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ABSTRACT: A charging regular electrical double layer supercapacitor can usually be described by a 

single capacitance and a single resistance in parallel, wherein the latter represents the ohmic losses. Such 

ideal behavior may occur if the supercapacitor consists of self-similar porous carbon micro- and 

nanostructures. However, if the regular supercapacitor consists of a sequence of slices with different 

relaxation times, a strong deviation from ideal charging curves may occur. Here, it is demonstrated how 

such charging curves can be interpreted in terms of a distribution of relaxation times. It is found that in 

presence of a broad distribution of charge transfer resistances, the voltage initially appears to increase 

faster than normal during galvanostatic charging. Care should be taken to avoid misinterpretation of the 

capacitance under such circumstances. 
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1. Introduction 

Supercapacitors are electrochemical double layer capacitors utilizing an electrolyte in contact with a 

porous carbon surface [1-4]. The electrolyte contains a large concentration of ions which form an electrical 

double layer on a micro and nanostructured carbon surface [4-6]. The performance and degradation of 

supercapacitors is often measured using impedance spectroscopy, cyclic voltammetry or galvanostatic 

charging, and modelling of these processes undertaken using equivalent electric circuits [7-11]. Of 

particular interest is the capacitance of a supercapacitor, which is related to its ability to store electrical 

charge.  

Upon charging, the amount of charge associated with the carbon surface increases gradually, and the 

current I through the supercapacitor is assumed to be I=CdV/dt, where dV/dt is the voltage change rate 

and C the capacitance [12,13]. This definition does not account for any resistive processes taking place 

during charging, and recent works have demonstrated that care must be taken when interpreting the found 

capacitance [14,15]. In fact, it has recently been demonstrated that the nonlinearities in galvanostatic 

charging curves of a range of commercial supercapacitors are well modelled using a simple Randles-like 

resistance-capacitance parallel circuit, and that such a circuit can explain how the charging depends on 

applied current and temperature [16]. However, in the literature strongly nonlinear charging curves that 

cannot be modelled using such a simple circuit are sometimes reported for newly developed 

supercapacitors, in particular metal-free variants which lack a highly conducting metal substrate [17-19]. 

In the current work it is demonstrated that these charging curves can be interpreted in terms of a 

distribution of relaxation times associated with a distribution of charge transfer resistances. 

 

2. Background 

A regular supercapacitor consists of self-similar hierarchical micro and nanostructures, which in ref. [16] 

was shown to be associated with a resistance-capacitance parallel circuit associated with a fixed relaxation 
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time. The reason for this is that only a limited set of pore-sizes are accessed for a given current. Large 

charging currents only allow one to access the largest pores. The smaller ones are clogged by ions trying 

to penetrate into them, and do not become unclogged unless one waits for a long time or change the 

current. If one wants to access the smallest pores, one needs to apply a small current. This takes longer 

time, but avoids aggregation and clogging. As demonstrated in ref. [16], the relaxation time is inversely 

proportional to the current. A natural consequence of the observations described above and in previous 

publications [15-16] is that a regular supercapacitor can be well described by a single parallel RC-circuit, 

i.e. a resistor R1 and a capacitor C1 in parallel, in series with a resistor Rs1. This corresponds to the leftmost 

unit in fig. 1.  

 

 

Figure 1.  Schematic drawing of the system under consideration, showing two pieces of microstructured 

carbon surrounded by electrolyte. Here I0 is the constant current passing through each localized slice of 

capacitance Ci and charge transfer resistance Ri. The local bulk contribution to the resistance, due to 

either contact or electrolyte, is denoted Rsi. 

 

A single RC-circuit (the leftmost R1C1-circuit in fig.1) was analyzed in detail in refs. [15-16] and is not 

the main topic of the current work. The goal of the current work is to show that certain supercapacitors 

may have a layered structure consisting of several serial layers of RC-circuits, thus resulting in a 
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distribution of relaxation times. Fig. 1 shows a schematic drawing of the structure and buildup of such a 

layered supercapacitor. The porous structure in the supercapacitor can be divided into thin, stacked slices, 

each of which must pass the entire constant current I0 during charging. Consider a localized thin slice of 

area Ai on the porous carbon surface of a supercapacitor. When a current is applied, charge is gradually 

built up and stored on the surface area Ai of the porous carbon with a surface charge density i, such that 

the charge is given by qsi=iAi.  Another amount of charge qri is lost due to charge transfer from faradaic 

reactions. The total charge transferred to the is qi=qri+qsi, giving rise to a current given by  

 

𝐼0 = 𝐼𝑠𝑖 + 𝐼𝑟𝑖 = 𝐴𝑖
𝑑𝜎𝑖

𝑑𝑡
+

𝑑𝑞𝑟𝑖

𝑑𝑡
  .    (1) 

 

The charge and voltage are often related in a nearly linear fashion on a global scale [20]. It is reasonable 

to assume that such a linear relationship also holds locally, and therefore to define a local constant 

capacitance Ci which relates the surface charge and the corresponding voltage Vi according to  

 

𝜎𝑖 =
𝐶𝑖

𝐴𝑖
𝑉𝑖  .     (2) 

 

The charge loss qri can occur in different forms, but here we will exemplify it due to a charge transfer 

caused by faradaic reactions alone. That is, it is assumed that the electrolyte concentration is large enough 

and the grain structure properly wetted, such that electrolyte starvation caused by diffusion is negligible 

[21]. The charge transfer due to faradaic reactions may in the simplest approximation be given by the 

Butler-Volmer equation [22]  
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𝐼𝑟𝑖 = 𝐼𝑟𝑖𝐴(𝑒𝛼𝑒𝑉𝑖/𝑘𝐵𝑇 − 𝑒−(1−𝛼)𝑒𝑉𝑖/𝑘𝐵𝑇)    ,    (3) 

 

where  is the transfer coefficient, e=1.6∙10-19 C is the electric charge, kB=1.38∙10-23 J/K, T is the 

temperature and IriA is the exchange current density which depends on the surface concentration of the 

redox-species as well as the rate at which they are transformed. For small voltages (eV/kBT <<1) one may 

write  

𝐼𝑟𝑖 ≈
𝑉𝑖

𝑅𝑖
     ,    𝑅𝑖 =

𝑘𝐵𝑇

𝑒𝐼𝑟𝑖𝐴
     ,      (4) 

 

such that Ri is the charge transfer resistance. Under most circumstances one does not have small voltages, 

but we will nonetheless make the assumption that the losses can be accounted for by a ohmic resistance 

Ri which gives a linear relationship between applied current and voltage over the charging pores. 

 

According to eqs. (1), (2) and (4), the total current can be written as 

 

𝐼0 = 𝐶𝑖
𝑑𝑉𝑖

𝑑𝑡
+

𝑉𝑖

𝑅𝑖
        .     (5) 

 

Let us now consider the situation where the carbon surface is initially uncharged, such that Vi(t=0)=0, and 

that the current I0 is constant. After a certain time, the localized voltage is  

 

𝑉𝑖(𝑡) = 𝐼0𝑅𝑖(1 − 𝑒−𝑡/𝜏𝑖)    ,     𝜏𝑖 = 𝑅𝑖𝐶𝑖 .  (6) 

 

The supercapacitor consists of a sequence of slices in series, and the total voltage over the entire 

supercapacitor is therefore a sum over all the local voltages, where each contribution is weighted with a 

factor Pi such that I0Ri=I0RpPi. Here Rp represents the singular value of the charge transfer resistance 



 6 

which occurs when there is only one relaxation time present during charging such that Pi=1 and Ri =Rp. 

Note that Pi describes the distribution of resistances through the elongated porous structure. Pi can be 

entirely ascribed to the charge transfer resistance. We will proceed under the assumption that it is there is 

a distribution of charge transfer resistances and therefore also relaxation times i=RiCi. The total voltage 

is a sum over all local slices and given by  

 

𝑉𝐶(𝑡) = ∑ 𝑉𝑖(𝑡)𝑁
𝑖=1 + ∑ 𝑅𝑠𝑖𝐼0

𝑁
𝑖=1 = 𝐼0𝑅𝑝 ∑ 𝑃𝑖(1 − 𝑒−𝑡/𝜏𝑖)𝑁

𝑖=1 + 𝑅𝑠𝐼0    .  (7) 

 

As in refs. [14-16], the voltage drop due to a series resistance Rs = ∑ Rsi
N
i=1  is added to allow for ohmic 

resistance due to the bulk electrolyte or contact between carbon and metal current collector. Equation (7) 

can be understood by noting that each individual region of the porous carbon surface may have a charge 

transfer resistance Ri which differs from the other regions, and which governs both the probability weight 

factor Pi and the relaxation time i. On the other hand, the local capacitances Ci only influence the 

relaxation time. If a supercapacitor is made such that Ri, and therefore also i is large, one may in many 

cases set t<<i for the time interval of interest during charging. Then eq. (7) can be written as 

  

𝑉𝐶(𝑡 ≪ 𝜏𝑖) ≈ 𝐼0𝑡 ∑
1

𝐶𝑖

𝑁
𝑖=1 + 𝑅𝑠𝐼0    .     (8) 

From eq. (8) it is seen that the voltage increases linearly with time and the total capacitance is that of N 

capacitances connected electrically in series. This is sometimes considered the ideal behavior of a 

supercapacitor, and explains why a probability distribution of capacitances similar to Pi for resistances 

has not so far been needed when describing a regular supercapacitor. 

 

Assume that the many contributed charge transfer resistances have a continuous distribution P() such 

that one can replace equation (7) with an integral:  
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𝑉𝐶(𝑡) = 𝐼0𝑅𝑝 ∫ 𝑃(𝜏)(1 − 𝑒−𝑡/𝜏)𝑑
∞

0
𝜏 + 𝑅𝑠𝐼0    .   (9) 

 

We introduce a new variable s and a constant 0 such that s=0/. Here it is required that the distribution 

fulfills the condition ∫ 𝑃(𝑠)𝑑
∞

0
𝜏 = 1.  Equation (8) can now be written as  

 

𝑉𝐶(𝑡) = (𝑅𝑠 + 𝑅𝑝)𝐼0 − 𝐼0𝑅𝑝 ∫ 𝑃(𝑠)𝑒
−𝑠(

𝑡

𝜏0
)
𝑑

∞

0
𝑠    .   (10) 

 

To obtain the distribution P(s) from the measured voltage VC during charging using the integral in eq. 

(10) is in general rather challenging, in particular since the charge transfer resistances usually are rather 

large such that the voltage-time curve is nearly linear. However, there are situations where deviations 

from linearity are significant, and a particular convenient representation of the voltage occurs if one sets  

 

∫ 𝑃(𝑠, 𝛽)𝑒−𝑠𝑡/𝜏0𝑑
∞

0
𝑠 = 𝑒

−(
𝑡

𝜏0
)

𝛽

,     (11) 

 

where 0 is a constant that may be used to estimate the order of magnitude of the expected relaxation time, 

but care should be taken not to give it an interpretation as some sort of general time decay constant [23]. 

Note that  is also constant which provides useful information about the width of the distribution P(s, ). 

When =1, the distribution P(s,) is a Dirac delta function centered on . Only when =1, the constant 

0 truly represents the actual decay rate. When the parameter  decreases, the distribution of relaxation 

times broadens and indicates that one has a layered distribution of pore sizes or interfacial voids. P(s,) 

has been tabulated numerically for a range of values of  in ref. [24]. It is also known analytically for 

particular values of  such as =1/2, as detailed in ref. [23]. By setting x=t/ in eq. (11), the Laplace 

transform is given by [23,24] 
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𝑃(𝑠, 𝛽) =
1

2𝜋𝑖
∫ 𝑒−(𝑥)𝛽

𝑒𝑠𝑥𝑑𝑥
+𝑖∞

−𝑖∞
   .     (12) 

 

Analytical solutions of eq. (13) are found only in a few cases like =0.5, and it is therefore most 

convenient to use numerical tables when extracting the distribution or arbitrary values of the coefficient 

in the range 0<<1 [24].  

 

Using eq. (11), the voltage over the supercapacitor becomes 

 

𝑉𝐶(𝑡) = 𝑅𝑠𝐼0 + 𝐼0𝑅𝑝 [1 − 𝑒
−(

𝑡

𝜏0
)

𝛽

]    .   (12) 

 

The charging curve depends on the parameter . Since for a given current I0 it is likely that only a fixed 

set of pores are accessed, it is expected that  remains constant during charging.  

 

Fig. 2 a) shows three examples of voltage versus time charging curves using eq. (12). The solid black line 

corresponds to =1, the red dash-dotted curve to =0.9 and the blue dashed curve to =0.4. The difference 

between =1 and =0.9 is very small, and is unlikely to be easy to detect from experimental data. The 

distribution P(s) for =1 is a sharp line at s=1, whereas the corresponding distribution for =0.9 is 

displayed as a red dash-dotted curve in fig. 2 b). For values of beta significantly different from one, the 

voltage-time curve shows highly nonlinear behavior. For example, the case =4 is shown as a blued 

dashed line in fig. 2 a), and the corresponding distribution P(s,) is displayed in fig. 2 b). it is noted that 

the voltage initially increases much faster than for =1, but then flatten gradually out. This is due to the 

large distribution of relaxation times displayed by the blue dashed line in fig. 2 b). The smaller relaxation 

times allow a fast initial response. However, soon they are fully charged and any additional response must 

be due to the longer relaxation times. In general, one observes that for <1 the voltage increases faster 
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with time than when =1 as long as t<, where 63% of the maximum voltage has been reached. However, 

when t> the increase in voltage is slower for <1 than for =1. From this one can conclude that fast 

modes with small relaxation times are quickly charged for <1, whereas for =1 there is only one 

relaxation mode which determines the charging time. However, one should also be aware that these are 

lossy modes, since the charge transfer resistance represent loss mechanisms in the model considered here. 

 

 

Figure 2.  The voltage over a supercapacitor versus the reduced time t/0 for =1 (black curve), =0.9 

(red dash-dotted curve) and =0.4 (blue dashed curve). In b), the distributions for =0.9 (red dash-dotted 

curve) and =0.4 (blue dashed curve) are shown. 
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3. Discussion 

In the literature, nonlinear charging curves have often been interpreted in terms of a voltage-dependent 

capacitance [25], which has been explained in terms of the perfectly smooth theory of electrical double 

layers [26] or due to voltage-dependent dipole orientation [27]. However, supercapacitors composed of 

micro and nanostructured carbon immersed in electrolyte do not have flat active surfaces, but are made 

of irregular surfaces supporting both dissipative and charge storage processes. In ref. [16] it was 

demonstrated that all supercapacitors exhibiting a single relaxation time (i.e. N=1 in eq. (7)) can be well 

described by a single equivalent circuit for different capacitances, currents and temperatures. That is, the 

analysis of ref. [16] is only valid when each of the slices of fig. 1 can be described by the same relaxation 

time (i.e. the same parallel resistance and capacitance). This is the case for well-mixed porous carbon 

surfaces wherein a self-similar porous carbon structure occurs throughout the volume of the 

supercapacitor. However, under some circumstances one may expect that the porous carbon structure is 

sequentially distributed, which means that in some slice-regions the relaxation time is large while in others 

it is small, such that several different relaxation times occur. In this case, one should refer to eq. (9) as 

described in the current work. The parameter  in eq. (12) can be used as a first approach to determine 

how a layered structure may influence the charging performance of a supercapacitor, and thereby allowing 

one to access the layered distribution of pore sizes or interfacial voids through the distribution of 

relaxation times. However, if one wants to know correlations between  and the geometrical structure, 

precise experiments wherein the layered structure is mapped by for example electron microscopy, 

followed by corresponding charging curves, must be investigated. Such correlated data are not available 

in the literature, and therefore must await future experiments. 

Nonetheless, the theory presented in the previous section can be used to interpret existing data reported 

in the literature. An example to which the theory most likely can be applied is reported in ref. [17], were 

several different samples with various weight ratios of nanographite to activated carbon were used to form 

metal-free supercapacitors. Sample A was made with 50 wt% nanographite and 50 wt% activated carbon, 
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sample B with 40 wt% nanographite and 60 wt% activated carbon, sample C with 30 wt% nanographite 

and 70 wt% activated carbon, and sample D with 20 wt% nanographite and 80 wt% activated carbon. The 

voltage during charging of the resulting supercapacitors was reported in ref. [17], and the data was 

extracted from the figures of that work using a MatLab script called grabit.m.   

 

 

Figure 3.  The charging voltage over the metal-free supercapacitors reported in fig. 4 in ref. [17] made 

with 50 wt% nanographite and 50 wt% activated carbon (black circles) and 20 wt% nanographite and 

80 wt% activated carbon (blue squares). The charging currents were 1.6 A/g (a) and 2.4 A/g (b). 

 

The black circles in fig 2 a) shows the voltage during charging for sample A during charging with a current 

1.6 A/g presented in fig. 4 e) in ref. [17]. The black, dashed line is a fit to eq. (12) with Vs = RsI0 = 0.25 

V, RpI0 = 3.5V, 0 = 75 s and =0.97. The coefficient of determination is R2=0.9997, which indicates a 

good fit. It is found that fixing =1 and RpI0 = 3.5V gives a fit with 0 = 70 s at R2=0.9993, but that the fit 
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could be improved to R2=0.9998 by letting also Rp vary freely. Since the voltage-time curve is nearly 

linear, the capacitance is fixed by C1=I0/dVC/dt, which is (31±1) C/g in this particular case. While the fits 

like the black dashed line in fig. 2 a) are nearly linear and therefore allow a well-defined capacitance, the 

parallel resistance may take on much larger variations with just minor adjustments of the fitting curve. 

For example, a fitting curve like the black dashed curve in fig. 2a) gives rise to Rp=2.2 g with R2=0.9993, 

while a fit with the same capacitance, Rp=1.5 g gives R2=0.9998. From this one can conclude that nearly 

linear curves can only extract parallel resistance Rp with rather large uncertainty, and that eq. (11) is of 

no particular value in this case. 

 

However, a completely new situation emerges if the curves are highly nonlinear. The blue squares in fig. 

2 a) shows the voltage of sample D in ref. [17] during charging with a current 1.6 A/g, and the dash-dotted 

blue line is a fit of eq. (12) with Vs=RsI0 = 0.30 V, RpI0 = 3.5 V, 0 = 303 s,  = 0.56 and R2=0.9963.  

Attempting to fix =1 gives at best R2=0.9727, which is a notably poorer fit.  Thus, the strong increase, 

followed by a flattening in voltage of as seen by the blue squares in fig. 2 a) therefore represent a strongly 

nonlinear behavior that is better represented by a distribution rather than a single relaxation time. Similar 

considerations can also be given the other curves. By fitting eq. (12) to charging voltages for samples A, 

B, C and D, it is found that  becomes 0.96 (sample A), 0.92 (sample B), 0.73 (sample C) and 0.56 (sample 

D).  These findings indicate that the distribution of charge transfer resistances gradually increase as one 

creates samples with gradually higher content of activated carbon.  

 

While the nonlinear eq. (12) does indeed represent the experimental data well, it is worth pointing out that 

reversible charge transfer processes galvanostatic charging curve may exhibit a steep initial curvature 

followed by a flatter region in a similar manner as that observed for samples D in fig. 4 e) of ref. [17]. 

Entirely reversible charge transfer reactions, such as seen in rechargeable batteries, are sometimes 

explained by considering the time-dependent ion concentration obtained using diffusion equation in 
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combination with the Nernst equation to obtain the time-dependent voltage as VC=V1+(RT/nF)ln[(A
1/2-

t1/2)/t1/2]. Here R is the universal gas constant, F is the Faraday constant, V1 is a constant, n is the number 

of moles of electrons participating in the charge transfer reaction, and A is a characteristic time which 

can be estimated using the Sand equation [28]. This equation for the voltage is sometimes used to explain 

the charging of rechargeable batteries. It is seen that the voltage eventually starts to increase significantly 

as t→A. However, there is no indication of such reversible charge transfer reactions occur in 

supercapacitors such as that manufactured in ref. [17]. Under such conditions it is reasonable to apply eq. 

(12).  

 

Similar behavior as seen in fig. 2 a) is found also for other charging currents for samples reported in ref. 

[17]. The black circles in fig. 2 b) shows the voltage during charging for sample A during charging with 

a current 2.4 A/g as shown in fig. 4 f) in ref. [17]. The black, dashed line is a fit to eq. (12) with 

Vs=RsI0=0.35 V, RpI0 =3.5V, 0= 52 s, =0.93 with R2=0.9999. Also here a fit to a curve with a single 

relaxation time (i.e. =1) is possible with a high coefficient of determination R2=0.9999. One can 

therefore not interpret a fit with =0.93 as due to a distribution of relaxation time constants since a fit 

with a single time constant would do equally well at least when using the R2 – value or by a visual 

inspection. This is not so for sample D in fig. 4 f) in ref. [17]. The blue squares in fig. 2 b) show the 

voltage of sample D during charging with current 2.4 A/g, and the dash-dotted blue line is a fit of eq. (12) 

with Vs=RsI0=0.44 V, RpI0 =3.5 V, 0= 262 s, =0.50 with R2=0.9944. Attempting to fix =1 gives at best 

R2=0.9678, which is a poorer fit that does not represent the experimental data as well as eq. (12) with 

=0.50. A curve with =0.50 can be understood as a due to a broad tail of relaxation coefficients caused 

by a broad range of charge transfer resistances. The origin of the distribution of charge transfer resistances 

could be related to the relatively larger interfaces generated by micron sized activated carbon which in 

ref. [17] was reported to reduce adhesion and increase deformation during drying. This again might be 

related to change in size and shape during drying, which could cause a large number of different 
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interactions with the nanographite flakes. In ref. [17] it was hypothesized that comparably large cavities 

and poor contacts were the reason for the nonlinear charging curves. Here we hypothesize that this is 

consistent with the interpretation of the results in terms of a distribution of charge transfer resistances in 

sample D during charging. While strong adhesion may result in larger contact regions with larger contact 

area and therefore smaller charge transfer resistance, smaller regions may give rise to larger charge 

transfer resistance.   

 

 

 

Figure 4.  The red circles (slurry 1), green boxes (slurry 2), the blue triangles (slurry 3) and violet 

diamonds (slurry 4) are data points grabbed from ref. [18] using grabit.m. The dashed lines are fits to 

the experimental data using eq. (12). 

 

Another system in which a distribution of relaxation times may play a role is the case of 3D-printed metal 

free supercapacitors as those presented in ref. [18]. In ref. [18] slurries of carbon conductive paint and 

water at different concentrations were used to print supercapacitors, with a hydrogel composed of 

polyvinyl alcohol and phosphoric acid acting as a gel electrolyte. Data points were extracted from ref. 
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[18] using grabit.m, and shown in fig. 4 for concentrations 4.8 % (slurry 1, red circles), 7.0 % (slurry 2, 

green circles), 9.1 % (slurry 3, blue triangles) and 11.1% (slurry 4, violet diamonds).  

 

The red dashed line is a fit to eq. (12) with Vs = RsI0 = 0.50 V, RpI0 = 0.5V, 0 = 123 s and =0.46, 

R2=0.9803. The green dashed line is a fit to eq. (12) with Vs = RsI0 = 0.38 V, RpI0 = 0.5V, 0 = 60 s and 

=0.55, R2=0.9909. The blue dashed line is a fit to eq. (12) with Vs = RsI0 = 0.35 V, RpI0 = 0.5V, 0 = 95 

s and =0.59, R2=0.9930. Finally, the violet dashed line is a fit to eq. (12) with Vs = RsI0 = 0.27 V, RpI0 = 

0.7V, 0 = 243 s and =0.52, R2=0.9715. It should be emphasized that fits to eq. (12) assuming =1 gave 

poor fits and are therefore not reported here. 

 

As reported in ref. [18], the number of deposits needed to make the required thickness (0.5 mm) decreased 

with the concentration of conductive carbon, from 5 deposits at 4.8 % concentration to only 2 deposits at 

11.1 % concentration. This may explain the fact that  appears to be increasing with the slurry 

concentration, with =0.46 at 4.8%, =0.55 at 7.0% and =0.59 at 9.1 %. A small decrease to =0.52 is 

then seen at 11.1 %, but the overall impression is an increase in  with concentration. This increase in  

suggests that there should be a broader distribution of relaxation times as well. One may then argue that 

when the concentration of carbon particles increases, fewer 3D-printed layers are needed, which may 

result in fewer layer-transitions. One may imagine that near such a transition between layers, the particles 

are arranged differently than in the bulk of a layer, thus giving rise to a different relaxation time. At the 

same time, the interfacial series resistance Rs increases with number of layers as indicated in fig. 4. 

Therefore, having more layers means creating more opportunity for carbon particles to arrange in different 

manners with different relaxation times. While these arguments are appealing, further designated 

experiments correlating micro and nanostructure with galvanostatic charging curves are needed in order 

to verify their validity. However, such work is outside the scope of the current study. 
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4. Conclusion 

In this work galvanostatic charging of a supercapacitor which exhibits a distribution of relaxation times 

is examined. It is found that a broad distribution of relaxation times gives rise to a faster increase in 

voltage than a narrow distribution. It is shown how a distribution of charge transfer resistances can be 

used to explain experimental data found in the literature for metal-free supercapacitors. The work 

presented here accounts for charge storage on the porous surface combined with resistive loss 

mechanisms. Under some circumstances, for instance in pseudocapacitors, one would be interested also 

in faradaic charge transfer facilitated by redox-reactions. One could account for such mechanisms through 

additional terms added to eq. (5), but this is outside the scope of the current work.  
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