
minimize this risk, the test has been performed for several sets of hyperparam-
eters, which reduces the effect of model fluctuations. Nonetheless, there was
no noticeable improvement in models’ performance by increasing the amount of
features per tree.
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8.4.1 Dimensionality reduction utilizing feature importance

Dimensionality reduction has been attempted before. However, there are a
couple of issues with the initial approach. Most importantly, the custom im-
plementation lacked the option of calculating the feature importance. Without
accurate feature importance information, it cannot be guaranteed that the re-
moved features were, in fact, insignificant. Moreover, the amount of features
removed was quite drastic, despite them seemingly being not important by man-
ual inspection. Therefore, a different approach has been taken this time. Instead
of selecting a number of best performing features, a number of the worst fea-
tures has been removed, in accordance to the feature importance information
acquired from the previous analysis. By utilizing feature importance plots, the
likelihood of removed features being important was substantially reduced.

Using this approach, 6 features were removed, all of which had a low im-
portance value for every of the loss function used. The removed features were the
following: tau 1 ntracks, mu n, ele n, jet 1 eta, met phi, tau 1 phi, tau 1 charge.

Using the reduced features, model tests have been performed using the best-
performing combination of hyperparameters for each of the loss function used.
The results are summarized in Table 21.

Reduced features All features

Custom non-sum 5.82 6.16

Custom sum, unweighted 6.35 6.69

Custom sum, weighted 6.17 6.60

Variance reduction 4.89 6.08

Table 21: RF performance comparison using reduced features (-6)

The resulting peak sensitivities using reduced features were slightly lesser in
comparison to using a full feature set. However, an important factor has to be
taken into a consideration. As observed from the previous fluctuation testing,
the sensitivities tend to fluctuate even with same parameters, hence fluctuation
testing was also performed with the reduced features, as seen in Figure 48.
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Figure 48: Deviations of peak sensitivities for RF models with reduced features
(-6)

Comparing Figure 48 and Figure 46, it can be noticed that the decrease
in the peak sensitivities for different loss functions has not been significant.
For custom sum loss function, the decrease has been as low as 0.03, which is
completely negligible. The decrease in the peak sensitivity for custom non-sum
loss function was slightly higher, at 0.16, and the decrease for variance reduction
was the highest, at 0.2. Nonetheless, the decreases are more or less negligible
and could entirely be caused by model fluctuations.

The fluctuations, i.e. the difference in the sensitivities of worst and best
performing models, changed from 0.35 to 0.27 for the sum custom loss function,
from 0.98 to 0.88 for the non-sum custom loss function, and lastly from 0.77 to
0.52. Hence, the overall performance has not been affected greatly, while there
was a noteicable decrease in fluctuations.

Further dimensionality reduction was performed by removing 12 of the least
significant features. However, it resulted into an approximate 7 to 10 percent
decrease in peak sensitivities achieved, depending on the loss function used,
without noticeable fluctuation decrease as compared to the removal of 6 most
insignificant features.
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8.5 Feature importance validation

Feature importance places a crucial role for dimensionality reduction, which
ultimately provides more consistent models and thereby more consistent results.
Even if the initial ranking of features is consistent with expectations, additional
tests can be performed to verify the feature importance itself.

Differentiating the different background and signal files analytically, based
on their features and distributions, is a challenging task, which is why machine
learning is needed in the first place. However, this difference can be much
more prominent when comparing different background types and their feature
distributions. By training a ML model to differentiate between two different
background types, rather than a signal and a combination of all the background
types, the difference in the resulting feature distributions can be observed ana-
lytically. In this case, the distributions of most important features, as according
to their feature importance plots, are expected to be noticeably different between
the different background types. Likewise, features with low feature importance
values are not expected to have a noticeable difference between the two different
background files.

In order to perform this test, two background types have been selected -
ttbar and wtaunu. Several models have then been developed and trained using
variance reduction, custom sum, and custom non-sum loss functions. For each
of them, the following hyperparameters have been tested:

• Minimum samples split: 10, maximum depth: 3

• Minimum samples split: 50, maximum depth: 5

• Minimum samples split: 100, maximum depth: 7

• Minimum samples split: 100, maximum depth: 9

Additionally, each RF model chose 6 features per tree, had the number of
estimators equal to either 60 or 30, and data percentage per tree equal to either
12.5% or 25%, depending on the parameters that maximize the loss function
used.

Using multiple models provided additional confidence regarding the consis-
tency of features chosen, as it can fluctuate due to randomly selected features.
Figure 49 below shows typical distribution of feature importance for each of the
loss functions.
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Figure 49: Feature importance distributions for different loss functions using
ttbar and wtaunu data files
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As observed from the Figure 49, there are noticeable differences between fea-
ture importance distributions for different loss functions. This is expected to an
extent, as the loss functions maximize different properties. Another noticeable
difference is the amount of features in feature importance graphs for models
using different loss functions. By using only two different background types and
differentiating between them, the custom loss functions were not able to find im-
provements with several of the available features, hence they are not displayed
in the feature importance plots. The sum custom loss function was able to find
improvements with 20 of 31 possible features, non-sum custom loss function 15,
and the variance reduction was able to attain some improvements with all the
available features. In spite of that, the improvements for a significant portion
of available features seemed to be negligible.

Figure 56 shows feature distribution plots for features that, in general, had
an overall large feature importance values over all the loss functions tested.
Data from ttbar background is displayed as a blue, filled histogram, and the
data for wtaunu is displayed as a yellow step histogram. The plots are weighted
in accordance to simulation weights in addition to being normalized, to account
for different sample sizes.

Nonetheless, if it is possible to differentiate between the two background
types analytically, there should be a region in the graphs, where there is little
to no overlap between them. This observation is somewhat prominent in sev-
eral of the feature plots displayed in Figure 56, where the right-most regions
tend to contain some of wtaunu samples, and low amounts of ttbar samples.
However, it must also be taken into a consideration that the y-scale of the plots
is logarithmic. Since, in this case, distributions of continuous features tend to
fall down as they approach their maximum values, and the fact that this is also
the region where the difference between two background distributions is most
prominent, the difference may not be as large as it may appear initially.

By looking at Figure 63, which displays feature distributions over the lowest
scoring features, an immediate difference can be observed from the features dis-
played in the Figure 56. Distinguishing the two background files based on these
features analytically becomes vastly more difficult. For the majority of the plots,
ttbar almost completely overlaps with wtaunu, making their distinction next to
impossible. Another observation to be made is that many of the poorly perform-
ing features were discrete, unlike the features that performed well. Nonetheless,
these features were selected infrequently by the decision trees and if they were,
they did not provide significant improvements.
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Figure 50: Feature importance validation
jet 1 mtMet

Figure 51: Feature importance validation
jet 2 mtMet

Figure 52: Feature importance validation
METSig

Figure 53: Feature importance validation
ht

Figure 54: Feature importance validation
tau 1 mtMet

Figure 55: Feature importance validation
tau 1 pt

Figure 56: Feature distributions of best performing features for wtaunu and
ttbar datasets
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Figure 57: Feature importance validation
ele n

Figure 58: Feature importance validation
jet 1 n

Figure 59: Feature importance validation
mu n

Figure 60: Feature importance validation
jet 1 width

Figure 61: Feature importance validation
tau 1 ntracks

Figure 62: Feature importance validation
tau n

Figure 63: Feature distributions of worst performing features for wtaunu and
ttbar datasets
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It should be noted that this test has been performed using two different back-
ground files, which is not the case in models whose intention is to distinguish
between simulated signal and all background files. However, this test still in-
crease the confidence in the feature importance rankings, and based on it, we
can conclude that they appear to be reliable.

8.6 Alternative custom loss function

The details of the custom loss function have been described in the Section 6.1.2,
however, in general, it maximizes the ability to separate signal from background
as seen in the Equation (5). It is, however, a widely used approximation of
formula known as Asimov significance [27], as described in Equation (6).

s√
s+ b

(5)√
2[(s+ b)ln(1 +

s

b
)− s] , (6)

where:

s = Signal, correctly classified as signal

b = Signal, incorrectly classified as background

Maximizing the non-approximated equation should, in theory, provide similar
performance results, in addition to providing a sanity check regarding the cus-
tom loss function’s performance.

To test this hypothesis, regression and classification models have been trained
and tested following the same implementational principles as with previous tests,
with the exception of maximizing Equation (6), rather than Equation (5). The
depth, minimum sample split, number of estimators and train fraction parame-
ters have all been chosen based on the ones maximizing the performance of the
function’s approximation. The parameters used for RF models are summarized
in the table below.

Regression Models Classification models

Minimum sample split 50 50

Maximum depth 5 5

Number of estimators 30 60

Train percentage 25% 12.5%

Table 22: Hyperparameter summary for RF models using alternative custom
loss function
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Figure 64: RF classification models’ fluctuations in peak sensitivities using al-
ternative custom loss functions, as described in Equation (6).

Since the complete loss function does not inherently differ from its approx-
imation to the point where the difference in its results is expected to be of
any significance, a very thorough hyperparameter testing was not performed.
Rather, the models with the aforementioned parameters were tested multiple
times, to account for the fluctuation.

In terms of the peak sensitivities achieved, both of the functions had an
on-par performance. Based on previously performed tests, classification models
using the approximated function were able to achieve the sensitivity of 6.69.
In comparison, the classification models using complete function were able to
achieve the sensitivity of 6.53. The difference is not substantial enough to the
point where it could not stem from the model’s fluctuations. Similarly, the dif-
ference in the peak sensitivity achieved by regression models’ was as low as 0.06,
with a slight advantage going to the approximated function. It is, of course, pos-
sible that the difference could be somewhat more apparent if a thorough testing
would be performed, including testing different depths, minimum samples split,
different amounts of estimators and more. However, significant differences are
not expected, hence, also considering time consumption and the intention of
this test, a thorough hyperparameter testing has not been performed with this
function.

Furthermore, comparing the functions’ feature importance in Figure 65, con-
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siderable similarities in the feature distributions between the different loss func-
tions can be noticed.

Considering the fact of low fluctuations in peak performance of the two loss
functions, and no significant differences in feature importance graphs, as seen
in Figure 64 and Figure 65, it can be concluded that the performance of both of
the functions is borderline equivalent, which confirms the initial expectations.

Figure 65: Feature distribution comparison of custom sum loss and alternative
loss functions
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8.7 Different signal files

During previous tests, the signal file in use has been GG 1100 968 901 835.MC1
6a.hdf5. However, the dataset used in this thesis contains two additional signal
files: GG 1700 1418 1276 1135.MC16a and GG 2200 1143 614 85.MC16a. The
performance of custom loss function and variance reduction was also tested using
these files.

The first, different signal file to be tested was GG 1700 1418 1276 1135.MC16a.
The test itself was akin to the previously performed tests with the usual signal
file. For each of the loss function tested, several RF models were trained, and
their performance was assessed using the same test datasets. The results of this
test are summarized in the figure below.

Figure 66: Deviations of peak sensitivities using GG 1700 signal file

A few noticeable differences from the standard signal file can be observed.
First of all, the sensitivity values are much lower for all the models, despite the
loss function used. While the sensitivities of the regular signal file were in the
range of [5,7], the sensitivities of this signal file barely surpassed 1. The initial
hypothesis was that there were not enough signal files in the train dataset for the
model to learn the data patterns and differences between signal and background
files. To test this hypothesis, few tests were performed.

The first one was to test the number of data entries in the different signal
files. The typical signal file, GG 1100 contained 5297 data entries, GG 1700
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contained 3352 and GG 2200 contained 4781 signal entries. This means that
the GG 1700 signal file contained 37% less data than the GG 1100 file. This
fact alone can have a severe impact on the models’ performance, considering
the already low signal to background ratio, however, such a drastic decrease in
the performance in unanticipated due to this reason alone.

The second test involved making predictions on the same dataset the model
was trained on, in addition to regular test dataset predictions. Predicting on
the same dataset that the model was trained on provides an insight regarding
whether the model underfits or overfits the data. Overfitting was not antici-
pated, however, if it did occur for some unexpected reason, it could explain the
major difference in the sensitivities using different signal files. Nonetheless, as
seen from Table 23, there were no significant differences between test and train
datasets. This result indicated that no unintentional overfitting was prominent
in the models.

Test data

sensitivity

Train data

sensitivity

Sum custom with weighted voting 0.82 0.89

Sum custom with unweighted voting 1.16 1.17

Non-sum custom loss function 0.81 0.77

Weighted variance reduction 0.70 0.64

Table 23: Model predictions with test and train datasets

The third test performed included an uneven split of background and signal
data in train/test datasets with adjusted the sampling weights. With uneven
signal to background ratios in the train and test datasets, it is possible to in-
crease the amount of signal data in the train dataset, which allows the ML
models to better understand its patterns. At the same time, the decrease of sig-
nal amount in the test dataset is minimized with the adjusted sampling weights.
Moreover, this method should also account for the difference in the number of
data entries in the signal files and diminish its impact on the performance. The
results of this test are summarized in the Figure 67.
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Figure 67: Deviations of peak sensitivities using GG 1700 signal file using un-
balanced dataset

While uneven data splits did have an increase in the sensitivities, in com-
parison to the models’ performance using regular data split, there was still a
major difference between the signal files, which is not expected from relatively
similar signal files.

The last considered option was a potential difference in the weights between
the files. To test whether weights can account for this difference, the product of
weights has been calculated for each of the data entry. The resulting weight has
then been summed for each of the signal file, which ultimately represents their
weighted count. The regular signal file, GG 1100 had the weighted count of
946.41. In comparison, the GG 1700 signal file had a weighted count of merely
61.84, despite having a relatively similar of unweighted count.

The large difference in weights explains the difference in peak sensitivities.
If the weights are low, then the absolute amount of predicted signal and back-
ground data entries will be low, which ultimately results into low sensitivities.
To address this issue, it is possible to use unweighted counts for sensitivity cal-
culations. However, this solution would not provide meaningful representation
of data, due to the importance of weights.

Regardless of the absolute difference in the peak sensitivities achieved be-
tween the different signal files, a comparative analysis of different loss functions
can still be performed. Based on Figure 66 and Figure 67, similar trends can
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be noticed in the relative performance between the different loss functions that
were also prominent in models using the regular signal file. The model with
the highest sensitivity achieved is the one using custom sum loss function with
unweighted voting. Based on these figures, and comparing the performance of
variance reduction and custom sum loss functions over multiple runs, it would
be unlikely that such a difference could be entirely achieved by deviations. Espe-
cially considering that the worst performing RF using custom sum loss function
was able to outperform the best model using variance reduction.

8.8 Performance using data from different data collection
periods

During the previous tests, the data used in models’ training and testing has been
from data collection period a. Performance and fluctuations tests have also been
performed using a set of data files from different data collection periods - d and
e.

The process of performance and fluctuation testing has been performed the
same way as described in the previous sections, with the exception of using
different datasets.

8.8.1 Data Collection Period d

Apart from models performance using variance reduction loss function, the re-
sults using d data files were similar to the results using regular, a data files.
The best performing models were the classification models using custom loss
function, having the peak sensitivity of 6.88. Models using variance reduction,
on the other hand, severely under-performed in comparison to their performance
using a data files. Not only was the peak sensitivity lower (5.35 as opposed to
5.98), the fluctuations were also unexpectedly large. The difference in worst and
best performing models using variance reduction with this dataset was as large
as 2.11, whereas in the a dataset it was approximately 0.70.
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Figure 68: Deviations of peak sensitivities using d dataset

8.8.2 Data Collection Period e

As seen in Figure 69, the relative ML model performance using data from data-
collection period e remains similar as in data taken from periods a and d . ML
models using the custom sum loss function tend to perform best, with an ap-
proximate 13% increase in peak sensitivity achieved as compared to variance
reduction and non-sum custom loss function. Similarly as with data from peri-
ods a and d, the variance reduction performed slightly worse than the non-sum
custom loss function. However, the difference in peak sensitivities achieved be-
tween these two loss functions was not to the extent where it could not be
explained due to fluctuations.

A general increase in sensitivities achieved using data from e collection pe-
riod can also be observed. However, this is accounted to this data period having
a higher signal to background ratio.
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Figure 69: Deviations of peak sensitivities using e dataset

8.8.3 Remarks

The general performance was in align with the expectations between the data
from all data collection periods, and similar performance trends were observed.
Likewise, there were no noticeable differences in the feature importance distri-
butions between the difference difference data collection periods.
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8.9 Errors

Although accounting for errors is not strictly necessary in a high-level overview
testing, it becomes important when the final conclusions are made regarding the
results of our models and thereby loss functions used. The Equation (7) and
Equation (8) describe how the errors were calculated, by using error propaga-
tion.

z =
s√
s+ b

,

δ2z = (
∂z

∂s
)2δ2s + (

∂z

∂b
)2δ2b

=
1
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s2
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· b

=
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[1 +
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Figure 70: Deviations of peak sensitivities using a dataset, with error bars

Figure 70 is a representation of Figure 48 with error bars. For these partic-
ular results, the errors varied anywhere between 0.14 and 0.36, depending on
the run and the loss function used.

Let us select the best performing models for each of the loss function assessed.
In this case, the model with custom loss function would have the sensitivity of
6.66 and the model using variance reduction would have the sensitivity of 5.88.
If we assume the worst case scenario for the custom loss function, in which its
error value (0.31) is subtracted from its peak sensitivity, and the error value
of the best performing variance model (0.24) is added to its sensitivity, there
still is a difference of 0.23 in the sensitivity, in the favour of model using the
custom loss function. This fact further increase the confidence regarding the
performance of custom loss functions.

8.10 Unbalanced datasets

From machine learning’s perspective, one of the main reasons why the problem
of separating signal and background is so difficult is due to the fact the signal
to background ratio is extremely low. One way to tackle this issue, which has
also been described in Section 8.7, is to increase the amount of signal data in
the training dataset, at the expense of reducing its quantity in the test dataset.
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Figure 71: Deviations of peak sensitivities using a dataset and increased signal
in the training data, with error bars

The figure above provides similar information as Figure 70, the only difference
being that the dataset, which all of the models have been trained on, has had its
signal ratio increased by the factor of 2, as compared to its test dataset, while
at the same time adjusting their sampling weights. The following differences
can be observed using this approach:

1. The sensitivity of the best performing model using the custom loss function
has increased to 9.14 from 6.66.

2. The sensitivity of the best performing model using variance reduction as
its function has increased to 7.71 from 5.88.

3. The difference in sensitivities between variance reduction and the custom
loss function has increased from 0.78 to 1.43.

4. The difference between the non-sum custom loss function and the variance
reduction became more prominent. While there was barely any difference
in the regular tests between these two loss functions, with an increased
signal in the training dataset, the non-sum custom loss function outper-
formed variance reduction.
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9 Conclusions

The key question this thesis attempted to answer was whether currently used
ML models for separating background and signal data in high energy physics
can be improved by applying a different, specialized loss function. Using the
custom loss function, as described in the earlier parts of the thesis, the models’
sensitivity increased by approximately 11%. Hence, based on these results, it
can be concluded that it is indeed possible.

Nonetheless, even if a thorough testing was performed, taking into a consid-
eration various factors affecting ML model’s performance, there is always room
for additional testing and improvement. In comparison to existing state-of-the-
art machine learning libraries, certain restrictions affecting models’ performance
had to be implemented in the custom implementation of random forest and de-
cision tree models. However, taking into a consideration that the restrictions
did not have a severe impact on the performance, and that same restrains have
been applied when comparing different loss functions, the underlying difference
in the performance is unlikely to be caused by the said restrictions. Nonetheless,
it is possible to rewrite the code in a runtime-efficient language, reducing, or
even removing any constraints. In this thesis, this approach was deemed too
time-consuming, as the intention was not to produce a new machine learning
library, but to assess the potential of a new loss function.

Despite all of these factors, the custom loss function implemented in this the-
sis does have an undeniable potential, and it provides definitive results. Based
on the results and observations made in this thesis, it can be concluded that,
in specific scenarios, its ability to achieve sensitivity has a potential to surpass
traditional loss functions used in random forest and decision tree models.
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10 Further Work

As mentioned previously, the implementation of decision trees and random
forest, based on which the conclusions have been made, is sufficient, yet not
ideal. Further testing would benefit greatly of a more optimized implementa-
tion. Based on the experience and research done in this thesis, the best possible
approach to this problem would be a change in the choice of programming lan-
guage, to one of a greater runtime-performance. Further testing can be divided
into three general parts: continuing current analysis, verifying performance us-
ing a different, HEP-related, dataset and using a dataset from a non-physics
related field.

With a better runtime-performance, many of the already applied analysis
methods could be performed at a greater depth. One of such methods would
be to increase the number of estimators in random forest algorithms, without
the reduction in data used per tree. In general, a better model runtime would
provide a better possibility of finding hyperparameter combinations that most
accurately allow different loss functions to achieve their best performance.

While there were significant improvements found using the custom loss func-
tion, they were not groundbreaking. There is a possibility that the loss function
would be of use in particle research, however, further research is necessary to
validate it. In this thesis, the comparison of custom loss function has mainly
been performed by comparing it to the same machine learning algorithms using
conventional loss functions. However, it is not guaranteed that tree-based algo-
rithms provide the best performance in particle research. In an ideal scenario,
the performance of the loss function would be compared with machine learning
models using different algorithms and different datasets, which would provide
a better insight into its overall performance in particle research. This includes
different tree-based algorithms, such as XGBoost, which would also have the
ability to use the custom loss function, but also performance comparisons with
non-tree-based algorithms, to test its the general viability.

Moreover, the generality of this particular loss function has not yet been
tested. While the intention of the custom loss function was to achieve the
highest sensitivity in HEP-related problems, it is also possible to apply the
same principles in other binary classification problems, where the goal is to
achieve the highest sensitivity possible.
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A Decision tree hyperparameter testing







B Feature validation plots













C Custom loss split verification









D Source code

The original notebook that has been in use throughout this project contains over
600 cells, involving a wide variety of tests. Since it uses data from the ATLAS
experiment, the entirety of the notebook will not be attached to the thesis. The
notebook, attached in the link below, contains all the code responsible for deci-
sion trees, random forest and generating model performance information, such
as sensitivity plots. The majority of the code is explained in the Section 6.3.

Link to the source code:
https://github.com/dsp0011/MasterThesis/

https://github.com/dsp0011/MasterThesis


References

[1] CERN. The Large Hadron Collider, 2021. URL https://home.cern/

science/accelerators/large-hadron-collider. [Online; accessed Oc-
tober 17, 2021].

[2] CERN. The ATLAS Detector, 2021. URL https://atlas.cern/

discover/detector. [Online; accessed October 17, 2021].

[3] CERN. Dark Matter, 2021. URL https://home.cern/science/physics/

dark-matter. [Online; accessed October 17, 2021].

[4] Wikimedia Commons. Standard Model of Elementary Particles,
2019. URL https://en.wikipedia.org/wiki/File:Standard_Model_

of_Elementary_Particles.svg. [Online; accessed June 01, 2021].

[5] CERN. The Standard Model, 2021. URL https://home.cern/science/

physics/standard-model. [Online; accessed October 18, 2021].

[6] David Griffiths. LATEX: Introduction to Elementary Particles. 2 edition,
2008.

[7] Palash B. Pal. LATEX: An Introductory Course of Particle Physics. 1
edition, 2015.

[8] Identification of Jets Containing b-Hadrons with Recurrent Neu-
ral Networks at the ATLAS Experiment. Technical report,
CERN, Geneva, Mar 2017. URL https://cds.cern.ch/record/

2255226. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-
PHYS-PUB-2017-003.
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