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Abstract: Leading edge erosion (LEE) of wind turbine blades causes decreased aerodynamic perfor-
mance leading to lower power production and revenue and increased operations and maintenance
costs. LEE is caused primarily by materials stresses when hydrometeors (rain and hail) impact on
rotating blades. The kinetic energy transferred by these impacts is a function of the precipitation
intensity, droplet size distributions (DSD), hydrometeor phase and the wind turbine rotational speed
which in turn depends on the wind speed at hub-height. Hence, there is a need to better understand
the hydrometeor properties and the joint probability distributions of precipitation and wind speeds
at prospective and operating wind farms in order to quantify the potential for LEE and the financial
efficacy of LEE mitigation measures. However, there are relatively few observational datasets of
hydrometeor DSD available for such locations. Here, we analyze six observational datasets from
spatially dispersed locations and compare them with existing literature and assumed DSD used in
laboratory experiments of material fatigue. We show that the so-called Best DSD being recommended
for use in whirling arm experiments does not represent the observational data. Neither does the
Marshall Palmer approximation. We also use these data to derive and compare joint probability
distributions of drivers of LEE; precipitation intensity (and phase) and wind speed. We further review
and summarize observational metrologies for hydrometeor DSD, provide information regarding
measurement uncertainty in the parameters of critical importance to kinetic energy transfer and
closure of data sets from different instruments. A series of recommendations are made about research
needed to evolve towards the required fidelity for a priori estimates of LEE potential.

Keywords: wind energy; wind turbines; aerodynamics; blade reliability; hydrometeors; erosion;
kinetic energy transfer; metrology; hail; droplet size distributions

1. Introduction
1.1. Wind Turbine Blade Leading Edge Erosion

Leading edge erosion (LEE) is an emerging issue in wind turbine blade reliability [1].
Erosion of the leading edge causes gradual degradation of aerodynamic performance result-
ing in loss of annual energy production (AEP) [2–4]. While there is uncertainty regarding
the response relationship between the severity of LEE and AEP losses [4,5], roughening of
the blade leading edge reduces aerodynamic performance at roughness heights of 0.1 mm
or below [6]. Accordingly, wind turbine blade LEE is a substantial cause of maintenance
costs [7]. Reports suggest “structural repair of a single wind blade can cost up to $30,000, and
a new blade costs, on average, about $200,000” [8], both of which inflate the Levelized Cost
of Energy (LCoE) from wind. Increasing evidence of blade LEE has spurred development

Energies 2022, 15, 8553. https://doi.org/10.3390/en15228553 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15228553
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4847-3440
https://orcid.org/0000-0003-0403-6046
https://orcid.org/0000-0001-7563-345X
https://orcid.org/0000-0002-0891-9113
https://orcid.org/0000-0002-2124-5651
https://orcid.org/0000-0002-7966-8585
https://orcid.org/0000-0002-0802-4838
https://doi.org/10.3390/en15228553
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15228553?type=check_update&version=1


Energies 2022, 15, 8553 2 of 41

of advanced methods for detection of LEE [8–11], and to replicate the process of LEE in
the laboratory [12,13] or using numerical modeling [14–16]. As an example of the latter,
the Springer model has been applied for assessing the material properties and combined
with Minor’s rule to assess time to failure [17]. Preventative tools to reduce LEE via applica-
tion of polymer tapes or coatings to the leading edge have also been developed [10,18–22].
However, application of these tapes can reduce aerodynamic efficiency and thus power
production [23]. Further, the tapes/coatings themselves can also be subject to erosion by
shockwaves caused by impacts from hydrometeors [24].

Performance of leading edge protection (LEP) systems are typically evaluated using
accelerated rain erosion tests (RET) [25]. Whirling-arm test-rigs are designed to determine
the surface impact resistance of blade coatings to hydrometeor collisions. Many studies
employ such systems, sometimes with a staged approach to examine the mechanisms
by which coating systems evolve during the experiment [26]. They are used to perform
experiments wherein a blade section is rotated at high-speed and exposed to droplet
bombardment [13]. Although this experimental procedure has been widely used, it is
subject to some limitations. For example, concerns have been raised that they do not
sample realistic droplet size, morphology and velocity spectra [27]. They also do not fully
include the presence of co-stressors such as degradation due to ultraviolet (UV) exposure
or thermal cycling and associated materials expansion and contraction. Further, there is
evidence that pre-stress of blade materials enhances hydrometeor erosion of the leading
edge [28]. This effect is not fully reproduced in the whirling-arm test-rigs. Finally, current
experimental configurations are limited to consideration of liquid hydrometeors.

Proposals have also been advanced to reduce blade rotational speed during hydro-
climatic events that are likely to cause high materials stresses [1,29,30]. Adoption of this
‘erosion safe mode’ operation naturally comes at a penalty of reduced power production
but may extend blade lifetimes by reducing materials stress yielding net economic benefit
to wind farm owner-operators [31].

Wind turbine blades are made of composites (e.g., epoxy or polyester, with reinforcing
glass or carbon fibers) [32] coated to protect them by distributing and absorbing energy
from hydrometeor and other impacts [33]. Wind turbine blade LEE is principally the result
of material stresses causes by kinetic energy transfer from hydrometeors impacting on the
rotating blade [27,30,34]. Each impact has the potential to generate surface Rayleigh waves,
and both shear and compressional waves in the coating interior [35]. The interaction of
these waves is complex and depends on the nature of the impact and material properties
of the coating. Erosion mechanics can be simply envisaged as comprising an incubation
period during which no damage is observed but microstructural material changes due to
hydrometeor impacts generate nucleation sites for subsequent material removal. Material
removal commences when a threshold level of accumulated impacts is reached [17]. This is
followed by a period during which additional impacts lead to observable damage as stress
waves propagate from impact locations causing growth of pits/cracks to grow and an
increase in material loss [14,36,37]. The number of impacts required to reach the threshold
at which material failure becomes evident is thus a non-linear function of the number,
magnitude and phase of the hydrometeors and hydrometeor closing velocity plus the
material strength [15]. The Waterhammer equation describes the pressure exerted on the
coating by the impact as a linear function of the impact velocity [23,35,38]. The impact
force and the kinetic energy transferred into the coating scales with the mass and closing
velocity squared [35]. For a closing velocity of 80 ms−1 a single 2 mm rain droplet may
extert a pressure of up to 120 MPa on the blade surface [35].

The amount of kinetic energy transferred into the blade from an ensemble of falling
hydrometeors is dictated by:

(i) The closing velocity between the hydrometeors and the blade. Variations in wind
turbine rotational speed are a function of incident wind speed (WS) at the hub-height
(Figure 1a). The rotational speed of the wind turbine blades during typical operation
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exceeds the terminal fall velocity (vt) of hydrometeors and hence generally dominates
the closing velocity between falling hydrometeors and wind turbine blades.
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Figure 1. (a) Simplified wind turbine rotor speed (revolutions per minute, RPM) and tip speed (ms−1)
as a function of hub-height wind speed for a typical wind turbine with a rated capacity of 1.5–2 MW
(e.g., GE 1.5 SLE). Estimation of the tip speed from the blade RPM assumes a blade diameter of
83 m. Power production begins at 3.5 ms−1 and ceases at hub-height wind speeds >25 ms−1, thus no
RPM or tip-speed data are plotted for wind speeds outside of this range. (b) Contours of the joint
probabilities of terminal fall velocities (vt) and hydrometeor diameter (D) based on 4 years of optical
disdrometer data (2017–2020) from the US Department of Energy (DoE) Atmospheric Radiation
Measurements (ARM) site at Lamont in the US Southern Great Plains (US SGP). Additionally, shown
are vt estimates as a function of D computed for rain droplets and hail using Equations (1) and (3)
(lines) and the following assumptions: ρo = 1.225 kgm−3, ρair = 0.999ρo, ρi = 900 kgm−3.

A range of approximations have been proposed to describe the dependence of hy-
drometeor vt on their diameter (D), phase, morphology and density [39]. Estimates shown
in Figure 1b are computed using:

vt,rain = κ

[
ρo

ρair
R
]1/2

(1)

where R = droplet radius (m), κ = 220 m1/2s−1, ρo = air density at sea level (kgm−3), ρair = air
density at the altitude above sea level (kgm−3) [40]. Early research [41] suggested that
droplet vt should be calculated within three different diameter ranges. The following is
valid for droplet diameters (D) > 0.05 mm (5 × 10−5 m);

vt,rain = B
{

1− exp
[
−
(

D
a

)n]}
(2)

where for D = 5 × 10−5 m to 3 × 10−4 m, B = 1.91 ms−1, a1 = 3.16 × 10−4 m and n = 1.754.
For D > 3 × 10−4 m, the coefficients in Equation (2) are adjusted to B = 9.32 ms−1, a1 = 1.77
× 10−3 m and n = 1.147.
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An approximation for the terminal fall velocity for hail is:

vt,hail =

[
8
3
|g|
CD

ρi
ρair

Rh

]1/2

(3)

where Rh = radius of the hailstone (m), ρi = density of ice (kgm−3), ρair = air density at the
altitude at which the hail is falling (kgm−3) and CD = drag coefficient (0.55) [40]. Alternative,
simpler forms have also been experimentally determined. E.g., for Dmax < 2.05 cm:

vt,hail = 12.65D0.65
max (4a)

For Dmax > 2.05 cm:
vt,hail = 15.69D0.35

max (4b)

where Dmax = hailstone maximum diameter [42]. For hail D of 0.6 to 9 mm, the following
has been suggested [43]:

vt,hail = 3.74D0.5 (5)

Virtually all droplets with D > 0.5 mm have sufficient inertia to deviate from the
streamlines and impact the blade with an impingement efficiency ~1 and have a velocity at
impaction close to vt [14,44–46].

During periods when wind turbines are operating close to their rated capacity (i.e.,
generating electricity of an amount equal to their nameplate) and so are rotating at their
maximum speed (Figure 1a), the vt of hydrometeors (Figure 1b) contributes ≤10% of the
net closing velocity between the droplets and blade. A possible exception to this may occur
if hydrometeors are caught up in downdrafts or downbursts from convective systems [47].

(ii) The number, size and phase of hydrometeors that impact the blade leading edge. The
incubation, transition and steady-state progression of damage on leading edge [48]
differs as a function of precipitation climate. There is evidence that larger drops
are of greater importance in dictating the incubation period and that smaller drops
are critical in the transition and steady-state progression [49]. Further, the materials
response to hail (ice) differs from that to collisions with rain (liquid) droplets [35].
The maximum von-Mises stress created by impact of a 10 mm diameter hailstone
on a blade leading edge greatly exceeds that from a rain droplet of equivalent size
and closing velocity due to differences in mass and hardness [35]. Recent laboratory-
based research found that for hailstone with diameters of 15 and 20 mm as few as
five impacts at a closing velocity of ≥ 110 ms−1 were needed to cause damage to a
glass fibre reinforced plastic composite coated with polyurethane [50].

Larger wind turbines with higher rated capacity and longer blades are now being
deployed [51–53]. These wind turbines typically use lower rotational speeds, but the length
of the blade means they typically have higher tip-speeds than smaller, and lower rated (or
nameplate) capacity wind turbines, and thus they may experience higher rates of LEE. That
coupled with increased deployments offshore [52] where maintenance costs are consider-
ably higher [54–56], led to the International Energy Agency Wind Technology Collaboration
Programme (IEA Wind TCP) to create Task 46. This task is designed to undertake coop-
erative research in the key topic of blade erosion. The goal is to improve understanding
of the drivers of LEE, the geospatial and temporal variability in erosive events, erosion
mechanics, the impact of LEE on wind plant performance and the cost/benefit of possible
mitigation strategies.

1.2. Hydrometeor Droplet Size Distributions

Although theoretical droplet size distributions (DSD) are often formulated in terms
of the number of droplets above some threshold radius (or diameter), observed droplet
size distributions measure hydrometeor counts in diameter classes and thus are processed
to generate number concentrations (dN) within some finite size interval (dD). They are
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expressed as the number concentrations of raindrops per cubic meter as a function of their
diameter normalized for a fixed size interval (dN/dD or N(D), #m−3 mm−1).

It has long been recognized that increasing precipitation intensity (or rain rate, RR) shifts
the hydrometeor DSD towards an increase in the relative abundance of larger droplets [57].
Accordingly, theoretical DSD are described as a function of prevailing RR and/or liquid
water content (LWC) of air. Frequently, the number DSD for rain droplets is assumed to
follow a two- or three-parameter gamma distribution [58], although there is some evidence
to suggest a three-parameter lognormal may be optimal under some circumstances [59]. The
normalized gamma distribution as a function of LWC (in gm−3) is given by:

N(D) = Nw f (µ)
(

D
Dm

)µ

exp
[
−(4 + µ)

D
Dm

]
(6)

where Nw is:

Nw =
3.674103LWC

πρwD4
0

(7)

and Dm is:

Dm =
4 + µ

3.67 + µ
D0 (8)

where D0 = median drop diameter, ρw = density of water and µ = shape parameter of the
distribution that can be derived by fitting to observed DSD [45]. Details on estimation of
Nw and ƒ(µ) are given in Testud et al. [60].

The Marshall-Palmer approximation for DSD for rain was experimentally derived
based on data collected in Montréal, Canada in 1946 [61]. It assumes that rain droplets
follow an exponential distribution and can be easily used to predict the size distribu-
tion of liquid hydrometeors (rain droplets) based on the prevailing rainfall rate (RR, in
mmhr−1) [61]. It is most frequently expressed as the number of droplets above radius, R,
per cubic meter of air (N, m−3):

N =
N0

Λ
e−ΛR (9)

where Λ = 8200(RR)−0.21 (m−1) and N0 = 1.6× 107 m−4.
The Det Norske Veritas (DNV) Recommended Practice for LEE testing issued in

December 2020 and amended in October 2021 [46] proposes use of the so-called Best rain
DSD to characterize the droplet size spectrum. This distributional form was published in
1950 and is based on measurements made in the United Kingdom using filter paper [41]. It
has the form:

N(D) =
W
V

(
kB·DkB−1

akB

)
e−bD/ackB (10)

where V = spherical volume of the droplet
(

1
6 πD3

)
(mm−3), D = droplet diameter (mm),

W = total water volume which is given as 67 RR0.846 (mm3) RR = rainfall rate in mmhr−1,
kB = 2.25, a = 1.3 RR0.232.

The DNV Recommended Practice also suggests 6 mm as an upper bound for droplet
diameter asserting that above this diameter “aerodynamic forces break up the droplet” [46].
As shown herein, observations derived using ground-based disdrometers suggest the
existence of droplets at diameters considerably above 6 mm.

Fewer studies have examined the size distribution of hail stones [62,63]. The simplest
approximations use a single fitting parameter (λ), e.g.,:

N(D) = 115λ3.63e−λD (11)

where D = hail stone diameter [64]. Values of λ of 0.3 to 0.6 mm−1 were proposed based on
measurements in Canada [64,65].
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It should be noted that rain droplets are generally not spherical and are increasingly
oblate as D increases. For liquid droplets the ratio of the vertical to horizontal axis decreases
from about 1 for D = 1 mm, to 0.7 at D = 5 mm [66]. The following empirical estimate of the
terminal fall velocity for deformed rain droplets has been advanced for 0.04 ≤ R ≤ 2.5 mm:

vt,rain = −c1

[
w0 − w1exp

(
Ro − R

R1

)]
(12)

where R = equivalent droplet radius of the deformed drop of a sphere with the same
volume (mm), w0 = 12 ms−1, w1 = 1 ms−1, R0 = 2.5 mm, and R1 = 1.0 mm. c1 is a density
correction factor given by the square root of the ratio of 70 kPa to the air pressure at the
height of the droplet [40].

Smaller hail stones (i.e., D < 5 mm) are almost spherical, but for massive hail with
D > 50 mm, the ratio of the vertical to horizontal axis can drop to 0.6 [67]. This may have
some important implications when considering the area of impact on a wind turbine blade.
Further, the material stresses induced by hail stone impacts will inevitably be dictated in
part by the hardness or strength (tensile and compressive) of the solid hydrometeors, that
is determined in part by their density. Although many hailstones have densities close to
900 kgm−3 some of the largest natural hailstones exhibit a lower density [67].

1.3. Spatial Variability in the Primary Drivers of Leading Edge Erosion

Previous meteorological research has indicated substantial spatial variability in the
intensity, frequency and annual accumulation of liquid precipitation and frequency of hail
at the global scale. High spatial variability in annual precipitation accumulation has been
documented using homogenized records of in situ measurements such as the Global Histori-
cal Climatology Network (GCHN) dataset [68] (Figure 2a), blended multi-stream datasets
(e.g., Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis Version 7 [69])
Figure 2b), and satellite-derived estimates [70]. Annual precipitation accumulation varies
by a factor of 10, even within individual countries (e.g., the US). Further, a recently released
data set that merges information from multiple instruments and measurement technologies
found that daily precipitation accumulation on the top 1 percent of wet days (i.e., days with
daily accumulated precipitation of >1 mm) ranges from <5 mm over large parts of Australia,
interior regions of Asia, northern Africa and western North America to >80 mm over large
swaths of South America, parts of the eastern US, India and southern China [71].

Hail frequency also varies greatly across different parts of the globe [72]. An analysis of
hail observations from the US National Oceanic and Atmospheric Administration (NOAA)
Storm Prediction Center’s event database, and similar archives from Australia and Europe,
found that when the data are conditionally sampled to include only events with maximum
hail diameter >25 mm, the annual hail frequency per 100 by 100 km grid cell are over
20 times higher in large parts of the south-central US than either Europe or Australia [73].
Similar spatial patterns in hailstorm frequency are found based on analyses of multi-sensor
multi-wavelength brightness temperature data from the GPM mission (Figure 2c). An
additional assessment of hail occurrence from Microwave Humidity Sounders onboard a
number of different satellites also identifies the Southern Great Plains (SGP, south-central
portions of the continental US) as being a global hot-spot for hail occurrence particularly
during the Northern Hemisphere (NH) warm months. Secondary maxima are identified in
central Eurasia and South America during the NH cold months [74]. It should be noted
that these hail climatologies are biased towards detecting large-scale convective events (i.e.,
those that have long-duration—i.e., last for multiple hours and large spatial scales) [75].

There are also important gradients in the frequency of precipitation and hail at the
regional and sub-regional scale. For example, based on data from the Integrated Multi-
satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) [76],
the median size of precipitation systems over North America ranges from < 10,000 km2

in parts of the west to 50,000 km2 in the US southeast [77]. The mean intensity ranges
from below 1 mmhr−1 in the west to well over 2 mmhr−1 in the US southeast [71]. On
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sub-regional scales there is also high variability. For example, annual precipitation varies by
a factor of 10 across Texas and the prevalence of hail events ranges from hundreds of 5 min
events per year to nearly zero [78]. Northwestern Texas has high wind turbine installed
capacity and a high joint probability of hail and/or heavy precipitation at power-producing
wind speeds [78].
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Figure 2. (a) Map of mean annual precipitation (mm) computed from the Global Historical Climatol-
ogy Network (GCHN) dataset (v4) for all 10,468 measurement sites with complete records for the
five years; 2015–2019. Location (magenta dots) of the primary sites from which hydrometeor and
wind data are presented herein. Listed west to east these sites are; Southern Great Plains, United
States (US SGP), Canada coastal, UK coastal, Norway coastal, North Sea, and Denmark. (b) Map of
mean annual precipitation (mm) from the GPCC Full Data Reanalysis Version 7 (data have a spatial
resolution of 1 by 1 degree). (c) Map of estimated annual hail frequency at 2 deg resolution based on
the NASA Passive Microwave Hail Climatology Data Products V1 data set and observations from
2014–2022 [75]. (d) Map showing countries that have either more than 5 GigaWatts (GW) of wind
energy installed capacity (IC) onshore or more than 1.5 GW offshore (as of end of 2020) based on data
from the GWEC 2020 status report [79].

Wind speeds and wind resources also vary across a wide range of spatial and tem-
poral scales [80–82]. This leads to an uneven distribution of wind turbine deployments
(Figure 2d), and to large spatial variability in the amount of time wind turbines operate at
their maximum rotor rotational speed (Figure 1a).

Precipitation frequency and intensity (RR) are highly dependent on the spatial and
temporal resolution of observations. Generally, intensity-duration-frequency curves to
illustrate the approximately exponential decline in RR with increasing temporal (and
spatial) averaging [83,84]. Use of 1 h integration periods profoundly truncates the right tail
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of the probability distribution of RR relative to higher frequency observations [85]. For this
reason, most data sets presented herein sample RR and DSD at a 1 min averaging period.

Relatively few long-term measurements of hydrometeor DSD are available. However,
past research has postulated that regions dominated by stratiform precipitation generally
have smaller median and mass-weighted mean droplet diameters. Conversely, those that
exhibit a higher frequency of convective precipitation, especially where the convection
is sufficiently vigorous to pass the freezing level and thus for there to be substantial ice
in the cloud are a larger contribution from bigger droplets. According to some estimates,
convective events have median droplet diameters for that are >3 times as large as those
from stratiform events with the same droplet distribution intercept parameter (Nw), which
is linked to the cloud LWC (see Equations (6)–(8)) [58,79].

1.4. Objectives

From the discussion above it is reasonable to postulate that spatiotemporal variations
of hydroclimate conditions and the joint probabilities of WS and RR, DSD and hydrometeor
phase will lead to variations in the accumulated kinetic energy into wind turbine blades,
the resulting materials stress and hence the likelihood of erosion of the leading edge. It is
further reasonable to postulate that the cost effectiveness of the different LEE preventative
measures will vary in space.

Research reported herein is conducted under IEA Task 46 WorkPackage 2 Climatic
conditions driving blade erosion and focusses on evaluating and analyzing observational
data sets pertaining to the primary atmospheric drivers of wind turbine blade leading edge
erosion; hydrometeors. Our objectives are as follows:

(1) Review and summarize metrologies for measuring RR and DSD. Because of our focus
is on wind turbine blade LEE, we concentrate on performance at high rainfall rates,
for larger diameter hydrometeors and for detection of solid hydrometeors (hail and
graupel).

(2) Summarize aspects of hydroclimates (e.g., RR, hail frequency) at study locations with
high wind energy penetration and/or high wind energy potential.

(3) Compare observed DSD at several sites, and evaluate the degree to which the Marshall-
Palmer and/or Best distributions accurately represent the observations. We further
assess whether current whirling-arm experimental designs that use the Best DSD to
guide the droplet sizes used are optimal to fully characterize surface impact resistance
at different RR.

(4) Summarize and compare joint probability distributions of wind speed and rainfall
rates (and hail occurrence) to illustrate how inferences can be drawn regarding likely
relative LEE potential.

We further articulate research activities required to provide high-fidelity assessments
of key atmospheric drivers of LEE and to make a priori estimates of likely LEE severity at a
given location and through time.

2. Materials and Methods
2.1. Metrologies for Measuring Rainfall Rates and Droplet Size Distributions

Most national meteorological measurement networks use heated tipping-bucket or
weighing rain gauges to measure liquid-equivalent precipitation accumulation over a time
interval (i.e., the RR). These data are often reported with a resolution of one hour [86],
although some countries report data for selected sites at higher temporal resolution [87].
Some meteorological services equip these rain gauges with wind shields to reduce precipi-
tation under-catch (particularly of snow) under high wind conditions [88].

Rain gauges remain the primary source of ground-truth information regarding pre-
cipitation receipt at the ground. Good agreement for daily accumulated precipitation
(within ±10%) is generally reported from closure experiments [86]. These measurements,
plus RR and hydrometeor phase estimated from ground-based dual polarization Doppler
RADAR [89,90], are extremely important to hydrological applications [91]. They have
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relevance to, but are not sufficient for, estimation of kinetic energy transfer to wind turbine
blades. This specific application requires high temporal resolution in order to capture high
intensity but short duration precipitation events, plus information regarding the DSD. Thus,
in past analyses, estimates of RR and hail occurrence from tipping bucket or weighing
rain gauges and/or derived from ground-based dual polarization Doppler RADAR have
been combined with approximations of DSD as a function of RR (Equations (6)–(11)) and
simultaneous WS observations to derive estimations of time varying and annual accumu-
lated kinetic energy transfer to wind turbine blades [78,92]. However, such estimates are
critically dependent on the degree to which the assumed rain and hail DSD represent real
atmospheric conditions.

Precipitation DSD can be measured using a range of different metrologies [93]. Two-
dimensional video disdrometers (VDIS) comprises two video cameras with perpendicular
lines of sight [94,95]. Objects passing through the measurement area obstruct the light and
are detected as shadows by the cameras [96,97]. Impact disdrometers work by recording the
kinetic energy transferred due to the impact of a falling hydrometeor on a detector [98,99].
Acoustic disdrometers work by detecting the acoustic signal generated by rain droplet
impacts on a diaphragm [93]. Herein we present data primarily from optical disdrometers
(also known as light occlusion instruments) that measure droplet number and fall velocity
in a number of diameter classes by detecting the breaking of a horizontal light sheet
by the passage of the hydrometeors [95,100,101]. As with rain gauges, the quality of
data obtained from disdrometers can be influenced by wind-induced under-sampling of
hydrometeors [102,103] and reporting of unrealistically low vt for large D in high wind
speeds [104]. In situ disdrometers are also subject to interference from other droplets (e.g.,
sea spray or splash) in the sample volume [103,105]. Thus, all disdrometers should be
shielded using similar technologies to those deployed for rain gauges.

The process of translating the signal from a disdrometer to number density normalized
by the diameter range covered in a given class is shown in Equation (13) and described
below using the example of the 2nd generation OTT Particle size and velocity (Parsivel2)
optical disdrometer [95,106]:

N(Di) =
ni

Ftvt(Di)∆Di
(13)

where ni = number count in diameter class i (Di in mm), F = area field of view of the
disdrometer (0.0054 m2 for the OTT Parsivel2 disdrometer), t = sampling interval (typically
60 s), vt(Di) = fall velocity of a drop of that diameter (ms−1), ∆Di = width of the size class
(mm). N(Di) thus has units of the number per cubic meter of air per mm. Because of the
low signal-to-noise ratio, the first two diameter classes for the Parsivel2 (Di of 0.062 and
0.187 mm) are frequently empty, thus valid data are generally reported for diameter classes
with Di of 0.25 mm and above. Note: The different generations (first and second) of the
OTT optical disdrometer are denoted here as Parsivel1 and Parsivel2, respectively.

Previous research has indicated errors in the OTT Parsivel2 terminal fall velocities
under some atmospheric conditions [106] which may have some implications for the
number density estimates reported herein (see Equation (13)). A key aspect of the data
analysis framework for optical disdrometer observations pertains to use of screening
procedures to exclude droplets reported in the raw measurements as occurring in terminal
fall velocities that differ substantially from theoretical estimates of vt(Di). An illustration of
this effect is given in Figure 3 for ~14,000 1 min observed hydrometeor counts expressed in
diameter and fall velocity classes from measurements with an OTT Parsivel2 deployed on
the campus of Cornell University in upstate New York, US. As shown in Figure 3, while the
mean number counts in combined D and vt class illustrate the expected monotonic increase
of fall velocity with droplet diameter, a non-trivial number of detected hydrometeors
exhibit fall velocities below 2 ms−1 even for D > 2 mm. These values may reflect the
presence of insects and leaves in the instrument field of view, or splintered hydrometeors
that strike on the housing of the disdrometer and subsequently enter the field of view.
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The implication is that it may be appropriate to remove them prior to computing the
hydrometeor DSD. For example, in processing of data from optical disdrometers operating
at US Department of Energy sites, droplets reported in fall velocity classes that differ by
>±50% from the terminal velocity for water droplets in stagnant air computed using Gunn
and Kinzer [107] are assumed to be in error and are excluded from consideration [101].
This inevitably results in a reduction in N(Di). Currently there is no consensus regarding
use of this screening to exclude some count data and/or the specific threshold that should
be applied. We recommend best-practice be developed to ensure comparability of observed
DSD across different sites and regions.
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Figure 3. Mean hydrometeor number counts in droplet diameter and fall velocity classes for approx-
imately 14,000 min with RR > 0 mmhr−1 from an OTT Parsivel2 disdrometer deployed at Cornell
University (Table 1). Data from a few minutes with WC indicative of snow have been excluded.

Some droplets pass through the margins of the field of view of the disdrometer. Thus,
a further key aspect of the processing of disdrometer data pertains to use of an effective
sampling area (Feff) that scales with the droplet diameter. The following estimate of Feff has
been proposed [108]:

Fe f f = L
(

WA −
Di
2

)
(14)

where L and WA are the length (180 mm) and width (30 mm) of the viewing area.
Assuming spherical droplets, the precipitation rate (RR in mmhr−1) is:

RR =
π

6
3.6
103

1
Ft ∑ niD3

i (15)

The mass-weighted mean diameter (Dm in mm) is computed as the ratio of the 3rd to
the 4th moment of the measured droplet size distribution as follows [109]:

Dm =
M4

M3
(16)

where:

Mn =
NB

∑
i = 1

N(Di)Dn
i ∆Di (17)

where NB = number of size bins available from the disdrometer.
The Thies Laser Precipitation Monitor (LPM) optical disdrometer [110] works on a

similar measurement principle to the OTT Parsivel and also measures hydrometeors as they
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fall through, and thus break, a series of adjacent horizontal beams. The Thies LPM disdrom-
eter uses a wavelength (λw) of 785 nm, while the OTT Parsivel2 operates at a λw = 650 nm.
The Thies LPM used at sites in the UK Disdrometer Verification Network (DiVeN) experi-
ment [111] employs 20 diameter classes from ≥0.125 mm to >8 mm and 20 velocity classes
from 0 ms−1 to 10 ms−1. For the OTT Parsivel2 disdrometer the 32 measured size classes
range from mid-point diameters of 0.0619 to 24 mm and the 32 velocity classes range from
0.2 to 20 ms−1. The OTT Parsivel2 manual denotes an expected accuracy of ±10% in RR
but does not provide information regarding the expected accuracy of the DSD. Previous
work has reported highest relative uncertainty for low RR, larger diameter hydrometeors
and short integration times [112]. For example, a study reported a sampling uncertainty in
number concentrations of 5–11% for D of 1–2 mm, and for a D of 1.5 mm, an uncertainty of
8% for 1 min samples to 4.5% for a 10-min sampling period [103].

The presence of solid hydrometeors (snow, graupel, hail) is represented in data output
from the OTT Parsivel2 using the World Meteorological Organization (WMO) synoptic present
weather codes (WC). WC of 71–73, inclusive indicate snow. WC of 87 (RR < 1 mmhr−1, soft
hail), 88 (RR ≥ 1 mmhr−1, soft hail), 89 (RR < 2.5 mmhr−1, hail) and 90 (RR ≥ 2.5 mmhr−1,
hail). The hydrometeor type classification is based on a combination of the vt, and D following
a look-up chart approach [100,113]. All optical disdrometers exhibit some uncertainty due to
incorrect vt assigned to hydrometeors that fall through the edge of the sampling area [112]
and/or strong winds causing misclassification of hydrometeor type.

Present Weather Sensors (PWS) such as the Campbell Scientific PWS100 [39] use two or
three optical sensors and measure the scintillation as individual hydrometeors pass through
the illuminated volume. Hydrometeor type is determined by the relative contributions
of light reflection, refraction and diffraction [39]. The PWS100 has been withdrawn from
service, but measured droplet sizes range from 0.1 to 30 mm in 34 diameter classes and
34 velocity classes [114].

Ground-based remote sensing devices are also available that can also be used to infer
RR and the size distribution of hydrometeors. Micro-rain RADAR (MRR) are active verti-
cally pointing remote sensing systems. The Doppler shift of the backscattered radiation
scales with the fall velocity of hydrometeors, which in turn is a function of their size. For
MRR an assumption is made that the fall velocity of a droplet is equal to the terminal fall
velocity which thus assumes the droplets are embedded in still air which is a source of
uncertainty in deeply convective environments. The strength of the signal (backscatter
intensity) scales with the number and size of hydrometers. Hence, the DSD can be com-
puted and used to obtain an inferred RR. MRR provide the vertical profile (to heights of
several kilometers) of hydrometeor properties including DSD at high temporal sampling
rates (every 10 s) [115–117]. New techniques are being actively pursued to derive robust
assessment of precipitation type based on the hydrometeor fall velocity, equivalent RADAR
reflectivity, and diameter plus the presence (or not) of a bright band [118]. A key challenge
in use of such technology is linking properties above the surface (even in cloud) to those at
the ground, and modification of the hydrometeors as they fall through the atmosphere.

An additional area of active instrument development pertains to detection and sizing
of hail. Hail pads are simple and cheap and hence have been used in community-based
networks (e.g., Community Collaborative Rain, Hail and Snow network (CoCoRaHS) [119]).
However, they provide time-integrated measurements and are labor intensive. The hail
DSD are inferred from subjective assessment of dents caused by the hail impacts (e.g., in
Styrofoam blocks wrapped in heavy duty aluminum foil) [120], some of which may overlap
leading to undercounting of hail stones [121]. Next generation sensors (e.g., HailFlow sensor
HF4 from ISAW) use acoustic technology. A key issue in all of these metrologies is the small
sampling area which may systematically under-count large diameter hail [120]. Proposals
for use of drone aerial photogrammetry for hail sampling have also been advanced [122].

As indicated by the brief precis given above, the metrologies for measuring hydrom-
eteor DSD and even RR differ in terms of the size range to which they exhibit sensitivity
and assumptions regarding the hydrometeor morphology. For example, the OTT Parsivel2
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disdrometer uses a calibration procedure to derive a relationship between the droplet diam-
eter in the vertical and horizontal axes and applies an assumed (but unspecified) function
to relate each sample of oblate spheroid droplets to a RR [100]. It has been reported that the
assumed axis ratio relationship in the OTT Parsivel2 varies linearly with diameter for D = 1
to 5 mm from 1 to 0.7 and is set to 0.7 for D > 5 mm [66].

2.2. Statistical Methods

Analyses of the frequency and intensity of precipitation (RR) and the frequency of oc-
currence of hail across the six primary sampling locations presented herein are summarized
using the following statistical approaches. The probability of hail is computed as the ratio of
the frequency with which the hail flag is reported by the sensor divided by the total number
of observational periods for which data are available. The probability of precipitation (PoP)
is described using two different RR thresholds for precipitation detection; 0 mmhr−1 and
0.2 mmhr−1. The latter threshold is used to enable comparisons across instruments that
may have different minimum detectable limits for precipitation. To characterize the upper
percentiles of the probability distribution of RR, we also report the 90th, 95th and 99th
percentile RR (mmhr−1) during all periods with non-zero RR. These values thus provide
information regarding RR when the heaviest precipitation is occurring. To illustrate the
importance of high-frequency sampling of precipitation in the context of wind turbine
blade LEE, data from the optical disdrometer at the US SGP site [95] (Figures 2a and 4a)
are subject to an analysis wherein each hour of data where any precipitation occurred are
sampled to compute the maximum RR with sampling durations of 1-, 5-, 10-, 20-, 30- and
60-min. The results are then summarized to compute the 10th, 20th, . . . 90th percentile
values of the resulting RR for each averaging period.
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Figure 4. (a,b) Maps of locations from which data are presented (see details in Table 1). (c) Probability
distributions of wind speeds at 100 m AGL at those locations based on once-hourly output from the
ERA5 reanalysis for 1979–2018. (d) Observed mean droplet size distributions for four of the locations
based on measurements with the optical disdrometers for liquid precipitation and RR of 6–11 mmhr−1.
Colors used in frames (c,d) indicate the different locations and are as shown in frames (a,b).
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Non-parametric Spearman (rank) correlation coefficients (rs) are reported as a measure
of the degree of agreement between two data sets. This measure of correlation is appropriate
for use with data, such as RR, that are not Gaussian distributed [123]. Linear fitting is
undertaken and is expressed in terms of the slope (m) and the intercept (c) of the general
linear model, where x is the independent variable and y is the dependent variable:

y = mx + c (18)

To illustrate RR and DSD from different instrument metrologies we examine data
from three disdrometers deployed at the US SGP site (Figure 4a). The degree of closure
between RR is assessed using three different thresholds (RR > 0.1, 1 and 10 mmhr−1) using
contingency-table based metrics; the Hit Rate (HR) and the False Alarm Rate (FAR) [123].
The HR, which is also known as the proportion correct, is the ratio of the number of times
data from the two instruments agree on precipitation occurrence for each of the thresholds,
to the total number of times that the reference instrument (in this case the OTT Parsivel2)
exhibited a RR in excess of that threshold. The FAR, is a measure of the number of times
both instruments indicated RR below the specified threshold, to the number of times the
reference instrument indicated RR below the specified threshold. Thus, perfect agreement
would result in HR = 1 and FAR of 0.

Wind speed data from both the ERA5 reanalysis [124] and NORA3 hindcast [125] for
a height of 100 m AGL [124] plus observationally derived wind speeds at each site at/close
to typical wind turbine hub-heights are presented. They are summarized in part by fitting
them to a two-parameter Weibull distribution using maximum likelihood methods and
reporting the scale and shape distribution parameters (A and k) [123,126]:

f (WS) =
k
A

(
WS

k

)k−1
exp

[
−
(

WS
A

)k
]

(19)

In the joint probability analysis of WS and RR we discretize the WS into six classes
reflecting different operating ranges of a typical wind turbine (Figure 1a). Class 1 with WS
of 0–2.5 ms−1 reflect periods with no rotor rotation. WS class 2: 2.5–5 ms−1 indicate periods
with only very slow rotation. WS classes 3 (5–7.5 ms−1) and 4 (7.5–10 ms−1) indicate periods
when the rotational speed is likely to be increasing and the last two classes (5 and 6), WS:
10–12.5 and 12.5–25 ms−1 indicate periods when, depending on the precise wind turbine in
operation, the RPM will be close to and at the maximum speed, respectively.

2.3. Locations from Which Data Are Presented

Analyses presented herein focus primarily on data from six locations (Figures 2a and 4a,b)
that are listed by longitude (west to east) and summarized below (Table 1).

Table 1. Summary of the locations from which data are reported herein.

Location
Label

Used Here
Site Latitude Longitude

Instrument Type
Used for Droplet
Size Distribution

Measurements

Instrument Used for
the Wind Speed
Measurements

(Height)

Weibull
Distribution
Parameters

Sampling
Period from

Which Data Are
Reported

US SGP
DoE ARM,

Lamont, SGP,
USA

36.6072◦ N 97.4875◦ W

OTT Parsivel2
Doppler lidar
(90 m AGL)

A = 8.96 ms−1

k = 2.183

January
2017–December

2020
2D Video

Impact

US NE

Cornell
University,
New York,

USA

42.4534◦ N 76.4735◦ W OTT Parsivel2 None N/A
December 2021,
July–September

2022
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Table 1. Cont.

Location
Label

Used Here
Site Latitude Longitude

Instrument Type
Used for Droplet
Size Distribution

Measurements

Instrument Used for
the Wind Speed
Measurements

(Height)

Weibull
Distribution
Parameters

Sampling
Period from

Which Data Are
Reported

Canada
coastal

WEICan,
Canada 47.035◦ N 64.015◦ W CSI PWCS100 Cup anemometer

(80 m AGL)
A = 10.3 ms−1

k = 2.001
October 2018–

December 2020

Coastal
UK WAO, UK 52.9433◦ N 1.1414◦ E Thies LPM None N/A February 2017–

September 2019

Norway
coastal

Bergen,
Norway 60.38◦ N 5.33◦ E

OTT Parsivel2
ERA5 reanalysis [124]
NORA hindcast [125]
2D sonic anemometer

(49 m ASL)

A = 6.7 ms−1

k = 1.7
A = 7.0 ms−1

k = 1.7
A = 4.0 ms−1

k = 2.0

January 2016–
December 2021

MRR

January 2010–
December 2014

and January 2016
–December 2021

North Sea Horns Rev,
Denmark 55.6◦ N 7.59◦ E OTT Parsivel2 None N/A December 2018–

October 2021

Denmark
inland

DTU,
Denmark 55.693◦ N 12.1◦ E OTT Parsivel2

Cup anemometer
(94 m AGL)

A = 8.0 ms−1

k = 2.4
June 2019–

December 2021

These sites are selected due to the availability of detailed hydroclimatic observations
and their location in regions with large wind resource and/or wind energy deployments:

(1) Southern Great Plains, United States (US SGP): The US Department of Energy (DoE)
Atmospheric Radiation Measurement (ARM) site at Lamont in Oklahoma. DSD data
from three disdrometers deployed at this site are reported; an impact disdrometer [99],
an optical (Parsivel2) disdrometer [101] and a video disdrometer [95]. Data availabil-
ity during 1 January 2017 to 31 December 2020 from the OTT Parsivel2 is 93%. All
disdrometers are recorded every 1-min. To provide a context for the spatial variability
in DSD and RR derived from a range of locations, we compare measurements of
RR and DSD from these three different disdrometers. It is important to recall that
they have different sampling ranges. The Parsivel2 discretizes the hydrometeors into
32 diameter classes, with classes centered at diameters of 0.062 to 24 mm. The video
disdrometer uses 50 diameter classes from 0.1 to 9.9 mm. The impact disdrometer
uses 20 diameter classes from 0.359 to 5.373 mm. Wind speed data reported for this
site are 15 min average values and derive from a Halo Photonics Doppler lidar [127].
As described further below, the US SGP region is subject to frequent deep convec-
tion and associated high RR and hail [92,128,129]. There are also substantial wind
turbine deployments. Based on data from the USGS wind turbine database (updated
from [130]), as of April 2022, there are over 16 GW of wind turbine installed capacity
(IC) within 300 km of the US SGP site considered here. This is over 12% of the total
US wind turbine IC.

(2) Canada coastal: The Wind Energy Institute of Canada (WEICan) on Prince Edward
Island in eastern Canada. The site has 300 degrees of ocean exposure and contains
five 2 MW DeWind turbines that have a hub-height of 80 m AGL, as well as an
instrumented 80 m meteorological tower compliant with IEC 61400-12-1 and a 10 m
meteorological tower compliant with IEC 61724-1 [131]. Hydroclimatic data presented
herein derive from a Campbell Scientific PWS100 deployed at 11 m AGL and the RR
data availability is 88.9%. Due to a data logging issue no DSD are available. Wind
speed observations are from a Thies cup anemometer at 80 m AGL which is the
hub-height of the wind turbines operating at WEICan.

(3) UK coastal: The Weybourne Atmospheric Observatory (WAO) [132], on the north
coast of the English county of Norfolk. WAO was one of 14 sites at which Thies LPMs
ran as part of the Disdrometer Verification Network (DiVeN) project [111]. This site
has an altitude of 16 m above sea level and is landward of a pebble beach. It has an
open ocean fetch to the north and a clear view towards many of the major offshore
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wind farms operating in the western North Sea around the coast of East Anglia. The
closest offshore wind farms are; Sheringham Shoals, a 317 MW installation 17–23 km
north of the north Norfolk coast, and Race Bank, a 573 MW installation approximately
27 km north-northwest of Weybourne. No in situ or remote sensing wind speeds are
presented from this location due to a lack of availability of well-documented, traceable
measurements at/close to wind turbine hub-height.

(4) Norway coastal: The Geophysical Institute at the University of Bergen on the west
coast of Norway. The RR and DSD presented here are from a METEK MRR [117,133]
operated on a building rooftop (39 m above sea-level (ASL)), and an OTT Parsivel2.
Wind speeds are observed using a 2D sonic anemometer on a co-located 10 m mast
(49 m ASL). The offshore waters along the west coast of Norway have large wind
resources. When commissioned the 94.6 MW Hywind Tampen floating offshore wind
farm (140 km from the Norwegian coast and northwest of Bergen) will be the largest
floating wind farm in the world [134].

(5) North Sea: Horns Rev2 offshore wind farm off the west coast of Denmark in the North
Sea. RR and DSD data are from an OTT Parsivel2 deployed at a height of 22 m ASL.
The Horns Rev offshore wind farm comprises three wind turbine clusters; Horns Rev 1
(160 MW), Horns Rev 2 (209 MW) and Horns Rev 3 (407 MW) located approximately
30 km from the Danish west coast. No wind speed measurements are presented from
this location since they are deemed commercially sensitive.

(6) Denmark: The Risoe campus of the Danish Technical University (DTU) near Roskilde
in Denmark. Denmark was an early adopter of wind technologies and has nearly
6000 wind turbines deployed onshore [135] and nearly 2 GW of offshore installed
capacity [79]. The RR and DSD reported herein derive from OTT Parsivel2 instruments
recorded with 1 min and 10 min averaging.

Uncertainty in the wind speed during precipitation events has a substantial impact
on the implied closing velocity between the rotating blade and the falling hydrometeors
and thus the kinetic energy transferred by hydrometeor impacts. This is because of the
highly non-linear dependence of the turbine rotational speed and hence tip speed on the
incident wind speed (Figure 1a). Hence, except at the site in Norway, the joint probability
analyses are based on observations rather than once hourly output from gridded reanalysis
or hindcast products.

Additional data are presented for an instrument closure experiment performed on
the campus of Cornell University in upstate New York (US NE, Table 1). We present data
from two campaigns. The first lasted from 21 October 2021 to 7 December 2021 and the
second was performed during 14 July 2022 to 30 September 2022 (Table 1). Both involved
co-deployment of four OTT Parsivel2 disdrometers and capture of over 6000 1 min periods
of precipitation.

3. Results
3.1. Hydroclimate and Wind Regimes at the Focus Sites

Wind speeds at a height of 100 m AGL from the ERA5 reanalysis [124] at the six focus
study locations (Table 1) are summarized in Figure 4c. Consistent with observational WS
data, all six locations exhibit probability distributions that are consistent with substantial
wind resources. The fidelity of ERA5 wind speeds varies in space and there is lowest fidelity
in regions of complex terrain [136]. This is also evident in comparisons of the Weibull
parameters in ERA5 relative to the measurements from coastal Canada (WEICan) and the
US SGP. At the US SGP location, the measurements at 90 m AGL indicate a Weibull A
and k of 8.96 ms−1 and 2.183, while the ERA5 output for 100 m AGL indicates values of
7.55 ms−1 and 2.391, which suggests a negative bias in the wind speeds at this location and a
narrowing of the probability distribution. The negative bias at the US SGP site is consistent
with past research that has indicated negative bias in ERA5 wind speeds over western North
America [136]. At WEICan (coastal Canada), the Weibull A and k derived from observations
at 80 m are; 10.3 ms−1 and 2.001, respectively, while those from ERA5 for 100 m AGL are
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10.7 ms−1 and 2.239, also indicating a substantially narrower probability distribution from
ERA5. For this reason, the joint probability distributions presented herein use only local
wind speed observations. It should be noted that much closer agreement is found for the
onshore site in Denmark consistent with the surrounding flat terrain. ERA5 wind speeds
at 100 m AGL have a Weibull A of 8.40 ms−1 and k = 2.368 while similar values computed
from the observations from the cup anemometer at 94 m AGL are; 8.0 ms−1 and 2.4.

As expected based on the site descriptions in Section 2.3, coastal Norway exhibits the
highest frequency of precipitation and is the location with highest annual mean precipita-
tion (2250 mm). The US SGP exhibits a high frequency of hail and the highest values for
the 90th, 95th and 99th percentile RR (Table 2). Based on the four years of data from the
Parsivel2 disdrometer non-zero precipitation is reported during about 4.2% of all 1 min
records and the 90th, 95th and 99th percentile 1 min RR are; 4.18, 7.72 and 31.3 mmhr−1,
respectively. Thus, 1% of minutes when precipitation is falling (or 220 min in an average
year) exhibit a RR > 31.3 mmhr−1. Precipitation is more frequently observed at coastal
Canada, coastal UK, coastal Norway, North Sea, and Denmark, but each of those sites has a
much lower frequency of hail reports. Further all have considerably lower 99th percentile
RR of 9–10 mmhr−1 (coastal Canada, coastal Norway, and coastal UK) and ≈7–8 mmhr−1

(North Sea and Denmark) (Table 2). These analyses illustrate that the US SGP exhibits a hy-
droclimate that differs substantially relative to sites in Europe with respect to parameters of
importance to wind turbine blade LEE. Indeed, hail may dominate LEE in the US SGP [92],
in contrast to northern Europe where the hydroclimate is dominated by liquid precipitation,
hail is very infrequent (Table 2) and thus kinetic energy transfer to the blades is likely
dominated by rain [137,138]. This would seem to imply that exclusion of consideration
of hail in whirling-arm experiments may lead to inaccurate assessments of blade coating
lifetimes for wind turbines deployed in regions such as the US SGP and in other regions
with high hail frequency such as southern Europe, Asia, Africa and Australia (Figure 2).

Table 2. Summary of precipitation statistics at the six primary long-term study sites for all available
instruments. PoP denotes probability of precipitation and is computed using two different rainfall
rate (RR) thresholds. * The values for the three disdrometers at US SGP reflect all 1 min periods
when all three instruments reported valid data. Probability of hail/graupel is defined using hail
as Weather Codes (WC) 87, 88, 89, 90, except for Bergen where the OTT Parsivel2 indicates a very
high prevalence of WC 87 or WC 88 (2.8% of all observations have one of these two codes). Unless
otherwise stated the sampling intervals over which the data are averaged is 1-min. See DSD for these
sites in Figures 5–9.

Location
Label Used

Here
Site Instrument Type Sampling Period

Probability of
Hail/Graupel *

(%)

PoP
(RR > 0 mmhr−1)

(%)

PoP
(RR > 0.2 mmhr−1)

(%)

90th, 95th, 99th
Percentile Values
of RR (mmhr−1)

US SGP
DoE ARM,

Lamont,
SGP, USA *

OTT Parsivel2

January
2017–December 2020

0.059 4.20 2.81 4.18, 7.72, 31.3

2D Video N/A 6.28 2.40 2.45, 4.70, 20.1

Impact N/A 6.53 1.76 1.79, 3.68, 15.5

Canada
coastal

WEICan,
Canada CSI PWCS100 October

2018–December 2020 None reported 7.47 3.81 1.99, 3.18, 9.52

Coastal UK WAO, UK Thies LPM February
2017–September 2019 0.0094 12.3 5.17 1.69, 2.97, 9.44

Norway
coastal

Bergen,
Norway

OTT Parsivel2 January
2016–December 2021 0.08 20.5 14.3 2.43, 3.98, 10.1

MRR (100 m
AGL)

January
2010–December 2014

and January
2016–December 2021

N/A 18.6 10.4 1.98, 3.48, 9.37

MRR (200 m
AGL) N/A 18.2 12.9 3.23, 5.60, 19.4

MRR (300 m
AGL) N/A 18.1 13.4 3.76, 6.56, 19.4

North Sea Horns Rev,
Denmark OTT Parsivel2 December

2018–October 2021 N/A 6.9 4.1 1.68, 2.73, 7.75
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Table 2. Cont.

Location
Label Used

Here
Site Instrument Type Sampling Period

Probability of
Hail/Graupel *

(%)

PoP (RR > 0
mmhr−1) (%)

PoP (RR > 0.2
mmhr−1) (%)

90th, 95th, 99th
Percentile Values
of RR (mmhr−1)

Denmark
inland

DTU,
Denmark

OTT Parsivel2

June 2019–December
2021

0.03 7.4 4.19 2.05, 3.27, 8.59

OTT Parsivel2

(10 min) 0 11.6 4.72 1.82, 2.85, 7.15

The DSDs from the Parsivel2 disdrometer at the US SGP site sampled for different
RR emphasize a long-recognized feature of precipitation: That, although there is a high
degree of event-to-event variability (Figure 5) [139], on average higher RR are associated
with increases in droplet number plus increases in the median droplet diameter (D0) and
mass-weighted mean diameter (Dm) due to the presence of more larger droplets [57]. This
finding is equally applicable to measured DSD from the five other sites (Figures 6–9).

Neither the Best nor Marshall-Palmer approximations of the DSD fully represent the
shape of the observed DSD from the disdrometers deployed at US SGP, or Norway, or
coastal UK or Denmark (Figures 5–7 and 9). The Marshall-Palmer approximation yields
DSD that are in closer accord with the observations but tends to overestimate the number
of smaller droplets and underestimates the number of larger droplets. The underestimation
is evident for D > 2.5 mm for all three RR at the US SGP site, for D > 1.25 mm in Denmark
and D > 0.7 mm at coastal Norway. Data from the Thies LPM operated WAO (coastal
UK) exhibit DSD that are lower than either Best and Marshall Palmer approximations
up to droplet D of 1.5 mm. However, larger droplet (D > 3 mm) number concentrations
are overestimated by the Best approximation and underestimated by Marshall-Palmer
(Figure 6). These results indicate that assessment of accumulated kinetic energy transfer
to wind turbine blades and the resulting materials stress, and blade lifetimes that use
measured RR combined with assumed DSD are likely to result in inaccurate assessments
that may be mis-leading to windfarm developers. We recommend that where possible such
any such assessments be predicated on either on-site or near-by DSD measurements.
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Figure 5. (a) Mean droplet size distributions from data collected with the OTT Parsivel2 disdrometer 
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Figure 5. (a) Mean droplet size distributions from data collected with the OTT Parsivel2 disdrometer
in the US SGP conditionally sampled for liquid only precipitation (WC < 71) in three different RR;
2–3 mmhr−1, 6–11 mmhr−1 and 16–21 mmhr−1 (Obs). The legend shows the number of 1 min periods
(n) used to compute these mean DSD for each class of RR. Additionally, shown are the estimates of
the DSD derived using Marshall-Palmer (dashed lines) and Best approximations (dashed-dot lines)
for the mid-point of each RR range. (b) Scatterplot of 1 min values of RR versus the mass-weighted
droplet mean diameter (Dm) based on the same four years of data collected with the OTT Parsivel2

disdrometer at US SGP site.
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Figure 7. Mean droplet size distributions from the OTT Parsivel2 disdrometer and the MRR sampled 

at 100, 200, and 300 m AGL at Bergen, Norway conditionally sampled for liquid only precipitation 

and a RR of 6–11 mmhr–1. Note the MRR data set covers a longer time period than the OTT Parsivel2. 
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Figure 6. Mean droplet size distributions from the Thies LPM at WAO (coastal UK) condition-
ally sampled for liquid only precipitation and three different RR; 2–3 mmhr−1, 6–11 mmhr−1 and
16–21 mmhr−1. The legend shows the number of 1 min periods (n) used to compute these mean DSD
for each class of RR. Additionally, shown are the estimates of the DSD derived using Marshall-Palmer
(dashed lines) and Best approximations (dashed-dot lines) for the mid-point of each RR range.
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Figure 7. Mean droplet size distributions from the OTT Parsivel2 disdrometer and the MRR sampled
at 100, 200, and 300 m AGL at Bergen, Norway conditionally sampled for liquid only precipitation
and a RR of 6–11 mmhr−1. Note the MRR data set covers a longer time period than the OTT Parsivel2.
Additionally, shown are the estimates of the DSD derived using Marshall-Palmer (dashed lines) and
Best approximations (dashed-dot lines) for a RR = 8.5 mmhr−1.
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of smaller droplets and underestimates the number of larger droplets. The underestima-

tion is evident for D > 2.5 mm for all three RR at the US SGP site, for D > 1.25 mm in 

Denmark and D > 0.7 mm at coastal Norway. Data from the Thies LPM operated WAO 

(coastal UK) exhibit DSD that are lower than either Best and Marshall Palmer 

Figure 8. Mean droplet size distributions from the OTT Parsivel2 disdrometer at the North Sea
offshore wind farm conditionally sampled three different RR; 2–3 mmhr−1, 6–11 mmhr−1 and
16–21 mmhr−1. The legend shows the number of 1 min periods (n) used to compute these mean DSD
for each class of RR. Additionally, shown are the estimates of the DSD derived using Marshall-Palmer
(dashed lines) and Best approximations (dashed-dot lines) for the mid-point of each RR range. Note
the x-axis has been extended relative to those from the other sites (e.g., Figure 5a) to emphasize the
presence of large quantities of high D droplets at this site.
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Figure 9. Mean droplet size distributions from the OTT Parsivel2 disdrometer at the site in Denmark
conditionally sampled for liquid precipitation only, for three different RR; 2–3 mmhr−1, 6–11 mmhr−1

and 16–21 mmhr−1. The legend shows the number of 1 min periods (n) used to compute these
mean DSD for each class of RR. Additionally, shown are the estimates of the DSD derived using
Marshall-Palmer (dashed lines) and Best approximations (dashed-dot lines) for the mid-point of each
RR range.
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Despite the large degree of site-to-site variability for mean DSD at a given RR (Figure 4d)
and the variability at a given site in different RR classes (e.g., Figure 5a), the slope of all DSD
curves (number density as a function of droplet diameter) from all sites exhibit a shallower
gradient with D than are manifest in either the Best or Marshall-Palmer approximations
especially at high RR. This is particularly important given the relevance of high RR and the
associated larger droplet diameters to potential kinetic energy to the rotating blades.

The implication of these analyses is that if whirling-arm experiments are sampling DSD
from Best rain droplet distribution they are not fully representing atmosphere-relevant DSD.
Such experiments may be under-sampling the abundance of larger droplets (D > 0.5 mm)
that are likely to induce the largest material stresses [140]. For this reason, we recommend
that RR and DSD considered in whirling-arm experiments be greatly expanded to cover a
wider range of conditions. It is also noted that the highly accelerated RET do not realistically
represent operational modes for wind turbines and have the drawback that for viscoelastic
coatings other damage types may be observed. Thus, use of lower speeds to better reflect
real-life wind turbine blades in service may be advantageous. Furthermore, we recommend
use of a broad-spectrum of droplet sizes (similar to the spray mode used in Bech et al. [140])
rather than a nearly uniform D currently used for the testing, and that the suggestion to
confine the range of droplet D to < 6 mm as recommended in the DNV Recommended
Practice be reconsidered.

Data from the North Sea offshore wind farm indicate a DSD that deviates substan-
tially from the other locations from which data are presented and also from theoretical
expectations (Figure 8). DSD from this disdrometer may reflect the presence of a mixed
droplet distributions due to both hydrometeors and sea spray. Sea spray droplets range in
diameters from <1 µm (film droplets, generated by biogeochemistry and bubble bursting),
to 1–50 µm (jet droplets, generated by bubble bursting and the impact of rain droplets on
the sea surface), to spume droplets that have diameters up to a few mm and are generated
by wave tearing and wave breaking on structures/vessels [141,142]. Such mixed DSD have
been previously demonstrated in data collected using a disdrometer at 16 m ASL on an
offshore marine tower in Japan [105]. In light of this issue, we do not consider the North
Sea data set further. Nevertheless, production of high-quality hydrometeor size distribu-
tions and precipitation intensity datasets from disdrometers or other sensors installed on
offshore platforms (e.g., buoys and/or meteorological masts, transformer platforms) is
essential to quantifying LEE potential for offshore wind turbines. We recommend that
either; (i) hydrometeor DSD measurements at offshore wind farms for the purpose of LEE
analyses be performed preferentially using remote sensing devices (e.g., MRR). By virtue of
sampling higher above the surface, they may be less vulnerable to sea spray contamination.
Or alternatively, (ii) studies be conducted to investigate and quantify the influence of sea
spray on such measurements and develop filtering methods for data quality control based
on wind speed, wave properties, etc.

When the mean DSD from optical disdrometers at four of the sampling sites are com-
pared for the same fixed RR interval, the results indicate important differences (Figure 4d).
Some of these differences may derive from the relatively small sample size at some lo-
cations and/or differences in measurement technology (at coastal UK). It is noteworthy
that the DSD reported above for our selected study sites are in contrast to a year of data
collected using a PWS100 disdrometer deployed 5.5 km off the east coast of the UK [143].
Analyses of those data indicated “the Best DSD significantly overestimates the diameter of
droplets” [143]. The reason for this discrepancy is currently unresolved, but it may also to
linked to the different disdrometer technology used. The influence of different measure-
ment strategies and instrument metrologies are discussed further below. Additional causes
of differences in DSD are likely geophysical and include different abundance of cloud
condensation nuclei in marine and continent locations, the presence or absence of solid
hydrometeors and a difference in the relative frequency of convective versus stratiform
precipitation. These differences strongly indicate the need for development of disdrometer
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networks in regions with high wind resource potential in order to develop a tool for use in
a priori estimation of LEE potential.

3.2. Joint Probabilities of Hydroclimatic Conditions and Wind Speeds

Based on the discussion in Section 1, it is clear that the closing velocity between hydrom-
eteors and wind turbine blade and the kinetic energy transfer to the blades are maximized
under the joint occurrence of high RR with a large fraction of high diameter droplets (Figure 5)
and/or hail and high wind speeds when the blades are likely to be rotating at their maximum
speed. Accordingly, any blade lifetime estimate is going to be critically contingent on the
joint distributions of RR (and DSD and phase) and WS. Examples of the joint distributions of
RR and hub-height wind speed are given in Figures 10–13 for four illustrative sites; the US
SGP, coastal Canada, coastal Norway and the onshore site in Denmark. In construction of
these illustrative joint-probabilities, wind speeds are assumed to be constant over each 1 min
period within each t-minute periods over which the wind speed data are collected.

Laboratory studies and numerical models have repeatedly shown that impact re-
sponses on the wind turbine blade coating system increase with “increasing droplet size
and increasing droplet impact angle with maximum impulses, stresses and damages de-
veloped for normal impingement (90◦)” [15]. A numerical modeling study found that the
number of impacts required for onset of erosion damage increases by a factor over seven
when impact velocities are decreased from 140 ms−1 to 80 ms−1 under RR > 25 mmhr−1 [15].
Hence, in much of the following discussion we focus on the relative frequency of joint
occurrence of high RR and high wind speeds.
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Figure 10. Heatmaps of the joint probabilities (in %, colorbar and also numeric values shown in each
cell) of RR (rain only) and wind speeds at the US SGP site. The joint probabilities are computed for
periods with precipitation and thus the sum of all cells is 99.8% since 0.2% of wind speeds are above
25 ms−1. Data for periods with hail (WC = 88 or 89) are processed separately and are shown in the
lower panel. The values for hail sum to 98.8% because a few hail events are associated with wind
speeds at 90 m in excess of 25 ms−1.
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Figure 12. Heatmaps of the joint probabilities (in %, colorbar and also numeric values shown in each
cell) of RR and wind speeds at coastal Norway. The probabilities are computed using once hourly
wind speeds at a nominal height of 100 m from NORA3.

At the US SGP site >2.4% of 1 min precipitation events, or 0.1% of all 1 min periods,
are associated with wind speeds at which typical wind turbines will be rotating at their
maximum speed (or close there-to) (WS = 10–25 ms−1) and RR > 5 mmhr−1 (Figure 10).
Conversely at the coastal Canada site (WEICan) only 1.2% of 1 min precipitation events,
which is 0.09% of all 1 min periods, are associated with these conditions (Figure 11). At
the site in Bergen (noting the WS are from the NORA3 hindcast), 2.3% of all 1 min periods
with precipitation and 0.47% of all 1 min periods in an average year are associated with WS
between 10 and 25 ms−1 and RR > 5 mmhr−1 (Figure 12). At the site in Denmark 0.46% of
all 1 min periods with precipitation and 0.04% of all 1 min periods in an average year are
associated with WS between 10 and 25 ms−1 and RR > 5 mmhr−1 (Figure 13).
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Figure 13. Heatmaps of the joint probabilities (in %, colorbar and also numeric values shown in each
cell) of RR and wind speeds at onshore Denmark. The joint probabilities are computed for periods
with liquid precipitation.

Focusing on the even more extreme portion of the joint distributions; RR > 10 mmhr−1

and WS of 12.5–25 ms−1, these occur on average on ~200 min per year at the US SGP site,
on ~60 min in an average year at coastal Canada and 30 min in Denmark. Thus, all other
things being equal material stresses in blades on wind turbines operating in the US SGP
will be higher than at these other two locations. The implied enhanced material stress at
the US SGP site is amplified by the high frequency of co-occurrence of WS of 12.5–25 ms−1

and hail (~100 min in an average year).
Naturally, the interannual variability and seasonal variability in the frequency of hail

and/or heavy RR means the joint probability heatmaps shown in Figures 10–13 must be
viewed and compared with caution. They are constructed using relatively short data time
series and in order to increase the sample size have not been screened to ensure they have
equal representation of each season (Table 1). However, they represent the types of analyses
that are necessary as a first step in the development of robust climatologies for use in
assessing wind turbine blade lifetimes. The low frequency of highly erosive events that
are likely to dominate kinetic energy transfer to the blades and resulting materials stresses
also emphasizes the critical need for long-duration data sets to properly characterize LEE
potential. It is therefore recommended that reference sites such as that operated at the US
SGP DoE ARM be deployed at additional locations and run for many years in order to
generate robust and comparable data sets.

In closing it is important to re-emphasize that uncertainty in disdrometer-based RR is en-
hanced under high wind speeds [144]. This is of particular concern to efforts to derive estimates
of the kinetic energy transfer to wind turbine blades and also merit further investigation.

3.3. Influence of Measurement Strategies and Instrument Metrologies

As described above, precipitation events exhibit a wide range of durations and fluc-
tuating RR during individual events. This is illustrated using data from OTT Parsivel2

instruments operating in the US SGP and in Denmark. Ten percent of all 60 min peri-
ods when precipitation occurred at US SGP exhibit a 1 min maximum RR > 4.5 mmhr−1

(Figure 14). When the time series are averaged to 30 min sampled periods the 90th percentile
RR (i.e., that exceeded by 10% of the data) is 2.1 mmhr−1. Given the non-linear dependence
of the DSD on RR (see Equations (6)–(10) and Figures 5–9), use of 30 min or 60 min average
RR will greatly under-sample the presence of large droplets and thus kinetic energy transfer
into the blades. Data from two OTT Parsivel2 instruments operated at the Denmark site
with different integration periods also illustrates the expected dependence of RR on the
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averaging period. Based on 1 min sampling, the 99th percentile RR is 8.6 mmhr−1. When
sampled at 10 min the 99th percentile RR is 7.2 mmhr−1. For accurate estimation of kinetic
energy transfer to wind turbine blades it is thus recommended to use very high frequency
(ideally 1-min) sampling of DSD and RR.
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Figure 14. Rainfall rate (RR, in mmhr−1) as a function of averaging period based on 4 years of 1 min
data collected with the OTT Parsivel2 disdrometer at the US SGP. Each 60 min time window when
precipitation occurred is sampled to determine the maximum RR for averaging periods of 1, 5, 10, 20,
30 and 60 min. The results are presented as the 10th:10:90th percentile values for each averaging period.

Data from the OTT Parsivel2 disdrometer at the US SGP also emphasizes important
differences in DSD as a function of hydrometeor phase. The mean DSD when the data are
conditionally sampled to select all 1133 periods when the WC indicates the presence of hail
and/or graupel (mean RR ~14 mmhr−1), and that from an equal number of periods with
similar RR but only liquid hydrometeors. The results show clear evidence of a considerably
higher frequency of large (D > 3 mm) droplets when hail is indicated (Figure 15). While this
comparison is contingent on correct assignment of the WC by the disdrometer software, it
reemphasizes the importance of research to better characterize DSD for hail and also that,
even neglecting the influence from hydrometeor hardness, hail events are therefore likely
be associated with higher kinetic energy transfer into the blade and potentially greater
induced material stresses. Thus, we recommend enhancing efforts to include hail into
material fatigue experiments. The hail DSD shown in Figure 15 also emphasizes the need
for such experiments to include hailstones with diameters below 15 mm that was the lower
limit considered in the study of Reshab [50]. Given the challenges in use of frozen water
in such analyses particularly for smaller D [50], it may be preferable to use polylactic
acid pellets to replicate the effects of hail impacts on wind turbine blades, since they have
approximately the right hardness and tend to shatter on impact [130].

The regional differences in hydroclimates and the joint probability distributions of
wind speeds and RR implied by the data summaries described in Section 3.1 have important
implications for the spatial variability of WT blade LEE. However, it is important to note that
they are also subject to differences associated with instrument metrology. Efforts to quantify
this effect in the hydroclimatic parameters based on new data analyses are described below
and presented in the context of the existing literature.
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Figure 15. Mean droplet size distributions from the OTT Parsivel2 disdrometer at US SGP condition-
ally sampled for the presence of WC indicating hail and/or graupel and an equal number of liquid
(rain only events) centered on the same mean RR as prevails during the hail/graupel events.

A number of previous studies have evaluated the relative accuracy of different dis-
drometers. Most have focused on comparisons of different optically based instruments (see
summary given in Table 3 and following discussion). For example, one study at a site in
Austria compared data from two PWS100, a Thies LPM and an OTT Parsivel1 against a
weighing rain gauge. All of the disdrometers underestimated accumulated precipitation by
2 to 29% relative to the rain gauge [145]. Mean droplet size spectra from Thies LPM showed
lower number density for D > 1 mm. The PWS100 sensors had highest modal droplet D but
exhibited important differences from each other. PWS100 showed 31 and 22% of droplets
were in the diameter range 1–2 mm. Equivalent data from the Thies LPM and OTT Parsivel1

indicated 6% and 16% [145]. Conversely a long-term study of multiple Theis LPM relative
to tipping-bucket rain gauges found the Theis LPM tended to overestimated long-term
accumulated precipitation, and that the Theis LPM exhibited differences in long-term
accumulated precipitation of up to 18% [146]. A further study of the Thies LPM and an
OTT Parsivel1 conducted over 3 years in southern Australia found only small discrepancies
between the two Thies LPM sensors, but greater differences between the two OTT Parsivel1

instruments. The authors report “LPM recorded 1 to 2 orders of magnitude more smaller
droplets for drop diameters below 0.6 mm compared to the OTT Parsivel1, with differences
increasing at higher rainfall rates” [147]. Analyses of accumulated precipitation and DSD
from impact, 2DVD and OTT Parsivel1 disdrometers indicated “reasonable agreement” in
terms of total event accumulated precipitation with a reference rain gauge, with mean biases
of −3.5%, +0.4% and −7.5%, respectively [148]. Relative to the impact and 2DVD, the OTT
Parsivel1 was negatively biased in terms of the number concentrations for D < 0.76 mm,
and exhibited a positive bias for D > 2.44 mm. The divergence between the instruments was
most marked for RR > 2.5 mmhr−1 [148]. A further study lasting 2 years and employing two
Thies LPM and two OTT Parsivel2 disdrometers during >200 rain events, also found the
Thies sensors exhibited a higher total number of droplets but considerably lower median
droplet diameter, even after correcting for the differences in measured diameter range. The
discrepancies were amplified at high RR [149]. An evaluation of the Thies LPM in terms
of precipitation detection, intensity and phase relative to an OTT weighing precipitation
gauge and a 2DVD found the HR for precipitation detection is 99% (FAR = 9.9%) during
periods with liquid precipitation [43]. However, the Thies disdrometer underestimated
rainfall intensities by 16.5% which the authors linked to under-sampling of the number
concentration of hydrometeors with D of 0.5 to 3.5 mm relative to the 2DVD [43]. The
slope of a linear fit of RR averaged to 30 min from the Thies disdrometer and the OTT
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pluviometer was equal to 0.80. The authors proposed adjusting the number concentrations
of rain droplets in the first three diameter classes (D: 0.125–0.5 mm) down by factors of
0.83 to 0.92, and those in classes 4 to 12 (D: 0.5–3.5 mm) up by factors of 1.08 to 1.43, and
those in classes 13 to 22 (D: 3.5 to > 8 mm) down by factors of 0.92 for class 13 to 0.19 for the
22nd (and largest) class [43]. A further study comparing optical and 2DVD disdrometers
with an MRR found best consistency between number concentrations for D = 1.1 to 3.8 mm
and for longer averaging periods [102]. That study also reported much higher number
concentrations (higher by a factor of 10) for D < 0.5 mm from the MRR relative to the
ground-based disdrometers. An additional study comparing MRR with the Theis LPM
found persistently higher RR for the Theis LPM, and a lower concentration of droplets with
D < 2 mm in the Theis LPM [150]. This feature of a negative bias in the concentration of
smaller droplets measured by the ground-based disdrometer relative to the MRR is also
seen in the Norway data presented here (Figure 7).

Table 3. Summary of some previous closure experiments for different disdrometers, and new findings
from the current analysis.

Reference Instruments Considered
Comparison of Accumulated

Precipitation (acc. PPT) or Rainfall
Rates (RR)

Comparison of DSD

Johannsen et al. [145] PWS100, Theis LPM,
Parsivel1

All underestimated of acc. PPT v
weighing rain gauge PWS100 higher modal D than Parsivel1

Guyot et al. [147] Theis, Parsivel1 Theis LPM higher conc. of D < 0.6 mm

Tokay et al. [148] Impact, 2DVD, Parsivel1 Negative bias in acc PPT in Parsivel1
Differences in DSD and total number
concentration (2DVD and Parsivel1)

amplified at high RR

Angulo-Martinez et al. [149] Theis LPM and Parsivel2 Theis LPM lower median D than Parsivel2

De Moraes Frasson et al. [146] Theis LPM and tipping
bucket rain gauges

Large differences (18%) in seasonal
acc PPT from 5 different Theis LPM

disdrometers. Theis LPM positive bias
relative to rain gauges.

Fehlmann et al. [43] Theis LPM, 2DVD Theis LPM negative bias in RR

Krajweski et al. [151] 2DVD, Parsivel1 RR consistently higher from Parsivel1 Parsivel1 higher droplet counts, 2DVD
higher conc. of D > 4 mm

Chang et al. [30] 2DVD, MRR MRR higher conc for D < 1 mm than
ground-based disdrometers

Marzuki et al. [152] Parsivel1, MRR Lower RR from MRR MRR higher conc for D < 1 mm, Parsivel1

higher conc for D > 2 mm

Sarkar et al. [150] Theis LPM, MRR
RR MAE = 3 mm/hr between

instruments, MRR RR lower than
Theis LPM

Good agreement for D = 1–3 mm

Current study: US SGP 2DVD, Parsivel2, impact

RR higher from Parsivel2 by 10% v.
2DVD and 37% v. impact (0.1 mm/hr

to define wet minute). Difference
decreases with use of 1 mm/hr to

define a wet minute, but increase for a
threshold of 10 mm/hr

Impact disdrometer lower conc of
D > 1 mm than Parsivel2

Current study: coastal
Norway MRR, Parsivel2 MRR higher conc than Parsivel2

for D < 1 mm

Comparison of 1 min RR and mean DSD conditionally sampled for three RR based
on four years of data from the OTT Parsivel2 disdrometer, video disdrometer and an
impact disdrometer operating at the US SGP site further illustrate the key importance
of metrology in dictating the implied hydroclimate and, by association, LEE potential
(Figure 16, Tables 2 and 3). The probability of precipitation computed using a RR threshold
of 0 mmhr−1 for all periods when all three disdrometers were operating show good closure
between the 2D video disdrometers and the impact disdrometer, and both show a higher
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precipitation frequency than the OTT Parsivel2 (Table 2). This finding may be partly
attributable to differences in the diameter range to which the disdrometers are sensitive.
Specifically, as mentioned above, the smallest size channel (centered at a D~0.062 mm)
from the OTT Parsivel2 has zero reports of droplets and the second channel centered at
D~0.187 mm has very few reported droplets. Thus, the OTT Parsivel2 has a functional
observational range beginning at D~0.22 mm which is above the smallest diameter reported
by the video disdrometer, though not the impact disdrometer.
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 RR > 0.1 mmhr−1 RR > 1 mmhr−1 RR > 10 mmhr−1 

 HR FAR HR FAR HR FAR 

Optical v video 0.781 0.0020 0.788 0.0018 0.705 0.0003 

Optical v impact 0.600 0.0017 0.570 0.0013 0.525 0.0003 

Figure 16. Scatterplots of 1 min rainfall rates (RR, in mmhr−1) from the three disdrometers operating
at US SGP. The optical disdrometer (OTT Parsivel2) is shown in the x-axis and the red and blue dots
show all 1 min periods when the video (red) or impact (blue) disdrometers also show RR above the
specified threshold; (a) 0.1 mmhr−1, (b) 1 mmhr−1 and (c) 10 mmhr−1. Panels on the right show the
mean droplet size distributions for those same 1 min periods. Two values are shown for each diameter
for the optical disdrometer, they denote conditional sampling for co-occurrence of the specific RR in
the video and impact disdrometers. The values shown in the legends of the left-hand panels denote
the Spearman (rank) correlation coefficients (rs) and the sample size (n). Hit Rates (HR) and False
Alarm Rates (FAR) for the co-occurrence of RR above the specified thresholds are given in Table 4.

Table 4. Hit Rates (HR) and False Alarm Rates (FAR) for the co-occurrence of RR above the specified
thresholds from the optical, impact and video disdrometers operating at the DoE ARM site in the
Southern Great Plains (SGP). See also Figure 16.

RR > 0.1 mmhr−1 RR > 1 mmhr−1 RR > 10 mmhr−1

HR FAR HR FAR HR FAR

Optical v video 0.781 0.0020 0.788 0.0018 0.705 0.0003

Optical v impact 0.600 0.0017 0.570 0.0013 0.525 0.0003

When a RR threshold of 0.2 mmhr−1 is applied, the probability of precipitation from
the OTT Parsivel2 exceeds that from the other two sensors. Over three-quarters of all 1 min
periods when the optical, impact and video disdrometers were operating without error
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flags and the optical disdrometer indicated a RR above 0.1 mmhr−1 are also identified as
having RR > 0.1 mmhr−1 (and RR > 1 mmhr−1) in the video disdrometer (Table 3). It is
notable that this HR is lower than that reported from an earlier study in Switzerland [43],
but the FAR is also lower. This may reflect use of a screen to deselect periods with very light
RR in the current analysis. For a RR threshold of 10 mmhr−1, which equates to approxi-
mately the 96th percentile of all non-zero RR, and the 99.85th percentile of all 1 min periods,
the HR drops to 0.705 (Table 4). Thus, a quarter of all 1 min periods when the optical
disdrometer indicated very high RR are not identified as such in the video disdrometer
time series. This finding is consistent with the existing literature summarized above and
also suggests that discrepancies between disdrometers are amplified at high RR that have
greatest relevance to LEE. Comparisons between the impact disdrometer and the optical
disdrometer indicate lower HR, but similarly low FAR. When the data time series are con-
ditionally sampled to select only periods when either the optical disdrometer and the video
disdrometer or the optical disdrometer and the impact disdrometer exhibit RR exceeding
either 0.1 mmhr−1, or 1 mmhr−1 or 10 mmhr−1, the Spearman correlation coefficients (ρs)
all exceed 0.78, indicating relatively good but incomplete agreement between RR from the
different instruments (Figure 16).

The mean droplet size distributions for RR with different thresholds from the optical,
impact and video disdrometers at US SGP also exhibit important differences. For example,
for both the 1 mmhr−1 and 10 mmhr−1 RR the video disdrometer indicates a much greater
abundance of droplets of all diameters (Figure 16). For example, for a hydrometeor of
approximately 2 mm diameter the mean number density for all periods when both the
optical and video disdrometer exhibited RR > 10 mmhr−1, are 0.0178 m−3 mm−1 from the
Parsivel2 and 0.5282 from the video disdrometer. Similar results for when both the impact
and optical disdrometers exhibit RR > 10 mmhr−1 indicate a mean droplet abundance of
0.0274 and 0.0222 m−3 mm−1. In contrast, a previous study [153] comparing data from two
2-D video disdrometers and two OTT Parsivel1 disdrometers found that total accumulated
rainfall during extended periods of precipitation (many hours) from the optical instrument
was biased high particularly during high RR (RR > 20 mmhr−1). However, consistent
with the data from the US SGP site, the RR during co-identified precipitation periods are
correlated. The Pearson (parametric) correlation coefficient (r) for 3 min running mean
RR from the optical and video disdrometers was 0.87 [153]. The difference in inferences
these two analyses (US SGP versus the previous study [153]) may be partially attributable
to use of different generations of OTT Parsivel disdrometers but it may also illustrate the
importance of the decision to use a screening tool to exclude droplets with atypically low
fall velocities from the US SGP optical disdrometer. This again emphasizes the need to
develop best-practice for the processing of data from these instruments.

The following common inferences can be drawn from these and other instrument
intercomparison studies. First, it appears that there is a persistent difference between
ground-based disdrometers and MRR in terms of the droplet size distribution with MRR
showing higher values for smaller droplets, while the ground-based disdrometers exhibit
higher concentrations for larger diameter droplets. The crossing point appears to be in the
D range of 0.5 to 1 mm. This tends to lead to a negative bias in RR from the MRR. Second,
while there is some dependence on the precise precipitation regime, the OTT Parsivel
instrument appears to exhibit DSD with a greater presence of larger droplets than the
Theis LPM. Third, DSD discrepancies between instruments are amplified at high RR. We
further note that while many studies find disdrometers tend to underestimate accumulated
precipitation relative to rain gauges this is not uniformly the case.

The instrument comparisons based on primary data analysis for the US SGP facility
and previous work summarized in Table 3 also provide important context for the com-
parisons provided earlier between DSD from the OTT Parsivel2 disdrometer and the Best
and Marshall-Palmer approximations. In those comparisons, data from the OTT Parsivel2

instruments tend to indicate that both Best and Marshall-Palmer underestimate the droplet
number concentrations for large D. Comparisons between the 2DVD and OTT Parsivel2
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at US SGP suggest that for high RR the under-counting of large droplets by the Best and
Marshall-Palmer approximations may be even more pronounced.

Mean DSD from the MRR and Parsivel2 disdrometer at the Norway site when con-
ditionally sampled for a moderate RR of 6–11 mmhr−1 also exhibit notable differences
(Figure 7, Table 3). While some of the difference might be attributable to sampling of
different data periods and thus different precipitation events, given the long time series
it is likely that such an effect is small. Thus, >5-fold difference in droplet number concen-
trations for D > 2 mm (Figure 7) for a moderate RR of 6–11 mmhr−1 appears to derive
primarily from differences in the measurement height and fundamental differences due to
metrology. Consistent with expectations, the differences between mean DSD from the OTT
Parsivel2 and MRR for D~2.5–4 mm exceed those for the ground-based disdrometers at the
US SGP site (Figure 16). Data from the MRR operated at the Norway site fall below the
Best DSD approximation for large D but recall instrument intercomparisons suggest the
MRR underestimates the presence of large rain droplets (Table 3). Conversely, data from
the OTT Parsivel2 at that site indicate both the Best and Marshall-Palmer approximations
underestimate the concentration of droplets at D 0.5 to 1.5 mm, and the Marshall-Palmer
estimate more closely approximates the observations at larger D (Figure 7).

Even data from the same type and generation of disdrometer are not always compara-
ble. Data from an experiment wherein 16 identical Parsivel1 disdrometers were deployed
within a 6 m2 area found substantial deviations of two of the 16 instruments. Although
no details were provided, the authors reported ‘two instruments yielded different mea-
surements from the other 14 in terms of cross correlation for integral parameters’ [99]. For
this reason, a short instrument closure experiment from four brand-new OTT Parsivel2 dis-
drometers that have consecutive serial numbers was performed on the Cornell University
campus in upstate New York during 21 October to 7 December 2021. The disdrometers
were placed on a grid such that the detection heads are all within 2 m of each other. RR
from the four instruments when subject to linear fits exhibit intercept values close to 0
(Figure 17b), and three of the four instruments exhibit RR that agree within the instrument
specification of ±10%. The slope of the linear fit is in the range 0.9–1.1 and the mean ratio
of RR from disdrometers 2–4 to that from disdrometer 1 are close to 1 (Figure 17a,b). Data
from the third disdrometer (D3) exhibits a positive bias relative to the other three in terms
of the RR. The bias in RR appears to be due to excess detected abundance of droplets in
the 1–4 mm diameter range as is evidenced in the mean DSD from all four disdrometers
(Figure 17c).

Disdrometer D3 was subsequently returned to the manufacturer for repair/recalibration.
Upon return of that instrument a second closure experiment was performed to collect an
approximately equal number of 1 min periods with precipitation. The results indicate
that after the repair/recalibration the RR from this disdrometer have a mean ratio to RR
from disdrometer D1 close to 1 (Figure 18a) and a slope of a linear fit of ~0.9 with RR
from the other disdrometers. However, the repaired D3 now exhibits a negative bias in
terms of RR (Figure 18b), and on average exhibits a smaller number density for D > 1.5 mm
(Figure 18c). A key recommendation based on this, and other related research, is that prior
to deployment of a disdrometer network the instruments should be collocated and subject
to intensive closure experiments.
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Figure 17. (a) Probability distribution and (b) Scatterplots of 1 min rainfall rates (RR, in mmhr−1) from
the four OTT Parsivel2 disdrometers (D1, D2, D3, D4) operating at Cornell University during the first
instrument closure experiment. The probability distribution of RR shown in panel (a) is discretized
into 0.5 mmhr−1 intervals and the legend reports the mean ratio of RR from the disdrometers. The
legend in (b) denotes best-fit lines to the datasets where c is the intercept and m is the slope of a linear
fit. (c) Mean DSD from the four instruments for all 8526 1 min periods when RR > 0 mmhr−1.
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Figure 18. (a) Probability distribution and (b) Scatterplots of 1 min rainfall rates (RR, in mmhr−1)
from the four OTT Parsivel2 disdrometers (D1, D2, D3, D4) operating at Cornell University during
the second closure experiment, after disdrometer D3 had been repaired/recalibrated. The probability
distribution of RR shown in panel (a) is discretized into 0.5 mmhr−1 intervals and the legend reports
the mean ratio of RR from the disdrometers. The legend in (b) denotes best-fit lines to the datasets
where c is the intercept and m is the slope of a linear fit. (c) Mean DSD from the four instruments for
all 6829 1 min periods when RR > 0 mmhr−1.
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4. Discussion

Questions remain about the precise mechanisms that lead to wind turbine blade LEE
and the relative importance of hydroclimatic drivers relative to other geophysical stressors
and manufacturing defects such as the presence of air bubbles in the top coating [20]. Given
trends towards use of larger rotors and tip speeds, as well as current high cost of repairing
blades due to LEE [7,10], it is of high importance to establish which mechanisms are re-
sponsible for blade damage. As a part of this work, there is an urgent need for high fidelity,
repeatable and comparable measurements of wind speeds and hydrometeor characteristics
in areas with high wind resources and/or wind turbine deployments. Such data are neces-
sary to generate robust assessments of the hydroclimate and the joint probabilities (at high
temporal resolution) of high wind speeds with high RR, large droplet diameters and hail
occurrence. Currently, the greatest challenge to interpreting joint probability distributions
of RR and wind speed, and in ultimately constructing joint probability distributions of DSD
or Dm and wind speed are the short durations of the measured time series. The greatest
challenge to developing a comprehensive understanding of geospatial variability in likely
LEE rates is the lack of publicly accessible data from disdrometers and wind speeds in high
wind energy resource areas outside North America and Europe. Investment to generate
high-quality, long-term, publicly accessible data at wind energy relevant locations will help
to continue historical trends towards lower operating costs [154] and overall LCoE from
wind [155]. Reduction of the uncertainty regarding the conditions to which wind turbines
are subjected and linking geophysical measurements to actual wind turbine blade damage
reports will also yield improved cost–benefit analyses of erosion prevention measures.
Industry-wide solutions to reduce AEP loss due to LEE will be greatly enabled by advanced
metrologies for geophysical site characterization and access to high fidelity, controlled and
repeatable wind turbine blade inspection photographs and maintenance records.

The remote sensing community is evolving new satellite-based metrologies to derive
global and spatially explicit estimates of hydroclimates including not only rainfall rates,
but hydrometeor phase and droplet size distribution [70,156,157]. Additionally numerical
modeling is being performed at so-called convection permitting grid resolution (grid
spacing of < 4 km) and with very detailed microphysics schemes with a goal of quantifying
relative LEE potential. Such high-resolution simulations with the Weather Research and
Forecasting (WRF) model exhibit some promise in terms of reproducing critical aspects of
the hydroclimate and wind speeds [128,129]. This type of numerical modeling or enhanced
high-resolution remote sensing products may ultimately yield data sufficient to, when
combined with wind speed measurements or model output, yield a comprehensive global
atlas of annual accumulated kinetic energy transfer to wind turbine blades and hence
LEE potential. However, in numerical models, RR, hydrometeor phase and DSD exhibit a
strong dependence on the microphysics scheme selected [158] and are only partly validated.
Additionally, the computational costs of such simulations are high [159,160]. Further,
satellite-based precipitation products are subject to a range of uncertainties (e.g., gap
filling [161]), and at the daily scale exhibit lower fidelity than WRF simulations [162]. Thus,
it seems likely that in the near-term there will be continue reliance on in situ and/or ground
based instrumentation to collect the data necessary for ground-truthing of numerical model
simulations and/or assessment of LEE potential.

Analyses presented herein reaffirm that the specific instrument (i.e., type of disdrome-
ter) from which DSD are drawn has a profound influence on the resulting DSD and RR.
Causes of these differences are only partly resolved and the discrepancies in data from
different instruments may vary with the prevailing hydroclimate. Instrument closure
experiments to resolve these matters and those arising from difference in instruments from
the same manufacturer are urgently needed. There would also be tremendous benefit
from greater transparency on the part of instrument manufacturers regarding the data
inversion used to derive DSD, RR and the weather codes (hydrometeor phase), in terms
of reconciling data from the different sensors. Two key recommendations are advanced
regarding closure experiments. First, a controlled experiment should be designed and
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performed for the in situ disdrometers where known DSD at varying RR are applied in a
laboratory setting to characterize the different instrument response more comprehensively.
Second, a comprehensive and extended field experiment should be performed to better
characterize the relative performance and comparability of data from all the different in-
strument technologies. Such an experiment should ideally be conducted in a location with
a high range of RR, and a range of hydrometeor types (including hail) and unlike most past
research would be fully inclusive of all metrologies. The data from such experiments should
be made public to allow both for advancements in instrument metrology, improvements in
signal processing and improved uncertainty quantification.

Data and analyses presented herein also indicate that reliance on the Best approximation
to project droplet size distributions for use in whirling-arm experiments is not appropriate
and may lead to biases if extrapolated to accumulated material fatigue. The Marshall-
Palmer distribution also fails to fully capture the DSD at any of the sites from which data
are reported herein. This implies that further method development is required to describe
DSD for LEE studies, although better characterization of hydroclimatic conditions is also
likely to be beneficial for other applications. Inclusion of solid hydrometeors in whirling-
arm experiments for material stress assessment is also critical to correctly represent the
hydroclimate in many regions of the world where wind turbines are being deployed.

Data summarized herein indicate the droplet size distributions of hydrometeors, pre-
cipitation frequency and intensity and hail frequency vary markedly across locations where
wind turbines are currently deployed or may be deployed in the near future, particularly off-
shore. The implication is that atmospheric conditions associated with leading edge erosion
(e.g., frequency of hail and heavy precipitation co-occurring with wind speeds above cut in)
will also exhibit large site-to-site variability. The state of the art (including data summarized
above) suggests there are likely to be pronounced regional differences in terms of the relative
importance to total accumulated kinetic energy transfer to the blades of; (i) hail versus
rain, (ii) low intensity (low rainfall rates) but sustained precipitation periods versus high
intensity but relatively short duration precipitation periods. Accordingly, there is likely to
be substantial geographic variability in the need for LEE preventative measures and the
relative utility of erosion safe operation mode versus use of protective tapes will also be
location specific. However, in the absence of reliable and high-fidelity measurements of
hydroclimatic conditions, identification of optimal solutions will remain elusive.

5. Summary and Recommendations

Wind turbine blade LEE is an important emerging issue within this key renewable
energy industry. A recent article reported that EDP Renewables “inspected 201 rotor
blades on a wind farm after 14 years of operation and discovered that 174 blades (87%)
had visible signs of erosion, with 100 blades (50%) showing severe levels of LEE” [163].
Research to date suggests that LEE is primarily the result of materials stresses caused when
hydrometeors impact on rapidly rotating wind turbine blades [1]. For this reason a range
of laboratory testing approaches have been developed to perform accelerate rain erosion
testing of coating materials [25], and there is considerable interest within the wind energy
industry on advanced methods to characterize hydroclimate conditions. The number, size
and hardness of hydrometeors varies as a function of atmospheric conditions—e.g., air
temperature, cloud conditions and precipitation intensity (RR). The resulting materials
stresses caused by the resulting impacts on the blade are naturally also a function of
these conditions and the closing velocity which is additionally a function of wind speed
since the wind turbine rotational speed is a non-linear function of wind speed. Here, we
present hydroclimate measurements from a range of locations with large wind resources
and/or wind turbine installed capacity. We use these data sets to illustrate both the
spatial variability in DSD, the frequency of hail and RR, and also that common forms of
hydrometeor size distributions as a function of RR fail to represent either the event-to-
event variability in DSD and/or the observations. We additionally present the first joint
probability distributions of wind speed and RR that are specifically tailored to provide
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first order assessment of relative LEE potential. Finally, we use primary data analyses and
reviews of the current literature to document the large variability between RR and DSD
from different measurement technologies and from identical instruments.

Based on primary research presented herein and the accompanying review of previous
research the following key recommendations are drawn:

(1) Best-practice be developed for deployment of disdrometers (e.g., use of wind shields)
and analysis of data from disdrometers to ensure comparability of observed DSD
across different sites and regions.

(2) A disdrometer network in wind energy rich environments should be developed to
allow more detailed assessment of LEE potential. Such data sets will also provide
information necessary to evaluate numerical models and remotely sense hydroclimate
parameters. Reference sites such as that operated at the US SGP DoE ARM should
be run for many years in order to generate robust and comparable data sets. Since
the joint probability of RR and hydrometeor size distribution (fall velocity and phase)
with wind speeds are the critical determinants of kinetic energy transferred to the
blades and the resulting material stresses, these sites should also include high fidelity
wind speed measurements at wind turbine hub-heights. Given the current ambiguity
in terms of how weather codes (WC) are assigned by disdrometers independent
meteorological data and assessments of hydrometer phase would be greatly beneficial.

(3) RR and DSD considered in accelerated RET be greatly expanded to cover a wider
range of conditions including simultaneous presence of droplets across a range of
diameters and presence of solid hydrometeors.

(4) Research be conducted to better characterize hydrometeor size distributions offshore
and advance techniques to avoid contamination from sea spray.

(5) Detailed closure experiments should be conducted that are inclusive of different metrolo-
gies and manufacturers. Such experiments should also examine instrument durability.
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Nomenclature

a constant in Best DSD approximation (Equation (10))
a1 constant in droplet terminal velocity equation (ƒ(droplet radius)) (Equation (2))
A Weibull distribution scale parameter (Equation (19))
AEP annual energy production

ARM
Atmospheric Radiation Measurement site operated by the US Department
of Energy

ASL above sea level
B constant in droplet terminal velocity equation (ƒ(droplet radius)) (Equation (2))
c intercept of regression equation (Equation (2))

c1
density correction factor in the approximation for the terminal fall velocity for
deformed droplets (ƒ(ambient pressure)) (Equation (12))

CD drag coefficient for terminal velocity of hail stones (Equation (3))
CoCoRaHS Community Collaborative Rain, Hail and Snow network
D hydrometeor diameter
Di hydrometeor diameter class
dD or ∆D hydrometeor diameter interval
DiVeN UK Disdrometer Verification Network
D0 median droplet diameter
Dm mass-weighted droplet mean diameter (Equation (8))
Dmax hailstone maximum diameter

dN/dD or N(D)
number density—i.e., concentrations of hydrometeors per cubic meter as a
function of diameter normalized for a fixed diameter interval

DNV Det Norske Veritas
DoE US Department of Energy
DSD droplet size distribution
DTU Danish Technical University
ECMWF European Centre for Medium-Range Weather Forecasts
ERA5 fifth generation ECMWF atmospheric reanalysis of the global climate
F area field of view of the disdrometer
FAR False Alarm Rate
Feff effective sampling area of the disdrometer
g gravitational acceleration
GCHN Global Historical Climatology Network
GW GigaWatt (109 Watts)
GPCC Global Precipitation Climatology Centre
GPM Global Precipitation Measurement
GWEC Global Wind Energy Council
HR Hit Rate
IEA Wind TCP International Energy Agency Wind Technology Collaboration Programme
IMERG Integrated Multi-satellitE Retrievals for the GPM
kB constant in Best DSD approximation (Equation (10))
k Weibull distribution shape parameter (Equation (19))
L length of disdrometer viewing area
LCoE levelized cost of energy
LEE leading edge erosion
LEP leading edge protection
LPM Thies Laser Precipitation Monitor
LWC liquid water content of air
MW MegaWatt (106 Watts)
Mn nth moment of the measured hydrometeor size distribution (Equation (17))
m slope of regression equation (Equation (18))
MRR Micro-rain RADAR
NH Northern Hemisphere
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NOAA US National Oceanic and Atmospheric Administration
NORA3 3 km Norwegian reanalysis

N
Number of droplets above given diameter in Marshall-Palmer approximation
(Equation (9))

N0 constant in the Marshall-Palmer DSD approximation (Equation (9))
NB number of size bins measured by disdrometer (Equation (17))
n constant in droplet terminal velocity equation (ƒ(droplet radius)) (Equation (2))
ni droplet number count in diameter class i
Nw droplet distribution intercept parameter (Equation (6))
PoP Probability of Precipitation
PWS Present Weather System
r Pearson (parametric) correlation coefficient
RADAR RAdio Detection Additionally, Ranging
RET accelerated Rain Erosion Test
R droplet radius
Rh hailstone radius

R0
constant in approximation for terminal fall velocity of droplets accounting for
deformation of the droplet (Equation (8))

R1
constant in approximation for terminal fall velocity of droplets accounting for
deformation of the droplet

RR rain rate (i.e., rate at which water is accumulated at the surface)
RPM revolutions per minute
SGP Southern Great Plains
t Temporal sampling interval
US SGP DoE ARM site
UV ultraviolet radiation

vtx
hydrometeor terminal fall velocity, where x = rain or hail
(Equations (1)–(5) and (12)).

vt(Di) fall velocity of a hydrometeor of a given diameter
V spherical volume of the droplet
VDIS video disdrometers

w0
constant in approximation for terminal fall velocity of droplets accounting for
deformation of the droplet (Equation (8))

w1
constant in approximation for terminal fall velocity of droplets accounting for
deformation of the droplet (Equation (8))

WAO Weybourne Atmospheric Observatory
WA width of disdrometer viewing area
W total water volume
WEICan Wind Energy Institute of Canada
WC Weather Code
WMO World Meteorological Organization
WRF Weather Research and Forecasting model
WS wind speed
k constant in droplet terminal velocity estimation (Equation (1))
λ fitting parameter in hail stone distribution (Equation (11))
λw wavelength of radiation used by disdrometer
Λ constant in the Marshall-Palmer DSD approximation
µ shape parameter of the gamma DSD
ρo air density at sea level
ρair air density at the given the altitude above sea level
ρi density of ice
ρw density of water
ρs Spearman rank correlation coefficient
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29. Hasager, C.B.; Vejen, F.; Skrzypiński, W.R.; Tilg, A.-M. Rain Erosion Load and Its Effect on Leading-Edge Lifetime and Potential of
Erosion-Safe Mode at Wind Turbines in the North Sea and Baltic Sea. Energies 2021, 14, 1959.

30. Bech, J.I.; Hasager, C.B.; Bak, C. Extending the life of wind turbine blade leading edges by reducing the tip speed during extreme
precipitation events. Wind Energy Sci. 2018, 3, 729–748.
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139. Tilg, A.M.; Skrzypiński, W.R.; Hannesdóttir, Á.; Hasager, C.B. Effect of drop—Size parameterization and rain amount on

blade—Lifetime calculations considering leading—Edge erosion. Wind Energy 2022, 25, 952–967.
140. Bech, J.I.; Johansen, N.F.-J.; Madsen, M.B.; Hannesdóttir, Á.; Hasager, C.B. Experimental study on the effect of drop size in rain

erosion test and on lifetime prediction of wind turbine blades. Renew. Energy 2022, in press.
141. Mintu, S.A.; Molyneux, D.; Colbourne, B. (Eds.) Multi-Phase Simulation of Droplet Trajectories of Wave-Impact Sea Spray Over a Vessel.

International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers: New York, NY,
USA, 2019.

142. Veron, F. Ocean spray. Annu. Rev. Fluid Mech. 2015, 47, 507–538.
143. Herring, R.; Dyer, K.; Howkins, P.; Ward, C. Characterisation of the offshore precipitation environment to help combat leading

edge erosion of wind turbine blades. Wind Energy Sci. 2020, 5, 1399–1409.
144. Capozzi, V.; Annella, C.; Montopoli, M.; Adirosi, E.; Fusco, G.; Budillon, G. Influence of wind-induced effects on laser disdrometer

measurements: Analysis and compensation strategies. Remote Sens. 2021, 13, 3028.
145. Johannsen, L.L.; Zambon, N.; Strauss, P.; Dostal, T.; Neumann, M.; Zumr, D.; Cochrane, T.A.; Blöschl, G.; Klik, A. Comparison of

three types of laser optical disdrometers under natural rainfall conditions. Hydrol. Sci. J. 2020, 65, 524–535.
146. de Moraes Frasson, R.P.; Da Cunha, L.K.; Krajewski, W.F. Assessment of the Thies optical disdrometer performance. Atmos. Res.

2011, 101, 237–255. [CrossRef]
147. Guyot, A.; Pudashine, J.; Protat, A.; Uijlenhoet, R.; Pauwels, V.; Seed, A.; Walker, J.P. Effect of disdrometer type on rain drop size

distribution characterisation: A new dataset for south-eastern Australia. Hydrol. Earth Syst. Sci. 2019, 23, 4737–4761.
148. Tokay, A.; Petersen, W.A.; Gatlin, P.; Wingo, M. Comparison of raindrop size distribution measurements by collocated disdrome-

ters. J. Atmos. Ocean. Technol. 2013, 30, 1672–1690.
149. Angulo-Martínez, M.; Beguería, S.; Latorre, B.; Fernández-Raga, M. Comparison of precipitation measurements by OTT Parsivel

2 and Thies LPM optical disdrometers. Hydrol. Earth Syst. Sci. 2018, 22, 2811–2837. [CrossRef]
150. Sarkar, T.; Das, S.; Maitra, A. Assessment of different raindrop size measuring techniques: Inter-comparison of Doppler radar,

impact and optical disdrometer. Atmos. Res. 2015, 160, 15–27.
151. Krajewski, W.F.; Kruger, A.; Caracciolo, C.; Golé, P.; Barthes, L.; Creutin, J.-D.; Delahaye, J.-Y.; Nikolopoulos, E.I.; Ogden, F.;

Vinson, J.-P. DEVEX-disdrometer evaluation experiment: Basic results and implications for hydrologic studies. Adv. Water Resour.
2006, 29, 311–325. [CrossRef]

http://doi.org/10.1002/qj.3803
https://www.arm.gov/capabilities/instruments/dl
https://www.sciencebase.gov/catalog/item/57bdfd8fe4b03fd6b7df5ff9
http://doi.org/10.1016/j.ijhydene.2020.09.166
http://doi.org/10.1175/JAMC-D-20-0162.1
http://doi.org/10.1016/j.atmosres.2011.02.014
http://doi.org/10.5194/hess-22-2811-2018
http://doi.org/10.1016/j.advwatres.2005.03.018


Energies 2022, 15, 8553 41 of 41

152. Marzuki, H.H.; Shimomai, T.; Rahayu, I.; Vonnisa, M. Performance evaluation of Micro Rain Radar over Sumatra through
comparison with disdrometer and wind profiler. Prog. Electromagn. Res. M 2016, 50, 33–46.

153. Thurai, M.; Petersen, W.A.; Tokay, A.; Schultz, C.; Gatlin, P. Drop size distribution comparisons between Parsivel and 2-D video
disdrometers. Adv Geosci 2011, 30, 3–9.

154. Wiser, R.; Bolinger, M.; Lantz, E. Assessing wind power operating costs in the United States: Results from a survey of wind
industry experts. Renew. Energy Focus 2019, 30, 46–57.

155. Duffy, A.; Hand, M.; Wiser, R.; Lantz, E.; Dalla Riva, A.; Berkhout, V.; Stenkvist, M.; Weir, D.; Lacal-Arántegui, R. Land-based
wind energy cost trends in Germany, Denmark, Ireland, Norway, Sweden and the United States. Appl. Energy 2020, 277, 114777.

156. Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.;
et al. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104, 70–97.

157. Kidd, C.; Huffman, G.; Maggioni, V.; Chambon, P.; Oki, R. The Global Satellite Precipitation Constellation: Current status and
future requirements. Bull. Am. Meteorol. Soc. 2021, 102, E1844–E1861. [CrossRef]

158. Labriola, J.; Snook, N.; Jung, Y.; Xue, M. Explicit ensemble prediction of hail in 19 May 2013 Oklahoma City thunderstorms and
analysis of hail growth processes with several multimoment microphysics schemes. Mon. Weather Rev. 2019, 147, 1193–1213.

159. Barrett, A.I.; Wellmann, C.; Seifert, A.; Hoose, C.; Vogel, B.; Kunz, M. One step at a time: How model time step significantly
affects convection—Permitting simulations. J. Adv. Modeling Earth Syst. 2019, 11, 641–658.

160. Jeworrek, J.; West, G.; Stull, R. Evaluation of cumulus and microphysics parameterizations in WRF across the convective gray
zone. Weather Forecast. 2019, 34, 1097–1115. [CrossRef]

161. Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. IMERG V06: Changes to the morphing algorithm. J. Atmos. Ocean. Technol. 2019,
36, 2471–2482. [CrossRef]

162. Beck, H.E.; Pan, M.; Roy, T.; Weedon, G.P.; Pappenberger, F.; Van Dijk, A.I.; Huffman, G.J.; Adler, R.F.; Wood, E.F. Daily evaluation
of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 2019, 23, 207–224.

163. Law, H.; Koutsos, V. Leading edge erosion of wind turbines: Effect of solid airborne particles and rain on operational wind farms.
Wind Energy 2020, 23, 1955–1965.

http://doi.org/10.1175/BAMS-D-20-0299.1
http://doi.org/10.1175/WAF-D-18-0178.1
http://doi.org/10.1175/JTECH-D-19-0114.1

	Introduction 
	Wind Turbine Blade Leading Edge Erosion 
	Hydrometeor Droplet Size Distributions 
	Spatial Variability in the Primary Drivers of Leading Edge Erosion 
	Objectives 

	Materials and Methods 
	Metrologies for Measuring Rainfall Rates and Droplet Size Distributions 
	Statistical Methods 
	Locations from Which Data Are Presented 

	Results 
	Hydroclimate and Wind Regimes at the Focus Sites 
	Joint Probabilities of Hydroclimatic Conditions and Wind Speeds 
	Influence of Measurement Strategies and Instrument Metrologies 

	Discussion 
	Summary and Recommendations 
	References

