
University of Bergen
Department of Informatics

TimeBender: Interactive Authoring

of 3D Space-Time Narratives

Author: Rikke Aas

Supervisor: Stefan Bruckner

September, 2022

Abstract

Communication of scientific results and discoveries to, for example, fellow domain ex-

perts, business partners, students, or the general public, is an important part of research.

Communication through visualization has been proven to be effective when the represen-

tations are memorable and engaging, and research has shown that these communicative

visualizations can be further enhanced with narratives for certain audiences. A challenge

faced by scientists is to create memorable and engaging visualizations for communication

which traditionally has been done by trained illustrators and designers.

Therefore, we created TimeBender, a framework and prototype implementation to bridge

this gap specifically for authoring narrative posters in a 3D environment with a space-

time dimension. The posters feature multiple scenes forming the narrative, which are

connected by an elongated object encoding the narrative flow. We demonstrate that our

approach is capable of aiding the authoring of these posters through a 3-step pipeline

where, first, the scenes are set up individually, then, the global layout of scenes in the

poster space is determined, before details, such as textual elements, are added. TimeBen-

der supports animation as each scene is rendered dynamically within the poster. The

framework and example results were evaluated in an expert interview with a professional

illustrator.

Contents

1 Introduction 1

1.1 Problem Statement and Contribution . 1

2 Related Work 5

2.1 Visual Communication . 5

2.2 Illustrative Visualization . 10

2.2.1 Low-Level Visual Abstractions . 11

2.2.2 High-Level Visual Abstractions 14

2.3 Narrative Visualization . 17

3 Methodology 23

3.1 Main Pipeline . 24

3.1.1 Local Layout . 24

3.1.2 Global Layout . 25

3.1.3 Detailed Layout . 29

3.2 Focus Object Approaches . 32

3.2.1 Viewpoint-Based Approach . 33

3.2.2 Spline-Based Approach . 36

3.3 Soft Fading Effects . 37

4 Implementation 42

4.1 Unreal Engine . 42

4.1.1 Project Overview . 43

4.2 Main Pipeline . 45

4.2.1 Local Layout . 45

4.2.2 Global Layout . 47

4.2.3 Detailed Layout . 50

4.3 Focus Object Modelling . 52

4.4 Soft Fading Effects . 53

i

4.5 Saving and Loading . 56

5 Results 59

5.1 Performance . 59

5.2 Usage Examples . 60

5.2.1 The Genetic Journey . 60

5.2.2 7 Wonders in 13 Days . 61

5.3 Expert Feedback . 61

6 Discussion and Limitations 68

7 Conclusion and Future Work 71

List of Acronyms and Abbreviations 73

Bibliography 74

ii

Chapter 1

Introduction

When the Chauvet cave was discovered in France in 1994, it provided tangible proof that

our ancestors used images to communicate more than 30,000 years ago. An example

from these cave paintings is shown in Figure 1.1. To date, visualizations are used to

enhance communication of, for example, scientific results, news stories, or instructions

on how to build a Lego. Although it has a long history of use and wide area of applica-

bility, there is still much research needed in the field of visualization for communication.

Research that has been conducted shows that communicative visualizations are different

from analytic and exploratory visualizations in that they should aim at being memo-

rable and engaging [49]. What makes a visualization memorable and engaging is a highly

discussed topic in the scientific community. There is, however, evidence from published

studies [6, 9] pointing towards making embellished and unique visualizations to increase

memorability, and using storytelling to engage the audience [29, 55, 56]. In this thesis,

we therefore create communicative visualizations that combine visual interest through

traditional illustration techniques, with visual storytelling for efficient communication.

1.1 Problem Statement and Contribution

Presentation is especially important for outreach and dissipation of scientific results to

the public. Telling a story with the findings and using engaging visuals to support this

will keep the attention and interest of the audience, and can make complex scientific

topics easier to grasp. However, creating such narrative visualisations for communication

manually is a time consuming task which often requires artistic skills. Hiring an artist

1

Figure 1.1: A famous section of the paintings in the Chauvet cave depicting horses [72]

or graphical designer to do this job is an option, but the problem then becomes to accu-

rately describe what the content of the visualization should be. The artist will probably

not be an expert in the field and thus there is a large potential for misunderstandings,

details being lost, or focus being shifted. It is desirable for domain experts to create the

visualizations themselves, but without the skills of an artist or designer, they need tools

to help them.

This is a broad problem, and creating a general solution for all types of visual com-

munication of scientific results is not feasible. According to Kosara [49], visual commu-

nication techniques should be specific and not general, and should aim at being highly

useful for particular data sets and use cases rather than being generally useful. Therefore,

we chose to focus our work on poster visualizations with a certain format. This format

includes multiple scenes that form a narrative in addition to an elongated object, which

we call the focus object, that ties all the scenes together and represents the narrative flow.

Each scene interacts with, or explains a certain part of, the focus object. A motivating

example from the traditional illustrator Jennifer Fairman can be seen in Figure 1.2. Here,

the DNA strand is the elongated focus object that ties the scenes together, roughly from

left to right. The poster has similarities to comics-based visualizations, where different

scenes layouted on a page form a narrative. The placement and size of each scene are

important considerations for the author of a comics-based visualization, which is also

true when using TimeBender. A crucial difference between the format of our posters

and comics-based visualizations is the focus object that encodes the narrative flow. This

allows the author more freedom when placing scenes in the poster, as the audience can

follow the focus object along the narrative flow rather than the position of the scenes

implicitly encoding this.

2

Credit: Illustration by Jennifer E. Fairman, CMI, FAMI © 2007 JHU AMM

Figure 1.2: The Genetic Journey by Fairman Studios [69], a motivating example for the
work in this thesis. The DNA strand smoothly ties the scenes together, in addition to
being part of the scenes. This image is included with the permission of Fairman Studios,
all rights reserved.

The main contribution of this project is a framework, with an implemented prototype,

for authoring narrative posters in a 3D environment with an additional time dimension.

In contrast to comics-based visualizations, the time dimension is not implicitly encoded

in the layout of scenes, but explicitly encoded with the elongated focus object. The

posters can also contain animations given that they are presented digitally, which could be

considered as a dual time dimension. Our framework creates posters in a 3D environment

which means that the scenes are set up with 3D models in a 3D space, i.e., in addition

to moving objects horizontally and vertically along the screen or poster, the author can

move them in depth.

To create a cohesive poster with the described format, one major challenge was to

ensure that the focus object ties the scenes together smoothly and continuously, while

interacting with the scenes as defined by the poster author. We call this inter-scene and

intra-scene behaviour, i.e., how the focus object behaves between scenes and how the

focus object behaves within a scene respectively. To ensure well-defined inter- and intra-

scene behaviour, the focus object is rendered with only one perspective camera, the main

camera of the poster, while the other objects in a scene are rendered by a separate camera,

the scene camera. Each scene has its own scene camera, and the rendered images from

these are stitched together with the main camera image to create the complete poster.

The authoring process is interactive, so the author of a poster is able to set up different

scenes, place them in the poster, and influence the shape and positioning of the focus

object, while the framework conserves the expected inter- and intra-scene behaviour.

3

The narratives in the posters created with our framework have a linear structure, i.e.,

the sequence of scenes follows one after another without diverging paths. This is also

known as an author-driven narrative as the audience cannot influence the narrative flow

by, for example, choosing different paths. While interaction by the audience is interesting

as a potential future extension to TimeBender, it is not within the scope of this thesis.

The narratives can also be comparative by placing scenes that should be compared close

together since we allow for any layout of the scenes within a poster.

To evaluate our approach, as well as the quality of example posters created with our

prototype, we conducted an expert interview with a professionally trained illustrator.

Interviewing an illustrator made it possible to compare our method to the normal work-

flow of an illustrator, as well as verifying that our posters comply with illustration best

practices.

4

Chapter 2

Related Work

Although communication as a main task of visualizations has not been a central focus in

the visualization research community, there has been scientific work on the topic. We dis-

cuss the importance of communication as a visualization research area, as well as how to

create a well-performing communicative visualization, which are also called presentation-

oriented visualizations. This includes making the visualizations memorable and engaging,

which can be done by using illustrative visualization to create visual interest, and narra-

tive visualization to invoke emotions and engage the audience.

2.1 Visual Communication

The three pillars of visualization research are data, users, and tasks, hence visualization

solutions usually target a specific type of data, group of users, and set of tasks. To create

more generalizable visualizations, efforts have been made to abstract from domain spe-

cific tasks to pure visualization tasks. In her book, Munzner defines three levels of task

abstraction: low-level querying, mid-level searching, and high-level analyzing tasks [58].

Each level is in turn split into different cases. In this task abstraction system, commu-

nication is defined as a sub-task of analyzing and given little importance. Recent work

by Garrison et al. [37] uses a simpler task abstraction, compared to the one presented by

Munzner, which defines three high-level tasks: exploration - to generate hypothesis, anal-

ysis - to verify hypothesis, communication - to dissipate findings. In this classification,

communication is a high-level task in its own right. This could indicate a trend in the vi-

sualization research community, where visualization for communication and presentation

5

of findings is being treated as an independent topic of research and not an afterthought

in tools and frameworks built for analysis or exploration. This is also emphasized by

Kosara who argues for the need to consider communication as an equally important task

in visualization research as exploration and analysis [49]. He states that when presenting

data, the goal is to leave a lasting impression by being memorable and engaging, which

standard visualization techniques, e.g., bar charts, scatter plots, etc., generally are not.

Kosara makes the point that these classic visualization techniques are not failing at these

goals, they are simply not attempting to achieve them. Memorability and engagement

are not important factors in analysis and exploration tasks, and can in contrast be harm-

ful to the execution of these tasks by distracting the user. However, they are crucial for

visual communication and we will take a closer look at how to achieve these goals in the

following sections.

Visualizations can also be abstracted with respect to the design aspects. Moere and

Purchase, inspired by Roman architecture, argue that there are three equally important

design aspects in a visualization: utility, soundness, and aesthetics [73]. In traditional

visualization research, the focus has been on the first two aspects where utility is related

to how effective and efficient a visualization is, i.e., how well the tasks are performed

and how fast these are achieved, and the soundness is related to the implementation

and generalizability, e.g., to different data sets and tasks. The authors attempt to draw

research focus onto the third part of the triad: aesthetics or attractiveness, by stating

that more aesthetic visualizations can lead to more user engagement and thus also more

efficient communication in the case of a communicative visualization.

Memorability

What makes a visualization memorable has been a highly debated topic in the visualiza-

tion research community. A natural instinct could be to think that visual embellishments

create memorable visualizations since they stand out. But visual embellishments have

also been named ”chartjunk” by Tufte [71] and his supporters, and presented as some-

thing to avoid in visual representations of data. To provide evidence for the link between

memorability and embellishment, Bateman et al. performed a study where they let par-

ticipants see either a minimal or embellished version of the same 14 data charts [6].

Examples of a minimal (a) and embellished (b) version of the same data chart are shown

in Figure 2.1. The authors then asked half of the participants to recall the charts they

had seen immediately, whereas the other half were invited back after two to three weeks

to recall the charts. They found that there was no significant difference between the two

6

a b

c d

Figure 2.1: Example from the memorability study of Bateman et al. [6] with (a) a plain
visualization free of ”chartjunk” and (b) an embellished visualization of the same data.
In addition, there is an example from the critical response to this study by Few [32],
again with (c) a plain visualization and (d) an embellished visualization of the same
data. Clearly, the usefulness of embellishment can vary.

chart types with the immediate recall, whereas with the recall after several weeks, the

embellished charts performed significantly better. However, the findings in this study

have been questioned by, among others, Few [32]. He criticized the study design in mul-

tiple ways, e.g., the number and diversity of participants (the study was conducted on 20

university students), as well as the visual prompts in the study. According to Few, the

minimal charts were designed badly creating an unfair comparison, while the embellished

charts were relatively uniform in that they were all simple charts with one concise message

and designed by the same established graphical designer, Nigel Holmes. Few argued that

the study made claims that were much bigger than what they were actually proving, as

they were only investigating a very limited set of embellished charts, not embellishment

in general. Figure 2.1 c-d shows a counter example of useful embellishment, according to

Few.

To overcome the criticized limitations of the study by Bateman et al., and get closer

to resolving the debate, Borkin et al. performed a new and more comprehensive study

on the same topic [9]. The study design was different in that they used only real-world

7

visualizations, in addition to having a larger number of both visual prompts and partic-

ipants, with 2070 and 261, respectively. A finding of the study was that more cluttered

visualizations, including embellishments, were indeed more memorable than minimalistic

visualizations. In addition, including color and human recognizable objects, as well as us-

ing novel visualization types, have a favorable impact on the memorability. The findings

from this study imply that posters created with TimeBender may be memorable as they

are rather embellished than minimalistic and feature 3D models which are closer to hu-

man recognizable objects than abstract representations of data. The results of the study

by Borkin et al. seemingly contradict the views of Tufte and Few, the former famously

stating in his first book: ”Graphical excellence is that which gives the viewer the greatest

number of ideas in the shortest time with the least ink in the smallest space” [71]. But

in fact, the minimalist views of these scientists do not exclude embellished visualizations.

Few affirms that embellishments can actually be useful when they support the message

that the visualization is trying to communicate by drawing attention to salient features,

making the message more memorable, and creating more engagement [32]. Figure 2.2

shows two visualizations featured by Tufte as examples of graphical excellence, showing

that message-supporting embellishment is valued also by the founder of the ”chartjunk”

debate.

Embellished visualizations, such as the one shown in Figure 2.1 b, are traditionally

created manually by graphical designers or illustrators. Efforts have been made in visual-

ization research to simplify the process. For example, the work by Kim et al. [46] aimed

at helping designers create embellished data charts that remain true to the underlying

data by adding Data-Driven Guides, i.e., indicators of, for example, length or size that

the designers could use to measure their hand-drawn components. Wang et al. [76] cre-

ated a tool to allow users to customize the marks of a regular data graphic, e.g., a bar

chart or line chart, to easily create embellished versions of their data graphics. Park et

al. [61] focus on line charts and find photos with a similar linear structure, for example,

the silhouette of a mountain range. The photo is then manipulated to fit the line chart

exactly and the result is a Graphoto, an embellished chart combining the line chart with

a matching photograph. These examples all focus on data that does not have an intrinsic

spatial arrangement. For data with an intrinsic spatial arrangement, e.g., volumetric data

and polygon meshes, which is the data that is used to create posters with our framework,

the illustrative visualization field has made steps to automate and replicate the work of

scientific illustrators. An in depth discussion on illustrative visualization is presented in

Section 2.2.

8

a

b

Figure 2.2: Examples from the Graphical Excellence chapter in Tufte’s book: The Vi-
sual Display of Quantitative Information. Minards figurative map (a) from Tableaux
Graphiques et Cartes Figuratives de M. Minard showing the movements of Napoleon’s
troupes in Russia, and the life cycle of the Japanese beetle (b) from Man and Insects by
L. Hugh Newman.

Engagement

The second factor mentioned by Kosara for creating successful communicative visualiza-

tions is engagement. There are different ways of creating engaging visualizations, e.g.,

according to Moere and Purchase, aesthetic representations can lead to better user en-

gagement which in turn can lead to more effective communication [73]. Another way

of enhancing engagement is to create a narrative around the data. ElShafie found that

constructing a story to tell with the data can ease the comprehension of complex scientific

topics for a general audience [29]. She also emphasizes the necessity of knowing one’s

audience. The goals of communication are generally different when addressing fellow

domain experts versus the public, e.g., explaining detailed scientific results and methods

9

versus providing an engaging overview of the topic of research to spark interest. Thus,

for the general public, a story could be an appropriate means of communication, whereas

it could be distracting when communicating with fellow domain experts.

Chu et al. affirm that presenting data as a narrative can contribute to efficient commu-

nication by providing new perspectives on the data which can lead to new insights [23].

When creating narrative visualizations, traditional rhetoric techniques of logos, ethos,

and pathos can be used to invoke stronger engagement on the message of the visualiza-

tion, or to imply certain interpretations of the data [43]. Communicating data through

a narrative can, in addition to creating engagement, make the message more memorable

and easier to comprehend for a general audience [55]. Our framework creates narrative

visualizations that can tell a story through the sequence of scenes in the poster. The

topic of narrative visualization is covered in Section 2.3.

2.2 Illustrative Visualization

Scientific illustrations have been used to communicate and educate for centuries.

Leonardo da Vinci is possibly the most famous scientific illustrator and works such as the

Vitruvian Man, shown in Figure 2.3 a, are iconic more than 500 years after his death.

Scientific illustrations include directions such as medical illustration, Figure 2.3 b, and

technical illustration, Figure 2.3 c. The illustrations are abstracted from the real-world

objects they depict, yet are usually highly detailed and require a substantial amount of

manual labour to create. Traditionally this was done by drawing on paper, but more re-

cently digital tools such as Photoshop [4] and After Effects [3] have simplified the process.

Illustrative visualization combines centuries of knowledge from the traditional illustra-

tion domain with modern algorithmic approaches and graphical hardware to more or less

automatically generate illustrations from data.

A common technique in scientific illustration is abstraction from reality. The illus-

trations are not meant to be photorealistic, i.e., they do not try to depict the object or

scene as it could be seen in reality, but are simplified or distorted so that the message

presented by the visualization is in focus. Garrison et al. define a 2D abstraction space

for biomedical communicative visualizations where the dimensions are model abstraction

and visual abstraction [36]. The model abstraction relates to the level of detail in the

communicated knowledge, whereas the visual abstraction relates to the visual complexity.

Traditional illustrations can lie anywhere in this abstraction space, the model abstraction

10

a b c

Figure 2.3: Examples of scientific illustrations. The Vitruvian Man by Leonardo da
Vinci (a) and an illustration of the human throat by Max Brödel (b) are examples of
traditional medical illustrations. The last image (c) depicts a PC interface card [38] and
is an example of a technical illustration with a more modern style.

can be high, e.g., the beetle life cycle in Figure 2.2 b, or low, e.g., the PC interface card

in Figure 2.3 c. Likewise, the visual abstraction can be high, e.g., the map of Napoleons

troops in Figure 2.2 a, or low, e.g., Figure 2.3 b. In this abstraction space, posters created

with our framework present a low level of detail, i.e., they are generally high in the model

abstraction dimension, whereas they would generally be low in the visual abstraction

dimension since the 3D models are rendered with a realistic shading model.

Another definition of abstractions in illustrative visualization was provided by Rautek

et al. as a distinction between how to render and what to render [65]. Low-level abstrac-

tion, i.e., how to render, encompasses algorithmic techniques to render 3D structures in

an artistic and non-photorealistic way. Examples of these techniques are described in

Section 2.2.1. High-level abstraction, i.e., what to render, includes strategies to empha-

size salient structures and remove or de-emphasize less important structures, is detailed

in Section 2.2.2

2.2.1 Low-Level Visual Abstractions

On the lowest level of abstractions from illustrative visualization we can consider how

different components are visualized. Illustrative visualization and non-photorealistic ren-

dering techniques exist to emphasize important features of a model or a scene while

reducing visual complexity and preserving the context around the features of interest.

These techniques are often inspired by traditional illustration and seek to recreate the

effects of this manual work in an algorithmic way. A great number of these techniques

have been developed and covering them comprehensively is not feasible in the scope of

11

Figure 2.4: Categories for 3D surface-based illustrative rendering as presented by Lawonn
et al. [52]

this thesis. We attempt to create an overview with the goal of providing context around

our contribution.

In their survey, Lawonn et al. present an overview of 3D surface-based illustrative

rendering techniques [52], all of which are part of the low-level visual abstractions. They

split the techniques into five categories, silhouettes and contours, feature lines, hatching,

stippling, and illustrative shading, as illustrated in Figure 2.4. Each of these categories

contain multiple techniques and variations. Silhouettes and contours, in addition to

feature lines, draw inspiration from traditional sparse line drawings which aim to give

a simplified view of a geometry by drawing only a limited number of lines. Csebfalvi

et al. present a technique for generating and rendering contours from volume data [26].

Thickness of contour lines from 3D surface data, i.e., volumes or polygon meshes, are

optimized by Kindlmann et al. in their work on transfer functions based on second order

derivatives [47]. Both of these works are in the category of silhouettes and contours,

although the technique of Kindlmann et al. could be adapted to optimize feature lines

instead of contours.

Hatching and stippling make use of surface-filling marks to create a shading effect

which shows the 3D structure of a surface in an abstracted way. Zander et al. propose a

method to create a hatching visualization based on polygon meshes [79], whereas Aidong

et al. base their stippling visualizations on volume data [54].

Illustrative shading is the least abstracted category and includes inspiration from

comics and cartoons, traditional illustrations, and more. Techniques that, for example,

render 3D objects in a painted style, e.g., watercolor, would be placed in this cate-

gory [10, 21]. Gooch et al. present a non-photorealistic lighting model inspired by tech-

nical illustration which is also placed in the illustrative shading category. The technique

uses both hue and luminance, instead of solely luminance as in classic Phong shading, to

convey spatial information [39]. The benefit of this technique is that extreme luminances,

i.e., very light or very dark colors, are not used by this shading and can rather be used to

12

enhance a visualization with classical illustration techniques such as outlines, with very

dark colors, and highlights, with very light colors. In a related work, Wang et al. created

a system to help users pick meaningful colors for their visualizations with an emphasis on

contrast [75]. They consider two levels of contrast, hue and luminance, which are linked

to inter- and intra-class contrast respectively. In addition, vividness of a color is mapped

to importance.

Another important technique in traditional illustration is deformation of surfaces,

e.g., by enlarging important structures and reducing context structures. This has, for

example, been done by Reinert et al. inspired by the sensory and motor homunculi, where

annotations of importance provided as input determines the size of the deformation [7].

An example of this technique is shown in Figure 2.5. This type of deformation based

on importance can be found in traditional illustration all the way back to ancient Egypt

where size of figures in an engraving denotes their significance. Another approach by

Keahey and Robertson deals with deformation in image space by magnifying regions

and creating smooth transitions between the magnified and non-magnified regions in the

image [45]. For both of these approaches, the goal of the deformation is to make the

most salient features of an object larger to emphasize them. Yu et al. create distortions

in objects by combining multiple perspectives [78] and their approach can be used to,

for example, create different postures from the same static model. A different usage

for deformation of surfaces or structures is to avoid occlusion of an object or structure

of interest. This could for example be done in a view dependent manner by distorting

a b c

Figure 2.5: Example of the warping technique developed by Reinert et al. [7], showing the
original model (a), the importance mask (b) where the lighter yellow is more important,
and the resulting deformed model (c).

13

structures that intersect with a viewing ray from the camera to the object of interest [18].

In our framework, we use deformation to smoothly connect neighbouring scenes with the

focus object, in addition to making important scenes appear larger in the final poster.

Low-level illustrative visualization abstractions can also be optimized in a domain

specific way. For example, the techniques and ideas have been used in flow visualiza-

tion [19, 11] to create simplified images. However, the abstracted representations of the

flow, e.g., an iso-surface, can turn out to be very complex and the shape can be dif-

ficult to perceive, especially when using transparency. Carnecky et al. solve this by

using cues from technical illustration to enhance perception of these complex transparent

surfaces [17].

Frameworks to combine multiple illustration techniques to meet different tasks and

objectives have been developed. Bruckner et al. present a framework that can composite

multiple rendered layers of an object or scene with different blending operators and

layer masks [15]. This allows users to create illustrative visualizations with traditional

illustration effects such as selective transparency.

2.2.2 High-Level Visual Abstractions

In addition to the low-level abstractions of how to renders models or scenes, we must

consider what to render through high-level abstractions. This is important to simplify

visualizations and focus the viewer’s attention on the most important aspects of the

model or scene. Usually we want to keep the less important structures or features in the

visualization, but de-emphasized, to provide context while focusing the viewer’s attention

on salient features. This type of visualization is called focus+context.

One approach to focus+context visualizations is using smart visibility, i.e., cut-aways,

ghosting, or exploded views [74]. An example of how a cut-away technique is used in a

traditional illustration can be seen in Figure 2.3 b. Cut-aways refer to views where parts

of an, or multiple, occluding structures are removed to reveal salient structures behind

that would otherwise not be visible, e.g., removing skin to view muscle tissue underneath.

Different types of cut-away techniques exist. Correa et al. use metaphors from medical

treatment, with tools such as peelers, retractors, pliers and dilators, to create specialized

cut-away visualizations with volumetric data [24]. Users can choose to align the cuts

along an axis, a surface, or a segment to produce the desired effect. Ghosting refers to a

technique where occluding structures are drawn in an abstracted way, e.g., low opacity,

14

line drawing, etc., while the otherwise hidden salient structure is drawn in full detail and

opacity. Bruckner et al. present a ghosting-inspired technique for volumetric data [14].

An example of this is shown in Figure 2.6 a. Krüger et al. publish, in the same year, a

very similar technique where transparency and shading are used to create visualizations

that are close to the illustrations using ghosting [51]. This technique can, however, be

applied to polygon meshes in addition to volumetric data. Finally, exploded views refer to

visualizations where objects are segmented and these segments are displaced based on, for

example, physics inspired forces [13] as shown in Figure 2.6 b. Efforts have been made

to combine smart visibility techniques in an intuitive way. In VolumeShop, Bruckner

and Gröller combine non-photorealistic rendering with cut-away and ghosting techniques

in one unified system [12]. They can generate static images that bear resemblance to

traditional illustrations with the benefits this entails, while still allowing for interactive

manipulation of the images.

a b

c

Figure 2.6: Examples of high-level visual abstraction techniques: ghosting (a) by Bruck-
ner et al. [14], exploded views (b) by Bruckner and Gröller [13], and semantic depth of
field (c) by Kosara et al. [48].

15

Kosara et al. present a novel focus+context visualization called Semantic Depth of

Field [48]. In contrast to traditional depth of field that decides the level of blurring based

on the distance to the camera, they use blurring to de-emphasize the context structures

and render the focused objects or structures sharply, for example, as shown in Figure 2.6 c.

Another problem which is solved in scientific illustration, but which is non-trivial

with common visualization techniques, is depicting data with scales on different orders of

magnitude, often referred to as multiscale data, in the same visualization. This is useful

in, for example, medical illustration where one might want to show whole organisms,

e.g., humans, organs, cells, and molecules in the same image. An illustrator can easily

change the scale of structures in the image artificially and blend between different scales,

an award-winning example is shown in Figure 2.7 a. But when basing a visualization on

real-world data, this is a challenge. Halladjian et al. solved this challenge by smooth

transitions between zoom levels as a viewer zooms in or out on a multiscale structure,

e.g., a DNA molecule [40]. In their proposed framework, an abstracted 2D representation

of the higher scaled data is embedded semi-transparently in the 3D representation of the

currently focused scale level. The higher scaled data is embedded to provide context. A

downside to this approach is that all data can not be viewed simultaneously, although

the benefit is that they achieve a more accurate depiction of how the different scales

relate to each other, also spatially. A different approach to visualizing multiscale data,

which is closer to traditional illustrative approaches, is presented by Hsu et al. [42]. They

create visualizations that seamlessly combine multiple scale levels of a 3D model. The

user sets up pinhole cameras at different scales to render desired parts of the model. The

framework combines the rendering of each camera into one final continuous image by

using non-linear viewing rays. Our framework also combines the rendering of multiple

pinhole cameras, i.e., perspective cameras, but this is done with depth composition and

opacity manipulation rather than non-linear viewing rays.

16

a b

Figure 2.7: A multiscale illustration (a) Zoom Into the Human Bloodstream by Linda Nye
and the Exploratorium Visualization Laboratory [60], and (b) the multiscale visualization
by Hsu et al. inspired by the illustration [42].

2.3 Narrative Visualization

A narrative is defined as a sequence of chronological events that are linked in some way,

whereas a story has a plot with a setting and a resolution, according to ElShafie [29].

With this definition, narrative is a broader term with stories as a subset, where the

sequence of events form a plot. Others provide a circular definition of the terms, i.e., a

story is a narrative and a narrative is a story. We will use the definition by ElShafie in

this thesis because it is useful to distinguish between the two terms for our framework.

The framework creates posters with a sequence of scenes, i.e., a narrative. Depending on

what these scenes are depicting, the sequence can form a plot, and thus a story, or not.

The responsibility of creating a story lies with the users of our framework, whereas we

can only guarantee the creation of a narrative.

In addition to providing these definitions of narrative and story, ElShafie describes

what a good science story is [29]. For example, it is important to find the story in the

data, rather than forcefully fitting the data to a pre-determined story. Finding stories

in data is not trivial, and it is not given that there are stories to find. This difficulty

is one of the main challenges of visual storytelling, according to Ma et al., and solving

it requires collaboration between domain and visualization experts [55]. Other consid-

erations to make when creating science stories include the audience of the story. The

level of knowledge on the subject of the story is a crucial factor, and should guide the

17

creation of the visual science story [55]. Stories might not be an appropriate communi-

cation form for all audiences, e.g., fellow domain experts, but can be used to bridge the

gap between general audiences and complex scientific topics [29]. An example of this is

provided by Meuschke et al. in their work to communicate disease data through narrative

visualization primarily to a non-expert audience with and interest in medicine [56]. Dis-

eases, including symptoms, diagnosis, treatment, prognosis, and possible prevention, are

complex scientific topics and are difficult to understand for the general public with little

medical knowledge. They compared their interactive narrative visualization, an example

is shown in Figure 2.8, to a more traditional blog design, and found that their approach

increased both memorability and engagement on the topic. Although finding a story to

tell and considering the intended audience are clearly important for a successful narrative

visualization, they lie outside the scope of this project and are the responsibility of the

author of a poster.

Figure 2.8: Example of the narrative visualizations created by Meuschke et al. to com-
municate disease data [56]. The figure shows only an excerpt of the visualizations.

Design Space of Narrative Visualizations

Efforts have been made to define the design space of narrative visualizations. Segel and

Heer propose a design space with three dimensions: genre, visual narrative, and visual

structure [68]. The design space was based on an analysis of 58 real-world narrative

visualizations mainly from journalism. According to the authors, there are seven genres of

narrative visualizations: magazine style, annotated chart, partitioned poster, flow chart,

comic strip, slide show, film/video/animation, as shown in Figure 2.9. The authors

acknowledge that for more complex visualizations, multiple genres must be combined.

The map by Minard from Figure 2.2, for example, does not fit into any one of these genres

although it is an established example of a narrative visualization. It could, however,

fit into a combination of the annotated chart, partitioned poster, and flow chart genres.

TimeBender posters could be defined as a combination of the annotated chart, partitioned

poster, flow chart, and comic strip genres.

The second dimension, visual narrative, relates to the visual expression supporting

the narrative. This dimension is divided into three categories: visual structuring, high-

18

Figure 2.9: The genres of narrative visualizations as defined by Segel and Heer [68].

lighting, and transition guidance. Visual structuring means that visual elements are used

to show an overview of the narrative and to place the user at their current location in

the narrative. Examples of visual structuring include progress bars and check lists. Our

framework does not include any visual structuring elements as the viewer of a poster

created with our framework can always see an overview of the poster since the whole

poster is visible at all times. Highlighting means that visual elements are used to help

focus the audience’s attention at important features of the narrative. Highlighting is

similar to techniques used in focus+context visualizations, as discussed in Section 2.2.2.

Examples include increasing size, using a contrasting color, and blurring objects that

are not in focus. Highlighting is included in our framework by allowing the author to

decide the size of each scene in the poster such that important scenes can be larger in

size. The author could also, for example, use vibrant colors on the focus object to make

it stand out. Transition guidance emphasizes the importance of ordering in a narrative.

Techniques for transition guidance are designed for smoothly switching between subse-

quent scenes and include animated transitions and object continuity. In TimeBender, the

transition between scenes is guided by object continuity, as the focus object continuously

ties subsequent scenes together.

Narrative structure, the third dimension of the design space defined by Segel and

Heer, incorporates all non-visual narrative aids. This dimension is also divided into three

categories: ordering, interactivity, and messaging. Ordering indicates which structure

the narrative has, e.g., author-driven or user-driven. Interactivity, as the name suggests,

indicates how the user can interact with the narrative, e.g., moving between scenes,

accessing details, filtering data, etc. Messaging describes textual commentary to the

visualization. This can be a title, short textual annotations, or longer explanations in,

for example, a news article. In our framework, we use a author driven, i.e., linear,

ordering of the narrative. In addition messaging can be added in the form of titles and

short annotations to the scenes. Audience interactivity was not a focus during this work,

but it an avenue for future work, as will be explained in Section 7.

19

Narrative Visualization Approaches

Although narrative visualization is a relatively young research field, many techniques,

frameworks, and tools have already been published. Wohlfart and Hauser proposed a

framework that focuses of narrative visualization for volume data [77]. The narratives

are created by setting up key frames which should show the main interesting features that

the author wants to focus on. When viewing the visualization, the key frames are shown

in sequence with smooth animated transitions. The goal of the smooth animation is to

keep the user’s mental map intact between each key frame. The framework also allows

for limited interactivity during the viewing of the visualization. The audience can for

example change the viewpoint in a key frame. Wohlfart and Hauser argue that allowing

a viewer to interact with a narrative visualization will lead to the viewer trusting the

results shown in the visualization more as they can verify the findings [77]. However, the

interactions can also introduce additional complexity, for example, letting the audience

change the viewpoint requires that they are able to navigate in a 3D environment, which

is not trivial.

Visual storytelling has been proposed as a way to bridge the gap between visual ana-

lytics, which can involve mentally combining results from multiple complex visualization,

and general audiences. According to Chen et al., creating a story around analysis results

can help audiences without visual analytics experience or knowledge to understand the

results and their implications [20].

Comics-based storytelling [23] is an approach that draws inspiration from comic books,

where scenes are layouted on pages in a sequence that creates a narrative. The scenes

can be annotated with speech or though bubbles, or short explanatory texts. Scene

importance can be encoded in the space allocated to the scene within the comic-book

page. The narrative structure is usually encoded implicitly with the page allocation and

the layout within the page. TimeBender has similarities to comics-based techniques.

Individual scenes are set up and tied together in a narrative. The importance of a scene

in our tool can also be encoded by the size of the scene. However, the narrative structure

in posters generated with our framework is explicitly shown by the focus object which

means that the layout of the poster is not constrained by the need to create an implicitly

understandable narrative flow.

Correa and Ma present a technique that, in the resulting visualizations, carries some

similarities to comics-based storytelling, dynamic video narratives [25]. They create a

summary of videos in one static image by combining scenes consisting of multiple frames

20

on a continuous background. In Figure 2.10 a, an example created from a Superman

cartoon is shown. By combining multiple frames a motion blur effect is created to show

movement and speed. In the resulting visualizations, time is implicitly moving from left

to right along the vertical axis and all narratives are linear in time. The continuous

background creates a coherent summary image. We share a similar goal of creating a

coherent narrative visualization. In contrast to Correa and Ma’s solution, we solve the

coherency by connecting all scenes with a common ”red thread”, the focus object. This

allows our resulting images to be more flexible when it comes to arranging the scenes as

the time, or order, of the narrative is encoded with the focus object, and not implicitly

from left to right along the vertical axis. Scenes can therefore be placed however the user

wishes while preserving the ordering of scenes. This can be beneficial, for example, if the

author wants to facilitate the comparison of two scenes that are not neighbors in time.

a

b

Figure 2.10: An example of a dynamic video narrative [25] depicting a scene from a
Superman cartoon (a), and a Temporal Summary Image [16] showing the nationalities of
immigrant to USA, as well as their geographical locations at selected years (b).

Another related approach was presented by Bryan et al. as a framework called Tem-

poral Summary Images (TSI) [16]. The framework includes support for analysing data

to find interesting story points, and creating a presentable narrative visualization based

on these. The final image combines one continuous view of a selected data feature as

a function of time, snapshots at interesting points in time showing different aspects of

the data, and textual annotations. Figure 2.10 b shows an example of a TSI depicting

21

the distribution of nationalities of immigrants to the United States of America with snap

shots showing their geographical distribution in the country. Annotations guide the au-

dience through the narrative, contrasting the immigration if Irish and Mexican citizens.

In this approach the snapshots, which can be considered as scenes in a narrative, are

tied together by the continuous temporal view of the data. The narrative in the TSI is

implicit and must be outlined by textual annotations. The type of data is restricted to

data with two main dimensions where one is temporal. In the example in Figure 2.10 b,

the second main dimension is nationality of the immigrants.

22

Chapter 3

Methodology

The goal of TimeBender is to aid the authoring of posters in a 3D environment with a

space-time dimension. The time dimension follows an elongated 3D model, called the

focus object, that connects, as well as participates in, the scenes of the poster. The focus

object is modeled as a spline to ensure smoothness and continuity throughout the poster.

Authoring of such posters is carried out through a five step pipeline. The author

first devises a narrative, i.e., a sequence of scenes, that will showcase insights about the

data that they want to communicate with the poster. This can be done by distilling a

story from data as suggested by ElShafie [29], i.e., finding a story in the data rather than

creating a story around the data. Second, each individual scene is set up in what we have

called the local layout step. Third, in the global layout step, the scenes are positioned

in the poster space, similar to layouting in a comics-based visualization [23]. Fourth, the

detailed layout creates the final poster with textual elements. And finally, the author

presents the poster to a target audience. As discussed in Section 2.1, visual communica-

tion, notably through visual storytelling, must be targeted towards the intended audience

to be effective, e.g., by deciding the level of detail in the visualization based on the prior

knowledge of the audience. The scope of our framework includes the three middle steps,

i.e., the local, global and detailed layout, which correspond to the creation of a poster.

The first and last steps remain the responsibility of the author and will not be discussed

in this thesis. In this chapter we provide a description of the framework, including the

three middle steps of the authoring pipeline, and functionalities that are not tied to a

specific step of the pipeline, i.e., the modelling of the focus object, and soft fading, both

in depth and edges of scenes.

23

3.1 Main Pipeline

We will now describe TimeBender’s main pipeline which has three steps, the local layout,

the global layout, and the detailed layout as can be seen in Figure 3.1. For each step we

describe what the step does, why it is needed, and how it works on a concept level.

Figure 3.1: An overview of the main pipeline of TimeBender. There are three main
steps in the pipeline, local, global, and detailed layout. In addition to these we have two
peripheral steps, not included in this framework but crucial to a successful poster, which
are, first, to find a story to tell with your data, and finally to present the completed
poster to an appropriate audience.

3.1.1 Local Layout

The first step of the pipeline is the local layout step. Here, each scene is set up individually

by the author, i.e., one scene is viewed and handled at the time and no overview of the

poster is given. Once each scene has been conceptualized and the author is satisfied

with the appearances, they can move on to the next step. The reason for having the

local layout as its own step, and not including this in the global layout step, is so that

the author can focus on a scene with the whole screen allocated to the view of this

scene. This lets the author see a larger and more detailed view of the current scene while

preventing distractions from the other scenes. When allocating the whole screen to one

scene, instead of sharing the screen with the rest of the poster, the author gets a clearer

view with more details visible. Interactions with the models in the scene, e.g., moving,

scaling, or rotating them, are easier since they appear larger on the screen. Viewing 3D

scenes in this manner, i.e., one scene occupying the whole screen, is familiar to people,

even without 3D modelling experience, as this is the common way to view 3D scenes in,

for example, games and movies.

Each scene has a camera which captures what will be shown in the scene’s section

of the final poster. They also have a control point from the focus object spline with

24

the spline segments on each side and the tangents determining the behaviour of the

spline segments at the control point. In addition, the scene has an index which tells the

framework the order of the scenes in the final poster, and a set of models that should be

depicted in the scene. To create the local layout of a single scene, the author can add and

remove models, and change their location, rotation, and scale. They can also change the

3D position of the control point of the focus object spline related to the viewed scene,

as well as the tangents’ orientation and scale. To ensure a smooth curve, the tangents

entering and leaving the control point are coupled, i.e., they are enforced to be collinear

by the framework, although the scale of the tangents may vary. The depth relationships

between the models in the scene, including the focus object, are preserved in the final

poster, which ensures that the intra-scene behaviour of the focus object spline remains

close to the local layout.

To ease the authoring process during this step of the pipeline, the author can move the

view, i.e., what is shown on the screen, around. This interaction, although introducing

complexity by making the user navigate in a 3D environment, also has benefits such as

making it easier to understand the depth relationships between models in the scene, or

being able to get a more detailed view of certain aspects of the scene. To reduce the

complexity slightly, we add the possibility to snap back to the view of the scene that will

be portrayed in the poster, i.e., how the scene is viewed by the audience of the poster.

3.1.2 Global Layout

After finishing the local layout, the author enters the global layout step. Here, the author

defines the layout of the scenes in the poster, which includes the 2D image position, i.e.,

at which width and height the scene should be drawn within the poster, and the size

occupied by the scene, as shown in Figure 3.2. This step has similar considerations as

comics-based visualizations, for example, as described by Chu et. al. [23], where the

layout of scenes on a page can influence the flow of the narrative and the size of the

scenes can indicate their importance to the narrative.

The global layout step is important because it defines the location and thus spacial

proximity of scenes and the impression of importance, encoded by size, that a viewer gets

when looking at the poster. Commonly in space-time narrative visualizations, time is

encoded along the horizontal axis from left to right. Examples can be seen in Figure 2.10.

This is also the case in comics-based visualizations where time is passing from left to right

and top to bottom, assuming it is written in a language that is read from left to right.

25

Figure 3.2: Example of the global layout step from the prototype implementation of
TimeBender. The darker blue squares indicate the borders of the scenes, including a
region of fading, as explained in Section 3.3. In the center, there is a slider which
determines the size of a scene, the box above the slider indicates which scene’s size
is being altered.

Mangas, traditionally written in Japanese, are a well known counter example of this

assumption. In our case, however, the temporal flow of the narrative is encoded with the

focus object, i.e., the audience of the poster can follow the focus object from one scene to

the next. This allows the author more freedom in the placement of scenes in the poster,

and this placement can thus be used, for example, to simplify the comparison of scenes

by placing them close together or indicating narrative closeness or distance with physical

closeness or distance in the poster.

When entering this step of the pipeline, the author will initially be met with the

scenes placed in an default layout. We chose a horizontal line where the size of the scenes

is equal and determined by the number of scenes such that they all fit in one horizontal

line. Since the author can decide how many scenes the poster should contain, we need

an approach that is dependent on the number of scenes. We want to make sure that an

arbitrary number of scenes fit into the view in a horizontal line. This is done by adapting

the depth of the scenes: the more scenes, the less screen space each scene can take, and

the deeper in camera space the scenes will be placed. Assuming that we know the width

in world coordinates of a scene, we can calculate the needed width of the camera frustum,

i.e., the volume of 3D space captured by the camera, by multiplying the width of one

scene by the number of scenes. This width will be called wf . The following equations are

known relations between camera parameters based on the definitions of these parameters:

26

wf = hf · a (3.1)

hf = d · tan fov

2
(3.2)

wherein hf is the frustum height, d is the depth in camera space, fov is the field

of view angle of the camera, and a is the aspect ratio of the camera. Since the camera

parameters, a and fov, are known and we can calculate the desired wf by multiplying the

width of one scene by the number of scenes, we can combine and rewrite the equations

to calculate the unknown, d.

d =
wf

a · tan fov
2

(3.3)

Solving for d gives us the depth from the camera that scenes must be placed at to

fit in the view in a horizontal line. Because of the chosen horizontal alignment, the y-

coordinate, i.e., vertical coordinate, in camera space of the scenes are the same, e.g., 0 for

a horizontal line across the center of the view). The camera space x-coordinate, i.e., the

horizontal coordinate, depends on the scene index so that the scenes are evenly spaced.

The x-coordinate can be calculated as follows:

xsc =
1

2
· (wsc − wf) + isc · wsc (3.4)

wherein xsc is the camera space x-coordinate of the scene, isc is the index of the scene,

and wsc is the width of the scene. The term 1
2
wsc is added assuming the position of the

scene corresponds to the center point of the scene. To add spacing between the scenes in

the horizontal line, a larger value for wsc can be used to calculate both the depth, d, and

the x-coordinates, xsc, of the scenes.

In the global layout, each scene shows the models as the author has set them up

during the local layout step, but not the focus object which is added in the subsequent

step. The scenes are shown with a border to easier see the size of the scenes relative

to each other as shown in Figure 3.2. Without this border, the author would have only

the size of the models to go by which is harder to compare, and each scene can have

models of vastly different sizes. The border also helps determining the actual location of

27

a scene in the poster as the models may not be populating the whole scene. To change

the image position of a scene, the author can click and drag it to a chosen position in

the poster. Clicking and dragging was selected as the interaction type as it is a common

interaction for moving objects around a 2D screen and will thus be familiar to most users.

Interacting in 3D is more difficult and is why we chose to abstract the third dimension,

i.e., the depth, or distance, of a scene from the main camera, to simply the size of a

scene. When moving a scene further away from the camera, it appears smaller, and vice

versa. But the author does not need to be concerned about the depth, they are directly

changing the size of a selected scene.

A consideration we must make when doing this abstraction is that if we only change

the depth of the scene in camera space, and nothing else, the scene will move in image

space since our camera uses a perspective projection. A perspective projection is similar

to how we as humans view the world, and will create images where objects that are further

away from the camera appear smaller, which is the desired outcome for our application.

We must, therefore, adjust the horizontal and vertical position of the scene in camera

space to compensate so that it seems to the author that the scene is stationary on the

screen and simply increasing in size. To achieve this, we use the geometric concept of

similar triangles. Similar triangles are triangles that have the same shape, i.e., the same

angles, but not necessarily the same size. With two similar triangles, the ratio between

corresponding sides are the same. We can use this knowledge to calculate the horizontal

and vertical camera space position of a point in the scene that will remain fixed in image

space, called a fixed point. This point can be chosen arbitrarily within the scene, but

natural choices include the corners or the center of the scene, the latter was chosen for

this framework.

We know the vertical position and depth of this fixed point before starting to change

the depth of the scene. After changing the depth, we know the new depth but not the

new vertical position of the fixed point in camera space. As shown in Figure 3.3, the

camera and the two positions of the object form two similar right triangles. We know

that they must be similar since they have the same angles: the angles at the camera are

the same since this corner is shared by the two triangles and the angles where the depth

and vertical axes meet are right, i.e., 90◦. Since two of the angles are the same, the third

must also be the same so that the angles add up to 180◦ as they must in a triangle. With

two similar triangles, we know that the ratios between corresponding sides will be the

same. Since we know the depth of each point, i.e., the length of the side of the triangles

aligned with the depth axis, we can calculate this ratio, r, as follows:

28

Figure 3.3: 2D illustration of the perspective projection showing only the depth and
vertical axes. A similar figure could be made for the depth and horizontal axes. The
stippled red circle is indicating the previous position of the chosen fixed point of the
scene, and the red circle is the current position of this point. hp, hc, and dp, dc, are the
previous and current height and depth positions of the point in camera space, respectively.

dp
dc

= r =
hp

hc

(3.5)

wherein the variables are defined in Figure 3.3. The unknown value in this equation

is hc, the vertical position of the fixed point in camera space after moving the scene in

depth. Since the rest of the values are known, we can calculate the unknown, hc, by

rearranging the equation as follows:

hc =
hp · dc
dp

(3.6)

With this we have calculated the new vertical position of the scene, and the horizontal

position can be calculated in the same way. This ensures that the chosen fixed point will

remain in the same location in image space, and the scene will appear to remain stationary

while growing in size.

3.1.3 Detailed Layout

The final step of the pipeline is the detailed layout. This step will produce the ”camera

ready” version of the poster, where all components: the scenes, the focus object, and

the textual elements, are present. We add details in a final step because these are not

important for the layout of the scenes in the poster, which is done in the global layout

29

step, and can rather add distractions and reduce the efficiency of the author in this step.

However, it is crucial that the author can add these details to the final poster before

presenting it, to add explanation with annotations, to create interest and context with

a title, and to define the compromise between intra- and inter-scene behaviour of the

focus object, as well as the amount of distortions in the spline mesh. The compromise

between intra- and inter-scene behaviour is necessary since the focus object is modelled

as a spline. Therefore, the intra-scene behaviour of the focus object in one scene will be

influenced by the positions of the neighbouring control points, and the direction and scale

of their tangents. Since the position of a control point is determined by the position of

the related scene in poster space, this also influences the intra-scene behaviour and can

make it differ from the local layout. This can be counteracted in the scene by increasing

the scale of its tangents, but doing this will influence the inter-scene behaviour creating

a less smooth curve. The focus object can thus interact differently with the scenes than

how it was set up during the local layout, but the author can get as close as they wish to

the original setup while sacrificing the smoothness of the inter-scene sections of the focus

object. Although the focus object can have a different intra-scene layout than in the local

setup, the depth information from the local setup is preserved as shown in Figure 3.4.

a b

Figure 3.4: A simplified example of a poster with only one scene (a). The poster is a
stitching together of views from individual scene cameras (only one in this case), showing
models from the different scenes, and one main poster camera that is rendering the focus
object (b). To stitch these together while conserving the depth relationships between the
different components, we must combine the depth buffers of scene cameras with the main
poster camera. The final depth of a pixel rendered by a scene camera in the main camera
space is equal to the sum of the depth of the pixel in the scene camera space, and the
depth of the scene in the main camera space.

The interactions in this step are similar to the interactions in the global layout step.

The author can click and drag the control points to change their position in image space,

i.e., in the poster. To change the scale of the tangents at a given control point, the

30

author uses a slider (Figure 3.5 c). Additional interactions in this step include the author

being able to choose between the two types of tangents: the self-defined ones from the

local layout step, or tangents estimated using central differences based on the position

in 3D camera space of the two neighbouring control points (Figure 3.5 a-b). A central

differences approximation of a tangent t is calculated as follows:

t =
pn+1 − pn−1

2δ
(3.7)

wherein pn is the position of the n’th control point of the spline, and δ is the step size

which we have chosen to be 1 by default. Each control point in the poster always has two

neighbouring control points because additional control points are added to the start and

end of the spline, as will be explained in Section 3.2.2 and shown in Figure 3.9. Because

of this we do not need to make special considerations for the first and last scene of the

poster.

a b c

Figure 3.5: Graphical user interface from the detailed layout step in the prototype im-
plementation of TimeBender. It shows the menu for selecting tangent type and buttons
to add textual elements (a-b), as well as the slider to decide tangent scale (c). The box
above the slider (c) determines which scene’s tangents the scale is applied to, here it is
scene 1.

The textual elements, annotations and titles, can enhance and guide the visualization

by, for example, giving more information about what can be seen in the scene, or telling

the viewer what to focus on within the scene. Titles can be used to create initial interest

in the poster and to provide context for the visualization by telling the viewer the topic

of the poster. Annotations can be used to provide additional details about a scene, or

tell the viewers what to focus on in the scene. Textual elements are not necessary for all

posters, e.g., if the poster is used only as part of a presentation and context, details, and

guidance could be primarily provided verbally. By default, the annotations are textual

elements with a small font without emphasis, a black color, and left justified text-box,

see Figure 3.6 c-d, and the titles are in a large font with bold emphasis, a black color,

and central justified text box, see Figure 3.6 a-b. This separation makes the information

hierarchy clear for the viewer of the poster. The author can change the width of the text

31

box which in turn will determine the height of the text box as the text is wrapped if it

does not fit on a line. A background can be added to the text box, which ensures that

the contrast to the text is high enough in any environment, e.g., as in Figure 3.6 a-b.

And finally, the author can decide the location in image space of the textual element.

This can be changed by clicking and dragging the text box to the desired location.

a

b

c d

Figure 3.6: Example of textual elements from the prototype implementation of TimeBen-
der. It shows a title (a-b) in a black environment with the contrasting background turned
on, and an annotation (c-d) in a light blue environment. The interactable elements ap-
pear when the author hovers the mouse over the textual element (a, c), and disappears
otherwise (b, d).

After tweaking the control points and tangents of the spline, and adding textual

elements, the author has created the final poster. This can now be saved as a high

resolution screen shot, i.e., the image is super sampled such that the resolution of the

saved image can be larger than the resolution of the author’s screen. In the case that the

poster contains animated models, the poster can also be saved as a screen recording or

presented through the framework.

3.2 Focus Object Approaches

As explained in Section 1, the poster depicts an elongated focus object with different

scenes explaining aspects that form a narrative around it, e.g., a DNA molecule, a protein

32

chain, a blood vessel, etc. Alternatively, the focus object can be a visual connection

metaphor, e.g., a road, a river, a rope, etc., that supports the narrative flow of the

poster. The author should be able to position their scenes arbitrarily within the poster

to create the preferred global layout. This layouting flexibility is important for different

reasons, examples include simplifying comparisons between scenes, indicating narrative

closeness by physical closeness, highlighting narrative importance by physical size, or

merely for aesthetic purposes. The challenge is to assure that the focus object acts as

expected intra-scene, i.e., as the author has set it up within the individual scenes, as well

as inter-scene, i.e., continuously and smoothly connecting the scenes in the correct order.

We propose two approaches to achieve this, first by changing the viewpoint, i.e., the

camera position and rotation, and second by deforming the mesh of the focus object. We

first attempted the viewpoint-based approach with techniques from the computer vision

field as we anticipated that it would lead to fewer distortions in the mesh. Unfortunately,

this approach turned out to be sensitive to noise and not well suited to our specific

usage. We, therefore, changed to a spline-based deformation approach which is what

the final framework is built upon. Splines were used for deformation since they can

produce smooth and continuous inter-scene behaviour, while allowing for detailed and

customizable intra-scene behaviour with positioning of the control points and changing

tangent directions and scales. In this section, we detail the two approaches and explain

the encountered problems that led to the decision of using a spline-based deformation

approach for handling the focus object.

3.2.1 Viewpoint-Based Approach

Initially, we drew inspiration from the computer vision field where there is a concept called

relative pose recovery. The idea is to, based on two images of the same object or scene

and matched points between the two images, recover the relative translation and rotation

between the viewpoints of the two images. Figure 3.7 shows an illustratory example of

how a pair of matched points is defined. The goal of pose recovery approaches is to find

the rotation and translation required to move from the position of the camera viewing

the first image to the position of the camera viewing the second image. We wanted to

use relative pose recovery to determine the position of a camera viewing the focus object

such that the image space locations of scenes in the poster would be as determined by

the author.

An algorithm exists to perform this pose recovery with as little as five matched points,

the appropriately named five-point algorithm by Nister [59]. This algorithm is based on

33

Figure 3.7: Two views, F1 and F2, of the same point, p, in a 3D scene [31]. Each view
has a different position and rotation which changes the position of the point in each
images, 1m and 2m. These image points are a pair of matched points, and the goal of
relative pose recovery is to use matched points from the two images to derive the relative
transformation from one view to the other. This includes rotation, R, and translation,T ,
of one view, e.g., F2, relative to the other view, e.g., F1.

linear algebra relations between the matched points and the camera parameters, such as

their location and rotation. The five-point algorithm is non-trivial to implement and this

is the reason why we instead used the related eight-point algorithm [41]. The eight-point

algorithm is based on the same mathematical relations and produces similar results to

the five-point algorithm with a less complicated implementation, although it is less com-

putationally efficient. Since we were developing a prototype of the framework, the trade

off between implementation complexity and computational efficiency was acceptable. In

the following, we describe how we used the eight-point algorithm for our viewpoint-based

approach, but the same concept, including the input design and the expected output,

could be applied to the five-point algorithm.

The input to the eight-point algorithm is eight pairs of matched points given in nor-

malized image coordinates, i.e., shifted from the range [0, numberofpixels] to [0, 1]. To

gather the input needed for the algorithm, the author of a poster would first set up

scenes at interesting locations along the focus object (Figure 3.8 a), corresponding to the

local layout step. They would then choose the 2D location of each scene on the poster

(Figure 3.8 b), corresponding to the global layout step. Each scene corresponds to one

34

matched point. These two steps would generate the two images with matched points

needed for the eight-point algorithm. First, the locations of the scenes along the focus

object in 3D space, as seen by a camera positioned at a default location, e.g., the origin.

Second, an image of the selected locations in the 2D poster. Knowing the image coordi-

nates of each scene in these two images, and assuming that the user places at least eight

scenes, we have the needed input for the algorithm (Figure 3.8 c).

Figure 3.8: Illustration of the process of using pose recovery algorithms to find an optimal
camera placement. First, (a) the author sets up scenes along the focus object, then (b)
they define a desired layout of the scenes in the poster, in this example it is a simple
horizontal line. Note that for the interest of simplicity and space, we have only included
three scenes in this example, but at least eight would be needed. With the pose recovery
algorithm, we find that the optimal position for the camera is to rotate it 90◦ around
the horizontal axis to view the focus object from an angle where there is little vertical
variation (c).

Ideally, the algorithm would then provide the best approximation of where the camera

rendering the final poster should be positioned to view the scenes at the chosen locations

in the poster. The benefits of a viewpoint-based approach is that it would introduce

less distortions in the mesh of the focus object, as finding an optimal camera placement

would limit the necessary amount of mesh distortions to achieve the intra- and inter-

scene requirements. Unfortunately, the eight-point algorithm does not handle noise very

well. Normally, one would have hundreds or thousands of matched points, and run this

algorithm as the model in a RANSAC procedure [33]. This would ensure robustness

against noise. We observed the poor handling of noise by testing different positions of

the scenes in image space. When the scenes were positioned in a well-defined way, e.g., all

points equally shifted or rotated, compared to their positions in the reference image the

algorithm performed well, i.e., provided the expected rotation and translation. However,

when arbitrarily positioning the scenes in the image space, or trying to move a scene

35

from the well-defined position, the results from the algorithm became unstable. This is

because there is no guarantee that a solution to the pose recovery problem exists when

arbitrarily positioning the matched points in one of the images. The algorithm is designed

for use on real-world images where there is always a well defined movement of the camera

between the two images. In our scenario, the author must be able to place each scene

where they wish in the poster which means that the resulting matched points do not

necessarily correspond to a well defined camera transformation. In the case that they

do not correspond to a well defined camera transformation, we can consider the distance

between the author-defined matched points, and the closest set of matched points such

that there exists a well defined camera transformation, as noise. Although there is noise

in real-world images pairs also, this is tackled through the large number of matched points

and the RANSAC algorithm. The eight-point algorithm cannot itself handle noise, which

is why it turned out to be unstable in our scenario. We did not wish to compromise on the

author’s flexibility when positioning scenes, e.g., by enforcing that all scenes are shifted

and rotated equally, which is why this viewpoint-based approach was discontinued.

3.2.2 Spline-Based Approach

When it became clear that the viewpoint-based approach would not yield the desired

results because of the low number of sample points and high amount of noise due to the

arbitrary placement of matched points, we decided to change to a spline-based approach.

In this approach, the focus object is modelled as a spline, e.g., a Hermite spline or a

piecewise Bézier spline. We decided to model the spline to be G1 continuous, i.e., the

arriving and leaving tangents at a control point have the same direction but not necessarily

the same scale, with control points and tangents, although depending on the preferred

type of spline, intermediate control point can be derived based on the tangents to yield

an identical curve. In a poster with n scenes, the spline will have n+2 control points for

n+ 1 segments as shown in Figure 3.9.

The number of control points and segments is larger than the number of scenes because

there is one additional control point on each end of the spline. This allows for flexibility

in the intra-scene behaviour of the focus object as each scene is related to one control

point, connected to two spline segments, and this can be positioned by the author within

the scene. In addition, the direction and scale of the arriving and leaving tangents of

the control point can be specified. To ensure a smooth curve, the tangents are enforced

to be collinear by the framework. The author can thus control the behaviour of the

focus object within the scene, and the inter-scene behaviour is well defined, smooth and

36

Figure 3.9: Schematic illustration of the spline-based approach for the focus object. The
blue stippled squares indicate scenes (n = 2), the blue circles indicate spline control
points (n+ 2 = 4), and the curves connecting the control points are the spline segments
(n+1 = 3). As shown, the author can change the look of the focus object within a scene
by the position of the control point, as well as the direction and scale of the tangents
(shown as orange lines).

continuous, as a deformation of the focus object along the spline segment between the

control points related to two neighbouring scenes. The inter-scene behaviour of the focus

object can also be influenced by changing the tangents at the control points. A notable

difference from the viewpoint-based approach, where camera placement and perspective

were used to minimize the amount of deformation that the mesh of the focus object must

undergo, is that this approach relies on mesh deformation along a spline that connects

the scenes of the poster. This deformation can naturally cause stretching artifacts in the

mesh. Using a mesh with a high number of polygons will yield better results.

3.3 Soft Fading Effects

To avoid harsh cuts at scene and poster borders, our framework includes fading at the

edges of scenes as well as at the near and far clipping plane of the cameras. The near

and far clipping planes are two imaginary planes that define the top and bottom of the

view frustum of a perspective camera, i.e., at which interval of distances from the camera

are objects captured. The view frustum is the volume that is captured by a perspective

camera and is determined by different camera parameters, such as the field of view angle

and the clipping planes, as shown in Figure 3.10.

To create a fading effect on the borders of a scene, a naive approach is to use a

linear interpolation between 1 and 0 opacity starting at a desired distance from the scene

37

Figure 3.10: The volume called the view frustum is shown as the truncated pyramid
indicated in the figure. As can be seen, the near and far clipping planes limit the view
frustum in the top and bottom of the truncated pyramid shape [50].

border. The problem with this approach is the corners of the rectangular scene. In these

corner regions, the interpolation creates a line artifact along the diagonal between the

two edges which is not desirable. To counteract this, we employ superellipse geometry,

also known as Lamé curves, as shown in Figure 3.2. A superellipse is defined as the set

of points (x, y) that satisfy the following equation:

∣∣∣x
a

∣∣∣n + ∣∣∣y
b

∣∣∣n = 1 (3.8)

wherein a and b are floating point values having the property that for all points (x, y)

that satisfy the equation, all x are within the interval [−a, a] and all y are within the

interval [−b, b], i.e., the 2D points (−a,−b) and (a, b) define an axis aligned bounding

box of the curve. The parameter n in the equation determines the shape of the curve. If

a point (x, y) satisfies the similar equation:

∣∣∣x
a

∣∣∣n + ∣∣∣y
b

∣∣∣n = s (3.9)

with s < 1 we know that this point is strictly inside the curve. Likewise, if a point

(x, y) satisfies this equation with s > 1 we know that it is strictly outside the curve with

higher values of s indicating greater distances from the curve. This information can be

used to fade the edges of a rectangular scene. We perform the fading in image space with

normalized image coordinates, i.e., the image coordinates are within the interval [−1, 1].

Firstly, we must determine the three parameters, a, b, and n. Setting a = b = 1− δ, with

δ being a small positive number, will work if the scenes are quadratic, i.e., the width and

height are equal. If the width and height are different, using these values for a and b will

cause the fading region to be longer on the right and left, if the width is larger, or the

top and bottom, if the height is larger, since we are using normalized image coordinates.

38

If n = 2 then the shape of the curve will be an ellipse, or a circle in the case that the

width and height of the scene are the same (Figure 3.11 a-b). The larger n is, the more

”squared” the shape will become, e.g., as seen in Figure 3.11. This could be a parameter

that the user of the framework could set as it relies on preferences, but we did not include

this possibility to reduce complexity. We recommend an n around 5 as a general setup

which was selected empirically.

a c e

b d f

Figure 3.11: Superellipse fading with different values for n: 2 (a-b), 5 (c-d), 15 (e-f). We
used a = b = 0.85 for all three curves. In the top row (a, c, e) the region of fading is shown
between the white border indicating s = 1, and the red border indicating s = 1 + α.

Then, for each pixel with normalized image coordinates (x, y), we evaluate Equa-

tion 3.9. If s < 1 we leave the opacity of the pixel at 1. Otherwise, if s ≥ 1, we perform

an interpolation to determine the opacity of the pixel. The interpolation is done from

s = 1 indicating an opacity of 1, to s = 1 + α, where α is some small value determining

the length of the interpolated section, indicating an opacity of 0. We use the smoothstep

function for the interpolation. The smoothstep function S(x) is defined as:

S(x) = 3x2 − 2x3 (3.10)

for 0 ≤ x ≤ 1. If x < 0 then S(x) = 0 and if x > 1 then S(x) = 1. To apply this

39

function, we must first normalize the value s from the range [1, 1 + α] to the range [0, 1]

which is done with the following equation.

s′ =
s− 1

α
(3.11)

We can now compute S(s′) following Equation 3.10. The smoothstep function in-

terpolates between 0 and 1, but we want the opposite, i.e., the closer a pixel is to the

border, the lower s is, the higher the opacity should be. This can be achieved by setting

the opacity of the pixel equal to 1− S(s′).

Figure 3.12: Schematic illustration of the soft depth fade. The near clipping plane is
located at depth dn from the camera. Between depth dn and dn + β, and similarly
between df − β and df , we perform a linear interpolation from opacity 0, transparent,
to opacity 1, opaque. Without the soft depth fade, the opacity would be 0 outside the
interval [dn, df] and 1 within.

In addition to this fading at the edges of scenes within the poster, we wanted to

make objects fade in or out of the image in depth. Commonly, the clipping planes make

hard cuts in the scene, i.e., everything that is between the clipping planes, and within

the frustum, is completely visible, and everything that is outside is completely invisible.

We wanted to create an effect of a soft cut. To achieve this we added an intermediate

region, within the view frustum close to the clipping plane. This is the region where

the opacity of objects fades towards zero, and becomes zero at the clipping planes, as

shown in Figure 3.12. Depth is used to determine the opacity. If the depth is smaller

than or equal to the depth of the near clipping plane, the opacity is zero, i.e., the object,

or section of object, is completely invisible. Similarly, if the depth is greater than or

equal to the depth of the far clipping plane, the opacity is also zero. To create the fading

effect, we interpolate from 0 to 1 in opacity in the intermediate region with depths in

40

the interval [dn, dn + β], where dn is the depth of the near clipping plane and β is the

length of the intermediate region. To compute the near depth fade of a point with depth

d which is within this region, we first normalize the depth from the range [dn, dn + β] to

the range [0, 1] as follows:

d′ =
d− dn

β
(3.12)

We then apply Equation 3.10 and compute S(d′) which gives us the opacity of the

point. A similar approach is used for the far depth fade, although the interval of depths

for the transition region is [df −β, df] where df is the depth of the far clipping plane, and

the result of the interpolation would have to be transformed by computing 1− S(d′).

41

Chapter 4

Implementation

We developed a prototype of TimeBender using the Unreal Engine (UE). In this chap-

ter we explain the implementation of this prototype and how the UE Application Pro-

gramming Interface (API) was utilised to realise the implementation. First, we give an

overview over UE and the structure of the project. Second, the implementation of the

three pipeline steps is described. Then, we explain how the focus object is modelled as a

spline using the UE API, the implementation of soft fading without the use of translucent

materials, and finally, the saving and loading system.

4.1 Unreal Engine

As mentioned above, the prototype was developed using UE [35]. UE is a well known

game engine created by Epic Games to render real-time 3D graphics. It is used to

develop games, create virtual sets and special effects for film and television, and prototype

architectural and vehicle designs, among other application. An example showcasing the

rendering power of UE is the show The Mandalorian, where the whole show was filmed

using virtual sets created in and rendered by UE. UE is also used for academic purposes,

for example in the field of computer vision where realistic virtual environments can be

used to train robots for real world tasks[63].

UE is written in C++ and contains more than 2 million lines of code. The current

latest version is 5.0.0, which was released during the course of this thesis. To avoid

porting issues, we used the same version of the engine throughout the project, which was

42

version 4.27.0, the newest version at the start of the project. When developing in UE, we

have access to the full source code, although this mostly does not have to be considered

in detail. In fact, it is possible to create games, or other projects, without touching C++

code. From the UE editor, developers can use a custom visual scripting language, i.e., a

programming language in a graph-like visual form with nodes as code blocks and links

as data or control flow. The visual scripting language is compiled to C++ code by the

engine. However, the recommended method is to combine writing C++ code and visual

scripting since the C++ classes have access to more engine functionality and creates more

compact code, whereas the visual scripting language is less complicated and has shorter

development iterations as the engine does not have to be rebuilt and restarted between

coding updates.

UE was chosen for this project as it is a powerful rendering engine with a vast API

and a helpful community of developers. By providing access to the source code it allows

for flexibility, while the API and community resources such as example code, forums, and

tutorials, prevent us from having to reinvent the wheel. UE also has a plugin system

which makes sharing code between users of the engine convenient. There are plugins

developed by Epic Games which are by default available in the engine, but have to be

activated. Plugins developed by the community can be shared, for example, as Github

repositories. To use such a plugin, one has to download the code and place it in the plugin

folder of the UE project, as shown in Figure 4.1. When starting up the engine with this

project, the plugin will be available to enable and use. Because of this convenient code

sharing system, we implemented our prototype as a plugin.

4.1.1 Project Overview

Although there are many benefits to using a powerful and versatile engine such as UE, it

lays constraints on the structure of the project. Notably, there is a separation between

the editor and runtime modes. The editor mode is where the development outside of

C++ coding happens, e.g., the 3D setup of levels, visual scripting, etc. The runtime

mode is what the end user of the project would see, e.g., a finished game. The only

Graphical User Interface (GUI) in the runtime mode is that which has been created by

the developers, whereas in the editor mode we have the engine GUI created by Epic

Games. This separation also had implication for the development of our framework.

The plugin that was developed as a prototype is split into two modules, one for the

editor and one for the runtime. In the editor module, changes were made to the GUI

43

of the UE editor. We added an additional GUI widget for the interactions needed when

creating a poster, shown in Figure 4.2. The editor module also takes care of the logic

when adding new scenes, and when snapping the view to a scene camera.

The runtime module handles what happens when pressing play in the editor, i.e.,

when running the project in the engine. It contains the Game Mode, a class deriving

from the AGameModeBase class which sets up the runtime GUI and the pawn, i.e., the

object that controls the interactions of the user in runtime. This module also contains

the pawn class, deriving from the APawn UE class. This class handles all interaction

logic, and is the largest and most important class in the module. The classes responsible

for the runtime GUI, in addition to the scene and spline classes deriving from the UE

AActor class, are also part of the runtime module.

Figure 4.1: An overview of the project structure. Within the project, there are two
separate folders holding code, the plugin folder and the source folder. Within the plugin
folder is the Poster Plugin, but depending on the authors there could be other plugins
as well. The source folder holds poster-specific code and assets, i.e., code and assets that
are not part of the framework, but added by the author to create a poster.

In addition to the C++ classes, we add functionality with visual scripting in the

editor. Benefits of this is that the development iterations are a lot quicker as the editor

44

does not need to be rebuilt and started for each code edit. A drawback is that visual

scripting quickly turns into very large graphs with nodes, i.e., code snippets, and edges,

i.e., data passing between nodes or the flow of the program. Following the logic of the

program, for example, to find bugs or change functionality, quickly becomes difficult.

4.2 Main Pipeline

In this section we detail the implementation of the main pipeline described in Section 3.1.

In this implementation of the framework, the pipeline is not strictly linear. This is because

the local layout step happens in the editor mode, whereas the two other steps happen

in runtime mode. This means that the author can stop the pipeline at any time during

the global or detailed layout steps and go back to the local layout, by simply exiting the

runtime mode.

4.2.1 Local Layout

The local layout is separated from the two other steps by the fact that it takes place

solely in the editor of UE. The implementation for rendering a 3D scene, adding models

and lighting, and interacting with these is provided by the engine. We needed to extend

this implementation such that the author can set up multiple scenes within one level, and

snap the viewport to the camera of a given scene. To add this functionality to the UE

editor, we created a custom widget and attached it to the editor GUI. This widget is an

instance of a class deriving from the SCompoundWidget class and based upon the Slate

UI framework which is integrated in the engine. The widget can be seen in Figure 4.2.

Figure 4.2: The GUI widget added in the UE editor to enable the additional interactions
necessary for creating a poster.

45

In the first horizontal line of the widget there are three buttons: one to add a new

scene, one to snap the view to the camera of the previous scene, i.e., the scene with index

one smaller than the current scene, and one to snap the view to the next scene camera.

When snapping the view to a scene camera, the author can see the scene from the same

perspective as it will be shown in the final poster. In the second horizontal line, there is

a text field where the user can paste or write the reference to the mesh that should be

used as the focus object spline. To access the reference to a mesh, the author must right

click on the relevant mesh, and select copy reference in the menu that appears. This is

explained to the user in the tooltip of the text field, i.e., an additional explanation text

that appears when hovering the mouse pointer over the text field. Next to this is a drop

down menu where the user can select the forward axis of the chosen mesh, i.e., the axis

aligned with the spline, and a button to update the spline mesh.

Snapping the viewport of the editor to a scene camera is done by accessing a reference

to the editor via the GEditor variable, getting the viewport client from this reference,

and setting the view location and rotation of this client to be equal to the location and

rotation of the scene camera in question. The author can change the view of the viewport

by the regular interactions, i.e., scrolling, clicking and dragging, but can always snap the

view back to a camera position to see how the scene will be portrayed in the final poster.

Adding scenes is more complicated, and we will start by explaining what a scene is

in this implementation, then how the scenes are managed and created. First, the scenes

are modelled in two layers, a C++ class deriving from the AActor class, and a blueprint

class deriving from the C++ class, as shown in the project overview in Figure 4.1. The

reason for these two layers is to facilitate development based on the UE structure. In

the blueprint class, we can join different components into more complex structures, and

quickly add functionalities to these components with the visual scripting system. The

blueprint of a scene consists of two components, a SceneCaptureComponent2D (SCC)

and a StaticMeshComponent in the shape of a plane. The SCC is equivalent to a camera,

but it writes to a render target that can be used as a material, instead of being viewed

directly in the viewport. The plane acts as a canvas by having a dynamic material that

is written to by the SCC. The dynamic material is updated every frame, which enables

animation in the scenes of the final poster. The SCC has a parameter called Primitive

Render Mode which can be used to change what is rendered. We set this to Use ShowOnly

List such that only the models that are in the ShowOnly list, i.e., that are specified to

be a part of this scene, are rendered. All actors that are tagged with Scene< n >, < n >

being replaced by the scene index, are added to the ShowOnly list when entering runtime

mode.

46

In the level hierarchy of the UE editor, all scenes are added to a folder called Scenes,

and named SceneBP< n >, < n > being replaced by the scene index. This is handled

by the SceneManager class which is part of the editor module of our plugin. The Scene-

Manager is a singleton class, i.e., there can only be one instance of the class. This is

realized by having a static member variable that is a pointer to an instance of the class,

and a static member function to access an instance on the class. This function checks if

the member variable has been populated, and if it has, returns the value that is stored in

the variable. If not, it creates a new instance and stores a reference to it in the member

variable before returning this reference. We have to make sure that there is only one

instance of the SceneManager class since it is responsible for managing the scenes, e.g.,

by making sure that no scenes have the same index.

When creating a new instance of the SceneManager class, we first access and store

references to the scene class and the world, i.e., the top-level component of the 3D level.

Next, we iterate through all actors of the scene class within the world to reset the indices,

e.g., to handle a case where a scene has been deleted, and count the number of scenes

in the world. This number is stored for use when new scenes are added to the poster.

When a new scene should be added, the SceneManager instance uses its world reference

to spawn a new actor of the scene blueprint class into the world. It is placed at a location

based on its scene index, i.e., the number of scenes before this scene was spawned.

4.2.2 Global Layout

When pressing ”Play” in the editor, the user enters the runtime mode, and consequently

the global layout step of the pipeline. This action also triggers the BeginPlay events in

all actors, as well as spawning the pawn, i.e., the object responsible for capturing and

handling user input. The pawn is a very important class in runtime mode, for example,

in a game project, an instance of the pawn class would be the object controlled by the

player or an artificial intelligence in the game. In this project, the pawn is the class that

controls and handles all user input, and sends instructions to objects of other classes,

e.g., for the scenes to move.

When entering this step of the pipeline, the canvases from each scene are placed in

a horizontal line in front of the main camera that renders the final poster. The position

of each scene in the main camera space, i.e., the coordinate system centered and aligned

with this camera, is calculated according to the method described in Section 3.1.2. The

canvases are static meshes in the shape of planes, with a dynamic material written to by

47

the scene camera. In this way we stitch together the views of the scene cameras and the

main camera of the poster. In the global layout step, the scenes are shown with an outline

to better indicate their scale and location within the poster. The outline is created in the

material blueprint of the canvas, which is a shader program defining how the canvas is

rendered. The texture coordinates of the current pixel, i.e., the canvas is parameterized

in two dimensions such that every point on the canvas is mapped to a value in a 2D

texture, are accessed by the TexCoord node. The texture coordinates form a 2D vector

of floats with values between 0 and 1. These values are mapped to the range [−1, 1], then

the 2D vector is evaluated with the superellipse equation described in Section 3.3 with

a = b = 0.9 and n = 5, both of these values were chosen empirically and could be changed

to fit the needs of the poster. If the 2D vector is outside the superellipse curve, i.e., the

result of the equation is larger than 1, we do a linear interpolation between the color of

the texture and the color of the border with the alpha value of the interpolation equal to

the result of the superellipse equation minus 1. The color of the texture corresponds to

the rendering of the scene camera.

In the global layout step, the author decides the layout of the scenes within the poster,

similar to comics-based visualizations, by changing the image space location as well as

the size, i.e., the depth in camera space, of the scenes. The image space location of a

scene is changed by clicking on the scene with the mouse pointer and dragging it to a

new location. This is handled in the pawn blueprint class. We added a LeftMouseButton

event which has two sub-events: pressed, which is triggered when the left mouse button

is pressed, and released, which is triggered when it is released. In the pressed sub-event,

we use a LineTraceByChannel node to check if a line segment starting from the mouse

pointer and going into the world hits a scene. This line segment is calculated by using the

ConvertMouseLocationToWorldSpace node, which takes the player controller as input,

and as output it returns the world space location of the mouse pointer as well as the

direction it is pointing in world space, i.e., the direction pointing towards what is ”behind”

the mouse pointer on the screen. The line segment is then defined as starting with the

world space location of the mouse pointer, and ending at 10.000 times the world space

direction added to the world space location. 10.000 as multiplier is chosen empirically

and covers what can be seen on the screen, i.e., if something is further away than this

it most likely will not be visible to the user. The LineTraceByChannel node returns

the closest object that intersects with the defined line segment as a Hit result structure.

From this structure we extract the OutHitHitActor and check if it is of the correct class

type, i.e., a scene blueprint class. If this check is true, the pawn tells the hit scene that

it has been clicked, by triggering a custom event. In this custom event, the scene sets

a boolean member variable, indicating whether it is currently clicked, to true. In the

48

tick event of the scenes, i.e., an event that is triggered every frame, this boolean member

variable is checked. If it is set to true, the scene is moved such that it has the same image

space location as the mouse pointer, without changing the depth of the scene in camera

space. If it is set to be false, the scene does not move. In the released sub-event of the

LeftMouseButton event, the pawn class triggers all scenes to set their boolean member

variable indicating whether they are currently clicked back to false.

The depth of the scenes are controlled by a slider which is part of the runtime GUI.

The runtime GUI is created in a widget blueprint, deriving from the UUserWidget class.

A widget blueprint is a combination of a GUI designer and visual scripting, which can

create both the look of the interface as well as the behaviour. A slider is one of the

default components and its behaviour is mostly predefined and parameterized. We can,

for example, change the design, the minimum and maximum values, the default value,

etc. It also has events that automatically trigger when interacting with it, e.g., the

OnValueChanged event that triggers when a user clicks and drags the slider such that

the value is changed. When this event is triggered, the GUI broadcasts it with an event

dispatcher that is listened to by the pawn class. In the event dispatch are two variables,

the new slider value and the index of the currently selected scene which is decided by a

spin box component in the GUI. Based on the new slider value, the new scene depth is

calculated by the pawn. The slider value is within the range [−1, 1], where−1 corresponds

to the maximum depth, i.e., the minimum size, and 1 corresponds to the minimum depth,

i.e., the maximum size of a scene. A slider value of 0 corresponds to the baseline depth,

i.e., the depth the scenes are placed at in the default layout. Since this baseline is

shifted depending on the number of scenes in the poster, the ranges [min, baseline] and

[baseline,max] are not necessarily of equal size. Because of this, the mapping from a

slider value to a scene depth must be done separately depending on if the slider value is

in the range [−1, 0[or [0, 1]. If it is in the first range, the slider value, s, can be mapped

to the scene depth, d, by the following equation:

d = (s+ 1)(baseline−min) +min (4.1)

Otherwise, the slider value, s, will be within the second range, [0, 1], and can be

mapped to the scene depth by the following equation:

d = s(max− baseline) + baseline (4.2)

49

When the new scene depth has been calculated by the pawn, it locates the relevant

scene in the array of scene references that it stores. The scene class has a function to

move its canvas to a depth value given as input to the function, without changing the

image space position of the center point of the scene. The implementation of this function

follows the method described in Section 3.1.2. This function is called by the pawn with

the newly calculated depth on the selected scene, and the canvas is moved accordingly.

4.2.3 Detailed Layout

To move on to the detailed layout step, the author must click a button in the GUI. When

this is pressed, the scene locations are locked, and the focus object spline becomes visible.

This is done by setting the Visible parameter in the spline blueprint class to true. Each

control point of the spline is moved to the image space location they had during the

local layout within the canvas of the related scene. The depth of the control point is set

to the depth of the canvas of the scene added to the depth that the control point had

in the scene camera space during the local layout step. This is crucial to achieve the

preservation of the depth relationships from the local layout in the final poster.

Since the focus object is rendered by the main camera of the poster, whereas the mod-

els in the scenes are rendered as dynamic materials on canvases in the poster, we have

to use the material blueprint of the scene to ensure that the depth relationship between

the scene objects and the focus object are preserved. As described in Section 4.2.1, the

scene camera is a SCC which has a parameter, CaptureSource, that can be set based on

which information is needed in the material blueprint. We set it to SceneColor in RGB,

SceneDepth in A, since we do not support translucency in the scenes we do not need

the opacity in A. This 4D vector, RGBA, is sent to the material blueprint as a param-

eter, which means that we have access to the depth of the scene, as well as the color,

per pixel. To simulate the depth relationship between the focus object and the scene

objects in the final poster, we compare the depth passed to the material blueprint from

the scene blueprint, with the depth buffer of the poster which is accessed by the Scene-

Texture:SceneDepth node. To avoid confusion since this value is also called SceneDepth,

we rename the value retrieved by the SceneTexture:SceneDepth node to poster depth in

the rest of the thesis. Before we compare the scene depth with the poster depth, we must

subtract the depth value of the canvas from the poster depth since we want to compare

the depths as if the focus object was part of the scene. It would be equivalent to instead

add this depth value to the scene depth. After this we can compare the scene depth with

the altered poster depth to figure out the correct depth relationship between the two. If

50

the poster depth is smaller than the scene depth, the opacity of the scene at the current

pixel is set to 0. This is because it is supposed to be behind the focus object, i.e., not

visible. If the scene depth is smaller than the poster depth, the opacity value of the pixel

is set to the determined value based on if it is on the border, if it shows only background,

or if it shows a scene object.

The image space position of control points can be changed by clicking and dragging.

This is implemented in a very similar way to clicking and dragging scenes, as described in

the previous section. Therefore, it is not described in detail again. One new consideration

when moving control points instead of scenes that is important to note is that if the author

is using tangents approximated with central differences, as described in Section 3.1.3,

moving one control point influences more than just the spline segments adjacent to the

moved control point. The position of a control point affects the tangents of neighbouring

control points, which in turn affects the spline segments adjacent to the neighbouring

control points. When moving a control point, we must, therefore, recompute four spline

segments: the two adjacent to the moved control point, as well as their neighbours on

each side. When using the author-defined tangents, we only have to recompute the two

adjacent spline segments of the moved control point.

Textual elements can be added by two buttons in the GUI, one for titles and one

for annotations. These textual elements are also GUI components. In fact, they are

created as their own widget blueprint, one for titles and one for annotation, inheriting

from the UserWidget class. They both consist of a EditableText (Multi-Line), a checkbox

to determine whether or not to have a contrasting background, and a slider to determine

the width of the text box. The reason why we have two widget blueprints is that UE

does not allow for editing fonts during runtime. This means that the font must have

a set size, color, emphasis, and justification before entering runtime mode. With this

limitation, we decided to create two types of textual elements with preset fonts. For

the title this is a large font size, black color, bold emphasis, and central justification,

which is a common setup for a title text. For the annotations, we use a small font size,

black color, no emphasis, and left justification. In both blueprints we added logic to hide

the components, except the text, when the mouse pointer was not on the widget. This

was done since these textual elements were part of the final poster, and the additional

components, although adding valuable interactions, should not be. When clicking the

button to add one of the textual element types, an event is triggered in the GUI. We use

the Construct node with the relevant class, e.g., the title widget blueprint class if the

title button was clicked. The newly spawned object is then added as a child to the main

GUI widget. This places the new textual element in the top left corner of the screen, i.e.,

51

at coordinates (0, 0) in image space. We wanted the textual elements to be moved with

a click and drag interaction. To do this with GUI components required some additional

classes. Firstly, we needed a blueprint class deriving from the DragDropOperation class.

In the blueprint we added two additional variables, a 2D vector of floats to hold the

offset of the dragging action, and a reference to a UserWidget, to hold a reference to

the textual element that is being dragged. Then we needed a widget to act as the

temporary dragged object. This was a simple version of the textual element widget

blueprint, also deriving from UserWidget, and containing only the text component. In

the widget blueprint of the two textual element types, we overrode the OnDragDetected

function. In this function we created a temporary draggable text widget containing

the same text as the textual element, and with the same width. Then we create an

instance of the class inheriting from DragDropOperation with the temporary draggable

widget as the DefaultDragVisual input, the position of the mouse pointer within the

textual element widget as the offset input, and a reference to itself as the widget reference

input. In the main GUI widget blueprint class, we overrode the OnDrop function. This

function is called by the DragDropOperation when the user releases the mouse button.

The DragDropOperation instance is an input to the OnDrop function, and since we stored

a reference to the dragged textual element in this object, we can access it and change its

location to the current location of the mouse pointer. The destruction and removal of

the temporary draggable text is handled by the DragDropOperation.

4.3 Focus Object Modelling

As discussed in Section 3.2.2, we decided to use a spline based deformation approach

for the focus object. Conveniently, UE has a class that is well adapted to this use, the

USplineComponent class. This class creates spline objects that can be placed in the 3D

space of the level. An arbitrary number of control points can be added to the spline.

The position of the spline points and the direction and scale of the entering and leaving

tangents can be adjusted by the user. In Figure 4.3 a UE spline object can be seen. The

third control point is selected and can be moved around in 3D space. The white line

segment intersecting the point defines the direction and scale of the entering and exiting

tangent at this control point. By selecting the white square at one of the ends of the

line segment, the tangent can be altered, although the tangents are constrained to stay

colinear.

In UE, the splines are piecewise cubic Bézier splines, i.e., there is a cubic Bézier spline

between each pair of neighbouring control points. Cubic Bézier splines are define by four

52

Figure 4.3: An example spline from the UE editor view. The thin white curve is
the USplineComponent, whereas the black thick curve is the mesh deformed by the
USplineMeshComponent . The third control point is selected, which is indicated by the
glyph showing the direction of the three main axes. The line segment passing through
the selected control point shows the entering and exiting tangents at this control point.

control points. In the UE implementation, we have the two control points that are the

start and end points of the spline segment, and the two intermediate control points are

derived from the original control points and the start and end tangents.

The USplineComponent class contains only a logical spline, not visual. This is because

the component is often used for non-visual splines, for example, camera paths, animation

of models, etc. When using the component for a spline that should be visible, we must add

an instance of the USplineMeshComponent class for each spline segment. This component

handles the deformation of a mesh along the spline segment. For each instance we must

define the mesh to be used and the forward axis of this mesh, i.e., which axis to align with

the spline. We must also specify the start and end location, the start and end rotation

around the spline axis, as well as the start and end tangent. With this information, the

component deforms the mesh along the spline, as can be seen in Figure 4.3.

4.4 Soft Fading Effects

Rendering translucent objects is an expensive process compared to rendering opaque

objects. With opaque objects, the renderer only has to check which object is the closest

to the camera per pixel, and render this. Whereas, with translucent objects, multiple

objects can be visible per pixel, and to render the pixel a composition of the contributions

from each visible object must be considered. Because this process is so expensive in

terms of computational complexity, UE has made some simplifications when rendering

transparent objects. In fact, there are multiple rendering passes in UE, wherein one

renders all opaque objects, and one all translucent objects are. The opaque objects are

rendered first, and their depths written into the depth buffer. Translucent materials are

53

rendered back-to-front based on the depth of the component. Per pixel, the translucent

material checks if there is an opaque object in front of the translucent object, and in this

case it is not rendered. Since the back-to-front composition is not based on the depths of

objects per pixel, but the depth of the object, the sorting of translucent objects is only

correct if they are spread out sufficiently in space. Otherwise, or if there is an object

consisting of multiple meshes joined together, sorting of translucent objects is wrong. An

example is shown in Figure 4.4.

a b

Figure 4.4: The figure shows a model of a DNAmolecule rendered with an opaque material
(a) which results in correct depth sorting of the component, and the same model with
translucent materials (b) resulting in incorrect depth sorting. The spheres with the blue
material are always rendered on top, the cylinders with the white material are rendered
in the middle, and the spheres with the red material are rendered in the back.

This sorting issue and high performance cost are known limitations of using translu-

cent materials in UE. A possible workaround is to change the blend mode of the material,

i.e., how the material is blended with the background, to masked. In the masked blend

mode pixels are either drawn as opaque or not drawn at all, i.e., parts of the object

are completely transparent, and the rest is completely opaque. The masked blend mode

allows for traditional screen door transparency by using using a masking material that,

e.g., removes every other pixel in a checkerboard pattern. Screen door transparency cre-

ates visual artifacts and improvements have been proposed to this old technique. One of

these improvements are called stochastic transparency [30] and basically uses the idea of

screen door transparency on a sub-pixel level with a random screen door pattern, i.e., not

a checkerboard. The sub-pixel level means that each pixel is split into multiple segments,

i.e., the image is super-sampled. The opacity of an object is equal to the proportion of

sub-pixel segments that are covered by the object. We implemented an approach inspired

by this, but in addition to supersampling the image, we use temporal anti aliasing, i.e.,

averaging the pixel colors over the last few frames. Temporal anti aliasing is turned on by

default in UE, and can be found under project settings → engine - rendering → default

setting → anti-aliasing method.

To implement the approach we created a new material blueprint, i.e., a shader program

54

a b c

Figure 4.5: Comparison of a hard clipping plane (a), a soft fade clipping plane using the
DitherTemporalAA node (b), and a soft fade clipping plane using the DitherTemporalAA
node and applying a Gaussian blur to the faded region (c).

using visual scripting. The material uses the masked blend mode and the opacity mask,

i.e., which pixels are drawn, is decided based on probability and randomness using the

DitherTemporalAA node. This node takes two inputs, first, the alpha threshold which is

the probability of a pixel being drawn, equivalent to the proportion of sub-pixel segments

in stochastic transparency. Second, an input to indicate whether this opacity mask should

be random or not. Based on these inputs, the DitherTemporalAA node creates a stipple

pattern that is more or less dense depending on the alpha threshold. An alpha threshold

of 1 indicates that all pixels should be drawn, and of 0 indicates that no pixels should be

drawn. We determine this value by using a smooth step function with the depth of the

pixel as input as described in Section 3.3. The depth value of the pixel is an input to the

material blueprint and can be accessed through the PixelDepth node. An example can

be seen in Figure 4.5 b.

Some noise remains when using this stochastic transparency technique, which is espe-

cially noticeable when the transparent object and the background have highly contrasting

colors. To reduce the noise further, we apply Gaussian blurring in the intermediate re-

gions of the near and far depth fade, as shown in Figure 4.5 c.

For fading the edges of the scenes in the final poster, we use regular alpha-blending

transparency. We can do this because it is done in image space, i.e., there are no sorting

issues of the objects within a scene, and the scenes will be the only transparent objects in

the poster. We know that these will be sufficiently separated in space as placing scenes

on top of each other in the poster does not make sense. We therefore do not have to

worry about the sorting order of the scenes within the poster.

55

4.5 Saving and Loading

For the convenience of the authors, including ourselves, adding saving and loading func-

tionality to TimeBender was important. UE has a well integrated system for saving and

loading which is crucial for a game engine. The highest level of saving in UE is the

project. This includes an instance of the engine code, in addition to any code added by

the developers. By running this project, either through the Epic Games Launcher, or by

running the code through an IDE, e.g., Visual Studio, an instance of the engine is started.

Within this project, there can be one or more levels, which are 3D scenes. Assets, e.g., 3D

models, materials, etc., are loaded into the project and can be placed in the levels. This

is saved automatically by UE when pressing ctrl+s, or selecting save in the file menu. In

our prototype implementation we use a project as an instance of our framework which

can produce multiple posters. Each level corresponds to one poster, and models can be

shared between posters easily since they are tied to the project and not the level, i.e.,

the poster. We do not have to add any functionality to save the projects or the levels

since this is handled by UE. This corresponds to saving in the local layout step of the

main pipeline of the framework, including the models that are part of a scene, their 3D

position, rotation and scale, animation in the case of an animated model, as well as the

3D positions of the focus object spline control points, and their tangents’ orientations

and scales.

A lower level of saving in UE is saving instances of running a project, e.g., saving the

progress of a player in a game. In the case of TimeBender, saving an instance means to

save a poster that uses the same local layout but has a different global and detailed layout.

Allowing for saving instances of a poster is useful, for example, when the author knows

the narrative they want to present, but is unsure about the final look of the poster. They

can then use the same local layout to create posters with different layouts and annotation

to compare their impact. Saving instances also allows for editing a poster after creation,

e.g., to fix mistakes or incorporate feedback. There is a good system for saving instances

of running a project in the API, but it requires an implementation for the project in

question. To save an instance of the project, a class inheriting from the UE SaveGame

class must be created. In this class we define the data that is saved per instance. But

first, we must think about what information needs to be saved.

The information to save depends on which step in the pipeline the author has reached.

If the author is in the local layout step, it does not make sense to consider saving instances

because all information in this step is saved when saving the 3D scenes. If the author

56

has reached the global layout step, saving an instance of the poster means saving the

position of the scenes in the camera space of the main poster camera. This includes the

2D image position as well as the depth, and with this also the size, of the scene, creating

a 3D vector which must be stored per scene. If the author has reached the final step, the

detailed layout, the information from the global layout step must be saved, in addition

to the new information provided in this step. This includes the 2D screen position of the

control points related to each scene, the choice of tangent, i.e., author-defined or central

differences approximated, the scale of the tangents for each scene, and finally the textual

elements, both titles and annotations, which are not related to scenes. For the textual

elements we must store the textual content, the 2D screen position, the width of the text

box, and if there should be a contrasting background or not.

Related data can be grouped into structures to make the saving neater. We define

two structures, one for holding scene data and one for holding text data. In the scene

structure we save the index of the scene as an integer, the position of the scene in world

space as a 3D vector of floats, and the world space position of the spline control point

related to this scene also as a 3D vector of floats. In the text structure we save a boolean

value which indicates whether the text is a title or not, a Text, which is an UE wrapper

for a string, containing the textual content, the screen position of the text as a 2D vector

of floats, and the width of the text box as a float. In our SaveGame derived class we must

specify the types of data that is saved per instance. We, therefore, add an array of scene

structures and an array of text structures. In addition, we add an integer value that tells

us which step of the pipeline the instance was saved from, a boolean that indicates which

type of tangent was used in the instance, and two arrays of floats holding the tangent

scales for the two different types of tangents. If the poster instance is saved from the

global layout step, only the relevant data is populated and the rest is left empty. The

directions of the author-defined tangents are saved in the 3D scene, i.e., when saving the

local layout.

In a class inheriting from the UE GameInstance class, the logic for saving and loading

is handled. While in either the global or detailed layout steps, the author can choose to

save an instance of the poster. This is done in a simple GUI with a text input field for

the name of the saved file, and a button to save the instance with the written name, as

shown in Figure 4.6. The name will be prefixed with the name of the poster, i.e., the

level, to ensure that the saved instances are tied to the correct poster. An object of the

class derived from SaveGame is created and the necessary data, as specified above, is

extracted and placed into the appropriate parameters in the created object. Finally the

57

Figure 4.6: An example of a saving and loading work flow. The author first saves the
current poster instance as ”Attempt3”, before loading a previous attempt called ”At-
tempt2”.

SaveGame derived object is saved to a slot, i.e., a file, with the name specified by the

user and prefixed by the poster name.

To make the loading of previously saved instances of a poster easier for authors using

our framework, we created a drop down GUI element listing all saved instances from

the current poster, shown in the lower right of Figure 4.6. To do this we enabled the

Blueprint File Utilities plugin, developed by Epic Games, which allows us to list all files

in a directory. The ProjectSavedDir function from this plugin returns the absolute path

to the saving directory of the project. Slots, containing SaveGame objects, are located in

a sub-directory called SaveGames. Listing all the files in the SaveGames sub-directory,

and choosing only the ones that are prefixed by the current level name, gives us a list

over valid saved instances of the current poster. These are listed in the drop down menu

and can be selected by the author to be loaded. When loaded, the data is extracted from

the SaveGame derived object, and passed to the relevant classes and objects.

58

Chapter 5

Results

5.1 Performance

To have an interactive authoring framework, it must run with interactive frame rates

which we consider to be at least 20 Frames per Second (FPS). The posters can contain

different amounts of scenes, and these scenes can contain different amounts of models with

different complexities, i.e., number of vertices or polygons within the mesh of the model.

For this reason we can only provide example frame rates for posters we have created, but

this may vary with the complexity of the poster. The tests were run with UE version

4.27.0 installed on a desktop computer connected to a screen with resolution 1920x1080.

The computer was running Windows 10 as operating system, with an Intel(R) Core(TM)

i7-9700K CPU and a NVIDIA GeForce RTX 2080 SUPER graphics card. The results

were as follows:

Poster FPS in editor FPS in runtime

Empty poster 120 120
The Genetic Journey 31 28
7 Wonders in 13 Days 22 19

Table 5.1: Approximate FPS values for posters with different numbers of scenes and mod-
els. The empty poster is added to provide a baseline for the rendering of the framework.

As can be seen in Table 5.1, our framework achieves interactive frame rates for the

posters we have created in editor and runtime mode, except for the poster 7 Wonders in

13 Days which has an approximate average FPS of 19 during runtime. This is quite close

to the boundary of what we consider to be interactive, and the reason for this lower FPS

59

is that this poster contains seven scenes with high resolution models, i.e., models with a

high number of vertices. The frame rate could be improved by simplifying the models,

i.e., removing vertices, but this would also remove details from the poster.

5.2 Usage Examples

In this section we present two usage examples created with the prototype implementation

of our framework. Both of the usage examples contain animated models which cannot be

captured in a written thesis. We provide two snapshots to give an impression, while the

complete animation can be seen in the uploaded videos [2, 1].

5.2.1 The Genetic Journey

This first usage example is a simplified recreation of our inspiration visualization by

Jennifer Fairman [69]. It tells the story of genetic research from a microscopic to a

macroscopic level with four scenes and can be seen in Figure 5.1. The first scene depicts

a chromosome that is the structure DNA coils up into on a microscopic level. The second

scene contains a cell with different organelles, e.g., the nucleus shown as a split yellow

sphere where the DNA is passing through. Within the cell, DNA is kept in the nucleus

and dictates the behaviour of the cell based on the activated genes. The third scene shows

a black human silhouette and a detailed heart. The heart is moving slightly towards to

camera and back again to give the illusion of a beating heart. This scene illustrates how

DNA can build different organs, e.g., the heart, by determining the behaviour of cells.

The last scene shows a globe which is rotating such that there is not only one country

or continent in focus. This poster is in a 3:1 format, i.e., the width is three times the

height. This was chosen to imitate the inspiration poster by Fairman.

The poster includes the following models: a DNA strand [62] as the focus object, a

chromosome in the first scene created in Blender [8], a cell [44] in the second scene, a

human silhouette [27] and a heart [67] in the third scene, and a model of the earth [66]

in the final scene.

60

5.2.2 7 Wonders in 13 Days

The second usage example was inspired by a travel blogger called Megan Sullivan [70].

She made a journey around the world, visiting the so-called 7 modern wonders of the

world in 13 days. We used her journey as a story to frame historical facts about these

important monuments. Each scene contains a 3D model of the monument it depicts,

except the fifth scene showing the ancient city of Petra, where a textured plane was used

in the place of a 3D model. In this poster, the scene models are not animated, whereas

the focus object is. The focus object combines the visual connection metaphor of the red

path or ribbon with an animated 3D model of an airplane that travels along this path.

As can be seen in Figure 5.2, the plane is close to the Colosseum in the first image (a),

whereas in the second image (b), the plane is about to leave the poster after the Great

Wall of China.

The poster includes the following models: the temple of Kukulcan [57], Machu Pic-

chu [64], Christ the Redeemer, which was an open source model, the Colosseum [5], a

plane object textured with an image of Petra [28], Taj Mahal [22], and the Great Wall of

China [53]. The focus object was created in Blender [8].

5.3 Expert Feedback

To gain feedback on the potential utility of our approach, we performed an expert in-

terview with a traditional illustrator. She was not involved in the project and did not

have any prior knowledge about the framework. The interview contained two parts to

get feedback on the general concept of the framework, and the results created using

the framework. First, the concept of the project was introduced and explained, and we

showed her the inspirational example by Jennifer Fairman. After describing the creation

pipeline, we asked the following questions:

1. What is your opinion on the separation of these steps (i.e., the local layout, global

layout, and detailed layout)?

2. What is your opinion on the order of the steps?

3. How does this pipeline compare to the workflow of an illustrator? Do you, for

example, rather use a linear workflow than a circular, i.e., iterative workflow, or

vice versa.

61

We were given the following answers, transcribed as a paraphrased summary:

1. This separation is good and roughly follows the working steps of an illustrator.

When starting a new illustration project I first have to think about how many

stages (i.e., scenes) there are and what they should contain, in addition to the

relative importance of each stage, for example, which should be the main focus and

thus take up the most space.

2. The ordering of the steps is not so clean in an illustration project, usually there is an

iteration between the local and global steps. The global step, i.e., how much space

each scene has which is also influenced by the format of the poster, can influence

the local step, for example, if the poster is in a portrait style, each scene would

have more vertical space so models would be oriented accordingly.

3. The workflow is rather circular, i.e., iterative, between the local and global step as

they influence each other, whereas between these two steps and the detailed step

the workflow is linear. Textual elements such as titles and annotations, in addition

to other details, are only added when the local and global layout steps are complete.

Based on these answers we know that our separation of steps in our pipeline is meaningful,

although having a purely linear pipeline could be changed to a partially circular one, i.e.,

add iteration possibilities between the global and the local layout steps. It was also

an interesting consideration that the global layout, and notably the poster format, i.e.,

aspect ratio, can influence the local layout.

In the next step of the interview we presented the two usage examples from Section 5.2.

The posters were presented one by one on a screen with resolution 3000x2000. Each poster

was shown both as a static image and as a video to capture the animation of the models.

The expert then had time to examine them before we asked the following questions:

1. What are your initial thoughts when seeing these visualizations?

2. How would you describe the narrative flow in the posters?

3. From an illustrator stand point, what are good features of the visualizations?

4. What are bad features? How could the posters be improved?

5. What are use cases where you could see a poster of this type being efficient?

62

6. How would you, as illustrator, proceed to create a similar visualization in a standard

tool such as Photoshop [4]?

We were given the following answers:

1. The visualizations look cohesive and it is easy to make out the narrative. The titles

stand out clearly and provide context to the poster, i.e., guides the expectation

of what one will see. The organic nature of the ribbon structure (i.e., the focus

object), as well as the fading effects at the start and end, are pleasing to the eye

and commonly used techniques in illustration.

2. The narrative stands out, but it assumes a ”western” audience, i.e., the scenes are

laid out from left to right. For the 7 Wonder in 13 Days poster, the animated

airplane shows the direction of the narrative flow which makes it more accessible

to other reading cultures that, for example, read from right to left. For the The

Genetic Journey poster, the direction of the narrative flow could be encoded in, for

example, a sequence in the animations, i.e., that the first scene is animated first,

then the second scene starts its animation, and so on.

3. Based on illustration best practices, good features of the posters are that the hi-

erarchy of the information is clear, i.e., it is clear what text represents the title,

and which textual elements are related to which scenes. In addition, the coloring

is good as the saturation of the focus object stands out and draws attention to the

most salient feature. The animations add interest and guides the audience through

the narrative.

4. Specifically for the The Genetic Journey poster, I would enhance the lighting, the

poster is too dark. In addition, the black human silhouette draws the focus of the

audience as it contrasts to the surroundings, and the black color could lead to a

misinterpretation of the person being dead. There should also be an indication of

the direction of the narrative flow as this could be interpreted differently depending

on the culture of the audience.

5. One could, for example, use a neuron as a focus object since the neuron cell has

an elongated structure called the axon. One could create a poster to explain a

neural disease or how the signals from the brain travel through the body. Another

potential usage example could be to use a blood vessel as the focus object, and set

up scenes explaining the path of blood through an organ, or the progression of a

disease through the blood.

63

6. It would take a long time and require much manual work. I would set up the

individual scenes in a 3D modelling software such as Blender [8], and make sure

that the scenes had a similar lighting and camera setup. Then, I would stitch them

together in After Effects [3] and add the focus object.

Some conclusions that we draw from the answers to the second part of the interview are

that the results created with our prototype implementation are meaningful and cohesive

visualizations although we need to be mindful about how the direction of the narrative

flow is encoded. Once the direction is known, the order of the scenes in the narrative

is clear, but adding a visual cue to the direction is important, such as we did in the 7

Wonders in 13 Days poster. The animation is an illustrative strength of the posters as

it adds interest and guides focus, which indicates that this type of poster is best suited

to be presented digitally.

We did not ask the expert to use our prototype to create a poster as the goal of this

interview was not to evaluate the usability of the prototype, but rather the meaningfulness

of the framework and example results from the perspective of an illustrator.

64

65

a b

Figure 5.1: Two snapshots of the animated poster, The Genetic Journey. In the first two
scenes, one can see that the lighting changes between the images. In the third scene, the
heart model is smaller, i.e., further away from the camera in the top image (a), and larger
in the bottom image (b). The earth model is spinning and shows parts of Africa and the
Middle East in the top image (a), whereas in the bottom image (b) it shows Australia
and the Pacific Ocean.

66

a

67

b

Figure 5.2: Two snapshots of the poster titled 7 Wonders in 13 Days. In the top image
(a), the animated airplane following the focus object is close to the Colosseum in the
fourth scene, whereas in the bottom image (b), the airplane has passed the Great Wall
of China in the final scene.

Chapter 6

Discussion and Limitations

Based on the expert interview in Section 5.3, we can see that the linear structure of

our pipeline might be too strict. The point that was made about how the global layout

and format, i.e., length of width and height, can influence how the local layout is set

up was particularly interesting. With this perspective, we think that the framework

could be adapted such that between the local and global layout steps, there is a circular

pipeline, whereas the detailed layout should remain in the linear pipeline as this step

is always performed last. Another option could be to add a sketching or drafting step

before the local layout step, where the author can conceptualize the poster to guide the

local layout. The expert also pointed out that although the narrative flow is clear, the

direction of this flow is not necessarily clear without an additional visual cue, such as the

animated airplane in our second usage example. While the expert interview identified

some areas that could be improved, it also verified that the pipeline was meaningful,

although possibly too strict, and that the posters created with our framework have visual

interest and a clear narrative structure.

Although using UE came with many benefits with regards to rendering power and a

large API, it also added some limitations for the implementation that were undesirable.

One of these limitations is related to the textual elements that the author can add during

the detailed layout step of the pipeline. In UE, a font used in the GUI cannot be changed

during runtime. This means that the fonts must be determined, as well as their size, color,

justification, and emphasis, before the author enters the runtime mode, i.e., the global

and detailed layout steps. Because of this we added only two types of textual elements:

annotations with a small font size, black color, left justification and no emphasis, and

titles with a large font size, black color, central justification and bold emphasis. Since the

68

color of the font cannot be changed during runtime, we implemented the option to add a

semi-translucent white background to the text box so that there is sufficient contrast to

the black text on a darker section of the poster. The effect of the textual elements could

be enriched by being able to, for example, make some words in the annotations bold or

italic to emphasize them, or adapt the color of the text to enhance the contrast to the

background.

Another limitation created by UE is related to saving the poster, specifically saving

the finished poster as an image or video. Since posters are normally presented in a

large format, e.g., printed on paper size A0 which corresponds to 84.1cm x 118.9cm, it is

important that the image our tool produces is of high resolution. UE provides a possibility

to save high resolution screen shots in runtime mode, but since these screen shots are

rendered earlier than GUI elements in the rendering pipeline, they do not contain the

textual elements added in the detailed layout step. To include the textual elements,

we must use the regular screen shot of UE, which uses only the screen resolution. The

resulting image, therefore, depends on the resolution of the author’s screen. Figure 6.1

shows a comparison between a regular screen shot and a high resolution screen shot, both

taken of the same poster on a screen with resolution 1920x1080 pixels.

a b

Figure 6.1: Comparison of (a) a regular screen shot and (b) a high resolution screen shot
with a multiplier of 7, i.e., the resolution of the screen shot is 7 times larger than the
resolution of the screen, which was the highest multiplier possible on our hardware.

In Figure 6.1 a the edges of the DNA and human models are jagged and they appear

blurred compared to Figure 6.1 b. This blurring can also clearly be seen when comparing

the texture of the heart model in the two images.

69

A limitation that was introduced by design is that the author can choose only one

mesh for the focus object that is repeated for each spline segment. This means that

the focus object mesh has to be repeatable, i.e., the end of the mesh must match the

beginning of the mesh. It also means that the focus object is uniform throughout the

poster which removes some design possibilities. The spline object and mesh in UE do not

have this limitation, a different mesh can be set for each spline segment. It was introduced

because it has certain benefits, for example, it simplifies the necessary interactions that

the author must perform to define the mesh of the spline, and lets the author reuse one

mesh instead of having to create several meshes that match each other perfectly. Despite

this, there are cases where being able to define different meshes for the spline segments

is more beneficial. For example, if the author wishes to create a poster of an elongated

object where the scenes should explain different sections of this object. A concrete use

case could be to create a poster about the worm, Caenorhabditis elegans, which is the

subject of the OpenWorm project [34]. Here the mesh of the focus object would then

be the whole worm, and with the current implementation, the poster would contain one

worm per spline segment. By being able to select a different mesh per spline segment, one

could section the worm mesh and use one section per spline segment. The focus object

would then be one continuous worm instead of a sequence of connected worms.

70

Chapter 7

Conclusion and Future Work

We have created TimeBender, a framework and a prototype application for authoring 3D

space-time posters. This framework is built on a 3-step pipeline which includes the local

layout, global layout, and detailed layout steps. The prototype of the authoring frame-

work is interactive, i.e., it runs with interactive frame rates for the posters we created.

We evaluated our approach, and two example results produced using our prototype appli-

cation, by an expert interview with a trained illustrator. Based on this evaluation we can

conclude that the steps in our pipeline are meaningful, although a strictly linear pipeline,

notably with regards to the first two steps: local and global layout, does not capture

the regular workflow of an illustrator. The example posters we produced had features

and techniques used by traditional illustrators, including fading effects, organic shapes,

coloring to emphasize salient features, and animation to add interest and guide focus.

This means that our framework is capable of producing posters that tell a story with

data while using techniques inspired by traditional illustration to create communicative

visualizations.

Although our viewpoint based approach to modelling the focus object did not produce

the desired results, as described in Section 3.2.1, we think it should not be excluded in

future work. Potentially, there is a different way of defining matched points which would

produce a larger amount, i.e., more than one point per scene. With a larger set of matched

points to use as input one could combine the pose recovery algorithm with the RANSAC

algorithm [33] to handle the noise and yield more stable results.

Posters created with our framework do not support interaction from the audience.

Research has indicated that being able to interact with a narrative visualization can lead

71

to more trust in the presented results as the audience can verify the claims themselves in

the data [77]. Since the scenes within a poster are rendered dynamically, e.g., to allow

for animated models, it would be possible to extend the framework with an interaction

where the audience of the poster could move the scene cameras around to change the

view of the scene in the poster. Other interactions could be to, for example, select a

scene of interest to get more details about this scene or activate animation of the models

within this scene.

Another future extension of the framework could be to automate parts of the pipeline,

e.g., the global layouting. The author could, for example, sketch a path they would

like the focus object to follow and the system would place the scenes along this path.

Another solution could be to create layouts in a force-based way, similar to force-based

graph drawing, where the author could specify the importance of each scene which would

correlate to the strength of a force pulling them towards the camera, i.e., the higher the

importance of a scene, the stronger this force and thus the larger the scene would be

in the poster. Attraction forces could be placed between the neighbouring scenes in the

narrative, and distance-dependent repulsion forces between all scenes to ensure none of

them overlap.

72

List of Acronyms and Abbreviations

API Application Programming Interface.

FPS Frames per Second.

GUI Graphical User Interface.

SCC SceneCaptureComponent2D.

UE Unreal Engine.

73

Bibliography

[1] Rikke Aas. 7 Wonders in 13 Days - Animated. https://youtu.be/G9SpR5T14FY, .

[2] Rikke Aas. The Genetic Journey - Animated. https://youtu.be/DHiMsOAm 2o, .

[3] Adobe. After Effects. https://www.adobe.com/products/aftereffects.html, .

[4] Adobe. Photoshop. https://www.adobe.com/no/products/photoshop.html, .

[5] ajmalsaleem88. Colosseum Rome Italy. https://skfb.ly/ot6XK. This work is li-

censed under the Creative Commons Attribution 4.0 International License. To view

a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

[6] Scott Bateman, Regan L. Mandryk, Carl Gutwin, Aaron Genest, David McDine,

and Christopher Brooks. Useful Junk? The Effects of Visual Embellishment on

Comprehension and Memorability of Charts. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, page 2573–2582, 2010. doi:

10.1145/1753326.1753716.

[7] Tobias Ritschel Bernhard Reinert and Hans-Peter Seidel. Homunculus Warping:

Conveying Importance using Self-intersection-free Non-homogeneous Mesh Defor-

mation. Computer Graphics Forum, 7(31):2165–2171, 2012. doi: 10.1111/j.1467-

8659.2012.03209.x.

[8] Blender. Blender. https://www.blender.org/.

[9] Michelle A. Borkin, Azalea A. Vo, Zoya Bylinskii, Phillip Isola, Shashank Sunkavalli,

Aude Oliva, and Hanspeter Pfister. What Makes a Visualization Memorable? IEEE

Transactions on Visualization and Computer Graphics, 19(12):2306–2315, 2013. doi:

10.1109/TVCG.2013.234.

[10] Adrien Bousseau, Matt Kaplan, Joëlle Thollot, and François X. Sillion. Interactive

Watercolor Rendering with Temporal Coherence and Abstraction. In Proceedings of

74

https://youtu.be/G9SpR5T14FY
https://youtu.be/DHiMsOAm_2o
https://www.adobe.com/products/aftereffects.html
https://www.adobe.com/no/products/photoshop.html
https://skfb.ly/ot6XK
http://creativecommons.org/licenses/by/4.0/
https://www.blender.org/

the International Symposium on Non-Photorealistic Animation and Rendering, page

141–149, 2006. doi: 10.1145/1124728.1124751.

[11] Andrea Brambilla, Robert Carnecky, Ronald Peikert, Ivan Viola, and Helwig Hauser.

Illustrative Flow Visualization: State of the Art, Trends and Challenges. In

Proceedings of Eurographics - State of the Art Reports, pages 69–97, 2012. doi:

10.2312/conf/EG2012/stars/075-094.

[12] Stefan Bruckner and Eduard Gröller. VolumeShop: An Interactive System for Direct

Volume Illustration. In Proceedings of the IEEE Visualization Conference, pages

671–678, 2005. doi: 10.1109/VISUAL.2005.1532856.

[13] Stefan Bruckner and Eduard Gröller. Exploded Views for Volume Data. IEEE

Transactions on Visualization and Computer Graphics, 12(5):1077–1084, 2006. doi:

10.1109/TVCG.2006.140.

[14] Stefan Bruckner, Sören Grimm, Armin Kanitsar, and M. Eduard Gröller. Illustrative

Context-Preserving Volume Rendering. In Proceedings of the IEEE VGTC Sympo-

sium on Visualization, pages 1559–1569, 2005. doi: 10.2312/VisSym/EuroVis05/

069-076.

[15] Stefan Bruckner, Peter Rautek, Ivan Viola, Mike Roberts, Mario Costa Sousa, and

M. Eduard Gröller. Hybrid visibility compositing and masking for illustrative ren-

dering. Computers & Graphics, 34(4):361–369, 2010. doi: 10.1016/j.cag.2010.04.003.

[16] Chris Bryan, Kwan-Liu Ma, and Jonathan Woodring. Temporal Summary Images:

An Approach to Narrative Visualization via Interactive Annotation Generation and

Placement. IEEE Transactions on Visualization and Computer Graphics, 23(1):

511–520, 2017. doi: 10.1109/TVCG.2016.2598876.

[17] Robert Carnecky, Raphael Fuchs, Stephanie Mehl, Yun Jang, and Ronald Peikert.

Smart Transparency for Illustrative Visualization of Complex Flow Surfaces. IEEE

Transactions on Visualization and Computer Graphics, 19(5):838–851, 2013. doi:

10.1109/TVCG.2012.159.

[18] M. Sheelagh T. Carpendale, D.J. Cowperthwaite, and F.D. Fracchia. Distortion

Viewing Techniques for 3-Dimensional Data. In Proceedings IEEE Symposium on

Information Visualization, pages 46–53, 1996. doi: 10.1109/INFVIS.1996.559215.

[19] Cheng-Kai Chen, Shi Yan, Hongfeng Yu, Nelson Max, and Kwan-Liu Ma. An Illus-

trative Visualization Framework for 3D Vector Fields. Computer Graphics Forum,

30(7):1941–1951, 2011. doi: 10.1111/j.1467-8659.2011.02064.x.

75

[20] Siming Chen, Jie Li, Gennady Andrienko, Natalia Andrienko, Yun Wang, Phong H.

Nguyen, and Cagatay Turkay. Supporting Story Synthesis: Bridging the Gap be-

tween Visual Analytics and Storytelling. IEEE Transactions on Visualization and

Computer Graphics, 26(7):2499–2516, 2020. doi: 10.1109/TVCG.2018.2889054.

[21] Ming-Te Chi and Tong-Yee Lee. Stylized and Abstract Painterly Rendering System

Using a Multiscale Segmented Sphere Hierarchy. IEEE Transactions on Visualiza-

tion and Computer Graphics, 12(1):61–72, 2006. doi: 10.1109/TVCG.2006.14.

[22] choi464. Taj Mahal. https://skfb.ly/6UPrL. This work is licensed under the

Creative Commons Attribution 4.0 International License. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/.

[23] Wei-Ta Chu, Chia-Hsiang Yu, and Hsin-Han Wang. Optimized Comics-Based Sto-

rytelling for Temporal Image Sequences. IEEE Transactions on Multimedia, 17(2):

201–215, 2015. doi: 10.1109/TMM.2014.2383616.

[24] Carlos Correa, Deborah Silver, and Min Chen. Feature Aligned Volume Manipu-

lation for Illustration and Visualization. IEEE Transactions on Visualization and

Computer Graphics, 12(5):1069–1076, 2006. doi: 10.1109/TVCG.2006.144.

[25] Carlos D. Correa and Kwan-Liu Ma. Dynamic Video Narratives. ACM Transactions

on Graphics, 29(3):1–9, 2010. doi: 10.1145/1778765.1778825.

[26] Balázs Csébfalvi, Lukas Mroz, Helwig Hauser, Andreas König, and Eduard Gröller.

Fast Visualization of Object Contours by Non-Photorealistic Volume Rendering.

Computer Graphics Forum, 20(3):452–460, 2001. doi: 10.1111/1467-8659.00538.

[27] DeepDreamDimension. 3D model BASE MESH—Man Simple. https:

//www.turbosquid.com/3d-models/3d-model-base-mesh-simple-man-1550153.

This work is licensed under the 3D Model License:Standard by TurboSquid. To

view a copy of this license, visit https://blog.turbosquid.com/turbosquid-3d-

model-license/.

[28] Diego Delso. Petra. https://commons.wikimedia.org/wiki/File:

The Treasury, Petra, Jordan5.jpg. This work is licensed under the Creative

Commons Attribution-ShareAlike 3.0 International License. To view a copy of this

license, visit https://creativecommons.org/licenses/by-sa/3.0.

[29] Sara J ElShafie. Making Science Meaningful for Broad Audiences through Stories. In-

tegrative and Comparative Biology, 58(6):1213–1223, 2018. doi: 10.1093/icb/icy103.

76

https://skfb.ly/6UPrL
http://creativecommons.org/licenses/by/4.0/
https://www.turbosquid.com/3d-models/3d-model-base-mesh-simple-man-1550153
https://www.turbosquid.com/3d-models/3d-model-base-mesh-simple-man-1550153
https://blog.turbosquid.com/turbosquid-3d-model-license/
https://blog.turbosquid.com/turbosquid-3d-model-license/
https://commons.wikimedia.org/wiki/File:The_Treasury,_Petra,_Jordan5.jpg
https://commons.wikimedia.org/wiki/File:The_Treasury,_Petra,_Jordan5.jpg
https://creativecommons.org/licenses/by-sa/3.0

[30] Eric Enderton, Erik Sintorn, Peter Shirley, and David Luebke. Stochastic Trans-

parency. IEEE Transactions on Visualization and Computer Graphics, 17(8):1036–

1047, 2011. doi: 10.1109/TVCG.2010.123.

[31] Kaveh Fathian and Nicholas R. Gans. A New Approach for Solving the Five-

Point Relative Pose Problem for Vision-Based Estimation and Control. In Pro-

ceedings of the American Control Conference, pages 103–109, 2014. doi: 10.1109/

ACC.2014.6859364.

[32] Stephen Few. The Chartjunk Debate: A Close Examination of Recent Findings.

http://www.perceptualedge.com/articles/visual business intelligence/

the chartjunk debate.pdf, 2011. Accessed: 22-06-2022.

[33] Martin A. Fischler and Robert C. Bolles. Random Sample Consensus: A Paradigm

for Model Fitting with Applications to Image Analysis and Automated Cartography.

Communications of the ACM, 24(6):381–395, 1981. doi: 10.1145/358669.358692.

[34] OpenWorm Foundation. OpenWorm. https://https://openworm.org/. Accessed:

15-08-2022.

[35] Epic Games. Unreal Engine. https://www.unrealengine.com.

[36] Laura Garrison, Monique Meuschke, Jennifer Fairman, Noeska N. Smit, Bernhard

Preim, and Stefan Bruckner. An Exploration of Practice and Preferences for the

Visual Communication of Biomedical Processes. In Proceedings of the Eurographics

Workshop on Visual Computing for Biology and Medicine, pages 1–12, 2021. doi:

10.2312/vcbm.20211339.

[37] Laura A. Garrison, Ivan Kolesar, Ivan Viola, Helwig Hauser, and Stefan Bruckner.

Trends & Opportunities in Visualization for Physiology: A Multiscale Overview.

Computer Graphics Forum, 41(3):609–643, 2022. doi: 10.1111/cgf.14575.

[38] Gerald Geake. Interface lg. https://commons.wikimedia.org/wiki/File:

Interface lg.jpg. This work is licensed under the Creative Commons Attribution-

ShareAlike 3.0 International License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-sa/3.0/.

[39] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A Non-Photorealistic

Lighting Model for Automatic Technical Illustration. In Proceedings of the Confer-

ence on Computer Graphics and Interactive Techniques, page 447–452, 1998. doi:

10.1145/280814.280950.

77

http://www.perceptualedge.com/articles/visual_business_intelligence/the_chartjunk_debate.pdf
http://www.perceptualedge.com/articles/visual_business_intelligence/the_chartjunk_debate.pdf
https://https://openworm.org/
https://www.unrealengine.com
https://commons.wikimedia.org/wiki/File:Interface_lg.jpg
https://commons.wikimedia.org/wiki/File:Interface_lg.jpg
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

[40] Sarkis Halladjian, Haichao Miao, David Kouřil, M. Eduard Gröller, Ivan Viola, and

Tobias Isenberg. Scale Trotter: Illustrative Visual Travels Across Negative Scales.

IEEE Transactions on Visualization and Computer Graphics, 26(1):654–664, 2020.

doi: 10.1109/TVCG.2019.2934334.

[41] Richard I. Hartley. In Defense of the Eight-Point algorithm. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 19(6):580–593, 1997. doi: 10.1109/

34.601246.

[42] Wei-Hsien Hsu, Kwan-Liu Ma, and Carlos Correa. A Rendering Framework for

Multiscale Views of 3D Models. ACM Transactions on Graphics, 30(6):1–10, 2011.

doi: 10.1145/2070781.2024165.

[43] Jessica Hullman and Nick Diakopoulos. Visualization Rhetoric: Framing Effects in

Narrative Visualization. IEEE Transactions on Visualization and Computer Graph-

ics, 17(12):2231–2240, 2011. doi: 10.1109/TVCG.2011.255.

[44] jhonpersonvl. Animal Cell. https://free3d.com/3d-model/clula-animal-

758429.html. This work is licensed under the Personal Use License of Free3D. To

view a copy of this license, visit https://free3d.com/royalty-free-license.

[45] T. A. Keahey and E. L. Robertson. Techniques for Non-Linear Magnification Trans-

formations. In Proceedings of the IEEE Symposium on Information Visualization,

pages 38–45, 1996. doi: 10.5555/857187.857606.

[46] Nam Wook Kim, Eston Schweickart, Zhicheng Liu, Mira Dontcheva, Wilmot Li,

Jovan Popovic, and Hanspeter Pfister. Data-Driven Guides: Supporting Expressive

Design for Information Graphics. IEEE Transactions on Visualization and Computer

Graphics, 23(1):491–500, 2017. doi: 10.1109/TVCG.2016.2598620.

[47] Gordon Kindlmann, Ross Whitaker, Tolga Tasdizen, and T. Moller. Curvature-

Based Transfer Functions for Direct Volume Rendering: Methods and Applications.

In Proceedings of the IEEE Visualization Conference, pages 513–520, 2003. doi:

10.1109/VISUAL.2003.1250414.

[48] R. Kosara, S. Miksch, and H. Hauser. Semantic Depth of Field. In Proceedings

of the IEEE Symposium on Information Visualization, pages 97–104, 2001. doi:

10.1109/INFVIS.2001.963286.

[49] Robert Kosara. Presentation-Oriented Visualization Techniques. IEEE Computer

Graphics and Applications, 36(1):80–85, 2016. doi: 10.1109/MCG.2016.2.

78

https://free3d.com/3d-model/clula-animal-758429.html
https://free3d.com/3d-model/clula-animal-758429.html
https://free3d.com/royalty-free-license

[50] Martin Kraus. Perspective view frustum. https://upload.wikimedia.org/

wikipedia/commons/9/90/Perspective view frustum.png. This work is licensed

under the Creative Commons Attribution-ShareAlike 3.0 International License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-sa/

3.0/.

[51] Jens Krüger, Jens Schneider, and Rüdiger Westermann. ClearView: An Interactive

Context Preserving Hotspot Visualization Technique. IEEE Transactions on Visual-

ization and Computer Graphics, 12(5):941–948, 2006. doi: 10.1109/TVCG.2006.124.

[52] Kai Lawonn, Ivan Viola, Bernhard Preim, and Tobias Isenberg. A Survey of Surface-

Based Illustrative Rendering for Visualization. Computer Graphics Forum, 37(6):

205–234, 2018. doi: 10.1111/cgf.13322.

[53] Lionel. Great Wall China (model 1). https://skfb.ly/6q98F. This work is licensed

under the Creative Commons Attribution-NonCommercial 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-

nc/4.0/.

[54] Aidong Lu, C.J. Morris, D.S. Ebert, P. Rheingans, and C. Hansen. Non-

Photorealistic Volume Rendering Using Stippling Techniques. In Proceedings

of the IEEE Visualization Conference, pages 211–218, 2002. doi: 10.1109/

VISUAL.2002.1183777.

[55] Kwan-Liu Ma, Isaac Liao, Jennifer Frazier, Helwig Hauser, and Helen-Nicole Kostis.

Scientific Storytelling Using Visualization. IEEE Computer Graphics and Applica-

tions, 32(1):12–19, 2012. doi: 10.1109/MCG.2012.24.

[56] Monique Meuschke, Laura A. Garrison, Noeska N. Smit, Benjamin Bach, Sarah

Mittenentzwei, Veronika Weiß, Stefan Bruckner, Kai Lawonn, and Bernhard Preim.

Narrative medical visualization to communicate disease data. Computers & Graph-

ics, 107:144–157, 2022. doi: 10.1016/j.cag.2022.07.017.

[57] Mirfen. Pyramid. https://skfb.ly/6DpT7. This work is licensed under the Creative

Commons Attribution 4.0 International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

[58] Tamara Munzner. Visualization Analysis and Design. CRC Press, 2015.

[59] David Nister. An Efficient Solution to the Five-Point Relative Pose Problem. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(6):756–770, 2004.

doi: 10.1109/TPAMI.2004.17.

79

https://upload.wikimedia.org/wikipedia/commons/9/90/Perspective_view_frustum.png
https://upload.wikimedia.org/wikipedia/commons/9/90/Perspective_view_frustum.png
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://skfb.ly/6q98F
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://skfb.ly/6DpT7
http://creativecommons.org/licenses/by/4.0/

[60] Linda Nye and the Exploratorium Visualization Laboratory. Zoom Into the Human

Bloodstream. https://www.nsf.gov/news/mmg/mmg disp.jsp?med id=64550, 2009.

This work is licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-nc-sa/4.0/.

[61] Ji Hwan Park, Arie Kaufman, and Klaus Mueller. Graphoto: Aesthetically Pleasing

Charts for Casual Information Visualization. IEEE Computer Graphics and Appli-

cations, 38(6):67–82, 2018. doi: 10.1109/MCG.2018.2879066.

[62] Paulmcg1. DNA Strand. https://www.turbosquid.com/3d-models/3d-dna-

strand-model/247520. This work is licensed under the 3D Model License:Standard

by TurboSquid. To view a copy of this license, visit https://blog.turbosquid.com/

turbosquid-3d-model-license/.

[63] Weichao Qiu and Alan Yuille. UnrealCV: Connecting Computer Vision to Unreal

Engine. In Proceedings of the European Conference on Computer Vision Workshops,

pages 909–916, 2016. doi: 10.1007/978-3-319-49409-8 75.

[64] quadmade studio. Machu Picchu Wonder. https://www.turbosquid.com/3d-

models/picchu-wonder-3ds/657133. This work is licensed under the 3D Model

License:Standard by TurboSquid. To view a copy of this license, visit https:

//blog.turbosquid.com/turbosquid-3d-model-license/.

[65] Peter Rautek, Stefan Bruckner, Eduard Gröller, and Ivan Viola. Illustrative Vi-

sualization: New Technology or Useless Tautology? ACM SIGGRAPH Computer

Graphics, 42(3):1–8, 2008. doi: 10.1145/1408626.1408633.

[66] Ringo3D. Earth. https://www.turbosquid.com/3d-models/earth-max-free/

1016431, . This work is licensed under the 3D Model License:Standard by Tur-

boSquid. To view a copy of this license, visit https://blog.turbosquid.com/

turbosquid-3d-model-license/.

[67] Ringo3D. Heart. https://www.turbosquid.com/3d-models/free-heart-3d-

model/957963, . This work is licensed under the 3D Model License:Standard by

TurboSquid. To view a copy of this license, visit https://blog.turbosquid.com/

turbosquid-3d-model-license/.

[68] Edward Segel and Jeffrey Heer. Narrative Visualization: Telling Stories with Data.

IEEE Transactions on Visualization and Computer Graphics, 16(6):1139–1148, 2010.

doi: 10.1109/TVCG.2010.179.

80

https://www.nsf.gov/news/mmg/mmg_disp.jsp?med_id=64550
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.turbosquid.com/3d-models/3d-dna-strand-model/247520
https://www.turbosquid.com/3d-models/3d-dna-strand-model/247520
https://blog.turbosquid.com/turbosquid-3d-model-license/
https://blog.turbosquid.com/turbosquid-3d-model-license/
https://www.turbosquid.com/3d-models/picchu-wonder-3ds/657133
https://www.turbosquid.com/3d-models/picchu-wonder-3ds/657133
https://blog.turbosquid.com/turbosquid-3d-model-license/
https://blog.turbosquid.com/turbosquid-3d-model-license/
https://www.turbosquid.com/3d-models/earth-max-free/1016431
https://www.turbosquid.com/3d-models/earth-max-free/1016431
https://blog.turbosquid.com/turbosquid-3d-model-license/
https://blog.turbosquid.com/turbosquid-3d-model-license/
https://www.turbosquid.com/3d-models/free-heart-3d-model/957963
https://www.turbosquid.com/3d-models/free-heart-3d-model/957963
https://blog.turbosquid.com/turbosquid-3d-model-license/
https://blog.turbosquid.com/turbosquid-3d-model-license/

[69] Fairman Studios. The Genetic Journey. https://www.fairmanstudios.com/

project/genetic-2/, 2019. Accessed: 01-09-2022.

[70] Megan Sullivan. How to Travel to the 7 Wonders of the World in 13

Days. https://medium.com/@megthelegend/how-to-travel-to-the-7-wonders-

of-the-world-in-13-days-a-dirtbags-guide-a087da2f0089. Accessed: 12-08-

2022.

[71] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press,

2001.

[72] Claude Valette. Panneau Des Chevaux. https://upload.wikimedia.org/

wikipedia/commons/9/92/13 PanneauDesChevaux%28D%C3%A9tail%29.jpg. This

work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Interna-

tional License. To view a copy of this license, visit http://creativecommons.org/

licenses/by-sa/4.0/.

[73] Andrew Vande Moere and Helen Purchase. On the role of design in informa-

tion visualization. Information Visualization, 10(4):356–371, 2011. doi: 10.1177/

1473871611415996.

[74] Ivan Viola and Eduard Gröller. Smart Visibility in Visualization. In Proceedings of

the Workshop on Computational Aesthetics in Graphics, Visualization and Imaging,

pages 209–216, 2005. doi: 10.2312/COMPAESTH/COMPAESTH05/209-216.

[75] Lujin Wang, Joachim Giesen, Kevin McDonnell, Peter Zolliker, and Klaus Mueller.

Color Design for Illustrative Visualization. IEEE Transactions on Visualization and

Computer Graphics, 14(6):1739–46, 2008. doi: 10.1109/TVCG.2008.118.

[76] Yun Wang, Haidong Zhang, He Huang, Xi Chen, Qiufeng Yin, Zhitao Hou, Dong-

mei Zhang, Qiong Luo, and Huamin Qu. InfoNice: Easy Creation of Information

Graphics. In Proceedings of the CHI Conference on Human Factors in Computing

Systems, pages 1–12, 2018. doi: 10.1145/3173574.3173909.

[77] Michael Wohlfart and Helwig Hauser. Story Telling for Presentation in Volume

Visualization. In Proceedings of the IEEE VGTC Symposium on Visualization, pages

91–98, 2007. doi: 10.2312/VisSym/EuroVis07/091-098.

[78] J. Yu and L. McMillan. A Framework for Multiperspective Rendering. In Proceedings

of the Eurographics Workshop on Rendering Techniques, pages 61–68, 2004. doi:

10.2312/EGWR/EGSR04/061-068.

81

https://www.fairmanstudios.com/project/genetic-2/
https://www.fairmanstudios.com/project/genetic-2/
https://medium.com/@megthelegend/how-to-travel-to-the-7-wonders-of-the-world-in-13-days-a-dirtbags-guide-a087da2f0089
https://medium.com/@megthelegend/how-to-travel-to-the-7-wonders-of-the-world-in-13-days-a-dirtbags-guide-a087da2f0089
https://upload.wikimedia.org/wikipedia/commons/9/92/13_PanneauDesChevaux%28D%C3%A9tail%29.jpg
https://upload.wikimedia.org/wikipedia/commons/9/92/13_PanneauDesChevaux%28D%C3%A9tail%29.jpg
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

[79] Johannes Zander, Tobias Isenberg, Stefan Schlechtweg, and Thomas Strothotte. High

Quality Hatching. Computer Graphics Forum, 23(3):421–430, 2004. doi: 10.1111/

j.1467-8659.2004.00773.x.

82

	Introduction
	Problem Statement and Contribution

	Related Work
	Visual Communication
	Illustrative Visualization
	Low-Level Visual Abstractions
	High-Level Visual Abstractions

	Narrative Visualization

	Methodology
	Main Pipeline
	Local Layout
	Global Layout
	Detailed Layout

	Focus Object Approaches
	Viewpoint-Based Approach
	Spline-Based Approach

	Soft Fading Effects

	Implementation
	Unreal Engine
	Project Overview

	Main Pipeline
	Local Layout
	Global Layout
	Detailed Layout

	Focus Object Modelling
	Soft Fading Effects
	Saving and Loading

	Results
	Performance
	Usage Examples
	The Genetic Journey
	7 Wonders in 13 Days

	Expert Feedback

	Discussion and Limitations
	Conclusion and Future Work
	List of Acronyms and Abbreviations
	Bibliography

