Processing and Fusion of
Transport platooning sensor
data

Fredrik Vindenes

Master’s thesis in Software Engineering

Department of Informatics,
University of Bergen

Department of Computer science, Electrical
engineering and Mathematical sciences,
Western Norway University of Applied Sciences

May 2022

Western Norway
University of
Applied Sciences




Abstract

In this thesis we are considering a data set which a group of researchers gathered,
while conducting a transport platooning field experiment. We are assisting in
the processing and fusion of the data, gathered during this experiment. We are
investigating which sensors were used and what data gathering setup was used.
We are investigating methods of extracting the data, formatting it and fusing
it into a coherent data set, in a standardised format. We then explore different
methods for filtering and extracting the data into a convenient format. We are
also analysing the quality of the gathered data, using various techniques, and
providing feedback on what can be improved if a similar experiment is conducted
in the future. Finally we also develop some simple visualizations of the data.
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Chapter 1

Introduction

1.1 Motivation

Transportation of goods is an essential part of our society. Everything from
supermarkets, to hospitals relies on trucks to be able to operate. But the basic
formula of how this transportation is carried out has not changed. One driver
per truck driving from destination to destination. According to a 2017 study
from the American Transportation Research Institute (ATRI)[1] driver wages
accounts for about 40% of the overall transportation cost. There is also a
significant shortage of truck drivers, both in the US and EU. It is estimated
that EU lack at least 400.000 drivers as of 2021[9], and the US lacks at least
80.000[2]. This has led to several companies looking into how we can make
trucking more efficient. In this thesis we are looking at one such approach:
transport platooning.

1.2 Background NTNU research project

The research project and experiment to which this thesis is linked, is a collab-
oration between a group of researchers at NTNU and Statens Vegvesen. The
purpose of the project is to assess the viability and suitability of transport
platooning on rural Norwegian roads. The Finish company Ahola Transport
provided the trucks, and drivers for the experiment. There were a total of 3
trucks, with 3 drivers. A support vehicle accompanied the trucks during the
entire journey. The trucks were using a proprietary Scania convoy system, that
relies on a combination of radar and cameras to ”connect” the trucks, into a
platoon. The front most truck controlled the speed and distance, between the
three trucks. The drivers had to perform the steering of the trucks manually,
throughout the journey. The driving took place along RV77, E6 and E10 from
Junkerdal to Storjord to Narkvik to Bjgrnfjell. The experiment took place on
the 21st and 22nd of October 2021. On each day there were several breaks dur-
ing the journey. Some parts of the drive were driven multiple times, for testing
purposes [5]. Figure 1.1 shows the route driven during the field experiment.



Figure 1.1: The route driven during the experiment. Credit: M.Eitrheim, M.Log
et al.



1.3 Research questions

The overarching research questions that the researchers set out to answer is:
Are rural Norwegian roads suitable for transport platooning, and how does a
transport platoon impact the driver of a truck.

1. Does a professional driver trust the system?
The researchers would like to figure out how much a professional driver
trusts the system. This will be done by monitoring the drivers actions, and
by conducting a questionnaire at regular intervals during the experiment.
For this experiment, the 3 drivers were monitored and questioned by 2
researchers and 3 cameras

2. Which road features(if any) pose a challenge?
The Researchers would like to figure out if there are any road features
that causes issues for the transport platoon. They would also like to know
what characterizes such features(if any). This will be part of the analysis,
after the experiment

3. How does a platoon impact other road users?
The researchers would like to know if a transport platoon effects other
road users. This includes both other vehicles on the road and pedestrians
along the road.

4. How can we better conduct such an experiment?
The researcher would like to know which sensors worked well, and which
did not? Do we have sufficient data to determine the viability of transport
platooning on rural Norwegian roads? If not: How can we gather more
relevant data?

The specific research questions considered in this thesis, and derived from the
questions above, will be presented in section 1.5

1.4 Background on Platooning and Autonomous
Driving
Different approaches to autonomous driving

There are three main categories of autonomous driving systems:

Vehicle to infrastructure(V2I) Vehicle to infrastructure refers to any ap-
proach where the road system itself is designed to allow vehicles to share infor-
mation with the systems that operate and manage roads and traffic. Examples
of such technology includes RFID readers, cameras, traffic lights, lane markers,
streetlights, signs and parking meters [8]. This approach allows the infrastruc-
ture itself to help guide vehicles driving on the roads. The advantages of this
approach is the technical ease of implementation, in terms of standardization,
regulation and maintenance. It generally requires much less software and hard-
ware in each vehicle, and can significantly improve traffic flow. Some of the
disadvantages are that it requires expensive infrastructure to work. It also re-
quires (some) specialized hardware in each vehicle, and is limited to operate in
geographic areas, with the correct infrastructure.



Vehicle to Vehicle(V2V) Vehicle to Vehicle refers to any approach where
vehicles use sensors and digital communication to coordinate among them [3].
Unlike vehicle to grid systems, these systems can drive on regular roads with-
out the need for specialized infrastructure. One of the big advantages of this
approach is the relative Ease of implementation in terms of standardization, reg-
ulation and maintenance. It also requires less software and hardware required in
each vehicle, compared to full autonomy. Some of the disadvantages are that it
requires multiple vehicles with compatible hardware, and still requires a driver
in some situations. Each vehicle also needs to be partially autonomous(Lane-
keeping, adaptive cruise control etc.).

Full autonomy Fully autonomous systems refers to any system that can au-
tonomously drive in traffic, as if it was a regular car with a human driver.This
type of system is much more flexible than the two other approaches. This makes
it generally more scalable, and it works well, even if other vehicles are not au-
tonomous. This approach is technically difficult and complex to implement. It
also requires each vehicle to carry expensive hardware, in order to work.

Transport platooning

In this thesis we are analysing data gathered from the transport platooning ex-
periment. Transport platooning is a Vehicle to Vehicle technique. In a transport
platoon the front most vehicle is controlled by a human driver. Every vehicle
behind the first vehicle is configured to follow the vehicle in front of it(similar
to a truck with multiple wagons attached). Each vehicles(except the first) is
semi-autonomous in the sense that it can keep the distance to the truck in front
of it, and stay within the driving lanes. The advantage of this approach is that
one can have a single driver be responsible for several trucks, thus significantly
reducing the amount of drivers needed in the trucking field. One intermediate
approach may be to have trucks drive in platoons between major population
centres. The trucks are then piloted by human drivers inside of the cities.

1.5 Research questions (For this thesis)

The focus of this thesis is on enabling the researchers to answer the research
questions posed in section 1.3, by processing and analysing the data, gathered
during the experiment. We aid directly in answering how we better can conduct
such an experiment. We help create a data set that will enable the researchers
to answer the remaining 3 questions, by fusing all the data into one data set. We
will also add some data, from a publicly available database, to aid the researcher
in answering which road features may pose a challenge. Furthermore we create
methods for visualizing certain data on a map. The software developed as part
of this thesis will serve as a basis, from which even more advanced functionality
for visualization or statistical analysis may be developed.



e Research Question 1: How can we combine all the data gathered into one
data set? We will look at how the data can be formatted into one common
format, and combined into one coherent and clean data set.

e Research Question 2: How do we synchronise all the gathered data into
one timeline? We will be analysing the timestamps of all data sources,
and determining the time difference between each of them.

e Research Question 3: How do we select, and extract segments of the data?
We will look at different methods of selecting and extracting segments of
data.

e Research Question 4: How good is the quality of the data? We will analyse
the quality of the most important data sources, and provide feedback on
the overall quality of each source.

1.6 Overview of the thesis

The goal of this thesis is to create a data processing pipeline. This pipeline
takes in raw data, and produces a coherent data set, containing all the data in
a standardised format. The pipeline then lets the user extract part of the data
set, by filtering out the desired data. This will allow the researchers to analyse
segments of the data. It will also create a clean and coherent data set, for use
in further analysis. This thesis is split into 5 sub-tasks:

1. Classifying and reading the data: The first step of the thesis is to classify
the different data sources. We classify the data, based on the type of
information gathered by each data source(sensor). We then generate a
plan for how to read the information into a usable data structure

2. Formatting the data into a common, easily usable format: The second
step is to identify how the data, from the various data sources is format-
ted. We will convert both the timestamps, and GPS coordinates into one
common format. We then create a method for converting the timestamp
and location data from each individual file into this common format. The
common format should be identical for all of the various data sources, and
make future work with the data easy.

3. Synchronizing the data: The third step of the thesis is to synchronize all
the timestamps of all the data sources into one common ”Timeline”. The
synchronization will be carried out using a combination of algorithmic,
and manual techniques, to determine the offsets between the various data
sources. We will select one of the data sources to serve as the reference,
from which all time offsets are calculated. The timestamps in each data
source will then be adjusted, such that they match the timestamps in the
reference i.e. they are ”synchronized” with the Timeline.



4. Assessing the quality of the data: As part of the synchronization step,
we also assess the quality of the data, from the various data sources.
This is done in collaboration with the research team, that carried out the
platooning experiment.

5. Filtering and extracting the data: Finally, we create two methods of fil-
tering the data, and two methods for extracting the data into files. The
filters will allow the user to precisely extract portions of the data for fur-
ther inspection and analysis. We also provide some simple functionality
for visualizing the data on a map.

This thesis will not include any analysis of the data itself, beyond a high level
analysis of the quality of various data sources. In this thesis we will be removing
some features from the data, where those features add little to no information.
These features usually includes no data, redundant data, or the same data for
every data entry. Except for Timestamps and coordinates, we will not be mod-
ifying or augmenting the data(with one exception, discussed in section 5.4).
Since only part of the data was available at the start of the thesis, the pipeline
had to be designed with a general and extendable implementation, to easily
accommodate new data sources. Some of the labels of the data were altered,
to better describe the data they represented. Some of the files provided were
not read by our data processing software. These files contained metadata, or
information not part of the data set. A few of the excluded files were part of
the data set, but only contained one or a few data entries. This thesis will also
not discuss the administrative tasks, or coordination with the research team at
NTNU, in any significant detail.

The software described in this thesis is developed to work with Python ver-
sion 3.9. The program has Pandas, Folium, OpenPyxl and MathPlotLib as
dependencies. All other dependencies are part of the Python standard li-
brary. All Excel files can be opened in any Excel version supporting the XLSX
format. All code discussed in this thesis is stored on github, at the follow-
ing adress: https://github.com/selabhvl/transportplatoon/. The folder titled
”python” contains all code relevant to this thesis.

10



Chapter 2

Data Sources

2.1 Sensor setup

In this chapter we provide an introduction to the data sources and sensors that
were used in the transport platooning experiment. Figure 2.1 shows the setup
of sensors in one of the trucks.

2.1.1 Custom radar sensors

Each of the three trucks were equipped with a custom radar device on the
front. This radar setup consisted of a Raspberry Pi computer(unknown version)
running the Raspbian Operating system and a uRAD Raspberry Pi v1.2 radar
device. The radar device was connected to the Raspberry Pi and mounted to
the front of the truck(behind the windshield). The radar device is capable of
tracking up to 5 separate contacts. It is capable of tracking contacts with a
range of 70 meters, and traveling at speeds up to 70 meters/second. It has an
accuracy of +/- 4cm for distance, and +/- 5cm/second for velocity.

2.1.2 GoPro cameras

Each of the three trucks were equipped with 3 cameras each. These cameras
were installed in the same location for all three trucks. The cameras were
installed at the end of a adjustable stand, that was clamped to the inside of the
vehicle(see Figure 2.1). One camera was used as a dashcam, pointing forward at
the road. One camera was monitoring the steering wheel, to monitor the drivers
interactions with the steering. One camera was pointed towards the accelerator
and brake. The feet camera was monitoring when the driver was hovering his
feet above the accelerator or brakes. Additionally, each camera contained a GPS
device. This device recorded GPS coordinates along the route to the best of its
ability. This data was synchronised with the video. Each camera also contained
an accelerometer and a gyroscope. These devices recorded acceleration in all
three axis. The 3 axis were aligned with the camera. Since all three cameras
were tilted during the entire drive, these axis are not perfectly aligned with
the trucks. The researchers tried to adjust these axis to roughly align with

11
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VBOX, GoPro Dashcam

Figure 2.1: The sensor setup for one truck. Image credit: M.Eitrheim, M.Log
et al. Edited by: F.Vindenes

the trucks. As part of the video recording, the cameras also recorded audio of
everything that was said during the drive. This audio recording is the basis for
the transcript file, and when combined with the videos (from all 3 cameras), it
is the basis for the annotation file.

2.1.3 VBOX Sport telemetry system

Each of the three trucks were equipped with a VBOX Motorsports VBOX sport
telemetry system. The VBOX system records location data, and saves this data
to an onboard SD card. The device has an automatic start/stop functionality.
This functionality enables the device automatically, when it detects movement.
This functionality turned out to be unreliable, and some of the data gathered
may have been cut short because of this. Some parts of the drive were not
recorded by the VBOX system in some of the trucks, because of this issue. On
day 2 of the experiment, the researchers failed to properly insert the SD card
into the VBOX system in truck 1. This caused all the VBOX data from truck
1 from the second day to be lost.

2.1.4 Scania Fleet Management system(Scania FMS) and
Vecho Fleet Management system(Vecho FMS)

A Fleet management system is a system that records certain types of telemetry,
and sends the data to the fleet operator. All 3 of the trucks used in this ex-
periment had two separate fleet management systems installed. These systems
recorded data independently of each other. The systems turned on, and started
logging when the trucks were turned on. Both of the systems used a cellular
data network to send the data back to the fleet operator. The fleet operator
then forwarded the segments of the data relevant to this experiment, to the
researchers.

12



2.1.5 Bittium Faros 180 Heart rate monitor

The researchers used 2 Bittium Faros 180 heart rate monitors. On day one
the driver of truck 1 and the driver of truck 2 was fitted with the heart rate
monitors. On day two the driver of truck 1 and the driver of truck 3 was fitted
with the heart rate monitors.

2.1.6 Pupil Invisible eye-tracking glasses

Each of the drivers were fitted with Pupil Invisible eye-tracking glasses. Due to
error in the setup, the data from the glasses turned out to not be usable.

2.1.7 External sensors data: Traffic enforcement camera

Statens Vegvesen operates traffic enforcement cameras, stationed at several dif-
ferent locations along the route, driven during the experiment. The cameras
record each vehicle that passes by each of the cameras. This information is then
sent to Statens Vegvesen, who passes the information on to the researchers.

2.2 Data format

In this section we outline all the different data contained in all the data sources
we used in this thesis. We will be listing all data points, their associated data
type, and a short description of the format(if applicable).

2.2.1 General comment about data segmentation

The researchers decide to split the data gathering into segments. These seg-
ments are based on geographical locations in Norway, and correspond to the
locations where the researchers took breaks. Not all data sources uses the same
type of segmentation. The first day was split into two segments: Junkerdal
border crossing to Fauske and Fauske to Innhavet (end of day 1). The second
day was split into three segments: Innhavet to Bogness ferry pier, Skarberget
ferry pier to Narvik and Narvik to Bjgrnfjell border crossing. During the ferry
trip on day 2 (Bognes to Skarberget), no data was recorded. For truck 3, the
GoPro camera stopped operating shortly after start on day 2. The GoPro data
for the segment from Innhavet to Bognes is thus split into two sub segments.

The following is a list describing which data source uses which kind of seg-
mentation

e Split into segments:
Radar(Day 1 only),VBOX(varies by truck/day), GoPro(all data), NVDB
data, Annotations

e Split into days:
Radar(Day 2 only), Heart rate variability, Self report (questionnaire)
e Not Split(all data in one file):

Fleet management system data (Scania and Vecho), Traffic enforcement
camera data

13



2.2.2 Explanation for GoPro timing

The GoPro camera was originally designed to capture relatively short videos. In
this experiment the researchers used the GoPro cameras to capture several hours
of video each day. The GoPro camera therefore ended up stopping and restarting
its recording at a semi-regular interval between 11-17 minutes. This interval is
not consistent between the different cameras or different segments of the data.
The video was thus split into shorter videos of various length. In between each
video, the GoPro camera used approximately 2 seconds to start recording the
next video(see section 4.2.1). This reset in the timestamps is reflected across
all data sources gathered by the GoPro Camera. All data that comes directly
from the GoPro cameras uses the time unit milliseconds since restart. This time
unit has to be interpreted the following way: Determine when the file started
recording in local time. This was done by holding a clock in front of the camera
when it started recording. For each data point add the number of milliseconds
to the start time of the file. When we reach a reset, we add the last time value
before the reset, to the accumulated total. This total has to be added to every
subsequent data point. For each restart 2050 milliseconds has to be added to
the total(not including the initial start). A restart is usually characterized by a
sudden drop down to 0 milliseconds. The files that were created manually by the
researchers, which are based on the GoPro data(Annotations and Transcripts),
uses seconds since start of the GoPro file. These files does not reset the timers,
at any point during the file.

2.2.3 Radar Data

The radar data was recorded into two separate files for each truck on day one,
and into one file per truck for day two. The files from day one represents the
stretch from Junkerdalen to Fauske, and the strech from Fauske to innhavet.
The file for the second day represents all segments driven, on that day. Radar
device operating mode is described in the manual [10]. The radar data contains
the following data:

Description Datatype Format or Unit

Operating mode of the radar device Int n/a

The local timestamp of the device for data entry | Datetime | YYYY-MM-DD HH:mm:ss.fff

For each contact(up to 5 contacts for each data entry) the following three data
points were recorded:

Description Datatype Format or Unit
Distance to the contact Float Meters(0.01 precision)
Relative speed to the object Float m/s(0.1 precision)
Signal to noise ratio Int Decibels

14



2.2.4 GoPro GPS data

Description Datatype Format or Unit
Milliseconds since reset™ Int n/a
Latitude Float Deg’ North
Longitude Float Deg’ East
Altitude Float Meters(WGS84)
Speed Float Unknown
Speed in 3D(with height) Float Unknown
TS Float Unknown
GPS accuracy Int 0 to 9999(lower is better)
GPS satellites used Int n/a

*see Section 2.2.2

2.2.5 GoPro Accelerometer data

Description Datatype | Format or Unit
Milliseconds since reset™® Float n/a
AcclX Float Unknown
AcclY Float Unknown
AcclZ Float Unknown

*see Section 2.2.2

2.2.6 GoPro Gyro data

Description Datatype | Format or Unit
Milliseconds since reset™ Float n/a
GyroX Float Unknown
GyroY Float Unknown
GyroZ Float Unknown

*see Section 2.2.2

2.2.7 VBOX telemetry data

Description Datatype Format or Unit
GPS satellites used Int n/a
The local timestamp of the device for data entry | Datetime HHmmss.ff
Latitude Str + Float | +/- and Arcminutes®
Longitude Str + Float | +/- and Arcminutes*
Velocity Float Km/h
Heading Float Degrees
Altitude Float Meters(WGS84)
Longitudinal acceleration Float G’s
Latitudinal acceleration Float G’s
Temperature Float Celsius

There are 4 more parameters relating to the battery. These were not used for

telemetry due to relevancy

*Plus means North or West, Minus means South or East
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2.2.8 Scania FMS data

Description Datatype Format or Unit
The local timestamp of the device for data entry | Datetime | YYYY-MM-DD HH:mm:ss
The odometer of the vehicle Int n/a
Fuel level Int % n/a
AdBlue level Int % n/a
Velocity Mixed Float 4+ ”km/h”
Latitude Float Deg’ North
Longitude Float Deg’ East

There are 4 more parameters relating to the location and vehicle status. These
were not used for telemetry, due to redundancy.

2.2.9 Vecho FMS data

Data from the Vecho FMS were not used in this thesis. The data from Vecho
FMS was split across multiple files, with vastly different formats. It was thus
determined that the utility of the data was unlikely to make up for the effort
required to integrate the data into the final data set. A preliminary assessment
of the data determined that the quality and frequency of the data was low and
inconsistent. This asessment was carried out by a research assistant, associated
with the experiment.

2.2.10 Kubios HRV Heart rate data

Data from the Bittium Faros 180, analysed with Kubios HRV Premium software.
The Heart rate data contained over 50 parameters(not listed). The data entries
use a standard timestamp of the format HH:mm:ss.

2.2.11 Event log(annotations)

The researcher reviewed the videos from the GoPro cameras, and created an
annotation file, for each truck, for each segment of the drive. This annotation
file contains information about certain types of events that occurred during the
drive. Some events are marked as point events, meaning they occurred at a
certain point in time. Other events are marked with start or stop, representing
the start and stop of the time period, in which the event occurred.

16



The file contained the following common data points:

Description Datatype

Format or Unit

3 x video file which the information was extracted from Strings

3 separate variables

Timestamp representing the local time, when the file started | Datetime | YYYY-MM-DD HH:mm:ss

For each data entry:

Description Datatype Format or Unit
Seconds since the start of the file* Float n/a
Event description(behaviour) String n/a
Event category(behavioral category) String n/a
Comment String For use by the researchers
Event marker String POINT, START or STOP

There are 4 more parameters containing information about the file, which the
annotations was taken from. These data points were not used for telemetry, due
to being identical for every data entry throughout the file.

*See Section 2.2.2

2.2.12 Transcript

Based on the videos from the GoPro cameras, the researchers created a tran-
script. This transcript contains all statements made by the truckers, and the
researchers during the journey. The statements were made in Norwegian, En-
glish or Finish. All statements made in finish were translated into Norwegian.

Description Datatype Format or Unit
Start timestamp Datetime HH:mm:ss
Stop timestamp Datetime HH:mm:ss
Subject(that made statement) String Short form for name
Statement String n/a
Language String Language spoken
Context String n/a
GoPro Video String Filename of GoPro video
Based on camera String Dash,Steering or Feet

2.2.13 Self-reporting questionnaire
The questionnaire consisted of 4 questions:

e Think of the last 10 minutes. On a scale from 1 (very Low) to 10(very
high), please rate your perceived workload

e Think of the last 10 minutes. On a scale from 1 (very Low) to 10(very
high), please rate your perceived trust in the convoy system

e Think of the last 10 minutes. On a scale from 1 (very Low) to 10(very
high), please rate your perceived safety

e Think of the last 10 minutes. On a scale from 1 (very Low) to 10(very
high), please rate your perceived comfort

17




These questions were posed to each driver, at irregular time intervals. They
were posed 11 times on day 1 and 8 times on day 2. All answers were manually

recorded in an Excel-file.

2.2.14 Traffic enforcement camera data

Description Datatype Format or Unit
Timestamp of the camera Datetime | YYYY-MM-DDTHH:mm:ss.{ffZ
Timestamp of the server Datetime | YYYY-MM-DDTHH:mm:ss.fffZ
Lane number Int n/a
Velocity Float Km/h
Length of vehicle Float Meters
Seconds between each entry(vehicle spacing) Float n/a
Type of vehicle String Specific codes used

There are 7 more parameters. These data points were identical for every data

entry throughout the file.

2.2.15 NVDB data

NVDB data was extracted as part of this thesis. This data provides information
about road features, along the route driven in this experiment. Further details
on the contents of these files and the extraction method is provided in chapter
5. NVDB uses a system of references called Vegsystemreferanse, which are also
described in Section 5.2. The NVDB data consists of one file per segment of the
drive. Each file in turn consist of 6 different Excel-sheets.

Common for all sheets:

Description Datatype Format or Unit
Location(point) String Vegsystemreferanse Point
Latitude Float n/a
Longitude Float n/a
Height Float Meters(WGS84)
Location(Range) String Vegsystemreferanse Range

The first 2 Data sheets deals with horizontal and vertical curvature, the next 2
deals with tunnels and bridges, and the last 2 deals with speed limits and road

width.
Horizontal curvature:

Description | Datatype

Format or Unit

Type String

road type(shape)

Radius Int

Meters, sign is irrelevant

Vertical curvature:

Description | Datatype

Format or Unit

Type String road type(shape)
Radius Int Meters, sign is irrelevant
Height Float Meters, start of segment
Height Float Meters, end of segment

Slope Float Meters, start of segment

Slope Float Meters, end of segment
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Tunnels:

Description | Datatype | Format or Unit
Tunnel name String UTF-8
Length Int Meters
Width Float n/a
Bridges:
Description Datatype | Format or Unit
Bridge name String UTF-8
Bridge category String n/a
Bridge type String n/a
Length Int Meters
Speed limit:
Description | Datatype | Format or Unit
Speed limit Int Km/h
Road width:
Description Datatype | Format or Unit
Road width Float Meters
Road width (max) Float Meters
Road width (median) Float Meters
Road width (min) Float Meters
Road width (normal) Float Meters
Road quality(thickness) Int Centimeters

More than a dozen parameters were removed from the original NVDB files.
This was done in consultation with the researchers. The removed parameters
are primarily metadata.
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Chapter 3

Fusion of Data Sources

In this task we are processing data from a transport platooning experiment. This
experiment involved a large number of sensors, all of which used a idiosyncratic
format to store its data. In order to work with this data, we need to format all
data sources into a common format. Part of the fusion is to synchronize all data
sources. Since all data sources recorded time using different methods and time
zones, we need to adjust the timestamps. We would like for all of the data to
follow the same timeline. The purpose of the fusion step is thus to convert all
the different data sources into one clean, coherent, synchronized and data set.
This data set will serve as the basis for all future work on the data.

3.1 Tools

We choose to use Python 3 as the primary language for this thesis. Python
has an extensive set of libraries available, and a large community that provides
support for other users. All programmers involved in this thesis appeared to
be familiar with Python, and practically all processing of the data listed in this
thesis was implemented, using Python only.

We choose to use Pandas as our primary library to manage the data[4]. Pan-
das is designed to perform well with large data sets, and has extensive support
for manipulating N-dimensional data sets. Pandas is widely used for data ma-
nipulation in industry, data science and machine learning. We therefore found
Pandas to be the best fit for this thesis, since the thesis involves a lot of data
manipulation. Pandas uses a data structure called Data frames.

For the visualization part of the thesis we chose to use Folium[7]. Folium is
a map tool, that integrates well with Python and Pandas. We chose Folium,
because it offers a simple interface to visualize spatial data, on a geographical
map. Folium fetches its maps from OpenStreetMaps, and adds the functionality
to place markers and lines on this map. These markers can then contain all the
information we need to display for each location. Thus Folium fulfils all the
basic requirements we have for visualization, in this thesis.
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During this thesis we used to primary types of data structures: Lists and Data
frames. In this thesis Pandas Data frames are used as the primary data structure
for storing, and extracting the data. Data frames has a significantly smaller
footprint in the memory of the program, compared to Lists. Data frames offers a
lot of built in utility for reading from, and writing to files. Data frames also offers
powerful functionality in terms of filtering data, based on the values of certain
columns. Lists were used in the cases where manipulation of individual data
points were required. Most of the data manipulation occurred while reading the
data from a file, and formatting the data into a standardised format. Thus most
of the file reading functions used lists as their primary internal representation.
For visualisation of annotations lists were also used, as we needed to extract
data on a row by row basis. In all other parts of the program data frames were
used exclusively. The conversion between List and Data frames and vice versa is
relatively simple.The pandas.Dataframe() function converts from List to Data
frames, and the reverse was done using Dataframe.tolist().

Advantages of data frames:

e Data frames has a better performance than lists for extracting and modi-
fying large amounts of data.

e Data frames allows the user to move, modify or delete entire rows or
columns from the data set, with one function call. It also allows for re-
moving a range of rows or multiple columns at once.

e Data frames allows the user to access data by using column names as
keys, instead of indices. This allows us to access data without needing to
keep track of which column number contains which data by using keys for
indexing.

e Data frames gives the user explicit control over the data types of the data,
when needed.

e If the data requires no prepossessing, Pandas allows the users to read a
CSV or Excel file, directly into a data frame.

Advantages of Lists:

e Lists are more flexible than data frames, in that they allow rows of different
length.

e Lists uses direct indexing, which is more useful when manipulating indi-
vidual data points.

e Lists allows the user to iterate through the list, without a huge perfor-
mance penalty.

For working with time, we decided to use the Datetime module, which is part
of Pythons standard library. The Datetime library supports various types of
time arithmetic, including addition, subtraction and difference. It also allows
the user to easily convert between different time representations. In this thesis
we determined that we would need timestamps with millisecond precision. We
therefore choose the ISO8601 format without time zones, as the standard for-
mat for timestamps. Datetime natively supports both reading and writing of
IS0O8601 formatted strings, thus simplifying the the reading process.
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For reading Excel files we chose Openpyxl1[6]. We needed a tool that would let
us control the reading of each file, line by line. We also wanted to manipulate
some of the data during the reading process. Although Pandas does support
reading a variety of Excel files into a data frame, it gives us much less control
over the reading process. We thus decided that it would be simpler to read
data from Excel iteratively, rather than reading it all at once. The latter would
require us to convert the data back to a list, removing labels, and then iterating
through the data.

3.2 Strategy

We spent quite a bit of time discussing the strategy for how to fuse the data
into one coherent data set. Since all the different data sources (except NVDB)
contained a timestamp, we decided that the two modes of extraction should
be based on time, and coordinates. This would require all the different data
sources to be synchronized into one unified timeline. In order to synchronize
all the data sources, we needed a basis to serve as the "ground truth”. The
data source would have to have both a timestamp and coordinates for each data
point throughout the file. The data source should cover all parts of the journey.
Finally the data source should have a reasonably high and consistent frequency
of data entries. This would minimize the need for interpolating between data
entries, when synchronizing. Two of our data sources fit this description: VBOX
and GoPro GPS. We ultimately decided to use GoPro as the basis for data
fusion. GoPro GPS has a frequency of 7- 8 data entries per second, and records
both timestamps and coordinates. Additionally GoPro had 3 cameras for every
truck. This allows us to choose the highest quality data source for each truck,
for each segment. Another consideration, was that using GoPro would simplify
the synchronization step for the annotation files, and the transcripts.
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3.3 Fusion based on time synchronization

3.3.1 The GoPro Offsets file

The different GoPro cameras were all turned on at different times. We thus
need a method of synchronising all of the different GoPro data into a common
timeline. The researchers handled this issue, by holding a clock in front of the
GoPro camera, when the camera was turned on. Because these videos contained
sensitive information, they were not made available for this thesis. In order to
determine when each GoPro file started, we needed a file that contained the
starting time of all GoPro GPS files. The researchers thus created a common
file, containing all the information necessary, to synchronize all the GoPro data.
In this file, the data is split into groups of 3 entries. Each group represents one
truck, driving one segment of the journey. There is a label for each group, that
represents which segment, and which truck it represents. Each of the 3 entries
in the group represents one GoPro camera inside of one truck. For each group
there is a timestamp of the format YYYY-MM-DD HH:mm:ss. For each camera
in the group there is a float value, that represent the number of seconds after
the timestamps. In order to determine when a camera in a given group started,
we take the timestamp for that group and add this offset value to it. We then
have a synchronized timestamp for that camera. The timestamp determined for
the GoPro GPS file is also used for the GoPro Gyro and GoPro Accelerometer
files.

3.3.2 Determining the starting time of the radar data

The radar data that the researchers gathered, used the local time of the Rasp-
berry Pi to create the timestamps. Unfortunately the local time of the raspberry
pi, was not calibrated before the experiment. The timestamps on the radar data
was thus several days behind the other data sources. In order to synchronize
the radar data with the GoPro data, we had to make use of the annotation files.
In each of the annotation files there is a data entry, that contains the data point
”"Radar logging” in the ”behavior” column. This represents the point in time,
when the radar was activated. By adding the timestamp of this data entry to
the start time of the annotation file, we get the start time of the radar file. For
day one, both annotations and radar data is split by segments, and by trucks.
We can thus easily establish which annotation file, to associate with each radar
file. For day two, the radar data is contained in one single file, for the entire
day. The ”Radar logging” entry, is only present in the first annotation file, for
each truck on day two. For day two, we thus only use the first annotation file
for each truck, to determine the start time of the radar file. It is important to
note, that the first data entry in the radar file may be recorded a few seconds
after the radar was enabled. The exact starting time of the radar file is stated
in its filename.
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3.4 Fusion based on location

3.4.1 Algorithms

We used two primary algorithms for synchronizing the data. Both of these
algorithms use the Haversine method[11], to determine the distance between
two points, using GPS coordinates.

The first of these algorithms we will refer to as the Correlation algorithm. The
correlation algorithm takes in two data sets. Both data sets must have both
a timestamp, and a position for each data entry. The algorithm then iterates
through the first data set. Each data entry will be matched with the closest
location in the second data set. It will then create a third data set, that contains
the entire first data set, augmented with the closest matches from the second
data set. By inspecting this new data set we can determine approximately how
big the offset between the two data sources are. This assumes that both data
sets are of high quality. If the data sets are of low quality, we can still get a
reasonable idea of approximately how big the offset between the various data
sources are. This algorithm comes in two varieties. The first variety assesses
all data entries, while the second reduces the number of data entries, by only
assessing every Nth data entry from the first data source. For data sources with
a high frequency, it may be necessary to use the second of the two varieties, to
reduce the running time of the algorithm.

The second algorithm we will refer to as the checkpoint algorithm. This algo-
rithm also tries to find the time difference between two data sources. Unlike
the first algorithm however, this algorithm uses the Traffic camera data as the
second data source. Since the Traffic camera data is synchronized to a 3rd party
server, we can use this information as a ” Ground truth”. The KPRecords data
contains both location data, and timestamps for each of the 3 trucks. This al-
gorithm determines when a given truck passed the traffic camera. By checking
multiple files, and data sources with this algorithm, we can determine approx-
imately how large the offset is between the files. This is done by calculating
the time difference between different files, when they passed by a traffic camera.
This algorithm can also be used to assess the quality and consistency between
files.

The reliability of first of the two algorithms depends on the quality of the
location data. It is thus a good idea to look at a large sample of data entries,
to determine the time difference. Both of the algorithms perform poorly for
data gathered while the trucks were travelling through tunnel. Since two of the
traffic enforcement cameras were located inside of a tunnel, we should expect
these two data points to deviate from the rest.

3.4.2 VBOX

The VBOX data recorded all of its data entries using a local timestamp. We
ran the correlation algorithm on 2 of the VBOX files, and compared them to the
corresponding GoPro files. We found that the VBOX data was approximately
2 hours ahead of the GoPro data. We used 2 hours, as the offset for all the
VBOX files, on both days.
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3.4.3 Scania FMS

The Scania FMS system does not store its data locally. Instead it sends the data
to a server, operated by the Fleet manager. Because of this, the timestamp will
be determined by the server, when the data entry is recorded. We used both
the correlation algorithm with a GoPro file, and the checkpoint algorithm with
the KPRecord data, to determine the offset. We determined that the Scania
FMS data was about one hour behind the GoPro data. We thus decided to add
a fixed offset of -1 hour to all data entries in the Scania FMS files.

3.4.4 Heart rate data

The Heart rate data did not contain any coordinate information. There were
also no other information available, linking the heart rate data to any of the
other data sources. We decided to consult the researchers about the times-
tamps, from the heart rate data. One of the researchers informed us that the
heart rate monitors, started recording at 8:30 for participant 1 and 10:00 for
participant 2 on the first day. Since these timestamps roughly correspond to
the timestamps listed under measurement data, we decided to leave the heart
rate data unchanged. We consider the heart rate data to be semi-synchronised,
as there is no way for us to determine the quality of the synchronization.

3.5 Traffic camera data and KPRecords

The Traffic Camera data was split across 2 separate files. We decided to combine
all of this data into one single file, to make the data easier to work with. The first
file contained the names and GPS coordinates for each of the locations, where
the traffic enforcement cameras were located. The second file was an Excel file
that contained an overview of all the vehicles that had passed by each camera,
on a given day. There was one Excel-sheet corresponding to each camera on
a given day. Since each Excel-sheet contained all the vehicles that passed on
a given day, we first needed to identify which data entries represented the 3
trucks. This task was handled by the researchers themselves. They marked the
relevant entries, by coloring them green, in the original excel file. We created
a CSV file that combined the information from the two files. For each entry
we recorded location information of the traffic camera, and attached all the
information recorded about a truck, for that location. We thus have 3 entries
for each traffic camera. We named the file KPRecord (KP=Kjgretgyspassering=
Vehicle pass).
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Chapter 4

Assessment of Data Quality

In this chapter we will we taking a high level look at the quality of various
data sources. One of the research questions in this thesis is "How good is
the data quality”. In this section we will investigate all data sources, with
both location data and timestamps. This includes GoPro GPS, Vbox, and
Scania FMS. We are looking at the quality of the location data, and timestamps
separately. For the location data we investigate whether the coordinates are
accurate. We are also interested in whether the data points are consistent
and whether the frequency of the data points is consistent. For timestamps
we investigate whether the timestamps are accurate, whether the frequency is
consistent, and whether there are any gaps in the timeline. By assessing all of
these properties we can make a subjective determination as to the quality of
the data.

4.1 Location

4.1.1 GoPro GPS

All of the GoPro GPS files, were visually inspected by a research assistant, hired
by the researchers. Since the route driven was well documented, it is possible
to asses the quality of the location data, by looking at whether the coordinates
follow the road. The research assistant used the ArcGIS software to visualize
the data on a map. The research assistant went through all of the GoPro GPS
files, and recorded his assessment of each file into an Excel document. The
quality of each file was categorized as Good, Decent or Bad. This assessment
looked at a few different properties, and assessed each of them subjectively:

e Does the coordinates follow the road, and if not, are they at least close to
the road

e Does the data points have a high frequency, and is the frequency consistent

e Are there any gaps in the data, and if so how prevalent are they

26



This list will help the researchers pick the GoPro files with the highest quality,
for each truck and segment. Based on this file, we can conclude that all trucks
have at least one decent quality file, for each segment. We can also conclude
that all trucks have at least one good quality file, for most segments. We can
also conclude that the quality of the location data from GoPro GPS files, is
generally higher for day 2 that day 1.

4.1.2 VBOX

We assessed the quality of the VBOX files by visualising them on a Folium map.
Only VBOX files from day one was assessed. The first thing we noticed, was
that there were a lot of markers centered on the equator. To find the source of
this, we decided to inspect one of the VBOX files manually. When inspecting
the data we found that there were stretches of data where the coordinates were
all set to 0. It appeared that the VBOX device would record both coordinates
as 0, if it could not get a return from at least 3 GPS satellites. Looking at the
map we can see that there are a few gaps in the data, and that the location
data seems to be of high quality, except for these areas. Figure 4.1 shows an
excerpt from a Vbox file, captured on day one. Only every 100 datapoints are
visualized.

4.2 Timestamps

4.2.1 GoPro GPS

Since the GoPro GPS data serves as the basis for synchronization, it is important
to assess the quality of the GoPro timestamps. We would like to answer the
following questions related to the GoPro GPS data:

e Are there any outlier timestamps that differ significantly from surrounding
timestamps.

e Are the timestamps evenly spaced in time
e Are the timestamps strictly ascending between resets
e Does the timestamps have a consistent frequency throughout the file

The GoPro GPS data appears to have a consistent frequency of approximately
125-126 milliseconds between each data entry. This frequency appears to be
mostly consistent across all cameras, resets, and segments. Exceptions to this
frequency was mostly caused by data-corruption.

During the synchronization step for the GoPro data, we detected that some of
the files were far out of sync. We also detected that some of the files would
gradually fall out of sync, towards the end of the file. Our first hypothesis was
that this might be caused by a inconsistent frequency in the timestamps. We
ran the correlation algorithm between a few of the GoPro GPS files and the
VBOX file for truck 1, segment 1. We could see that the period from the start
of day 1 until the first reset(about 15 minutes into the journey), had relatively
good and consistent overlap between the timestamps for most of the files. We
thus determined that most files had consistent timestamps between resets.
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Figure 4.1: Data from a Vbox file, showing an area with poor covrage(Every
100’th datapoint shown)
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The next hypothesis we wanted to investigate was that there was a delay be-
tween resets. If so we would expect the time difference to be consistent between
resets, and to increase or decrease at the resets. Using the same correlation algo-
rithm we determined that the time difference did increase around each reset. A
research assistant at NTNU was tasked with figuring out how big this time dif-
ference was. He used the time difference estimation algorithm to determine that
there was a difference of approximately 2050 milliseconds at almost all of the
resets. This difference varied between 1810 milliseconds and 2100 milliseconds.

When compensating for this difference there were still a few files that fell signif-
icantly out of sync. The time difference in these files could vary between a few
hours to a few years out of sync. Our hypothesis was that this may be caused by
data corruption. We decided to search through the data to find the biggest and
the smallest values. We found that some of the files contained values of 1 billion
milliseconds or more, and some files contained values of -1 billion milliseconds or
less. Since our implementation the time formatting algorithm relies on adding
the last timestamp before a reset to the total time passed, a very big or small
value just before a reset would cause the timestamps to fall out of sync. When
inspecting the data manually, we found that some of the files did indeed have
very big values just before a reset. We thus have to ignore these data points
during the formatting process, in order to avoid the timestamps falling out of
sync. Figure 4.2 shows an example of corrupted data points, with the first value
before the comma of each row, representing milliseconds since start.

4.2.2 Scania FMS and Vecho FMS

We did a visual inspection of the Scania FMS data, since the frequency of data
entries is relatively low in both the Scania and Vecho FMS data. We visualized
the Scania FMS data on a geographical map, by placing a marker for each data
entry on a map. This marker contained the timestamp for each data point.
We discovered that there was a significant change in the frequency of recording
inside of tunnels. Since there were quite a few tunnels on day 1, we decided
to look at the data entries for day 1. We realised that Scania FMS would
record a data entry, whenever it lost and then regained its connection to GPS.
Scania FMS would also stop recording data when the truck was turned off. It
would also reduce the frequency of recording when the truck was running, but
not driving. This caused the Scania FMS data to have a variable frequency
throughout the drive. Vecho FMS was inspected by a research assistant at
NTNU. The conclusion from this preliminary assessment was that Vecho FMS
had a highly variable frequency for data entries. This frequency varied between
several times per minute, to every 10 minutes. Figure 4.3 shows an excerpt of
the Scania FMS data, where the truck was driving through a tunnel on day 2.
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3143,63.406948,10.4006424,322.756,0,0,1603269651873000,9999,0
3195,63.406948,10.4006424,322.756,0,0,1603269651925000,9999,0
3247,63.406948,10.4006424,322.756,0,0,1603269651977000,9999,0
3300,63.406948,10.4006424,322.756,0,0,1603269652030000,9999,0
2848 63.406948,10.4006424,322.756,0,0,1603269651578000,9999,0
2396,63.406948,10.4006424,322.756,0,0,1603269651126000,9999,0
1944,63.406948,10.4006424,322.756,0,0,1603269650674000,9999,0
1492,63.406948,10.4006424,322.756,0,0,1603269650222000,9999,0
1039,63.406948,10.4006424,322.756,0,0,1603269649769000,9999,0
587,63.406948,10.4006424,322.756,0,0,1603269649317000,9999,0
135,63.406948,10.4006424,322.756,0,0,1603269648865000,9999,0
-317,63.406948,10.4006424,322.756,0,0,1603269648413000,9999,0
-770,63.406948,10.4006424,322.756,0,0,1603269647960000,9999,0
-1222,63.406948,10.4006424,322.756,0,0,1603269647508000,9999,0
-1674,63.406948,10.4006424,322.756,0,0,1603269647056000,9999,0
-2126,63.406948,10.4006424,322.756,0,0,1603269646604000,9999,0
-2578,63.406948,10.4006424,322.756,0,0,1603269646152000,9999,0
-3031,63.406948,10.4006424,322.756,0,0,1603269645699000,9999,0
-3483,63.406948,10.4006424,322.756,0,0,1603269645247000,9999,0
-3935,63.406948,10.4006424,322.756,0,0,1603269644795000,9999,0
-4387,63.406948,10.4006424,322.756,0,0,1603269644343000,9999,0
-4840,63.406948,10.4006424,322.756,0,0,1603269643890000,9999,0
-4782,63.406948,10.4006424,322.756,0,0,1603269643948000,9999,0

Figure 4.2: A GoPro GPS file, opened in Excel, showing corrupted data points
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Figure 4.3: Data from a truck driving through a tunnel on day 2
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Chapter 5

Integration of data from
Nasjonal Vegdatabank

In order to answer which road features(if any) pose a challenge, we need in-
formation about all relevant road features, along the route driven during the
transport platooning field experiment. The most comprehensive database on
road features in Norway is Nasjonal Vegdatabank(NVDB). This is a publicly
available database created by the Norwegian road authorities. In this thesis we
use various publicly available tools to extract data from NVDB, and integrate
this data into our data processing pipeline. This will allow the user to extract
information about road features, alongside the information from all other data
sources.

5.1 Relevance of NVDB data

Nasjonal vegdatabank (NVDB) is a publicly available database, containing in-
formation about all roads in Norway. This database contains a wide variety of
information about various road features, and statistical data about segments
of the road. Statens vegvesen(Norwegian road authorities) operates and main-
tains this database. They also provide various types of tools and interfaces
to interact with the database, including a web app [13] and an open APIL In
this program we will be using the NVDB API to extract location information,
corresponding to the NVDB data for our route. One of the research questions
in this experiment is to identify which road features(if any) may pose a chal-
lenge to a transport platoon. It is thus relevant to look at road features when
assessing the performance of the transport platoon in a given area. We thus
decided to extract the relevant data from the NVDB, and integrate it into our
data processing pipeline.
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5.2 NVDB source files

A research assistant was tasked with extracting all relevant data features, from
the route that was driven by the researchers. This data was extracted, such that
each of the source files corresponded to the 5 segments driven on the 2 days of
the experiment. For each of these segments, data was extracted in 6 cate-
gories: Horizontal curvature, Vertical curvature, Tunnels, Bridges, Speed limit
and Road width. In each of these categories, the research assistant extracted
all data features, the researcher determined to be relevant to the experiment.

5.3 Vegsystemreferanse

All road segments in NVDB are referred to using a system called ” Vegsystem-
referanse”. This system uses a string, designed to be human readable, to label
each segment of road in Norway. This string usually consist of road name, sec-
tion, subsection(optional), and road meters. Road meters can either be specified
as a point, or as a range(from a to b). Each range must be part of the same
road, section and subsection. In order to extract data from NVBD we need
to create a Vegsystemreferanse string, corresponding to each location we would
like to extract information from. In this thesis, we determined that extracting
data at a interval of 50 meters, would give us a sufficient data resolution. For
each data entry in each of the Excel-sheets, we created a range of strings, repre-
senting a segment of a road given by the Vegsystemreferanse string. This range
of strings represents a point every 50 meters from the start to the end of the
segment. This range always include the first and the last location of a segemnt.
If the segment is less that 50 meters, this range only includes the first and last
location of the segment. This range of strings is the basis for extracting location
information, for each data entry in the NVDB files.

5.4 Quering the NVDB API and Storing the in-
formation

In order to extract location information for each data entry, we use the NVDB
API[12]. This API allows us to extract location information, by providing a
Vegsystemreferanse string. We can state which format we would like the location
information to be provided in. In this thesis we used ”WGS84”, which is the
coordinate system used by GPS. The process of querying the NVDB API was
done segment by segment. For each NVDB file the program iterates through
all the different Excel-sheets. For each sheet the program creates a range of
queries, corresponding to the Vegsystemreferanse road segment, listed in each
data entry. For each data entry the program queries the NVDB, and records
the location information representing that range. The program then stores all
of the relevant data points for each data entry. It stores them with the location
information, and the Vegsystemreferanse string for that location attached. All
NVDB data is then stored in an Excel-file, with the same Excel-sheet names as
the original file. This gives us a data set with both the NVDB data and GPS
coordinates, for each data entry and category, for all segments of the route.
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Chapter 6

Using and controlling the
data processing pipeline

In this chapter we will discuss how the user can control the program. We will
describe the different files the program relies upon, and how they control the
behaviour of the program. We will describe the output formats, and their use
cases. We also discuss the performance of the program, and how the performance
is effected by the configuration.

6.1 Configuration file

The configuration file is the primary way the user can specify the data sources,
and extraction of data. The configuration file is stored as a YAML file. The
configuration file contains the following parameters:

e extraction mode: Lets thus user choose whether they want to extract
data(True) or visualize data(False)

e filter on time: Lets the user choose whether to filter data based on time(True)
or coordinates(False)

e file list: Lets the user specify the file list to be used, by entering the
filename of the list.

e labels: Lets the user specify the label list to be used, by entering the
filename of the list.

e output file name: Lets the user specify the output name of the data ex-
traction file(excel only).

e output format: Lets the user specify the output format for data extrac-
tion(”excel” or 7csv”)

e start time and stop time: The start and stop time for data filtering. Must
be formatted like: YYYY-MM-DD HH:mm:ss.fff
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e start lat and start long: Lets the user specify the lower left corner of the
7geofence” for coordinate filtering. Coordinates are specified in degrees,
and are implicitly North and East

e stop lat and stop long: Lets the user specify the top right corner of the
”geofence” for coordinate filtering. Coordinates are specified in degrees,
and are implicitly North and East

o file types: Lets the user choose which file types to read(see Section 6.3 for
more)

o trucks: Lets the user choose which trucks to read data from(see Section
6.3 for more)

e annotations file: Choose which annotation file to read data from for visu-
alization

e reference file: Choose which GoPro or VBOX file to read data from for
visualization

e map file name: Choose the filename for the map, created by the visual-
ization algorithm

6.2 File lists

The primary file used to synchronize all data sources is the file lists. The file
lists stores all the needed information about each of the files, that the program
reads. This program has 2 separate file lists; one for each day of the experiment.
The file lists are stored as CSV files.

The format of the file is:

e The first parameter is a string. It serves as a key , describing which data
source the file belongs to. Examples of such strings include: ”vbox” (VBOX
data), ”goprogps” (GoPro GPS data),” annot” (Annotation data) and ” fms” (Scania
FMS data). These strings are used to determine which function should
read the given file. It also determines how the corresponding Data frame
is treated during the filtering step. It is also used to determine whether a
file belongs to a data source, that is supposed to be read, or filtered.

e The next parameter is an Integer, representing which truck the file belongs
to. Since most files belong to exactly one truck this parameter exists for
most files. This parameter is used to filter files based on trucks.

e Annotations and Heart rate data only: The next 1 or 3 parameters are
positional parameters. They consist of Integers that are used to determine
where in the file, certain data is located. Since some files contains data
near the top of the file, that varies in length, positional parameters are
required.

e For GoPro data and Radar data only: The next parameter is a timestamp,
representing the time when the file starts. GoPro and radar files need this
parameter for data fusion.
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e All subsequent parameters, represent the path to the file, in comma sepa-
rated format. The path is stored in comma-separated format, in order to
make the path operating system independent. The path is joined into a
string by the program, such that it works for any operating system.

6.3 Customisation of data sources and trucks

In order to give the user a greater amount of control over which data is being
extracted, we decided to let the user choose which data sources and which trucks
data would be extracted from. In the configuration file the user can select
which data sources and trucks they wish to extract data from, by changing
a boolean value that corresponds to each data source and truck. When the
program launches it will pass this list of booleans as a dictionary to the file
reading function. The function will then use the dictionary to determine which
files to read, by using the data source type and truck number parameter, listed
in the file list. Since all files that are supposed to be excluded are not read, there
is no need for any other part of the program to remove any data sources. It
also lets the researchers significantly increase the performance of the program, if
they are only interested in a few data sources. Performance is increased by not
reading the files with particularly high frequencies(GoPro,Vbox and Radar).

6.4 Output format

When extracting data from the pipeline in the "extract data” mode, all data
that was not filtered out will be written to a file. There are two output formats
for this mode: Excel(.xlsx) and CSV. If the user chooses Excel as their output
format the program will write all the data to an Excel document. Each data
frame will be written to a separate sheet, as long as it is not empty. Each sheet
will use the filename variable stored next to the Data frame as the sheet name.
Each filename contains information about which segment, data source and truck
it comes from. There is thus no need to add any additional information to the
sheet name. One drawback of writing to an Excel-file is performance. When
writing particularly large data sets to an Excel file, the program seems to need
a lot more time. This relation seems to be exponential between the size of the
data set and time need to write all the data to the file. We thus decided to add
the option to write data to a CSV file. If the user decides to write to a CSV file,
the filename stored next to the data frame, will be used as the filename of the
output file. Each data frame will thus be written to a separate file, if it is not
empty. These CSV files can then be opened in excel, if need be. Our experience
is that data sets encompassing more than 10 minutes, start taking more than
a minute to extract as an excel file. We thus made the recommendation of
extracting all data sets over this length as a set of CSV files. If extracting data
using the ”visualization” mode, the file will be output as an HTML file. This
file can be opened in any web browser. The HTML file contains a map based
on OpenStreetMap, with the markers representing our data, added to it.
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Chapter 7

Filtering, Data Extraction
and Visualization

In order to investigate sections of the data, we need tools that allows the user
to extract subsets of the data. One of these tools is the filtering functions. The
filtering functions allows the user to extract a subset of all the data read by the
software. While the configuration files allows the user to select data sources,
it does not allow the user to precisely select and extract a subset of each data
source. In this chapter we describe the two different methods for extracting
subsets of data. These filters are automatically applied to the data, when the
software is run.

7.1 Filtering based on time

Filtering based on time is by far the simpler of the two filtering methods. All
data sources except NVDB contains a timestamp for each entry. This means
that we can use the same function to filter all data sources. Since all the times-
tamps across all the data sets were of a standardised format, we decided to
use Pandas and the Datetime module for filtering based on time. The filter-
ing works by passing three parameters to the function. Theese are the data
frames(in a list), the start time and the stop time. Both the start time and stop
time strings must be of the format YYYY-MM-DD HH:mm:ss.fff. Specifying
the date, should in theory not be necessary, since the file lists determine the
date. However due to the particular implementation of the DateTime module,
specifying the date is required. The start and stop time is then converted to
the pandas query format of YYYY-MM-DDTHH:mm:ss. In order to make use
of the Pandas Dataframe query function, we first need to convert all the times-
tamps into Datetime Objects. Pandas has a built-in function for converting
all timestamps in one column into Datetime Objects called toDateTime(). This
function makes it possible to specify which format the function should read. The
timestamp columns in all of our data frames are called ” Timestamp”. Because
this mirrors the ” Timestamp” keyword used by pandas queries, we needed to
rename all the columns to ”TimeS” in order to use the pandas query function.
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The filtering is then done by running the query function on the entire data
frame. The query function will remove all data entries except those that fall
within the time range, specified by the start and stop timestamps. The data
frame is then returned, irrespective if it is empty or not. Empty data frames
are handled during extraction.

Since NVDB contains no time data, it is not possible to extract any NVDB
data using the time filtering function. We considered implementing a method
that would allow the extraction of NVDB data, using the time filtering function.
This function would first extract time data from a reference file (For example a
GoPro GPS file). It would then iterate through each entry of the NVDB data,
and find the closest match between the reference file and NVDB, base on loca-
tion. It would then copy the timestamp from the reference file into the NVDB
data. There are a few downsides to this approach. First of all the quality of
the NVDB timestamps would be only be as good as the reference. Secondly the
algorithm would perform poorly in areas where the GPS data was of low quality,
in the reference file. This would likely be a problem for the NVDB tunnel data
in particular. We decided that implementing such an algorithm would be of
limited use.

7.2 Filtering based on coordinates

Filtering based on coordinates makes use of both coordinate filtering and time
based filtering. In order to extract data based on coordinates, the user must
specify a ”geofence”. This geofence represents the area from which information
will be extracted. In order to specify the geofence, the users must provide
two locations. Since all of our data(except corrupted data entries) lies to the
northeast of the equator, the coordinates implicitly represent degrees north
and degrees east. The locations are specified using two float values. The first
represents degrees Longitude, and the second represents degrees Latitude. The
first location represents the lower left corner of the geofence. The second location
represents the top right corner of the geofence. From these two points, a square
is created that represents the geofence. Before the filtering takes place, all data
frames are split into two categories. The first category includes all data sources
that contains GPS coordinates for all data entries. The second category includes
all other data sources. All data frames in category one in passed to a function
that uses the Pandas data frame query function. This function takes in one data
frame and 4 coordinates. Since latitude and longitude is stored as a string in the
data frames, we first convert the strings into their corresponding float values.
We then use the Pandas query function to filter out all data entries, that does
not fall within the two longitude values. Since the route mostly travels along
the north south axis, we expect that filtering by longitude first will remove more
data entries, thus making the algorithm more efficient. We then use the query
function to filter out all data entries, that does fall within the two longitude
values. All data entries that remain are within our geofence. The data frame is
thus returned(even if empty).
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In order to extract information from all data sources we need to establish a
time range. This time range corresponds to the time the trucks spent, within
the geofence. This will usually be a GoPro GPS file. If the user selects NVDB
as the only data source that contains coordinates, no data will be extracted
based on time, from this algorithm. This is because it is impossible to establish
a time range from NVDB data alone. In order to extract this time range,
the algorithm will pick the data frame from the first category, that has the
greatest number of data entries after filtering. We then take the first and last
timestamp, from that data frame. These two timestamps represent the start
and stop time for use in the time based filtering portion of this algorithm. We
also attempted to extract the earliest and latest timestamp. This strategy often
failed, because some of the GoPro files contained corrupted data entries, with
incorrect timestamps. This would often cause the time range to be incorrect,
since the corrupted timestamps would often be the earliest or latest values in
the data. After these two values has been extracted, the algorithm will extract
data from all data sources that does not contain coordinates. This part of the
extraction uses the algorithm described in section 7.1.

There are some known weaknesses to the time based extraction strategy. It is
possible that geofence encompasses an area, such that the trucks leave the area,
and later reenters it. If so the time range will include sections, that are not
included in the data extracted based on coordinates. In some cases it might be
possible that the first or last data entry, in the reference file may be corrupted.
If so, then the time range may differ from what we would expect. If the quality
of the location information is poor, as the truck enters or leaves the geofence,
this may impact the time range that is extracted.

7.3 Visualization

The second mode for extracting data is the visualization. This mode allows
the user to visualize some of the data on a map. Only data sources containing
coordinates for each data entry is eligible for visualization. The exception is the
annotation visualization algorithm described bellow. The visualization func-
tionality available to the user is limited to visualizing annotations. There are,
however, a few algorithms available for visualising other data. These algorithms
are used for testing only. These algorithms use lists instead of data frames, as
they were created early on in the thesis, and has not been redesigned to work
with data frames.

In this program we use Folium for visualization. Folium makes use of data from
OpenStreetMap, to generate a map with geogrphical data. We then add all the
markers to the map, with each marker representing one data entry. The map
is then stored as a HTML file, which can be opened in any browser. The map
is interactive, and lets the user click on any marker, to display the associated
data. Folium also supports drawing lines between points. A general restriction
for all the visualization algorithms has to do with performance. If more than
1000 markers are added to the map, performance starts to drop significantly.
Around 2000 markers the performance deteriorates to the point, where using
the map becomes difficult. We thus have to be careful about how many markers
we add to the map. This can be done by limiting the area, the frequency or the
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time range of the data, we visualize. The number of data points stored in each
marker does not effect the performance at all.

The first of the testing algorithms is the basic visualization algorithm. This
algorithm takes in data in a list, and plots every n’th data point on a map. The
user can select how many data entries to visualize by selecting how many data
entries to skip in between. This will allow us to visualise an arbitrarily large
data set. For data sources with a very high frequency this algorithm lets us
visualise a sample of the data, without having to sacrifice the performance of
the map. This visualization strategy is not very robust, as it does not select data
entries based on quality. The resulting map will have markers with a varying
amount of space between them. It will also have a lot of markers around the
locations, where the researchers stopped to rest.

The second of the testing algorithm is the space visualization algorithm. This
algorithm also takes in a list of data, and plots a selection of data points on a
map. Unlike the basic visualization algorithm, this algorithm tries to space out
the markers along the route. The user must specify a limit, that determines
how many meters apart the markers should be. The algorithm will add the
first data entry to the map. It will then iterate through the data entries, and
select the first data entry that is far enough away from the first data point(in a
straight line), to exceed the limit. It will then select the first data entry that is
far enough away from the second entry. It will continue using this strategy to
iterate through the entire data set. This approach is susceptible to data points
with low quality.

The third algorithm is available to the user. This algorithm allows the user to
visualize annotations along the road. Since the annotation file does not contain
any location data, we must combine it with data from another data source. It is
theoretically possible to combine the annotations with any data source, but we
recommend using a GoPro GPS file, or a VBOX file. GoPro GPS and VBOX
files have a high frequency of data entries, which is a big advantage for this
algorithm. To visualize the annotations we first create a new Data frame, that
contains the annotations, and coordinates for each data entry. This is done by
using the Pandas mergeAsOf function. This function is able to combine a two
data frames into one, by matching each data entry in the first Data frame, with
a data entry in the second Data frame. This function can match by any type
of value, but in our case we are matching based on timestamps. The function
also allows us to specify a tolerance. Both the timestamp and tolerance has to
be a Datetime object. The function then returns a new Data frame containing
all columns from both data frames, joined by their timestamps(4 /- tolerance).
We set the tolerance to two seconds in this function. If we wanted to use a
different data source, the tolerance might need to be adjusted. Once we have
the augmented Data frame, we can proceed to the visualization part. The first
step is to format each data entry, such that it fits into the marker-popups. This
is done by placing each data point on a separate line, next to its label. All of
the data entries are then placed on the map, and saved to an HTML file. Figure
7.1 demonstrates a visualization made using the third algorithm.
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7.4 Discussion

During some parts of the experiments, the trucks drove certain parts of the
route multiple times. When extracting information from these re-runs, the two
different algorithms will work somewhat differently. Since filtering based on
time will extract a known time range, the user will be able to extract individual
sub segments. It is thus possible to extract each re-run separately. Filtering
based on coordinates, will on the other hand extract all data entries, for all the
re-runs in one location at once. We thus recommend exclusively using filtering
based on time, when extracting information on re-runs. We recommend using
extraction based on location, only when the NVBD data is required.

7.5 Applying filters

As discussed above, the filter is applied automatically, when the software is run.
The filters cannot be disabled. The user must manually determine the time
range. The coordinates can be determined using any map tool, that allows the
user to extract GPS coordinates. Using filtering based on time, it will not filter
out any data, if the specified time range starts before 2020-10-20 08:30, and
ends after 2020-10-20 18:00(except some FMS data). The FMS data includes
some data points from the 19th and 22nd of October, which are not relevant
to the transport platooning experiment. The heart rate data starts at 8:30
which is approximately 2 hours before most other data sources. If a time range
spans multiple segments of the drive, data will be extracted from all applicable
segments. This also applies to geofences.
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Chapter 8

Conclusions and Future
Work

8.1 Conclusion

In this thesis we have described our approach to processing data from a trans-
port platooning experiment. We have described all the different sensors, and
how they were used in this experiment.

We have looked at how we can combine all the data gathered into one data
set(RQ1). This is done by creating a customized function for reading each for-
mat into a data frame. We convert various types of timestamps into ISO8601
compliant timestamps. We also convert all coordinates, into numeric only GPS
coordinates, denominated in degrees north and degrees east. We also standard-
ize the labels across all of the different data sources, and provide the user with
the means to seamlessly change them, if necessary.

We have looked at how to synchronise all the gathered data into one time-
line(RQ2). We decided to use the GoPro data to serve as the ”ground truth”,
to which all other data sources would be synchronized. The transcripts and
Radar data was synchronized by calculating the offset between the all the files
in these data sources, and the GoPro data. The Annotation data was syn-
chronised using the timestamp at the top of the file, as this was based on the
corresponding GoPro data. The Vbox data, the Scania FMS data and the traffic
enforcement camera data were synchronised by calculating the offset between
them, and the GoPro data. This offset was calculated by looking at how the
coordinates in the various files lined up, with the GoPro data. Finally the heart
rate data was synchronised, through referring to the notes, the researchers took
during the transport platooning experiment.
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We have looked at how we can select, and extract segments of the data(RQ3).
We created two separate filtering functions, for extracting subsets of data. The
first of the filtering function extracts all data that falls within a specified time
range. The second filtering function extracts all data gathered within a ge-
ographical area. We have also developed a method for selecting which data
sources, trucks and day(s) to extract data from. By applying either of the filters
to our data set, and selecting which data sources to use, we are able to precisely
select and extract any subset of the data gathered during this experiment.

We have analysed the quality of some of the main data sources(RQ4). We
have analysed the quality of the GoPro data, the Vbox data and the Scania
FMS data. We have investigated the accuracy, frequency and consistency of the
location data. We have also investigated the accuracy of the timestamps, and
whether there are any gaps in the data, or inconsistencies in the frequency of
the data.

We find that some of the lessons learned in this thesis will aid in planning
future experiments, of this kind. The work described in this thesis will serve as
a foundation for future work on the data. We believe that it will contribute to
our understanding of how well transport platooning works on rural Norwegian
roads. The data set created by this program, enables the researchers to extract
and analyse segments of data from the journey. This will aid in answering the
research questions posed for this research project.

8.2 Statistical analysis

One of the purposes of this thesis is to prepare a data set that can be used for
analysing the performance of a transport platoon. The natural next step is thus
to begin analysing the data. We are interested in investigating, whether there
are any particular road features that poses a challenge to the transport platoon.
It would therefore be interesting to investigate, if there are any statistical cor-
relations between the events listed in the annotation files, any of the features in
the other data sources. It could also be interesting to investigate the correlation
between road features, and data quality. We could also investigate, if there is
a correlation between the quality of the data across various data sources. This
could be particularly interesting in areas where multiple similar data sources
had low quality simultaneously. This analysis could also be a candidate for an
analysis, using machine learning techniques.

43



8.3 Visualisations

In this thesis we have visualised annotations on a map. There is a great potential
for creating other visualisations based on the data.

e One visualization that was suggested by the researchers is a correlation
between the data entries in the annotation file, and certain road features
from the NVDB files. An example given would be the correlation between
horizontal /vertical curvature and pedal applications.

e Another possibility is to visualize locations that meet certain criteria,
based on one or more data sources. An example would be locations with
a significant horizontal or vertical curvature, or with a narrow road.

e A third type of visualisation could be various heat maps. These heat maps
could visualize how the various road features were distributed along the
route. The heat maps could also be overlaid, with the annotations.
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