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Abstract

There are many applications where the study of coupled physical processes is of great

importance. These range from the life sciences with flow in deformable human tissue

to structural engineering with fracture propagation in elastic solids. In this doctoral

dissertation, there is a twofold focus on coupled problems. Firstly, robust and efficient

solution strategies, with a focus on iterative decoupling methods, have been applied to

several coupled systems of equations. Secondly, a new thermodynamically consistent

coupled system of equations is proposed. Solution strategies are developed for three

different coupled problems; the quasi-static linearized Biot equations that couples flow

through porous materials and elastic deformation of the solid medium, variational phase-

field models for brittle fracture that couple a phase-field equation for fracture evolution

with linearized elasticity, and the Cahn-Larché equations that model elastic effects in a

two-phase elastic material and couples an extended Cahn-Hilliard phase-field equation

and linearized elasticity. Finally, the new system of equations that is proposed models

flow through a two-phase deformable porous material where the solid phase evolution is

governed by interfacial forces as well as effects from both the fluid and elastic properties

of the material.

In the work that concerns the quasi-static linearized Biot equations, the focus is on the

fixed-stress splitting scheme, which is a popular method for sequentially solving the flow

and elasticity subsystems of the full model. Using such a method is beneficial as it

allows for the use of readily available solvers for the subproblems; however, a stabilizing

term is required for the scheme to converge. It is well known that the convergence

properties of the method strongly depend on how this term is chosen, and here, the

optimal choice of it is addressed both theoretically and practically. An interval where the

optimal stabilization parameter lies is provided, depending on the material parameters.

In addition, two different ways of optimizing the parameter are proposed. The first

is a brute-force method that relies on the mesh independence of the scheme’s optimal

stabilization parameter, and the second is valid for low-permeable media and utilizes

an equivalence between the fixed-stress splitting scheme and the modified Richardson

iteration.
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Regarding the variational phase-field model for brittle fracture propagation, the focus

is on improving the convergence properties of the most commonly used solution strat-

egy with an acceleration method. This solution strategy relies on a staggered scheme

that alternates between solving the elasticity and phase-field subproblems in an itera-

tive way. This is known to be a robust method compared to the monolithic Newton

method. However, the staggered scheme often requires many iterations to converge to

satisfactory precision. The contribution of this work is to accelerate the solver through a

new acceleration method that combines Anderson acceleration and over-relaxation, dy-

namically switching back and forth between them depending on a criterion that takes

the residual evolution into account. The acceleration scheme takes advantage of the

strengths of both Anderson acceleration and over-relaxation, and the fact that they are

complementary when applied to this problem, resulting in a significant speed-up of the

convergence. Moreover, the method is applied as a post-processing technique to the in-

crements of the solver, and can thus be implemented with minor modifications to readily

available software.

The final contribution toward solution strategies for coupled problems focuses on the

Cahn-Larché equations. This is a model for linearized elasticity in a medium with two

elastic phases that evolve with respect to interfacial forces and elastic effects. The sys-

tem couples linearized elasticity and an extended Cahn-Hilliard phase-field equation.

There are several challenging features with regards to solution strategies for this sys-

tem including nonlinear coupling terms, and the fourth-order term that comes from the

Cahn-Hilliard subsystem. Moreover, the system is nonlinear and non-convex with re-

spect to both the phase-field and the displacement. In this work, a new semi-implicit

time discretization that extends the standard convex-concave splitting method applied

to the double-well potential from the Cahn-Hilliard subsystem is proposed. The exten-

sion includes special treatment for the elastic energy, and it is shown that the resulting

discrete system is equivalent to a convex minimization problem. Furthermore, an al-

ternating minimization solver is proposed for the fully discrete system, together with a

convergence proof that includes convergence rates. Through numerical experiments, it

becomes evident that the newly proposed discretization method leads to a system that

is far better conditioned for linearization methods than standard time discretizations.

Finally, a new model for flow through a two-phase deformable porous material is pro-

posed. The two poroelastic phases have distinct material properties, and their interface

evolves according to a generalized Ginzburg–Landau energy functional. As a result, a

model that extends the Cahn-Larché equations to poroelasticity is proposed, and essen-

tial coupling terms for several applications are highlighted. These include solid tumor

growth, biogrout, and wood growth. Moreover, the coupled set of equations is shown

to be a generalized gradient flow. This implies that the system is thermodynamically
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consistent and makes a toolbox of analysis and solvers available for further study of the

model.
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Sammendrag

Det er mange modeller i moderne vitenskap hvor sammenkoblingen mellom forskjel-

lige fysiske prosesser er svært viktig. Disse finner man for eksempel i forbindelse med

CO2-lagring i undervannsreservoarer, flyt i kroppsvev, kreftsvulstvekst og geotermisk

energiutvinning. Denne avhandlingen har to fokusomr̊ader som er knyttet til sam-

menkoblede modeller. Det første er å utvikle p̊alitelige og effektive tilnærmingsmetoder,

og det andre er utviklingen av en ny modell som tar for seg flyt i et porøst medium som

best̊ar av to forskjellige materialer.

For tilnærmingsmetodene har det vært et spesielt fokus p̊a splittemetoder. Dette er

metoder hvor hver av de sammenkoblede modellene h̊andteres separat, og s̊a itererer

man mellom dem. Dette gjøres i hovedsak fordi man kan utnytte tilgjengelig teori og

programvare for å løse hver undermodell svært effektivt. Ulempen er at man kan ende

opp med løsningsalgoritmer for den sammenkoblede modellen som er trege, eller ikke

kommer frem til noen løsning i det hele tatt. I denne avhandlingen har tre forskjellige

metoder for å forbedre splittemetoder blitt utviklet for tre forskjellige sammenkoblede

modeller.

Den første modellen beskriver flyt gjennom deformerbart porøst medium og er kjent

som Biot ligningene. For å anvende en splittemetode p̊a denne modellen har et sta-

biliseringsledd blitt tilført. Dette sikrer at metoden konvergerer (kommer frem til en

løsning), men dersom man ikke skalerer stabiliseringsleddet riktig kan det ta veldig lang

tid. Derfor har et intervall hvor den optimale skaleringen av stabiliseringsleddet befinner

seg blitt identifisert, og utfra dette presenteres det en måte å praktisk velge den riktige

skaleringen p̊a.

Den andre modellen er en fasefeltmodell for sprekkpropagering. Denne modellen løses

vanligvis med en splittemetode som er veldig treg, men konvergent. For å forbedre dette

har en ny akselerasjonsmetode har blitt utviklet. Denne anvendes som et postprosesser-

ingssteg til den klassiske splittemetoden, og utnytter b̊ade overrelaksering og Anderson

akselerasjon. Disse to forskjellige akselerasjonsmetodene har kompatible styrker i at

overrelaksering akselererer n̊ar man er langt fra løsningen (som er tilfellet n̊ar sprekken
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propagerer), og Anderson akselerasjon fungerer bra n̊ar man er nærme løsningen. For

å veksle mellom de to metodene har et kriterium basert p̊a residualfeilen blitt brukt.

Resultatet er en p̊alitelig akselerasjonsmetode som alltid akselererer og ofte er svært

effektiv.

Det siste modellen kalles Cahn-Larché ligningene og er ogs̊a en fasefeltmodell, men denne

beskriver elastisitet i et medium best̊aende av to elastiske materialer som kan bevege seg

basert p̊a overflatespenningen mellom dem. Dette problemet er spesielt utfordrende å

løse da det verken er lineært eller konvekst. For å h̊andtere dette har en ny måte å

behandle tidsavhengigheten til det underliggende koblede problemet p̊a blitt utviklet.

Dette leder til et diskret system som er ekvivalent med et konvekst minimeringsproblem,

som derfor er velegnet til å løses med de fleste numeriske optimeringsmetoder, ogs̊a

splittemetoder.

Den nye modellen som har blitt utviklet er en utvidelse av Cahn-Larché ligningene og

har f̊att navnet Cahn-Hilliard-Biot. Dette er fordi ligningene utgjør en fasefelt modell

som beskriver flyt i et deformerbart porøst medium med to poroelastiske materialer.

Disse kan forflytte seg basert p̊a overflatespenning, elastisk spenning, og poretrykk, og

det er tenkt at modellen kan anvendes i forbindelse med kreftsvulstmodellering.



Outline

This doctoral dissertation is divided into two main parts. Part I governs the theoretical

foundations of the research and Part II is a collection of the papers that constitute the

scientific results of the research.

The first part of the thesis is organized into four chapters. In Chapter 1, a brief in-

troduction to the mathematical coupled models that are analyzed in this dissertation

is provided, as well as a summary of the main contributions of the research. Then, in

Chapter 2, the theoretical background for the mathematical models is discussed, before

numerical solution strategies to coupled problems are presented in Chapter 3. Finally, a

summary of the articles in Part II and an outlook are given in Chapter 4.

The second part of the thesis consists of five papers that make up the scientific results

of the dissertation:

Paper A Storvik, E., Both, J.W., Kumar, K., Nordbotten, J.M., and Radu, F.A.

On the optimization of the fixed-stress splitting for Biot’s equations. In-

ternational Journal for Numerical Methods in Engineering, 120, 179–194

(2019)

Paper B Storvik, E., Both, J.W., Nordbotten, J.M., and Radu, F.A. The Fixed-

Stress Splitting Scheme for Biot’s Equations as a Modified Richardson Iter-

ation: Implications for Optimal Convergence. Numerical Mathematics and

Advanced Applications ENUMATH 2019, Lecture Notes in Computational

Science and Engineering, 139, 909–917 (2021)

Paper C Storvik, E., Both, J.W., Sargado, J.M., Nordbotten, J.M., and Radu, F.A.

An accelerated staggered scheme for variational phase-field models of brittle

fracture. Computational Methods in Applied Mechanics and Engineering,

381, 113822 (2021)

Paper D Storvik, E., Both, J.W., Nordbotten, J.M., and Radu, F.A. A Cahn-

Hilliard-Biot system and its generalized gradient flow structure. Applied
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Mathematics Letters, 381, 107799 (2021)

Paper E Storvik, E., Both, J.W., Nordbotten, J.M., and Radu, F.A. A robust solu-

tion strategy for the Cahn-Larché equations. In review. arXiv:2206.01541

[math.NA].
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Chapter 1

Introduction

Coupled problems arise in many societally relevant applications, ranging from flow

through deformable porous media in relation to CO2 sequestration, groundwater extrac-

tion and flow in brain tissue to fracture mechanics in relation to structural engineering

and geothermal energy extraction. This dissertation is concerned with three different

coupled mathematical models:

• The quasi-static linearized Biot consolidation model of flow through deformable

porous media, often known as poroelasticity or poromechanics.

• The variational phase-field approach to fracture propagation, where a phase-field

evolution equation is coupled with linearized elasticity.

• The Cahn-Larché system that models the evolution of a composition of two disjoint

different elastic materials with interface forces and swelling effects. Here, a phase-

field evolution equation of Cahn-Hilliard type is coupled with linearized elasticity.

In particular, the focus of the research is on the development of robust and efficient

solution strategies for these coupled problems. This is important because it enables

the possibility of approximating solutions to problems for a wide variety of material

parameters with high accuracy.

1.1 Poroelasticity

Poroelasticity governs flow through deformable porous materials. The first for flow and

deformation was due to Terzaghi, who developed a one-dimensional consolidation model
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and introduced the concept of effective stress [151]. Later, Biot extended that theory

to three spatial dimensions [19]. There are many societally relevant applications related

to poroelasticity ranging from the life sciences with modelling of the heart-circulatory

system [30, 132] or flow in brain tissue [112, 153] to environmental science related to CO2

sequestration in depleted hydrocarbon reservoirs [21, 93, 125] and modelling of ground

subsidence due to extraction of groundwater [76, 157]. Probably the most widely used

mathematical model for poroelasticity today is the quasi-static linearized Biot equations

that account for the balance of mass and linear momentum, as well as incorporating pore-

pressure to the effective stress by the Biot-Willis coupling coefficient [20], and Darcy’s

law.

There are two popular choices for solving the quasi-static linearized Biot equations:

Either to use a monolithic method, i.e., solve for all unknowns (e.g., pore pressure and

displacement) simultaneously or to apply a splitting method, alternating between solving

the flow and elasticity subproblem in an iterative way. The monolithic method has the

benefit that it is stable in the sense that one can use a linear solver and get a solution.

It is, however, difficult to construct efficient and robust linear solvers for such coupled

problems, although a lot of work has been made toward preconditioners for the Biot

equations [1, 2, 24, 49, 92, 96, 111]. Splitting methods, on the other hand, have the benefit

that one can use readily available solvers for flow and mechanics and iterate between

them. Moreover, it can easily be extended to more complicated, and possibly nonlinear

problems, such as unsaturated deformable porous media [33], finite-strain poroelasticity

[27], the inclusion of thermal effects [41], Biot-Allard [15, 16], nonlinear poromechanics

[26], multiple-network poroelasticity [95], and fluid-structure interactions [155], and be

combined with time discretizations to make a partially-parallel-in-time solver [25].

The drawback of the splitting methods is that they typically require some stabilization

to converge. The original stabilization is due to Settari [138], who, based on physical

interpretations, proposed to fix the volumetric stress over the iterations, resulting in

a simple pressure stabilization and leading to the notion of the fixed-stress splitting

scheme. Later, in the work of Mikelić and Wheeler [121], it was mathematically proven

that as long as the stabilization constant is larger than half of the one proposed in [138],

the method would converge. The same was proved, using a different technique in [31].

In the Papers A and B, the optimal choice of this stabilization term is addressed and

a finite interval where it always resides is found. Moreover, a way to compute it for

general cases is provided in Paper A, and a more efficient approach for the case of low-

permeable media can be found in Paper B. There is also a counterpart to the fixed-stress

splitting scheme, that stabilizes the elasticity equation instead of the flow equation.

This is often denoted as the undrained split [104]. Moreover, both splitting methods can

be obtained as alternating minimization applied to a primal or a dual formulation of
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the minimization problem associated with the thermodynamically motivated generalized

gradient flow structure of the quasi-static linearized Biot equations [34].

1.2 The variational phase-field approach to fracture

Mathematical modeling of fracture propagation in elastic solid is an important topic in

structural engineering. The thermodynamical principles of fracture propagation origi-

nated in the work of Griffith [89], who proposed that an existing fracture will propagate

if the energy release rate associated with crack extension exceeds a critical value. Much

later, Francfort and Marigo [71] introduced the variational approach to fracture mechan-

ics in an effort to overcome some of the shortcomings of Griffith’s framework, namely

fracture nucleation or branching. At this stage, the central issue with the variational

approach to fracture was the discontinuities in displacement across fractures.

The remedy, proposed by Bourdin, Francfort and Marigo [36, 37], was to introduce a

smooth indicator function, called a phase-field, to track the crack location. Since then,

numerous developments of the model have been made, eventually branching in different

directions. Of the most important contributions, one finds the splitting of the elastic

energy into tensile and compressive parts to account for fracture propagation only due

to tensile forces. Several ways have been proposed to do this, but the most common

choices are due to Miehe [119], and Amor [9].

One of the key challenges related to approximating solutions to the phase-field models

for fracture propagation is in the linearization strategies. Typically, the Newton method

struggles with convergence, which is to be expected, as it is only known for its local

convergence properties, and in loading steps with crack propagation, the states between

consecutive solutions might vary greatly. The most common choice for a robust method is

to use a decoupling method that usually either is called a staggered scheme or alternating

minimization. This method alternates between solving the Euler-Lagrange equations

corresponding to the phase-field evolution and the elastic deformation. Although the

common experience is that this solution strategy is robust, it is in certain scenarios very

slow and can during loading steps where cracks are propagating demand thousands of

iterations to converge to satisfactory precision. Known remedies in the literature that

aim to stabilize the robustness issues of the monolithic Newton method include the

modified Newton method from [159], the BFGS-type methods proposed in [106, 161],

a line-search-based Newton method [83], and a truncated non-smooth Newton method

[87]. Moreover, several attempts to accelerate the staggered scheme have been proposed,

including the stabilized staggered scheme in [42], and a combined over-relaxed staggered
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scheme and Newton method was proposed in [67]. In Paper C an acceleration method

that can be implemented as a post-processing technique to the staggered solution strategy

is developed. This method is, in addition to being easy to implement on top of readily

available software, highly accelerating and robust in the sense that it never decelerates

the convergence of the scheme.

1.3 The Cahn-Larché equations

The early work of Cahn and Hilliard [43, 45, 46], related to the free energy of nonuniform

systems has had a lasting impact in several fields of applied mathematics, ranging from

modelling of spinodal decomposition [44, 47, 108] to phase-field models of two-phase flow

[48, 59, 68] and fingering effects in porous materials [57]. In this dissertation, the interest

has primarily been in a model for elastic deformation in a composition of two solids. This

model is often known as the Cahn-Larché system, due to the work of Cahn and Larché

in [109, 110]. The equation, with problem-specific extensions, has been employed for

predictive tumor growth modelling [74, 79, 80], lithium-ion intercalation into silicon

[117], diffusional coarsening in binary alloys [61, 88] and was recently experimentally

verified as a model for the connection between chemical and mechanical processes in

alloys [139].

One of the main difficulties with approximating solutions to the Cahn-Larché equations

lies with the non-convex nonlinearities in the system. These are present in both the

double-well potential that is inherent in all Cahn-Hilliard-type equations, and in the

nonlinear coupling between the phase-field and elasticity. One could try to use an explicit

time-discretization and remove the need for linearization, however, that would lead to a

non-gradient stable discretization, i.e., the free energy of the system might increase due to

poor time-stepping choices. Therefore, it is more common to apply a semi-implicit time-

discretization, which was proposed for the double well potential in the Cahn-Hilliard

equation by Eyre in [65]. Here, the idea is to split the non-convex nonlinearity into

two parts, one convex and one concave, and evaluate the convex part implicitly in time

and the concave one explicitly. Doing so for the Cahn-Hilliard equation leads to an

unconditionally gradient-stable time discretization that is well suited for linearization

methods. For the Cahn-Larché equations the same splitting has been applied several

times [77, 78, 81, 88]. In Paper E, the inherent minimization structure related to the

generalized gradient flow structure of the Cahn-Larché equations is exploited. Some of

the terms from the elastic free energy of the system are evaluated explicitly, resulting in

a system that is well suited for linearization methods and can be proven to be gradient

stable under certain assumptions on the material parameters.
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1.4 The Cahn-Hilliard-Biot equations

During the last decade there has been an increasing interest in predictive tumor growth

modeling utilizing phase-field methods of Cahn-Hilliard type to account for interfacial

forces between cancerous and healthy cells (with surrounding tissue); see, e.g., [72, 73, 74,

75, 79, 80, 114, 115, 126, 141, 160]. The extension to account for elastic effects has been

considered in [74, 79]. Paper D is concerned with the extension to a thermodynamically

consistent model that also accounts for flow through the (poro)elastic material, with

permeability and poroelastic coupling parameters that depend on the material phase.

Moreover, the system is written as a generalized gradient flow, which could prove useful

for further analysis to come.

1.5 Main contributions

This dissertation is concerned with the development and analysis of robust solution

strategies for coupled problems, as well as one contribution to extend the Cahn-Larché

equations to include flow through the poroelastic material in a thermodynamically con-

sistent manner. The following summarizes the main contributions of the research herein:

1. Optimal stabilization for decoupling of the Biot consolidation model.

In Paper A and B the optimal stabilization parameter for the fixed-stress splitting

method applied to Biot’s equations is addressed. In Paper A, a theoretical proof

of convergence, in the form of a contraction result, including the contraction rate,

is provided. That contraction rate is utilized to determine an interval that the

optimal stabilization parameter resides in, provided that the system is discretized

with an inf-sup stable spatial discretization. Moreover, a practical approach to

compute the optimal stabilization parameter by exploiting the mesh independence

of the fixed-stress splitting scheme’s performance is proposed.

In Paper B, the fixed-stress splitting scheme is identified with a modified Richard-

son iteration. Using the theory for the optimal convergence of that method, the

optimal choice of stabilization parameter in the fixed-stress splitting scheme is

determined. Some computational aspects with regards to finding the optimal sta-

bilization parameter are discussed involving the computation of eigenvalues.

2. Acceleration of the staggered scheme for variational phase-field models

for brittle fracture propagation.
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In Paper C, an acceleration method for the staggered solution scheme applied

to the phase-field models for fracture propagation is proposed. The acceleration

method is a combination of two standard techniques; Anderson acceleration and

over-relaxation, where either the Anderson acceleration or over-relaxation always is

applied. The benefit of switching between these two methods compared to switch-

ing between the staggered scheme and a monolithic Newton method is that both of

them are applied as post-processes to the standard staggered scheme, i.e., each up-

date made by the staggered scheme is modified according to some rule. Therefore,

the method is straightforward to implement on top of readily available software,

and the cost of applying it is negligible compared to the cost of an iterative step.

Moreover, a criterion for switching between the two acceleration methods, based

on monitoring the algebraic residuals, is proposed. Several standard benchmark

problems from the literature are considered and it is shown that the method al-

ways accelerates and in some examples more than 80% reduction in the number of

iterations is experienced.

3. Extension of the Cahn-Larché system to an equation that accounts for

flow through a poroelastic material.

An extension of the Cahn-Larché equation including flow through the elastic ma-

terial is proposed in Paper D. This model can be seen as a combination of the

Cahn-Hilliard equation and the Biot equations and is, therefore, called the Cahn-

Hilliard-Biot system. Moreover, the proposed model is shown to have a generalized

gradient flow structure, and thereby be thermodynamically consistent. A numeri-

cal experiment that shows the impact of fluid flow on the phase-field evolution is

provided.

4. A robust solution strategy for the Cahn-Larché equations.

In Paper E, a new semi-implicit time-discretization for the Cahn-Larché equations

is provided. This is shown theoretically to be gradient stable while the stiffness

tensors are the same for both elastic materials. Moreover, the semi-implicit time

discretization is identified with a discrete minimization problem, and a theoreti-

cal proof that alternating minimization converges for this minimization problem is

provided. Additionally, several numerical examples show that linearization meth-

ods applied to this newly proposed time-discretization behave very well compared

to standard implicit time-discretizations for which the linearization methods fail to

converge at all, even when the classical convex-concave splitting method is applied

to the double-well potential.



Chapter 2

Mathematical models

In this chapter, an introduction to the mathematical models that have been studied

in Part II of the dissertation is presented. First, in Section 2.1, the subproblems that

contribute to the coupled problems are discussed, and in Section 2.2 the fully coupled

problems are introduced. Finally, in Section 2.3, a brief introduction to gradient flows

is provided as it is a core concept that is utilized in Paper D and E in Part II of the

dissertation.

2.1 Non-coupled mathematical models

In Section 2.1.1, a brief introduction to linearized elasticity is provided, before single-

phase flow in porous materials is discussed in Section 2.1.2. Finally, Section 2.1.3 gives

an introduction to general phase-field modeling, with the Cahn-Hilliard and Allen-Cahn

equations as examples.

2.1.1 Linearized elasticity

Linearized elasticity constitutes a subproblem of all the coupled models that are dis-

cussed in this dissertation. The theory of elasticity governs physical effects and motions

related to elastic bodies subject to deformation due to external forces, loading, or other

effects such as those related to pressure of internal fluids or swelling. There are several

comprehensive text books that cover the basic theory of linearized elasticity, and in this

thesis the presentation is based on the textbooks by Ciarlet [53] and Coussy [56].

The core problem in the theory of elasticity is to find the relation between the position
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φ

Ω φ(Ω)

Figure 2.1: Two-dimensional domain in reference Ω and deformed ϕ(Ω) configuration.

of an elastic body after forces have been applied to it and its reference configuration, i.e.,

the state of the body in the absence of external forces. To this end, define the reference

configuration of the elastic body as the domain Ω, and assume that the deformation can

be defined by the differentiable vector-field ϕ : Ω → Rd, where ϕ(Ω) is the deformed

elastic body, and d is the spatial dimension, see Figure 2.1. It is common to work

with the displacement of particles between the reference configuration and the deformed

configuration, u(x) := ϕ(x) − x, where x is a position in the reference configuration,

instead of taking the deformation function into account.

A central construction in the theory of elasticity is the strain tensor which gives a measure

on the relative displacement of points in a body due to deformation. Consider a curve

γ(t), parametrized by t, in the reference configuration and the deformed curve ϕ(γ(t)).

The lengths of the curves are given as

length(γ) =

∫ t1

t0

|γ ′(t)|dt =
∫ t1

t0

(γ ′(t)iγ
′(t)i)

1
2 dt,

and

length(ϕ(γ)) =

∫ t1

t0

∣∣∣∣
d

dt
ϕ(γ(t))

∣∣∣∣ dt =
∫ t1

t0

|∇ϕ(γ(t))γ ′(t)| dt =
∫ t1

t0

(Cijγ ′(t)iγ
′(t)j)

1
2 dt,

where γ(t0) and γ(t1) are two points on the curve, the Einstein rule for summation is

applied and the tensor C := (∇ϕ)⊤∇ϕ is the right Cauchy-Green strain tensor. From

this, one can define the infinitesimal length element dl in the reference configuration and

in the deformed configuration dlϕ as

dl =
(
dx⊤dx

) 1
2 , and dlϕ =

(
dx⊤Cdx

) 1
2 .

Observe here, that the tensor C gives information about the strain of the material.

Particularly, if C = I the material has not been strained. Such motions are characterized

(by Theorem 1.8-1 in [53]) as rigid-body motions, which are defined by the deformation
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function

ϕrigid(x) := a+Qx

for some translation a ∈ Rd and rotation Q ∈ Rd×d, where Q is an orthogonal matrix.

With this in mind, the Green-St. Venant strain tensor is defined as E :=
C − I

2
, and

gives a measure on a deformations deviation from a rigid body motion. Moreover, it is

common to work with the Green-St. Venant strain tensor given in terms of displacement

E(u) =
C(u)− I

2
=

(∇u+ I)⊤(∇u+ I)− I

2
=

∇u⊤∇u+∇u⊤ +∇u

2
.

For the theory of linearized elasticity, one now assumes that the deformation gradient is

small |∇u| ≪ 1, and thereby define the linearized strain tensor as

ε(u) :=
∇u+∇u⊤

2
≈ E(u), for |∇u| ≪ 1. (2.1)

One of the fundamental concepts of continuum mechanics is the linear momentum bal-

ance. It states that the momentum of an object is balanced by the forces F acting on it.

To express this in mathematical terms let ω ⊆ Ω be an arbitrary control volume. The

momentum related to the control volume ω is given by

∫

ω

(ρ∂tu) dx = ρ

∫

ω

∂tu dx,

where the mass density ρ is assumed to be constant in (time and) space, and ∂tu repre-

sents the derivative of u with respect to time. The forces that act on the control volume

consist of external body forces ∫

ω

f dx,

and traction forces on the boundary of the control volume due to deformation of the

remaining volume Ω\ω ∫

∂ω

σn ds,

where σ is known as the symmetric Cauchy stress tensor, and n is the outward pointing

normal vector on ∂ω. Hence, the balance of momentum states that

ρ∂t

∫

ω

∂tu dx =

∫

ω

f dx+

∫

∂ω

σn ds

for all control volumes ω ⊆ Ω. By applying the divergence theorem, the momentum

balance equation becomes

ρ∂2tu−∇ · σ = f ,
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in differential form. If one, furthermore, ignores inertial effects (∂2tu = 0), as will be

done for all models considered later in the dissertation under the assumption that the

deformation of the elastic body is so slow that the system is in elastic equilibrium at all

times, the momentum balance equation is given by

−∇ · σ = f . (2.2)

To close the system, a constitutive relation between the Cauchy stress tensor and the

material strain is needed. The most common one is known as Hooke’s law, which assumes

a component-wise linear relation between stress and strain

σ = Cε. (2.3)

The tensor C is of fourth order, and is usually called the elasticity tensor or the stiffness

tensor. In Einstein’s summation notation, (2.3) reads

σij = Cijklεkl,

and one can count that in three spatial dimensions (d = 3) the elasticity tensor contains

the information of 81 relations. However, due to the symmetry of σ, as a result of the

balance of angular momentum, and ε, there are only 21 independent relations in C. This
number can be further reduced depending on the material.

For the special case of isotropic materials, one can show that the elasticity tensor is

determined by only two independent coefficients, and the stress-strain relation is often

given in terms of the Lamé parameters

σ = 2Gε+ λtr(ε)I

where λ is the first Lamé parameter, and G is either referred to as the second Lamé

parameter or the shear modulus.

Finally, one can compute the work that is required to deform a material and find that

the potential elastic energy related to a deformed configuration is given as

Ee =
1

2

∫

Ω

ε :Cε dx. (2.4)
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2.1.2 Single-phase flow in porous materials

Since the geometry of porous materials such as tissue, rock, and sand is highly complex

and difficult to determine precisely, it is common to describe flow processes through it

as an up-scaled continuum model. This is commonly done by considering representative

elementary volumes (REV) of a certain size that contains both void spaces (potentially

filled with fluids) and parts of the solid material. Here, a very brief introduction to the

theory of single-phase flow through porous media is provided. Text-books on the subject

include [56, 58, 113, 125].

One of the most basic notions of a porous material is its porosity. This is defined as

the ratio between the volume of all of the void spaces in a REV and the total volume

of the REV. However, in the case of a fully saturated porous medium, the porosity is

interchangeable with the volumetric fluid content, which will be denoted by θ in this

dissertation. The standard equation of continuity for flow in porous media is the mass

balance equation, which in terms of the volumetric fluid content, is given by the equation

∂t

∫

ω

ρwθ dx = −
∫

∂ω

ρwq · n ds+

∫

ω

sf dx,

where ω is a control volume, ρw is the fluid mass density, q is the volumetric fluid flux,

n is the outward pointing normal vector to ω and sf represents any sources or sinks.

Utilizing now the divergence theorem and that the mass balance equation holds for all

control volumes ω ⊆ Ω, as well as assuming that the density is constant, the equations

in differential form reduce to

∂tθ +∇ · q = Sf , (2.5)

where Sf =
sf
ρw

.

The basic constitutive law for flow in porous materials is the Darcy law which gives a

relation between the fluid flux q and the pore pressure p:

q = −κ(∇p− g), (2.6)

where g is the gravitational vector, and the constant κ is proportional to the permeability

of the porous medium and inversely proportional to the viscosity of the fluid.

Remark 2.1.1. It might at first glance seem strange to include the time-derivative of

the volumetric fluid content for the mass balance equation (2.5) when the porous material

is fully saturated. However, in the context of deformable porous media, also known as

poromechanics, the volumetric fluid content will change as the material deforms. To

account for this, a constitutive relation between the volumetric fluid content, the pore
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pressure, and the material displacement will be given in Section 2.2.1.

2.1.3 Phase-field modelling

A phase-field is a regularization of an indicator function that represents certain physical

configurations of a system. In this dissertation, two different settings are considered. The

first is the variational approach to fracture in which the phase-field captures fractured

and unbroken parts of an elastic material, and the second is the Cahn-Larché equations

where the phase-field tracks to two distinct elastic solid materials that move due to

interface forces or external forces, or change phase due to reactions. The former situation

is discussed in Section 2.2.2, and the latter in Section 2.2.3. Here, some general features

of phase-field models will be defined together with the classical Allen-Cahn and Cahn-

Hilliard equations that arose in connection to the works [3, 4, 43, 45, 46] motivated by

the modelling of spinodal decomposition in binary alloys.

To discuss phase-field modeling, some preliminary knowledge of variational modeling and

minimization in Hilbert spaces is required. To that end, let H be a Hilbert space and

consider the following minimization problem: Let F : H → R and find y ∈ H such that

F(y) ≤ F(ỹ) for all ỹ ∈ H. If F is convex that corresponds to solving the variational

problem: Find y ∈ H such that

lim
δ→0

F(y + δȳ)−F(y)

δ
= 0, ∀ȳ ∈ H. (2.7)

The limit above is known as the Gateaux derivative, or variational derivative, and here,

the notation

⟨DF(y), ȳ⟩ := lim
δ→0

F(y + δȳ)−F(y)

δ
=

[
∂

∂δ
F(y + δȳ)

]

|δ=0

,

is used. Moreover, the minimization problem can be written using “argmin”-notation,

i.e., “the argument that minimizes”, as

y = argmin
s∈H

F(s).

The equation (2.7) is known as the optimality condition to the minimization problem.

Remark 2.1.2. It is also common to consider constrained minimization problems. When

that is the case, the optimality condition (2.7) needs to be altered slightly to take into

account that the test space and the Hilbert space containing the minimizer might not be

the same.
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Example 2.1.1. Let H = H1
0 (Ω), where H

1
0 (Ω) is the space of weakly differentiable

functions on Ω with vanishing trace on the boundary ∂Ω, and define the function F :

H1
0 (Ω) → R+ such that F(z) =

∫
Ω
z2 + |∇z|2 dx. Then, the variational derivative, with

z, v ∈ H1
0 (Ω), is given as

⟨DF(z), v⟩ =

[
∂

∂δ

∫

Ω

(z + δv)2|∇(z + δv)|2 dx
]

|δ=0

=

[
∂

∂δ

∫

Ω

z2 + 2δvz + δ2v2 + |∇z|2 + 2δ∇v · ∇z + δ2|∇v|2 dx
]

|δ=0

=

∫

Ω

2zv + 2∇z · ∇v dx =

∫

Ω

2(z −∆z)v dx,

and the notation DF(z) = 2(z −∆z) is used.

Consider now a domain Ω that is composed of two subdomains Ωa and Ωb, Ωa ∪Ωb = Ω,

that only intersect on a common lower-dimensional surface Γ, Ωa∩Ωb = Γ. One can then

define a phase-field as a regularized indicator function that describes the location of each

of the two subdomains. In other words, the phase-field will be a function φ ∈ H1(Ω)

that in some sense is an approximation to the indicator function

χ(x) =




1, x ∈ Ωa\Γ
−1, x ∈ Ωb

.

Remark 2.1.3. Note that the choice of value on the interface of the indicator function

χ is insignificant as it will be regularized.

As an example, consider the domain Ω = [−1, 1], with Ωa = [0, 1] and Ωb = [−1, 0], and

let χ : Ω → [−1, 1] be the indicator function

χ(x) =




1, x > 0

−1, x ≤ 0.

The function, χ(x) is clearly in L2(Ω), but it does not belong to H1(Ω) as it does not

have a weak derivative. To see this, recall the definition of a weak derivative:

Definition 2.1.1 (Weak derivative). Let g ∈ L1
loc(Ω) (the space of locally integrable

functions) and β be a multi-index. The function g has a β-th weak derivative if there

exists a w ∈ L1
loc(Ω) such that

∫

Ω

g∂βv dx = (−1)|β|
∫

Ω

wv dx,
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for all v ∈ C∞
c (Ω) (compactly supported smooth functions on Ω).

Assuming that χ has a weak derivative, there exists a w ∈ L1
loc(Ω) such that

∫ 1

−1

χv′ dx = −
∫ 1

−1

wv dx.

However,
∫ 1

−1
χv′ dx = −2v(0) which gives

2v(0) =

∫ 1

−1

wv dx. (2.8)

If w ∈ L1
loc(Ω) then limr→0

∫ r

−r
|w| dx = 0, hence there exists a δ > 0 such that∫ δ

−δ
|w| dx < 1. Choosing a function v ∈ C∞

c (Ω) such that supp(v) = [−δ, δ] and
max(|v|) = v(0) = 1 equation (2.8) gives

2 = 2v(0) =

∫ 1

−1

wv dx =

∫ δ

−δ

wv dx ≤ max(v)

∫ δ

−δ

|w| dx < 1,

which is a contradiction. Hence, χ cannot be in H1(Ω).

Remark 2.1.4. Equation (2.8) is sufficient to realize that w is a scaled Dirac delta

function.

The objective is now to search for a phase-field φ ∈ H1(Ω) that is close to χ in the L2(Ω)-

norm, while still being a function in H1(Ω). This is done by solving a minimization

problem of the form

φ = argmin
s∈H1(Ω)

(
a1∥s− χ∥2L2(Ω) + a2∥∇s∥2L2(Ω)

)
, (2.9)

where a1, and a2 are weights that determine the importance of φ being close to χ in

the L2(Ω)-norm compared to how small the gradient of it should be. The optimality

conditions of the problem read as follows: Find φ ∈ H1(Ω) such that

a1 (φ, q) + a2 (∇φ,∇q) = a1 (χ, q) , ∀q ∈ H1(Ω),

where (·, ·) denotes the L2(Ω) inner-product. Notice that by choosing q = 1 (or any other

constant function) one obtains that the mean of the phase-field is equal to the mean of

the function it approximates (φ, 1) = (χ, 1). An approximation to the solution of this

problem for a1 = a2 = 1 is presented in Figure 2.2a, and the need to properly choose the

weights is clear.
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To get an idea of how to do this, consider the function

φ̃ℓ(x) =





−1, x ≤ − ℓ
2
,

2
ℓ
x, x ∈ [− ℓ

2
, ℓ
2
],

1, x > ℓ
2
,

with ℓ ∈ (0, 2). This function transitions between the two phases in a region of width ℓ

and the value of the potential in (2.9) for it is easily computed. More importantly, by

comparing the values of the two terms in the minimization problem, it becomes clear

how the weights can be chosen as functions of ℓ. The first term in (2.9) evaluated at φ̃ℓ

takes the value

a1∥φ̃ℓ − χ∥2L2(Ω) = a1

∫ 0

− ℓ
2

(
2

ℓ
x+ 1

)2

dx+

∫ ℓ
2

0

(
2

ℓ
x− 1

)2

dx = a1
ℓ

3
,

and the second term

a2∥∇φ̃ℓ∥2L2(I) = a2

∫ ℓ
2

− ℓ
2

4

ℓ2
dx = a2

4

ℓ
.

Hence, to make the two terms comparable, the choice of weights a1 =
3
ℓ
and a2 =

ℓ
4
allows

control of the regularization width, ℓ. See Figure 2.2 for solutions to the minimization

problem

φ = argmin
s∈H1(Ω)

(
3

ℓ
∥s− χ∥2L2(Ω) +

ℓ

4
∥∇s∥2L2(Ω)

)
, (2.10)

for different values of ℓ.

Remark 2.1.5. The values 3 and 4 in (2.10) are in principle insignificant as the cases

ℓ≪ 1 or “the sharp interface limit” ℓ→ 0 are of interest.

Example 2.1.2 (The Allen-Cahn and Cahn-Hilliard equations). As examples of classi-

cal phase-field models, the Allen-Cahn and Cahn-Hilliard equations are presented here.

They can both be seen as models for interfaces that move due to surface tension, and

were originally developed in the context of binary alloys [4, 44]. In recent years, however,

it has been more common to consider the equations as a part of coupled diffuse interface

models such as the Cahn-Larché equations [88, 146], tumor growth models [126, 160],

two-phase flow [48, 57, 135] and Navier-Stokes-Cahn-Hilliard [156]. Suppose that two

materials in a domain Ω ⊆ Rd are separated by an interface Γ, and that surface ten-

sion or other interface forces are acting such that the preferred state is one where the

lower-dimensional interface area Id−1(Γ) is minimized. By introducing a phase-field that

takes the value 1 for one of the materials and −1 for the other material, and transitions
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(a) a1 = a2 = 1 (b) ℓ = 1 (c) ℓ = 0.5

(d) ℓ = 0.1 (e) ℓ = 0.05 (f) ℓ = 0.01

Figure 2.2: (a): Solution to (2.9) for a1 = a2 = 1. (b) – (f): Solutions to the minimization
problem (2.10) for different values of ℓ.

smoothly between, the interface area can be approximated, as in [4], by

Id−1(Γ) ≈
∫

Ω

1

ℓ
Ψ(φ) +

ℓ

2
|∇φ|2 dx =: Id−1(φ), (2.11)

where ℓ is a positive constant that is related to the width of the transition region for

φ, and Ψ(φ) is known as a double-well function that is evaluated to 0 in the two pure

phases and is otherwise positive. A classical example is the function

Ψ(φ) := (1− φ2)2. (2.12)

Assume now that the system has an initial configuration that is described by the phase-

field function φ0 ∈ H1(Ω), and then evolves in the direction of steepest decent of the

interface area, with mobility m and surface tension γ, i.e.,

(∂tφ, q) = −mγ
〈
DId−1(φ), q

〉
∀q ∈ H1(Ω), (2.13)

where (·, ·) is the L2(Ω) inner product, and
〈
DId−1(φ), q

〉
is the variational derivative

of Id−1(φ) with test function q. The equation (2.13) is the variational form of the

Allen-Cahn equation, which corresponds to the partial differential equation

∂tφ+
γm

ℓ
Ψ′(φ)− γm∆φ = 0,
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with initial condition φ(0) = φ0 and homogeneous Neumann conditions ∇φ · n = 0 on

∂Ω (n representing the outward-pointing normal vector) in strong form.

Note that there is nothing in the Allen-Cahn equation, as it is given here, that prevents

phases form disappearing. Indeed, this will eventually happen if the initial configuration

contains more of one phase than the other, since the smallest interface area is obtained

by having no interface at all. Remedies could be to add a source term to the equation,

or a Neumann boundary condition that enforces influx of a phase.

An alternative is to prescribe a phase-conservation law

∂tφ+∇ · J = 0, (2.14)

with a phase-field flux J that is assumed to follow Fick’s law of chemical diffusion

[69, 129]

J = −m∇µ, (2.15)

and have no-flux boundary conditions. Here, m is again the mobility, and µ is the

potential that is defined as the rate of change of free energy with respect to changes

in phase. In this setting, the free energy is given as the interface tension parameter γ

multiplied by the interface measure Id−1(φ), i.e., the potential is defined through the

equation

(µ, q) = γ⟨DId−1(φ), q⟩, ∀q ∈ H1(Ω). (2.16)

By substituting equation (2.15) into equation (2.14) and multiplying with test functions

from H1(Ω), the variational equations

(∂tφ, q
φ) + (m∇µ,∇qφ) = 0, ∀qφ ∈ H1(Ω) (2.17)

(µ, qµ)−
(γ
ℓ
Ψ′(φ), qµ

)
− (γℓ∇φ,∇qµ) = 0, ∀qµ ∈ H1(Ω), (2.18)

are obtained. This is known as the Cahn-Hilliard model and the corresponding strong

partial differential equation is given as

∂tφ−∇ ·m∇
(γ
ℓ
Ψ′(φ)− γℓ∆φ

)
= 0,

with initial condition φ0 ∈ H1(Ω) and boundary conditions ∇µ ·n = ∇φ ·n = 0 on ∂Ω.
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2.2 Coupled problems

Here, several models that treat the coupling between the models from Section 2.1 are

discussed. First, poroelasticity, and specifically the quasi-static Biot equations, are de-

scribed. Then, in Section 2.2.2, the variational approach to fracture propagation is dis-

cussed, and finally the Cahn-Larché equation which couples the Cahn-Hilliard equation

(2.17)–(2.18) to linearized elasticity are defined.

2.2.1 Poroelasticity and the quasi-static Biot equations

Poroelasticity governs flow in a deformable porous material. In its most general set-

ting, poroelasticity governs both finite strain elasticity [27, 154], and partially saturated

[33, 35] and multi-phase flow [100, 103]. Here, only the restriction to linearized elas-

ticity, from Section 2.1.1, and fully saturated single-phase flow, from Section 2.1.2, is

discussed. The resulting model is often known as the quasi-static linearized Biot equa-

tions, and in addition to the equations that have been discussed in Sections 2.1.1 and

2.1.2 two constitutive laws will be introduced that describe the relationship between

material displacement and fluid flow. The standard textbook on poroelasticity is [56].

The change in volumetric fluid content is assumed to be proportional to both the change

in pore pressure and the divergence of material displacement, i.e.,

∂tθ = ∂t

( p
M

+ α∇ · u
)
, (2.19)

where α is the Biot-Willis coupling coefficient and M is a compressibility coefficient.

Moreover, the solid matrix is assumed to be isotropically stressed by the pore pressure,

which is accounted for using the principle of effective stress

σ = σe − αpI. (2.20)

Here, σe is the effective stress tensor that is given by Hooke’s law

σe = Cε(u).

Notably, the coefficient α appears in both the volumetric fluid balance equation and the

stress-strain relationship, which eventually leads to a saddle-point structure of the total

problem [39]. Combining the linear momentum balance (2.2) with the modified Hooke’s

law (2.20), and the volumetric fluid balance equation (2.5) with the relation (2.19) and

Darcy’s law (2.6), the Biot consolidation model (see e.g., [56]) reads: Find u and p such
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that

−∇ · Cε(u) + α∇p = f , (2.21)

∂t

( p
M

+ α∇ · u
)
−∇ · (κ (∇p− g)) = Sf , (2.22)

with initial conditions for pore pressure and displacement p0,u0, Dirichlet boundary

conditions p = pD on Γp
D ⊆ ∂Ω and u = uD on Γu

D ⊆ ∂Ω and Neumann boundary

conditions κ (∇p− g) · n = qN on ∂Ω\Γp
D and (Cε(u)− αpI) · n = σN on ∂Ω\Γu

D, n

being the outward pointing normal vector.

2.2.2 The variational approach to brittle fracture propagation

In this section, a variational phase-field framework is presented to model fracture prop-

agation in a brittle elastic material. The framework follows the theory of Griffith for

fracture propagation [89], and the variational model was proposed by Bourdin, Francfort

and Marigo in [36, 37, 71]. The fracture is tracked by a phase-field function φ ∈ H1(Ω)

that takes the value φ = 1 in the fractured part of the domain, φ = 0 in “healthy/intact”

part of the domain, and transitions smoothly between the values in a region that will

be controlled by the model parameter ℓ. This allows for modeling fractures without

the need for conforming meshes or special path-tracking algorithms (as e.g. XFEM

[70, 85, 86, 123]) when considering numerical discretization.

Let Ω be an elastic domain, and S ⊆ Ω a lower-dimensional manifold in Ω that represents

the fractured region. The variational model is derived as an energy minimization problem

following Griffith’s theory [89]. Let S0 be the initial crack and suppose that the medium

is subject to loading through traction forces τ . The free energy of the system is the

additive combination of the elastic (bulk) energy (which is extended to account for body

forces and traction compared to (2.4))

Ebulk(u,S) =
∫

Ω\S
ε(u) : Cε(u) dx−

∫

Ω

f · u dx−
∫

Γ

τ · u ds, (2.23)

and the potential energy related to the fracture

Ecrack(S) = GcHd−1(S), (2.24)

where u is displacement, ε is the material strain, C is the elasticity tensor, f accounts

for external body forces, τ represents traction to a part of the boundary Γ ⊆ ∂Ω, Gc is

the critical energy release rate, and Hd−1(S) is the lower-dimensional Hausdorff measure

of the crack surface. In the variational approach to fracture [71], one then searches for



20 Mathematical models

the pair of displacement u and fracture S such that the total energy is minimized

(u,S) = argmin
w,V

(Ebulk(w,V) + Ecrack(V)) , (2.25)

subject to the non-healing constraint S0 ⊆ S.

By regularizing the fracture with a phase-field φ, there are three components of the

minimization problem (2.25) that need to be altered:

• First is the restricted integral in the bulk energy

∫

Ω\C
ε(u) : Cε(u) dx ≈

∫

Ω

g(φ) (ε(u) : Cε(u)) dx, (2.26)

where g(φ) is called a degradation function that should satisfy g(1) = 0 and g(0) =

1. Typically, it is chosen as g(φ) = (1 − φ)2, but other choices have also been

discussed in the literature [137]. Moreover, a small artificial parameter ζ is often

introduced to the degradation function gζ(φ) = (1 − ζ)(1 − φ)2 + ζ to make sure

that the elasticity subproblem does not degenerate.

• The second is the lower-dimensional Hausdorff-measure in (2.24), Hn−1(S), which
will be approximated by

Hd−1(S) ≈
∫

Ω

1

2ℓ
φ2 +

ℓ

2
|∇φ|2 dx. (2.27)

This choice of functional is motivated by the work of Ambrosio and Tortorelli [7, 8]

on a similar type of problem in image segmentation. An alternative is to exchange

the quadratic term φ2, with a linear term φ = 1 (see, for example, [149]).

• Finally, the non-healing constraint on the fracture, S0 ⊆ S, is typically approxi-

mated by the inequality φ ≥ φ0 a.e. in Ω, where φ0 is the approximation of the

initial fracture. There have been suggestions that this might be too restrictive,

as the physical meaning of φ ∈ (0, 1) is unclear. A remedy is to only enforce the

restriction to phase-field values that exceed some user-defined threshold [137].

Remark 2.2.1. To initialize the fracture, one can either include the initial fracture into

the domain or create an indicator function that represents it and regularize it by using

the theory from Section 2.1.3.

By choosing the solution space for displacement as

H1
ũ(Ω)

d =
{
w ∈

(
H1(Ω)

)d
: tr(w) = ũ

}
,
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where the ũ is the Dirichlet boundary conditions on u and the trace is taken on the

appropriate part of the boundary, the regularized minimization problem becomes

(u, φ) = argmin
w∈H1

ũ(Ω)d,s∈H1(Ω)

(∫

Ω

g(s) (ε(w) : Cε(w)− f ·w) dx−
∫

Γ

τ ·w ds

+Gc

∫

Ω

1

2ℓ
s2 +

ℓ

2
|∇s|2 dx

)
,

subject to φ ≥ φ0 a.e. in Ω. If several loading steps are performed, the loading step

indicator n is introduced, and the evolution problem reads: Given φn−1 ∈ H1(Ω) solve

(un, φn) = argmin
w∈H1

ũ(Ω)d,s∈H1(Ω)

(∫

Ω

g(s) (ε(w) : Cε(w)− fn ·w) dx−
∫

Γ

τ n ·w ds

+Gc

∫

Ω

1

2ℓ
s2 +

ℓ

2
|∇s|2 dx

)
, (2.28)

subject to φn ≥ φn−1 a.e. in Ω. The most classical solution strategy for this constrained

minimization problem is covered in Section 3.2.5.

Another standard modification of the minimization problem (2.28), is to split the elastic

bulk energy ψ(ε) = ε(u) : Cε(u) by an additive decomposition ψ(ε) = ψ+(ε) + ψ−(ε),

and only let the degradation function g(φ) act on the ψ+(ε) part, i.e., the term

g(s)ψ(ε(w)) is replaced by g(s)ψ+(ε(w)) + ψ−(ε(w)) in (2.28). There are several pro-

posed splits in the literature, but the most popular are the spectral split into tensile ψ+

and compressive ψ− parts from [119], and the split into volumetric ψ+ and deviatoric

ψ+ parts from [9].

2.2.3 The Cahn-Larché equations

The Cahn-Larché system can be seen as a combination of a Cahn-Hilliard equation and

linearized elasticity with infinitesimal strains and displacements [81, 109]. Assume that

the domain Ω is occupied by two elastic materials that cover the subdomains Ωa and Ωb,

and that the phase-field φ acts as a regularization of the indicator function

χ(x) =




1, for x ∈ Ωa,

−1, for x ∈ Ω\Ωa.
(2.29)
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Similar to the Cahn-Hilliard equation, local phase-balance is assumed (2.14);

∂tφ+∇ · J = R,

where J is the phase-field flux and R accounts for reactions. Moreover, the stress follows

quasi-static linear momentum balance (ignoring inertial effects) (2.2)

−∇ · σ = f ,

where σ is the stress tensor and f corresponds to external forces. The free energy E(φ,u)
of the system is assumed to be an additive combination of the regularized interface energy

EI(φ) = γId−1(φ), (2.30)

and a modified potential elastic energy (2.4)

Ee(φ,u) =
1

2

∫

Ω

(ε(u)− ξ (φ− φ̃) I) : C(φ) (ε(u)− ξ (φ− φ̃) I) dx,

such that the total free energy becomes

E(φ,u) := EI(φ) + Ee(φ,u). (2.31)

Here, the parameter γ is related to the interfacial tension between the two phases and can

be considered to account for adhesive/cohesive forces between the phases, and the inter-

face energy Id−1(φ) from (2.11) is applied. Moreover, ε(u) is the linearized symmetric

strain tensor (2.1), C(φ) is the elasticity tensor that now depends on the material phase,

the term ξ (φ− φ̃) I accounts for swelling effects where φ̃ is a reference phase-field, and

I is the identity tensor.

As for the Cahn-Hilliard equation, the phase-field flux is assumed to be governed by

Fick’s law

J = −m(φ)∇µ,

where m(φ) is the mobility, and µ is the potential. Finally, the potential µ and the stress

tensor σ are defined as the rates of change, variational derivatives, of the free energy

(2.31) with respect to the phase-field φ and linearized strain ε. Standard computation,

as those demonstrated in Example 2.1.1, yield

µ := DφE(φ,u) = γ

(
1

ℓ
Ψ′(φ)− ℓ∆φ

)
− ξI : C(φ) (ε(u)− ξφI)

+
1

2
(ε(u)− ξφI) : C′(φ) (ε(u)− ξφI) ,
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Figure 2.3: Representation of a gradient flow. The ball (representing the energy at
some state) moves gradually towards its minimal value, in the opposite direction of its
gradient.

and

σ := DεE(φ, ε(u)) = C(φ) (ε(u)− ξφI) ,

where vanishing Neumann boundary conditions for the phase-field (∇φ · n = 0 on ∂Ω)

are assumed.

In total, the Cahn-Larché equations in strong form are given as

∂tφ−∇ · (m∇µ) = R in Ω× [0, T ],

µ+ γ

(
ℓ∆φ− 1

ℓ
Ψ′(φ)

)
− δφEe(φ,u) = 0 in Ω× [0, T ],

−∇ · (C(φ) (ε(u)− ξφI)) = f in Ω× [0, T ],

with initial condition φ = φ0 in Ω× {0}, and boundary conditions ∇φ ·n = ∇µ ·n = 0

and u = uD on ΓD ⊆ ∂Ω, and (C(φ) (ε(u)− ξφI)) · n = uN on ∂Ω\ΓD. Here,

DφEe(φ,u) =
1

2
(ε(u)− ξφI) :C′(φ) (ε(u)− ξφI)− ξI :C(φ) (ε(u)− ξφI) , (2.32)

and the elasticity tensor C(φ) is typically depending on the phase-field through some

given interpolation function π(φ); C(φ) = C−1 + π(φ)(C1 − C−1).

Remark 2.2.2. A further extension of the Cahn-Larché equations are the Cahn-Hilliard-

Biot system which either can be seen as a combination of the Cahn-Hilliard phase-field

equation and the Biot consolidation model, or as an extension of the Cahn-Larché equa-

tions that includes flow though the poroelastic material. This system is developed in

Paper D [145].

2.3 Gradient flows

All of the physical processes that have been covered in this chapter, except for the vari-

ational phase-field model for brittle fracture, have an underlying minimization structure
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and can be written as generalized gradient flows [34, 127]. A (generalized) gradient flow

is an evolution equation where the state of the system evolves in the steepest decent di-

rection of some energy related to the system state subject to a dissipation mechanism,

see illustration in Figure 2.3. Identifying this structure in processes can be useful for

both abstract analysis of the system [12, 34, 55, 124], and numerical solution strategies

[34, 101, 146].

Let H be a Hilbert space. A gradient flow is an equation

⟨∂ty − Pext, ỹ⟩D = −⟨DE(y), ỹ⟩, ∀ỹ ∈ H, (2.33)

where ⟨·, ·⟩D is an inner-product that includes information about the dissipation mecha-

nism, Pext accounts for external forces, and E is the energy of the system. The variable y

is referred to as the state variable and H as the state space. A general feature of gradient

flows is that they enforce dissipation of energy in the absence of external contributions

Pext = 0. Formally, it holds that

∂tE(y) = ⟨DE(y), ∂ty⟩ = −⟨∂ty, ∂ty⟩D ≤ 0, (2.34)

where the second equality is due to (2.33).

Example 2.3.1 (The Allen-Cahn and the Cahn-Hilliard equations as gradient flows).

Both the Allen-Cahn and the Cahn-Hilliard equations, as described in Example 2.1.2,

are gradient flows. This can be seen by choosing the phase-field φ as the state, H1(Ω)

as the state space, and (2.11) as the energy. By utilizing the weighted L2(Ω)-inner-

product ⟨x, y⟩L2
m(Ω) :=

∫
Ω

xy
m
dx as the dissipation mechanism, one obtains the Allen-

Cahn equation (2.13). If the weighted H−1-like inner-product

⟨x, y⟩H−1
m (Ω) =

∫
xỹ dx, (2.35)

where ỹ is defined through
∫
Ω
yȳ dx =

∫
Ω
m∇ỹ ·∇ȳ dx for all ȳ ∈ H1(Ω), is used instead,

then the Cahn-Hilliard equations (2.17)–(2.18) are obtained in a one-field formulation.

To extend the notion of a gradient flow to a generalized gradient flow, it is more conve-

nient to consider it in terms of the dissipation potential R(∂ty). The generalized gradient

flow is then defined as the evolution equation where the variational derivative of the dis-

sipation potential with respect to the change of state is equal to the variational derivative

of the free energy with respect to the state:

⟨D∂tyR(∂ty), ỹ⟩ = −⟨DyE(y), ỹ⟩, ∀ỹ ∈ H.
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Notice that for the special case of a quadratic dissipation potential, R(∂ty) =
∥∂ty∥2D

2
, the

classical gradient flow (2.33) is recovered. An important feature of generalized gradient

flows, is that they can be described as minimization problems, see [127],

∂ty = argmin
s∈H

{R(s) + ⟨DyE(y), s⟩} . (2.36)

This is exploited in Section 3.1.1 to define dissipation-preserving time-discretizations.
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Chapter 3

Numerical solution strategies for

coupled problems

In this chapter, numerical solution strategies for coupled problems are considered. First,

in Section 3.1, both temporal and spatial discretization techniques are discussed. Then,

solution strategies for discrete systems of equations are presented in Section 3. This sec-

tion is heavily focused on iterative solution strategies such as decoupling and linearization

methods but also covers basics of linear solvers and acceleration methods.

3.1 Discretization techniques

Here, discretization of variational problems is discussed. In Section 3.1.1, temporal

discretization techniques are presented. In particular, the θ-methods, including the ex-

plicit and implicit Euler methods are discussed, as well as a special structure-preserving

scheme that is applied to generalized gradient flows (2.36). Then, in Section 3.1.2, the

finite element method for spatial discretization is presented.

3.1.1 Time discretization

Let Ω ⊆ R be a domain, [0, T ] be a time interval, V be a Sobolev space on Ω (e.g.,

V = H1
0 (Ω)), and B be the Bochner space B = H1([0, T ], V ). Consider now the general

variational evolution equation: Given u(0, x) = u0, find u ∈ B such that

(∂tu, v) + b(u, v) = K(v), (3.1)
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for all v ∈ V and almost all t ∈ [0, T ], where (·, ·) denotes the L2(Ω) inner-product,

b(·, ·) : V × V → R is a continuous function that is linear in the second component, and

K(·) : V → R is a linear function.

Let τ be the time-step size and n denote the time step. By approximating the derivative

in time with a backward difference, and evaluating the other time-dependent terms

implicitly, the implicit (backward) Euler approximation to the system (3.1) is obtained:

Given un−1 ∈ V (where u0 := u0), find u
n ∈ V such that

(
un − un−1

τ
, v

)
+ b (un, v) = K(v) (3.2)

for all v ∈ V . This method is a special case of the θ-methods that take the form: Given

un−1 ∈ V , find un ∈ V such that

(
un − un−1

τ
, v

)
+ (1− θ) b (un, v) + θb

(
un−1, v

)
= K(v) (3.3)

for all v ∈ V and some given θ ∈ [0, 1]. By choosing different values for θ different

methods are obtained, and the most important choices include the implicit (backward)

Euler method θ = 0, the explicit (forward) Euler method θ = 1, and the quadratic

Crank-Nicholson (trapezoidal) method θ = 0.5.

When generalized gradient flows are considered, it might be natural to discretize the

system in time such that the minimization problem (2.36) naturally is satisfied. This

is done by the energy-driven time discretization method (see e.g., [34, 146]): Given

un−1 ∈ V solve

un = argmin
s∈Y

{
τR
(
s− un−1

τ

)
+ E(s)

}
. (3.4)

This time discretization naturally satisfies the energy dissipation that is inherent in

gradient flows (2.34), which can be seen by subtracting the potential in (3.4) evaluated

in un−1 from the same potential evaluated in un:

τR
(
un − un−1

τ

)
+ E(un)− τR

(
un−1 − un−1

τ

)
− E(un−1) ≤ 0

τR
(
un − un−1

τ

)
+ E(un)− E(un−1) ≤ 0.

A time-discretization with the property the energy is dissipated over the time steps, i.e.,

the energy evaluated at consecutive time-steps forms a decreasing sequence, is called

a gradient stable (or energy stable) time discretization. If this holds true without any

restrictions on the time-step size, the method is said to be unconditionally gradient

stable. Moreover, the time-discretization (3.4) corresponds to the implicit Euler method
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whenever R(s) =
∥s∥2L2(Ω)

2
and E(u) is such that ⟨δE(un), q⟩ = b(un, q)−K(q).

3.1.2 Spatial discretization

For all of the numerical experiments that have been performed in relation to the scientific

results of this dissertation, the equations have been discretized in space by finite elements.

However, all of the techniques that have been developed to solve the corresponding

discrete systems of equations could just as well have been applied to equations that were

discretized by other means, such as finite volume, or finite difference methods. Here, a

brief introduction to the finite element method is provided.

Consider the variational equation: Find u ∈ V such that

a (u, v) = L(v), ∀v ∈ V, (3.5)

where V is a Sobolev space that, in this setting, is called the solution (and test) space,

a(·, ·) : V × V → R is a continuous function that is linear in the second component,

and L(·) : V → R is a linear function. Notice that the variational equation (3.5)

corresponds to the time-discrete system (3.2), for a(u, v) =
(
u
τ
, v
)
+ b(u, v) and L(v) =(

un−1

τ
, v
)
+ K(v). The existence and uniqueness of the solution to equation (3.5) is

provided by the Lax-Milgram lemma (see, e.g., [38]) when a(u, v) is bilinear and coercive

(a(u, u) ≥ c∥u∥V for some c ∈ R+) and L(v) is linear.

Remark 3.1.1. The solution and test space might differ depending on the boundary

conditions of the equations, however, for the simplicity of the exposition, that situation

is disregarded here.

To approximate solutions to systems of the form (3.5) with the conforming finite element

method, let Th = {Tk}k be a subdivision of the domain Ω, where the elements Tk are non-

overlapping and nonempty, and h = maxk diam (Tk). Then, define the finite-dimensional

subspace Vh ⊆ V as

Vh :=
{
vh ∈ V : vh|Tk

∈ P l(Tk) ∀k, vh ∈ C(Ω)
}
, (3.6)

where P l(Tk) is the space of polynomials of degree l on Tk. Let now {ηi}Ni=1 be a

basis for the finite-dimensional space Vh (with dimension N), and define the discrete

approximation of the solution u to (3.5) as uh :=
∑N

i=1 αiηi where αi ∈ R for i = 1, . . . , N .

Then, the discrete counterpart to (3.5) is given as: Find uh ∈ Vh such that

a(uh, ηj) = L(ηj), for j = 1, . . . , N. (3.7)
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(a) P1
(b) P2

Figure 3.1: Linear P1 and quadratic P2 triangular Lagrange finite elements of degree 1
and 2. The black dots correspond to degrees of freedom for the polynomials.

This is now a (possibly nonlinear) system of N equations with N unknowns (αi, for

i = 1 . . . , N).

It is clear, that different choices of finite dimensional subspaces, Vh, and different subdi-

visions Th corresponds to different approximations of the continuous variational equation

(3.5). To this end, the concise definition of a finite element, due to Ciarlet [54], is the

triplet (K,P ,N ), where K determines the geometry of the elements (triangular, quadri-

lateral, etc.), P is a finite dimensional space of functions on K (corresponds to the

polynomial space) and N is a basis for the dual of P , and relates to the choice of basis

for the subspace Vh. Most notable are the Lagrange finite elements, where the degrees

of freedom on each element, N , are evaluations of the polynomials (in P) on points on

the element (as opposed to, for example, the Hermite conforming finite elements where

also evaluations of the derivatives of the polynomials are considered), see Figure 3.1.

Remark 3.1.2 (Implementation of numerical solution strategies in DUNE). All the

numerical tests that have been performed in relation to the scientific results in this dis-

sertation have been implemented in the modular C++ library, DUNE (Distributed and

Unified Numerics Environment) [13, 14, 22, 136]. Here, general implementations of

many standard conforming and mixed finite elements are provided, as well as linear al-

gebra and mesh generation tools. In particular, the dune-functions module for managing

discrete global functions [63], and the dune-biot module that was developed for the doc-

toral dissertation of Both [28], have been used.

Example 3.1.1 (Discretization of the Biot equations). As an example, consider the Biot

equations (2.21)–(2.22), which for simplicity are equipped with homogeneous Dirichlet

boundary conditions. The corresponding variational equations are derived by multiplying

the elasticity equation (2.21) by a test function v ∈ (H1
0 (Ω))

d
and the flow equation by

q ∈ H1
0 (Ω) and applying the divergence theorem. Here, d is the spatial dimension and

H1
0 (Ω) is the Sobolev space of H1(Ω) functions with vanishing trace. The variational
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problem then reads: Find (u, p) ∈ H1
(
[0, T ], (H1

0 (Ω))
d
)
×H1 ([0, T ], H1

0 (Ω)) such that

(Cε(u), ε(v))− α (p,∇ · v) = (f ,v) , (3.8)
(
∂t

( p
M

+ α∇ · u
)
, q
)
+

(
K

η
∇p,∇q

)
= (Sf , q) , (3.9)

for all (v, q) ∈ (H1
0 (Ω))

d ×H1
0 (Ω) and almost all t ∈ [0, T ].

By applying the implicit Euler discretization in time and conforming finite elements in

space with the test space Vh for displacement and Qh for pressures, the discrete equations

become: Given un−1
h , pn−1

h ∈ Vh ×Qh find (un
h,p

n
h) ∈ Vh ×Qh such that

(Cε(un
h), ε(vh))− α (pnh,∇ · vh) = (f ,vh) , (3.10)(

pnh − pn−1
h

τM
+ α

un
h − un−1

h

τ
, qh

)
+

(
K

η
∇pnh,∇qh

)
= (Sf , qh) , (3.11)

for all (vh, qh) ∈ Vh × Qh and almost all t ∈ [0, T ]. To obtain an inf-sup stable dis-

cretization, typical choices for the pair of finite element spaces Vh × Qh include the

Taylor-Hood elements [150, 23] (piece-wise quadratic polynomials, P2, for displacements

and piece-wise linear polynomials, P1, for pressures) or P1 elements enriched with bubble

functions for displacement and P1 elements for pressures [11]. Moreover, in the formu-

lation (3.10)–(3.11), local mass conservation is lost, and a remedy (that uses the finite

element method) is to apply a mixed formulation and use, for example, the Raviart-

Thomas [133] element with piece-wise linear polynomials for the flow subproblem, see

e.g., [31, 97].

Example 3.1.2 (Gradient stable time discretization and the convex-concave splitting

method applied to the Cahn-Hilliard equation). To see an example of a stable gradient

time discretization, consider the Cahn-Hilliard equation (2.17)–(2.18). By using linear

Lagrange finite elements, where the function space is denoted by Qh ⊆ H1(Ω), for both

phase-field and potential, and the implicit Euler method, the discrete nonlinear system

of equations reads: Given φn−1
h ∈ Qh, find (φn

h, µ
n
h) ∈ Qh ×Qh such that

(
φn
h − φn−1

h

τ
, qφh

)
+ (m∇µn

h,∇qφh ) = 0 (3.12)

(µn
h, q

µ
h)−

(γ
ℓ
Ψ′(φn

h), q
µ
h

)
− (γℓ∇φn

h,∇qµh) = 0, (3.13)

for all (qφh , q
µ
h) ∈ Qh ×Qh. This is equivalent to the optimality conditions of the energy-

based time discretization (3.4): Given φn−1
h ∈ Qh solve

φn
h = argmin

sh∈Qh

{
1

2τ

∥∥sh − φn−1
∥∥2
Q∗

m,h,0

+ EI(sh)
}
, (3.14)
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subject to ∫

Ω

sh − φn−1
h dx = 0,

where EI(s) is the energy defined in (2.30). Here, the space Q∗
h,m,0 is the discrete H

−1(Ω)

space that is defined as the dual of

Qh,m,0 =

{
qh ∈ Qh :

∫

Ω

qh dx = 0

}
,

with norm ∥m∇qh∥L2(Ω). Details of the equivalence between (3.12)–(3.13) and (3.14) can

be found in Paper E [146].

Notice now that as φn−1
h ∈ Qh and

∫
Ω
φn−1
h −φn−1

h dx = 0, the following inequality holds;

1

2τ

∥∥φn
h − φn−1

h

∥∥2
Q∗

m,h,0

+ EI(φn
h)−

1

2τ

∥∥φn−1
h − φn−1

h

∥∥2
Q∗

m,h,0

− EI(φn−1
h ) ≤ 0.

This implies that

EI(φn
h) ≤ EI(φn−1

h )

regardless of n and τ . Hence, the implicit Euler method is unconditionally gradient

stable.

There is, however, another challenge that occurs when the implicit Euler method is

applied to the Cahn-Hilliard equation; the minimization problem (3.14) is non-convex,

due to the presence of the double-well potential Ψ(φ) in the energy. Therefore, solving the

nonlinear discrete problem (3.12)–(3.13) can be challenging, and conventional methods,

such as the Newton scheme (see Section 3.2.2) often do not converge. A popular remedy

proposed in [62, 65], and applied in different variations, e.g., in [90, 91, 134, 161], is

to split the double-well potential Ψ(φ) into the difference of two convex functions, e.g.,

(although many other variants exist)

Ψ(φ) = (1− φ2)2 =
(
1 + φ4

)
− 2φ2 = Ψc(φ)−Ψe(φ)

and evaluate the convex part of its derivative implicitly Ψ′
c(φ

n
h), and the concave (ex-

pansive) part explicitly Ψ′
e(φ

n−1
h ). That corresponds to the discrete system of equations:

Given φn−1
h ∈ Qh find (φn

h, µ
n
h) ∈ Qh such that

(
φn
h − φn−1

h

τ
, qφh

)
+ (m∇µn

h,∇qφh ) = 0 (3.15)

(µn
h, q

µ
h)−

(γ
ℓ

(
Ψ′

c(φ
n
h)−Ψ′

e(φ
n−1
h )

)
, qµh

)
− (γℓ∇φn

h,∇qµh) = 0, (3.16)
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for all (qφh , q
µ
h) ∈ Qh×Qh. The related minimization problem now reads: Given φn−1

h ∈ Qh

solve

φn
h = argmin

sh∈Qh

Fn(sh), (3.17)

subject to ∫

Ω

sh − φn−1
h dx = 0,

where

Fn(sh) :=
1

2τ

∥∥sh − φn−1
∥∥2
Q∗

m,h,0

+ γ

∫

Ω

1

ℓ

(
Ψc(sh)−Ψ′

e

(
φn−1
h

)
sh
)
+
ℓ

2
|∇sh|2 dx.

Notice that the minimization problem (3.17) is convex and thus is far better suited for

linearization methods than (3.14). Moreover, by a similar computation as above, one

can see that the discretization is unconditionally gradient stable;

Fn (φn
h)−Fn

(
φn−1
h

)
≤ 0, (3.18)

which by applying the convexity of Ψe(sh)

∫

Ω

Ψe (φ
n
h)−Ψe

(
φn−1
h

)
dx ≥

∫

Ω

Ψ′ (φn−1
h

) (
φn−1
h − φn−1

h

)
dx,

yields

EI (φn
h) ≤ EI

(
φn−1
h

)
,

for all n and τ .

3.2 Approximating solutions to the discrete system

of equations

In the previous section, continuous systems were approximated by discrete systems of

equations to be solved in each time step (3.7). Here, the focus is on finding good ap-

proximations of the solutions to these discrete systems of equations, in a robust and

efficient manner. A robust method is, in this context, a method that will find an approx-

imation without requiring special restrictions on material and discretization parameters,

and an efficient method is one that finds the approximation fast, typically in a few itera-

tive steps. Both linearization procedures, i.e., techniques for approximating the solution

of a nonlinear problem by solving a sequence of linear problems iteratively, and decou-

pling techniques, i.e., techniques for approximating solutions to coupled problems by
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sequentially solving the subproblems, are considered. Let

F : RN → RN ,

be the function such that [F(αh)]j = a (uh, ηj) − L(ηj) for αh = [α1, . . . , αN ]
⊤ and

uh =
∑N

i=1 αiηi. Then, equation (3.7) can be reformulated as follows: Find αh ∈ RN

such that

F(αh) = 0. (3.19)

3.2.1 Solving linear problems

Regardless of whether F in itself is linear, i.e., F(α) = Aαh − b for A ∈ RN×N and

b ∈ RN , or nonlinear (in which case the solution will be approximated by solving a

sequence of linear problems), there is a need for solving linear systems of equations.

Doing this efficiently is important, especially for time-dependent nonlinear problems,

where linear systems are required to be solved several times in each time step. There

are many techniques for doing this, and the most popular ones can either be classified

as direct solvers or iterative solvers. Direct solvers have the benefit of not producing

iteration errors themselves, but there is a significant memory consumption in storing

large matrices, and matrix factorization can be time-consuming. Iterative solvers, on

the other hand, reduce the memory requirement from the direct solvers and can in

certain situations converge to an approximation of satisfactory precision rather quickly.

It is, however, not easy to design fast methods that guarantee convergence, and often the

choice of initial guess can be quite important. None of the methodologies will be covered

here, but it is worth it to mention that for problems related to PDEs, multigrid and

domain decomposition methods are very popular, and are often used as preconditioners

to the iterative Krylov subspace methods like the generalized minimal residual method

(GMRES) and the conjugate gradient method (CG).

3.2.2 Iterative linearization techniques

To approximate solutions to nonlinear problems, iterative methods are usually applied.

Here, as well as for iterative methods for linear systems of equations, it is desirable to

design methods that converge fast, and are robust.

The most classical iterative method for solving nonlinear problems is the Newton method

(often called the Newton-Raphson) [60], and it is known for its quadratic convergence

rate, and that it only converges locally (the initial guess has to be chosen sufficiently
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close to the real solution), see the Newton-Kantorovich theorem [60, 102]. Consider the

discrete problem (3.19). The Newton method approximates the solution by using the

first-order Taylor expansion of the nonlinearity. Let i be the iteration index, and let

αi−1
h ∈ RN be given. The Newton method then reads: Find αi

h ∈ RN such that

F
(
αi−1

h

)
+∇F

(
αi−1

h

) (
αi

h −αi−1
h

)
= 0, (3.20)

where α0
h is known as the initial guess and is often chosen as the solution to the discrete

problem at the previous time step in time-dependent problems. Equivalently, one could

work directly on discrete variational equations like (3.7) by using the Gateaux derivative

of the first argument of a(·, ·) instead of the gradient and get the method: Given ui−1
h ∈

Vh, find u
i
h ∈ Vh such that

a
(
ui−1
h , vh

)
+ lim

δ→0

a
(
ui−1
h + δ

(
uih − ui−1

h

)
, vh
)
− a

(
ui−1
h , vh

)

δ
= L (vh) , (3.21)

for all vh ∈ Vh. Note that, if a(·, ·) is linear in the first entry as well, then equation (3.21)

reduces to equation (3.7).

The main drawback of the Newton method is that it is only locally convergent. There

are many ways to modify the method such that it becomes more robust, but this usually

results in a linearly convergent scheme. Most of these methods fall under the classification

of quasi-Newton methods, where the Jacobian term ∇F in (3.20) is replaced by some

approximation of it. Two common approximations are explained here:

• The modified Picard method [51] that computes only parts of the Jacobian and

evaluates the rest of the nonlinearity in the previous iteration. Suppose that F(x) =

F1(x)+F2(x), and that it is more desirable to compute the Jacobian of F1(x) than

of F2(x), e.g., if F2(x) is non-smooth. Then the modified Picard method reads:

Given αi−1
h ∈ RN , find αi

h ∈ RN such that

F
(
αi−1

h

)
+∇F1

(
αi−1

h

) (
αi

h −αi−1
h

)
= 0. (3.22)

• The L-scheme [99, 116, 131], which replaces the Jacobian with a scaled identity

matrix. The method reads: Given αi−1
h ∈ RN and L ∈ R, find αi

h ∈ RN such that

F
(
αi−1

h

)
+ LI

(
αi

h −αi−1
h

)
= 0. (3.23)

The L-scheme can also be seen as a stabilized Picard method, with stabilization

parameter L.
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All iterative solution strategies require a stopping criterion that determines when the

iterative procedures should end. This is usually based on the increments uih − ui−1
h (or

αi
h − αi−1

h ), and the residual F(αi
h), and can be computed both absolute, and relative.

Absolute and relative increments are defined as

Inciabs := ∥uih − ui−1
h ∥, and Incirel :=

∥uih − ui−1
h ∥

∥u1h − u0h∥
,

where ∥ ·∥ typically is the L2(Ω)-norm, or any other norm on the function space Vh. The

absolute and relative residual values are computed as

Resiabs := ∥F
(
αi

h

)
∥2, and Resirel :=

∥F (αi
h) ∥2

∥F (α0
h) ∥2

,

where ∥ · ∥2 is the Euclidean 2-norm. The iterative procedure is terminated when

Inciabs ≤ Tolinc,abs, Inc
i
rel ≤ Tolinc,rel, Res

i
abs ≤ Tolres,abs, and, Res

i
rel ≤ Tolres,rel, (3.24)

for some predetermined tolerance values Tolinc,abs, Tolinc,rel, Tolres,abs, and Tolres,rel.

3.2.3 Iterative decoupling of coupled systems

When considering discretized coupled systems of equations, there are two popular classes

of solution strategies: monolithic approaches where the entire system is treated as one, or

iterative decoupling approaches where the subproblems are solved sequentially, iterating

back and forth. Monolithic approaches have the advantage of reducing one step of

complexity, i.e., there is no requirement to wrap another iterative method around the

solution strategy. They do, however, often lack optimized solvers, both in terms of

robust linearization methods, and good preconditioners for the linear problems. The

decoupling methods, on the other hand, has the advantage that one can apply already

optimized solvers for each of the subproblems, and iterate back and forth between them.

The drawback is that one often needs some stabilization to ensure convergence, and the

convergence properties of the iterative decoupling method are often highly dependent on

the choice of this stabilization.

Consider the coupled variational problem: Find (uh, ph) ∈ Vh ×Qh such that

c(uh, ph, vh) = 0, ∀vh ∈ Vh, (3.25)

d(uh, ph, qh) = 0, ∀qh ∈ Qh. (3.26)

Here, Vh and Qh are solution and test spaces for each of the subproblems, and c(·, ·, ·) :
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Vh ×Qh × Vh → R and d(·, ·, ·) : Vh ×Qh ×Qh → R are generic functions that are linear

in the third entry. To solve this problem with a general iterative decoupling method, let

i denote the iteration index, make an initial guess p0h, and define the update procedure:

Given ui−1
h ∈ Vh find (uih, p

i
h) ∈ Vh ×Qh such that

c(uih, p
i
h, vh) = 0, ∀vh ∈ Vh, (3.27)

d(ui−1
h , pih, qh) = 0, ∀qh ∈ Qh. (3.28)

where equation (3.28) is solved first to get an updated pih which then is used in (3.27)

to get an updated uih. The iterations proceed until some prescribed stopping criterion

(3.24) is satisfied.

Remark 3.2.1. Notice that the subproblems (3.27) and (3.28) may still be nonlinear

and require some linearization procedure. One then has the possibility to fully resolve the

linearization procedure in each decoupling iteration, or to combine the linearization and

the decoupling iterations and do just one linearization iteration within each decoupling

iteration. Although such a procedure might result in an increase in the number of decou-

pling iterations, it might decrease the total number of iterations within the solution step.

The behavior of this type of combined iterative method is problem dependent and has been

analyzed for the Richards equation coupled with transport in [99], and for poroelasticity

with large deformations in [27].

3.2.4 Stabilization of iterative decoupling methods

In general, the iterative decoupling method (3.27)–(3.28) is not guaranteed to converge

and certainly not to converge fast (in relatively few iterations). A remedy is to add a

stabilization/tuning term to the system which might help in providing convergence, or

to accelerate the convergence speed. One would then typically modify the method as

follows: Given
(
ui−1
h , pi−1

)
∈ Qh, find (uih, p

i
h) ∈ Vh ×Qh such that

c(uih, p
i
h, vh) = 0, ∀vh ∈ Vh (3.29)

d(ui−1
h , pih, qh) + l(pih − pi−1

h , qh) = 0, ∀qh ∈ Qh. (3.30)

where l(·, ·) : Qh × Qh → R is a bilinear function that is known as a stabilization or

tuning term.

The decoupling method (3.29)–(3.30), can for linear equations be identified with block

partitioned, Schur-complement-based iterative solvers. To see this, suppose that c(·, ·, ·)
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and d(·, ·, ·) are trilinear and that (3.25)–(3.26) forms the block-linear system

(
A B

C D

)(
αu

h

αp
h

)
=

(
g

h

)
, (3.31)

where uh =
∑

l[α
u
h]lη

u
l , and ph =

∑
k[α

p
h]kη

p
k, with {ηul }l and {ηpk}k being bases for Vh

and Qh, respectively, and g and h are source terms. One can quite easily see that (3.31)

is equivalent with the block system

(
A B

0 D− S

)(
αu

h

αp
h

)
=

(
g

h−CA−1g

)
, (3.32)

where S = CA−1B is the Schur-complement. This formulation is essentially not better

suited for solving than (3.31) as it involves the computation of A−1, but it motivates the

choice of tuning terms in (3.29)–(3.30). Let again i be the iteration index, and suppose

that αu,i−1
h and αp,i−1

h are given (through the iterative procedure). The top row of the

block linear system (3.32) then gives

Aαu,i−1
h +Bαp,i−1

h = g,

which is equivalent with

Cαu,i−1
h + Sαp,i−1

h = CA−1g.

This can be substituted into (3.32) to get the block system at iteration i

(
A B

0 D− S

)(
αu,i

h

αp,i
h

)
=

(
g

h−Cαu,i−1
h − Sαp,i−1

h

)
, (3.33)

which corresponds to choosing ld as the linear function related to the Schur complement S

in (3.29)–(3.30). As the computation of S is unfeasible, a good and cheap approximation

to S is regarded as a good tuning term.

Remark 3.2.2. Notice that the Schur-complement S in the block system (3.33) is sub-

tracted from the original block diagonal. This leads to the discussion of whether to call

it a stabilization term or a tuning term. It is generally seen as stabilizing for a linear

system to add something to the diagonal (block diagonal in this case), and this would be

the case for Schur-complement for saddle-point problems like the Biot equations, where

C = −B⊤. For “block-symmetric” problems, like the Cahn-Larché equations, on the

other hand, the Schur-complement approach actually suggests to “destabilize” the block-

system, and the added term should only be regarded as a tuning term. This can be seen in

practice and theory for both the Biot equations and the Cahn-Larché equation, where the

Biot equation actually requires stabilization to converge when decoupled (both for theo-
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retical and practical convergence) [31, 121, 143, 144], while the Cahn-Larch ’e equations

can be decoupled (with theoretical and practical convergence) without the addition of a

stabilizing term [146].

Example 3.2.1 (The fixed-stress splitting scheme applied to Biot’s equations). As an

example of a decoupling method, the widely used fixed-stress splitting scheme applied

to Biot’s equations will be presented. The scheme alternates between solving a porous

media flow equation (2.22) and an elasticity equation (3.10). One of the main motivations

for using such a decoupling scheme is that it enables the use of readily available and

optimized solvers for both flow and elasticity instead of constructing new ones for the

full monolithic problem. Moreover, splitting methods, such as fixed stress, can also be

used as preconditioners for the monolithic problem [82].

Consider first a generic stabilized decoupling method of the type (3.29)–(3.30) applied

to the discretized Biot equations (3.10)–(2.22): Given
(
un,i−1

h , pn,i−1
h ,un−1

h , pn−1
h

)
∈ Vh ×

Qh × Vh ×Qh, find
(
un,i

h , pn,ih

)
∈ Qh × Vh such that

(
Cε(un,i

h ), ε(vh)
)
− α

(
pn,ih ,∇ · vh

)
= (f ,vh) ,(

pn,ih − pn−1
h

τM
+ α

∇ · un,i−1
h −∇ · un−1

h

τ
, qh

)
+

(
K

η
∇pn,ih ,∇qh

)

+L
(
pn,ih − pn,i−1

h , qh
)

= (Sf , qh) ,

for all (vh, qh) ∈ Vh×Qh, where L is a real number, which is often known as stabilization

or tuning parameter. This method is known as the fixed-stress splitting scheme [5, 31,

32, 50, 96, 105, 121, 138] and dates back to the work in [138], where the (volumetric)

stress is fixed over the iterations, i.e., the condition

Kdr∇ · un,i
h − αpn,ih = Kdr∇ · un,i−1

h − αpn,i−1
h ,

is imposed and used to eliminate the term α∇·un
h in equation (3.11) in each decoupling

iteration. Here, Kdr is the drained bulk modulus which is defined as Kdr :=
2µ
d
+λ, where

µ and λ are the Lamé parameters and d is the spatial dimension. The resulting stabi-

lization term is then L = α2

Kdr
. Later in [121] it was shown that choosing the stabilization

parameter L ≥ α2

2Kdr
, that is, greater than half of the physically motivated parameter,

results in a convergent method. The same was shown using different techniques in [31].

In Paper A [143], the optimal choice of stabilization parameter is discussed, and an in-

terval where the optimal parameters resides is provided, and given as
[

α2

4µ+2λ
, α2

2µ
d
+λ

)
.

Moreover, a method for determining that parameter, utilizing its mesh independency,

is proposed. In Paper B [144], the optimal stabilization parameter in the special case

of low-permeable medium is discussed, which results in a formula for computing it by
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approximating the eigenvalues of the Schur complement.

Another possibility is to stabilize the elasticity equation with a term of the form

L
(
∇ · un,i

h −∇ · un,i−1
h ,∇ · vh

)
. This is known as the undrained splitting method, where

it is assumed, for L = α2M , that the volumetric fluid content,

pn,ih

M
+ α∇ · un,i

h =
pn,i−1
h

M
+ α∇ · un,i−1

h ,

remains constant over the iterations. The undrained splitting method is analyzed in

[6, 104].

3.2.5 Decoupling methods as alternating minimization

For coupled variational problems that correspond to the optimality conditions of mini-

mization problems, one can also regard the decoupling methods as alternating minimiza-

tion. Consider the minimization problem

(uh, ph) = argmin
vh∈Vh,qh∈Qh

F(vh, qh), (3.34)

where F(·, ·) : Vh × Qh → R. The optimality conditions for this minimization problem

read: Find (uh, ph) ∈ Vh ×Qh such that

⟨D1F(uh, ph), vh⟩ = 0, ∀vh ∈ Vh,

⟨D2F(uh, ph), qh⟩ = 0, ∀qh ∈ Qh,

where D1F and D2F represent the Gateaux derivative of F with respect to the first

and second argument, respectively. Both the energy-based time-discretization for gra-

dient flows (3.4) and the variational phase-field models for fracture propagation, see

Chapter 2.2.2, are examples of this type of discrete minimization problem.

Alternating minimization applied to (3.34) is the algorithm: Given ui−1
h solve first

pih = argmin
qh∈Qh

F
(
ui−1
h , qh

)
,

then, using the newly computed pih, solve

uih = argmin
vh∈Vh

F
(
vh, p

i
h

)
.

Considering decoupling methods in this way has the benefit that one can apply the
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theory of (convex) optimization to analyze the convergence properties of the decoupling

methods [18].

Remark 3.2.3. If ⟨D1F(uh, ph), vh⟩ = c(uh, ph, vh) and ⟨D2F(uh, ph), vh⟩ = d(uh, ph, qh)

then the solution to the minimization problem (3.34) is the same as the solution to

(3.25)–(3.26).

Example 3.2.2 (Alternating minimization to solve phase-field for fracture equations).

As an example of alternating minimization, consider the variational approach to fracture

propagation, see Chapter 2.2.2. First, the continuous minimization problem (2.28) is

discretized with conforming finite elements (the typical choice is linear Lagrange finite

elements P1 for both displacement and phase-field)

(un
h, φ

n
h) = argmin

wh∈Vh,sh∈Qh

Efrac(wh, sh), (3.35)

subject to

φn
h(x) ≥ φn−1

h (x), ∀x ∈ Ω,

where

Efrac(wh, sh) =

∫

Ω

g(sh) (ε(wh) : Cε(wh)− fn ·wh) dx−
∫

Γ

τ n ·wh ds

+Gc

∫

Ω

1

2ℓ
s2h +

ℓ

2
|∇sh|2 dx.

Here, Vh is the discrete test and solution space for the displacement variable un
h, and Qh

is the discrete test and solution space for the phase-field variable φn
h.

Now, alternating minimization is applied to the minimization problem (3.35). First,

the potential Efrac is minimized with respect to the displacement variable using the

previous iterate for the phase-field (the solution at the previous loading step in the first

iteration), then the potential is minimized with respect to the phase-field variable using

the newly computed displacement function. The solution strategy becomes as follows:

Given φn,i−1
h ∈ Qh find ui

h ∈ Vh such that

〈
D1E(un,i

h , φn,i−1
h ),vh

〉
= 0, ∀vh ∈ Vh,

which is equivalent to

(
g(φn,i−1

h )Cε(un,i
h );vh

)
− (τ ,vh)Γ = (fn,vh) , ∀vh ∈ Vh.
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Then, using the newly computed un,i
h , find φn,i

h ∈ Qh such that

φn,i
h = argmin

sh∈Qh

E(un,i
h , sh) (3.36)

and φn,i
h (x) ≥ φn−1

h (x) for all x ∈ Ω.

To solve the constrained minimization problem (3.36) there are several options that

exist in the literature, including penalization methods [83, 119], augmented Lagrangian

penalization [42, 158], primal-dual active set methods [94], fixing values by using Dirichlet

nodes [36, 107], and using a history field [118].

In Paper C [147], the history field approach is utilized, and therefore it is the only one

that will be discussed here. The method replaces the elasticity contribution ψ(un,i
h ) =

ε
(
un,i

h

)
Cε
(
un,i

h

)
in (3.36) by a history field Hn,i

h that is defined recursively by the point-

wise equation

Hn,i
h (x) := max

{
Hn−1

h (x), ψ(un,i
h (x))

}
,

and Hn
h := Hn,i

h where i is the iteration number of the accepted approximation.

The resulting iterative solution method is then: Given φn,i−1
h ∈ Qh find

(
un,i

h , φn,i
h

)
∈

Vh ×Qh such that

(
g
(
φn,i−1
h

)
Cε
(
un,i

h

)
;vh

)
− (τ ,vh)Γ − (fn,vh) = 0, ∀vh ∈ Vh, (3.37)

(
g′
(
φn,i
h

)
Hn,i

h , qh
)
+
Gc

ℓ

((
φn,i
h , qh

)
+ ℓ2

(
∇φn,i

h ,∇qh
))

= 0, ∀qh ∈ Qh. (3.38)

Although decoupling methods of this type are known in the literature to be convergent

[42], the convergence rates are at time very slow. In Paper C [147], this is handled by

the use of a new acceleration method, see Remark 3.3.1.

3.3 Acceleration of fixed-point methods

All iterative methods in Section 3.2 can be written as fixed-point iterations, i.e., methods

that after some initial guess x0 ∈ RN are updated by the procedure

xi = G
(
xi−1

)
, (3.39)

where G : RN → RN . Typically, fixed-point iterations converge if the operator G is

contractive, due to the Banach fixed-point theorem [52], which, additionally, provides

certain estimates for the convergence rates. However, not all fixed-point iterations are
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contractive, and several might be rather slow. Here, two acceleration methods, that

act as postprocessing techniques for fixed-point iterations (that is applied after every

iterative step) are introduced. The general purpose of an acceleration method is to

reduce the number of iterations required for the fixed-point iteration to convergence.

Moreover, in some scenarios, acceleration techniques can also be used as methods for

making non-convergent fixed-point iterations convergent [33].

3.3.1 Relaxation

One of the simplest acceleration techniques is the relaxation method. Rewrite first the

fixed-point iteration (3.39) to the “increment problem”

xi = G
(
xi−1

)
= xi−1 +∆G

(
xi−1

)
, (3.40)

where

∆G
(
xi−1

)
:= xi − xi−1,

is the increment of the iterative method. With a relaxation method, one first computes

the increment ∆G(xi−1), then updates iterate with a scaled increment:

xi = xi−1 + ω∆G
(
xi−1

)
(3.41)

where ω ∈ (0, 2). It is often known as under-relaxation when ω < 1, and over-relaxation

when ω > 1. Choosing the correct value for the relaxation parameter ω is essential to

achieve optimal acceleration, and the most common way of doing this in a systematic

manner is through the use of line-search algorithms. One can then either do a residual-

based line-search:

ω = argmin
w∈(0,2)

Res
(
xi−1 + w∆G

(
xi−1

))
,

where the residual of the fixed-point problem is given as Res(x) = G(x)−x. Alternatively,

if the fixed-point problem is minimizing some energy-potential E (e.g., with alternating

minimization), the line-search can be based on minimizing the energy in the search

direction ∆G(xi−1):

ω = argmin
w∈(0,2)

E
(
xi−1 + w∆G

(
xi−1

))
.

3.3.2 Anderson acceleration

Anderson acceleration was proposed for integral equations in [10], and has during the last

decade been studied extensively and been applied to solve problems related to the Navier-
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Stokes equations [130], electronic structure computations [66], geometry optimization

[128], machine-learning [17, 140], flow and transport in unsaturated porous media [98],

and flow in unsaturated deformable porous media [33].

Consider again the fixed-point problem (3.40). Anderson acceleration is a post-processing

technique, that updates the current iterate based on the m previous iterations, where m

is called the acceleration depth. The iterate xi is updated as

xi =
m∑

k=0

αk
i G
(
xi−k−1

)
, (3.42)

where αi = [α0
i , . . . , α

m
i ]

⊤ ∈ Rm+1 solves the constrained minimization problem

αi = argmin
ci∈Rm+1∑m
k=0 c

k
i =1

∥∥∥∥∥
m∑

k=0

cki∆G
(
xk−1

)
∥∥∥∥∥
2

, (3.43)

where the norm ∥ · ∥2 is the Euclidean 2-norm and ci = [c0i , . . . , c
m
i ]

⊤
.

Remark 3.3.1. In [64], the authors prove that Anderson acceleration is accelerating for

linearly convergent fixed-point iterations, but not for quadratically convergent ones. How-

ever, the convergence of Anderson accelerated methods is local in nature [152]. This is

exploited in Paper C [147], where the decoupling method for the variational phase-field for

fracture problem (3.37)–(3.38), is accelerated using a combination of over-relaxation and

Anderson acceleration. Here, Anderson acceleration with relatively low depth (m ∈ [1, 5],

although tuning the depth results in a very limited gain in computational efficiency) is

used as the default acceleration method. However, due to its local convergence proper-

ties, a safe-guard [148, 162], based on the residual evolution, changes the acceleration

technique to over-relaxation when cracks are propagating. This results in a very robust

and highly accelerating technique.



Chapter 4

Summary and outlook

In this chapter, a summary and an outlook of the scientific results that constitute Part

II of the dissertation are provided. First, all the papers are presented in the order that

they appear in Part II, then, Part I of the dissertation is concluded with an outlook.

4.1 Summary of the included papers

The papers that are summarized below, are related in several ways. The first two papers

Paper A and Paper B are concerned with the optimal stabilization parameter for the

quasi-static Biot equations, and are as such closely connected, and can be seen as two

approaches to solve the same problem. Then, Paper D and Paper E are both concerned

with extensions of the Cahn-Hilliard equation, however, where Paper D is a modelling

paper, Paper E focuses on solution strategies. Furthermore, Paper A, Paper B, Paper

C and Paper E are concerned with iterative decoupling solvers for different coupled

problems.

Paper A [143]

Title: On the optimization of the fixed-stress splitting for Biot’s equations

Authors: Erlend Storvik, Jakub Wiktor Both, Kundan Kumar, Jan Martin Nord-

botten and Florin Adrian Radu

Journal: International Journal for Numerical Methods in Engineering 120, 179–

194, (2019).

DOI: 10.1002/nme.6130
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This paper is concerned with finding the optimal stabilization parameter for the fixed-

stress splitting scheme applied to Biot’s equations (2.21)–(2.22). The fixed-stress split-

ting scheme iteratively decouples the flow and elasticity subsystem of the quasi-static

linearized Biot equations and stabilizes the flow subsystem, as described in Section 3.2.4.

The method was first developed in [138] by fixing the volumetric stress over the iter-

ations, resulting in a stabilizing term that depends on the coupling coefficient α and

the elasticity coefficients, through the drained bulk modulus Kdr, L = α2

Kdr
. Later, in

[121, 31] theoretical results show that stabilization parameters that are larger than half

of the original L ≥ α2

2Kdr
result in a convergent method. However, numerical experiments

show that although convergence was achieved, different stabilization parameters often

result in better performance of the numerical solution strategies [32, 120]. In this pa-

per, a new theoretical convergence proof shows that the optimal stabilization parameter

also depends on the flow parameters. A formula for computing the stabilization param-

eter is provided, but some of the parameters that are required to compute it are quite

demanding to precisely determine, e.g., the inf-sup constant and the Poincaré constant

appear in the expression. Moreover, some of the bounds that were used to find the opti-

mal parameter might have been too coarse, i.e., there might for specific cases exist better

bounds. On the other hand, an interval where the optimal stabilization parameter is al-

ways found is provided, and numerical experiments show that the optimal stabilization

parameter is independent of the mesh size. Therefore, a simple and effective brute force

method is proposed. Here, several stabilization parameters in the provided optimal re-

gion are tested on a coarse mesh for one time step, and the optimal one is chosen for the

full simulation. Several numerical experiments, including the Mandel benchmark prob-

lem, and a 3D footing problem, show that the proposed brute force method is highly

effective. However, it does require that coarser mesh sizes are available, although this

might not be the case for industrial applications.

Paper B [144]

Title: The fixed-stress splitting scheme for Biot’s equations as a modified

Richardson iteration: Implications for optimal convergence

Authors: Erlend Storvik, Jakub Wiktor Both, Jan Martin Nordbotten and Florin

Adrian Radu

Book: Numerical Mathematics and Advanced Applications ENUMATH 2019,

909–917, (2021).

DOI: 10.1007/978-3-030-55874-1 90

This paper is a continuation of the work in Paper A. The fixed-stress splitting method



4.1 Summary of the included papers 47

is first considered in the special case of impermeable media, and for that case, it is

shown to be equivalent to a modified Richardson iteration. The relation between the

constant in the Richardson iteration and the stabilization parameter in the fixed stress

splitting method is identified. Then, using the theory for the optimal constant in the

modified Richardson iteration, the fixed-stress splitting scheme is analyzed. The optimal

fixed-stress stabilization parameter is shown to be α2

2

(
1

K∗
dr
+ 1

β

)
, where K∗

dr is called the

mathematical bulk modulus and is related to the drained bulk modulus in that they both

satisfy a similar inequality, but K∗
dr is a sharper bound and β is related to the inf-sup

constant of the discretized pressure-displacement coupling. This stabilization parameter

is, of course, also in the interval that is proposed in Paper A. The two parameters Kdr and

β are, however, difficult to determine exactly, and to rectify this, an inexact eigenvalue

solver, e.g., the power iteration, is proposed to find them.

It is important to emphasize that the undrained splitting scheme, for particular dis-

cretizations, is exact for the special case of impermeable media. However, for only

slightly permeable media, the fixed-stress method typically outperforms it, especially

with the stabilization parameter that is proposed in this paper. Numerical experiments

show that the method for computing the optimal stabilization parameter is effective and

that the inexact eigenvalue solver helps in finding a stabilization parameter that is truly

optimal for both impermeable and low-permeable porous materials.

Paper C [147]

Title: An accelerated staggered scheme for variational phase-field models of brit-

tle fracture

Authors: Erlend Storvik, Jakub Wiktor Both, Juan Michael Sargado, Jan Martin

Nordbotten and Florin Adrian Radu

Journal: Computational Methods in Applied Mechanics and Engineering 381,

113822, (2021).

DOI: 10.1016/j.cma.2021.113822

In this paper, the main focus is to improve the performance of solvers for the variational

phase-field models for brittle fracture propagation, see Section 2.2.2. The standard solu-

tion strategy in the literature for this problem is to use an alternating minimization type

solver that often is called a staggered solution scheme. This is due to its robustness, in

the sense that the method converges for most problem setups. However, the staggered

solution scheme is known to be notoriously slow, requiring thousands of iterations to

converge in single loading steps when fractures are propagating. Using a plain Newton
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method, on the other hand, is not considered to be a good remedy as it often does not

converge at all. In this paper, a novel acceleration method for the staggered solution

scheme is provided. The method is a combination of a safe-guarded Anderson accelera-

tion and over-relaxation, and the main principle is that the staggered scheme should be

over-relaxed when fractures are propagating, and thus are far from the final configura-

tion, and Anderson accelerated in all other scenarios. A criterion based on the norm of

the residual is used to switch between the two acceleration methods, which makes the

total acceleration cost very low. The motivation for applying over-relaxation when the

fractures are propagating is based on the observation that fractures gradually propagate

over consecutive iterations of the staggered scheme, and therefore moving further in each

iteration is beneficial.

The method is tested in several numerical experiments that are widely used in the com-

munity. For all the examples, the staggered solution scheme is significantly acceler-

ated, sometimes with more than 80% reduction in the number of iterations. Moreover,

many combinations of the over-relaxation parameter and Anderson acceleration depth

are tested, and in all of the situations, Anderson acceleration depth of at least one and

over-relaxation parameter of approximately 1.6 seem to be the optimal choice. However,

a very beneficial trait of the acceleration method is that the potential gain in compu-

tational efficiency by tuning the acceleration parameters is very small. Therefore, any

combination of over-relaxation parameter and Anderson acceleration depth can be used.

Paper D [145]

Title: A Cahn–Hilliard–Biot system and its generalized gradient flow structure

Authors: Erlend Storvik, Jakub Wiktor Both, Jan Martin Nordbotten and Florin

Adrian Radu

Journal: Applied Mathematics Letters 126, 107799, (2022).

DOI: 10.1016/j.aml.2021.107799

During the last decade, there has been an increasing interest in using phase-fields in

predictive tumor growth modelling. Due to the assumptions of local phase-field balance

with a diffusive flux law, and the influence of interface tension, due to cohesion and

adhesion, the models take the form of extended Cahn-Hilliard equations; see, e.g., [72,

73, 74, 75, 79, 80, 114, 115, 126, 141, 160]. Furthermore, these models have been extended

to account for elasticity effects [74, 79]. The phase-field is used to represent different

stages of cancerous and healthy tissue. This inspired the work in this paper to develop a

thermodynamically consistent model for flow through a two-phase poroelastic material
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where the two phases move depending on the interfacial tension as well as the fluid flow

and elasticity properties. Moreover, this general model can be considered in relation to

wood growth simulation, where sapwood transforms into heartwood as the tree grows.

The system is called the Cahn-Hilliard-Biot model as it can be seen as a combination

of the quasi-static Biot equations and the Cahn-Hilliard equation. In the paper, the

essential coupling terms are highlighted. Moreover, the full model is shown to be a gen-

eralized gradient flow, which in itself is not obvious, although all of the subsystems have

this structure. This is an important feature that provides thermodynamical consistency

of the model, in the sense that the free energy is dissipated in the absence of external

forces. Additionally, the generalized gradient flow structure can be utilized to develop

solution strategies for the model, as well as for theoretical analysis. Finally, a numeri-

cal experiment is performed in which the effects of flow and elasticity on the phase-field

evolution are analyzed.

Paper E [146]

Title: A robust solution strategy for the Cahn-Larché equations

Authors: Erlend Storvik, Jakub Wiktor Both, Jan Martin Nordbotten and Florin

Adrian Radu

Preprint: arXiv:2206.01541 [math.NA].

This paper is concerned with developing robust solution strategies for the Cahn-Larché

equations, see Section 2.2.3. The equations are coupled, have non-convex nonlinearities,

and are of fourth order in space. The fourth order term is handled as normally done with

the Cahn-Hilliard equations with a mixed formulation of the Cahn-Hilliard subsystem

that solves for phase-field and potential.

One could try to apply a fully explicit time discretization to avoid the difficult nonlinear-

ities, but for the Cahn-Hilliard equation, this is known to not be energy stable. A fully

implicit formulation, on the other hand, can be seen to be equivalent to a non-convex

minimization problem, and therefore standard linearization methods such as the Newton

method fail to converge for all but very small time steps and restrictive material prop-

erties. In this paper, a novel convex-concave time discretization is proposed that takes

inspiration from the classical convex-concave splitting methods for the Cahn-Hilliard

equation [62, 65] and extends it to also handle the non-convex elasticity term.

In the paper, the Cahn-Larché equation for phase-field independent elasticity tensor is

first analyzed, and the equivalence between the time discretized system of equations and
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a convex discrete minimization problem is established. Moreover, the discretization is

shown to be unconditionally energy stable, and an alternating minimization method to

solve the discrete system of equations is proposed. A convergence proof that includes

convergence rates for the alternating minimization method is provided, using the theory

of [29].

Then, the full system with phase-field dependent elasticity tensor is considered, and the

same analysis for the alternating minimization is shown to work for the newly proposed

convex-concave time discretization for this problem as well. Finally, numerical experi-

ments show that in several situations where classical time-discretizations, including the

convex-concave treatment of the Cahn-Hilliard equation, lead to a system that is un-

feasible to solve with standard linearization methods, the newly proposed discretization

method leads to a system that is very well-suited for linearization methods.

4.2 Outlook

This dissertation focuses on developing robust and efficient solution strategies for several

coupled problems. In Paper A and B the quasi-static linearized Biot equations for poroe-

lasticity are considered, Paper C is concerned with the variational phase-field models for

brittle fracture propagation, and in Paper E the focus is on the Cahn-Larché system that

couples the Cahn-Hilliard equation with linearized elasticity. Moreover, in Paper D a

new thermodynamically consistent model is developed that couples poroelasticity with

a Cahn-Hilliard phase-field equation. There are of course many further enhancements

and developments that can be made to all of these contributions. Here, some of them

are highlighted.

Regarding the work on the optimal stabilization parameter for the quasi-static Biot equa-

tions, there are several aspects that can be improved. There is still no general a priori

way to compute the optimal stabilization parameter based on material parameters and

boundary conditions. This could perhaps be achieved with sharper bounds and different

proof techniques. Moreover, getting a good theory regarding optimal stabilization pa-

rameters for a broader class of problems, also with more than two coupled subproblems

would be very beneficial. Although there are several results already available in the lit-

erature for many different extensions of the quasi-static Biot equations, e.g., extension

to large deformations [27] and thermo-poroelasticity [40], and other coupled problems

such as coupled flow and transport [99] and the variational phase-field approach to brit-

tle fracture propagation [42], the theory is still missing even for the coupling of some

of the processes that are discussed in this dissertation, such as poroelasticity with frac-
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tures [84, 122, 142] and the Cahn-Hilliard-Biot system [145]. Additionally, for certain

problems one could consider to “destabilize” the decoupling method to enhance the con-

vergence speed, specifically for block-symmetric problems, as was experienced in [30]

and not saddle-point problems like the quasi-static Biot equations, this is a promising

possibility.

The acceleration method from Paper C should be more carefully tested, especially with

simulations including several simultaneously propagating fractures, other methods of en-

forcing the non-healing constraint, and different splits of the elastic energy. Furthermore,

the extension to fluid-filled fractures and pressurized fracture propagation could be con-

sidered. A possible enhancement of the acceleration method could be to use a line-search

algorithm to choose the over-relaxation parameter and find an adaptive and robust way

to choose the acceleration depth.

Regarding the Cahn-Hilliard-Biot model, several important aspects are not addressed.

Firstly, a well-posedness analysis should be performed. Then, an investigation of robust

and efficient solution algorithms for the problem should be developed. One could for

example try to use an extension of the time-discretization that was proposed in Paper

E, together with alternating minimization or a monolithic Newton method. So far only

standard alternating minimization has been applied and, only implicit evaluations in

time have been done in the Biot-subsystem. Finally, the main motivation for developing

the model was to utilize it to simulate tumor growth, and to do so it is reasonable to

couple the system with transport of chemo-taxis and nutrients.

Regarding the solution strategies that were proposed in Paper E, there are several pos-

sible improvements to be made. A proper analysis of the time-discretization including

error estimates and sensitivity on material parameters for the unconditional energy sta-

bility is missing. Moreover, proper treatment of the degenerate mobility term is not

provided, and getting a good theory to cover this might be essential. It is also possible

to destabilize the alternating minimization method that was proposed to improve the

convergence speed of the method. This has, so far, only been tested in practice for very

few problem setups, and although it looks promising, there is no theory on how to tune

the destabilization. Finally, there are no available linearization methods that are robust

and efficient for the fully implicit discretization in time.
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Summary
In this work, we are interested in efficiently solving the quasi-static, linear Biot
model for poroelasticity. We consider the fixed-stress splitting scheme, which is
a popular method for iteratively solving Biot's equations. It is well known that
the convergence properties of the method strongly depend on the applied stabi-
lization/tuning parameter. We show theoretically that, in addition to depending
on the mechanical properties of the porous medium and the coupling coeffi-
cient, they also depend on the fluid flow and spatial discretization properties.
The type of analysis presented in this paper is not restricted to a particular spa-
tial discretization, although it is required to be inf-sup stable with respect to the
displacement-pressure formulation. Furthermore, we propose a way to optimize
this parameter that relies on the mesh independence of the scheme's opti-
mal stabilization parameter. Illustrative numerical examples show that using
the optimized stabilization parameter can significantly reduce the number of
iterations.

KEYWORDS

Biot model, convergence analysis, fixed-stress splitting, geomechanics, poroelasticity

1 INTRODUCTION

There is currently a strong interest in the numerical simulation of poroelasticity, ie, fully coupled porous media flow and
mechanics. This is due to its high number of societal relevant applications, such as geothermal energy extraction, life sci-
ences, or CO2 storage, to name a few. The most commonly used mathematical model for poroelasticity is the quasi-static,
linear Biot model. It is the coupled problem arising when considering the balance of linear momentum for the porous
medium allowing for only small deformations (1) and mass conservation and Darcy's law for the fluid flow (2) (see, eg,
the work of Coussy1): find (u, p) such that

−∇ · (2𝜇𝜺 (u) + 𝜆∇ · uI) + 𝛼∇p = f , (1)

𝜕
𝜕t

( p
M + 𝛼∇ · u

)
− ∇ · (𝜅 (∇p − g𝜌)) = S𝑓 , (2)

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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where u is the displacement; 𝜀 (u) ∶= 1
2

(
∇u + ∇u⊤) is the (linear) strain tensor; 𝜇 and 𝜆 are the Lamé parameters; 𝛼 is

the Biot-Willis constant; p and 𝜌 are the fluid's pressure and density, respectively; 1∕M is the compressibility constant; g is
the gravitational vector; and 𝜅 is the permeability. The source terms f and Sf represent the density of applied body forces
and a forced fluid extraction or injection process, respectively.
A lot of work has been done concerning the discretization of Biot's equations (1) and (2). Various spatial discretizations,

combined with the backward Euler method as temporal discretization, have been proposed and analyzed. We mention
cell-centered finite volumes,2 continuous Galerkin for the mechanics and mixed finite elements for the flow,3-6 mixed
finite elements for flow and mechanics,4,7 nonconforming finite elements,8 the MINI element,9 continuous or discon-
tinuous Galerkin,10-12 or multiscale methods.13-15 Continuous and discontinuous higher-order Galerkin space-time finite
elements were proposed in the work of Bause et al.16 Adaptive computations were considered, for example, in the work
of Ern andMeunier.17 AMonte Carlo approach was proposed in the work of Rahrah and Vermolen.18 For a discussion on
the stability of different spatial discretizations, we refer to the recent papers.19,20
Independently of the chosen discretization, there are two popular alternatives for solving Biot's equations: monolithi-

cally or by using an iterative splitting algorithm. The former has the advantage of being unconditionally stable, whereas
a splitting method is much easier to implement, typically building on already available, tailored, separate numerical
codes for porous media flow and for mechanics. However, a naive splitting of Biot's equations will lead to an unstable
scheme.21 To overcome this, one adds a stabilization term in either themechanics equation (the so-called undrained split-
ting scheme22) or the flow equation (the fixed-stress splitting scheme).23 The splitting methods have very good convergence
properties, making them a valuable alternative to monolithic solvers for simulation of the linear Biot model (see, eg, the
works of Both et al,5 Kim et al,21 Settari and Mourits,23 and Mikelić and Wheeler24). In the present work, we will discuss
the fixed-stress splitting scheme. For other splitting schemes, see, for example, the works of Turska and Schrefler25 and
Turska et al.26
After applying the backward Eulermethod in time to (1) and (2) and discretizing in space (using finite elements or finite

volumes), one has to solve a fully coupled, discrete systemat each time step. The fixed-stress splitting scheme is an iterative
splitting scheme to solve this system. Let i denote the iteration index, and look for a pair (ui, pi) to converge to the solution
(u, p), when i → +∞. Algorithmically, one first solves the flow equation (2) using the displacement from the previous
iteration, and then, one solves the mechanics equation (1) with the updated pressure and iterates until convergence is
achieved. To ensure convergence,5,21,24 one needs to add a stabilizing term L(pi − pi−1) to the flow equation (2). The
free-to-be-chosen parameter L ≥ 0 is called the stabilization or tuning parameter. Choosing the value of this parameter is
of major importance to the performance of the algorithm, because the number of iterations strongly depends on its value
(see the works of Both et al,5 Bause et al,16 Both and Köcher,27 Mikelić et al,28 and Dana et al29). Moreover, a too small or
too big L will lead to slow or no convergence.
The initial derivation of the fixed-stress splitting scheme had a physical motivation21,23: one “fixes the (volumetric)

stress,” ie, imposes Kdr∇ · ui − 𝛼pi = Kdr∇ · ui−1 − 𝛼pi−1 and uses this to replace 𝛼∇ · ui in the flow equation. Here, Kdr is
the physical drained bulk modulus. The resulting stabilization parameter L, called from now on the physical stabilization
parameter, is Lphys = 𝛼2

Kdr
(depending on the mechanical properties and the Biot coefficient). In 2013, a rigorous mathe-

matical analysis of the fixed-stress splitting schemewas performed for the first time in the work ofMikelić andWheeler.24
The authors show that the scheme is a contraction for any stabilization parameter L ≥ Lphys

2 . This analysis was confirmed
in the work of Both et al5 for heterogeneous media using a simpler technique, and the same result was obtained for both
continuous and discontinuous Galerkin higher-order space-time finite elements in theworks of Bause et al16 and Bause,30
implying that the value of the stabilization parameter does not depend on the order of the spatial discretization. The ques-
tion of which stabilization parameter is the optimal one (in the sense that it requires the least number of iterations to
converge) arises, and the aim of this paper is to answer this open question.
In a recent study,27 the authors studied the convergence of the fixed-stress splitting scheme for different test cases with

varying material parameters. They determined numerically the optimal stabilization parameter for each considered case.
This study, together with the previous results presented in the works of Mikelić et al28 and Both et al,5 suggests that
the optimal parameter actually is a value in the interval [ Lphys2 ,Lphys], depending on the data. In particular, the optimal
parameter depends on the problem's boundary conditions and flow parameters, and not only on its mechanical properties
and coupling coefficient. Nevertheless, to the best of our knowledge, there exists no theoretical evidence for this in the
literature so far.
In this paper, we propose for the first time that the optimal stabilization parameter for the fixed-stress splitting scheme

lies in the interval [ 𝛼2

4𝜇+2𝜆 ,
𝛼2

Kdr
) ⊇ [ Lphys2 ,Lphys) and depends also on the fluid flow properties and stability properties of



STORVIK ET AL. 181

the spatial discretization. This is achieved through refining the proof techniques in the work of Both et al5 to obtain an
improved linear rate of convergence; minimizing this rate with respect to the stabilization parameter gives the “theoreti-
cal” optimal choice. Although the trends for the practical and the proposed theoretically optimal stabilization parameter
are sound for varyingmaterial parameters, the theoretically calculated one does not show great practical promise in terms
of being optimal (see the work of Storvik et al31 for a supplementary numerical study). This is due to harsh bounds that
have been used in the proof. Therefore, we propose a brute-force approach for optimizing the stabilization parameter,
utilizing the newly found interval [ 𝛼2

4𝜇+2𝜆 ,
𝛼2

Kdr
).

In contrast to previous works, the spatial discretization is required to be inf-sup stable, which essentially allows for
the control of errors in the pressure by those in the stress. A novel consequence of our theoretical result is that under
the use of an inf-sup–stable discretization, the fixed-stress splitting scheme also converges robustly in the limit case of
incompressible fluids and impermeable porous media.
In Section 4, numerical experiments are performed, which show the soundness and efficiency of the proposed optimiza-

tion technique. In particular, we show that the optimized stabilization parameter can be far superior to a naive choice
among the classical stabilization parameters, Lphys or

Lphys
2 .

To summarize, the main contributions of this work are as follows:

• an improved, theoretical convergence result for the fixed-stress splitting scheme under the assumption of an
inf-sup–stable discretization;

• the derivation of an explicit interval for the optimal stabilization parameter, depending solely on the material
parameters;

• a brute-force approach for optimizing the stabilization parameter, relying on a nearly mesh-independent performance
of the fixed-stress splitting.

Wemention that the fixed-stress splitting scheme also can be applied tomore involved extensions of Biot's equations, for
example, including nonlinear water compressibility,32 unsaturated poroelasticity,33,34 themultiple-network poroelasticity
theory,35,36 finite-strain poroplasticity,37 fractured porous media,38 and fracture propagation.39,40 For nonlinear problems,
one combines a linearization technique, eg, the L-scheme,41,42 with the splitting algorithm; the convergence of the result-
ing scheme can be proved rigorously.32,33 Finally, we would like to mention some valuable variants of the fixed-stress
splitting scheme: the multirate fixed-stress method,43 the multiscale fixed-stress method,29 and the parallel-in-time
fixed-stress method.44
This paper is structured as follows. The notation, the discretization, and the fixed-stress splitting scheme are presented

in Section 2. The theoretical analysis of the convergence and the optimization technique are the subject of Section 3.
In Section 4, numerical experiments that test the optimization technique are presented. Finally, conclusions are given
in Section 5.

2 THE NUMERICAL SCHEME FOR SOLVING BIOT'S MODEL

In this paper, we use common notations in functional analysis. Let Ω ⊂ ℝd be a Lipschitz domain where d is the spatial
dimension. The space L2(Ω) is the Hilbert space of Lebesgue-measurable, square-integrable functions onΩ, andH1(Ω) is
the Hilbert space of functions in L2(Ω)with derivatives (in the weak sense) in L2(Ω). The inner product and its associated
norm in L2(Ω) are denoted by ⟨·, ·⟩ and || · ||, respectively, and || · ||H1(Ω) is the standardH1(Ω)-norm. Vectors and tensors are
written bold, and, sometimes, the scalar product and the norm will be taken for vectors and tensors. Vectorial functions
are written bold-italic. T will denote the final time.
Biot equations (1) and (2) are solved in the domain Ω × (0,T) together with (for simplicity) homogeneous Dirichlet

boundary conditions and a given initial condition. In time, the backwardEulermethod is appliedwith a constant time-step
size 𝜏 ∶= T

N ,N ∈ ℕ. Throughout this work, the index nwill refer to the time level. For the spatial discretization, a two-field
Galerkin finite element formulation is considered, and two generic discrete spaces Vh and Qh, associated with displace-
ments and pressures, are introduced. Later, we requireVh×Qh to be inf-sup stable with respect to the divergence operator;
the most prominent inf-sup–stable example is the Taylor-Hood element, ie, P2-P1 for displacement and pressure.45 Nev-
ertheless, the analysis below can be extendedwithout difficulties to a three-field formulation as, for example, in the works
of Phillips and Wheeler,3 Both et al,5 and Berger et al.6
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In this way, the fully discrete, weak problem reads: let n ≥ 1 and assume (un−1
h , pn−1h ) ∈ Vh × Qh are given. Find

(un
h, p

n
h) ∈ Vh × Qh such that

2𝜇
⟨
𝜺
(
un
h
)
, 𝜺 (vh)

⟩
+ 𝜆

⟨
∇ · un

h,∇ · vh
⟩
− 𝛼

⟨
pnh,∇ · vh

⟩
=
⟨
f n, vh

⟩
, (3)

1
M

⟨
pnh − pn−1h , qh

⟩
+ 𝛼

⟨
∇ ·

(
un
h − un−1

h
)
, qh

⟩
+ 𝜏

⟨
𝜅∇pnh,∇qh

⟩
− 𝜏 ⟨𝜅g𝜌,∇qh⟩ = 𝜏

⟨
Sn𝑓 , qh

⟩
(4)

for all vh ∈ Vh, qh ∈ Qh. For n = 1, the functions (un−1
h , pn−1h ) are obtained by using the initial condition.

The fixed-stress splitting scheme5,21,23,28 is now introduced. Denote by i the iteration index. Iterate until convergence.
For i ≥ 1, given a stabilization parameter L ≥ 0 and (un−1

h , pn−1h ), (un,i−1
h , pn,i−1h ) ∈ Vh × Qh, find (un,i

h , pn,ih ) ∈ Vh × Qh
such that

2𝜇
⟨
𝜺
(
un,i
h

)
, 𝜺 (vh)

⟩
+ 𝜆

⟨
∇ · un,i

h ,∇ · vh
⟩
− 𝛼

⟨
pn,ih ,∇ · vh

⟩
=
⟨
f n, vh

⟩
, (5)

1
M

⟨
pn,ih − pn−1h , qh

⟩
+ 𝛼

⟨
∇ ·

(
un,i−1
h − un−1

h

)
, qh

⟩
+ L

⟨
pn,ih − pn,i−1h , qh

⟩

+ 𝜏
⟨
𝜅∇pn,ih ,∇qh

⟩
− 𝜏 ⟨𝜅g𝜌,∇qh⟩ = 𝜏

⟨
Sn𝑓 , qh

⟩
(6)

for all vh ∈ Vh, qh ∈ Qh. The initial guess for the iterations is chosen to be the solution at the last time step, ie, (un,0
h , pn,0h ) ∶=

(un−1
h , pn−1h ). Notice that the mechanics and flow problems decouple, allowing for the use of separate simulators for both

subproblems.

3 CONVERGENCE ANALYSIS AND OPTIMIZATION

In this section, the convergence of the scheme (5)-(6) is analyzed. We are particularly interested in finding an optimal
stabilization parameter L, in the sense that the scheme requires the least amount of iterations, ie, has the smallest possible
convergence rate. Before we proceed with the main result, we need some preliminaries.

Definition 1. The mathematical bulk modulus, K⋆
dr > 0, is defined as the largest constant such that

2𝜇‖𝜺 (uh)‖2 + 𝜆‖∇ · uh‖2 ≥ K⋆
dr‖∇ · uh‖2 for all uh ∈ Vh. (7)

By the Cauchy-Schwarz inequality, we get that the physical drained bulk modulus Kdr = 2𝜇
d + 𝜆 is a lower bound for

K⋆
dr. However, for effectively lower-dimensional situations, eg, a one-dimensional–like compression, d can be replaced by

a value closer to 1. Lemma 1 below guarantees an upper bound for K⋆
dr. Nevertheless, there is a strong indication (based

on numerical experiments; see, eg, Section 4 and the work of Both and Köcher27) that K⋆
dr ∈ [Kdr = 2𝜇

d + 𝜆, 2𝜇 + 𝜆]. We
remark that the exact value, depending on the physical situation, can be computed as a generalized eigenvalue.
Throughout this paper, we make use of the following two assumptions.

Assumption 1. The constants 𝜇, 𝜆, 𝛼, and 𝜌 are strictly positive, the constants 1∕M and 𝜅 are nonnegative, and the
vector g is constant.

Assumption 2. The discretization Vh × Qh is inf-sup stable with respect to the bilinear form b(vh, qh) = ⟨∇ · vh, qh⟩.
From Assumption 2 follows Lemma 1 by applying corollary 4.1.1 in the work of Boffi et al,45 which states as follows.

Corollary 1. Let V and Q be Hilbert spaces, and let B be a linear continuous operator from V to Q′; here, Q′ denotes the
dual space of Q. Denote by Bt the transposed operator of B. Then, the following two statements are equivalent.

• Bt is bounding: ∃𝛾 > 0 such that ||Btq||V ′ ≥ 𝛾||q||Q ∀q ∈ Q.
• ∃LB ∈ (Q′,V) such that B(LB(𝜉)) = 𝜉 ∀𝜉 ∈ Q′ with ||Lb|| = 1

𝛾
.

Lemma 1. Assume Assumption 2. There exists 𝛽 > 0 such that, for any ph ∈ Qh, there exists uh ∈ Vh satisfying
⟨∇ · uh, qh⟩ = ⟨ph, qh⟩ for all qh ∈ Qh and

2𝜇‖𝜺(uh)‖2 + 𝜆‖∇ · uh‖2 ≤ 𝛽‖ph‖2. (8)
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Proof. Consider Corollary 1. Let the continuous linear function B ∶ Vh → Q′
h be defined by B(uh)(qh) = ⟨∇ · uh, qh⟩.

The first statement of Corollary 1 is a characterization of an inf-sup–stable discretization Assumption 2, with inf-sup
constant 𝛾 . Hence, the second statement of Corollary 1 holds; there exists a linear function LB ∈ (Q′

h,Vh) such that
B(LB(⟨ph, ·⟩)) = ⟨ph, ·⟩ for all ph ∈ Qh with ||LB|| = 1∕𝛾 . In particular, LB is mapping ph ∈ Qh to the corresponding
uh ∈ Vh such that

⟨∇ · uh, qh⟩ = B (LB (⟨ph, ·⟩)) (qh) = ⟨ph, qh⟩
for all qh ∈ Qh. Additionally, the following chain of inequalities holds true:

2𝜇‖𝜺(uh)‖2 + 𝜆‖∇ · uh‖2 ≤ C ‖uh‖2H1(Ω) ≤ C‖LB‖2‖ph‖2,

where the first inequality follows from Young's inequality with C depending only on the Lamé parameters, and the
second inequality results from the operator norm, ie,

‖LB‖ = sup
0≠ph∈Qh

‖LB (⟨ph, ·⟩)‖H1(Ω)

‖⟨ph, ·⟩‖L2(Ω)′ = sup
0≠ph∈Qh

uh=LB(⟨ph,·⟩)

‖uh‖H1(Ω)

‖ph‖ .

We obtain our desired inequality, as follows:

2𝜇‖𝜺(uh)‖2 + 𝜆‖∇ · uh‖2 ≤ C
𝛾2

‖ph‖2 = 𝛽‖ph‖2.

Remark 1. The constant 𝛽 above depends on 𝜇, 𝜆, and the domain Ω and on the choice of the finite-dimensional
spaces Vh and Qh. Similar to K⋆

dr, 𝛽 can be computed as a generalized eigenvalue.

We can now give our main convergence result.

Theorem1. Assume that Assumptions 1 and 2 hold true, and let 𝛿 ∈ (0, 2]. Define the iteration errors as en,iu ∶= un,i
h −un

h
and en,ip ∶= pn,ih − pnh, where (u

n,i
h , pn,ih ) is a solution to (5) and (6), and (un

h, p
n
h) is a solution to (3) and (4). The fixed-stress

splitting scheme (5)-(6) converges linearly for any L ≥ 𝛼2

𝛿K⋆
dr
, with a convergence rate given by

rate (L, 𝛿) = L
L + 2

M + 2𝜏𝜅
C2
Ω
+ (2 − 𝛿) 𝛼2

𝛽

, (9)

through the error inequalities
‖‖‖e

n,i
p
‖‖‖
2 ≤ rate (L, 𝛿) ‖‖‖e

n,i−1
p

‖‖‖
2
, (10)

2𝜇
‖‖‖‖𝜺

(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2 ≤ 𝛼2

K⋆
dr

‖‖‖e
n,i
p
‖‖‖
2
, (11)

where CΩ is the Poincaré constant and 𝛽 is the constant from (8).

Proof. Subtract (5) and (6) from (3) and (4), respectively, to obtain the error equations

⎧
⎪⎨⎪⎩

(i) 2𝜇
⟨
𝜺
(
en,iu

)
, 𝜺 (vh)

⟩
+ 𝜆

⟨
∇ · en,iu ,∇ · vh

⟩
− 𝛼

⟨
en,ip ,∇ · vh

⟩
= 0,

(ii) 1
M

⟨
en,ip , qh

⟩
+ 𝛼

⟨
∇ · en,i−1u , qh

⟩
+ L

⟨
en,ip − en,i−1p , qh

⟩
+ 𝜏

⟨
𝜅∇en,ip ,∇qh

⟩
= 0,

(12)

holding for all (vh, qh) ∈ Vh × Qh. To prove (11), test (12)(i) with vh = en,iu , and apply the Cauchy-Schwarz inequality
and Young's inequality to the pressure term to obtain

2𝜇
‖‖‖‖𝜺

(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2 ≤ 𝛼2

2K⋆
dr

‖‖‖e
n,i
p
‖‖‖
2
+

K⋆
dr
2

‖‖‖∇ · en,iu
‖‖‖
2
. (13)
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We now get (11) by applying (7).
In order to prove (10), test (12) with qh = en,ip and vh = en,iu , add the resulting equations, and use the algebraic identity

⟨
en,ip − en,i−1p , en,ip

⟩
= 1

2

(‖‖‖e
n,i
p − en,i−1p

‖‖‖
2
+ ‖‖‖e

n,i
p
‖‖‖
2
− ‖‖‖e

n,i−1
p

‖‖‖
2)

to get

2𝜇
‖‖‖‖𝜺

(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
+ 1

M
‖‖‖e

n,i
p
‖‖‖
2
− 𝛼

⟨
en,ip ,∇ ·

(
en,iu − en,i−1u

)⟩
+ 𝜏𝜅‖‖‖∇e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p − en,i−1p

‖‖‖
2
+ L

2
‖‖‖e

n,i
p
‖‖‖
2

= L
2
‖‖‖e

n,i−1
p

‖‖‖
2
.

Using now Equation (12)(i), tested with vh = en,iu − en,i−1u in the above, yields

2𝜇
‖‖‖‖𝜺

(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
+ 1

M
‖‖‖e

n,i
p
‖‖‖
2
+ 𝜏𝜅‖‖‖∇e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p − en,i−1p

‖‖‖
2

= L
2
‖‖‖e

n,i−1
p

‖‖‖
2
+ 2𝜇

⟨
𝜺
(
en,iu

)
, 𝜺

(
en,iu − en,i−1u

)⟩
+ 𝜆

⟨
∇ · en,iu ,∇ ·

(
en,iu − en,i−1u

)⟩
. (14)

By applying Young's inequality in (14), we obtain that, for any 𝛿 > 0, there holds

2𝜇
‖‖‖‖𝜺

(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
+ 1

M
‖‖‖e

n,i
p
‖‖‖
2
+ 𝜏𝜅‖‖‖∇e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p − en,i−1p

‖‖‖
2

= L
2
‖‖‖e

n,i−1
p

‖‖‖
2
+ 𝛿

2

(
2𝜇

‖‖‖‖𝜺
(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
)
+ 1

2𝛿

(
2𝜇

‖‖‖‖𝜺
(
en,iu − en,i−1u

)‖‖‖‖
2
+ 𝜆

‖‖‖‖∇ ·
(
en,iu − en,i−1u

)‖‖‖‖
2)

. (15)

To take care of the last term in (15), consider Equation (12)(i), subtract iteration i − 1 from iteration i, let vh =
en,iu − en,i−1u in the result, and apply the Cauchy-Schwarz inequality to get

2𝜇
‖‖‖‖𝜺

(
en,iu

)
− 𝜺

(
en,i−1u

)‖‖‖‖
2
+ 𝜆

‖‖‖‖∇ ·
(
en,iu − en,i−1u

)‖‖‖‖
2 ≤ 𝛼 ‖‖‖e

n,i
p − en,i−1p

‖‖‖
‖‖‖‖∇ ·

(
en,iu − en,i−1u

)‖‖‖‖ . (16)

By using (7), (16) implies

K⋆
dr
‖‖‖‖∇ ·

(
en,iu − en,i−1u

)‖‖‖‖ ≤ 𝛼 ‖‖‖e
n,i
p − en,i−1p

‖‖‖ . (17)

Inserting (17) into (16) yields

2𝜇
‖‖‖‖𝜺

(
en,iu

)
− 𝜺

(
en,i−1u

)‖‖‖‖
2
+ 𝜆

‖‖‖‖∇ ·
(
en,iu − en,i−1u

)‖‖‖‖
2 ≤ 𝛼2

K⋆
dr

‖‖‖e
n,i
p − en,i−1p

‖‖‖
2
. (18)

By rearranging terms and inserting (18) into (15), we immediately get

(
1 − 𝛿

2

)(
2𝜇

‖‖‖‖𝜺
(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
)
+ 1

M
‖‖‖e

n,i
p
‖‖‖
2
+ 𝜏𝜅‖‖‖∇e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p − en,i−1p

‖‖‖
2

≤ L
2
‖‖‖e

n,i−1
p

‖‖‖
2
+ 𝛼2

2𝛿K⋆
dr

‖‖‖e
n,i
p − en,i−1p

‖‖‖
2
.

Using that L ≥ 𝛼2

𝛿K⋆
dr
and the Poincaré inequality, we obtain from the above

(
1 − 𝛿

2

)(
2𝜇

‖‖‖‖𝜺
(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
)
+

(
1
M + L

2 + 𝜏𝜅
C2
Ω

)
‖‖‖e

n,i
p
‖‖‖
2 ≤ L

2
‖‖‖e

n,i−1
p

‖‖‖
2
. (19)
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The result, (19), already implies that we have convergence of the scheme. In previous works, particularly that of
Both et al5 (where the proof so far is very similar), the conclusion at this point is that L = 𝛼2

2K⋆
dr
is the optimal parameter.

However, this does not consider the influence of the first term in (19). By Lemma 1, we get that there exists vh ∈ Vh
such that en,ip = ∇ · vh in a weak sense and

2𝜇‖𝜺(vh)‖2 + 𝜆‖∇ · vh‖2 ≤ 𝛽‖‖‖e
n,i
p
‖‖‖
2
. (20)

By testing now (12)(i) with this vh, we get

𝛼‖‖‖e
n,i
p
‖‖‖
2
= 2𝜇

⟨
𝜺
(
en,iu

)
, 𝜺(vh)

⟩
+ 𝜆

⟨
∇ · en,iu ,∇ · vh

⟩
. (21)

From (20) and (21) and the Cauchy-Schwarz inequality, we immediately obtain

𝛼2

𝛽
‖‖‖e

n,i
p
‖‖‖
2 ≤ 2𝜇

‖‖‖‖𝜺
(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
, (22)

which, together with (19), implies
(

1
M + L

2 + 𝜏𝜅
C2
Ω
+
(
1 − 𝛿

2

) 𝛼2

𝛽

)
‖‖‖e

n,i
p
‖‖‖
2 ≤ L

2
‖‖‖e

n,i−1
p

‖‖‖
2
.

This gives the following rate of convergence, for 𝛿 ∈ (0, 2] and L ≥ 𝛼2

𝛿K⋆
dr
:

rate(L, 𝛿) = L
L + 2

M + 2𝜏𝜅
C2
Ω
+ (2 − 𝛿) 𝛼2

𝛽

.

Remark 2. Assumptions 1 and 2 are valid in various relevant physical situations. Therefore, our analysis has a wide
range of applications. One can easily extend the result to heterogeneous media, ie, 𝜅 = 𝜅(x) as long as 𝜅 is bounded
from below by 𝜅m ≥ 0. Moreover, any of the other parameters can be chosen spatially dependent as long as they are
bounded from below by appropriate constants satisfying Assumption 1.

3.1 Optimality
Consider the rate obtained in (9). As rate(L, 𝛿) is an increasing function of L, it follows that, for all 𝛿 ∈ (0, 2], its minimum
is obtained at L = 𝛼2

𝛿K⋆
dr
, giving the rate

rate(𝛿) =
𝛼2

K⋆
dr

𝛼2

K⋆
dr
+ 𝛿

(
2
M + 2𝜏𝜅

C2
Ω
+ (2 − 𝛿) 𝛼2

𝛽

) . (23)

Minimizing (23) with respect to 𝛿 corresponds to maximizing

𝛿

(
2
M + 2𝜏𝜅

C2
Ω

+ (2 − 𝛿) 𝛼
2

𝛽

)
.

Let A ∶= 2
M + 2𝜏𝜅

C2
Ω
+ 2 𝛼2

𝛽
and B ∶= 𝛼2

𝛽
. It is easily seen that the maximum of 𝛿(A− 𝛿B) is attained at 𝛿 = A

2B . Therefore, the
minimizer of rate(𝛿) is

𝛿 = min
{ A
2B , 2

}
∈ (1, 2] , (24)
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since A ≥ 2B. This suggests that the theoretical optimal choice of L is

L = 𝛼2

K⋆
dr min

{
A
2B , 2

} ∈

[
𝛼2

2K⋆
dr
, 𝛼

2

K⋆
dr

)
⊂

[
𝛼2

4𝜇 + 2𝜆 ,
𝛼2

2𝜇
d + 𝜆

)
. (25)

Remark 3 (Consequence for low-compressible fluids and low-permeable porous media).
Previous convergence results in the literature for the fixed-stress splitting scheme have not predicted or guaranteed
any robust convergence in the limit cases M → ∞ and 𝜅 → 0 (for a fixed time-step size 𝜏). Now, by Theorem 1, for
inf-sup–stable discretizations, robust convergence of the fixed-stress splitting scheme is guaranteed, even in the limit
case. This was studied numerically in the work of Storvik et al.31 Convergence was showed to be robust with respect
to material parameters for P2-P1 elements and deteriorating for P1-P1.

3.2 Brute-force optimization of the stabilization parameter
The rate obtained in Theorem 1 is not necessarily sharp, and it is rather viewed as theoretical evidence that the opti-
mal stabilization parameter resides in the interval [ 𝛼2

4𝜇+2𝜆 ,
𝛼2

2𝜇
d +𝜆

). Additionally, convergence is predicted to be robust with
respect to the mesh size. It can be, indeed, verified numerically that the performance of the fixed-stress splitting scheme
is nearly mesh independent (see, for instance, the numerical examples in Section 4 or in the work of Adler et al46). Based
on that, we propose the following brute-force search for optimizing the stabilization parameter for a fixed test case: test
the fixed-stress splitting scheme using different stabilization parameters in the interval [ 𝛼2

4𝜇+2𝜆 ,
𝛼2

2𝜇
d +𝜆

) for a coarse mesh
and a single time step. Choose the parameter that gives the fewest number of iterations, and employ it for any arbitrary
mesh. Section 4 shows the effectiveness of the proposed method.

4 NUMERICAL EXAMPLES

In this section, we demonstrate the effectiveness of the proposed brute-force method for optimizing the stabilization
parameter for the fixed-stress splitting scheme. In particular, we show for several numerical test cases that the optimal
stabilization parameter is close to being mesh independent and that the method for choosing it optimally, as described in
Section 3.2, indeed yields a preferable alternative to the classical choices of L = 𝛼2

2Kdr
and L = 𝛼2

Kdr
.

We consider four different test cases, as follows:

1. a unit square domain;
2. an L-shaped domain;
3. Mandel's problem;
4. three-dimensional (3D) footing problem on the unit cube.

For the implementation of the numerical examples, we use modules from the DUNE project,47 particularly
dune-functions.48,49 If notmentioned otherwise, the inf-sup–stable Taylor-Hood pair P2-P1 is utilized as spatial discretiza-
tion. As stopping criteria, we have applied relative L2-norms for the pressure, ie, iterations stop when ||pih − pi−1h || ≤
𝜖r||pi−1h ||, consistent with Theorem 1. Constant material and fluid parameters are applied and given for each individual
test case.

4.1 Notations
During the numerical experiments,we apply some specific choices of stabilization parameters several times. Therefore,we
give them names here. Recall the definition of the physical drained bulk modulus Kdr = 2𝜇

d + 𝜆. The original stabilization
parameterwill be called the physical one due to the fixed-stress splitting scheme's physical origin, ie, Lphys = 𝛼2

Kdr
. The other

classical choice of stabilization parameter will be named after Mikelić andWheeler due to their paper,24 ie, LMW = Lphys
2 =

𝛼2

2Kdr
. The stabilization parameter obtained by the brute-force method described in Section 3.2 will be called Lopt. The final

parameter is the one that is proposed to be the smallest possible choice in Section 3.1, ie, Lmin = 𝛼2

4𝜇+2𝜆 (see Table 1).
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Name Lphys LMW Lopt Lmin

Value 𝛼2

Kdr

𝛼2

2Kdr
Section 3.2 𝛼2

4𝜇+2𝜆

TABLE 1 Names of specific stabilization parameters

Name Symbol Value Unit
Shear modulus 𝜇 41.667 · 109 Pa
First Lamé parameter 𝜆 27.778 · 109 Pa
Permeability 𝜅 10−13 m2

Compressibility 1
M 10−11 Pa−1

Initial time t0 0 s
Time-step size 𝜏 0.1 s
Stop time T 1 s
Biot-Willis coefficient 𝛼 1 –
Relative error tolerance 𝜖r 10−6 –
Inverse of mesh size a 1∕h 16, 32, 64, 128, 512 m−1

a Mesh sizes are only used in Section 4.2.

TABLE 2 Parameters used in Sections 4.2 and 4.5

4.2 Dependence on boundary conditions—the unit square
We consider two test cases differing solely in the applied boundary conditions. Common for both, the domain is the unit
square discretized by structured triangles, and the constant material parameters from Table 2 are considered. Moreover,
we employ source terms corresponding to the analytical solution

u1(x, 𝑦, t) = u2(x, 𝑦, t) =
1
pref

p(x, 𝑦, t) = tx𝑦(1 − x)(1 − 𝑦), (x, 𝑦) ∈ (0, 1)2, t ∈ (0, 1),

of the continuous problem (1)-(2). The pressure, p, is scaled by pref = 1011 Pa in order to balance the magnitude of the
mechanical and fluid stresses for the chosen physical parameters. Regarding the different sets of boundary conditions,
we consider the following.

• BC1: homogeneous Dirichlet data on the entire boundary for displacement and pressure.
• BC2: homogeneous Dirichlet data for the pressure; homogeneous Neumann data on top in the mechanics equation

and homogeneous Dirichlet data everywhere else for the displacement.

Solutions after 10 time steps using a mesh size of h = 1∕128 are displayed in Figures 1 and 2.
To motivate the brute-force approach from Section 3.2, the performance of the fixed-stress splitting scheme has been

measured for a variety of stabilization parameters and mesh sizes (see Figure 3). We observe that the numbers of itera-
tions vary significantly for different stabilization parameters but that the optimal choice is within our proposed interval
[Lmin,Lphys). Additionally, for fixed stabilization parameters, we observe that the numbers of iterations are close to
constant with respect to the mesh size.
Now, we test the brute-force approach of Section 3.2. In order to calculate Lopt, we start by applying the fixed-stress

splitting scheme for 11 equidistant stabilization parameters in [Lmin,Lphys]while only computing one time step for amesh

FIGURE 1 Unit square test case:
solution—BC1. A, Pressure;
B, Displacement(|uh|)
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FIGURE 2 Unit square test case:
solution—BC2. A, Pressure;
B, Displacement(|uh|)

(A) (B)

FIGURE 3 Unit square test case: average number of iterations per time step for different stabilization parameters, L = 𝛼2

 , using
parameters from Table 2. The largest value of corresponds to Lmin, whereas the smallest value of corresponds to Lphys. Recall that Lopt is
calculated using only one time step, and therefore, there is a slight deviation between Lopt and the actual optimal choice. A, BC1; B, BC2

size of h = 1∕16. Then, using the stabilization parameter that needed the least amount of iterations to converge, we apply
the fixed-stress splitting scheme for the full problem using a mesh size of h = 1∕512. In Figure 3, the average numbers
of iterations over 10 time steps are displayed for this “optimal” stabilization parameter, for the two classical choices Lphys
and LMW, and for the stabilization parameter that we consider to be the smallest possible choice, ie, Lmin. We see that the
optimized stabilization parameter requires the least amount of iterations for both boundary conditions. It is also worth
noticing that the optimal choice differs considerably for the two sets of boundary conditions.

4.3 Dependence on Poisson's ratio—L-shaped domain
To further analyze the proposed brute-force optimization of the stabilization parameter for the fixed-stress splitting
scheme, we test it on an L-shaped domain as well. The L-shaped domain is considered as a subdomain of the unit square
domain where the top-right quarter square has been removed, ie, L = [0, 1]2∖(0.5, 1]2. The material and implementa-
tion parameters from Table 3 are applied, whereas the right-hand side is the same as for the unit square test case. Zero
Dirichlet boundary conditions are applied everywhere, but at the top boundary ([0, 0.5]×{1}) for the mechanics equation
where zero Neumann conditions are considered. A solution to this problem after 10 time steps with 𝜈 = 0 and mesh size
1∕h = 128 is given in Figure 4.
Given Young's modulus E and Poisson's ratio 𝜈, the corresponding Lamé parameters have been determined by

𝜇 = E
2(1 + 𝜈)

and 𝜆 = E𝜈
(1 + 𝜈)(1 − 2𝜈) . (26)
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Name Symbol Value Unit
Young's modulus E 1011 Pa
Poisson's ratio 𝜈 0, 0.2, 0.4 –
Permeability 𝜅 10−13 m2

Compressibility 1
M 10−11 m−1

Initial time t0 0 s
Time-step size 𝜏 0.1 s
Stop time T 1 s
Biot-Willis coefficient 𝛼 1 –
Relative error tolerance 𝜖r 10−6 –
Inverse of mesh size 1∕h 16, 32, 64, 128, 512 m−1

TABLE 3 Parameters used in Section 4.3

FIGURE 4 L-shaped domain
test case: solution for 𝜈 = 0.
A, Pressure; B, Displacement(|uh|)

(A) (B) (C)

FIGURE 5 L-shaped domain test case: number of iterations for different stabilization parameters, L = 𝛼2

 , using parameters from Table 3.
The largest value of corresponds to Lmin, whereas the smallest value of corresponds to Lphys. Notice that the axes are different. A, 𝜈 = 0;
B, 𝜈 = 0.2; C, 𝜈 = 0.4

Again, as for the unit square test case, we test the brute-force optimization technique that is described in Section 3.2,
but now for three different Poisson's ratios. In Figure 5, the fixed-stress splitting scheme is applied to a variety of mesh
sizes and with a variety of stabilization parameters to three problems with different Poisson's ratios. There are several key
observations to make. First, the scheme is close to being mesh independent for all mesh sizes, stabilization parameters,
and Poisson's ratios. Second, we see that the optimal stabilization parameter is in the proposed interval [Lmin,Lphys) for
all Poisson's ratios and all mesh sizes. The final observation is that when the Poisson's ratio increases, the choice of stabi-
lization parameter becomes less important. This is due to the fact that an increase in the Poisson's ratio can be seen as an
effective decrease in the coupling strength.
To calculate the optimal stabilization parameter, we follow the recipe of Section 3.2. We apply 11 equidistant stabiliza-

tion parameters in the interval [Lmin,Lphys] for the fixed-stress splitting scheme on a coarse mesh (1∕h = 16) for only one
time step. Counting the numbers of iterations it takes to reach convergence, we choose the parameter that corresponds
to the smallest number and use this for the finer mesh (1∕h = 512) and more time steps (10). We see that the parameter
that is the optimal choice for the coarse mesh is also the optimal one for the finer mesh for all Poisson's ratios.
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4.4 Mandel's problem
Here, we consider Mandel's problem, a relevant two-dimensional problem with a known analytical solution that is
often used as a benchmark problem for discretizations. The analytical solution is derived in the works of Coussy1 and
Abousleiman et al,50 and its expressions for pressure and displacement are given by

p = 2FB (1 + 𝜈u)
3a

∑∞

n=1
sin (𝛼n)

𝛼n − sin (𝛼n) cos (𝛼n)

(
cos

(𝛼nx
a

)
− cos (𝛼n)

)
e−

𝛼2nc𝑓 t
a2 , (27)

ux =
[
F𝜈
2𝜇a − F𝜈u

𝜇a
∑∞

n=1
sin (𝛼n) cos (𝛼n)

𝛼n − sin (𝛼n) cos (𝛼n)
e−

𝛼2nc𝑓 t
a2

]
x

+ F
𝜇
∑∞

n=1
cos (𝛼n)

𝛼n − sin (𝛼n) cos (𝛼n)
sin

(𝛼nx
a

)
e−

𝛼2nc𝑓 t
a2 , (28)

u𝑦 =
[
−F (1 − 𝜈)

2𝜇a + F (1 − 𝜈u)
𝜇a

∑∞

n=1
sin (𝛼n) cos (𝛼n)

𝛼n − sin (𝛼n) cos (𝛼n)
e−

𝛼2nc𝑓 t
a2

]
𝑦, (29)

where 𝛼n, n ∈ ℕ, correspond to the positive solutions of the equation

tan (𝛼n) =
1 − 𝜈
𝜈u − 𝜈

𝛼n,

and 𝜈u, F, B, cf, and a are input parameters, partially depending on the physical problem parameters. Here, we apply the
values listed in Table 4. For a thorough explanation of the problem and the coefficients in (27)-(29), we refer to the works
of Coussy1 and Phillips and Wheeler.3
We consider the domain,Ω = (0, 100) × (0, 10), discretized by a regular triangular mesh. An equidistant partition of the

time interval is applied with time-step size 𝜏 = 10 from t0 = 0 to T = 100. Initial conditions are inherited from the analytic
solutions (27)-(29). As boundary conditions, we apply exact Dirichlet boundary conditions for the normal displacement
on the top, left, and bottom boundaries. For pressure, we apply homogeneous boundary conditions on the right boundary.
On the remaining boundaries, homogeneous natural boundary conditions are applied. The tolerance 𝜖r is set to 10−6. The
solution after 10 time steps with 80 vertical and horizontal nodes is displayed in Figure 6.
Similar to the unit square and L-shaped domain test cases, we test the mesh independence and the brute-force opti-

mization technique for Mandel's problem. This time, the parameters from Table 4 are applied. In Figure 7, the mesh
dependence of the fixed-stress splitting scheme is tested, and it is clear that the performance of the scheme is indepen-
dent of this choice. At the same time, we confirm that the optimal stabilization parameters actually are in the proposed
interval [Lmin,Lphys).

TABLE 4 Parameters for Mandel's problem Name Symbol Value Unit
Young's modulus E 5.94 · 109 Pa
Poisson's ratio 𝜈 0.2 –
Skempton coefficient B 0.833 –
Undrained Poisson's ratio 𝜈u 0.44 –
Applied force F 6 · 108 N
Biot-Willis constant 𝛼 1 –
Compressibility coefficient M 1.650 · 1010 Pa
Fluid diffusivity constant cf 0.47 m2∕s
Permeability 𝜅 10−10 m2

Width of domain a 100 m
Height of domain b 10 m
Horizontal number of nodes Nx 10, 20, 40, 80, 320 –
Vertical number of nodes Ny 10, 20, 40, 80, 320 –
Time-step size 𝜏 10 s
Initial time t0 0 s
Final time T 100 s
Relative error tolerance 𝜖r 10−9 –
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FIGURE 6 Mandel's problem: solution
after 10 time steps with Nx = Ny = 80.
A, Pressure; B, Displacement(|uh|)

FIGURE 7 Mandel's problem: number of iterations for different stabilization
parameters, L = 𝛼2

 , using parameters from Table 4. The largest value of
corresponds to Lmin, whereas the smallest value of corresponds to Lphys

To calculate the optimal stabilization parameter, we have applied the optimization technique of Section 3.2. First, the
fixed-stress splitting scheme is applied for one time step using a coarse mesh with 10 horizontal and 10 vertical nodes for
11 different stabilization parameters in the interval [Lmin,Lphys]. Choosing the parameter that yields the lowest number
of iterations, we apply the scheme for finer meshes and count the number of iterations. As for the other test cases, we
see that the optimal parameter indeed is optimal. Moreover, a poor choice of stabilization parameter can result in a huge
number of iterations.

4.5 3D footing problem
The numerical section is concluded with a three-dimensional example, ie, a footing problem similar to a test case studied
in thework of Adler et al.46 We consider a unit cube subject to normal compression, ramped in time 𝜎n(t) = t·1010 N·m2∕s,
applied to a part of the top boundary ΓN ∶= [0.25, 0.75] × [0.25, 0.75] × {1}. The bottom is fixed in all directions, and
the remaining boundary is considered to be stress free. A no-flow boundary condition is applied at the compression zone
ΓN, and zero pressure is enforced on the remaining boundary. Furthermore, zero body forces are applied. The medium is
considered isotropic with the same material parameters as used in Section 4.2 (cf Table 2). For the numerical discretiza-
tion, we consider a set of four meshes with mesh size h ∈ {1∕8, 1∕16, 1∕32, 1∕64} and employ the inf-sup–stable MINI
element.51 The simulation result for the final time step is visualized in Figure 8.
Due to high computational cost, optimizing the stabilization parameter of the fixed-stress splitting becomes tedious for

fine meshes in 3D. Motivated by the previous results, the optimal stabilization parameter is assumed to be nearly mesh
independent. This allows for a brute-force search for the optimal, practical stabilization parameter utilizing the coarsest
grid (cf Section 3.2). For validation of the optimization strategy, the performance of the splitting scheme is measured in
the range [Lmin,Lphys] suggested by Theorem 1; for the finest mesh, we restrict the validation only to a neighborhood of
the optimized stabilization parameter. The performance measured in terms of the number of iterations is presented in
Figure 9. A large contrast in the performance can be observed for different stabilization parameters, emphasizing the
need for a suitable stabilization parameter. Finally, as before, we observe that, indeed, the optimal, practical stabilization
parameter is only slightly mesh dependent; it is close to the physical bulk modulus Kdr = 2𝜇

d +𝜆. All in all, the brute-force
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FIGURE 8 Three-dimensional footing problem: solution with a deformed configuration magnified by a factor of 2 at the final time T = 1.
Notice that the figure only displays half of the domain but that the other half is symmetric. A, Pressure; B, Displacement(|uh|)

FIGURE 9 Three-dimensional footing problem: average number of iterations
per time step for different stabilization parameters, L = 𝛼2

 , using parameters from
Table 2. The largest value of corresponds to Lmin, whereas the smallest value of
 corresponds to Lphys

search strategy from Section 3.2 has, again, been confirmed to be a suitable method to obtain a satisfactory stabilization
parameter for finer meshes.

5 CONCLUSIONS

In this work, we have considered the quasi-static, linear Biot model for poroelasticity and studied theoretically and
numerically the convergence of the fixed-stress splitting scheme. An improved convergence result has been proved, indi-
cating the nontrivial dependence of the optimal stabilization parameters on not only mechanical properties but also fluid
flow properties and discretization properties. We observe numerically that the fixed-stress splitting scheme is close to
being mesh independent and determine a novel domain in which the optimal stabilization/tuning parameter is found,
ie, [ 𝛼2

4𝜇+2𝜆 ,
𝛼2

2𝜇
d +𝜆

). On the basis of these observations, we propose a brute-force method with low cost for choosing the opti-
mal stabilization parameter, ie, the parameter that corresponds to the smallest amount of fixed-stress iterations. Through
numerical experiments, we have showed that this optimization method results in a much faster fixed-stress splitting
scheme than those obtained by choosing the classical stabilization parameters L = 𝛼2

Kdr
and L = 𝛼2

2Kdr
.
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Abstract

There is currently an increasing interest in developing efficient solvers for variational phase-field models of brittle fracture.
The governing equations for this problem originate from a constrained minimization of a non-convex energy functional, and
the most commonly used solver is a staggered solution scheme. This is known to be robust compared to the monolithic Newton
method, however, the staggered scheme often requires many iterations to converge when cracks are evolving. The focus of our
work is to accelerate the solver through a scheme that sequentially applies Anderson acceleration and over-relaxation, switching
back and forth depending on the residual evolution, and thereby ensuring a decreasing tendency. The resulting scheme takes
advantage of the complementary strengths of Anderson acceleration and over-relaxation to make a robust and accelerating
method for this problem. The new method is applied as a post-processing technique to the increments of the solver. Hence,
the implementation merely requires minor modifications to already available software. Moreover, the cost of the acceleration
scheme is negligible. The robustness and efficiency of the method are demonstrated through numerical examples.
c⃝ 2021TheAuthor(s). Published byElsevierB.V. This is an open access article under theCCBY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Variational brittle fracture; Phase-field modeling; Staggered scheme; Anderson acceleration; Relaxation; Nonlinear solver

1. Introduction

Mathematical modeling of brittle fracture propagation is an important and challenging topic in engineering
sciences. The main difficulty arises in the transition between the distinct material properties in the fracture and
the bulk domain. In this paper, we consider a variational phase-field model, as introduced by Bourdin, Francfort,
and Marigo [1,2]. A smooth indicator that marks the broken and unbroken parts of the material regularizes the sharp
crack topology. This enables modeling of fractures without conforming meshes or path-tracking algorithms (as in
XFEM [3]). However, fine meshes are needed to resolve the regularized region between the fracture and the bulk
domain.

The system is modeled by minimizing its energy as a function of material displacement and the indicator function
under a non-healing constraint. This leads to a system of coupled, nonlinear equations which is challenging to

∗ Corresponding author.
E-mail address: erlend.storvik@uib.no (E. Storvik).
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0045-7825/ c⃝ 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).
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solve. The most common technique, due to its robust nature, is a staggered scheme. This method decouples the
system and sequentially updates the displacement and indicator variable by solving their respective subproblems.
However, the convergence properties are at times very bad, and iterating to satisfactory precision can result in
large numbers of iterations [4,5]. The monolithic Newton method, on the other hand, does not show the same
numerical robustness. Therefore, several attempts have been made to find a method that is both fast and robust.
A monolithic, modified Newton method was proposed in [6], a monolithic quasi-Newton method of Broyden–
Fletcher–Goldfarb–Shanno type was applied in [7] and [8], a monolithic line-search Newton method (dependent on
the system energy) was applied in [4], and the truncated nonsmooth Newton multigrid method was proposed in [9].
In [10], the L-scheme [11,12] was applied in the context of an augmented Lagrangian solver, and a combination of
an over-relaxed staggered scheme and the monolithic Newton method was applied in [5].

In this paper, we propose a novel strategy to accelerate the classical staggered solution scheme solely utilizing two
techniques for post-processing increments: Anderson acceleration and over-relaxation. In addition to accelerating
the staggered scheme without sacrificing robustness, the new method allows the use of already available staggered
scheme solvers with minor modifications to the implementation.

Anderson acceleration was first developed in [13] for integral equations. Since then, it has seen many applications,
including electronic structure computations [14] and flow in deformable porous media [15]. It is a multi-secant,
quasi-Newton method that has been related to a preconditioned GMRES [16]. Moreover, the method post-processes
the increments of the solver by approximating the inverse of the Jacobian of the system by reusing previous
iterations. It can, therefore, easily be applied in combination with splitting techniques such as the staggered scheme
while maintaining the decoupled nature of the scheme.

In [17], the authors show theoretically that the Anderson acceleration improves the convergence rate of linearly
convergent schemes, which is the case of the staggered scheme. However, as proved in [18], the convergence is
only local. In the case of phase-field modeling of brittle fracture, this is a challenge; when fractures are initiated
or propagating, the system state usually jumps drastically between consecutive loading steps. Therefore, a “naive”
application of Anderson acceleration is not suitable for this application, as will be demonstrated in the numerical
examples of this work. Recently, there has been an increasing interest in modified Anderson acceleration methods
to overcome issues of local convergence. In [19] a safeguard, based on the residual norm of the problem, is applied
to restart Anderson acceleration, and in [20] a periodically restarted Anderson acceleration is applied within a
Richardson fixed-point iteration to accelerate the convergence of iterative solvers for large sparse linear systems.

Relaxation was applied to the staggered scheme on a phase-field model of brittle fracture in [5]. It is a post-
processing method that updates each iterate by relaxing (scaling) its increment. For the purpose of this work,
over-relaxation (a scaling larger than one) is of particular interest. This is because the staggered scheme steadily
moves towards the final configuration of each loading step, and over-relaxation might move the iterates further
during each iteration, potentially accelerating the convergence. For the particular loading steps in which fractures
are propagating, the gain can be quite substantial. There is, however, a drawback with over-relaxation: Near the
solution of each loading step one might end up over- and undershooting the solution sequentially leading to poor
performance.

The most important observation of this paper is the complementary strengths of these two acceleration techniques;
Anderson acceleration accelerates close to the solution, while over-relaxation accelerates during loading steps with
large jumps in the solution (e.g., during crack propagation). We propose an acceleration algorithm that switches
between Anderson acceleration and over-relaxation during each loading-step ensuring convergence at an accelerated
rate. This scheme is related to the one in [5] where the authors switch between over-relaxation and monolithic
Newton. However, for the new acceleration scheme, proposed in this paper, both of the combined acceleration
methods function as post-processes to the increments of the standard staggered scheme. In other words, the
new acceleration method can be implemented with minor modifications to already available software. Moreover,
switching between the two acceleration techniques does not change the sparsity of the underlying linear systems.
The switch criterion is based on the history of the residual norms of the staggered solution steps.

To summarize, the main contributions in this paper are:

• Presentation of the difficulties encountered with the application of plain Anderson acceleration and over-
relaxation applied to the staggered solution scheme for variational phase-field modeling of brittle fracture.
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• A new acceleration algorithm that exploits the complementary strengths of Anderson acceleration and
over-relaxation, utilizing residual norm evolution as a rule for switching between the methods.

• The performance of the proposed acceleration scheme is demonstrated through thorough numerical examples
including classical benchmark problems.

The paper is structured as follows: The mathematical model and numerical discretization are presented in
Section 2. Here, we introduce the energy functional which is subject to minimization together with the discretization.
In Section 3, the staggered scheme and the acceleration techniques are presented. Both Anderson acceleration and
relaxation are described before the combined acceleration scheme is presented together with the inexact Newton
modification. Section 4 contains the numerical study of the accelerations applied to the staggered scheme. We test
the staggered scheme both with and without the combinations of Anderson acceleration and relaxation. Moreover,
the optimal depth of Anderson acceleration and the choice of relaxation parameter is discussed. Finally, some
concluding remarks are made in Section 5.

2. Mathematical problem

In this section, the mathematical problem that is considered throughout the paper is presented. An elastic medium,
represented by the domain Ω ⊂ ℝd with d = 2 (or 3), is subject to loading through traction forces, t , along ΓN
and displacement, uD , along ΓD to the extent that it might break. Here, ΓN ∪ΓD = ∂Ω are subsets of the boundary
of the domain, Ω , and ΓD has nonzero measure. The state of the material is modeled by Griffith’s criterion [21],
with constant Gc, and a smooth indicator function (the phase-field variable) ϕ : Ω → [0, 1] describes the state of
the damage to the material. The phase-field is defined to take the value 0 whenever the material is unbroken, and
1 when the material is broken, and a model parameter ℓ determines the width of the regularized zone where the
phase-field transitions from 0 to 1.

2.1. The energy of the system

Following the work of [1,22], we can express the total energy of the system as a sum of the medium’s elastic
energy, the surface energy dissipation associated with the broken parts of the material and external work related to
traction. Now, let u : Ω → ℝd denote the material displacement and define the total energy functional as

E(u, ϕ) :=
∫
Ω

Ec(ϕ)+ Em(u, ϕ) dx−
∫
ΓN

t · u ds (1)

where

Ec(ϕ) :=
Gc

2

(
ϕ2

ℓ
+ ℓ∇ϕ · ∇ϕ

)
, (2)

and

Em(u, ϕ) := g(ϕ)Ψ+(ε)+Ψ−(ε)− b · u. (3)

Here, we have applied the degradation function

g(ϕ) := (1− κ)(1− ϕ)2 + κ,

where κ is a “small” constant. Other choices have been proposed in [23]. Moreover, the material is assumed to be
homogeneous and isotropic, and the elastic strain energy functional

Ψ (ε) :=
1
2
ε :ℂ :ε = µ(ε :ε)+

λtr (ε)2

2
, (4)

where ε =
∇u+∇u⊤

2 is the linearized elastic strain tensor and µ and λ are the Lamé parameters, has been decomposed
into “tensile”, Ψ+, and “compressive”, Ψ−, parts. The additive spectral decomposition

Ψ± (ε) := µ(ε± :ε±)+
λ⟨tr (ε)⟩2

±

2
,

proposed in [24] has been employed. Here, ⟨a⟩± :=
1
2 (a± |a|) and ε± :=

∑
i ⟨εi ⟩±ni ⊗ ni where {εi }i and {ni }i are

the principal strains and principal strain directions, respectively. Additionally, the material is unable to heal, and
the constraint ∂tϕ ≥ 0 is applied accordingly.

3
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2.2. Time discretized, continuous-in-space equations

The loading procedure is discretized by the implicit Euler scheme, giving the non-healing constraint at loading
step n ≥ 1:

ϕn(x)− ϕn−1(x) ≥ 0 ∀x ∈ Ω . (5)

Now, we define the displacement solution space V n
=

{
v ∈

(
H 1(Ω )

)d ⏐⏐ v|ΓD = un
D

}
, the displacement test space

V 0
=

{
v ∈

(
H 1(Ω )

)d ⏐⏐ v|ΓD = 0
}
, and the phase-field solution and test space Q = H 1(Ω ). Then, the solution

(un, ϕn) ∈ V n
× Q at loading step n ≥ 1 is given by

(un, ϕn) := argmin
u,ϕ

{
E(u, ϕ, tn) | u ∈ V n, ϕ ∈ Q

}
. (6)

Letting ⟨·, ·⟩X denote the usual L2 inner product over the domain X and denoting

σ±(u) :=
∂Ψ± (ε(u))

∂ε(u)
,

we find the variation of the energy (1) with respect to u and ϕ respectively:

Eδu(u, ϕ, v) =
⟨(
g(ϕ)σ+(u)+ σ−(u)

)
, ε(v)

⟩
Ω
− ⟨b, v⟩Ω − ⟨t, v⟩ΓN (7)

Eδϕ(u, ϕ, q) =
⟨
g′(ϕ)Ψ+(ε), q

⟩
Ω
+

Gc

ℓ

(
⟨ϕ, q⟩Ω + ℓ2 ⟨∇ϕ,∇q⟩Ω

)
. (8)

It is now easy to see that the solution to (6), (un, ϕn), satisfies the system of equations

Eδu(un, ϕn, v) = 0 (9)
Eδϕ(un, ϕn, q) = 0 (10)

for all v ∈ V 0 and q ∈ Q.
The inequality (5) still requires some special treatment, and in this paper, we follow the approach of [24], where

non-healing for the phase-field is enforced by never allowing Ψ+ (ε) to decrease in Eq. (10). To achieve this, we
introduce a history variable;

Hn
:= max

k≤n
Ψ+

(
ε
(
uk)) , (11)

and define a modified version of the variation with respect to ϕ by

Ẽδϕ(un, ϕn, q) =
⟨
g′(ϕn)Hn, q

⟩
Ω
+

Gc

ℓ

(⟨
ϕn, q

⟩
Ω
+ ℓ2

⟨
∇ϕn,∇q

⟩
Ω

)
. (12)

The solution at loading step n will be defined as the pair (un, ϕn) ∈ V n
× Q that satisfies

Eδu(un, ϕn, v) = 0 (13)
Ẽδϕ(un, ϕn, q) = 0 (14)

for all v ∈ V 0 and q ∈ Q. Other methods such as penalization [25] and the augmented Lagrangian method [26]
have also been applied in this context. It is worth noting that the use of a global constraint such as (5) to impose
irreversibility of diffuse fractures has been called into question previously, on the grounds that it may not lead to the
correct profile of the phase-field for a fully evolved crack [27]. Within the context of a history variable approach,
this issue can be addressed by updating H only when the phase-field exceeds a certain threshold as done in [23,28]
to enforce a localized constraint. In the current work, we have chosen to implement (11) as written in order to
facilitate a clearer comparison with other solution schemes that utilize a history variable approach according to the
definition given in [24].

2.3. Spatial discretization

To solve (13)–(14) we apply conforming linear finite elements [2,4,5,23], both for the phase-field variable and
the displacement. Let T h

Ω = {Tk}k be a decomposition of the domain Ω into simplices, Tk , and define, at loading

4
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step n ≥ 1, the spaces

V n
h =

{
vh ∈ (H 1(Ω ))d

⏐⏐ vh |Tk ∈ (P1(Tk))d ∀ Tk ∈ TΩ , vh |ΓD = un
D

}
,

Qh =
{
qh ∈ H 1(Ω )

⏐⏐ qh |Tk ∈ P1(Tk) ∀ Tk ∈ TΩ
}
,

and V 0
h accordingly with zero trace. The system of equations to be solved is then: Find (un

h, ϕ
n
h ) ∈ V n

h × Qh such
that

Eδu(un
h, ϕ

n
h , vh) = 0 (15)

Ẽδϕ(un
h, ϕ

n
h , qh) = 0 (16)

for all vh ∈ V 0
h and qh ∈ Qh . We emphasize that this problem is challenging not just due to the coupling between

the equation for mechanics and the evolution of the phase-field, but in particular due to the non-linearities associated
with this coupling through the terms g(ϕn)Hn , g(ϕn)σ+(un), and σ−(un).

Following standard procedures, the system (15)–(16) naturally translates to the algebraic residual equations

Resu
(
un
h, ϕ

n
h

)
= 0 (17)

Resϕ
(
un
h, ϕ

n
h

)
= 0, (18)

where Resu and Resϕ denote the algebraic residuals corresponding to (15) and (16), respectively.

3. Staggered scheme and acceleration

The discrete governing Eqs. (15)–(16) are strongly nonlinear and coupled. In this paper, we apply the staggered
scheme [5,29,23] to solve them, decoupling the equations. We let i ≥ 1 be the iteration index and define the
staggered scheme as: Given ϕ

n,i−1
h ∈ Qh , find (un,i

h , ϕ
n,i
h ) ∈ V n

h × Qh such that

Eδu(un,i
h , ϕ

n,i−1
h , vh) = 0 (19)

Ẽδϕ(un,i
h , ϕ

n,i
h , qh) = 0 (20)

for all (vh, qh) ∈ V 0
h × Qh and ϕ

n,0
h := ϕn−1

h . The iterations are terminated when either the absolute (21)–(22) or
the relative (23)–(24) stopping criteria are reached:Resu (un,i

h , ϕ
n,i
h

)
2
≤ TolRes,Abs, (21)un,i

h − un,i−1
h


L2(Ω)

+

ϕn,i
h − ϕ

n,i−1
h


L2(Ω)

≤ TolInc,Abs, (22)Resu (un,i
h , ϕ

n,i
h

)
2Resu (un,1

h , ϕ
n,0
h

)
2

≤ TolRes,Rel, (23)

un,i
h − un,i−1

h


L2(Ω)un,1

h


L2(Ω)

+

ϕn,i
h − ϕ

n,i−1
h


L2(Ω)ϕn,0

h


L2(Ω)

≤ TolInc,Rel, (24)

for given tolerances TolRes,Abs, TolRes,Rel, TolInc,Abs and TolInc,Rel. Notice that controlling the residuals corresponding
to the phase-field equation (20) is redundant due to it being solved second in the staggered scheme by an exact
linear solver.

To solve the nonlinear equation (19) we apply the Newton method with the relative stopping criterionResu (un,i, j
h , ϕ

n,i−1
h

)
2Resu (un,1

h , ϕ
n,0
h

)
2

≤ Tolinner. (25)

Here, j ≥ 1 is the iteration index for the Newton method and the initial guess is chosen as the previous staggered
iteration un,i,0

h := un,i−1
h .

The staggered scheme (19)–(20) is closely related to the alternate minimization method (it differs in the
application of the history variable (11)) and is known to be a robust solution method [30]. However, it might require
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a large number of iterations to reach satisfactory tolerances [4,8,5]. We aim to accelerate this slow convergence and
propose a combination of Anderson acceleration and over-relaxation. We note that the staggered solution scheme
can be written as the fixed-point iteration

xn,i
h := S(xn,i−1

h ) = xn,i−1
h +∆S(xn,i−1

h ) (26)

where S is the staggered solution scheme operator, ∆S is the increment of the staggered scheme and xn,i
h is the

vector
(
un,i
h

ϕ
n,i
h

)
.

Now, we present both the Anderson acceleration and the relaxed staggered scheme and describe their strengths
and weaknesses. Then, taking advantage of the strengths of both schemes, a combined scheme is presented.

3.1. Anderson acceleration

Anderson acceleration is a multi-secant method that mimics the monolithic Newton method. The acceleration acts
as a post-processing procedure that updates the current iterate by a linear combination of the m previous iterates,
according to their respective increments. The value of m is free to be chosen and is known as the depth of the
acceleration. At loading step n, the Anderson accelerated staggered scheme of depth m reads:

Algorithm 1: Anderson acceleration

1 Given x0;
2 for i = 1, 2, . . . until convergence do
3 Set depth mi = min{m, i − 1};

4 Define Fi
:=

[
∆S

(
xn,i−mi−1
h

)
, . . . ,∆S

(
xn,i−1
h

)]
;

5 Let αi
=

[
αi
0, . . . , α

i
mi

]⊤
∈ ℝmi+1 be the minimizer of

Fiαi

2 subject to

∑
k αi

k = 1;

6 Define the accelerated iterate xih :=
∑mi

k=0 αkS
(
xn,k+i−mi−1
h

)
Algorithm 1 is independent of the underlying fixed-point iteration, but is presented for the application to the

staggered scheme here. An important feature of Anderson acceleration is that it preserves the decoupled nature of
the staggered scheme, hence, the subproblem solvers are unaffected by it.

It is demonstrated in the numerical section that Anderson acceleration improves the convergence when close
to the solution. However, the acceleration might deteriorate otherwise. In particular, we have observed that this
happens for brutal crack propagation, where the method sometimes fails to converge at all. Therefore, we do
not expect a staggered scheme that is merely enhanced by the Anderson acceleration to be a good choice. On
the other hand, we provide a remedy to this in Section 3.3, where Anderson acceleration is combined with
over-relaxation.

3.2. Over-relaxation

Relaxation applied to each subproblem of the staggered solution scheme was described and applied in [5]. The
method first calculates the increment ∆un,i−1

h obtained by solving Eq. (19), before defining the updated iterate
as

un,i
h := un,i−1

h + ω∆un,i−1
h ,

where ω ∈ (0, 2) is a parameter. This new iterate un,i
h is now passed on to Eq. (20) and the same procedure is

executed for the phase-field resulting in the updated iterate ϕ
n,i
h . Following standard literature on iterative methods,

we refer to the choice ω ∈ (1, 2) as over-relaxation and ω ∈ (0, 1) as under-relaxation. At the nth loading step the
relaxed staggered scheme reads:

6
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Fig. 1. Asymmetrical bending test: Relative residual evolution (see Eq. (23)) over the simulation. See Section 4.3 for an explanation of
the test case. Similar behavior is experienced for all proposed test cases.

Algorithm 2: Relaxed staggered scheme

1 Given ϕ
n,0
h and ω ∈ (0, 2);

2 for i = 1, 2, . . . until convergence do
3 Find ûn,i

h ∈ V n
h satisfying Eδu(ûn,i

h , ϕ
n,i−1
h , vh) = 0, ∀vh ∈ V 0

h ;
4 Define ∆un,i−1

h := ûn,i
h − un,i−1

h ;
5 Update the iterate un,i

h := un,i−1
h + ω∆un,i−1

h ;
6 Find ϕ̂

n,i
h ∈ Qh satisfying Ẽδϕ(un,i

h , ϕ̂
n,i
h , qh) = 0, ∀qh ∈ Qh ;

7 Define ∆ϕ
n,i−1
h := ϕ̂

n,i
h − ϕ

n,i−1
h ;

8 Update the iterate ϕ
n,i
h := ϕ

n,i−1
h + ω∆ϕ

n,i−1
h ;

Under-relaxation is robust when applied to the staggered scheme, however, it usually slows down the scheme.
Over-relaxation, on the other hand, tends to accelerate the loading steps of the staggered solution scheme where
cracks occur, while it might slow down the process for quasi-static loading steps.

3.3. Robust and efficient solution by combining Anderson acceleration and over-relaxation

As neither Anderson acceleration nor over-relaxation should be applied naively to the staggered scheme (19)–
(20), due to their mentioned weaknesses, we propose a combined robust acceleration scheme. The key observations
that motivate such a method are:

• Anderson acceleration is locally accelerating, while over-relaxation might struggle close to the solution.
• Anderson acceleration is applied as a post-processing algorithm to the increments of the staggered scheme.
Hence, switching between relaxation and Anderson acceleration merely requires minor modifications to the
implementation.

• During crack propagation the residuals for the staggered scheme show a stagnating, oscillatory behavior, and
during quasi-static steps they are strictly decreasing, see [4] and Fig. 1. Therefore, it is possible to use residual
evolution as a rule for switching between the acceleration techniques.

7
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A new parameter Nω→AA ∈ ℕ, related to the switch from relaxation to Anderson acceleration is defined, and at
loading step n the combined accelerated staggered scheme reads:

1. Apply Anderson acceleration of given depth m.
2. While the norms of the residuals are strictly decreasing, continue with Anderson acceleration until conver-

gence.
3. If the norms of the residuals are not strictly decreasing, switch to relaxation with given parameter ω.
4. When the norms of the Nω→AA previous residuals are strictly decreasing go back to 1, and restart1 Anderson

acceleration.

Below, we give a pseudo-code for the new combined acceleration method. Define the residual norm Resi :=Resu (un,i
h , ϕ

n,i
h

)
2
as in (21), and notice that the application of Anderson acceleration and relaxation in the

pseudo-code denotes the i th step of the accelerations (see Algorithms 1 and 2).
Algorithm 3: Combined algorithm

1 Given depth m, relaxation ω, initial guess ϕ
n,0
h , and switch Nω→AA;

2 relaxing := False;
3 for i = 1, 2, . . . until convergence do
4 if not(relaxing) then
5 if i = 1 or Resi ≤ Resi−1 then
6 apply Anderson accelerated staggered scheme, giving (un,i

h , ϕ
n,i
h );

7 else
8 apply relaxed staggered scheme, giving (un,i

h , ϕ
n,i
h );

9 relaxing := True;

10 else
11 if not(Resi ≤ Resi−1 ≤ · · · ≤ Resi−Nω→AA−1) then
12 apply relaxed staggered scheme, giving (un,i

h , ϕ
n,i
h );

13 else
14 restart1 and apply Anderson accelerated staggered scheme, giving (un,i

h , ϕ
n,i
h );

15 relaxing := False;

4. Numerical examples

This section explores the effects of the proposed acceleration methods from Section 3 applied to the staggered
scheme (19)–(20). Both Anderson acceleration (see Fig. 16(b)) and over-relaxation (see Fig. 11(b)) alone are shown
to be infeasible acceleration methods when plainly applied to the staggered scheme, while the combined scheme is
superior to the unaccelerated scheme for all tests. We consider four different test cases which are widely used for
numerical studies in the literature:

• A domain with a single notch subject to

– tensile load;
– shear load.

• An L-shaped domain subject to monotonic loading.
• Bending of an asymmetrically notched beam with holes.

All the numerical examples have been implemented using modules from the DUNE project [31], specifically
dune-functions [32,33].

1 Restart means that Anderson acceleration should be applied as it is in the first iteration, i.e., using no information of previous increments
and iterates.
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Fig. 2. Domain, boundary conditions, and mesh for the single-edge notch test cases.

The mesh for all numerical examples has been locally refined close to where the crack is expected to propagate.
Choosing uniform fine meshes is naturally another option, and there are several algorithms for adaptive mesh
refinement for these types of problems in the literature, see e.g., [34,35].

4.1. Single notch test

Two of the most commonly found test cases in the literature are both based on the same single notch
geometry [36,37]. They consist of a square domain with a pre-existing crack that penetrates half the domain, see
Fig. 2. The domain is held still at the bottom, and a displacement driven load is applied at the top boundary.

4.1.1. Single notch tensile test case
A tensile load is applied on the top boundary, and at loading step n we have

un
|
ΓTop

=

(
0
ūn

)
,

where the load size ū is given in Table 1 and Γ Top is the top part of the boundary in Fig. 2(a). Due to the load
being strictly tensile, there is no need to split the elastic strain energy functional (4) into tensile and compressive
parts, which would effectively add nonlinearities to the system. Therefore, the first term in (7) is replaced by
⟨g(ϕ)σ (u), ε(v)⟩, for

σ (u) :=
∂ψ(ε(u))

∂ε(u)
. (27)

Material parameter values are chosen as in e.g., [36], and can be found in Table 1. We employ a triangular mesh,
which has been locally refined in the region where the crack is expected to propagate, see Fig. 2(a).
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Fig. 3. Solution for ϕ for the single notch tensile test case.

In this test case, the crack fully propagates in one single critical loading step, see Fig. 3, in which the crack
gradually expands through the domain with increasing staggered iteration count (not displayed here). Fig. 4(b)
shows that, as expected, the staggered scheme under Anderson acceleration alone struggles as a consequence of
its local convergence. Aside of mitigating the issue and only applying Anderson acceleration in suitable situations,
the combined scheme, in addition, takes advantage of over-relaxation and its ability to move further each iteration
and accelerates this particular loading step significantly. For the remaining loading steps, the combined scheme
accelerates by Anderson acceleration, as its local convergence is sufficient. The total number of iterations (Fig. 5)
for the combined scheme is, therefore, smaller than those of the unaccelerated staggered scheme and the Anderson
accelerated staggered scheme. The figure shows that the combined scheme accelerates by more than 50% for large
relaxation parameters. We also observe that the depth of Anderson acceleration is not influential as long as it is larger
than one. Moreover, there is a trend that more aggressive over-relaxation (higher ω) results in faster computations.
Additionally, the combined acceleration scheme is robust with respect to the tuning parameters, m and ω, and
exhibits convergence for all tested combinations.

The traction vector is defined by

τ = (τx , τy) =
∫
ΓTop

σ · ν dS, (28)

where ν is the outward pointing normal vector, and σ is defined in (27). For this problem, the load in the direction of
interest is τy , and we observe in Fig. 4(a) that the load–displacement curves remain unchanged after the combined
acceleration. This is an important observation that demonstrates that the acceleration method only affects the
convergence properties of the solver, not the quality of the solution. The Anderson accelerated staggered scheme,
however, does not converge in the maximal prescribed iterations for each loading step and we observe that its
load–displacement curve is affected.

Remark 1. Notice that the plots of the number of iterations for depth m = 0 in Figs. 5, 8, 12 and 17 are not
corresponding to plain relaxation. Here, relaxation is switched on and off depending on residual evolution, turning
it into a safeguarded relaxation. The same goes for the plots of plain Anderson acceleration with over-relaxation
parameter ω = 1. These correspond to safeguarded Anderson accelerations, similar to those that are proposed
in [19].
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Fig. 4. Single notch tensile test: Load curves and number of iterations per loading step. “AA” is an abbreviation of Anderson acceleration,
and “CS” is the combined acceleration scheme. “Plain AA” means that Anderson acceleration is applied without any form of safeguard or
combination with relaxation.

Fig. 5. Single notch tensile test: Total number of iterations for the combined scheme with different relaxation parameters and Anderson
acceleration depths. “NoAcc” is the unaccelerated staggered scheme.

Table 1
Parameter values for the single notch test cases.

Parameter Symbol Value – Tensile Value – Shear

Lamé’s 1. parameter λ 121.15 kN/mm2 121.15 kN/mm2

Lamé’s 2. parameter µ 80.77 kN/mm2 80.77 kN/mm2

Regularization width ℓ 0.0075 mm 0.0075 mm
Griffith’s constant Gc 2.7 N/mm 2.7 N/mm
Energy regularization κ 10−10 10−10

Tot. # loading steps N 50 150
Load size ū 2 · 10−4 mm 10−4 mm
Fine mesh size h 0.001 mm 0.00375 mm
Min. relax. steps Nω→AA 5 5
Abs. tol. TolRes/Inc,Abs 10−8 10−8

Rel. residual tol. TolRes,Rel 5 · 10−3 5 · 10−3

Rel. increment tol. TolInc,Rel 10−2 10−2

Max. iter. pr. load. step Maxiter 1000 1000
Inner Newton tol. TolInner 10−4 10−4
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Fig. 6. Solution for ϕ for the single notch shear test case.

4.1.2. Single notch shear case
In this test case, a shear load is applied on the top boundary of a unit square domain with a prescribed crack

that halfway penetrates the domain. The displacement boundary condition

un
|
ΓTop

=

(
ūn
0

)
is applied at loading step n. The load size ū is presented in Table 1, and the top part of the boundary Γ Top is
displayed together with more details on the domain and boundary conditions in Fig. 2(b). The material properties
are taken from [36] and displayed in Table 1. A triangular mesh, which is refined according to where the crack is
expected to propagate, has been employed, see Fig. 2(b).

Contrary to the tensile test case, the crack propagation happens gradually over the course of many loading steps,
see Fig. 6. Therefore, solutions at subsequent loading steps do not differ as significantly as for the brutal crack
growth in the tensile test case. We expect that the Anderson acceleration is a more suitable choice for accelerating
the staggered scheme. Indeed, Fig. 7(b) shows that even with the plain Anderson acceleration the staggered scheme is
quite significantly accelerated. Moreover, the combined scheme is even better, and we see that it reaches convergence
in every single loading step.

In the load–displacement curves, Fig. 7(a), the load τx as defined in (28) is displayed for each loading step. The
plot shows minor differences towards the end of the displacement. This is due to the scheme not converging in its
given maximal iterations per loading step (see Table 1) for both the unaccelerated staggered scheme and the plain
Anderson accelerated scheme in all the loading steps. This is similar to the tensile case where the load–displacement
curves, Fig. 4(a), also are affected.

In Fig. 8, we see the total iteration count for several acceleration depths in combination with over-relaxation. It
can be observed that the staggered scheme is accelerated significantly for all combinations of Anderson acceleration
and over-relaxation as long as the depth is greater than one. In fact, we have more than 80% reduction in the total
number of iterations when choosing a high relaxation parameter. Moreover, for this test case the plain Anderson
acceleration is in itself a suitable alternative to the unaccelerated staggered scheme. Notice the difference between
plain Anderson acceleration and Anderson acceleration combined with over-relaxation of depth one described
in Remark 1. Additionally, the total time in seconds to complete the simulations is plotted in Fig. 9, in a similar
fashion as for the total number of iterations. We observe that the trend of what we save in computational time is
equal to that of the total iteration count. This does, indeed, hold true for all of the test cases.

4.2. L-shaped domain subject to loading

An L-shaped domain with a displacement boundary condition applied on the right part of the boundary is
considered, see Fig. 10(a) for details. The displacement is uniformly increased on the boundary segment over 800
loading steps. As a result, a crack occurs in the inner corner, propagating into the domain, see Fig. 10(b). A uniform
quadrilateral mesh with a mesh diameter of 125

32 mm is employed. See Table 2 for material and computational
parameters.

Here, the crack propagation has a character somewhere between the single notch tensile test and the single notch
shear test. Crack initiation shows similar behavior as brutal crack propagation, but not as extreme as for the single
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Fig. 7. Single notch shear test: Load curves and number of iterations per loading step. “AA” is an abbreviation of Anderson acceleration,
and “CS” is the combined acceleration scheme. “Plain AA” means that Anderson acceleration is applied without any form of safeguard or
combination with relaxation.

Fig. 8. Single notch shear test: Total number of iterations for different relaxation parameters and Anderson acceleration depths. “NoAcc”
is the unaccelerated staggered scheme, and “Plain AA” is Anderson acceleration without the combination with relaxation.

Fig. 9. Single notch shear test: Total time in seconds for different relaxation parameters and Anderson acceleration depths. “NoAcc” is
the unaccelerated staggered scheme.

notch tensile test. A large peak in the number of iterations is experienced when the crack initiates, see Fig. 11(a).
We observe that both the combined scheme and plain Anderson acceleration with depth m = 1 accelerate for all
loading steps. Moreover, the only difference between the combined acceleration and Anderson acceleration is in
the large peak where the combined scheme outperforms Anderson acceleration. For the rest of the simulation, the
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Fig. 10. Domain with boundary conditions and solution for the L-shaped test.

staggered scheme converges in relatively few iterations, but the accelerated method converges faster in almost every
loading step.

Fig. 11(b) displays the total number of iterations for plain over-relaxation with several relaxation parameters.
A parabolic dependence on the relaxation parameter is observed, and choosing it to be too large results in more
than three times the number of iterations that are required by the unaccelerated staggered scheme. This is due to
over-relaxation struggling near the solution of the loading steps resulting in successive over- and undershooting of
the solution. Therefore, a plain application of over-relaxation is not recommended. The total number of iterations
required by the combined acceleration, however, is significantly smaller than those of the unaccelerated staggered
scheme (and the optimally over-relaxed scheme), as observed in Fig. 12. Although the reduction in the number
of iterations is not as good as for the single notch shear test case the combined scheme accelerates robustly with
respect to the tuning parameters. It is clear that any combination of Anderson acceleration and over-relaxation is
superior to the unaccelerated staggered scheme, accelerating by approximately 40%.

The load–displacement curve for this test case is displayed in Fig. 13(a). Here, the traction vector, see Eq. (28), is
calculated on the bottom boundary and the vertical component τy is considered. We observe that, as all acceleration
schemes converge within each loading step, the curves are completely overlapping.

4.3. Asymmetrical bending test

This test case considers a rectangular domain with three holes, slightly to the left, and a notch in the lower left
part of the domain. It is subject to symmetrical displacement loading on the top boundary,

un
|ΓTop =

(
0
ūn

)
. (29)

The beam is simply supported as shown in Fig. 14(a). See Fig. 14(a) or [38] for details on boundary conditions
and domain. Experimental results from [39] have shown that the crack path should hit the second hole, and we see
from the numerical solution, Fig. 15, that this also happens here. The mesh has been refined in the region where
the crack is expected to propagate, see Fig. 14(b). The problem parameters are chosen similarly to [10,36,37], and
are presented in Table 2.
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Fig. 11. L-shaped test: number of iterations per loading step and total iterations for several over-relaxation parameters.

Fig. 12. L-shaped test: Total number of iterations for different relaxation parameters and Anderson acceleration depths. “NoAcc” is the
unaccelerated staggered scheme.

Fig. 13. “CS” is the combined acceleration scheme. “Plain AA” means that Anderson acceleration is applied without any form of safeguard
or combination with relaxation.
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Table 2
Parameter values for the L-shaped and asymmetrical bending tests.

Parameter Symbol L-shaped Bend. test

Lamé’s 1. parameter λ 6.16 kN/mm2 8 kN/mm2

Lamé’s 2. parameter µ 10.95 kN/mm2 12 kN/mm2

Regularization width ℓ 10 mm 0.1 mm
Griffith’s constant Gc 9.5 · 10−5 kN/mm 10−3 kN/mm
Energy regularization κ 10−10 10−10

Load size ū 10−3 mm −10−2e−
(x−10)2

100 mm
Fine mesh size h 125

32 mm 0.05 mm
Min. relax. steps Nω→AA 5 5
Abs. tol. TolRes/Inc,Abs 10−8 10−8

Rel. residual tol. TolRes,Rel 5 · 10−3 5 · 10−3

Rel. increment tol. TolInc,Rel 10−2 10−2

Max. iter. pr. load. step Maxiter 1000 1000
Inner Newton tol. TolInner 10−4 10−4

Fig. 14. Domain with boundary conditions and mesh for the asymmetrical bending test case.

Here, we have two “critical” loading steps, in which the crack evolves and a large number of iterations is required,
see Fig. 16(a). For these loading steps, we see that the plain Anderson acceleration does not accelerate, while the
combined acceleration performs very well.

In Fig. 16(b) the total number of iterations for the plain Anderson acceleration is displayed for several depths.
We clearly observe that the staggered scheme is significantly decelerated for depths larger than one. In other words,
Anderson acceleration is not a robust method in itself for this problem. The combined scheme, on the other hand,
reduces the total number of iterations for all combinations of over-relaxation and Anderson acceleration, see Fig. 17.
There is, however, a tendency that larger relaxation parameters accelerate more, which is expected due to the brutal
nature of the crack propagation in loading step 12, see Fig. 15.

The traction vector (28) is here calculated on the top boundary and the component of interest is τy . In Fig. 13(b),
the load–displacement curves are displayed, and the displacement is calculated at the left corner of the top boundary.
They are, as expected, overlapping as there are no loading steps for any configurations in which the convergence
is not achieved in the given maximal amount of iterations.

5. Conclusion

The staggered solution scheme is, due to its robustness, a popular method for solving variational phase-field
models of brittle fracture. As it often requires a large number of iterations to converge we have proposed a
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Fig. 15. Solution for ϕ for the asymmetrical bending test case.

Fig. 16. Asymmetrical bending test: Number of iterations per loading step, and total number of iterations for several depths of Anderson
acceleration. “CS” is the combined acceleration scheme. “Plain AA” means that Anderson acceleration is applied without any form of
safeguard or combination with relaxation.

Fig. 17. Asymmetrical bending test: Total number of iterations for different relaxation parameters and Anderson acceleration depths.
“NoAcc” is the unaccelerated staggered scheme.

method to accelerate it that exploits the complementary advantages of Anderson acceleration and over-relaxation.
The acceleration method alternates between Anderson acceleration and over-relaxation according to a switch that
depends on the norms of the previous residuals of the scheme. For problems without brutal crack growth, Anderson
acceleration is quite efficient. It is, however, unstable for problems with brutal crack growth, and therefore, not a
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technique that can be applied without modifications. Over-relaxation, on the other hand, works well within regimes
of brutal crack propagation, but might struggle when the iterates get close to the solution within a single loading step.
The scheme shows robustness with respect to the tuning parameters, Anderson acceleration depth and relaxation
parameter, and converges for all combinations. Moreover, there is a tendency that choosing Anderson acceleration
depth larger than one is insignificant, and that over-relaxation with parameters of at least 1.6 are the best choices.
Therefore, we propose to apply the method with depth one and over-relaxation 1.6, although one might gain some
speed in tuning these parameters to specific problems, or choose them adaptively. The success of the proposed
combined scheme builds upon the following problem-specific phenomena:

• The observation that for fixed loading steps, fractures gradually propagate towards their final configuration
by the staggered scheme. This suggests a suitable application of over-relaxation where fractures are forced to
grow further each iteration.

• A characteristic residual history for the staggered scheme, motivated by experience from phase-field models
for brittle fracture, suggests the residual-based strategy for the switch between Anderson acceleration and
over-relaxation.

It is therefore expected that the success of the proposed scheme will be seen for other variational models for brittle
fracture propagation as well.
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a b s t r a c t

In this work, we propose a new model for flow through deformable porous media,
where the solid material has two phases with distinct material properties. The
two phases of the porous material evolve according to a generalized Ginzburg–
Landau energy functional, with additional impact from both elastic and fluid
effects, and the coupling between flow and deformation is governed by Biot’s
theory. This results in a three-way coupled system which can be seen as an
extension of the Cahn–Larché equations with the inclusion of a fluid flowing
through the medium. The model covers essential coupling terms for several relevant
applications, including solid tumor growth, biogrout, and wood growth simulation.
Moreover, we show that this coupled set of equations follow a generalized gradient
flow framework. This opens a toolbox of analysis and solvers which can be used
for further study of the model. Additionally, we provide a numerical example
showing the impact of the flow on the solid phase evolution in comparison to
the Cahn–Larché system.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this letter, we develop a general model with the ability to capture situations with flow through
a deformable porous medium, at Darcy scale, that changes character in terms of stiffness, permeability,
compressibility, and poroelastic coupling strength due to phase changes in the solid matrix. The phase
changes are governed by a generalized Ginzburg–Landau energy functional, and there are several applications
where this type of behavior exists. One example being solid tumor evolution, where it is argued that stress
effects resulting from tumor growth impact the tumor evolution itself [1] and that stress can inhibit tumor
growth [2]. Moreover, the elastic properties of the surrounding matrix and the interstitial fluid pressure
are elevated in most solid malignant tumors [3]. One can then consider the two-phase porous medium as
cancerous and healthy cells with the surrounding extracellular matrix, and the fluid as the interstitial fluid.

∗ Corresponding author.
E-mail address: erlend.storvik@uib.no (E. Storvik).
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0893-9659/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
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Additional applications of poroelastic media with solid phase changes range from biogrout to wood growth,
where sapwood transforms to heartwood.

The proposed system is an extension of the Cahn–Hilliard model and the quasi-static linear Biot
equations, where the Cahn–Hilliard contribution governs the solid phase changes in the system through a
smooth phase-field variable, and the Biot equations govern flow and elasticity. The Cahn–Hilliard equation
originates from the work of Cahn and Hilliard [4], where the interfacial free energy of a non-uniform
composition was introduced to model phase separation. Coupling the Cahn–Hilliard model with elasticity, is
often called the Cahn–Larché model due to its origination [5], and several applications have been considered
with this model in mind, including li-ion batteries [6], and tumor evolution [7,8]. In this work, we assume
small deformations and negligible inertial effects. Moreover, we include fluid to the system, which is assumed
to flow through the poroelastic medium with Biot-type coupling between flow and elasticity [9].

We show that the resulting model has a generalized gradient flow structure, i.e., a dissipative system
where the state of the system evolves with the negative gradient of its free energy. The extension to
generalized gradient flows allows for non-quadratic, and partially degenerate, dissipation potentials, and
there is currently an increasing interest in the mathematics of generalized gradient flows, both with respect
to modeling [10,11], abstract analysis [12–15] and numerical solution strategies [15,16]. It is long known that
the Cahn–Hilliard equation and single-phase flow through porous media can be written as standard gradient
flows, and it was showed in [15] that the Biot equations have a generalized gradient flow structure. Here, we
show that even though it is not obvious that the combination of two gradient flows retains the structure,
the Cahn–Hilliard–Biot model does, indicating the thermodynamical consistency of the model. This will be
a valuable toolbox for further study and development of mathematics for the model, both with respect to
well-posedness analysis and numerical solution strategies.

The letter is structured as follows: In Section 2, the Cahn–Hilliard–Biot model is presented. Conservation
laws for each of the three coupled processes; phase-field evolution, elasticity, and fluid flow are introduced,
then the free energy of the system is proposed together with constitutive relations to close the system. In
Section 3, the system is showed to be a generalized gradient flow, and in Section 4, a numerical example
compares the newly proposed model with the Cahn–Larché system.

2. The derivation of the Cahn–Hilliard–Biot model

We consider a saturated porous medium with one fluid phase, and two solid phases with distinct material
properties. The solid phases are modeled by a diffuse interface approach of Cahn–Hilliard type, where surface
tension, deformation of the solid material, and pore pressure are acting as driving forces.

Let the medium Ω ⊂ Rd be a bounded domain, d the spatial dimension, and [0, T ] be a time interval
where T denotes the final time. In the matrix, the smooth phase-field, φ :Ω × [0, T ] → [−1, 1], tracks the
two phases φ = −1 and φ = 1. We consider linearized elasticity with infinitesimal displacement u, and
∥∇u∥ ≪ 1, the pore pressure is denoted by p, and q is the fluid flux.

2.1. Balance laws

Balance laws are imposed for each of the three coupled systems. For the phase-field equation, we assume
that the phase change is balanced by a phase-field flux J and reactions R,

∂tφ + ∇ · J = R, (1)

where the form of the reaction term differs depending on the application. In [7], a suitable reaction term is
given in the context of tumor simulation with elastic effects. The elastic behavior of the material is governed
by a quasi-static force balance equation where σ denotes the stress tensor and f external body forces

− ∇ · σ = f . (2)
2
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Finally, the fluid is assumed to follow a volume balance law with negligible density gradients,

∂tθ + ∇ · q = Sf , (3)

where θ is the volumetric fluid content which changes due to the fluid flux q and source Sf . Notice that,
as we are considering a saturated porous medium of a single fluid phase, the volumetric fluid content is
proportional to the porosity of the medium which might change depending on the solid phase.

2.2. Free energy

The system is then closed through its free energy together with appropriate constitutive relations. We
assume that the energy can be decomposed into three parts; the regularized interface energy, containing
chemical energy and interfacial energy between the solid phases, the elastic energy, and the fluid energy

E(φ, u, θ) = Ech(φ) + Ee(φ, u) + Ef(φ, u, θ). (4)

The regularized interface energy [4] is given as

Ech(φ) :=
∫

Ω

Ψ(φ) + γ

2 |∇φ|2 dx, (5)

where deviations from pure phases are penalized through the double-well potential Ψ(φ), and transitions
between phases are penalized by the second term which is related to the interfacial energy. Here, the
parameter γ corresponds to interfacial tension between the phases and will account for adhesive and cohesive
forces. The double-well potential takes minimal values in the two phases, φ = −1 and φ = 1, and is, in this
work, given as

Ψ(φ) := EΨ

(
1 − φ2)2

, (6)

where EΨ > 0 is a chemical energy density parameter.
We assume that the elastic energy takes the form that is typical to the Cahn–Larché equations,

Ee(φ, u) =
∫

Ω

1
2

(
ε(u) − T (φ)

)
:C(φ)

(
ε(u) − T (φ)

)
dx, (7)

where ε(u) = 1
2

(
∇u + ∇u⊤)

is the linearized strain at displacement u. The second term, T (φ), is the
eigenstrain at φ (often called stress-free strain, or intrinsic strain) which corresponds to the state of the
strain tensor if the material was uniform and unstressed [17]. Moreover, it can be considered to account for
swelling effects [6] and takes different values depending on the solid phase φ. Here, we consider the form
T (φ) = ξφI, where ξ is a swelling parameter. The elastic stiffness tensor C(φ), which can be anisotropic,
depends on the phase-field.

Finally, we consider a natural extension of the classical fluid energy which is given as in [15] by

Ef(φ, u, θ) =
∫

Ω

M(φ)
2 (θ − α(φ)∇ · u)2

dx (8)

where both the compressibility parameter M(φ) and the Biot–Willis coupling coefficient α(φ) depend on
the phase-field φ.

2.3. Constitutive relations

Assuming that the phase-field follows Fick’s law for non-ideal mixtures, the flux J is proportional to the
negative gradient of the chemical potential

J = −m(φ)∇µ, (9)
3
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where m(φ) is the chemical mobility. The chemical potential µ is defined to be the variational derivative of
the free energy with respect to φ. Here, we denote the variational derivative of E with respect to y by δyE ,
and standard computations yield

µ := δφE = Ψ ′(φ) − γ∆φ + δφEe(φ, u) + δφEf(φ, u, θ), (10)

where zero Neumann or periodic boundary conditions have been applied to φ,

δφEe(φ, u) = 1
2 (ε(u) − T (φ)) :C′(φ) (ε(u) − T (φ)) − T ′(φ) :C(φ) (ε(u) − T (φ)) , (11)

and
δφEf(φ, u, θ) = M ′(φ)

2 (θ − α(φ)∇ · u)2 − M(φ)(θ − α(φ)∇ · u)α′(φ)∇ · u. (12)

According to thermodynamical principles [9], we define the stress tensor to be the rate of change of energy
with respect to strain

σ := δεE = C(φ) (ε(u) − T (φ)) − M(φ)α(φ) (θ − α∇ · u) I, (13)

and the pore pressure p to be the rate of change of energy with respect to volumetric fluid content

p := δθE = M(φ) (θ − α(φ)∇ · u) . (14)

Finally, the flow through the porous medium is assumed to follow Darcy’s law

q = −κ(φ)∇p, (15)

where the permeability κ(φ) is assumed to depend on the solid phase.
Combining the balance laws with the constitutive relations, and making the identification (14) in (12)

and (13), the Cahn–Hilliard–Biot model becomes

∂tφ − ∇ · (m(φ)∇µ) = R (16)
µ + γ∆φ − Ψ ′(φ) − δφEe(φ, u) − δφEf(φ, u, p) = 0 (17)

−∇ · (C(φ) (ε(u) − T (φ))) + ∇ (α(φ)p) = f (18)

∂t

(
p

M(φ) + α(φ)∇ · u

)
+ ∇ · q = Sf (19)

q + κ(φ)∇p = 0, (20)

equipped with suitable boundary and initial conditions.

3. The Cahn–Hilliard–Biot model as a generalized gradient flow

In this section, we identify the proposed Cahn–Hilliard–Biot model (16)–(20) as a generalized gradient
flow, which in contrast to regular gradient flows allows for non-quadratic and even degenerate dissipation
potentials. By making this identification for the newly proposed model, a wide toolbox of well-posedness
analysis [12,15], numerical error analysis [13,14], and numerical solution algorithms [15,16] are made
available, which will be a valuable asset for further study. Moreover, generalized gradient flows are inherently
thermodynamically consistent in the sense that the free energy of the system decreases through dissipation,
and can only increase through external forces. A generalized gradient flow takes the form

D∂tzR(∂tz, z) = −DzE(z) + Pext, (21)
4
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where z is a state variable, R is a dissipation potential, E is the energy at state z, Dx is the Gateaux
derivative with respect to x, and Pext corresponds to external forces. Alternatively, one can reformulate the
generalized gradient flow and split between states evolving with (zd) and without (zdf) dissipation to get
the constrained minimization problem

zdf = arg min
sdf

{E(sdf) − ⟨Pext,df , sdf⟩} (22)

(∂tzd, F) = arg min
sd,l

{
R̃(l, zd) + ⟨DzdE(zd), sd⟩ − ⟨Pext,d, sd⟩

}
(23)

subject to sd+∇·l = S, where R(∂tzd, zd) = R̃(F , zd), ⟨·, ·⟩ is the canonical inner-product, and the balance
law ∂tzd + ∇ · F = S with flux F , and source S holds.

For the Cahn–Hilliard–Biot system, consider the state variables z = (φ, u, θ), the energy E(z) from (4),
and the state-dependent dissipation potential

R(J , ∂tu, q, φ) := Rch(J , φ) + Re(∂tu) + Rf(q, φ), (24)

with
Rch(J , φ) :=

∫

Ω

1
2m(φ) |J |2 dx, Re(∂tu) := 0, and Rf(q, φ) :=

∫

Ω

1
2κ(φ) |q|2 dx

together with the conservation laws

∂tφ + ∇ · J = R and ∂tθ + ∇ · q = Sf . (25)

As the deformation is assumed to be dissipation free, the generalized gradient flow reads: Find φ, u, and θ

such that

u = arg min
w

{
E(φ, w, θ) − ⟨Pext,e, w⟩

}
(26)

(∂tφ, ∂tθ, J , q) = arg min
η,s,l,v

{
Rch(l, φ) + ⟨DφE(φ, u, θ), η⟩ + Rf(v, φ) + ⟨DθE(φ, u, θ), s⟩ + ⟨Pext,f , s⟩

}
(27)

subject to η + ∇ · l = R and s + ∇ · v = Sf with balance laws (25), ⟨Pext,e, w⟩ :=
∫
Ω

f · w dx

and Pext,f corresponding to external forces related to the fluid (e.g., boundary conditions or gravitational
force). Calculating optimality conditions, and substituting the phase-field flux J by the chemical potential
µ through Fick’s law (9), and the volumetric fluid content θ with the fluid pressure p through the relation
(14), one obtains the variational form of the system (16)–(20).

4. Numerical example

Here, we present a numerical example that emphasizes the impact the flow has on the phase-field evolution
in the Cahn–Hilliard–Biot model compared to a Cahn–Larché simulation (Cahn–Hilliard coupled with only
elasticity). We apply a pressure boundary condition to the Cahn–Hilliard–Biot system that acts as an
external force (in order to enforce flow in the domain), and compare it to both a simulation without the
pressure condition and to a Cahn–Larché simulation. The example clearly shows that when the fluid flow is
dominant, it also plays a crucial role in the evolution of the phase-field. However, in regimes with little, to
no flow, the phase-field is unaffected compared to the Cahn–Larché model.

We consider a unit square domain where three circular shapes of phase φ = 1 are surrounded by phase
φ = −1 initially, see Fig. 1(a),1(e),1(i). For both pressure and displacement, we apply zero initial data. The
variational system (16)–(20) is discretized in time by a semi-implicit Euler method, where the deviation from
fully implicit Euler is an application of the first order convex splitting method of the double-well potential

5
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Table 1
Table of simulation parameters. Here, L denotes the unit of length, F force, and T time. Notice that the units are consistent in three
spatial dimensions and that our example should be interpreted as a two-dimensional representation of a domain with thickness 1L.

Parameter name Symbol Value Unit Parameter name Symbol Value Unit

Chemical mobility m 1
[

L4

F T

]
Biot–Willis parameters α−1, α1 1, 0.5 [–]

Interfacial tension γ 1e−4 [F ] Permeabilities κ−1, κ1 1, 0.1
[

L4

F T

]

Compressibilities M−1, M1 1, 0.1
[

F
L2

]
Time step size τ 1e−3 [T ]

Swelling parameter ξ 0.3 [–] Mesh diameter h
√

2
65 [L]

Chemical energy density EΨ
1
4

[
F
L2

]
Elasticity tensors C−1, C1 (28)

[
F
L2

]

Ψ(φ) as proposed in [18]. The three-way coupled nonlinear system is then solved by an iterative decoupling
scheme, starting with the Cahn–Hilliard subsystem (16)–(17), then elasticity (18), and finally, flow (19)–(20),
and the iterations are terminated when the (relative and absolute) residual and incremental values in the
L2(Ω)-norm are smaller than a tolerance of 10−6. The Cahn–Hilliard subsystem (16)–(17) is discretized
in space with bilinear rectangular finite elements for both phase-field φ and chemical potential µ, and the
nonlinear equations are solved by a Newton method in each iterative decoupling-iteration. As initial guess
in both the Newton method and the iterative decoupling method, the solution at the previous time step (the
initial value at the first time step) is chosen. The flow subsystem (19)–(20) is discretized in space by lowest-
order Raviart–Thomas elements, RT0, for the flux and constant elements for pressures, and the elasticity
equation (18) is discretized with bilinear finite elements. We have used modules from the DUNE project,
specifically dune-functions [19], for the implementation.

The material parameters can be found in Table 1, and the permeability κ(φ), compressibility M(φ), Biot–
Willlis coefficient α(φ) and elasticity tensor C(φ) are depending on the phase-field through the interpolation
function π(φ); κ(φ) = κ−1 +π(φ)(κ1 −κ−1), M(φ) = M−1 +π(φ)(M1 −M−1), α(φ) = α−1 +π(φ)(α1 −α−1)
and C(φ) = C−1 + π(φ)(C1 − C−1). Here, we choose

π(φ) =

⎧
⎪⎨
⎪⎩

0, φ < −1
1
4

(
−φ3 + 3φ + 2

)
, φ ∈ [−1, 1]

1, φ > 1
, C−1 =

⎛
⎝

4 2 0
2 4 0
0 0 8

⎞
⎠ , C1 =

⎛
⎝

1 0.5 0
0.5 1 0
0 0 2

⎞
⎠ , (28)

with the two elasticity tensors written in Voigt notation in two spatial dimensions. Zero Neumann boundary
conditions are applied to both the phase-field and the chemical potential, while the displacement is equipped
with zero Dirichlet conditions on the entire boundary. For the flow subsystem, we enforce a pressure drop
from p = 0.25 to p = 0 from top to bottom while no-flow conditions are applied on the left and right parts
of the boundary. The reaction R, source Sf and body force f are all equal to 0.

In Fig. 1(a)–1(d), the phase-field function φ is plotted after a series of time steps for the Cahn–Hilliard–
Biot model with a drop in pressure from p = 0.25 to p = 0 from top to bottom. In Fig. 1(e)–1(h) the
solution is plotted at the same time steps, but with zero pressure on the entire boundary, and similarly in
Fig. 1(i)–1(l) the plots are from a simulation of the Cahn–Larché system. We observe that when the flow is
prominent in the simulation the phase-field is also significantly affected and takes a directional preference
to that of the flow direction. When, on the other hand, the system merely is filled with a fluid that has no
driving force in itself, the phase-field evolution is close to unaffected compared to the system without a fluid.
We emphasize also that the system energies (including external forces) are decreasing over the scope of the
simulation, as is expected from dissipative systems of gradient flow type. This is showed in Fig. 1, where the
energy is a combination of the free energy of the system (4), and the external forces applied through the
pressure boundary condition, ETot = E(φ, u, p) −

∫
ΓTop

pTop(q · n) dx, with n being the outwards pointing
normal vector. Moreover, notice that the simulation is only a redistribution of the phases, due to the lack
of reaction/source terms.
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Fig. 1. (a)–(l): the solution at time t for the phase-field φ. (a)–(d): Cahn–Hilliard–Biot with p = 0.25 on the top, (e)–(h): Cahn–
Hilliard–Biot with zero pressure BC, (i)–(l): Cahn–Larché. (m): system energy (with external contributions). PD is Cahn–Hilliard–Biot
with p = 0.25 on the top, CHB is Cahn–Hilliard–Biot with zero pressure BC and CHE is Cahn–Larché.

5. Conclusions

The Cahn–Hilliard–Biot system was derived through balance laws and constitutive relations, i.e., Fick’s
law for the phase-field, and Darcy’s law for the fluid flow. Key quantities are defined, following thermo-
dynamical principles, as rates of change of the free energy. The equations feature a three-way coupling,
and the impact from flow to the phase-field was showed to be significant through a numerical example; the
phase-field does not only evolve as it would through the Cahn–Larché equations, but its evolution is aligned
and magnified in the flow direction. Moreover, we showed that the system follows a generalized gradient
flow framework and that the energy dissipates numerically as expected. By this, we lay the groundwork
for a general model, showing numerical properties and highlighting important coupling terms, that can be
further tailored and studied depending on the specific application in mind.
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Abstract

In this paper we propose a solution strategy for the Cahn-Larché equations, which is a model for lin-
earized elasticity in a medium with two elastic phases that evolve subject to a Ginzburg-Landau type energy
functional. The system can be seen as a combination of the Cahn-Hilliard regularized interface equation
and linearized elasticity, and is non-linearly coupled, has a fourth order term that comes from the Cahn-
Hilliard subsystem, and is non-convex and nonlinear in both the phase-field and displacement variables. We
propose a novel semi-implicit discretization in time that uses a standard convex-concave splitting method
of the nonlinear double-well potential, as well as special treatment to the elastic energy. We show that the
resulting discrete system is equivalent to a convex minimization problem, and propose and prove the con-
vergence of alternating minimization applied to it. Finally, we present numerical experiments that show the
robustness and effectiveness of both alternating minimization and the monolithic Newton method applied
to the newly proposed discrete system of equations. We compare it to a system of equations that has been
discretized with a standard convex-concave splitting of the double-well potential, and implicit evaluations
of the elasticity contributions and show that the newly proposed discrete system is better conditioned for
linearization techniques.

1 Introduction

The Cahn-Larché system models elastic deformation within a two-phase solid material. Here, the solid phases
evolve subject to a Ginzburg-Landau type energy functional, as proposed in the work of Cahn and Hilliard
[1, 2], additively coupled with the elastic energy of the system. The equations are credited to the work of Cahn
and Larché [3, 4] which considered stress effects related to diffusion in solids. More recently, the equations
were studied experimentally and verified in [5] as a model for the connection between chemical and mechanical
processes in alloys. Additionally the Cahn-Larché system has been applied in relation to tumor modelling
[6, 7, 8], diffusional corsening in solders [9, 10], and to model the process of intercalation of lithium ions into
silicon [11]. Moreover, in [12] a phase-field model, closely related to the Cahn-Hilliard equation was proposed to
account for unsaturated flow through porous materials. Extensions to a Cahn-Larché setting could be considered
to model flow through swelling deformable porous media.

Over the last two decades there has been extensive research on the well-posedness and analysis of both the
continuous and discrete counterparts of Cahn-Larché systems. In [13, 14] existence and uniqueness results are
obtained for the weak system of equations, in [6] similar results are obtained for the coupling of Cahn-Larché
to transport in the context of tumor growth, and on the same model an optimal control problem is analyzed
in [7]. In [10], existence and uniqueness of a discretized Cahn-Larché system is provided, and in [15, 16] the
sharp interface limit of the equations is showed to be equivalent to a modified Hele-Shaw system coupled with
elasticity. There are several published works on numerical discretization techniques for the system. In [10, 17],
adaptive mesh refinement techniques are discussed and [18, 19] consider spatial discretization with linear finite
elements together with the implicit Euler and Crank-Nicholson time discretizations.

In this work, we propose a novel semi-implicit time-discretization that corresponds to the optimality con-
ditions of a convex minimization problem, and therefore is suitable for nonlinear solvers. The semi-implicit
time discretization is related to the unconditionally gradient stable convex-concave splitting method that Eyre
proposed in [20] for the double-well potential of the Cahn-Hilliard equation. Here, that treatment is adopted
and applied to the Cahn-Larché equations, in two different settings; when the elasticity tensor is independent
of, and dependent on the phase-field. In the former case, the coupling between phase-field and elasticity is
linear and by evaluating the terms from the elasticity subsystem implicitly the discrete system of equations
is identified with a convex minimization problem, similar to the treatment in [18]. Furthermore, the system
of equations is showed to be unconditionally gradient stable, and that an alternating minimization technique,
alternating between solving for phase-field and displacement, applied to the proposed minimization problem
converges. In the second case, however, implicit evaluation in time of the terms corresponding to the elasticity

∗Corresponding author: erlend.storvik@uib.no
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subsystem does not lead to a convex minimization problem when the elasticity tensor depends on the phase-
field, even with the convex-concave splitting method applied to the double-well potential [20]. We show through
numerical examples that the Newton method fails to converge in several instances in this case and propose a
way to carefully evaluate some terms explicitly in time, such that the corresponding minimization problem is
convex. This leads to a system that is better conditioned for solution algorithms, and a theoretical proof of
convergence for the alternating minimization method is provided. Moreover, convergence is experienced for the
Newton method in all numerical examples.

When solving the coupled discrete system of equations there exists two common choices: Either, to solve the
entire system monolithically, using some linearization procedure, or to apply an iterative decoupling method.
A beneficial trait of decoupling methods is the possibility to use readily available solvers for each subsystem.
For the discrete system of equations that we present in this paper that corresponds to solving an extended
Cahn-Hilliard equation with well-behaving nonlinearities, due to the convex-concave splitting method, and an
elasticity equation with heterogeneous elasticity tensor subsequently. For the Cahn-Hilliard subsystem some
linearization technique (e.g., Newton’s method) is still needed to handle the nonlinearities corresponding to the
modified double-well potential and terms that arise from the elasticity contribution. The elasticity subsystem,
on the other hand, reduces to a standard elasticity equation with, possibly, heterogeneous elasticity tensor. Any
readily available solvers and preconditioners for these subproblems can be applied, and combining the decoupling
method with the linearization of the nonlinear Cahn-Hilliard subsystem (doing only one linearization iteration
in each decoupling iteration) as discussed in [21, 22] is possible as well. Decoupling techniques are often also
known as staggered solution strategies, splitting schemes or alternating minimization for symmetric problems
with an underlying minimization structure, and have been widely adopted to solve equations related to phase-
field modelling of brittle fracture propagation [23, 24, 25, 26, 27], and poroelasticity equations where flow and
elasticity is coupled [28, 29, 30, 31]. Moreover, a staggered solution strategy was used to solve finite-strain
elasticity coupled with the Cahn-Hilliard equation in [32].

Here, we investigate the properties of both monolithical solvers and decoupling methods for the Cahn-Larché
equations. Moreover, we properly address the theoretical convergence properties of alternating minimization.
To do this we formulate the discretized system of equations as a minimization problem and utilize an abstract
convergence result for alternating minimization provided in [33]. This framework requires at least convexity
of the minimization problem in each variable, and Lipschitz continuity of its gradients. We prove that this
holds true for the discretized Cahn-Larché equations and obtain convergence rates that we investigate through
numerical examples. Moreover, it can be useful to apply the Anderson acceleration [34] post-processing technique
(as done in e.g., [25, 22]) to enhance the convergence speed of the alternating minimization method. This is
particularly useful for staggered solution methods as the Anderson acceleration is known to be accelerating for
linearly convergent fixed-point schemes [35].

To summarize, the main contributions of the paper are:

• We propose a new, semi-implicit time discretization of the Cahn-Larché equations that leads to a nonlinear
system which is suitable for linearization and decoupling methods.

• Identification of the proposed discretized equations with a convex minimization problem.

• A proof of convergence for alternating minimization as an iterative solver, including convergence rates.

• Numerical experiments showing the efficiency of the proposed time-discretization and iterative solver with
comparison to monolithic methods and acceleration.

Moreover, we stress that the time-discretization and decoupling procedures that we apply here, can be extended
and applied to similar models, e.g., the Cahn-Hilliard-Biot model [36], tumor growth models with transport
effects [6], phase-field models for precipitation and dissolution processes [37] and the two-phase two fluxes
Cahn-Hilliard model [38].

The paper is structured as follows: The mathematical model and assumptions on the model parameters
are presented in Section 2. In Section 3, we discuss the discrete problem associated with the Cahn-Larché
system both for constant and phase-field-dependent elasticity tensor. Moreover, we show equivalence between
the discrete model and a minimization problem, and prove convergence of alternating minimization applied to
this problem. In Section 4, we present several numerical experiments and show the benefits of the proposed
discretization and linearization/decoupling method compared to standard choices. Finally, in Section 5 we make
concluding remarks.

2 The mathematical problem and assumptions on model parameters

The Cahn-Larché system is a combination of a Cahn-Hilliard phase-field model and linearized elasticity with
infinitesimal strains and displacements [3, 18]. We consider the domain Ω ⊂ Rd with Lipschitz boundary, where
d is the spatial dimension, and the time interval [0, T ] with final time T . Let φ : Ω × [0, T ] → [−1, 1] be the
phase-field variable, where pure phases are attained for φ = −1, φ = 1. Moreover, let u : Ω × [0, T ] → Rd be
the infinitesimal displacement.
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2.1 Balance laws and constitutive relations

We assume that the phase-field φ follows the balance law

∂tφ+∇ · J = R,

where J is the phase-field flux and R accounts for reactions. Moreover, the stress follows quasi-static linear
momentum balance (ignoring inertial effects)

−∇ · σ = f ,

where σ is the stress-tensor and f corresponds to external forces. The free energy E(φ,u) of the system is
assumed to be an additive combination of the regularized interface energy Ech(φ) and the potential elastic
energy Ee(φ,u)

E(φ,u) := Ech(φ) + Ee(φ,u). (1)

The regularized chemical energy of the system is defined as

Ech(φ) :=
∫

Ω

γ

(
1

ℓ
Ψ(φ) +

ℓ

2
|∇φ|2

)
dx, (2)

where Ψ(φ), often chosen as Ψ(φ) =
(
1− φ2

)2
, is a double-well potential that penalizes non-pure phase-field

values (|φ| ̸= 1), and |∇φ|2
2 regularizes the transition between phases by penalizing rapid changes (in space)

of the phase-field. The parameter γ is related to the interfacial tension between the two phases, and can be
considered to account for adhesive/cohesive forces between the phases, and ℓ is related to the width of the
regularization region. The elastic potential energy is

Ee(φ,u) :=
1

2

∫

Ω

(ε(u)− ξ (φ− φ̃) I) : C(φ) (ε(u)− ξ (φ− φ̃) I) dx (3)

where ε(u) := ∇u+∇u⊤

2 is the linearized symmetric strain tensor, C(φ) is the fourth order elasticity tensor, the
term ξ (φ− φ̃) I accounts for swelling effects where φ̃ is a reference phase-field, and I is the identity tensor in
Rd×d. For the rest of the paper, we assume that φ̃ = 0 to make the notation more simplistic. All the theory
and numerical examples can trivially be extended to account for φ̃ ∈ [−1, 1].

As constitutive relations we assume that the phase-field flux J is diffusive and follows Fick’s law

J = −m(φ)∇µ,

where m(φ) is the chemical mobility, which we will assume to be constant in this work, and µ is the chemical
potential, which is defined as the rate of change, variational derivative, of the free energy of the system with
respect to the phase-field. Here, we denote the variational derivative of E with respect to y by δyE , and standard
computations yield

µ := δφE(φ,u) = γ

(
1

ℓ
Ψ′(φ)− ℓ∆φ

)
− ξI : C(φ) (ε(u)− ξφI)

+
1

2
(ε(u)− ξφI) : C′(φ) (ε(u)− ξφI) ,

where, we have utilized that the normal derivative of the phase-field vanishes on the boundary (∇φ · n = 0 at
∂Ω). The stress tensor σ is defined as the rate of change of the free energy with respect to strain ε

σ := δεE(φ, ε(u)) = C(φ) (ε(u)− ξφI) .

In total, we search for the triplet (φ, µ,u) such that

∂tφ−∇ · (m∇µ) = R in Ω× [0, T ], (4)

µ+ γ

(
ℓ∆φ− 1

ℓ
Ψ′(φ)

)
− δφEe(φ,u) = 0 in Ω× [0, T ], (5)

−∇ · (C(φ) (ε(u)− ξφI)) = f in Ω× [0, T ], (6)

with the boundary conditions ∇φ · n = ∇µ · n = 0 and u = ub on ∂Ω× [0, T ], and initial condition φ = φ0 in
Ω× {0}. For completeness, we mention that

δφEe(φ,u) =
1

2
(ε(u)− ξφI) :C′(φ) (ε(u)− ξφI)− ξI :C(φ) (ε(u)− ξφI) , (7)

where the elasticity tensor C(φ) is depending on the phase-field through the interpolation function π(φ); C(φ) =
C−1 + π(φ)(C1 − C−1), and we assume for simplicity to have homogeneous Dirichlet boundary conditions for
the elasticity subproblem, i.e., ub = 0.
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2.2 Phase-field independent elasticity tensor

A simplified model is obtained in the special case of phase-field independent elasticity tensor C(φ) = C. We
consider it as a special case here because it is a popular simplification to the system, and the analysis of it will
make the foundation for the numerical solution strategies for the situations where the elasticity tensor depends
on the phase-field. The system (4)–(6) now becomes: Find (φ, µ,u) such that

∂tφ−∇ · (m∇µ) = R in Ω× [0, T ], (8)

µ+ γ

(
ℓ∆φ− 1

ℓ
Ψ′(φ)

)
+ ξI : C (ε(u)− ξφI) = 0 in Ω× [0, T ], (9)

−∇ · (C (ε(u)− ξφI)) = f in Ω× [0, T ], (10)

with the boundary conditions ∇φ · n = ∇µ · n = 0 and u = 0 on ∂Ω × [0, T ], and initial condition φ = φ0 in
Ω× {0}.
Remark 1. Notice that the equations (4) and (8) imply that the total phase-field is balanced in time by the
reaction term

∂t

∫

Ω

φ dx =

∫

Ω

R dx (11)

due to the homogeneous Neumann boundary conditions on µ.

2.3 Assumptions on material parameters

In this paper we will use the following assumptions on the model:

(A1) We require that the double-well potential has a convex-concave splitting

Ψ(φ) = Ψc(φ)−Ψe(φ),

where Ψc(φ) and Ψe(φ) are convex functions, and that the derivative of the convex part Ψ′
c(φ) is Lipschitz

continuous
(Ψ′

c(φ1)−Ψ′
c(φ2)) (φ1 − φ2) ≤ LΨc(φ1 − φ2)

2, ∀φ1, φ2 ∈ R,
with Lipschitz constant LΨc . The convex-concave splitting of the classical double-well potential does not
satisfy this assumption, since the Lipschitz constant of the convex part is not bounded. To rectify this
situation, we modify the double-well potential outside the interval (−θ, θ), for some choice of θ > 1, in
the following way:

Ψ(φ) =





2
(
θ2 − 1

)
φ2 −

(
θ4 − 1

)
, φ ≥ θ,

(1− φ2)2, φ ∈ (−θ, θ),

2
(
θ2 − 1

)
φ2 −

(
θ4 − 1

)
, φ ≤ −θ,

which is split into the convex functions

Ψc(φ) =





2θ2φ2 −
(
θ4 − 1

)
, φ ≥ θ,

φ4 + 1, φ ∈ (−θ, θ),

2θ2φ2 −
(
θ4 − 1

)
, φ ≤ −θ,

and
Ψe(φ) = 2φ2.

This modification ensures the uniformly bounded Lipschitz continuity of Ψ′
c, with bound LΨc

= 2θ2,
without altering the solution to the problem, since the phase-field rarely takes values outside [−1, 1].

(A2) There exist constants cC > 0 and CC > 0 such that

cC∥e∥2L2(Ω) ≤ (C(s)e; e) ≤ CC∥e∥2L2(Ω) (12)

for all symmetric second order tensor functions e ∈ L2(Ω) and scalar functions s ∈ L∞(Ω), where (·; ·) is
the L2(Ω) tensor inner-product. It follows that (e,w) 7→ (C(s)e;w) defines an inner-product on L2(Ω),
hence we have the Cauchy-Schwarz’-type inequality

(C(s)e;w) ≤ (C(s)e; e)
1
2 (C(s)w;w)

1
2 . (13)

3 Numerical solution strategies for the Cahn-Larché equations

We now consider numerical solution strategies for the Cahn-Larché equations with the aim of establishing an
efficient and robust solver. At first, in Section 3.2, a solution strategy for the system with phase-field independent
elasticity tensor (8)–(10) is proposed. Then, in Section 3.3, the equations with phase-field dependent elasticity
tensor (4)–(6) are considered.
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3.1 Notation, variational system of equations and discrete function spaces

Throughout the paper (·, ·) will denote the L2(Ω) inner product for scalar- and vector-valued functions, ⟨·, ·⟩ is
the duality pairing, and ⟨·, ·⟩X represents specific inner products defined on the Hilbert space X. We consider
the following continuous variational formulation of the system (4)–(6): Find (φ, µ,u) ∈ H1

(
[0, T ], H1(Ω)

)
×

L2
(
[0, T ], H1(Ω)

)
× L2

(
[0, T ],

(
H1

0 (Ω)
)d)

such that

(∂tφ, q
φ) + (m∇µ,∇qφ)− (R, qφ) = 0 (14)

(µ, qµ)− γℓ (∇φ,∇qµ)− γ

ℓ
(Ψ′(φ), qµ)− (δφEe(φ,u), qµ) = 0 (15)

(C(φ) (ε (u)− ξφI) ; ε(v))− (f ,v) = 0, (16)

for all (qφ, qµ,v) ∈ H1(Ω)×H1(Ω)×
(
H1

0 (Ω)
)d

, and almost all t ∈ [0, T ].

As notation for the discrete equations, let τ be a uniform time-step size, defined by τ := T
N , where N is

the number of time steps. Moreover, the index n will refer to the time step, h the mesh diameter, and i the

iteration number. Let Qh ⊆ H1(Ω) and Vh ⊆
(
H1

0 (Ω)
)d

be conforming finite element function spaces, where Qh

is the solution space for phase-field and chemical potential, and Vh is the solution space for the displacement.
Furthermore, we define Qh,0 =

{
qh ∈ Qh :

∫
Ω
qh dx = 0

}
, and consider the dual space of (Qh,0, ∥ · ∥h,m) where

∥qh∥h,m := ∥m 1
2∇qh∥L2(Ω) as Q

∗
h,m with canonical dual norm ∥ · ∥Q∗

h,m
. Notice that the space Q∗

h,m is a discrete

superspace of H−1(Ω).
Due to the Lax-Milgram lemma there exists a unique vh ∈ Qh,0 for all sh ∈ Q∗

h,m such that

⟨sh, qh⟩ = (m∇vh,∇qh) , ∀qh ∈ Qh,0. (17)

Thereby, we have

∥sh∥Q∗
h,m

:= sup
qh∈Qh,0

∥qh∥h,m ̸=0

⟨sh, qh⟩
∥qh∥h,m

= sup
qh∈Qh,0

∥qh∥h,m ̸=0

(m∇vh,∇qh)

∥m 1
2∇qh∥L2(Ω)

= ∥m 1
2∇vh∥L2(Ω), (18)

where vh satisfies (17). Moreover, we identify the Q∗
h,m inner-product for sh, lh ∈ Qh,0 as

⟨sh, lh⟩Q∗
h,m

:= (sh, vh) (19)

where vh ∈ Qh is a solution to the variational equation

(lh, qh) = (m∇vh,∇qh), ∀qh ∈ Qh,0. (20)

We then have that

⟨sh, sh⟩
1
2

Q∗
h,m

= (sh, rh)
1
2 = (m∇rh,∇rh)

1
2 = ∥m 1

2∇rh∥L2(Ω) = ∥sh∥Q∗
h,m

(21)

where rh ∈ Qh satisfies (sh, qh) = (m∇rh,∇qh) for all qh ∈ Qh,0.

Remark 2. Notice that, as lh ∈ Qh,0, equation (20) holds for all qh ∈ Qh, and uniqueness of vh can be imposed
by prescribing its mean. Choosing di erent values for the mean of vh does not alter the value of the inner-product
(sh, vh) as sh ∈ Qh,0.

3.2 Solution strategy for Cahn-Larché with phase-field-independent elasticity ten-
sor

Here, we present a robust solution strategy for the Cahn-Larché equations in the special case where the elasticity
tensor is independent of the phase-field, (8)–(10). First, we discretize the equations by the convex-concave
splitting of the double-well potential (A1), i.e., we evaluate the convex part implicitly in time and the expansive
part explicitly to make the discrete system more suitable for linearization techniques. Moreover, we show that
the discrete system of equations are equivalent to a minimization problem and utilize its structure to show
unconditional gradient stability of the discretization (the free energy of the system does not increase without
the presence of external contributions). Then, we prove convergence of alternating minimization applied to the
minimization problem.

3.2.1 Discrete system of equations

Using the convex-concave splitting method in time for the double-well potential (A1), and evaluating other
terms implicitly, we get the discretized (in time and space) system of equations corresponding to (14)–(16) with

5



phase-field independent elasticity tensor as: Given φn−1
h ∈ Qh, find φn

h, µ
n
h ∈ Qh and un

h ∈ Vh, such that

(
φn
h − φn−1

h

τ
, qφh

)
+ (m∇µn

h,∇qφh )− (Rn, qφh ) = 0 (22)

(µn
h, q

µ
h)− γℓ (∇φn

h,∇qµh)−
γ

ℓ

(
Ψ′

c(φ
n
h)−Ψ′

e(φ
n−1
h ), qµh

)
+ (C (ε (un

h)− ξφn
hI) ; q

µ
hξI) = 0 (23)

(C (ε (un
h)− ξφn

hI) ; ε(vh))− (fn,vh) = 0, (24)

for all qφh , q
µ
h ∈ Qh, and all vh ∈ Vh. Similar discretizations have been considered in [10] for a phase-field

dependent elasticity tensor, and in [18] without a convex-concave splitting of the double-well potential.

Proposition 1. The solution to the discrete problem (22)–(24) is equivalent to the solution of the minimization
problem: Given φn−1

h ∈ Qh, solve

(φn
h,u

n
h) = argmin

sh∈Q̄n
h ,wh∈Vh

Hn
τ (sh,wh) (25)

where the admissible space for the phase-field is defined as

Q̄n
h :=

{
sh ∈ Qh

∣∣∣∣
∫

Ω

sh − φn−1
h

τ
dx =

∫

Ω

Rn dx

}
(26)

and

Hn
τ (sh,wh) :=

∥sh − φn−1
h − τRn∥2Q∗

h,m

2τ
+ Ec(sh,wh)−

γ

ℓ

(
Ψ′

e(φ
n−1
h ), sh

)
− (fn,wh) ,

where

Ec(sh,wh) :=

∫

Ω

γ

ℓ
Ψc(sh) + γℓ

|∇sh|2
2

+
1

2
(ε(wh)− ξshI) : C (ε(wh)− ξshI) dx.

Proof. We derive the optimality conditions of the minimization problem which are similar to (22)–(24), but
over restricted spaces. By employing canonical extensions, we establish the equivalence. Let δφHn

τ and δuHn
τ

represent the variational derivatives with respect to the first and second argument of the potential Hn
τ respec-

tively. Then the optimality conditions to the minimization problem (25) reads: Find φn
h,u

n
h ∈ Q̄n

h × Vh such
that

0 = ⟨δφHn
τ (φ

n
h,u

n
h), qh⟩ =

〈
φn
h − φn−1

h

τ
−Rn, qh

〉

Q∗
h,m

+
(
δφEc(φn

h,u
n
h)−

γ

ℓ
Ψ′

e(φ
n−1
h ), qh

)
(27)

0 = ⟨δuHn
τ (φ

n
h,u

n
h),wh⟩ =

(
δε(u)Ec(φn

h,u
n
h); ε(wh)

)
− (fn,wh) , (28)

for all qh ∈ Qh,0 and wh ∈ Vh where

δφEc(φn
h,u

n
h) =

γ

ℓ
Ψ′

c(φ
n
h)− γℓ∆φn

h − ξI : C (ε(un
h)− ξφn

hI)

and
δε(u)Ec(φn

h,u
n
h) = C

(
ε(un

h)− ξφn
hI
)
.

Using the definition of ⟨·, ·⟩Q∗
h,m

equation (27) is equivalent to

0 = (−µn
h, qh) +

(
δφEc(φn

h,u
n
h)−

γ

ℓ
Ψ′

e(φ
n−1
h ), qh

)
, ∀qh ∈ Qh,0 (29)

where µn
h is the solution to the problem

−(m∇µn
h,∇lh) =

(
φn
h − φn−1

h

τ
−Rn, lh

)
, ∀lh ∈ Qh,0, (30)

with mean fixed as ∫

Ω

µn
h dx =

∫

Ω

δφEc(φn
h,u

n
h)−

γ

ℓ
Ψ′

e(φ
n−1
h ) dx, (31)

in accordance with Remark 2. The constraint φn
h ∈ Q̄n

h and (30) are equivalent to requiring that equality (30)
holds for all lh ∈ Qh. Due to (31), equation (29) holds for all qh ∈ Qh, and we have that the solutions to (28),
(29) and (30) are equivalent to the solutions of the discrete problem (22)–(24).

Remark 3 (Affine structure of the admissible set). The admissible set for the phase-field in the optimization
problem (25), Q̄n

h, is an affine space. For any two s1h, s2h ∈ Q̄n
h it holds that s1h − s2h ∈ Qh,0.
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Theorem 1. The discretization scheme (22)–(24) is unconditionally gradient stable, i.e., the free energy

E(φ,u) =
∫

Ω

γ

(
1

ℓ
Ψ(φ) +

ℓ

2
|∇φ|2

)
+

1

2
(ε(u)− ξφI) : C (ε(u)− ξφI) dx

dissipates over the time-steps assuming the absence of external contributions (R = 0 and f = 0).

Proof. Exploiting the equivalence between the discrete system of equations (22)–(24) and the minimization
problem in Proposition 1, we get that

Hn
τ (φ

n
h,u

n
h)−Hn

τ (φ
n−1
h ,un−1

h ) ≤ 0,

due to the fact that φn−1 ∈ Q̄n
h when R = 0. It follows that

∥φn
h − φn−1

h ∥2Q∗
h,m

2τ
+ Ec(φn

h,u
n
h)−

γ

ℓ

(
Ψ′

e(φ
n−1
h ), φn

h

)
−
[
Ec(φn−1

h ,un−1
h )− γ

ℓ

(
Ψ′

e(φ
n−1
h ), φn−1

h

)
]

≤ 0,

and by rearrangement and application of the convexity of Ψe we get

Ψe(φ
n
h)−Ψe(φ

n−1
h ) ≥ Ψ′

e(φ
n−1
h )(φn

h − φn−1
h ).

Recalling that Ψ(s) = Ψc(s)−Ψe(s) we get the inequality

∥φn
h − φn−1

h ∥2Q∗
h,m

2τ
+ E(φn

h,u
n
h)− E(φn−1

h ,un−1
h ) ≤ 0.

Hence,
E(φn

h,u
n
h) ≤ E(φn−1

h ,un−1
h )

for all τ and n.

3.2.2 Alternating minimization for the Cahn-Larché equations with phase-field-independent
elasticity tensor

There exists several ways to solve the nonlinear discrete system of equations (22)–(24), and due to the convexity
of the related minimization problem (see Proposition 1) we expect the Newton method to be a viable and efficient
choice. However, we propose here to solve the system with an alternating minimization method. The main
benefit of this is that it allows for the use of readily available solvers, as it corresponds to solving a Cahn-Hilliard
equation and an elasticity equation subsequently. In each time step we initialize the solver with the solution at
the previous time step

φn,0
h = φn−1

h , and un,0
h = un−1

h ,

and minimize the potential Hn
τ sequentially

φn,i
h = argmin

sh∈Q̄n
h

Hn
τ (sh,u

n,i−1
h ), (32)

un,i
h = argmin

wh∈Vh

Hn
τ (φ

n,i
h ,wh) (33)

where i is the iteration index. The corresponding variational system of equations in the i-th iteration reads:
Given (φn−1

h ,un,i−1
h ) ∈ Qh × Vh, find (φn,i

h , µn,i
h ,un,i

h ) ∈ Qh ×Qh × Vh such that

(
φn,i
h − φn−1

h

τ
, qφh

)
+
(
m∇µn,i

h ,∇qφh

)
− (Rn, qφh ) = 0 (34)

(
µn,i
h , qµh

)
− γℓ

(
∇φn,i

h ,∇qµh

)
− γ

ℓ

(
Ψ′

c

(
φn,i
h

)
−Ψ′

e

(
φn−1
h

)
, qµh

)

+
(
C
(
ε
(
un,i−1
h

)
− ξφn,i

h I
)
; qµhξI

)
= 0 (35)

(
C
(
ε
(
un,i
h

)
− ξφn,i

h I
)
; ε(vh)

)
− (fn,vh) = 0 (36)

for all (qφh , q
µ
h ,vh) ∈ Qh ×Qh ×Vh. Here, the space Qh appears in the discrete system instead of Q̄n

h due to the
same argumentation as in the proof of Proposition 1.

Remark 4. The Cahn-Hilliard subsystem (34)–(35) is still nonlinear due to Ψ′
c(φ

n,i). In this work, we solve
it with the Newton method which is known to converge for this problem [39].

We apply the abstract theory available in [33] to prove that the alternating minimization algorithm converges
and summarize the appropriate result as a lemma (using the notation of the present article):
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Lemma 1. Assume that there exist norms ∥(·, ·)∥ : Qh,0 ×Vh → R+, ∥ · ∥ch : Qh,0 → R+ and ∥ · ∥e : Vh → R+,
related by the inequalities

∥(sh,wh)∥2 ≥ βch∥sh∥2ch, and ∥(sh,wh)∥2 ≥ βe∥wh∥2e , ∀(sh,wh) ∈ Qh,0 × Vh, (37)

for some βch, βe ≥ 0, and let the potential H : Q̄n
h × Vh → R be given. If

• H is convex with respect to the norm ∥(·, ·)∥ with convexity constant σ ≥ 0, i.e.,

〈
δH
(
s1h,w

1
h

)
− δH

(
s2h,w

2
h

)
,
(
s1h − s2h,w

1
h −w2

h

)〉
≥ σ

∥∥(s1h − s2h,w
1
h −w2

h)
)∥∥2 , (38)

for all
(
s1h, s

2
h,w

1
h,w

2
h

)
∈ Q̄n

h × Q̄n
h × Vh × Vh,

and

• the variational derivatives of H with respect to the first and second arguments are Lipschitz continuous
in the norm ∥ · ∥ch with constant Lch and ∥ · ∥e with constant Le, respectively, i.e., there exist Lch > 0,
Le > 0 such that

〈
δφH

(
s1h,wh

)
− δφH

(
s2h,wh

)
, s1h − s2h

〉
≤ Lch

∥∥s1h − s2h
∥∥2
ch
, ∀

(
s1h, s

2
h,wh

)
∈ Q̄n

h × Q̄n
h × Vh, (39)

and

〈
δuH

(
sh,w

1
h

)
− δuH

(
sh,w

2
h

)
,w1

h −w2
h

〉
≤ Le

∥∥w1
h −w2

h

∥∥2
e
, ∀

(
w1

h,w
2
h, sh

)
∈ Vh × Vh × Q̄n

h, (40)

then the alternating minimization scheme (as proposed in (32)–(33) with Hn
τ = H) converges in the sense that

H
(
φn,i
h ,un,i

h

)
−H (φn

h,u
n
h) ≤

(
1− σβch

Lch

)(
1− σβe

Le

)(
H
(
φn,i−1
h ,un,i−1

h

)
−H (φn

h,u
n
h)
)
,

where (φn
h,u

n
h) ∈ Q̄n

h × Vh is the minimizer of H.

Remark 5. Notice that σβch

Lch
≤ 1 and σβe

Le
≤ 1 due to (37)–(40).

We are also going to take advantage of the following inverse inequality:

Lemma 2. There exists a constant Cinv > 0 such that

Cinvh
−1∥sh∥Q∗

m,h
≥ ∥sh∥L2(Ω),

for all sh ∈ Qh,0.

Proof. From standard finite element text books, e.g., Theorem 4.5.11 in [40], one can find the inverse inequality

∥sh∥H1(Ω) ≤ C̃h−1∥sh∥L2(Ω), (41)

for some C̃ > 0. By the definition of the Q∗
h,m-norm (18) we have for sh ∈ Qh,0 and ∥sh∥h,m ̸= 0

∥sh∥Q∗
h,m

≥ ⟨sh, sh⟩
∥m 1

2∇sh∥L2(Ω)

,

which implies
m

1
2 ∥sh∥H1(Ω)∥sh∥Q∗

m,h
≥ ∥sh∥2L2(Ω).

Using (41) we get by choosing Cinv = C̃m
1
2 the desired inequality

Cinvh
−1∥sh∥L2(Ω)∥sh∥Q∗

h,m
≥ ∥sh∥2L2(Ω).

Theorem 2. The alternating minimization algorithm (32)–(33) converges linearly in the sense that

Hn
τ

(
φn,i
h ,un,i

h

)
−Hn

τ (φn
h,u

n
h) ≤

(
1− βch

Lch

)
(1− βe)

(
Hn

τ

(
φn,i−1
h ,un,i−1

h

)
−Hn

τ (φn
h,u

n
h)
)
, (42)

where βch = βe = 1−
(

h2

τC2
invξ

2I:CI + γℓ
C2

Ωξ2I:CI + 1
)−1

, and Lch = 1 + LΨ

(
h2

τC2
inv

+ γℓ
C2

Ω
+ ξ2I : CI

)−1

.
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Proof. We apply Lemma 1. Let H = Hn
τ , Q̄h = Q̄n

h, and define the norms

∥(sh,wh)∥2 :=
∥sh∥2Q∗

h,m

τ
+ γℓ∥∇sh∥2L2(Ω) + (C (ε(wh)− ξshI) ; ε(wh)− ξshI) ,

∥sh∥2ch :=
∥sh∥2Q∗

h,m

τ
+ γℓ∥∇sh∥2L2(Ω) + ξ2I : CI∥sh∥2L2(Ω),

∥wh∥2e := (Cε(wh); ε(wh)) ,

for (sh,wh) ∈ Qh,0 × Vh. Notice that ∥(·, ·)∥ and ∥ · ∥e are norms due to (12).

Relation (37) between norms. We have that for (sh,wh) ∈ Qh,0 × Vh

∥(sh,wh)∥2 =
∥sh∥2Q∗

h,m

τ
+ γℓ∥∇sh∥2L2(Ω) + (C (ε(wh)) ; ε(wh)) (43)

+ξ2I : CI∥sh∥2L2(Ω) − 2 (C (ε(wh)) ; ξshI) ,

and by the Cauchy-Schwarz’ inequality (13) and Young’s inequality on the last term we obtain

2 (C (ε(wh)) ; ξshI) ≤ δ (Cε(wh); ε(wh)) +
k1ξ

2I : CI
δ

∥sh∥2L2(Ω)

+
k2ξ

2I : CI
δ

∥sh∥2L2(Ω) +
k3ξ

2I : CI
δ

∥sh∥2L2(Ω)

where 1 ≥ ki ≥ 0, k1+k2+k3 = 1, and δ > 0 are free to be chosen. Using Lemma 2 and the Poincaré inequality,
with constant CΩ, we get

2 (C (ε(wh)) ; ξshI) ≤ δ (Cε(wh); ε(wh)) +
k1C

2
invh

−2ξ2I : CI
δ

∥sh∥2Q∗
h,m

+
k2C

2
Ωξ

2I : CI
δ

∥∇sh∥2L2(Ω) +
k3ξ

2I : CI
δ

∥sh∥2L2(Ω).

Hence, we have from (43) that

∥(sh,wh)∥2 ≥ (1− δ) (Cε(wh); ε(wh)) +

(
1

τ
− k1C

2
invh

−2ξ2I : CI
δ

)
∥sh∥2Q∗

h,m
(44)

+

(
γℓ− k2C

2
Ωξ

2I : CI
δ

)
∥∇sh∥2L2(Ω) +

(
1− k3

δ

)
ξ2I : CI∥sh∥2L2(Ω).

Choosing δ = 1, βch = 1 −
(

h2

τC2
invξ

2I:CI + γℓ
C2

Ωξ2I:CI + 1
)−1

, k1 = (1 − βch)
h2

τC2
invξ

2I:CI , k2 = (1 − βch)
γℓ

C2
Ωξ2I:CI ,

and k3 = 1− βch we get the desired bound

∥(sh,wh)∥2 ≥ βch∥sh∥2ch, ∀(sh,wh) ∈ Qh,0 × Vh.

Choosing now δ =
(

h2

τC2
invξ

2I:CI + γℓ
C2

Ωξ2I:CI + 1
)−1

, k1 = δh2

τC2
invξ

2I:CI , k2 = γℓδ
C2

Ωξ2I:CI , k3 = δ, and βe = 1 − δ in

equation (44) we obtain
∥(sh,wh)∥2 ≥ βe∥wh∥2e , ∀(sh,wh) ∈ Qh,0 × Vh.

Strong convexity. By assumption (A2)

〈
δHn

τ (s
1
h,w

1
h)− δHn

τ (s
2
h,w

2
h),
(
s1h − s2h,w

1
h −w2

h

)〉

=
〈
δφHn

τ (s
1
h,w

1
h)− δφHn

τ (s
2
h,w

2
h), s

1
h − s2h

〉
+
〈
δuHn

τ (s
1
h,w

1
h)− δuHn

τ (s
2
h,w

2
h),w

1
h −w2

h

〉

=
∥∥(s1h − s2h,w

1
h −w2

h

)∥∥2 + γ
ℓ

(
Ψ′

c(s
1
h)−Ψ′

c(s
2
h), s

1
h − s2h

)

≥
∥∥(s1h − s2h,w

1
h −w2

h

)∥∥2 ,

for all
(
s1h, s

2
h,w

1
h,w

2
h

)
∈ Q̄n

h × Q̄n
h × Vh × Vh, we have that Hn

τ (sh,wh) is convex in ∥(sh,wh)∥ with convexity
constant σ = 1.

Lipschitz continuity of the partial gradients. We have

〈
δφHn

τ (s
1
h,wh)− δφHn

τ (s
2
h,wh), s

1
h − s2h

〉
= ∥s1h − s2h∥2ch +

γ

ℓ

(
Ψ′

c(s
1
h)−Ψ′

c(s
2
h), s

1
h − s2h

)

for all
(
s1h, s

2
h,wh

)
∈ Q̄n

h × Q̄n
h × Vh. Assumption (A2) gives

(
Ψ′

c(s
1
h)−Ψ′

c(s
2
h), s

1
h − s2h

)
≤ LΨc∥s1h − s2h∥2L2(Ω)
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and by Lemma 2 we get
〈
δφHn

τ (s
1
h,wh)− δφHn

τ (s
2
h,wh), s

1
h − s2h

〉
≤ Lch∥s1h − s2h∥2ch,

where Lch = 1 + LΨ

(
h2

τC2
inv

+ γℓ
C2

Ω
+ ξ2I : CI

)−1

. Finally, δuHn
τ is Lipschitz continuous with respect to ∥ · ∥e

with constant Le = 1, since
〈
δuHn

τ (sh,w
1
h)− δuHn

τ (sh,w
2
h),w

1
h −w2

h

〉
= ∥w1

h −w2
h∥2e , ∀

(
sh,w

1
h,w

2
h

)
∈ Q̄n

h × Vh,×Vh,

and the convergence result (42) is obtained through Lemma 1.

3.3 Solution strategy for the Cahn-Larché equations with phase-field-dependent
elasticity tensor

When the elasticity tensor depends on the phase-field, C(φ), the situation is slightly more involved because a
naive implicit discretization, using the convex-concave splitting of the double-well potential Ψ leads to a discrete
system that is related to a nonconvex minimization problem (similar treatment as in Proposition 1). It reads:
Given φn−1

h ∈ Qh, find φn
h, µ

n
h ∈ Qh and un

h ∈ Vh, such that

(
φn
h − φn−1

h

τ
, qφh

)
+ (m∇µn

h,∇qφh )− (Rn, qφh ) = 0, (45)

(µn
h, q

µ
h)− γℓ (∇φn

h,∇qµh)−
γ

ℓ

(
Ψ′

c(φ
n
h)−Ψ′

e(φ
n−1
h ), qµh

)
− (δφEe(φn

h,u
n
h), q

µ
h) = 0, (46)

(
C (φn

h)
(
ε(un

h)− ξφn
hI)
)
; ε(vh)

)
− (fn,vh) = 0, (47)

for all (qφh , q
µ
h ,vh) ∈ Qh×Qh×Vh with δφEe(φn

h,u
n
h) from (7). To mitigate the nonconvexity of the related min-

imization problem one could evaluate the entire term related to the elastic energy explicitly, δφEe(φn−1
h ,un−1

h ).
Then one could show, using the same technique as in Theorem 2 that an alternating minimization type method
would converge. Instead, we propose a semi-implicit evaluation of the term δφEe(·, ·), which corresponds to a
convex minimization problem. The discretization reads: Given φn−1

h ∈ Qh, find φn
h, µ

n
h ∈ Qh and un

h ∈ Vh, such
that

(
φn
h − φn−1

h

τ
, qφh

)
+ (m∇µn

h,∇qφh )− (Rn, qφh ) = 0, (48)

(µn
h, q

µ
h)− γℓ (∇φn

h,∇qµh)−
γ

ℓ

(
Ψ′

c(φ
n
h)−Ψ′

e(φ
n−1
h ), qµh

)
−
(
Esi
e,φ(φ

n
h,u

n
h;φ

n−1
h ,un−1

h ), qµh
)

= 0, (49)
(
C
(
φn−1
h

) (
ε(un

h)− ξφn
hI)
)
; ε(vh)

)
− (fn,vh) = 0, (50)

for all (qφh , q
µ
h ,vh) ∈ Qh ×Qh × Vh where

Esi
e,φ(φ

n
h,u

n
h;φ

n−1
h ,un−1

h ) :=
1

2

(
ε
(
un−1
h

)
− ξφn−1

h I
)
C′ (φn−1

h

) (
ε
(
un−1
h

)
− ξφn−1

h I
)

−ξI : C(φn−1
h ) (ε(un

h)− ξφn
hI) .

Notice here, that
δφEe(φ,u) = Esi

e,φ(φ,u, φ,u).

Analogous to Proposition 1 we can prove that (48)–(50) is related to a minimization problem.

Proposition 2. The solution to the discrete system of equation (48)–(50) are equivalent to the solution of the
minimization problem: Given φn−1

h ,un−1
h ∈ Qh × Vh solve

(φn
h,u

n
h) = argmin

sh∈Q̄n
h ,wh∈Vh

Fn
τ (sh,wh) (51)

for

Fn
τ (sh,wh) :=

∥sh − φn−1
h − τRn∥2Q∗

h,m

2τ
+ Ec

c (sh,wh, φ
n−1
h )−

(
Ee
e (φ

n−1
h ,un−1

h ), sh
)

−γ

ℓ

(
Ψ′

e(φ
n−1
h ), sh

)
− (fn,wh) ,

where

Ec
c (sh,wh, φ

n−1
h ) :=

∫

Ω

γ

ℓ
Ψc(sh) + γℓ

|∇sh|2
2

+
1

2
(ε(wh)− ξshI) : C

(
φn−1
h

)
(ε(wh)− ξshI) dx,

and

Ee
e (φ

n−1
h ,un−1

h ) :=
1

2

(
ε
(
un−1
h

)
− ξφn−1

h I
)
C′ (φn−1

h

) (
ε
(
un−1
h

)
− ξφn−1

h I
)
.
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3.3.1 Alternating minimization for Cahn-Larché with phase-field-dependent elasticity tensor

Similarly to Section 3.2.2 we propose an alternating minimization algorithm, which again naturally is formulated
as a block Gauss-Seidel method, to solve the discrete system of equations (48)–(50). Given (φn−1

h ,un−1
h ,un,i−1

h ) ∈
Qh × Vh × Vh, find (φn,i

h , µn,i
h ,un,i

h ) ∈ Qh ×Qh × Vh such that
(
φn,i
h − φn−1

h

τ
, qφh

)
+
(
m∇µn,i

h ,∇qφh

)
− (Rn, qφh ) = 0, (52)

(
µn,i
h , qµh

)
− γℓ

(
∇φn,i

h ,∇qµh

)
− γ

ℓ

(
Ψ′

c

(
φn,i
h

)
−Ψ′

e

(
φn−1
h

)
, qµh

)

+
(
Esi
e,φ

(
φn,i
h ,un,i−1

h , φn−1
h ,un−1

h

)
, qµh

)
= 0, (53)

(
C
(
φn−1
h

) (
ε
(
un,i
h

)
− ξφn,i

h I
)
; ε(vh)

)
− (fn,vh) = 0, (54)

for all (qφh , q
µ
h ,vh) ∈ Qh ×Qh × Vh.

Corollary 1. The alternating minimization decoupling scheme (52)–(54) converges in each time-step n, with
convergence rate

Fn
τ

(
φn,i
h ,un,i

h

)
−Fn

τ (φn
h,u

n
h) ≤

(
1− βch

Lch

)
(1− βe)

(
Fn

τ

(
φn,i−1
h ,un,i−1

h

)
−Fn

τ (φn
h,u

n
h)
)
, (55)

where βch = βe = 1−
(

h2

τC2
invξ

2I:ICC
+ γℓ

C2
Ωξ2I:ICC

+ 1
)−1

, and Lch = 1 + LΨ

(
h2

τC2
inv

+ γℓ
C2

Ω
+ ξ2I : IcC

)−1

.

Proof. This proof is analogous that of Theorem 2. Simply replace C with C(φn−1
h ) and apply the bounds from

assumption (A2).

Remark 6. Notice that as the discrete system of equations (48)–(50) corresponds to a convex minimization
problem, we also expect a Newton-type solver to be rather robust, and have a higher convergence rate than the
alternating minimization method.

4 Numerical experiments

In this section, we present experiments to numerically investigate the performance and robustness of both the
Newton method and alternating minimization applied to the semi-implicit time-discretized Cahn-Larché equa-
tions (48)–(50) compared with applying them to the implicit-in-time discretizaton (45)–(47). In all numerical
experiments, the unit square in two spatial dimensions with a quadrilateral mesh is considered, and we apply
bilinear conforming finite elements to all subproblems; phase-field, potential, and displacement.

When the elasticity tensor depends on the phase-field it is through the C1 interpolation function

π(φ) =





0, φ < −1
1
4

(
−φ3 + 3φ+ 2

)
, φ ∈ [−1, 1]

1, φ > 1

, (56)

and the relation C(φ) = C−1 + π(φ) (C1 − C−1), where C−1 and C1 are the elasticity tensors corresponding to
the pure phases at φ = −1 and φ = 1, respectively.

Four different solution strategies to the Cahn-Larché equations are tested. For the discrete system (45)–(47)
we test both the monolithic Newton method (marked by ”Imp. Mono.” in figure legends) and a staggered
solution scheme, solving the Cahn-Hilliard subsystem (45)–(46) and the elasticity subsystem (47) sequentially
(marked by ”Imp. Split.” in figure legends). The same is done for the discrete system (48)–(50) and mark
the monolithic Newton method as ”Semi-Imp. Mono.” and the alternating minimization method (52)–(54) as
”Semi-Imp. Split.”. For both the monolithic and the decoupling solvers, the iterative procedures are terminated
when the absolute and relative residuals and increments (iteration i − 1 subtracted from iteration i), in the
L2(Ω)-norm, reach a prescribed tolerance, i.e.,

∥∥∥Res
(
φn,i
h , µn,i

h ,un,i
h

)∥∥∥
2

≤ Tolres,abs,
∥∥∥Res

(
φn,i
h , µn,i

h ,un,i
h

)∥∥∥
2∥∥∥Res

(
φn,0
h , µn,0

h ,un,0
h

)∥∥∥
2

≤ Tolres,rel,

∥∥∥φn,i
h − φn,i−1

h

∥∥∥
L2(Ω)

+
∥∥∥µn,i

h − µn,i−1
h

∥∥∥
L2(Ω)

+
∥∥∥un,i

h − un,i−1
h

∥∥∥
L2(Ω)

≤ Tolinc,abs,

∥∥∥φn,i
h − φn,i−1

h

∥∥∥
L2(Ω)∥∥∥φn,1

h − φn,0
h

∥∥∥
L2(Ω)

+

∥∥∥µn,i
h − µn,i−1

h

∥∥∥
L2(Ω)∥∥∥µn,1

h − µn,0
h

∥∥∥
L2(Ω)

+

∥∥∥un,i
h − un,i−1

h

∥∥∥
L2(Ω)∥∥∥un,1

h − un,0
h

∥∥∥
L2(Ω)

≤ Tolinc,rel,
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where Res
(
φn,i
h , µn,i

h ,un,i
h

)
is the algebraic residual corresponding to the discretized system of equations. For all

test cases that we run in this paper, Tolres,abs, Tolres,rel, Tolinc,abs, and Tolinc,rel are set to 1e− 6. Moreover, the
parameter θ in the modification to the standard double-well potential and the related convex-concave splitting,
see Assumption (A1), is chosen as θ = 2.

Remark 7. The Cahn-Hilliard subproblem is nonlinear even though the alternating minimization method is
applied. We use the Newton method and iterate until similar tolerances as for the full problem are reached
(1e−6). One could, however, consider to only perform a single iteration of the Newton method in each alternating
minimization iteration instead of iterating until the prescribed tolerance is reached, as done in [21], in order to
speed up the convergence of the total iterative solver.

4.1 Test case with phases separated along the middle

In this test case we initialize the simulation by separating the phases along the middle of the domain, see
Figure 1a. We take u0,0

h = 0 as initial guess for displacement in the first time step and impose zero Dirichlet
boundary conditions for it on the entire boundary. The model parameters can be found in Table 1, with

C−1 =



100 20 0
20 100 0
0 0 200


 , and C1 =




1 0.1 0
0.1 1 0
0 0 2


 ,

where the elasticity tensors are given in Voigt notation. First, we test with different values for the interfacial
tension γ = 1, 5, 10, 50, 100, and then for different values of the swelling parameter ξ = 0.1, 0.5, 1, 1.5, 2. Simula-
tion results for different values of γ are plotted in Figure 1a–1d (γ = 5), Figure 1e–1h (γ = 10), and Figure 1i–1l
(γ = 100). Moreover, in Figure 1m we see that the energy decays over time, using both the semi-implicit time
discretization (48)–(50), and the implicit one (45)–(47), for different time-step sizes, γ = 5 and ξ = 1.

Parameter name Symbol Value Unit

Chemical mobility m 1
[

L4

FT

]

Interfacial tension γ – [F ]
Time step size τ 1e-5 [T ]
Final time T 0.01 [T ]

Swelling parameter ξ – [–]

Mesh diameter h
√
2

65 [L]
Regularization parameter ℓ 0.02 [–]

Elasticity tensors C−1,C1 -
[
F
L2

]

Table 1: Table of simulation parameters. Here, L denotes the unit of length, F force, and T time.

4.1.1 Dependence on interfacial tension

We run several simulations with different values for the interfacial tension γ = 1, 5, 10, 50, 100, while counting the
number of iterations the different solution strategies take to achieve satisfactory precision. The other parameters
are found in Table 1, and the swelling parameter is chosen to be ξ = 1.

In Figure 2, we see that the monolithic Newton method converges in fewer iterations than the alternating
minimization algorithms. However, for the smallest value of interfacial tension, γ = 1, (when the coupling
strength is highest) the monolithic Newton method with implicit-in-time evaluation of the elastic energy (45)–
(47) does not converge at all, and is therefore not a robust choice as a solution strategy. The monolithic Newton
method applied to the semi-implicitly discretized system of equations (48)–(50) seems to be a robust choice of
linearization procedure, which is due to the convex nature of the related minimization problem, see Proposition 1.
Moreover, as expected from Corollary 1, the number of iterations for the alternating minimization method (52)–
(54) decreases with increasing interfacial tension. This is in fact true for all of the solution strategies as the
relative coupling strength between Cahn-Hilliard and elasticity is decreasing for increasing interfacial tension.

4.1.2 Dependence on swelling parameter

A similar test is considered for several values of the swelling parameter, ξ = 0.01, 0.1, 0.5, 1, 1.5, 2 and a fixed
interfacial tension γ = 5, see Figure 3. Here, we observe, as is expected from the theory, Corollary 1, that
the coupled problems become more difficult to solve (require more iterations of either the Newton method or
alternating minimization) when the swelling parameter increases. This is natural as the swelling parameter is
directly connected to the coupling strength between the phase-field and elasticity equations. Another important
observation is that for large values of the swelling parameter (ξ = 1.5 and ξ = 2) the monolithic Newton method
applied to the discrete system of equations (45)–(47) does not converge at all. On the other hand, alternating
minimization converges for these cases as well, which (although we have no theoretical proof for it) suggests that
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(a) t = 0 (b) t = 0.001 (c) t = 0.005 (d) t = 0.01

(e) t = 0 (f) t = 0.001 (g) t = 0.005 (h) t = 0.01

(i) t = 0 (j) t = 0.001 (k) t = 0.005 (l) t = 0.01

0 2 · 10−3 4 · 10−3 6 · 10−3 8 · 10−3 1 · 10−2
45
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55

60

65

Time
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y

Imp. τ =1e-5

Imp. τ =1e-4

Imp. τ =1e-3

Semi-Imp. τ =1e-5

Semi-Imp. τ =1e-4

Semi-Imp. τ =1e-3

(m) Energy decay over time for different time-step
sizes, γ = 5 and ξ = 1.

Figure 1: (a) – (l): the solution at time t for the phase-field φ. (a) – (d): γ = 5, (e) – (h): γ = 10, (i) – (l):
γ = 100. (m): Total energy (1) for both the implicit (in the elastic energy) time discretization (45)–(47) and
the semi-implicit one (48)–(50) with different time step sizes and γ = 10.
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Imp. Split. Semi-Imp. Split.

Figure 2: Test case with phases separated along the middle: Total number of iterations for different values of
the interfacial tension parameter γ. Here, ”Imp.” refers to the discrete system of equation (45)–(47), whereas
”Semi.-Imp.” corresponds to the discrete system of equations (48)–(50). Moreover, ”Mono.” refers to the
monolithic full Newton method applied to the discrete system of equations and the alternating minimization
algorithm is labeled with ”Split.”. The numerical scheme (52)–(54) corresponds to ”Semi-Imp. Split.”. Notice
that ”Imp. Mono.” failed to converge for γ = 1 and, therefore, it is not marked above that value in the plot.
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Figure 3: Test case with phases separated along the middle: Total number of iterations for different values of
the swelling parameter ξ. Here, ”Imp.” refers to the discrete system of equation (45)–(47), whereas ”Semi.-
Imp.” corresponds to the discrete system of equations (48)–(50). Moreover, ”Mono.” refers to the monolithic
full Newton method applied to the discrete system of equations and the alternating minimization algorithm is
labeled with ”Split.”. The numerical scheme (52)–(54) corresponds to ”Semi-Imp. Split.”. Notice that ”Imp.
Mono.” failed to converge for ξ = 1.5 and ξ = 2 and, therefore, it is not marked above those values in the plot.
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Figure 4: Test case with phases segregated in the middle: Total number of iterations for different Anderson
acceleration depths. Here, ”Imp.” refers to the discrete system of equation (45)–(47), whereas ”Semi.-Imp.”
corresponds to the discrete system of equations (48)–(50). Notice that ”Semi-Imp. Split.” failed to converge for
depth 5 and, therefore, it is not marked above that value in the plot.

the alternating minimization method is more robust than the Newton method for this problem. Notice also that
for the smallest value of swelling parameter ξ = 0.01, the problem is almost decoupled, and convergence of the
linearization/decoupling methods is reached in approximately one iteration (in some time-steps two iterations
are required).

4.1.3 Anderson acceleration applied to the decoupling algorithms

As mentioned in the introduction, the Anderson acceleration [34] has been successfully applied to accelerate
decoupling/splitting schemes, as alternating minimization previously [25, 22], or linearly convergence methods
like the Picard algorithm for Navier-Stokes [41]. The scheme is applied as a post-process to fixed-point iterations
and updates the current iterate as a linear combination of the m (called depth of the acceleration) previous
iterates. More careful explanation of the method can be found in e.g., [25, 22, 41].

Here we applied the Anderson acceleration to accelerate the alternating minimization method (52)–(54)
(”Semi-Imp. Split.”), and the staggered scheme applied to (45)–(47) (”Imp. Split.”). Simulation parameters
from Table 1 with γ = 1 and ξ = 1 are used, similar to the first column in Figure 2, and we test for acceleration
depths ranging fromm = 0 (no acceleration) tom = 5. The results are displayed in Figure 4. We observe that for
the staggered scheme applied to (45)–(47) (”Imp. Split.”), the postprocessing accelerates the convergence quite
significantly, however, it fails to converge for the largest depth (m = 5). For the the alternating minimization
method (52)–(54) (”Semi-Imp. Split.”), it only accelerates slightly, and actually decelerates the convergence
for larger values of depths (m = 4, 5). Therefore, using the Anderson acceleration to solve the alternating
minimization problem might be beneficial for smaller depths. Moreover, there are several ways of improving
the convergence of the Anderson acceleration, e.g, periodically restart it from depth m = 0 or turn it on and
off using some safeguard mechanics (see [25]), but this is outside the scope of the current paper to investigate.
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(a) t = 0 (b) t = 0.0004 (c) t = 0.01 (d) t = 0.02

(e) t = 0 (f) t = 0.0004 (g) t = 0.01 (h) t = 0.02

(i) t = 0 (j) t = 0.0004 (k) t = 0.01 (l) t = 0.02
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(m) Energy (1) decay over time for both the discrete
method (45)–(47) (”Imp.”), and (48)–(50) (”Semi-
Imp.”) for different values of interfacial tension param-
eter. Notice the logarithmic scale of the y-axis.

Figure 5: (a) – (l): the solution at time t for the phase-field φ. (a) – (d): γ = 5, (e) – (h): γ = 10, (i) – (l):
γ = 100. (m): Total energy (1) for both the implicit (in the elastic energy) time discretization (45)–(47) and
the semi-implicit one (48)–(50) with different time step sizes and γ = 10.
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Figure 6: Test case with random initial data: Total number of iterations for different values of the interfacial
tension parameter γ. Here, ”Imp.” refers to the discrete system of equation (45)–(47), whereas ”Semi.-Imp.”
corresponds to the discrete system of equations (48)–(50). Moreover, ”Mono.” refers to the monolithic full
Newton method applied to the discrete system of equations and the alternating minimization algorithm is
labeled with ”Split.”. The numerical scheme (52)–(54) corresponds to ”Semi-Imp. Split.”.

4.2 Random initial conditions: Spinodal decomposition

We provide another numerical experiment here, with randomized initial conditions, where the initial ”mixture”
decomposes into pure phases and we observe a coarsening effect that resembles spinodal decomposition. This
effect has been studied for the Cahn-Larché equations previously in e.g., [10, 19]. In Figure 5 we present
simulation results using parameters from Table 1, ξ = 1 and γ = 5, γ = 10, and γ = 100. In Figure 5m, we plot
the total energy (1) of the system for both the discrete system of equations (45)–(47) (”Imp.”) and (48)–(50)
(”Semi-Imp.”) for different values of the interfacial tension parameter. We observe that there is close to no
difference between the free energy over the simulation for the two time-discretizations and that both of them
are decreasing over time.

In Figure 6, the total number of iterations for the different solution strategies are presented for different
values of the interfacial tension γ = 1, 5, 10, 50, 100. We see that, as in Section 4.1.1, the number of decou-
pling/linearization iterations decrease for increasing values of the interfacial tension, exactly as the theory for
alternating minimization predicts, Corollary 1. Again the Newton method outperforms the alternating mini-
mization method in terms of numbers of iterations, although the difference shrinks significantly for lower relative
coupling strengths (γ increasing). Moreover, we stress that the alternating minimization method has the added
benefit of allowing for the use of readily available implementations and solvers for Cahn-Hilliard and elasticity
with only small modifications.
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5 Conclusions

In this paper, we proposed a semi-implicit time discretization to the Cahn-Larché equations and showed that it
is equivalent to a convex minimization problem. Then convergence of alternating minimization applied to this
problem was proved, and several numerical experiments to study its convergence properties in comparison to
the monolithic Newton method were provided. Additionally, the alternating minimization (splitting method)
and the monolithic Newton method applied to the newly proposed semi-implicit time-discretization were com-
pared numerically to the same iterative methods applied to a more standard choice of time-discretization with
implicit-in-time evaluations of the elastic contributions and a convex-concave split of the double-well poten-
tial. We observed that the convergence properties of the iterative methods (Newton’s method and alternating
minimization) applied to the newly proposed time-discretization are superior to those that are applied to the
standard discretization, and in several cases we get convergence of the Newton method for the former and not
for the latter. Moreover, for the special case of phase-field-independent elasticity tensor we proved that the
discretization is unconditionally gradient stable, by exploiting its minimization structure. For the phase-field
dependent elasticity tensor, numerical experiments show that the free energy of the system decreases over time.
The newly proposed time-discretization is shown to be well suited for iterative solution schemes and provides a
needed alternative to the standard implicit methods.
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